1
|
Papakostas G, Corner PA, Hook AL, Brookes SC, Booth J, Burley JC, McCabe JF. Miniaturized High-Throughput Amorphous Solid Dispersion Screening via Picoliter Volume 2D-Inkjet Printing of Formulation Microarrays. Mol Pharm 2025; 22:2040-2052. [PMID: 40051265 DOI: 10.1021/acs.molpharmaceut.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Many new drug substances exhibit poor physicochemical properties and therefore require significant time and material resources to develop into safe and efficacious medicinal products. This typically involves exploring a large amount of compositional space and may require excessive amounts of drug compounds, which may not be adequate at the early stage of drug development. Scaled-down screening methods have been used as a cost-effective approach to the early-stage formulation. However, even the most material-efficient methods used in product development require milligrams or grams of drug material, which is often not available until relatively late in the lead optimization process. Herein, we report the application of picoliter inkjet printing of drugs and polymers from solution to create addressable formulation microarrays. This allows the efficient screening of drug-polymer compositions while only requiring micrograms or less of the drug substance. A total of eight model compounds, namely, carbamazepine, griseofulvin, saccharin, theophylline, 4-aminobenzoic acid, caffeine, salicylic acid, and benzocaine, were screened against seven commonly used amorphous solid dispersion (ASD) matrix polymers at 5% w/w composition intervals in the range of 5-80% w/w, with five replicates each. Each dispensed spot contains a total of only 1 μg of material (model compound and/or polymer). Across the tested ASD formulations, we ranked the different polymers based on their ability to hinder drug recrystallization across different compositions. Also, we identified distinct physicochemical behaviors in their crystallization kinetics, such as moisture resolubilization. We expect this approach to enable the rapid time- and material-efficient development of new amorphous solid dispersion formulations in an industrial setting.
Collapse
Affiliation(s)
- Georgios Papakostas
- Early Product Development & Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Charter Way, Macclesfield SK10 2NA, United Kingdom
| | - Philip A Corner
- Early Product Development & Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Charter Way, Macclesfield SK10 2NA, United Kingdom
| | - Andrew L Hook
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Stephanie C Brookes
- Early Product Development & Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Charter Way, Macclesfield SK10 2NA, United Kingdom
| | - Jonathan Booth
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Charter Way, Macclesfield SK10 2NA, United Kingdom
| | - Jonathan C Burley
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - James F McCabe
- Early Product Development & Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Charter Way, Macclesfield SK10 2NA, United Kingdom
| |
Collapse
|
2
|
Fan F, Lu Y, Xu S, Guo M, Cai T. Impact of Polymers on the Kinetics of the Solid-State Phase Transition of Piracetam Polymorphs. Mol Pharm 2025; 22:509-519. [PMID: 39630947 DOI: 10.1021/acs.molpharmaceut.4c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Metastable polymorphs of active pharmaceutical ingredients can occasionally be used to enhance bioavailability or make processing more convenient. However, the thermodynamic instability of metastable polymorphs poses a severe threat to the quality and performance of the drug products. In this study, we used hot-stage microscopy and powder X-ray diffraction to quantitatively analyze the kinetics of the solid-solid phase transition of piracetam (PCM) polymorphs in the absence and presence of several polymeric excipients. The Forms I and II of PCM are enantiotropically related polymorphs, and the transition point is 75 °C. We found that 1 wt % polymer can strongly affect the transformation rate of Form II to Form I of PCM above 75 °C. PVP K30 has the highest Tg and the strongest inhibitory effect on the transition, whereas PEG has the lowest Tg and the weakest effect on the transition. Below 75 °C, the addition of 1 wt % PEG can decrease the transformation rate from Form I to Form II of PCM by a few orders of magnitude, whereas no phase transition occurs in the presence of the other investigated polymers. The inhibitory effects of the same concentration of polymers on the kinetics of the solid-solid phase transition of piracetam polymorphs are considerably greater than those on the crystallization of PCM from the amorphous phase, especially at low temperatures. We propose that the low segmental mobility of polymers enriched between the crystalline phases can considerably inhibit the nucleation and growth of the stable form at the interface during the phase transition. Our findings deepen the current understanding of the mechanisms underlying the solid-state phase transition of polymorphic drugs in the presence of polymeric excipients, providing a promising formulation approach for stabilizing the metastable pharmaceutical polymorphs.
Collapse
Affiliation(s)
- Fanfan Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Lu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shuyuan Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minshan Guo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Wang H, Luan Y, Li M, Wu S, Zhang S, Xue J. Crystallization and intermolecular hydrogen bonding in carbamazepine-polyvinyl pyrrolidone solid dispersions: An experiment and molecular simulation study on drug content variation. Int J Pharm 2024; 666:124769. [PMID: 39341386 DOI: 10.1016/j.ijpharm.2024.124769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The choice of drug content is a critical factor as far as the solid dispersion is concerned. This investigation aims to build the relationship between the drug content, intermolecular hydrogen bonding and the crystalline of the carbamazepine-polyvinyl pyrrolidone solid dispersion. In this work, the microstructural changes of solid dispersions were investigated using experimental characterization combined with molecular simulation. Experimental investigations demonstrated that increasing the drug content enhances the intermolecular hydrogen bonding between drugs, resulting in the crystalline phase of the drug emerged in the solid dispersion. This negatively affects the solubility and stability of solid dispersions. Molecular simulations were then used to analyze the changes of intermolecular hydrogen bonding at different drug content in the system. It revealed a tenfold increase in drug-drug hydrogen bonding concentration as drug content elevated from 10% to 50%, while the drug-excipient hydrogen bonding concentration decreased by 45%. The correlation analysis proves the significant relationships among the drug content, intermolecular hydrogen bonding, and crystallinity of solid dispersion. Using polynomial fitting analysis, the quantitative relationships between the drug content and crystalline properties were investigated. This study will offer valuable insights into the impact of drug content on the performance of solid dispersion.
Collapse
Affiliation(s)
- Huaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yajie Luan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mengke Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sidian Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
4
|
Luo C, Li R, Tang M, Gao Y, Zhang J, Qian S, Wei Y, Shen P. Amorphous solid dispersion to facilitate the delivery of poorly water-soluble drugs: recent advances on novel preparation processes and technology coupling. Expert Opin Drug Deliv 2024; 21:1807-1822. [PMID: 39484838 DOI: 10.1080/17425247.2024.2423813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
INTRODUCTION Amorphous solid dispersion (ASD) technique has recently been used as an effective formulation strategy to significantly improve the bioavailability of insoluble drugs. The main industrialized preparation methods for ASDs are mainly hot melt extrusion and spray drying techniques; however, they face the limitations of being unsuitable for heat-sensitive materials and organic reagent residues, respectively, and therefore novel preparation processes and technology coupling for developing ASDs have received increasing attention. AREAS COVERED This paper reviews recent advances in ASD and provides an overview of novel preparation methods, mechanisms for improving drug bioavailability, and especially technology coupling. EXPERT COVERED As a mature pharmaceutical technology, ASD has broad application prospects and values. During the period from 2012 to 2024, the FDA has approved 49 formulation products containing ASDs. However, with the diversification of drug types and clinical needs, the traditional formulation technology of ASDs is gradually no longer sufficient to meet the needs of clinical medication. Therefore, this review summarizes the studies on both novel preparation processes and technology combinations; and provides a comprehensive overview of the mechanisms of ASD to improve drug bioavailability, in order to better select appropriate preparation methods for the development of ASD formulations.
Collapse
Affiliation(s)
- Chengxiang Luo
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Ruipeng Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Mi Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Jiangsu Litaier Pharma Ltd, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Peiya Shen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
5
|
Triboandas H, Bezerra M, Almeida J, de Castro M, Santos BAMC, Schlindwein W. Optimizing extrusion processes and understanding conformational changes in itraconazole amorphous solid dispersions using in-line UV-Vis spectroscopy and QbD principles. Int J Pharm X 2024; 8:100308. [PMID: 39687500 PMCID: PMC11647160 DOI: 10.1016/j.ijpx.2024.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
This paper presents a comprehensive investigation of the manufacturing of itraconazole (ITZ) amorphous solid dispersions (ASDs) with Kolllidon® VA64 (KVA64) using hot-melt extrusion (HME) and in-line process monitoring, employing a Quality by Design (QbD) approach. A sequential Design of Experiments (DoE) strategy was utilized to optimize the manufacturing process, with in-line UV-Vis spectroscopy providing real-time monitoring. The first DoE used a fractional factorial screening design to evaluate critical process parameters (CPPs), revealing that ITZ concentration had the most significant impact on the product quality attributes. The second DoE, employing a central composite design, explored the interactions between feed rate and screw speed, using torque and absorbance at 370 nm as responses to develop a design space. Validation studies confirmed process robustness across multiple days, with stable in-line UV-Vis spectra and consistent product quality using 30 % ITZ, 300 rpm, 150 °C and 7 g/min as the optimized process conditions. Theoretical and experimental analyses indicated that shifts in UV-Vis spectra at different ITZ concentrations were due to conformational changes in ITZ, which were confirmed through density functional theory (DFT) calculations and infrared spectroscopy. This work offers novel insights into the production and monitoring of ITZ-KVA64-ASDs, demonstrating that in-line UV-Vis spectroscopy is a powerful tool for real-time process monitoring and/or control.
Collapse
Affiliation(s)
- Hetvi Triboandas
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Mariana Bezerra
- GlaxoSmithKline, David Jack Centre, Harris Lane, Ware, Hertfordshire SG12 0GX, UK
| | | | - Matheus de Castro
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | | | | |
Collapse
|
6
|
Niederquell A, Herzig S, Schönenberger M, Stoyanov E, Kuentz M. Computational Support to Explore Ternary Solid Dispersions of Challenging Drugs Using Coformer and Hydroxypropyl Cellulose. Mol Pharm 2024; 21:5619-5631. [PMID: 39388157 PMCID: PMC11539070 DOI: 10.1021/acs.molpharmaceut.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
A majority of drugs marketed in amorphous formulations have a good glass-forming ability, while compounds less stable in the amorphous state still pose a formulation challenge. This work explores ternary solid dispersions of two model drugs with a polymer (i.e., hydroxypropyl cellulose) and a coformer as stabilizing excipients. The aim was to introduce a computational approach by preselecting additives using solubility parameter intervals (i.e., overlap range of solubility parameter, ORSP) followed by more advanced COSMO-RS theory modeling. Thus, a mapping of calculated mixing enthalpy and melting points is proposed for in silico evaluation prior to hot melt extrusion. Following experimental testing of process feasibility, the selected formulations were tested for their physical stability using conventional bulk analytics and by confocal laser scanning and atomic force microscopy imaging. In line with the in silico screening, dl-malic and l-tartaric acid (20%, w/w) in HPC formulations showed no signs of early drug crystallization after 3 months. However, l-tartaric acid formulations displayed few crystals on the surface, which was likely a humidity-induced surface phenomenon. Although more research is needed, the conclusion is that the proposed computational small-scale extrusion approach of ternary solid dispersion has great potential in the formulation development of challenging drugs.
Collapse
Affiliation(s)
- Andreas Niederquell
- Institute
for Pharma Technology, University of Applied
Sciences and Arts Northwestern Switzerland, School of Life Sciences
FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland
| | - Susanne Herzig
- Institute
for Pharma Technology, University of Applied
Sciences and Arts Northwestern Switzerland, School of Life Sciences
FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland
| | - Monica Schönenberger
- Nano
Imaging Lab, Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Edmont Stoyanov
- Nisso
Chemical Europe, Berliner
Allee 42, 40212 Düsseldorf, Germany
| | - Martin Kuentz
- Institute
for Pharma Technology, University of Applied
Sciences and Arts Northwestern Switzerland, School of Life Sciences
FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland
| |
Collapse
|
7
|
Shu Y, Zhao P, Li X, Shi X, Fu Q. Counter-intuitive discovery in the formulation of poorly water-soluble drugs: Amorphous small-molecule gels. Med Res Rev 2024; 44:2624-2639. [PMID: 38807483 DOI: 10.1002/med.22060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Amorphous strategies have been extensively used in improving the dissolution of insoluble drugs for decades due to their high free energy. However, the formation of amorphous small-molecule gels (ASMGs) presents a counter-intuitive discovery that significantly limits their practical application. Recently, ASMGs have garnered attention because of their noncovalent structures, excellent biodegradability, and significant potential in various drug delivery systems in the pharmaceutical field. Hence, a comprehensive review is necessary to contribute to a better understanding of recent advances in ASMGs. This review aimed to introduce the main formation mechanisms, summarize possible influencing factors, generalize unique properties, outline elimination strategies, and discuss clinical application potential with preclinical cases of ASMGs. Moreover, few ASMGs are advanced to clinical stages. Intensive clinical research is needed for further development. We hope that this review can provide more efficient and rational guidance for exploring further clinical applications of ASMGs.
Collapse
Affiliation(s)
- Yecheng Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Shenyang, China
| |
Collapse
|
8
|
Liu S, Chen H, Zhou F, Tiwari S, Zhuang K, Shan Y, Zhang J. Preparation, Characterization and Evaluation of Nintedanib Amorphous Solid Dispersions with Enhanced Oral Bioavailability. AAPS PharmSciTech 2024; 25:183. [PMID: 39138765 DOI: 10.1208/s12249-024-02902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
The dissolution and bioavailability challenges posed by poorly water-soluble drugs continue to drive innovation in pharmaceutical formulation design. Nintedanib (NDNB) is a typical BCS class II drug that has been utilized to treat idiopathic pulmonary fibrosis (IPF). Due to the low solubility, its oral bioavailability is relatively low, limiting its therapeutical effectiveness. It is crucial to enhance the dissolution and the oral bioavailability of NDNB. In this study, we focused on the preparation of amorphous solid dispersions (ASD) using hot melt extrusion (HME). The formulation employed Kollidon® VA64 (VA64) as the polymer matrix, blended with the NDNB at a ratio of 9:1. HME was conducted at temperatures ranging from 80 °C to 220 °C. The successful preparation of ASD was confirmed through various tests including polarized light microscopy (PLM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The in-vitro cumulative release of NDNB-ASD in 2 h in a pH 6.8 medium was 8.3-fold higher than that of NDNB (p < 0.0001). In a pH 7.4 medium, it was 10 times higher (p < 0.0001). In the in-vivo pharmacokinetic experiments, the area under curve (AUC) of NDNB-ASD was 5.3-fold higher than that of NDNB and 2.2 times higher than that of commercially available soft capsules (Ofev®) (p < 0.0001). There was no recrystallization after 6 months under accelarated storage test. Our study indicated that NDNB-ASD can enhance the absorption of NDNB, thus providing a promising method to improve NDNB bioavailability in oral dosages.
Collapse
Affiliation(s)
- Shuyin Liu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
| | - Hui Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
| | - Sandip Tiwari
- Pharma Solutions, BASF Corp., 500 White Plains Rd, Tarrytown, NY, 10591, USA
| | - Kai Zhuang
- Pharma Solutions, Nutrition and Health, BASF (China) Company, Ltd, 333 Jiang Xin Sha Road, Shanghai, 200137, China
| | - Yudong Shan
- Hangzhou Zhongmeihuadong Pharmaceutical Co., Ltd., 866 Moganshan Road, Hangzhou, 310011, China
| | - Jiantao Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China.
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China.
| |
Collapse
|
9
|
Yun T, Lee S, Yun S, Cho D, Bang K, Kim K. Investigation of Stabilized Amorphous Solid Dispersions to Improve Oral Olaparib Absorption. Pharmaceutics 2024; 16:958. [PMID: 39065655 PMCID: PMC11280475 DOI: 10.3390/pharmaceutics16070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we investigated the formulation of stable solid dispersions to enhance the bioavailability of olaparib (OLA), a therapeutic agent for ovarian cancer and breast cancer characterized as a BCS class IV drug with low solubility and low permeability. Various polymers were screened based on solubility tests, and OLA-loaded solid dispersions were prepared using spray drying. The physicochemical properties of these dispersions were investigated via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier Transform Infrared Spectroscopy (FT-IR). Subsequent dissolution tests, along with assessments of morphological and crystallinity changes in aqueous solutions, led to the selection of a hypromellose (HPMC)-based OLA solid dispersion as the optimal formulation. HPMC was effective at maintaining the supersaturation of OLA in aqueous solutions and exhibited a stable amorphous state without recrystallization. In an in vivo study, this HPMC-based OLA solid dispersion significantly enhanced bioavailability, increasing AUC0-24 by 4.19-fold and Cmax by more than 10.68-fold compared to OLA drug powder (crystalline OLA). Our results highlight the effectiveness of HPMC-based solid dispersions in enhancing the oral bioavailability of OLA and suggest that they could be an effective tool for the development of oral drug formulations.
Collapse
Affiliation(s)
| | | | | | | | - Kyuho Bang
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (T.Y.); (S.L.); (S.Y.); (D.C.)
| | - Kyeongsoo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (T.Y.); (S.L.); (S.Y.); (D.C.)
| |
Collapse
|
10
|
Qian K, Stella L, Liu F, Jones DS, Andrews GP, Tian Y. Kinetic and Thermodynamic Interplay of Polymer-Mediated Liquid-Liquid Phase Separation for Poorly Water-Soluble Drugs. Mol Pharm 2024; 21:2878-2893. [PMID: 38767457 DOI: 10.1021/acs.molpharmaceut.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Understanding the interplay between kinetics and thermodynamics of polymer-mediated liquid-liquid phase separation is crucial for designing and implementing an amorphous solid dispersion formulation strategy for poorly water-soluble drugs. This work investigates the phase behaviors of a poorly water-soluble model drug, celecoxib (CXB), in a supersaturated aqueous solution with and without polymeric additives (PVP, PVPVA, HPMCAS, and HPMCP). Drug-polymer-water ternary phase diagrams were also constructed to estimate the thermodynamic behaviors of the mixtures at room temperature. The liquid-liquid phase separation onset point for CXB was detected using an inline UV/vis spectrometer equipped with a fiber optic probe. Varying CXB concentrations were achieved using an accurate syringe pump throughout this study. The appearance of the transient nanodroplets was verified by cryo-EM and total internal reflection fluoresence microscopic techniques. The impacts of various factors, such as polymer composition, drug stock solution pumping rates, and the types of drug-polymer interactions, are tested against the onset points of the CXB liquid-liquid phase separation (LLPS). It was found that the types of drug-polymer interactions, i.e., hydrogen bonding and hydrophobic interactions, are vital to the position and shapes of LLPS in the supersaturation drug solution. A relation between the behaviors of LLPS and its location in the CXB-polymer-water ternary phase diagram was drawn from the findings.
Collapse
Affiliation(s)
- Kaijie Qian
- School of Pharmacy, McClay Research Centre, Queen's University Belfast, 97 Lisburn Road, Northern Ireland BT9 7BL, U.K
| | - Lorenzo Stella
- School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, U.K
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, U.K
| | - Fanjun Liu
- School of Pharmacy, McClay Research Centre, Queen's University Belfast, 97 Lisburn Road, Northern Ireland BT9 7BL, U.K
| | - David S Jones
- School of Pharmacy, McClay Research Centre, Queen's University Belfast, 97 Lisburn Road, Northern Ireland BT9 7BL, U.K
| | - Gavin P Andrews
- School of Pharmacy, McClay Research Centre, Queen's University Belfast, 97 Lisburn Road, Northern Ireland BT9 7BL, U.K
| | - Yiwei Tian
- School of Pharmacy, McClay Research Centre, Queen's University Belfast, 97 Lisburn Road, Northern Ireland BT9 7BL, U.K
| |
Collapse
|
11
|
Lee J, Han CH, Oh IH, Allu S, Kim HJ, Kim J, Kim WS, Park BJ. Fabrication and evaluation of stable amorphous polymer-drug composite particles via a nozzle-free ultrasonic nebulizer. Int J Pharm 2024; 657:124177. [PMID: 38697582 DOI: 10.1016/j.ijpharm.2024.124177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
We present a promising method for producing amorphous drug particles using a nozzle-free ultrasonic nebulizer with polymers, specifically polyvinylpyrrolidone (PVP), poly(acrylic acid) (PAA), and Eudragit® S 100 (EUD). Model crystalline phase drugs-Empagliflozin, Furosemide, and Ilaprazole-are selected. This technique efficiently produces spherical polymer-drug composite particles and demonstrates enhanced stability against humidity and thermal conditions, compared to the drug-only amorphous particles. The composite particles exhibit improved water dissolution compared to the original crystalline drugs, indicating potential bioavailability enhancements. While there are challenges, including the need for continuous water supply for ultrasonic component cooling, dependency on the solubility of polymers and drugs in volatile organic solvents, and mildly elevated temperatures for solvent evaporation, our method offers significant advantages over traditional approaches. It provides a straightforward, flexible process adaptable to various drug-polymer combinations and consistently yields spherical amorphous solid dispersion (ASD) particles with a narrow size distribution. These attributes make our method a valuable advancement in pharmaceutical drug formulation and delivery.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Chang Hun Han
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - In Hwan Oh
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Suryanarayana Allu
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| | - Hee Jin Kim
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Jinsoo Kim
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Woo-Sik Kim
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
12
|
Shen J, Hu A, Yang Y, Nie T, Huang S, Cheng Z, Liu W. Ternary solid dispersions of lacidipine: Enhancing dissolution and supersaturation maintenance through strategic formulation optimization. Int J Pharm 2024; 654:123989. [PMID: 38467205 DOI: 10.1016/j.ijpharm.2024.123989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/08/2024] [Accepted: 03/09/2024] [Indexed: 03/13/2024]
Abstract
The study aimed to address the challenges related to insufficient dissolution and maintenance of supersaturation in binary solid dispersions. Lacidipine, categorized as a BCS class II drug, was employed as the model drug. A systematic screening of excipients was conducted to determine the most effective carriers for the formulations of the ternary solid dispersions, utilizing the solvent transfer method and equilibrium solubility measurements. Both binary and ternary solid dispersions were prepared via spray drying, and comprehensive physicochemical characterization confirmed the successful preparation of amorphous solid dispersions. In vitro dissolution tests, the ternary solid dispersion exhibited marked superiority over the binary solid dispersion in dissolution and maintenance of supersaturation. Furthermore, an exploration into the factors influencing the stability of ternary solid dispersions revealed their robust resistance under light-protected, room-temperature, and desiccated conditions. The formation of intermolecular hydrogen bonding within the molecules of the ternary solid dispersions significantly enhanced drug solubility and system stability. Strategic formulation optimization, coupled with judicious selection of suitable carrier types and ratios, may serve as a promising approach for designing supersaturated drug delivery systems.
Collapse
Affiliation(s)
- Jian Shen
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road172, Changsha 410013, China
| | - Anna Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road172, Changsha 410013, China
| | - Yuxin Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road172, Changsha 410013, China
| | - Ting Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road172, Changsha 410013, China
| | - Siqi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road172, Changsha 410013, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road172, Changsha 410013, China
| | - Wenjie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road172, Changsha 410013, China.
| |
Collapse
|
13
|
Tripathi D, B H MP, Sahoo J, Kumari J. Navigating the Solution to Drug Formulation Problems at Research and Development Stages by Amorphous Solid Dispersion Technology. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:79-99. [PMID: 38062659 DOI: 10.2174/0126673878271641231201065151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 08/30/2024]
Abstract
Amorphous Solid Dispersions (ASDs) have indeed revolutionized the pharmaceutical industry, particularly in drug solubility enhancement. The amorphous state of a drug, which is a highenergy metastable state, can lead to an increase in the apparent solubility of the drug. This is due to the absence of a long-range molecular order, which results in higher molecular mobility and free volume, and consequently, higher solubility. The success of ASD preparation depends on the selection of appropriate excipients, particularly polymers that play a crucial role in drug solubility and physical stability. However, ASDs face challenges due to their thermodynamic instability or tendency to recrystallize. Measuring the crystallinity of the active pharmaceutical ingredient (API) and drug solubility is a complex process that requires a thorough understanding of drug-polymer miscibility and molecular interactions. Therefore, it is important to monitor drug solids closely during preparation, storage, and application. Techniques such as solid-state nuclear magnetic resonance (ssNMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and dielectric spectroscopy have been successful in understanding the mechanism of drug crystallization. In addition, the continuous downstream processing of drug-loaded ASDs has introduced new automated methods for consistent ASD production. Advanced techniques such as hot melt extrusion, KinetiSol, electro spraying, and electrospinning have gained popularity. This review provides a comprehensive overview of Amorphous Solid Dispersions (ASDs) for oral drug delivery. It highlights the critical challenges faced during formulation, the impact of manufacturing variables, theoretical aspects of drug-polymer interaction, and factors related to drug-polymer miscibility. ASDs have been recognized as a promising strategy to improve the oral bioavailability of poorly water-soluble drugs. However, the successful development of an ASD-based drug product is not straightforward due to the complexity of the ASD systems. The formulation and process parameters can significantly influence the performance of the final product. Understanding the interactions between the drug and polymer in ASDs is crucial for predicting their stability and performance.
Collapse
Affiliation(s)
- Devika Tripathi
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| | - Manjunatha Prabhu B H
- Department of Food Protection and Infestation Control, CSIR-CFTRI, Central Food Technological Research Institute, Mysore, India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, NIMMS, Mumbai, India
| | - Jyoti Kumari
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| |
Collapse
|
14
|
Jadhav S, Bahl D, Stevens LL. Coformer-Dependent Physical Stability in a Series of Naringenin-Based Coamorphous Materials with Caffeine, Theophylline, and Theobromine. Pharm Res 2023; 40:2847-2858. [PMID: 37505378 DOI: 10.1007/s11095-023-03562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE To investigate the production and physical stability of coamorphous materials (CAM) of naringenin (NAR) and coformers-caffeine, theophylline or theobromine (CAF/THY/THE, respectively). We independently assessed the impact of moisture and temperature on the physical stability of CAMs, and transformation products after destabilization were examined. METHODS Neat grinding, liquid assisted grinding and water slurry were selected to prepare multi-component materials with NAR and CAF, THY or THE. The physical stability of CAMs was investigated at 65°C/<10%RH, 21°C/85% RH and 21°C/<10% RH. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were employed to monitor for recrystallization during the stability studies. Glass forming ability of amorphous NAR was assessed to understand CAM formation and physical stability. RESULTS NAR:THY and NAR:THE CAMs showed physical stability for approximately nine months, under 21°C/<10% RH while NAR:CAF CAMs destabilized in 2.5 weeks. All CAMs recrystallized within a week at 65°C/<10%RH, and the physical stability at 21°C/85% RH was in the order of - NAR:THY > NAR:THE > NAR:CAF. NAR:THY produced 1:1 cocrystal under all storage conditions, while NAR:CAF destabilized to a 1:1 cocrystal at high RH but a physical mixture at high temperature. NAR:THE was found to recrystallize as a physical mixture in all conditions. NAR was found to be strong glass, with moderate kinetic fragility and good glass forming ability. CONCLUSION Five naringenin-based multi-component solids were generated in this study: 3 new CAMs, 1 new cocrystal, and 1 previously reported cocrystal. Destabilization of CAMs was found to be exposure specific and coformer dependent.
Collapse
Affiliation(s)
- Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Dherya Bahl
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Lewis L Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
15
|
Hu C, Yan Q, Zhang Y, Yan H. Influence Mechanism of Drug-Polymer Compatibility on Humidity Stability of Crystalline Solid Dispersion. Pharmaceuticals (Basel) 2023; 16:1640. [PMID: 38139767 PMCID: PMC10747292 DOI: 10.3390/ph16121640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
This study investigates the influence of humidity on the dissolution behavior and microstructure of drugs in crystalline solid dispersions (CSDs). Using Bifonazole (BFZ) as a model drug, CSDs were prepared through spray drying with carriers such as Poloxamer 188 (P188), Poloxamer 407 (P407), and polyethylene glycol 8000 (PEG8000). The solubilization effect and mechanism were initially evaluated, followed by an examination of the impact of humidity (RH10%) on the dissolution behavior of CSDs. Furthermore, the influence of humidity on the microstructure of CSDs was investigated, and factors affecting the humidity stability of CSDs were summarized. Significant enhancements in the intrinsic dissolution rate (IDR) of BFZ in CSDs were observed due to changes in crystalline size and crystallinity, with the CSD-P188 system exhibiting the best performance. Following humidity treatment, the CSD-P407 system demonstrated the least change in the IDR of BFZ, indicating superior stability. The CSD-P407 system was followed by the CSD-P188 system, with the CSD-PEG8000 system exhibiting the least stability. Further analysis of the microstructure revealed that while humidity had negligible effects on the crystalline size and crystallinity of BFZ in CSDs, it had a significant impact on the distribution of BFZ on the CSD surface. This can be attributed to the water's potent plasticizing effect, which significantly alters the molecular mobility of BFZ. Additionally, the compatibility of the three polymers with BFZ differs, with CSD-P407 > CSD-P188 > CSD-PEG8000. Under the continuous influence of water, stronger compatibility leads to lower molecular mobility and more uniform drug distribution on the CSD surface. Enhancing the compatibility of drugs with polymers can effectively reduce the mobility of BFZ in CSDs, thereby mitigating changes caused by water and ultimately stabilizing the surface composition and dissolution behavior of drugs in CSDs.
Collapse
Affiliation(s)
- Chunhui Hu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810001, China
| | - Qiuli Yan
- Medical College, Qinghai University, Xining 810001, China; (Q.Y.); (Y.Z.); (H.Y.)
| | - Yong Zhang
- Medical College, Qinghai University, Xining 810001, China; (Q.Y.); (Y.Z.); (H.Y.)
| | - Haiying Yan
- Medical College, Qinghai University, Xining 810001, China; (Q.Y.); (Y.Z.); (H.Y.)
| |
Collapse
|
16
|
Han J, Tang M, Yang Y, Sun W, Yue Z, Zhang Y, Zhu Y, Liu X, Wang J. Amorphous solid dispersions: Stability mechanism, design strategy and key production technique of hot melt extrusion. Int J Pharm 2023; 646:123490. [PMID: 37805146 DOI: 10.1016/j.ijpharm.2023.123490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Solid dispersion (SD) system has been used as an effective formulation strategy to increase in vitro and in vivo performances of poorly water-soluble drugs, such as solubility/dissolution, stability and bioavailability. This review provides a comprehensive SD classification and identifies the most popular amorphous solid dispersions (ASDs). Meanwhile, this review further puts forward the systematic design strategy of satisfactory ASDs in terms of drug properties, carrier selection, preparation methods and stabilization mechanisms. In addition, hot melt extrusion (HME) as the continuous manufacturing technique is described including the principle and structure of HME instrument, key process parameters and production application, in order to guide the scale-up of ASDs and develop more ASD products to the market in pharmaceutical industry.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Mengyuan Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yang Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Wen Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Zhimin Yue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunran Zhang
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Yijun Zhu
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
17
|
Moseson DE, Taylor LS. Crystallinity: A Complex Critical Quality Attribute of Amorphous Solid Dispersions. Mol Pharm 2023; 20:4802-4825. [PMID: 37699354 DOI: 10.1021/acs.molpharmaceut.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Does the performance of an amorphous solid dispersion rely on having 100% amorphous content? What specifications are appropriate for crystalline content within an amorphous solid dispersion (ASD) drug product? In this Perspective, the origin and significance of crystallinity within amorphous solid dispersions will be considered. Crystallinity can be found within an ASD from one of two pathways: (1) incomplete amorphization, or (2) crystal creation (nucleation and crystal growth). While nucleation and crystal growth is the more commonly considered pathway, where crystals originate as a physical stability failure upon accelerated or prolonged storage, manufacturing-based origins of crystallinity are possible as well. Detecting trace levels of crystallinity is a significant analytical challenge, and orthogonal methods should be employed to develop a holistic assessment of sample properties. Probing the impact of crystallinity on release performance which may translate to meaningful clinical significance is inherently challenging, requiring optimization of dissolution test variables to address the complexity of ASD formulations, in terms of drug physicochemical properties (e.g., crystallization tendency), level of crystallinity, crystal reference material selection, and formulation characteristics. The complexity of risk presented by crystallinity to product performance will be illuminated through several case studies, highlighting that a one-size-fits-all approach cannot be used to set specification limits, as the risk of crystallinity can vary widely based on a multitude of factors. Risk assessment considerations surrounding drug physicochemical properties, formulation fundamentals, physical stability, dissolution, and crystal micromeritic properties will be discussed.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Worldwide Research and Development Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Miyazaki T, Mizoguchi R, Ueda K, Shinozaki T, Kamoto M, Takeda Y, Sakuma S, Ito N, Momo M, Kawakami K. Crystallization of Amorphous Nifedipine Under Isothermal Conditions: Inter-laboratory Reproducibility and Investigation of the Factors Affecting Reproducibility. J Pharm Sci 2023; 112:2703-2716. [PMID: 37301322 DOI: 10.1016/j.xphs.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
High inter-laboratory reproducibility is required for conducting collaborative experiments among several laboratories. The primary aim of our evaluation of the physical stability of amorphous drugs, conducted in co-operation with eight laboratories, was to establish a protocol for isothermal storage tests to obtain data of the same quality from all the participating laboratories. Sharing a protocol that contained the same level of detail as the experimental section of general papers was insufficient for high inter-laboratory reproducibility. We investigated the causes of variations in the data from the various laboratories and restricted the protocol step-by-step to achieve high inter-laboratory reproducibility. The various experimentalists had very different levels of awareness regarding how to control the temperature of a sample as the samples were transferred into and out of thermostatic chambers. Specific instructions on how to conduct this operation, such as regarding the time required for the transfer and thermal protection of the container during the transfer, helped to reduce variation. Improved inter-laboratory reproducibility revealed that the physical stabilities of amorphous drugs differed when samples were prepared in differently shaped aluminum pans designed for various differential scanning calorimeters.
Collapse
Affiliation(s)
- Tamaki Miyazaki
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| | - Ryo Mizoguchi
- CMC Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8675, Japan
| | - Taeko Shinozaki
- Research Group V, Analytical & Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| | - Mie Kamoto
- Analytical Research Laboratories, Pharmaceutical Science & Technology Function Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Yoshihiro Takeda
- Core Technology Research Department, X-ray Research Laboratory, Rigaku Corp., 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | - Satoshi Sakuma
- Shionogi & Co., Ltd., 2-1-3 Kuise Terajima, Amagasaki, Hyogo 660-0813, Japan
| | - Naoya Ito
- Analytical Research & Development Laboratories, Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Michiko Momo
- Takeda Pharmaceutical Co., Ltd., 2-26-1 Muraokahigashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
19
|
Bakhtiari SE, Zhu Z, Magdysyuk OV, Brocchini S, Williams GR. Amorphous solid dispersions of lidocaine and lidocaine HCl produced by ball milling with well-defined RAFT-synthesised methacrylic acid polymers. Int J Pharm 2023; 644:123291. [PMID: 37544388 DOI: 10.1016/j.ijpharm.2023.123291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
This study focuses on the use of methacrylic acid polymers synthesised via the Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation method for the production of amorphous solid dispersions (ASDs) by ball milling, to kinetically solubilize a poorly water-soluble model drug. The solid-state characteristics and the physical stability of the formulations were investigated using X-ray diffraction, differential scanning calorimetry, and infrared spectroscopy. This was followed by dissolution studies in different media. It was discovered that the acidic polymers of methacrylic acid were capable of interacting with the weakly basic drug lidocaine and its hydrochloride salt form to produce ASDs when a polymer to drug ratio of 70:30 w/w was used. The ASDs remained amorphous following storage under accelerated aging conditions (40 °C and 75% relative humidity) over 8 months. Fast dissolution and increased lidocaine solubility in different media were obtained from the ASDs owing to the reduced microenvironment pH and enhanced solubilization of the drug caused by the presence of the acidic polymer in the formulation. Production of ASDs using well-defined RAFT-synthesised acidic polymers is a promising formulation strategy to enhance the pharmaceutical properties of basic poorly water-soluble drugs.
Collapse
Affiliation(s)
- Sara E Bakhtiari
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom
| | - Zilan Zhu
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom
| | - Oxana V Magdysyuk
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Steve Brocchini
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom
| | - Gareth R Williams
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom.
| |
Collapse
|
20
|
Mostofian B, Martin HJ, Razavi A, Patel S, Allen B, Sherman W, Izaguirre JA. Targeted Protein Degradation: Advances, Challenges, and Prospects for Computational Methods. J Chem Inf Model 2023; 63:5408-5432. [PMID: 37602861 PMCID: PMC10498452 DOI: 10.1021/acs.jcim.3c00603] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/22/2023]
Abstract
The therapeutic approach of targeted protein degradation (TPD) is gaining momentum due to its potentially superior effects compared with protein inhibition. Recent advancements in the biotech and pharmaceutical sectors have led to the development of compounds that are currently in human trials, with some showing promising clinical results. However, the use of computational tools in TPD is still limited, as it has distinct characteristics compared with traditional computational drug design methods. TPD involves creating a ternary structure (protein-degrader-ligase) responsible for the biological function, such as ubiquitination and subsequent proteasomal degradation, which depends on the spatial orientation of the protein of interest (POI) relative to E2-loaded ubiquitin. Modeling this structure necessitates a unique blend of tools initially developed for small molecules (e.g., docking) and biologics (e.g., protein-protein interaction modeling). Additionally, degrader molecules, particularly heterobifunctional degraders, are generally larger than conventional small molecule drugs, leading to challenges in determining drug-like properties like solubility and permeability. Furthermore, the catalytic nature of TPD makes occupancy-based modeling insufficient. TPD consists of multiple interconnected yet distinct steps, such as POI binding, E3 ligase binding, ternary structure interactions, ubiquitination, and degradation, along with traditional small molecule properties. A comprehensive set of tools is needed to address the dynamic nature of the induced proximity ternary complex and its implications for ubiquitination. In this Perspective, we discuss the current state of computational tools for TPD. We start by describing the series of steps involved in the degradation process and the experimental methods used to characterize them. Then, we delve into a detailed analysis of the computational tools employed in TPD. We also present an integrative approach that has proven successful for degrader design and its impact on project decisions. Finally, we examine the future prospects of computational methods in TPD and the areas with the greatest potential for impact.
Collapse
Affiliation(s)
- Barmak Mostofian
- OpenEye, Cadence Molecular Sciences, Boston, Massachusetts 02114 United States
| | - Holli-Joi Martin
- Laboratory
for Molecular Modeling, Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599 United States
| | - Asghar Razavi
- ENKO
Chem, Inc, Mystic, Connecticut 06355 United States
| | - Shivam Patel
- Psivant
Therapeutics, Boston, Massachusetts 02210 United States
| | - Bryce Allen
- Differentiated
Therapeutics, San Diego, California 92056 United States
| | - Woody Sherman
- Psivant
Therapeutics, Boston, Massachusetts 02210 United States
| | - Jesus A Izaguirre
- Differentiated
Therapeutics, San Diego, California 92056 United States
- Atommap
Corporation, New York, New York 10013 United States
| |
Collapse
|
21
|
Saha SK, Joshi A, Singh R, Dubey K. Review of industrially recognized polymers and manufacturing processes for amorphous solid dispersion based formulations. Pharm Dev Technol 2023; 28:678-696. [PMID: 37427544 DOI: 10.1080/10837450.2023.2233595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Evolving therapeutic landscape through combinatorial chemistry and high throughput screening have resulted in an increased number of poorly soluble drugs. Drug delivery strategies quickly adapted to convert these drugs into successful therapies. Amorphous solid dispersion (ASD) technology is widely employed as a drug delivery strategy by pharmaceutical industries to overcome the challenges associated with these poorly soluble drugs. The development of ASD formulation requires an understanding of polymers and manufacturing techniques. A review of US FDA-approved ASD-based products revealed that only a limited number of polymers and manufacturing technologies are employed by pharmaceutical industries. This review provides a comprehensive guide for the selection and overview of polymers and manufacturing technologies adopted by pharmaceutical industries for ASD formulation. The various employed polymers with their underlying mechanisms for solution-state and solid-state stability are discussed. ASD manufacturing techniques, primarily implemented by pharmaceutical industries for commercialization, are presented in Quality by Design (QbD) format. An overview of novel excipients and progress in manufacturing technologies are also discussed. This review provides insights to the researchers on the industrially accepted polymers and manufacturing technology for ASD formulation that has translated these challenging drugs into successful therapies.
Collapse
Affiliation(s)
- Sumit Kumar Saha
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
- Formulation Research and Development - Orals, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | | | - Romi Singh
- Formulation Research and Development - Orals, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | - Kiran Dubey
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
22
|
Li J, Wang Y, Yu D. Effects of Additives on the Physical Stability and Dissolution of Polymeric Amorphous Solid Dispersions: a Review. AAPS PharmSciTech 2023; 24:175. [PMID: 37603110 DOI: 10.1208/s12249-023-02622-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Polymeric amorphous solid dispersion (ASD) is a popular approach for enhancing the solubility of poorly water-soluble drugs. However, achieving both physical stability and dissolution performance in an ASD prepared with a single polymer can be challenging. Therefore, a secondary excipient can be added. In this paper, we review three classes of additives that can be added internally to ASDs: (i) a second polymer, to form a ternary drug-polymer-polymer ASD, (ii) counterions, to facilitate in situ salt formation, and (iii) surfactants. In an ASD prepared with a combination of polymers, each polymer exerts a unique function, such as a stabilizer in the solid state and a crystallization inhibitor during dissolution. In situ salt formation in ASD usually leads to substantial increases in the glass transition temperature, contributing to improved physical stability. Surfactants can enhance the wettability of ASD particles, thereby promoting rapid drug release. However, their potential adverse effects on physical stability and dissolution, resulting from enhanced molecular mobility and competitive molecular interaction with the polymer, respectively, warrant careful consideration. Finally, we discuss the impact of magnesium stearate and inorganic salts, excipients added externally upon downstream processing, on the solid-state stability as well as the dissolution of ASD tablets.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Yihan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, Maryland, 21201, USA
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey, 08540, USA.
| |
Collapse
|
23
|
Shukla A, Dumpa NR, Thakkar R, Shettar A, Ashour E, Bandari S, Repka MA. Influence of Poloxamer on the Dissolution and Stability of Hot-Melt Extrusion-Based Amorphous Solid Dispersions Using Design of Experiments. AAPS PharmSciTech 2023; 24:107. [PMID: 37100926 DOI: 10.1208/s12249-023-02562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/02/2023] [Indexed: 04/28/2023] Open
Abstract
The current study aimed to see the effects of poloxamer P407 on the dissolution performance of hydroxypropyl methylcellulose acetate succinate (AquaSolve™ HPMC-AS HG)-based amorphous solid dispersions (ASD). A weakly acidic, poorly water-soluble active pharmaceutical ingredient (API), mefenamic acid (MA), was selected as a model drug. Thermal investigations, including thermogravimetry (TG) and differential scanning calorimetry (DSC), were conducted for raw materials and physical mixtures as a part of the pre-formulation studies and later to characterize the extruded filaments. The API was blended with the polymers using a twin shell V-blender for 10 min and then extruded using an 11-mm twin-screw co-rotating extruder. Scanning electron microscopy (SEM) was used to study the morphology of the extruded filaments. Furthermore, Fourier-transform infrared spectroscopy (FT-IR) was performed to check the intermolecular interactions of the components. Finally, to assess the in vitro drug release of the ASDs, dissolution testing was conducted in phosphate buffer (0.1 M, pH 7.4) and hydrochloric acid-potassium chloride (HCl-KCl) buffer (0.1 M, pH 1.2). The DSC studies confirmed the formation of the ASDs, and the drug content of the extruded filaments was observed to be within an acceptable range. Furthermore, the study concluded that the formulations containing poloxamer P407 exhibited a significant increase in dissolution performance compared to the filaments with only HPMC-AS HG (at pH 7.4). In addition, the optimized formulation, F3, was stable for over 3 months when exposed to accelerated stability studies.
Collapse
Affiliation(s)
- Ashay Shukla
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Nagi Reddy Dumpa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Rishi Thakkar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Abhishek Shettar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Eman Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, 38677, Mississippi, USA.
| |
Collapse
|
24
|
Supersaturation and phase behavior during dissolution of amorphous solid dispersions. Int J Pharm 2023; 631:122524. [PMID: 36549404 DOI: 10.1016/j.ijpharm.2022.122524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Amorphous solid dispersion (ASD) is a promising strategy to enhance solubility and bioavailability of poorly water-soluble drugs. Due to higher free energy of ASD, supersaturated drug solution could be generated during dissolution. When amorphous solubility of a drug is exceeded, drug-rich nanodroplets could form and act as a reservoir to maintain the maximum free drug concentration in solution, facilitating the absorption of the drug in vivo. Dissolution behavior of ASD has received increasing interests. This review will focus on the recent advances in ASD dissolution, including the generation and maintenance of supersaturated drug solution in absence or presence of liquid-liquid phase separation. Mechanism of drug release from ASD including polymer-controlled dissolution and drug-controlled dissolution will be introduced. Formation of amorphous drug-rich nanodroplets during dissolution and the underlying mechanism will be discussed. Phase separation morphology of hydrated ASD plays a critical role in dissolution behavior of ASD, which will be highlighted. Supersaturated drug solution shows poor physical stability and tends to crystallize. The effect of polymer and surfactant on supersaturated drug solution will be demonstrated and some unexpected results will be shown. Physicochemical properties of drug and polymer could impact ASD dissolution and some of them even show opposite effect on dissolution and physical stability of ASD in solid state, respectively. This review will contribute to a better understanding of ASD dissolution and facilitate a rational design of ASD formulation.
Collapse
|
25
|
Pöstges F, Kayser K, Appelhaus J, Monschke M, Gütschow M, Steinebach C, Wagner KG. Solubility Enhanced Formulation Approaches to Overcome Oral Delivery Obstacles of PROTACs. Pharmaceutics 2023; 15:pharmaceutics15010156. [PMID: 36678785 PMCID: PMC9863516 DOI: 10.3390/pharmaceutics15010156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
PROteolysis TArgeting Chimaeras (PROTACs) offer new opportunities in modern medicine by targeting proteins that are undruggable to classic inhibitors. However, due to their hydrophobic structure, PROTACs typically suffer from low solubility, and oral bioavailability remains challenging. At the same time, due to their investigative state, the drug supply is meager, leading to limited possibilities in terms of formulation development. Therefore, we investigated the solubility enhancement employing mini-scale formulations of amorphous solid dispersions (ASDs) and liquisolid formulations of the prototypic PROTAC ARCC-4. Based on preliminary supersaturation testing, HPMCAS (L Grade) and Eudragit® L 100-55 (EL 100-55) were demonstrated to be suitable polymers for supersaturation stabilization of ARCC-4. These two polymers were selected for preparing ASDs via vacuum compression molding (VCM), using drug loads of 10 and 20%, respectively. The ASDs were subsequently characterized with respect to their solid state via differential scanning calorimetry (DSC). Non-sink dissolution testing revealed that the physical mixtures (PMs) did not improve dissolution. At the same time, all ASDs enabled pronounced supersaturation of ARCC-4 without precipitation for the entire dissolution period. In contrast, liquisolid formulations failed in increasing ARCC-4 solubility. Hence, we demonstrated that ASD formation is a promising principle to overcome the low solubility of PROTACs.
Collapse
Affiliation(s)
- Florian Pöstges
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Kevin Kayser
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Jan Appelhaus
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Marius Monschke
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christian Steinebach
- Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Correspondence: (C.S.); (K.G.W.); Tel.: +49-228-73-2308 (C.S.); +49-228-73-5271 (K.G.W.)
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- Correspondence: (C.S.); (K.G.W.); Tel.: +49-228-73-2308 (C.S.); +49-228-73-5271 (K.G.W.)
| |
Collapse
|
26
|
Gao D, Zhu D, Zhou X, Dong S, Chen Y. Inhomogeneous Phase Significantly Reduces Oral Bioavailability of Felodipine/PVPVA Amorphous Solid Dispersion. Mol Pharm 2023; 20:409-418. [PMID: 36529939 DOI: 10.1021/acs.molpharmaceut.2c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inhomogeneity is a key factor that significantly influences the dissolution behavior of amorphous solid dispersion (ASD). However, the underlying mechanisms of the effects of inhomogeneous phase on the dissolution characteristics as well as the bioavailability of ASDs are still unclear. In this study, two types of felodipine/PVPVA based ASDs with 30 wt % drug loading but different homogeneity were prepared: homogeneous "30 wt % ASD" prepared by spray drying, as well as inhomogeneous "30 wt % PM" prepared by physically mixing the sprayed dried 70 wt % ASD with PVPVA. We aimed to investigate (1) drug-polymer interaction mechanism and "apparent" interaction strength within the two ASDs and (2) dissolution mechanism as well as in vivo performance of the two ASDs. DSC thermogram revealing a single Tg in 30 wt % ASD confirmed its homogeneous phase. 1H NMR, FT-IR, and DVS studies collectively proved that strong hydrogen bonding interactions formed between felodipine and PVPVA in ASDs. Moreover, homogeneous "30 wt % ASD" has more numbers of interacting drug-polymer pairs, and thus exhibits stronger "apparent" interaction strength comparing with that of inhomogeneous "30 wt % PM". Unexpectedly,in the in vitro dissolution studies, inhomogeneous "30 wt % PM" showed much faster dissolution and also generated drug concentration ∼4.4 times higher than that of homogeneous "30 wt % ASD". However, drug precipitate recrystallized much slower in homogeneous "30 wt % ASD", presumably because much more polymer coprecipitated with amorphous drug in this system, which helps inhibiting drug crystallization. Surprisingly, homogeneous "30 wt % ASD" showed a significantly higher bioavailability in the in vivo pharmacokinetic studies, with the maximum plasma concentrations (Cmax) and the area under the curve (AUC) values of about 2.7 and 2.3 times higher than those of inhomogeneous "30 wt % PM". The above findings indicated that the amorphous state of drug precipitate contributes significantly to increase bioavailability of ASDs, while traditional in vitro dissolution studies, for instance, if we only compare the dissolved drug in solution or the capability of an ASD to generate supersaturation, are inadequate to predict in vivo performance of ASDs. In conclusion, the phase behavior of ASDs directly impact the formation of drug-polymer interaction, which controls not only drug supersaturation in solution but also drug crystallization in precipitate, and ultimately affect the in vivo performance of ASDs.
Collapse
Affiliation(s)
- Di Gao
- School of Pharmacy, Minzu University of China, 100081 Beijing, China
| | - Dan Zhu
- School of Pharmacy, Minzu University of China, 100081 Beijing, China
| | - Xue Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610000 Chengdu, China
| | - Shuai Dong
- School of Pharmacy, Minzu University of China, 100081 Beijing, China
| | - Yuejie Chen
- School of Pharmacy, Minzu University of China, 100081 Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081 Beijing, China
| |
Collapse
|
27
|
Moseson DE, Benson EG, Cao Z, Bhalla S, Wang F, Wang M, Zheng K, Narwankar PK, Simpson GJ, Taylor LS. Impact of Aluminum Oxide Nanocoating on Drug Release from Amorphous Solid Dispersion Particles. Mol Pharm 2023; 20:593-605. [PMID: 36346665 DOI: 10.1021/acs.molpharmaceut.2c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atomic layer coating (ALC) is emerging as a particle engineering strategy to inhibit surface crystallization of amorphous solid dispersions (ASDs). In this study, we turn our attention to evaluating drug release behavior from ALC-coated ASDs, and begin to develop a mechanistic framework. Posaconazole/hydroxypropyl methylcellulose acetate succinate was used as a model system at both 25% and 50% drug loadings. ALC-coatings of aluminum oxide up to 40 nm were evaluated for water sorption kinetics and dissolution performance under a range of pH conditions. Scanning electron microscopy with energy dispersive X-ray analysis was used to investigate the microstructure of partially released ASD particles. Coating thickness and defect density (inferred from deposition rates) were found to impact water sorption kinetics. Despite reduced water sorption kinetics, the presence of a coating was not found to impact dissolution rates under conditions where rapid drug release was observed. Under slower releasing conditions, underlying matrix crystallization was reduced by the coating, enabling greater levels of drug release. These results demonstrate that water was able to penetrate through the ALC coating, hydrating the amorphous solid, which can initiate dissolution of drug and/or polymer (depending on pH conditions). Swelling of the ASD substrate subsequently occurs, disrupting and cracking the coating, which serves to facilitate rapid drug release. Water sorption kinetics are highlighted as a potential predictive tool to investigate the coating quality and its potential impact on dissolution performance. This study has implications for formulation design and evaluation of ALC-coated ASD particles.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emily G Benson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ziyi Cao
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shradha Bhalla
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fei Wang
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Miaojun Wang
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Kai Zheng
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Pravin K Narwankar
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Garth J Simpson
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
28
|
Moseson DE, Hiew TN, Su Y, Taylor LS. Formulation and Processing Strategies which Underpin Susceptibility to Matrix Crystallization in Amorphous Solid Dispersions. J Pharm Sci 2023; 112:108-122. [PMID: 35367246 DOI: 10.1016/j.xphs.2022.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
Abstract
Through matrix crystallization, an amorphous solid may transform directly into its more stable crystalline state, reducing the driving force for dissolution. Herein, the mechanism of matrix crystallization in an amorphous solid dispersion (ASD) was probed. ASDs of bicalutamide/copovidone were prepared by solvent evaporation and hot melt extrusion, and sized by mortar and pestle or cryomilling techniques, modulating the level of mechanical activation experienced by the sample. Drug loading (DL) of the binary ASD was varied from 5-50%, and ternary systems were formulated at 30% DL with two surfactants (sodium dodecyl sulfate, Vitamin E TPGS). Imaging of partially dissolved or crystallized compacts by scanning electron microscopy with energy-dispersive X-ray analysis and confocal fluorescence microscopy was performed to investigate pathways of hydration, phase separation, and crystallization. Monitoring drug and polymer release of ASD powder under non-sink conditions provided insight into supersaturation and desupersaturation profiles. Systems at the greatest risk of matrix crystallization had high DLs, underwent mechanical activation, and/or contained surfactant. Systems having greatest resistance to matrix crystallization had rapid and congruent drug and polymer release. This study has implications for formulation and process design of ASDs and risk assessment of matrix crystallization.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yongchao Su
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States; Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
29
|
Adhikari BR, Gordon KC, Das SC. Solid state of inhalable high dose powders. Adv Drug Deliv Rev 2022; 189:114468. [PMID: 35917868 DOI: 10.1016/j.addr.2022.114468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 01/24/2023]
Abstract
High dose inhaled powders have received increased attention for treating lung infections. These powders can be prepared using techniques such as spray drying, spray-freeze drying, crystallization, and milling. The selected preparation technique is known to influence the solid state of the powders, which in turn can potentially modulate aerosolization and aerosolization stability. This review focuses on how and to what extent the change in solid state of high dose powders can influence aerosolization. It also discusses the commonly used solid state characterization techniques and the application of potential strategies to improve the physical and chemical stability of the amorphous powders for high dose delivery.
Collapse
Affiliation(s)
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
30
|
Moseson DE, Benson EG, Nguyen HT, Wang F, Wang M, Zheng K, Narwankar PK, Taylor LS. Atomic Layer Coating to Inhibit Surface Crystallization of Amorphous Pharmaceutical Powders. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40698-40710. [PMID: 36054111 DOI: 10.1021/acsami.2c12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Preventing crystallization is a primary concern when developing amorphous drug formulations. Recently, atomic layer coatings (ALCs) of aluminum oxide demonstrated crystallization inhibition of high drug loading amorphous solid dispersions (ASDs) for over 2 years. The goal of the current study was to probe the breadth and mechanisms of this exciting finding through multiple drug/polymer model systems, as well as particle and coating attributes. The model ASD systems selected provide for a range of hygroscopicity and chemical functional groups, which may contribute to the crystallization inhibition effect of the ALC coatings. Atomic layer coating was performed to apply a 5-25 nm layer of aluminum oxide or zinc oxide onto ASD particles, which imparted enhanced micromeritic properties, namely, reduced agglomeration and improved powder flowability. ASD particles were stored at 40 °C and a selected relative humidity level between 31 and 75%. Crystallization was monitored by X-ray powder diffraction and scanning electron microscopy (SEM) up to 48 weeks. Crystallization was observable by SEM within 1-2 weeks for all uncoated samples. After ALC, crystallization was effectively delayed or completely inhibited in some systems up to 48 weeks. The delay achieved was demonstrated regardless of polymer hygroscopicity, presence or absence of hydroxyl functional groups in drugs and/or polymers, particle size, or coating properties. The crystallization inhibition effect is attributed primarily to decreased surface molecular mobility. ALC has the potential to be a scalable strategy to enhance the physical stability of ASD systems to enable high drug loading and enhanced robustness to temperature or relative humidity excursions.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emily G Benson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fei Wang
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Miaojun Wang
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Kai Zheng
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Pravin K Narwankar
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Shi Q, Chen H, Wang Y, Wang R, Xu J, Zhang C. Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics 2022; 14:pharmaceutics14081747. [PMID: 36015373 PMCID: PMC9413000 DOI: 10.3390/pharmaceutics14081747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Amorphous solid dispersions stabilized by one or more polymer(s) have been widely used for delivering amorphous drugs with poor water solubilities, and they have gained great market success. Polymer selection is important for preparing robust amorphous solid dispersions, and considerations should be given as to how the critical attributes of a polymer can enhance the physical stability, and the in vitro and in vivo performances of a drug. This article provides a comprehensive overview for recent developments in the understanding the role of polymers in amorphous solid dispersions from the aspects of nucleation, crystal growth, overall crystallization, miscibility, phase separation, dissolution, and supersaturation. The critical properties of polymers affecting the physical stability and the in vitro performance of amorphous solid dispersions are also highlighted. Moreover, a perspective regarding the current research gaps and novel research directions for better understanding the role of the polymer is provided. This review will provide guidance for the rational design of polymer-based amorphous pharmaceutical solids with desired physicochemical properties from the perspective of physical stability and in vitro performance.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- Correspondence: (Q.S.); (C.Z.)
| | - Haibiao Chen
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Ruoxun Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jia Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Chen Zhang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Correspondence: (Q.S.); (C.Z.)
| |
Collapse
|
32
|
Butreddy A. Hydroxypropyl methylcellulose acetate succinate as an exceptional polymer for amorphous solid dispersion formulations: A review from bench to clinic. Eur J Pharm Biopharm 2022; 177:289-307. [PMID: 35872180 DOI: 10.1016/j.ejpb.2022.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
Amorphous solid dispersions (ASDs) are a proven system for achieving a supersaturated state of drug, in which the concentration of drug is greater than its crystalline solubility. The usage of Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS) in the development of ASDs has grown significantly, as evidenced by the fact that majority of commercially approved ASD formulations are based on HPMCAS. HPMCAS has been widely utilized as a solubility enhancer and precipitation inhibitor or stabilizer to achieve supersaturation and inhibit crystallization of drugs in the gastrointestinal tract. The characteristics of HPMCAS ASDs such as less hygroscopic, strong drug-polymer hydrophobic interactions, high solubilization efficiency, greater potential to generate, maintain drug supersaturation and crystallization inhibition outperform other polymeric carriers in ASD development. Furthermore, combining HPMCAS with other polymers or surfactants as ternary ASDs could be a viable approach for enhancing oral absorption of poorly soluble drugs. This review discusses the concepts of supersaturation maintenance or precipitation inhibition of HPMCAS in the ASD formulations. In addition, the mechanisms underlying for improved dissolution performance, oral bioavailability and stability of HPMCAS ASDs are explored.
Collapse
Affiliation(s)
- Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
33
|
Lim LM, Park JW, Hadinoto K. Benchmarking the Solubility Enhancement and Storage Stability of Amorphous Drug–Polyelectrolyte Nanoplex against Co-Amorphous Formulation of the Same Drug. Pharmaceutics 2022; 14:pharmaceutics14050979. [PMID: 35631565 PMCID: PMC9144283 DOI: 10.3390/pharmaceutics14050979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/03/2023] Open
Abstract
Amorphization, typically in the form of amorphous solid dispersion (ASD), represents a well-established solubility enhancement strategy for poorly soluble drugs. Recently, two amorphous drug formulations, i.e., the amorphous drug–polyelectrolyte nanoparticle complex (nanoplex) and co-amorphous system, have emerged as promising alternatives to circumvent the issues faced by ASD (i.e., large dosage requirement, high hygroscopicity). In the present work, the nanoplex was benchmarked against the co-amorphous system in terms of the preparation efficiency, drug payload, thermal stability, dissolution rate, supersaturation generation, and accelerated storage stability. Weakly acidic curcumin (CUR) and weakly basic ciprofloxacin (CIP) were used as the model poorly soluble drugs. The CUR and CIP nanoplexes were prepared using chitosan and sodium dextran sulfate as the polyelectrolytes, respectively. The co-amorphous CUR and CIP were prepared using tannic acid and tryptophan as the co-formers, respectively. The benchmarking results showed that the amorphous drug nanoplex performed as well as, if not better than, the co-amorphous system depending on the drug in question and the aspects being compared. The present work successfully established the nanoplex as an equally viable amorphous drug formulation as the more widely studied co-amorphous system to potentially serve as an alternative to ASD.
Collapse
Affiliation(s)
- Li Ming Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore;
| | - Jin-Won Park
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore;
- Correspondence: ; Tel.: +65-6514-8381
| |
Collapse
|
34
|
Comparison of Differential Scanning Calorimetry, Powder X-ray Diffraction, and Solid-state Nuclear Magnetic Resonance Spectroscopy for Measuring Crystallinity in Amorphous Solid Dispersions - Application to Drug-in-Polymer Solubility. J Pharm Sci 2022; 111:2765-2778. [DOI: 10.1016/j.xphs.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
|
35
|
Wang P, Wang Y, Suo Z, Zhai Y, Li H. Cyclodextrin and its derivatives as effective excipients for amorphous ulipristal acetate systems. RSC Adv 2022; 12:9170-9178. [PMID: 35424854 PMCID: PMC8985104 DOI: 10.1039/d1ra09420c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Many efforts have been devoted to screening new solid-state forms of poorly soluble drugs in the pharmaceutical industry, thus modulating the drug properties without changing the pharmacological nature. It is a wise strategy to prepare amorphous series with cyclodextrin (CD) and its derivatives as excipients to enhance the aqueous solubility, dissolution, and bioavailability of water-insoluble drugs. In this study, four binary amorphous mixtures of ulipristal acetate (UPA) with CDs (β-CD, γ-CD, dimethyl-β-CD, hydroxypropyl-β-CD) were prepared by the co-milling method and characterized in the solid-state. According to powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC), UPA existed in the noncrystalline form in the four binary amorphous mixtures. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) indicated that UPA interacted with the four CDs, which was also verified by molecular docking. Compared with the crystalline and amorphous UPA, the solubility, dissolution, and stability of the drug in the four amorphous UPA systems were significantly improved, so they were considered potentially advantageous solid forms. Our research shows that CDs can be used as new effective excipients in amorphous systems for active pharmaceutical ingredients (API).
Collapse
Affiliation(s)
- Peng Wang
- College of Chemical Engineering, Sichuan University Chengdu Sichuan China +86 028 85401207 +86 028 85405149
| | - Yan Wang
- Sichuan Center for Disease Control and Prevention Chengdu Sichuan China
| | - Zili Suo
- College of Chemical Engineering, Sichuan University Chengdu Sichuan China +86 028 85401207 +86 028 85405149
| | - Yuanming Zhai
- Analytical & Testing Center, Sichuan University P. R. China
| | - Hui Li
- College of Chemical Engineering, Sichuan University Chengdu Sichuan China +86 028 85401207 +86 028 85405149
| |
Collapse
|
36
|
Schönfeld BV, Westedt U, Wagner KG. Compression of amorphous solid dispersions prepared by hot-melt extrusion, spray drying and vacuum drum drying. Int J Pharm X 2021; 3:100102. [PMID: 34877525 PMCID: PMC8632852 DOI: 10.1016/j.ijpx.2021.100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
The present study explored vacuum drum drying (VDD) as an alternative technology for amorphous solid dispersions (ASDs) manufacture compared to hot-melt extrusion (HME) and spray drying (SD) focusing on downstream processability (powder properties, compression behavior and tablet performance). Ritonavir (15% w/w) in a copovidone/sorbitan monolaurate matrix was used as ASD model system. The pure ASDs and respective tablet blends (TB) (addition of filler, glidant, lubricant) were investigated. Milled extrudate showed superior powder properties (e.g., flowability, bulk density) compared to VDD and SD, which could be compensated by the addition of 12.9% outer phase. Advantageously, the VDD intermediate was directly compressible, whereas the SD material was not, resulting in tablets with defects based on a high degree of elastic recovery. Compared to HME, the VDD material showed superior tabletability when formulated as TB, resulting in stronger compacts at even lower solid fraction values. Despite the differences in tablet processing, tablets showed similar tablet performance in terms of disintegration and dissolution independent of the ASD origin. In conclusion, VDD is a valid alternative to manufacture ASDs. VDD offered advantageous downstream processability compared to SD: less solvents and process steps required (no second drying), improved powder properties and suitable for direct compression. ASD technology has influence on particle morphology Compression behavior dominated by particle morphology Vacuum drum dried intermediate direct compressible into tablets Vacuum drum dried material shows better tabletability as milled extrudate ASD technology: no impact on tablet disintegration/dissolution
Collapse
Key Words
- API, active pharmaceutical ingredient
- ASD, amorphous solid dispersion
- Amorphous solid dispersion
- CP, compaction pressure
- Compression analysis
- D, tablet diameter
- Downstream processing
- FFC, flow function coefficient
- HME, hot-melt extrusion
- Hot-melt extrusion
- LOD, loss on drying
- P, breaking force
- PSD, particle size distribution
- PSmin, minimal punch separation
- RTV, ritonavir
- Ritonavir
- SD, spray drying
- SE, secondary electron
- SEM, scanning electron microscope
- SF, solid fraction
- SSA, specific surface area
- Spray drying
- TER, Total elastic recovery
- TS, tensile strength
- Tg, glass transition temperature
- V, volume
- VDD, vacuum drum drying
- Vacuum drum drying
- X-ray μCT, X-ray microcomputed tomography
- f1, difference factor
- f2, similarity factor
- n.d., not determined
- na, not applicable
- t, tablet thickness
- w, tablet wall height
Collapse
Affiliation(s)
- Barbara V. Schönfeld
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
- AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany
| | - Ulrich Westedt
- AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany
| | - Karl G. Wagner
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
- Corresponding author.
| |
Collapse
|
37
|
Tsiaxerli A, Karagianni A, Ouranidis A, Kachrimanis K. Polyelectrolyte Matrices in the Modulation of Intermolecular Electrostatic Interactions for Amorphous Solid Dispersions: A Comprehensive Review. Pharmaceutics 2021; 13:pharmaceutics13091467. [PMID: 34575543 PMCID: PMC8468962 DOI: 10.3390/pharmaceutics13091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/05/2022] Open
Abstract
Polyelectrolyte polymers have been widely used in the pharmaceutical field as excipients to facilitate various drug delivery systems. Polyelectrolytes have been used to modulate the electrostatic environment and enhance favorable interactions between the drug and the polymer in amorphous solid dispersions (ASDs) prepared mainly by hot-melt extrusion. Polyelectrolytes have been used alone, or in combination with nonionic polymers as interpolyelectrolyte complexes, or after the addition of small molecular additives. They were found to enhance physical stability by favoring stabilizing intermolecular interactions, as well as to exert an antiplasticizing effect. Moreover, they not only enhance drug dissolution, but they have also been used for maintaining supersaturation, especially in the case of weakly basic drugs that tend to precipitate in the intestine. Additional uses include controlled and/or targeted drug release with enhanced physical stability and ease of preparation via novel continuous processes. Polyelectrolyte matrices, used along with scalable manufacturing methods in accordance with green chemistry principles, emerge as an attractive viable alternative for the preparation of ASDs with improved physical stability and biopharmaceutic performance.
Collapse
Affiliation(s)
- Anastasia Tsiaxerli
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Correspondence: ; Tel.: +30-2310-997666
| |
Collapse
|
38
|
Atsukawa K, Amari S, Takiyama H. Solid dispersion melt crystallization (SDMC) concept using binary eutectic system for improvement of dissolution rate. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, (Tony) Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B 2021; 11:2505-2536. [PMID: 34522596 PMCID: PMC8424289 DOI: 10.1016/j.apsb.2021.05.014] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are popular for enhancing the solubility and bioavailability of poorly water-soluble drugs. Various approaches have been employed to produce ASDs and novel techniques are emerging. This review provides an updated overview of manufacturing techniques for preparing ASDs. As physical stability is a critical quality attribute for ASD, the impact of formulation, equipment, and process variables, together with the downstream processing on physical stability of ASDs have been discussed. Selection strategies are proposed to identify suitable manufacturing methods, which may aid in the development of ASDs with satisfactory physical stability.
Collapse
Key Words
- 3DP, three-dimensional printing
- ASDs, amorphous solid dispersions
- ASES, aerosol solvent extraction system
- Amorphous solid dispersions
- CAP, cellulose acetate phthalate
- CO2, carbon dioxide
- CSG, continuous-spray granulation
- Co-precipitation
- Downstream processing
- Drug delivery
- EPAS, evaporative aqueous solution precipitation
- Eudragit®, polymethacrylates derivatives
- FDM, fused deposition modeling
- GAS, gas antisolvent
- HME, hot-melt extrusion
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methylcellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- HPMCP, hypromellose phthalate
- Manufacturing
- Melting process
- PCA, precipitation with compressed fluid antisolvent
- PGSS, precipitation from gas-saturated solutions
- PLGA, poly(lactic-co-glycolic acid
- PVP, polyvinylpyrrolidone
- PVPVA, polyvinylpyrrolidone/vinyl acetate
- RESS, rapid expansion of a supercritical solution
- SAS, supercritical antisolvent
- SCFs, supercritical fluids
- SEDS, solution-enhanced dispersion by SCF
- SLS, selective laser sintering
- Selection criteria
- Soluplus®, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer
- Solvent evaporation
- Stability
- Tg, glass transition temperature
- USC, ultrasound compaction
- scCO2, supercritical CO2
Collapse
Affiliation(s)
- Sonal V. Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Biplob Mitra
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Uday Jain
- Material Science and Engineering, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Yuchuan Gong
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Anjali Agrawal
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Shyam Karki
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Sumit Kumar
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
40
|
Simões MF, Pinto RMA, Simões S. Hot-Melt Extrusion: a Roadmap for Product Development. AAPS PharmSciTech 2021; 22:184. [PMID: 34142250 DOI: 10.1208/s12249-021-02017-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Hot-melt extrusion has found extensive application as a feasible pharmaceutical technological option over recent years. HME applications include solubility enhancement, taste masking, and sustained drug release. As bioavailability enhancement is a hot topic of today's science, one of the main applications of HME is centered on amorphous solid dispersions. This review describes the most significant aspects of HME technology and its use to prepare solid dispersions as a drug formulation strategy to enhance the solubility of poorly soluble drugs. It also addresses molecular and thermodynamic features critical for the physicochemical properties of these systems, mainly in what concerns miscibility and physical stability. Moreover, the importance of applying the Quality by Design philosophy in drug development is also discussed, as well as process analytical technologies in pharmaceutical HME monitoring, under the current standards of product development and regulatory guidance. Graphical Abstract.
Collapse
|
41
|
Qian K, Stella L, Jones DS, Andrews GP, Du H, Tian Y. Drug-Rich Phases Induced by Amorphous Solid Dispersion: Arbitrary or Intentional Goal in Oral Drug Delivery? Pharmaceutics 2021; 13:889. [PMID: 34203969 PMCID: PMC8232734 DOI: 10.3390/pharmaceutics13060889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Among many methods to mitigate the solubility limitations of drug compounds, amorphous solid dispersion (ASD) is considered to be one of the most promising strategies to enhance the dissolution and bioavailability of poorly water-soluble drugs. The enhancement of ASD in the oral absorption of drugs has been mainly attributed to the high apparent drug solubility during the dissolution. In the last decade, with the implementations of new knowledge and advanced analytical techniques, a drug-rich transient metastable phase was frequently highlighted within the supersaturation stage of the ASD dissolution. The extended drug absorption and bioavailability enhancement may be attributed to the metastability of such drug-rich phases. In this paper, we have reviewed (i) the possible theory behind the formation and stabilization of such metastable drug-rich phases, with a focus on non-classical nucleation; (ii) the additional benefits of the ASD-induced drug-rich phases for bioavailability enhancements. It is envisaged that a greater understanding of the non-classical nucleation theory and its application on the ASD design might accelerate the drug product development process in the future.
Collapse
Affiliation(s)
- Kaijie Qian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Lorenzo Stella
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, 7–9 College Park E, Belfast BT7 1PS, UK;
- David Keir Building, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - David S. Jones
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Gavin P. Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Huachuan Du
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL 60611, USA
| | - Yiwei Tian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| |
Collapse
|
42
|
Thakore SD, Akhtar J, Jain R, Paudel A, Bansal AK. Analytical and Computational Methods for the Determination of Drug-Polymer Solubility and Miscibility. Mol Pharm 2021; 18:2835-2866. [PMID: 34041914 DOI: 10.1021/acs.molpharmaceut.1c00141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the pharmaceutical industry, poorly water-soluble drugs require enabling technologies to increase apparent solubility in the biological environment. Amorphous solid dispersion (ASD) has emerged as an attractive strategy that has been used to market more than 20 oral pharmaceutical products. The amorphous form is inherently unstable and exhibits phase separation and crystallization during shelf life storage. Polymers stabilize the amorphous drug by antiplasticization, reducing molecular mobility, reducing chemical potential of drug, and increasing glass transition temperature in ASD. Here, drug-polymer miscibility is an important contributor to the physical stability of ASDs. The current Review discusses the basics of drug-polymer interactions with the major focus on the methods for the evaluation of solubility and miscibility of the drug in the polymer. Methods for the evaluation of drug-polymer solubility and miscibility have been classified as thermal, spectroscopic, microscopic, solid-liquid equilibrium-based, rheological, and computational methods. Thermal methods have been commonly used to determine the solubility of the drug in the polymer, while other methods provide qualitative information about drug-polymer miscibility. Despite advancements, the majority of these methods are still inadequate to provide the value of drug-polymer miscibility at room temperature. There is still a need for methods that can accurately determine drug-polymer miscibility at pharmaceutically relevant temperatures.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ranjna Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
43
|
Moseson DE, Corum ID, Lust A, Altman KJ, Hiew TN, Eren A, Nagy ZK, Taylor LS. Amorphous Solid Dispersions Containing Residual Crystallinity: Competition Between Dissolution and Matrix Crystallization. AAPS JOURNAL 2021; 23:69. [PMID: 34002256 DOI: 10.1208/s12248-021-00598-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 01/28/2023]
Abstract
Crystallinity in an amorphous solid dispersion (ASD) may negatively impact dissolution performance by causing lost solubility advantage and/or seeding crystal growth leading to desupersaturation. The goal of the study was to evaluate underlying dissolution and crystallization mechanisms resulting from residual crystallinity contained within bicalutamide (BCL)/polyvinylpyrrolidone vinyl acetate copolymer (PVPVA) ASDs produced by hot melt extrusion (HME). In-line Raman spectroscopy, polarized light microscopy, and scanning electron microscopy were used to characterize crystallization kinetics and mechanisms. The fully amorphous ASD (0% crystallinity) did not dissolve completely, and underwent crystallization to the metastable polymorph (form 2), initiating in the amorphous matrix at the interface of the amorphous solid with water. Under non-sink conditions, higher extents of supersaturation were achieved because dissolution initially proceeded unhindered prior to nucleation. ASDs containing residual crystallinity had markedly reduced supersaturation. Solid-mediated crystallization (matrix crystallization) consumed the amorphous solid, growing the stable polymorph (form 1). Under sink conditions, both the fully amorphous ASD and crystalline physical mixture achieve faster release than the ASDs containing residual crystallinity. In the latter systems, matrix crystallization leads to highly agglomerated crystals with high relative surface area. Solution-mediated crystallization was not a significant driver of concentration loss, due to slow crystal growth from solution in the presence of PVPVA. The high risk stemming from residual crystallinity in BCL/PVPVA ASDs stems from (1) fast matrix crystallization propagating from crystal seeds, and (2) growth of the stable crystal form. This study has implications for dissolution performance outcomes of ASDs containing residual crystallinity.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Isaac D Corum
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Andres Lust
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Kevin J Altman
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Ayse Eren
- Charles B. Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Zoltan K Nagy
- Charles B. Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
44
|
Obaidat R, Aleih H, Mashaqbeh H, Altaani B, Alsmadi MM, Alnaief M. Development and Evaluation of Cocoa Butter Taste Masked Ibuprofen Using Supercritical Carbon Dioxide. AAPS PharmSciTech 2021; 22:106. [PMID: 33719021 DOI: 10.1208/s12249-021-01962-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/10/2021] [Indexed: 02/01/2023] Open
Abstract
Masking the unpleasant taste of the pharmaceutically active ingredients plays a critical role in patient acceptance, particularly for children. This work's primary objective was the preparation of taste-masked ibuprofen microparticles using cocoa butter with the assistance of supercritical fluid technology. Microparticles were prepared by dissolving ibuprofen in melted cocoa butter at 40 °C. The solution was then introduced into a supercritical fluid unit and processed at 10 MPa CO2 pressure for 30 min. The product was collected after depressurizing the system. The effect of the drug to cocoa butter ratio and the supercritical fluid units' configuration on product quality was evaluated and compared with the sample prepared by a conventional method. Physicochemical characterization of the prepared product, including particle size, crystallinity, entrapment efficiency, in vitro drug release, and product taste using a human volunteer panel was conducted. The produced microparticles were in the range of 1.42 to 15.28 μm. The entrapment efficiency of the formulated microparticles ranged from 66 to 81%. The drug:polymer ratio, the configuration of the supercritical fluid unit, and the method of preparation were found to have a critical role in the formulation of ibuprofen microparticles. Taste evaluation using human volunteers showed that microparticles containing 20% drug and processed with supercritical fluid technology were capable of masking the bitter taste of ibuprofen. In conclusion, the dispersion of ibuprofen in cocoa butter using supercritical fluid technology is a a promising innovative method to mask the bitter taste of ibuprofen.
Collapse
|
45
|
Abstract
Co-amorphous (CAM) systems are promising drug-delivery systems in the arena of therapeutic drug delivery, addressing the poor aqueous solubility of drugs by enhancing solubility and thereby improving the oral bioavailability and therapeutic effect of the drug. A CAM system is a single-phase homogeneous blend of two or more low molecular weight molecules that can be drug–drug or drug–co-former, stabilized via intermolecular interactions, adding the benefit of thermodynamic stability. This review covers the fundamentals of CAM systems and recent advances in formulation development. In particular, we strive to address the theoretical, molecular, technical and biopharmaceutical aspects, advantages over polymeric amorphous solid dispersions, mechanisms of stabilization of amorphous forms, insights into unexplored in silico tools in excipient selection and regulatory viewpoints.
Collapse
|
46
|
Butreddy A, Bandari S, Repka MA. Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development. Eur J Pharm Sci 2021; 158:105655. [PMID: 33253883 PMCID: PMC7855693 DOI: 10.1016/j.ejps.2020.105655] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
An industrially feasible approach to overcome the solubility and bioavailability limitations of poorly soluble active pharmaceutical ingredients is the development of amorphous solid dispersions (ASDs) using hot-melt extrusion (HME) technique. The application of Quality by Design (QbD) had a profound impact on the development of HME-based ASDs. The formulation and process optimization of ASDs manufactured via HME techniques require an understanding of critical quality attributes, critical material attributes, critical process parameters, risk assessment tools, and experimental designs. The knowledge gained from each of these QbD elements helps ensure the consistency of product quality. The selection and implementation of appropriate Design of Experiments (DoE) methodology to screen and optimize the formulation and process variables remain a major challenge. This review provides a comprehensive overview on QbD concepts in HME-based ASDs with an emphasis on DoE methodologies. Further, the information provided in this review can assist researchers in selecting a suitable design with optimal experimental conditions. Specifically, this review has focused on the prediction of drug-polymer miscibility, the elements and sequence of QbD, and various screening and optimization designs, to provide insights into the formulation and process variables that are encountered routinely in the production of HME-based ASDs.
Collapse
Affiliation(s)
- Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
47
|
Influence of shellac on the improvement of solubility and supersaturation of loratadine amorphous solid dispersion using a new grade of HPMC. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Jelić D. Thermal Stability of Amorphous Solid Dispersions. Molecules 2021; 26:E238. [PMID: 33466393 PMCID: PMC7795217 DOI: 10.3390/molecules26010238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
Amorphous solid dispersion drug delivery systems (ASD DDS) were proved to be efficient for the enhancement of solubility and bioavailability of poorly water-soluble drugs. One of the major keys for successful preparation of ASD is the selection of appropriate excipients, mostly polymers, which have a crucial role in improving drug solubility and its physical stability. Even though, excipients should be chemically inert, there is some evidence that polymers can affect the thermal stability of active pharmaceutical ingredients (API). The thermal stability of a drug is closely related to the shelf-life of pharmaceutical products and therefore it is a matter of high pharmaceutical relevance. An overview of thermal stability of amorphous solids is provided in this paper. Evaluation of thermal stability of amorphous solid dispersion is perceived from the physicochemical perspective, from a kinetic (motions) and thermodynamic (energy) point of view, focusing on activation energy and fragility, as well all other relevant parameters for ASD design, with a glance on computational kinetic analysis of solid-state decomposition.
Collapse
Affiliation(s)
- Dijana Jelić
- Chemistry Department, Faculty of Natural Sciences and Mathematics, University of Banja Luka, dr Mladena Stojanovića 2a, 78 000 Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
49
|
Zhang W, Noland R, Chin S, Petkovic M, Zuniga R, Santarra B, Conklin B, Hou HH, Nagapudi K, Gruenhagen JA, Yehl P, Chen T. Impact of polymer type, ASD loading and polymer-drug ratio on ASD tablet disintegration and drug release. Int J Pharm 2021; 592:120087. [PMID: 33189812 DOI: 10.1016/j.ijpharm.2020.120087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Amorphous solid dispersion (ASD) has become an attractive strategy to enhance solubility and bioavailability of poorly water-soluble drugs. To facilitate oral administration, ASDs are commonly incorporated into tablets. Disintegration and drug release from ASD tablets are thus critical for achieving the inherent solubility advantage of amorphous drugs. In this work, the impact of polymer type, ASD loading in tablet and polymer-drug ratio in ASD on disintegration and drug release of ASD tablets was systematically studied. Two hydrophilic polymers PVPVA and HPMC and one relatively hydrophobic polymer HPMCAS were evaluated. Dissolution testing was performed, and disintegration time was recorded during dissolution testing. As ASD loading increased, tablet disintegration time increased for all three polymer-based ASD tablets, and this effect was more pronounced for hydrophilic polymer-based ASD tablets. As polymer-drug ratio increased, tablet disintegration time increased for hydrophilic polymer-based ASD tablets, however, it remained short and largely unchanged for HPMCAS-based ASD tablets. Consequently, at high ASD loadings or high polymer-drug ratios, HPMCAS-based ASD tablets showed faster drug release than PVPVA- or HPMC-based ASD tablets. These results were attributed to the differences between polymer hydrophilicities and viscosities of polymer aqueous solutions. This work is valuable for understanding the disintegration and drug release of ASD tablets and provides insight to ASD composition selection from downstream tablet formulation perspective.
Collapse
Affiliation(s)
- Wei Zhang
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Ryan Noland
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steven Chin
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Milan Petkovic
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ruth Zuniga
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bethany Santarra
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Breanna Conklin
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Gruenhagen
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Peter Yehl
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tao Chen
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
50
|
Elufioye TO, Adejare A. Pharmaceutical profiling. REMINGTON 2021:155-167. [DOI: 10.1016/b978-0-12-820007-0.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|