1
|
Tran-Lam TT, Pham PT, Dao YH, Tran QH. Organophosphate esters and their metabolites in eggs from Vietnam. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025; 18:65-77. [PMID: 39514129 DOI: 10.1080/19393210.2024.2419588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Data on the occurrence of organophosphate tri-esters (tri-OPEs) and their metabolites (di-OPEs) in hen's eggs are scarce. Therefore, 200 egg samples were gathered in 2023 in Hanoi, Vietnam and analysed by UHPLC-Q-Exactive HRMS. The majority of these compounds were detected, with tris(2-ethylhexyl) phosphate (0.10-2.7 ng/g wet weight (ww)) and trihexyl phosphate (0.08-2.3 ng/g ww) being the most prevalent tri-OPEs. Significant differences in tri-OPE profiles were observed in egg samples from battery-cage and free-range farming (p < .05). Despite egg levels ranging from 0.05 to 11.2 ng/g ww, Σdi-OPE accumulation in yolk and egg white was not significantly different in (p > .05). Among di-OPEs, dibutyl phosphate was found at the highest levels in the egg white, while bis(2-ethylhexyl) phosphate had the highest levels in yolk. There was no carcinogenic human health risk associated with OPEs in eggs (HQs <1).
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Department of Marine Mechanics and Environment, Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
- Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
| | - Phuong Thi Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Quang Huu Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
2
|
Wang W, Wang H, Ren X. The difference of organophosphate esters (OPEs) uptake, translocation and accumulation mechanism between four varieties in Poaceae. JOURNAL OF PLANT PHYSIOLOGY 2025; 305:154418. [PMID: 39823761 DOI: 10.1016/j.jplph.2024.154418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
To explore variation patterns of uptake, translocation, and accumulation processes responding to organophosphate esters (OPEs) among Poaceae plants, hydroponic and computer simulation experiments were executed. Plant growth, OPEs' concentration, and bioinformation and transcript of lipid transporters in the three terrestrial barley, wheat, and maize and aquatic rice seedlings were studied after exposure to seven OPE congeners. Four types of plants could accumulate seven OPE congeners. OPEs could promote rice growth by upregulating IAA27 hormone gene. However, maize growth was inhibited due to upregulating IAA17 hormone gene. In general, OPEs with log Kow > 4 tended to accumulate in roots of the four types of plants. Furthermore, the uptake, translocation, and accumulation mechanism of OPEs in different plants showed species-specific, depending on chemical properties of OPEs and biological factors specifically referring to the binding ability and gene expression of lipid transporters. The uptake and accumulation of OPE in aquatic rice roots were mainly influenced by biological factors. On the contrary, terrestrial plants relied on log Kow more than biological factors. Meanwhile, TIL of Poaceae plants could be a common and key protein that contributed to OPEs accumulation.
Collapse
Affiliation(s)
- Wenxuan Wang
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China
| | - Haiou Wang
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Xiaoyu Ren
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China
| |
Collapse
|
3
|
Zhu H, Hu J, Ruan Z, Liu D, Zhao M. Occurrence and bioaccumulation of organophosphate flame retardants in high-altitude regions: A comprehensive field survey in Qinghai Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117715. [PMID: 39798441 DOI: 10.1016/j.ecoenv.2025.117715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Organophosphate flame retardants (OPFRs) are a class of substances that pose potential risks to human health and ecosystems due to their large-scale production, wide range of applications, and ubiquitous presence in the environment. With their potential for long-range atmospheric transport (LRAT), OPFR pollution in high-altitude areas has become an increasing concern. Herein, a general pretreatment method for OPFRs across various sample matrices was established and combined with gas chromatography-mass spectrometry (GC-MS), utilizing a programmed temperature ramp in the vaporization chamber to enable high-throughput detection of OPFRs in various environmental matrices. OPFRs were quantified in soil, grass, tree bark, and wild rat liver samples collected from Qinghai, China (elevation: 2657-4635 m), and their occurrence and bioaccumulation behaviors were systematically investigated. All samples were contaminated with OPFRs, with ∑OPFR concentrations showing the trend of rat liver (mean: 439 ng/g, median: 420 ng/g) > grass (mean: 338 ng/g, median: 273 ng/g) > soil (mean: 190 ng/g, median: 162 ng/g) > tree bark (mean: 125 ng/g, median: 116 ng/g). Paired sample Spearman correlation analysis showed that soil ∑OPFRs were significantly positively correlated with grass ∑OPFRs (P = 0.0023), indicating that soil is the main source of OPFRs in grass. Among soil, grass, tree bark, and rat liver samples, tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2-chloroethyl) phosphate (TCEP) had the highest contribution rates to ∑OPFRs, with cumulative contributions of 60.9 %, 48.6 %, 76.5 %, and 71.1 %, respectively, indicating that the proportion of industrial sources of OPFRs reaching this area through LRAT is relatively high. Biomagnification factor (BMF) analysis revealed that ∑OPFRs exhibited significant bioaccumulation and biomagnification effects within the soil-grass-rat terrestrial food chain. The ecological risk assessment results indicated that ∑OPFRs in the soil of the study area pose a high ecological risk, with aryl-OPFRs posing the greatest risk. Our findings provide a crucial foundation for further investigation into the contamination and bioaccumulation characteristics of OPFRs in high-altitude regions.
Collapse
Affiliation(s)
- Haibao Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| | - Jinlin Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Zheng Ruan
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Danhua Liu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
4
|
Nero E, Caron-Beaudoin É, Aker A, Gaudreau É, Ayotte P, Blanchette C, Lemire M. Exposure to organophosphate esters among Inuit adults of Nunavik, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173563. [PMID: 38810742 DOI: 10.1016/j.scitotenv.2024.173563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Halogenated organophosphate esters (OPEs) are increasingly used as flame retardants to replace polybrominated diphenyl ethers (PBDEs), which have been phased out due to their confirmed persistence, toxicity, and ability to undergo long range atmospheric transport. Non-halogenated OPEs are primarily used as plasticizers. While human exposure to PBDEs in the Canadian Arctic is well documented, it is not the case for OPEs. To assess the exposure to OPEs in Inuit living in Nunavik (northern Québec, Canada), we measured 16 metabolites of halogenated and non-halogenated OPEs in pooled urine samples from the last population health survey conducted in Nunavik, the Qanuilirpitaa? 2017 Inuit Health Survey (Q2017). Urine samples (n = 1266) were pooled into 30 pools by sex (female; male), age groups (16-19; 20-29; 30-39; 40-59; 60+ years old) and regions (Hudson Bay; Hudson Strait; Ungava Bay). Q2017 geometric means and 95 % confidence intervals were compared with data from the Canadian Health Measures Survey Cycle 6 (2018-2019) (CHMS). Halogenated OPEs were systematically detected and generally found at higher concentrations than non-halogenated OPEs in both Q2017 and CHMS. Furthermore, urinary levels of BCIPP and BDCIPP (halogenated) were lower in Q2017 compared to CHMS while concentrations of DPhP, DpCP and DoCP (non-halogenated) were similar between Q2017 and CHMS. Across the 16 metabolites measured in Q2017, BCIPHIPP (halogenated) had the highest levels (geometric mean: 1.40 μg/g creatinine). This metabolite was not measured in CHMS and should be included in future surveys. Overall, our results show that Inuit in Nunavik are exposed to lower or similar OPEs levels than the rest of the general Canadian population suggesting that the main current exposure to OPEs may be from consumer goods containing flame retardants and imported from the south rather than long-range atmospheric transport to the Arctic.
Collapse
Affiliation(s)
- Emilie Nero
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada; Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Ontario, Canada.
| | - Amira Aker
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Québec, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, Canada
| | - Pierre Ayotte
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, Canada; Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Caty Blanchette
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Mélanie Lemire
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Institut de Biologie Intégrative et des systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
5
|
Wang W, Wang H, Ren X, Zhang W, Li Q. Organophosphate esters uptake, translocation and accumulation in rice ( Oryza sativa L.): impacts of lipid transporters and chemical properties. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1171-1183. [PMID: 38888146 DOI: 10.1039/d4em00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
To explore key factors involved in the uptake, translocation and accumulation of organophosphate esters (OPEs), computer simulation analysis and hydroponic experiments were executed. Lipid transporters with stocky-like active (SAC) cavities usually showed stronger binding affinities with the OPEs, especially when the SAC cavities belong to the Fish Trap model according to molecular docking. In our hydroponic trial, the binding affinity and gene expression of the lipid transporters and log Kow of the OPEs could be charged to the uptake, translocation and accumulation of the OPEs; however, these three factors played various important roles in roots and shoots. In detail, the effect of gene expression and binding affinity were stronger than log Kow in roots uptake and accumulation, but the result was the opposite in the shoots translocation. Transporters OsTIL and OsLTPL1 among all investigated transporters could play key roles in transporter-mediated OPE uptake, translocation and accumulation in the roots and shoots. OsMLP could be involved in the bidirected vertical translocation of the OPEs. OsLTP2 and OsLTP4 mainly acted as transporters of the OPEs in roots.
Collapse
Affiliation(s)
- Wenxuan Wang
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Haiou Wang
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Xiaoyu Ren
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Wenxiao Zhang
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| | - Qian Li
- University of Science and Technology Beijing, School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, China.
| |
Collapse
|
6
|
Lao ZL, Wu D, Li HR, Feng YF, Zhang LW, Jiang XY, Liu YS, Wu DW, Hu JJ. Uptake, translocation, and metabolism of organophosphate esters (OPEs) in plants and health perspective for human: A review. ENVIRONMENTAL RESEARCH 2024; 249:118431. [PMID: 38346481 DOI: 10.1016/j.envres.2024.118431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Plant uptake, accumulation, and transformation of organophosphate esters (OPEs) play vital roles in their geochemical cycles and exposure risks. Here we reviewed the recent research advances in OPEs in plants. The mean OPE concentrations based on dry/wet/lipid weight varied in 4.80-3,620/0.287-26.8/12,000-315,000 ng g-1 in field plants, and generally showed positive correlations with those in plant habitats. OPEs with short-chain substituents and high hydrophilicity, particularly the commonly used chlorinated OPEs, showed dominance in most plant samples, whereas some tree barks, fruits, seeds, and roots demonstrated dominance of hydrophobic OPEs. Both hydrophilic and hydrophobic OPEs can enter plants via root and foliar uptake, and the former pathway is mainly passively mediated by various membrane proteins. After entry, different OPEs undergo diverse subcellular distributions and acropetal/basipetal/intergenerational translocations, depending on their physicochemical properties. Hydrophilic OPEs mainly exist in cell sap and show strong transferability, hydrophobic OPEs demonstrate dominant distributions in cell wall and limited migrations owing to the interception of Casparian strips and cell wall. Additionally, plant species, transpiration capacity, growth stages, commensal microorganisms, and habitats also affect OPE uptake and transfer in plants. OPE metabolites derived from various Phase I transformations and Phase II conjugations are increasingly identified in plants, and hydrolysis and hydroxylation are the most common metabolic processes. The metabolisms and products of OPEs are closely associated with their structures and degradation resistance and plant species. In contrast, plant-derived food consumption contributes considerably to the total dietary intakes of OPEs by human, particularly the cereals, and merits specifical attention. Based on the current research limitations, we proposed the research perspectives regarding OPEs in plants, with the emphases on their behavior and fate in field plants, interactions with plant-related microorganisms, multiple uptake pathways and mechanisms, and comprehensive screening analysis and risk evaluation.
Collapse
Affiliation(s)
- Zhi-Lang Lao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dan Wu
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Yu-Fei Feng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Long-Wei Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xue-Yi Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yi-Shan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dong-Wei Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jun-Jie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|
7
|
Nesse AS, Jasinska A, Stoknes K, Aanrud SG, Risinggård KO, Kallenborn R, Sogn TA, Ali AM. Low uptake of pharmaceuticals in edible mushrooms grown in polluted biogas digestate. CHEMOSPHERE 2024; 351:141169. [PMID: 38211789 DOI: 10.1016/j.chemosphere.2024.141169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The uptake dynamics of two sulfonamide antibiotics, two fluoroquinolone antibiotics, and the anticonvulsant carbamazepine during the cultivation of two species of edible mushrooms (Agaricus subrufescens and A. bisporus) was investigated. None of the antibiotics were accumulated by the mushrooms, while carbamazepine and its transformation product carbamazepine-10,11-epoxide were taken up by A. bisporus fruiting body but only in small amounts (up to 0.76 and 1.85 μg kg-1 dry weight, respectively). The sulfonamides were quickly removed from the mushroom growth substrate, while the recalcitrant fluoroquinolones and carbamazepine were only partially removed. Dissipation half-lives were generally lower for A. subrufescens than A. bisporus, but A. subrufescens was also grown at a slightly higher culture temperature. A. subrufescens also showed a lower uptake of contaminants. Comparison of maximum dietary intake with other common exposure sources showed that these mushrooms can safely be eaten although produced on a polluted substrate, with respect to the investigated compounds.
Collapse
Affiliation(s)
- Astrid S Nesse
- Norwegian University of Life Sciences, Faculty of Environment and Natural Resources, Elizabeth Stephansensvei 31, 1433, Ås, Norway; Norwegian Institute of Bioeconomy Research, Oluf Thesens Vei 43, 1433, Ås, Norway.
| | - Agnieszka Jasinska
- Lindum AS, Lerpeveien 155, 3036, Drammen, Norway; Poznan University of Life Sciences, Department of Vegetable Crops, Ul. J.H. Dabrowskiego 159, 60-594, Poznan, Poland
| | | | - Stine Göransson Aanrud
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Elizabeth Stephansensvei 15, 1433, Ås, Norway
| | - Kristin Ogner Risinggård
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Elizabeth Stephansensvei 15, 1433, Ås, Norway
| | - Roland Kallenborn
- Norwegian University of Life Sciences, Faculty of Chemistry, Biotechnology and Food Sciences, Chr. M. Falsens Vei 18, 1433, Aas, Norway
| | - Trine A Sogn
- Norwegian University of Life Sciences, Faculty of Environment and Natural Resources, Elizabeth Stephansensvei 31, 1433, Ås, Norway
| | - Aasim M Ali
- Norwegian University of Life Sciences, Faculty of Chemistry, Biotechnology and Food Sciences, Chr. M. Falsens Vei 18, 1433, Aas, Norway; Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway
| |
Collapse
|
8
|
Diep Trinh TN, Trinh KTL, Lee NY. Microfluidic advances in food safety control. Food Res Int 2024; 176:113799. [PMID: 38163712 DOI: 10.1016/j.foodres.2023.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Food contamination is a global concern, particularly in developing countries. Two main types of food contaminants-chemical and biological-are common problems that threaten human health. Therefore, rapid and accurate detection methods are required to address the threat of food contamination. Conventional methods employed to detect these two types of food contaminants have several limitations, including high costs and long analysis time. Alternatively, microfluidic technology, which allows for simple, rapid, and on-site testing, can enable us to control food safety in a timely, cost-effective, simple, and accurate manner. This review summarizes advances in microfluidic approaches to detect contaminants in food. Different detection methods have been applied to microfluidic platforms to identify two main types of contaminants: chemical and biological. For chemical contaminant control, the application of microfluidic approaches for detecting heavy metals, pesticides, antibiotic residues, and other contaminants in food samples is reviewed. Different methods including enzymatic, chemical-based, immunoassay-based, molecular-based, and electrochemical methods for chemical contaminant detection are discussed based on their working principle, the integration in microfluidic platforms, advantages, and limitations. Microfluidic approaches for foodborne pathogen detection, from sample preparation to final detection, are reviewed to identify foodborne pathogens. Common methods for foodborne pathogens screening, namely immunoassay, nucleic acid amplification methods, and other methods are listed and discussed; highlighted examples of recent studies are also reviewed. Challenges and future trends that could be employed in microfluidic design and fabrication process to address the existing limitations for food safety control are also covered. Microfluidic technology is a promising tool for food safety control with high efficiency and applicability. Miniaturization, portability, low cost, and samples and reagents saving make microfluidic devices an ideal choice for on-site detection, especially in low-resource areas. Despite many advantages of microfluidic technology, the wide manufacturing of microfluidic devices still demands intensive studies to be conducted for user-friendly and accurate food safety control. Introduction of recent advances of microfluidic devices will build a comprehensive understanding of the technology and offer comparative analysis for future studies and on-site application.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Viet Nam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
9
|
Luo Q, Zhang J, Wu Z, Zhang X, Fang X, Kou L, Wu H, He Q. Remediation of soil contaminated with tris-(1-chloro-2-propyl) phosphate using plant and microorganism combined technology: A greenhouse experiment. CHEMOSPHERE 2023; 341:140122. [PMID: 37690567 DOI: 10.1016/j.chemosphere.2023.140122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The remediation of tris-(1-chloro-2-propyl) phosphate (TCIPP) -contaminated soil by the plant (ryegrass, Lolium perenne L.) and microorganism (TCIPP degrading bacteria, Ochrobactrum sp. DT-6) alone or in combination was investigated in this study. TCIPP can inhibit the growth and development of ryegrass and there is a clear dose-effect relationship. Inoculation with strain DT-6 was able to mitigate the toxic influence of TCIPP on ryegrass, but this mitigation effect was not significant. TCIPP in the soil was relatively easy to be uptaken by the ryegrass roots and migrated to the shoots. Furthermore, as the soil TCIPP concentration rose, the concentration of TCIPP in ryegrass also exhibited a corresponding increase. The biological concentration factor (BCF) ranged from 0.33 to 1.88 and the biological accumulation coefficient (BAC) ranged from 0.54 to 3.98. They all significantly decreased with higher soil TCIPP concentrations. The translocation factor (TF) values ranged from 1.55 to 2.34. Inoculation of strain DT-6 significantly reduced TCIPP concentrations in ryegrass roots, stems, and leaves as well as the values of BAC and BCF under low and medium TCIPP concentration treatment conditions, but the effect on TF values was not remarkable. The planting of ryegrass significantly raised the elimination of TCIPP from the soil to 64.6-93.3%, but the influence of inoculation with strain DT-6 on the remediation effect by ryegrass was not significant. The percentage contribution of phytoextraction to the elimination of TCIPP from soils ranged from only 0.64-5.23%.
Collapse
Affiliation(s)
- Qing Luo
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang, 110034, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang, 110034, China; Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Jieliu Zhang
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Zhongping Wu
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xinyu Zhang
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xu Fang
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Liyue Kou
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Huiqiu Wu
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Qing He
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| |
Collapse
|
10
|
Dulsat-Masvidal M, Ciudad C, Infante O, Mateo R, Lacorte S. Water pollution threats in important bird and biodiversity areas from Spain. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130938. [PMID: 36860036 DOI: 10.1016/j.jhazmat.2023.130938] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Chemical pollution is still an underestimated threat to surface waters from natural areas. This study has analysed the presence and distribution of 59 organic micropollutants (OMPs) including pharmaceuticals, lifestyle compounds, pesticides, organophosphate esters (OPEs), benzophenone and perfluoroalkyl substances (PFASs) in 411 water samples from 140 Important Bird and Biodiversity Areas (IBAs) from Spain, to evaluate the impact of these pollutants in sites of environmental relevance. Lifestyle compounds, pharmaceuticals and OPEs were the most ubiquitous chemical families, while pesticides and PFASs showed a detection frequency below 25% of the samples. The mean concentrations detected ranged from 0.1 to 301 ng/L. According to spatial data, agricultural surface has been identified as the most important source of all OMPs in natural areas. Lifestyle compounds and PFASs have been related to the presence of artificial surface and wastewater treatment plants (WWTPs) discharges, which were also an important source of pharmaceuticals to surface waters. Fifteen out of 59 OMPs have been found at levels posing a high risk for the aquatic IBAs ecosystems, being the insecticide chlorpyrifos, the antidepressant venlafaxine and perfluorooctanesulfonic acid (PFOS) the most concerning compounds. This is the first study to quantify water pollution in IBAs and evidence that OMPs are an emerging threat to freshwater ecosystems that are essential for biodiversity conservation.
Collapse
Affiliation(s)
- Maria Dulsat-Masvidal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carlos Ciudad
- SEO/BirdLife, Melquiades Biencinto, 34, 28053 Madrid, Spain
| | | | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
11
|
Long S, Hamilton PB, Fu B, Xu J, Han L, Suo X, Lai Y, Shen G, Xu F, Li B. Bioaccumulation and emission of organophosphate esters in plants affecting the atmosphere's phosphorus cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120803. [PMID: 36503012 DOI: 10.1016/j.envpol.2022.120803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The imbalance of atmospheric, terrestrial and aquatic phosphorus budgets remains a research conundrum and global concern. In this work, the uptake, distribution, bioaccumulation and emission of organophosphate esters (OPEs) by clove trees (Syzygium aromaticum), lemon trees (Citrus limon) and cape jasmine trees (Gardenia jasminoides var. fortuniana) was investigated as conduits for phosphorus transfer or sinks and sources. The objective was to assess the role OPEs in soils play as atmospheric phosphorus sources through plant bioaccumulation and emission. Results demonstrated OPEs in experimental soil plots ranging from 0.01 to 81.0 ng g-1 dry weight, were absorbed and transported through plants to the atmosphere. The total emission of OPEs varied greatly from 0.2 to 588.9 pg g-1 L-1 h-1, with a mean of 47.6 pg g-1 L-1 h-1. There was a negative linear relationship between the concentrations of total phosphorus and four OPEs, tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate. Trimethyl phosphate levels were positively correlated with total nitrogen, and the concentrations of tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate decreased along with available potassium in leaves after 72 h. There was a significantly positive linear relationship between higher emission concentrations of OPEs and the emission factor of OPEs concentration (F = 4.2, P = 0.002), with lower emissions of OPEs and the bioaccumulation of OPEs in leaves (F = 4.8, P = 0.004). OPEs releases to the atmosphere were enriched in aerosols, and participate in atmospheric chemical reactions like photolysis, thereby affecting the phosphorus balance and cycling in the atmosphere.
Collapse
Affiliation(s)
- Shengxing Long
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Paul B Hamilton
- Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada
| | - Bo Fu
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Jing Xu
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Luchao Han
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Xinhao Suo
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Yuqin Lai
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Fuliu Xu
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Bengang Li
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
12
|
Maddela NR, Ramakrishnan B, Dueñas-Rivadeneira AA, Venkateswarlu K, Megharaj M. Chemicals/materials of emerging concern in farmlands: sources, crop uptake and potential human health risks. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2217-2236. [PMID: 36444949 DOI: 10.1039/d2em00322h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Certain chemicals/materials that are contaminants of emerging concern (CECs) have been widely detected in water bodies and terrestrial systems worldwide while other CECs occur at undetectable concentrations. The primary sources of CECs in farmlands are agricultural inputs, such as wastewater, biosolids, sewage sludge, and agricultural mulching films. The percent increase in cropland area during 1950-2016 was 30 and the rise in land use for food crops during 1960-2018 was 100-500%, implying that there could be a significant CEC burden in farmlands in the future. In fact, the alarming concentrations (μg kg-1) of certain CECs such as PBDEs, PAEs, and PFOS that occur in farmlands are 383, 35 400 and 483, respectively. Also, metal nanoparticles are reported even at the mg kg-1 level. Chronic root accumulation followed by translocation of CECs into plants results in their detectable concentrations in the final plant produce. Thus, there is a continuous flow of CECs from farmlands to agricultural produce, causing a serious threat to the terrestrial food chain. Consequently, CECs find their way to the human body directly through CEC-laden plant produce or indirectly via the meat of grazing animals. Thus, human health could be at the most critical risk since several CECs have been shown to cause cancers, disruption of endocrine and cognitive systems, maternal-foetal transfer, neurotoxicity, and genotoxicity. Overall, this comprehensive review provides updated information on contamination of chemicals/materials of concern in farmlands globally, sources for their entry, uptake by crop plants, and their likely impact on the terrestrial food chain and human health.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | | | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Av. Urbina y Che Guevara, Portoviejo, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle, ATC Building University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
13
|
Gbadamosi MR, Abdallah MAE, Harrad S. Organophosphate esters in UK diet; exposure and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:158368. [PMID: 36116644 DOI: 10.1016/j.scitotenv.2022.158368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Food ingestion has been established as an important human exposure route to many environmental contaminants (brominated flame retardants, dioxins, organochlorine pesticides etc). However, information regarding dietary exposure to organophosphate esters (OPEs) in the UK remains limited. This study provides the first comprehensive dataset on OPEs in the UK diet by measuring concentrations of eight OPEs in 393 food samples, divided into 15 food groups, collected from Birmingham, UK. All target OPEs were measured above the limit of quantification in at least one of the food groups analysed. Concentrations were highest (mean ∑8OPEs = 18.4 ng/g wet weight (ww)) in milk and milk products, followed by those in cereal and cereal products (mean ∑8OPEs = 15.9 ng/g ww), with concentrations lowest in chickens' eggs (mean ∑8OPEs = 1.61 ng/g ww). Interestingly, concentrations in animal-derived foods (mean ∑8OPEs = 44.2 ng/g ww) were statistically indistinguishable (p˃0.05) from plant-derived foods (mean ∑8OPEs = 36.8 ng/g ww). Estimated daily dietary intakes (EDIs) of ∑8OPEs under mean and high-end exposure scenarios for the four age groups considered were: toddlers (420 and 1547 ng/kg bw/day) ˃ children (155 and 836) ˃ elderly (74.3 and 377) ˃ adults (62.3 and 278) ng/kg bw/day, respectively. Baby food contributed 39 % of ∑8OPEs exposure for toddlers, with non-alcoholic beverages contributing 27 % of exposure for children, while cereal and cereal products (25 %) and fruits (22 %) were the main contributors for adults and the elderly. The concentrations of OPEs in UK foodstuffs were generally of the same order of magnitude as those reported for other countries and our estimates of dietary exposure were well below the corresponding health-based limit values.
Collapse
Affiliation(s)
- Muideen Remilekun Gbadamosi
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Chemical Sciences, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria.
| | | | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Gupta S, Garg NK, Shekhawat K. Regulation of Paraquat for wheat crop contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70909-70920. [PMID: 35595893 DOI: 10.1007/s11356-022-20816-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Paraquat is a highly toxic and persistent pesticide in soil but is still used for wheat crops in many countries. Paraquat can pose potential health hazards if it is translocated from soil into wheat grains, but no study is available for its possible translocation causing wheat grain contamination. The present study aimed at finding out Paraquat residue in wheat grains under field conditions for two crop seasons to explore the sustainability of this pesticide. The experiments were conducted scientifically under field conditions at agricultural fields Pusa, Delhi, India. The soil texture was classified as sandy loam. Paraquat dichloride 24% SL (herbicide) was applied on five fields except for control field. Paraquat in wheat grains was analyzed using HPLC equipped with a photodiode array (PDA) detector. The method of analysis was validated for the pesticide residue recovery. The results showed that there was an alarming concentration of Paraquat in wheat grains ranging between 21.6 and 49.02 mg kg-1 against maximum residue level of 0.1 mg kg-1. Paraquat was also found in control crop (3.1 mg kg-1) due to background residue in soil even when no Paraquat was applied. Furthermore, wheat flour samples from market also gave alarming Paraquat residue (20.39, 25.88, and 27.68 mg kg-1). Paraquat residue was primarily dependent on % clay in field soils. More the % clay lesser was Paraquat residue in wheat grain. Thus, Paraquat was translocated from soil into wheat grains and resulted in worrying concentration of Paraquat residue in wheat grains. Consequently, use of Paraquat for wheat crops needs to be regulated as it contaminated the soil and resulted in the wheat grain contamination posing severe health hazards for humans.
Collapse
Affiliation(s)
- Sandhya Gupta
- Department of Civil Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Navneet Kumar Garg
- Department of Civil Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| | - Kapila Shekhawat
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
15
|
Li X, Yao Y, Chen H, Zhang Q, Li C, Zhao L, Guo S, Cheng Z, Wang Y, Wang L, Sun H. Identification of Novel Organophosphate Esters in Hydroponic Lettuces ( Lactuca sativa L.): Biotransformation and Acropetal Translocation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10699-10709. [PMID: 35849551 DOI: 10.1021/acs.est.2c01610] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The absorption, translocation, and biotransformation behaviors of organophosphate esters (OPEs) and diesters (OPdEs) in a hydroponic system were investigated. The lateral root was found as the main accumulation and biotransformation place of OPEs and OPdEs in lettuce. The nontarget analysis using high-resolution mass spectrometry revealed five hydroxylated metabolites and five conjugating metabolites in the OPE exposure group, among which methylation, acetylation, and palmitoyl conjugating OPEs were reported as metabolites for the first time. Particularly, methylation on phosphate can be a significant process for plant metabolism, and methyl diphenyl phosphate (MDPP) accounted for the majority of metabolites. The translocation factor values of most identified OPE metabolites are negatively associated with their predicted logarithmic octanol-water partitioning coefficient (log Kow) values (0.75-2.45), indicating that hydrophilicity is a dominant factor in the translocation of OPE metabolites in lettuce. In contrast, palmitoyl conjugation may lead to an enhanced acropetal translocation and those with log Kow values < 0 may have limited translocation potential. Additionally, OPE diesters produced from the biotransformation of OPEs in lettuce showed a higher acropetal translocation potential than those exposed directly. These results further emphasize the necessity to consider biotransformation as an utmost important factor in the accumulation and acropetal translocation potential of OPEs in plants.
Collapse
Affiliation(s)
- Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qing Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- School of Environmental and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Cheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
16
|
Zhang W, Giesy JP, Wang P. Organophosphate esters in agro-foods: Occurrence, sources and emerging challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154271. [PMID: 35245542 DOI: 10.1016/j.scitotenv.2022.154271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Safety and sustainable agro-food production is important for food and nutrition security. Agro-foods safety is challenged by various emerging environmental contaminants. Organophosphate esters (OPEs) have been reported to occur in various agro-food items worldwide, which has resulted in increasing concerns for effects on health of humans and wildlife, including through agriculture. However, information on presence, sources and transfer routes of OPEs in agro-foods, and consequent health risks remains scant. This review critically evaluates available information on concentrations of OPEs in various agro-foods, and discusses potential sources of OPEs in agro-foods, which are closely related to the ambient agri-environment, agricultural inputs, and agro-foods processing. Some directions for future research are suggested. First, since food is an important exposure pathway to OPEs, systematic monitoring of concentrations of OPEs in various categories of agro-foods is recommended. Second, surveillance of concentrations and characteristics of OPEs in agro-foods and ambient agri-environments, agricultural inputs or processing in the agro-food chain is needed to obtain a more complete description of exposure and transmission behavior of OPEs in agro-foods. Third, future comprehensive studies of transmission, metabolism and accumulation of OPEs in animals or plants, are required. Finally, measures to control emissions of OPEs as sources to agriculture should be taken.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, PR China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
17
|
Zhang Q, Wang Y, Zhang C, Yao Y, Wang L, Sun H. A review of organophosphate esters in soil: Implications for the potential source, transfer, and transformation mechanism. ENVIRONMENTAL RESEARCH 2022; 204:112122. [PMID: 34563524 DOI: 10.1016/j.envres.2021.112122] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 05/22/2023]
Abstract
Organophosphate esters (OPEs) are widely used around the world as flame retardants and plasticizers with a growing production in the last 15 years due to the phase-out of polybrominated diphenyl ethers. Multiple papers reported the occurrences of OPEs in various environmental matrices and elevated concentrations of OPEs (0.1-10,000 ng/g dry weight) were documented in different types of soils which were regarded as both the "sink" and "source" of OPEs. In this study, the source, transfer, and transformation mechanisms of OPEs are systematically reviewed from the perspective of the soil environment. The wet/dry deposition, air-soil exchange, sewage irrigation, sludge application, and indirect oxidization of organophosphate antioxidants are the possible sources of OPEs in soil. Meanwhile, the OPEs in the soil environment may also migrate into other environmental media via plant uptake, air-soil exchange, desorption, and infiltration to cause relevant ecological risk, which depends much on the chemical properties of these compounds. The trimethylphenyl phosphate (TMPP) (mixture of isomers) and triphenyl phosphate (TPHP), which have strong hydrophobicity, pose a higher ecological risk for the soil environment than other OPEs. Further, the hydrolysis, indirect photolysis, and biodegradation of OPEs in the soil environment may be affected by the soil pH, organic acid, dissolved metals and metal oxides, active oxygen species, and microorganisms significantly. Besides that, the human exposure risks of OPEs from the soil are limited compared to those via indoor dust and food ingestion pathways. Finally, this study identifies the knowledge gaps and generated the future perspectives of the OPEs in soil.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
18
|
Bonato T, Beggio G, Pivato A, Piazza R. Maize plant (Zea mays) uptake of organophosphorus and novel brominated flame retardants from hydroponic cultures. CHEMOSPHERE 2022; 287:132456. [PMID: 34606891 DOI: 10.1016/j.chemosphere.2021.132456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The root uptake and root-shoot translocation of seven organophosphorus flame retardants (OPFRs) and four novel brominated flame retardants (NBFRs) were assessed in this investigation using hydroponic grown maize plants (Zea mays). Three initial liquid concentrations for each considered compound were examined (i.e., 0.3 μg L-1, 3 μg L-1, 30 μg L-1). The results indicated that the 30 μg L-1 treatments were phytotoxic, as they resulted in a significant decrease in shoot dry weight. Plant-driven removal of the tested FRs decreased with the increasing initial spiking level and were reportedly higher for the NBFRs (range 42%-10%) than OPFRs (range 19%-7%). All the considered FRs were measured in the roots (range 0.020-6.123 μg g-1 dry weight -DW-) and shoots (range 0.012-1.364 μg g-1 DW) of the tested plants, confirming that there was uptake. Linear relationships were identified between the chemical concentrations in the plant parts and the tested hydroponic concentrations. Root concentration factors were positively correlated with the specific lipophilicity (i.e., logKow) of the tested FRs and were determined to be higher for the NBFRs than the OPFRs. The NBFRs had a higher root uptake rate than the OPFRs, and this trend was more significant with the increasing treatment concentrations. Shoot/root concentration factors were found to be lower than the unity value for 10 of the 11 tested compounds. These results can be related to the specific molecular configurations and the occurrence of different functional groups in the tested compounds. The results will help to improve risk assessment procedures and fine tune our understanding of human receptor responses to the ingestion of maize crops grown on agricultural sites irrigated with water contaminated by FRs.
Collapse
Affiliation(s)
- Tiziano Bonato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| | - Giovanni Beggio
- Department of Civil, Environmental and Architectural Engineering (DICEA), University of Padova, Via Marzolo 9, 35131, Padova, Italy.
| | - Alberto Pivato
- Department of Civil, Environmental and Architectural Engineering (DICEA), University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| |
Collapse
|
19
|
Allouzi MMA, Tang DYY, Chew KW, Rinklebe J, Bolan N, Allouzi SMA, Show PL. Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147815. [PMID: 34034191 DOI: 10.1016/j.scitotenv.2021.147815] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 05/27/2023]
Abstract
Global plastic pollution has been a serious problem since many years and micro (nano) plastics (MNPs) have gained attention from researchers around the world. This is because MNPs able to exhibit toxicology and interact with potentially toxic elements (PTEs) in the environment, causing soil toxicity. The influences of MNPs on the soil systems and plant crops have been overlooked despite that MNPs can accumulate in the plant root system and generate detrimental impacts to the terrestrial environments. The consumption of these MNPs-contaminated plants or fruits by humans and animals will eventually lead to health deterioration. The identification and measurement of MNPs in various soil samples is challenging, making the understanding of the fate, environmental and ecological of MNPs in terrestrial ecosystem is limited. Prior to sample assessment, it is necessary to isolate the plastic particles from the environment samples, concentrate the plastic particles for analysis purpose to meet detection limit for analytical instrument. The isolation and pre-concentrated steps are challenging and may cause sample loss. Herein, this article reviews MNPs, including their fate in the environment and toxic effects exhibited towards soil microorganisms, plants and humans along with the interaction of MNPs with PTEs. In addition, various analysis methods of MNPs and management of MNPs as well as the crucial challenges and future research studies in combating MNPs in soil system are also discussed.
Collapse
Affiliation(s)
- Mintallah Mousa A Allouzi
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Laboratory of Soil- and Groundwater-Management, Institute of Foundation Engineering, Water- and Waste-Management, University of Wuppertal, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Nanthi Bolan
- College of Engineering, Science and Environment, The University of Newcastle (UON), Callaghan, NSW 2308, Australia
| | - Safa Mousa A Allouzi
- Department of Medicine, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jln SP 2, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
20
|
Nahim-Granados S, Martínez-Piernas AB, Rivas-Ibáñez G, Plaza-Bolaños P, Oller I, Malato S, Pérez JAS, Agüera A, Polo-López MI. Solar processes and ozonation for fresh-cut wastewater reclamation and reuse: Assessment of chemical, microbiological and chlorosis risks of raw-eaten crops. WATER RESEARCH 2021; 203:117532. [PMID: 34419922 DOI: 10.1016/j.watres.2021.117532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
In this study, a full cycle of agricultural reuse of agro-food wastewater (synthetic fresh-cut wastewater, SFCWW) at pilot plant scale has been investigated. Treated SFCWW by ozonation and two solar processes (H2O2/solar, Fe3+-EDDHA/H2O2/solar) was used to irrigate two raw-eaten crops (lettuce and radish) grown in peat. Two foodborne pathogens (E. coli O157:H7 and Salmonella enteritidis) and five organic microcontaminants (OMCs: atrazine, azoxystrobin, buprofezin, procymidone and terbutryn) were monitored along the whole process. The three studied processes showed a high treatment capability (reaching microbial loads < 7 CFU/100 mL and 21-90 % of OMC reduction), robustness (based on 7 or 10 analysed batches for each treatment process) and high suitability for subsequent treated SFCWW safe reuse: non-phytotoxic towards Lactuca sativa and no bacterial regrowth during its storage for a week. The analysis of the harvested crop samples irrigated with treated SFCWW in all the studied processes showed an absence of microbial contamination (< limit of detection, LOD; i.e., < 1 CFU/99 g of lettuce and < 1 CFU/8 g of radish), a significant reduction of OMC uptake (in the range 40-60 % and > 90 % for solar treated and ozonated SFCWW, respectively) and bioaccumulation in both crops in comparison with the results obtained with untreated SFCWW. Moreover, the chlorophyll content in the harvested lettuces irrigated with SFCWW treated by Fe3+-EDDHA/H2O2/solar was twice than that irrigated with SFCWW treated by H2O2/solar and ozone, indicating the additional advantage of using Fe3+-EDDHA as an iron source to reduce the risk of iron chlorosis in crops. Finally, the chemical (dietary risk assessment for the combined exposure of the 5 OMCs) and quantitative microbiological risk assessment (QMRA) of the harvested crops showed the capability of the studied processes to reduce the risk associated with untreated SFCWW reuse by more than 50 % and more than 4 orders of magnitude, respectively.
Collapse
Affiliation(s)
- Samira Nahim-Granados
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Ana Belén Martínez-Piernas
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - Gracia Rivas-Ibáñez
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Patricia Plaza-Bolaños
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - Isabel Oller
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Sixto Malato
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | | | - Ana Agüera
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - María Inmaculada Polo-López
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain.
| |
Collapse
|
21
|
Valizadeh S, Lee SS, Baek K, Choi YJ, Jeon BH, Rhee GH, Andrew Lin KY, Park YK. Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: A review. ENVIRONMENTAL RESEARCH 2021; 200:111757. [PMID: 34303678 DOI: 10.1016/j.envres.2021.111757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) are hazardous organic contaminants threatening human health and environmental safety due to their toxicity and carcinogenicity. Biochar (BC) is an eco-friendly carbonaceous material that can extensively be utilized for the remediation of PCBs-contaminated soils. In the last decade, many studies reported that BC is beneficial for soil quality enhancement and agricultural productivity based on its physicochemical characteristics. In this review, the potential of BC application in PCBs-contaminated soils is elaborated as biological strategies (e.g., bioremediation and phytoremediation) and specific mechanisms are also comprehensively demonstrated. Further, the synergy effects of BC application on PCBs-contaminated soils are discussed, in view of eco-friendly, beneficial, and productive aspects.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gwang Hoon Rhee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
22
|
Pyrrolizidine Alkaloids in the Food Chain: Is Horizontal Transfer of Natural Products of Relevance? Foods 2021; 10:foods10081827. [PMID: 34441604 PMCID: PMC8392022 DOI: 10.3390/foods10081827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Recent studies have raised the question whether there is a potential threat by a horizontal transfer of toxic plant constituents such as pyrrolizidine alkaloids (PAs) between donor-PA-plants and acceptor non-PA-plants. This topic raised concerns about food and feed safety in the recent years. The purpose of the study described here was to investigate and evaluate horizontal transfer of PAs between donor and acceptor-plants by conducting a series of field trials using the PA-plant Lappula squarrosa as model and realistic agricultural conditions. Additionally, the effect of PA-plant residues recycling in the form of composts or press-cakes were investigated. The PA-transfer and the PA-content of soil, plants, and plant waste products was determined in form of a single sum parameter method using high-performance liquid chromatography mass spectroscopy (HPLC-ESI-MS/MS). PA-transfer from PA-donor to acceptor-plants was frequently observed at low rates during the vegetative growing phase especially in cases of close spatial proximity. However, at the time of harvest no PAs were detected in the relevant field products (grains). For all investigated agricultural scenarios, horizontal transfer of PAs is of no concern with regard to food or feed safety.
Collapse
|
23
|
Liu Q, Wang X, Zhou J, Yu X, Liu M, Li Y, Sun H, Zhu L. Phosphorus Deficiency Promoted Hydrolysis of Organophosphate Esters in Plants: Mechanisms and Transformation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9895-9904. [PMID: 34247484 DOI: 10.1021/acs.est.1c02396] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The biotransformation of organophosphate esters (OPEs) in white lupin (Lupinus albus) and wheat (Triticum aestivum L.) was investigated in hydroponic experiments with different phosphorus (P)-containing conditions. The hydrolysis rates of OPEs followed the order of triphenyl phosphate (TPHP) > tri-n-butyl phosphate (TnBP) > tris(1,3-dichloro-2-propyl) phosphate (TDCPP). Hydrolysis of OPEs was accelerated at P-deficient conditions, and faster hydrolysis took place in white lupin than in wheat. Coincidingly, the production of acid phosphatase (ACP) in both plants was promoted, and much higher intracellular and extracellular ACPs were observed in white lupin under P-deficient conditions. In vitro experiments revealed that ACP was a key enzyme to hydrolyze OPEs. The hydrolysis rates of OPEs were significantly correlated with the Hirshfeld charges, calculated by density functional theory, of the oxygen atom in the single P-O bond. Using ultra-high-performance liquid chromatography coupled with Orbitrap Fusion mass spectrometer, 30 metabolites were successfully identified. Some of these metabolites, such as sulfate-conjugated products, hydration of cysteine-conjugated products of TPHP, and reductively dechlorinated metabolites of TDCPP, were observed for the first time in plants. It is noteworthy that OPEs may transform into many hydroxylated metabolites, and special attention should be paid to their potential environmental effects.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiaolei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xiaoyong Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
24
|
Recsetar MS, Fitzsimmons KM, Cuello JL, Hoppe-Jones C, Snyder SA. Evaluation of a recirculating hydroponic bed bioreactor for removal of contaminants of emerging concern from tertiary-treated wastewater effluent. CHEMOSPHERE 2021; 262:128121. [PMID: 33182119 DOI: 10.1016/j.chemosphere.2020.128121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Tertiary-treated effluent from a municipal wastewater treatment plant in Tucson, AZ, was added to recirculating hydroponic bed bioreactors filled with light expanded clay aggregate (LECA) and recirculated for 10 days. Bioreactors were planted with high and low densities of sorghum (Sorghum bicolor), switchgrass (Panicum virgatum) and Bacillus thuringiensis cotton (Gossypium sp.). The experiment also included a non-planted bioreactor treatment and a control bioreactor with neither plants nor substrate medium. Of 46 contaminants of emerging conern assayed with liquid chromatography tandem mass spectrometry (LC-MS/MS), 16 were initially identified at detectable levels in the effluent. After one day, concentrations of Ibuprofen and Diphenhydramine fell below detection limits in all treatments as well as the control. After five days, initial concentrations of atenolol, benzotriazole, carbamazepine, hydrochlorothiazide, iohexol, iopamidol iopromide, primidone, sulfamethoxazole and tris TCPP were reduced by greater than 80% in all treatments, while the control exhibited little to no removal. Diclofenac, simazine and sucralose exhibited variable removal rates among treatments ranging from 44 to 84% after five days. After 10 days, concentrations of DEET, diclofenac, iopromide, primidone and simazine were all below detection levels, while there was near zero removal in the control. Bioreactors planted with cotton had significantly more removal of sulfamethoxazole than unplanted bioreactors by 16-19% after five days and by an additional 18-20% removal after 10 days. The percentage uptake of benzotriazole by every planted treatment was significantly higher than the non-planted treatment after five and 10 days. Significant contaminant removal occurred in the media substrate, likely through adsorption to LECA or microbial degradation. More research is needed to examine specific pathways of degradation and removal by various microbials and plants.
Collapse
Affiliation(s)
- Matthew S Recsetar
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.
| | | | - Joel L Cuello
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA
| | - Christiane Hoppe-Jones
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Shane A Snyder
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
25
|
Wongmaneepratip W, Yang H. Investigating the migration of pyrethroid residues between mung bean sprouts and growth media. Food Chem 2020; 343:128480. [PMID: 33158676 DOI: 10.1016/j.foodchem.2020.128480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
To study the migration of pyrethroids (cypermethrin, deltamethrin, fenvalerate, and permethrin) from growth media (soil or water) to mung bean sprouts, pyrethroid residues were quantified using polystyrene-magnetic nanoparticles and HPLC-PDA. Pyrethroids reductions in growth media followed a double-exponential decline model (RMSE of 0.0068-0.1845), while the higher accumulation in the vegetable were observed in roots (0.50-6.75 mg/kg) than in sprouts (0.12-2.01 mg/kg). The accumulation was influenced by pyrethroid species, type of growth media, and plant parts. This study contributed a novel prediction method to assess the migration of pesticides from the growth media to the vegetable with the satisfactory sensitivity of the proposed detection method. The recoveries, detection limits (LOD), and quantification limits (LOQ) were 82.9-112.1%, 0.0627-0.1974 µg/L and 0.1892-0.6279 µg/L, respectively, for four pyrethroids. The research provided solid basis for future study of crops that can be used for bioconcentration of chemical hazards in environments.
Collapse
Affiliation(s)
- Wanwisa Wongmaneepratip
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
26
|
Maddela NR, Venkateswarlu K, Megharaj M. Tris(2-chloroethyl) phosphate, a pervasive flame retardant: critical perspective on its emissions into the environment and human toxicity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1809-1827. [PMID: 32760963 DOI: 10.1039/d0em00222d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Regulations and the voluntary activities of manufacturers have led to a market shift in the use of flame retardants (FRs). Accordingly, organophosphate ester flame retardants (OPFRs) have emerged as a replacement for polybrominated diphenyl ethers (PBDEs). One of the widely used OPFRs is tris(2-chloroethyl) phosphate (TCEP), the considerable usage of which has reached 1.0 Mt globally. High concentrations of TCEP in indoor dust (∼2.0 × 105 ng g-1), its detection in nearly all foodstuffs (max. concentration of ∼30-300 ng g-1 or ng L-1), human body burden, and toxicological properties as revealed by meta-analysis make TCEP hard to distinguish from traditional FRs, and this situation requires researchers to rethink whether or not TCEP is an appropriate choice as a new FR. However, there are many unresolved issues, which may impede global health agencies in framing stringent regulations and manufacturers considering the meticulous use of TCEP. Therefore, the aim of the present review is to highlight the factors that influence TCEP emissions from its sources, its bioaccessibility, threat of trophic transfer, and toxicogenomics in order to provide better insight into its emergence as an FR. Finally, remediation strategies for dealing with TCEP emissions, and future research directions are addressed.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador and Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
27
|
Liu Q, Liu M, Wu S, Xiao B, Wang X, Sun B, Zhu L. Metabolomics Reveals Antioxidant Stress Responses of Wheat ( Triticum aestivum L.) Exposed to Chlorinated Organophosphate Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6520-6529. [PMID: 32433877 DOI: 10.1021/acs.jafc.0c01397] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, wheat (Triticum aestivum L.) was exposed to three of the most typical chlorinated organophosphate esters (OPEs), which are widely present in farmland soil, at environmental concentrations to assess their accumulation, disruption on metabolism, and oxidative stress in wheat. The three OPEs accumulated distinctly in the root and then translocated to the shoot. After exposure for 7 days, the content of chlorophyll b decreased, while the levels of carotenoid and activities of antioxidases, malonaldehyde, and reactive oxygen species increased significantly in both the root and shoot, indicating that the target OPEs caused significant oxidative stresses and affected photosynthesis in wheat. Untargeted metabolomics revealed concentration- and species-dependent metabolic responses of the three OPEs. Saccharides were downregulated, which might be due to the reduced photosynthesis activities. On the other hand, the chlorinated OPEs induced increases in respiration and antioxidative metabolites, revealing that the antioxidant system of wheat was active in scavenging ROS. The disturbance of tris(1,3-dichloro-2-propyl)phosphate on the metabolisms in wheat tissues was the strongest. These results contribute to the food safety and crop quality assessment of chlorinated OPEs and clarify the underlying mechanisms of their phytotoxicities.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Sihan Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Bowen Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaolei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
28
|
Gong X, Wang Y, Pu J, Zhang J, Sun H, Wang L. The environment behavior of organophosphate esters (OPEs) and di-esters in wheat (Triticum aestivum L.): Uptake mechanism, in vivo hydrolysis and subcellular distribution. ENVIRONMENT INTERNATIONAL 2020; 135:105405. [PMID: 31864022 DOI: 10.1016/j.envint.2019.105405] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
To reveal the metabolic characteristic of organophosphate esters (OPEs) in plants, uptake efficiency, subcellular distribution and hydrolysis of OPEs and their hydrolysis metabolites in wheat (Triticum aestivum L.) were investigated by hydroponic experiments. Tris(2-chloroethyl) phosphate (TCEP) and bis(2-chloroethyl) phosphate (BCEP) were prone to transporting to shoots by transpiration stream, with the translocation factors of 6.2 and 21 for TCEP and BCEP, respectively, as greater than 40% of TCEP and BECP were distributed in the cell sap due to their hydrophilicity. Hydrophobic OPEs (i.e. tri-n-butyl phosphate [TnBP] and triphenyl phosphate [TPhP]), and their hydrolysis metabolites (di-n-butyl phosphate [DnBP] and diphenyl phosphate [DPhP]) were stored in roots, resulting in low translocation capacity in wheat. As organophosphate diesters with relatively high proportions in cell walls (70-84% of DnBP and 41-43% of DPhP) are difficult to being transmembrane transported due to electrical repulsion of the cytomembrane, it is supposed that cell walls could be a main location for in vivo hydrolysis of OPEs. For DnBP, absorption by roots after in vitro hydrolysis of TnBP in hydroponic media was also an important source in wheat. Inhibition experiments showed that it is usually a non-energy-consuming process for root uptake of OPEs and their hydrolysis metabolites. The uptake of OPEs (i.e. TCEP, TnBP, and TPhP) and DPhP were facilitated diffusion mediated by aquaporins or anion channels, while uptake of BCEP and DnBP were simple diffusion processes. This study illustrated the distribution characteristics and translocation capacity of OPEs and their diester metabolites at the subcellular level.
Collapse
Affiliation(s)
- Xinying Gong
- Ministry of Education, Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- Ministry of Education, Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jian Pu
- Faculty of Information Networking for Innovation and Design, Toyo University, Tokyo 115-0053, Japan; Institute for Future Initiatives, The University of Tokyo, Tokyo 113-8654, Japan
| | - Junjie Zhang
- Ministry of Education, Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- Ministry of Education, Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- Ministry of Education, Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
29
|
Ding J, Deng T, Ye X, Covaci A, Liu J, Yang F. Urinary metabolites of organophosphate esters and implications for exposure pathways in adolescents from Eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133894. [PMID: 31425989 DOI: 10.1016/j.scitotenv.2019.133894] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Ten urinary biomarkers of organophosphate esters (OPEs) from six parent OPEs were analyzed in urine from adolescents students in Eastern China. Bis (1,3-dichloro-2-propyl) phosphate, urinary biomarker of tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), was detected in all urine samples with the highest residual concentration of 6.2 ng/mL (median). Bis (1-chloro-propyl) hydroxyl-2-propyl phosphate, dibutyl phosphate, biomarkers of tris (1-chloro-2-propyl) phosphate (TCIPP), tri-n-butyl phosphate (TNBP), respectively, and tris (2-chloroethyl) phosphate (TCEP), were also frequently detected with median concentrations of 1.5, 2.6 and 0.3 ng/mL, respectively. Results indicate that exposure to OPEs, in particular to TDCIPP, TNBP, TCIPP and TCEP, was highly prevalent for adolescent students. The exposure pathways of OPEs were then evaluated according to the OPE internal body burdens (IBBs). Three pathways were identified as the main pathways for adolescents exposed to OPEs including dermal absorption, oral intake of food and dust and inhalation.
Collapse
Affiliation(s)
- Jinjian Ding
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China; Research Institute of Zhejiang University-Taizhou, Zhejiang, China
| | - Tongqing Deng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Xiaoqing Ye
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Jing Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
30
|
Wang Q, Zhao H, Xu L, Wang Y. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:683-689. [PMID: 30878008 DOI: 10.1016/j.ecoenv.2019.03.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The increasing load of organophosphate flame retardants (OPFRs) has generated wide concerns about their potential residues in aquatic environments. The uptake and translocation of fourteen OPFRs by wheat (Triticum aestivum L.) were studied under hydroponic conditions. The results revealed that OPFRs were removed from hydroponic solution by wheat, and the removal processes followed first-order kinetics. After 10 days, the removal efficiencies were in a range of 57.9 ± 3.8%-63.8 ± 5.6%. The potential for translocation of these OPFRs from the roots to foliage was also assessed. OPFRs with relatively higher hydrophobicity were more likely taken up by roots, and OPFRs with lower hydrophobicity were more prone to be translocated. Root concentration factors (RCFs), transpiration stream concentration factors (TSCFs), and foliage/root concentration factors (FRCFs) were calculated. Furthermore, significant correlations were found between RCF, FRCF or TSCF values of OPFRs and log Kow (p < 0.05), and translocation of OPFRs depended on their physicochemical properties. The findings of this study develop better understanding of accumulation and translocation of OPFRs in plants, which is valuable for environmental and human health assessments of such kind of contaminants.
Collapse
Affiliation(s)
- Qingzhi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Ling Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Liu Q, Wang X, Yang R, Yang L, Sun B, Zhu L. Uptake Kinetics, Accumulation, and Long-Distance Transport of Organophosphate Esters in Plants: Impacts of Chemical and Plant Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4940-4947. [PMID: 30942573 DOI: 10.1021/acs.est.8b07189] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The uptake, accumulation, and long-distance transport of organophosphate esters (OPEs) in four kinds of plants were investigated by hydroponic experiments. The uptake kinetics ( k1,root) of OPEs in plant roots were determined by the binding of OPEs with the proteins in plant roots and apoplastic sap for the hydrophobic compounds, which correlated well with the transpiration capacity of the plants for the hydrophilic compounds. However, the accumulation capacity of OPEs in plant root was controlled by the partition of OPEs to plant lipids. As a consequence, OPEs were taken up the fastest in wheat root as a result of its highest protein content but least accumulated as a result of its lowest lipid content. The translocation factor of the OPEs decreased quickly with the hydrophobicity (log Kow) increasing, suggesting that the hydrophobic OPEs were hard to translocate from roots to shoots. The hydrophilic OPEs, such as tris(2-chloroisopropyl) phosphate and tris(2-butoxyethyl) phosphate, were ambimobile in the plant xylem and phloem, suggesting that they could move to the edible parts of plants and enhanced risk to human health.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| | - Xiaolei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| | - Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
32
|
Carter LJ, Chefetz B, Abdeen Z, Boxall ABA. Emerging investigator series: towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:605-622. [PMID: 30932118 DOI: 10.1039/c9em00020h] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Use of reclaimed wastewater for agricultural irrigation is seen as an attractive option to meet agricultural water demands of a growing number of countries suffering from water scarcity. However, reclaimed wastewater contains pollutants which are introduced to the agro-environment during the irrigation process. While water reuse guidelines do consider selected classes of pollutants, they do not account for the presence of pollutants of emerging concern such as pharmaceuticals and the potential risks these may pose. Here we use source-pathway-receptor analysis (S-P-R) to develop a holistic framework for evaluating the impacts of pharmaceuticals, present in wastewater used for agricultural irrigation, on human and ecosystem health and evaluate the data availability for the framework components. The developed framework comprised of 34 processes and compartments but a good level of knowledge was available for only five of these suggesting that currently it is not possible to fully establish the impacts of pharmaceuticals in wastewater irrigation systems. To address this, work is urgently needed to understand the fate and transport of pharmaceuticals in arable soil systems and the effects of chronic low-level exposure to these substances on microbes, invertebrates, plants, wildlife and humans. In addition, research pertaining to the fate, uptake and effects of pharmaceutical mixtures and metabolites is lacking as well as data on bio-accessibility of pharmaceuticals after ingestion. Scientific advancements in the five areas prioritised in terms of future research are needed before we are able to fully quantify the agricultural and human health risks associated with reclaimed wastewater use.
Collapse
Affiliation(s)
- Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
33
|
Ren G, Chu X, Zhang J, Zheng K, Zhou X, Zeng X, Yu Z. Organophosphate esters in the water, sediments, surface soils, and tree bark surrounding a manufacturing plant in north China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:374-380. [PMID: 30577005 DOI: 10.1016/j.envpol.2018.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/03/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Emission from manufacturing facilities to the surrounding environment is one of the important input source of pollutants. However, no information on the levels of organophosphate esters (OPEs) contamination in the environmental media around the manufacturing facility is available to date. In this study, samples from various environmental media, including sediments, water, surface soils, and tree bark, were obtained near an OPE manufacturing plant in Hengshui, Hebei Province, North China. The three main congeners, detected were tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), and triphenyl phosphate (TPHP), with the summed OPE concentrations (∑OPEs) ranging from 340 to 270,000 μg kg-1 dry weight (d.w.), 7100 to 33,000 ng L-1, not detected (N.D.) to 14,000 ng kg-1 d.w., and 5300 to 19,000 ng g-1 lipid weight in the sediments, water, soils, and tree bark, respectively. These findings suggest that point sources of OPEs could have widespread effects on its surrounding environments. Sediment and water concentrations of TCEP and TCIPP measured in this study were among the highest concentrations yet reported in the world. Meanwhile, the concentration ranges of TCEP and TCIPP in surface soils were significantly lower than those in the sediment and water, and among the lowest concentrations yet reported in soil data worldwide. This suggests that the manufacturing facility influenced the OPE distribution in different environmental media in different ways. Furthermore, TCEP and TCIPP might have been transported within the water stream from roots into the aboveground plants and then accumulated in tree barks.
Collapse
Affiliation(s)
- Guofa Ren
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiaodong Chu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jin Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kewen Zheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xiangyu Zhou
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
34
|
Wang Y, Kannan K. Concentrations and Dietary Exposure to Organophosphate Esters in Foodstuffs from Albany, New York, United States. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13525-13532. [PMID: 30525574 DOI: 10.1021/acs.jafc.8b06114] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organophosphate esters (OPEs) are ubiquitous contaminants in the environment, but little is known about their occurrence in foodstuffs, an important source of human exposure. In this study, 15 OPEs were measured in foodstuffs and food-packing materials collected from local markets in Albany, New York, United States, for the first time. Among the foodstuffs analyzed, median concentrations of ∑OPEs (sum of 15 OPEs) in meat (6.76 ng/g wet weight; ww) and fish/seafood (7.11 ng/g ww) were higher than those in other food categories. ∑OPEs were found in food packaging at a median concentration of 132 ng/g. The estimated daily dietary intakes (EDIs) of OPE were of 37.9, 135, 56.6, 32.2, and 25.1 ng/kg body weight (bw)/day for infants, toddlers, children, teenagers, and adults, respectively. Meat was a major source (47%) of dietary OPEs exposure in adults, whereas dairy products accounted for 52% of OPE exposures in toddlers.
Collapse
Affiliation(s)
- Yu Wang
- Wadsworth Center , New York State Department of Health , Albany , New York 12201 , United States
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Kurunthachalam Kannan
- Wadsworth Center , New York State Department of Health , Albany , New York 12201 , United States
- Department of Environmental Health Sciences, School of Public Health , State University of New York at Albany , Albany , New York 12201 , United States
| |
Collapse
|
35
|
Hwang JI, Zimmerman AR, Kim JE. Bioconcentration factor-based management of soil pesticide residues: Endosulfan uptake by carrot and potato plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:514-522. [PMID: 29426174 DOI: 10.1016/j.scitotenv.2018.01.208] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
Uptake characteristics of endosulfan (ED), including α-, β-isomers and sulfate-metabolites, from the soils by carrot and potato plants were investigated to establish a method that may be used to calculate recommended permissible soil contaminant concentrations (Cs, permissible) at time of planting so that maximum residue level (MRL) standards are not exceeded. The residues of ED were analyzed in soils treated with ED at concentrations of either 2 or 10 mg kg soil-1 and in the plants (carrots and potatoes) grown in such soils for 60-90 d. Presence of plants increased ED dissipation rates in soils in patterns that were best fit to a double-exponential decay model (R2 of 0.84-0.99). The ED uptake extent varied with type of crop, ED isomer, plant growth duration, and plant compartments. However, ED concentrations in all edible parts of crops eventually exceeded their maximum residue limits. Total ED bioconcentration factor (BCF), the ratio of soil ED concentration at planting time to that in edible part of each crop at harvest day, was found to decrease with time due to decreasing soil ED concentration and increasing plant biomass in a pattern that followed a first order kinetic model. Using this model, the Cs, permissible values, specific to the soils used in this study, were calculated to be 0.32 and 0.19 mg kg soil-1 for carrots and potatoes, respectively. The results and methods developed in this study may be utilized as a prediction tool to ensure crop safety from pesticide residues.
Collapse
Affiliation(s)
- Jeong-In Hwang
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jang-Eok Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
36
|
Ng EL, Huerta Lwanga E, Eldridge SM, Johnston P, Hu HW, Geissen V, Chen D. An overview of microplastic and nanoplastic pollution in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1377-1388. [PMID: 30857101 DOI: 10.1016/j.scitotenv.2018.01.341] [Citation(s) in RCA: 623] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 05/20/2023]
Abstract
Microplastics and nanoplastics are emerging pollutants of global importance. They are small enough to be ingested by a wide range of organisms and at nano-scale, they may cross some biological barriers. However, our understanding of their ecological impact on the terrestrial environment is limited. Plastic particle loading in agroecosystems could be high due to inputs of some recycled organic waste and plastic film mulching, so it is vital that we develop a greater understanding of any potentially harmful or adverse impacts of these pollutants to agroecosystems. In this article, we discuss the sources of plastic particles in agroecosystems, the mechanisms, constraints and dynamic behaviour of plastic during aging on land, and explore the responses of soil organisms and plants at different levels of biological organisation to plastic particles of micro and nano-scale. Based on limited evidence at this point and understanding that the lack of evidence of ecological impact from microplastic and nanoplastic in agroecosystems does not equate to the evidence of absence, we propose considerations for addressing the gaps in knowledge so that we can adequately safeguard world food supply.
Collapse
Affiliation(s)
- Ee-Ling Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia.
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708PB Wageningen, The Netherlands; Agroecologia, El Colegio de la Frontera Sur, Unidad Campeche Av Polígono s/n, Cd. Industrial, Lerma, Campeche, Mexico
| | - Simon M Eldridge
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | | | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708PB Wageningen, The Netherlands
| | - Deli Chen
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
37
|
Aparicio I, Martín J, Abril C, Santos JL, Alonso E. Determination of household and industrial chemicals, personal care products and hormones in leafy and root vegetables by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2018; 1533:49-56. [DOI: 10.1016/j.chroma.2017.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
|
38
|
Wan W, Huang H, Lv J, Han R, Zhang S. Uptake, Translocation, and Biotransformation of Organophosphorus Esters in Wheat (Triticum aestivum L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13649-13658. [PMID: 29125288 DOI: 10.1021/acs.est.7b01758] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The uptake, translocation and biotransformation of organophosphate esters (OPEs) by wheat (Triticum aestivum L.) were investigated by a hydroponic experiment. The results demonstrated that OPEs with higher hydrophobicity were more easily taken up by roots, and OPEs with lower hydrophobicity were more liable to be translocated acropetally. A total of 43 metabolites including dealkylated, oxidatively dechlorinated, hydroxylated, methoxylated, and glutathione-, and glucuronide- conjugated products were detected derived from eight OPEs, with diesters formed by direct dealkylation from the parent triesters as the major products, followed with hydroxylated triesters. Molecular interactions of OPEs with plant biomacromolecules were further characterized by homology modeling combined with molecular docking. OPEs with higher hydrophobicity were more liable to bind with TaLTP1.1, the most important wheat nonspecific lipid transfer protein, consistent with the experimental observation that OPEs with higher hydrophobicity were more easily taken up by wheat roots. Characterization of molecular interactions between OPEs and wheat enzymes suggested that OPEs were selectively bound to TaGST4-4 and CYP71C6v1 with different binding affinities, which determined their abilities to be metabolized and form metabolite products in wheat. This study provides both experimental and theoretical evidence for the uptake, accumulation and biotransformation of OPEs in plants.
Collapse
Affiliation(s)
- Weining Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Ruixia Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
39
|
Cristale J, Álvarez-Martín A, Rodríguez-Cruz S, Sánchez-Martín MJ, Lacorte S. Sorption and desorption of organophosphate esters with different hydrophobicity by soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27870-27878. [PMID: 28988335 DOI: 10.1007/s11356-017-0360-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Organophosphate esters (OPEs) are ubiquitous contaminants with potentially hazardous effects on both the environment and human health. Knowledge about the soil sorption-desorption process of organic chemicals is important in order to understand their fate, mobility, and bioavailability, enabling an estimation to be made of possible risks to the environment and biota. The aim of this study was to use the batch equilibrium technique to evaluate the sorption-desorption behavior of seven OPEs (TCEP, TCPP, TBEP, TDCP, TBP, TPhP, and EHDP) in soils with distinctive characteristics (two unamended soils and a soil amended with sewage sludge). The equilibrium concentrations of the OPEs were determined by high performance liquid chromatography coupled to a triple quadrupole mass spectrometer (HPLC-MS/MS). All the compounds were sorbed by the soils, and soil organic carbon (OC) played an important role in this process. The sorption of the most soluble OPEs (TCEP, TCPP, and TBEP) depended on soil OC content, although desorption was ≥ 58.1%. The less water-soluble OPEs (TDCP, TBP, TPhP, and EHDP) recorded total sorption (100% for TPhP and EHDP) or very high sorption (≥ 34.9%) by all the soils and were not desorbed, which could be explained by their highly hydrophobic nature, as indicated by the logarithmic octanol/water partition coefficient (Kow) values higher than 3.8, resulting in a high affinity for soil OC. The results of the sorption-desorption of the OPEs by soils with different characteristics highlighted the influence of these compounds' physicochemical properties and the content and nature of soil OC in this process.
Collapse
Affiliation(s)
- Joyce Cristale
- Departamento de Química Ambiental (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Alba Álvarez-Martín
- Departamento de Química Ambiental (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Sonia Rodríguez-Cruz
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| | - María J Sánchez-Martín
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Silvia Lacorte
- Departamento de Química Ambiental (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
40
|
Isomers of tris(chloropropyl) phosphate (TCPP) in technical mixtures and environmental samples. Anal Bioanal Chem 2017; 409:6989-6997. [PMID: 29147747 DOI: 10.1007/s00216-017-0572-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 01/12/2023]
Abstract
Tris(chloropropyl) phosphate (TCPP) is an environmentally abundant organophosphate ester (OPE). TCPP is comprised of four isomers with seven possible structures, eight CAS numbers, and even more common names. A review of 54 studies reporting one or more TCPP isomers confirmed that the most abundant and most often reported TCPP isomer was tris(2-chloro-1-methylethyl) phosphate, also known as tris(chloroisopropyl) phosphate (TCiPP, referred to hereafter as TCPP1). Full-scan gas chromatography-mass spectrometry (GC-MS) was used to identify the other three isomers numbered here according to their elution order on a non-polar GC column (DB-5): bis(2-chloro-1-methylethyl) (2-chloropropyl) phosphate (TCPP2), bis(2-chloropropyl)(2-chloro-1-methylethyl) phosphate (TCPP3), and tris(2-chloropropyl) phosphate (TCPP4). GC with a flame ionization detector (FID) was used to identify the relative abundances of the isomers in commercially available standards with unknown isomer composition. In technical TCPP, TCPP1-4 isomers averaged 71 ± 1, 26 ± 0.4, 3 ± 0.5, and 0.1 ± 0.02%, respectively. When these percent masses are incorporated into GC-MS quantification, response factors (RFs) for TCPP1 and TCPP2 are significantly different from TCPP3 and TCPP4, indicating that the multiple RF approach is more accurate than the commonly employed single RF method. Samples from urban streams and wastewater treatment plant (WWTP) effluent from Toronto, Canada, had isomeric ratios of TCPP1/2 that were not significantly different from a technical mixture whereas rain had a significantly different ratio indicating enrichment in the more volatile TCPP1 isomer. Reporting TCPP isomers can provide insight into sources, transport, and fate of TCPP in the environment. Graphical Abstract ᅟ.
Collapse
|
41
|
Matamoros V, Rodríguez Y. Influence of seasonality and vegetation on the attenuation of emerging contaminants in wastewater effluent-dominated streams. A preliminary study. CHEMOSPHERE 2017; 186:269-277. [PMID: 28783548 DOI: 10.1016/j.chemosphere.2017.07.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/17/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Treated wastewater from small communities is discharged into rivers or streams with a high biodiversity value. This is particularly important in Mediterranean countries, where most of the streams are dry almost all year round. This preliminary study assessed the occurrence and attenuation of 23 emerging contaminants (ECs) in 4 wastewater-dominated streams in which treated wastewater accounted for the entire stream flow. The concentration of ECs was monitored in the warm and cold seasons in the wastewater treatment plant (WWTP) effluent and at 6 downstream locations. The concentration of ECs in the WWTP effluents ranged from undetected to 12 μg L-1. The attenuation of ECs 1 km downstream ranged from no removal to up to 80% (48% on average). The half-lives of ECs in the 4 streams ranged from 0.4 to 20 h (3.9 ± 3.5 h on average). Compounds such as benzodiazepine drugs and flame retardants were the most recalcitrant (half-lives >5 h). The highest attenuation of ECs and ammonia was observed in the stream completely covered by vegetation. The cumulative hazardous quotient 1 km downstream was reduced on average by more than 60%. Therefore, the results suggest that both seasonality and vegetation play an important role in in-stream attenuation of ECs.
Collapse
Affiliation(s)
- Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| | - Yolanda Rodríguez
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| |
Collapse
|
42
|
Gomes AR, Justino C, Rocha-Santos T, Freitas AC, Duarte AC, Pereira R. Review of the ecotoxicological effects of emerging contaminants to soil biota. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:992-1007. [PMID: 28598770 DOI: 10.1080/10934529.2017.1328946] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In recent years, emerging contaminants (e.g. pesticides and their metabolites, pharmaceuticals, personal and house care products, life-style compounds, food additives, industrial products and wastes, as well as nanomaterials) have become a problem to the environment. In fact, the cumulative use of a panoply of chemical substances in agriculture, industrial activities, in our homes and in health care services has led to their recent appearance in detectable levels in soils, surface, and groundwater resources, with unpredictable consequences for these ecosystems. Few data exist regarding the toxicity and potential for bioaccumulation in biota. When available, data were obtained only for some representatives of the main groups of chemical substances, and for a limited number of species, following non-standard protocols. This makes difficult the calculation of predicted no effect concentrations (PNEC) and the existence of sufficient data to set limits for their release into the environment. This is particularly concerning for the soil compartment, since only recently the scientific community, regulators, and the public have realised the importance of protecting this natural resource and its services to guarantee the sustainability of terrestrial ecosystems and human well-being. In this context, this review paper aims to identify the major groups of soil emerging contaminants, their sources, pathways and receptors, and in parallel to analyse existing ecotoxicological data for soil biota.
Collapse
Affiliation(s)
- Ana R Gomes
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal
| | - Celine Justino
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal
- b CESAM - Centre for Environmental and Marine Studies , Aveiro , Portugal
- c ISEIT/Viseu, Piaget Institute , Viseu , Portugal
| | - Teresa Rocha-Santos
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal
- b CESAM - Centre for Environmental and Marine Studies , Aveiro , Portugal
| | - Ana C Freitas
- d Catholic University of Portugal , CBQF - Centre of Biotechnology and Fine Chemistry - Associated Laboratory, Faculty of Biotechnology , Porto , Portugal
| | - Armando C Duarte
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal
- b CESAM - Centre for Environmental and Marine Studies , Aveiro , Portugal
| | - Ruth Pereira
- e Department of Biology, Faculty of Sciences , University of Porto , Porto , Portugal
- f Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/UP) , University of Porto , Porto , Portugal
| |
Collapse
|
43
|
Aznar R, Albero B, Sánchez-Brunete C, Miguel E, Martín-Girela I, Tadeo JL. Simultaneous determination of multiclass emerging contaminants in aquatic plants by ultrasound-assisted matrix solid-phase dispersion and GC-MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7911-7920. [PMID: 26906007 DOI: 10.1007/s11356-016-6327-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
A multiresidue method was developed for the simultaneous determination of 31 emerging contaminants (pharmaceutical compounds, hormones, personal care products, biocides, and flame retardants) in aquatic plants. Analytes were extracted by ultrasound-assisted matrix solid-phase dispersion (UA-MSPD) and determined by gas chromatography-mass spectrometry after sylilation, The method was validated for different aquatic plants (Typha angustifolia, Arundo donax, and Lemna minor) and a semiaquatic cultivated plant (Oryza sativa) with good recoveries at concentrations of 100 and 25 ng g-1 wet weight, ranging from 70 to 120 %, and low method detection limits (0.3 to 2.2 ng g-1 wet weight). A significant difference of the chromatographic response was observed for some compounds in neat solvent versus matrix extracts, and therefore, quantification was carried out using matrix-matched standards in order to overcome this matrix effect. Aquatic plants taken from rivers located at three Spanish regions were analyzed, and the compounds detected were parabens, bisphenol A, benzophenone-3, cyfluthrin, and cypermethrin. The levels found ranged from 6 to 25 ng g-1 wet weight except for cypermethrin that was detected at 235 ng g-1 wet weight in O. sativa samples.
Collapse
Affiliation(s)
- Ramón Aznar
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km. 7, 28040, Madrid, Spain
| | - Beatriz Albero
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km. 7, 28040, Madrid, Spain
| | - Consuelo Sánchez-Brunete
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km. 7, 28040, Madrid, Spain
| | - Esther Miguel
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km. 7, 28040, Madrid, Spain
| | - Isabel Martín-Girela
- Departamento de Producción Agraria. Grupo de Agroenergética, Universidad Politécnica de Madrid (UPM), 28040, Avenida Complutense s/n, Madrid, Spain
| | - José L Tadeo
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km. 7, 28040, Madrid, Spain.
| |
Collapse
|
44
|
Albero B, Sánchez-Brunete C, Miguel E, Tadeo JL. Application of matrix solid-phase dispersion followed by GC-MS/MS to the analysis of emerging contaminants in vegetables. Food Chem 2016; 217:660-667. [PMID: 27664684 DOI: 10.1016/j.foodchem.2016.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 05/24/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
Abstract
A multiresidue method for the determination of 17 emerging contaminants in vegetables was developed based on ultrasound-assisted matrix solid-phase dispersion (MSPD). The analysis was performed using isotope dilution gas chromatography tandem mass spectrometry. In the development of the MSPD procedure, different parameters such as sonication and the type of sorbent or extraction solvent were assayed. Manual and in situ derivatization was assayed and the chromatographic response was higher when the reaction takes place in the injection port. The limits of detection obtained for the studied compounds were in the range of 0.1-0.4ngg(-1) for the different vegetables analyzed. The developed method was applied to vegetables obtained from several local markets. At least one of the organophosphates was detected in the analyzed samples at levels ranging from 0.6 to 4.6ngg(-1) and bisphenol A was detected in all the samples at concentration up to 16ngg(-1).
Collapse
Affiliation(s)
- Beatriz Albero
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7, 28040 Madrid, Spain
| | - Consuelo Sánchez-Brunete
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7, 28040 Madrid, Spain
| | - Esther Miguel
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7, 28040 Madrid, Spain
| | - José L Tadeo
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7, 28040 Madrid, Spain.
| |
Collapse
|
45
|
Miller EL, Nason SL, Karthikeyan KG, Pedersen JA. Root Uptake of Pharmaceuticals and Personal Care Product Ingredients. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:525-41. [PMID: 26619126 DOI: 10.1021/acs.est.5b01546] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Crops irrigated with reclaimed wastewater or grown in biosolids-amended soils may take up pharmaceuticals and personal care product ingredients (PPCPs) through their roots. The uptake pathways followed by PPCPs and the propensity for these compounds to bioaccumulate in food crops are still not well understood. In this critical review, we discuss processes expected to influence root uptake of PPCPs, evaluate current literature on uptake of PPCPs, assess models for predicting plant uptake of these compounds, and provide recommendations for future research, highlighting processes warranting study that hold promise for improving mechanistic understanding of plant uptake of PPCPs. We find that many processes that are expected to influence PPCP uptake and accumulation have received little study, particularly rhizosphere interactions, in planta transformations, and physicochemical properties beyond lipophilicity (as measured by Kow). Data gaps and discrepancies in methodology and reporting have so far hindered development of models that accurately predict plant uptake of PPCPs. Topics warranting investigation in future research include the influence of rhizosphere processes on uptake, determining mechanisms of uptake and accumulation, in planta transformations, the effects of PPCPs on plants, and the development of predictive models.
Collapse
Affiliation(s)
- Elizabeth L Miller
- Molecular and Environmental Toxicology Center, ‡Environmental Chemistry and Technology Program, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Sara L Nason
- Molecular and Environmental Toxicology Center, ‡Environmental Chemistry and Technology Program, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - K G Karthikeyan
- Molecular and Environmental Toxicology Center, ‡Environmental Chemistry and Technology Program, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Joel A Pedersen
- Molecular and Environmental Toxicology Center, ‡Environmental Chemistry and Technology Program, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
46
|
Cristale J, Ramos DD, Dantas RF, Machulek Junior A, Lacorte S, Sans C, Esplugas S. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants? ENVIRONMENTAL RESEARCH 2016; 144:11-18. [PMID: 26540311 DOI: 10.1016/j.envres.2015.10.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 05/22/2023]
Abstract
This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs.
Collapse
Affiliation(s)
- Joyce Cristale
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia, Spain
| | - Dayana D Ramos
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS, Brazil
| | - Renato F Dantas
- Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia, Spain; School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, 13484-332 Limeira, SP, Brazil
| | - Amilcar Machulek Junior
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS, Brazil
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia, Spain
| | - Carme Sans
- Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia, Spain
| | - Santiago Esplugas
- Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
47
|
Hyland KC, Blaine AC, Higgins CP. Accumulation of contaminants of emerging concern in food crops-part 2: Plant distribution. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2222-30. [PMID: 25988579 DOI: 10.1002/etc.3068] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/09/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Arid agricultural regions often turn to using treated wastewater (reclaimed water) to irrigate food crops. Concerns arise, however, when considering the potential for persistent contaminants of emerging concern to accumulate into plants intended for human consumption. The present study examined the accumulation of a suite of 9 contaminants of emerging concern into 2 representative food crops, lettuce and strawberry, following uptake via the roots and subsequent distribution to other plant tissues. Calculating accumulation metrics (concentration factors) allowed for comparison of the compartmental affinity of each chemical for each plant tissue compartment. The root concentration factor was found to exhibit a positive linear correlation with the pH-adjusted octanol-water partition coefficient (DOW ) for the target contaminants of emerging concern. Coupled with the concentration-dependent accumulation observed in the roots, this result implies that accumulation of these contaminants of emerging concern into plant roots is driven by passive partitioning. Of the contaminants of emerging concern examined, nonionizable contaminants, such as triclocarban, carbamazepine, and organophosphate flame retardants displayed the greatest potential for translocation from the roots to above-ground plant compartments. In particular, the organophosphate flame retardants displayed increasing affinity for shoots and fruits with decreasing size/octanol-water partition coefficient (KOW ). Cationic diphenhydramine and anionic sulfamethoxazole, once transported to the shoots of the strawberry plant, demonstrated the greatest potential of the contaminants examined to be then carried to the edible fruit portion.
Collapse
Affiliation(s)
- Katherine C Hyland
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Andrea C Blaine
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Christopher P Higgins
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
48
|
Cequier E, Sakhi AK, Marcé RM, Becher G, Thomsen C. Human exposure pathways to organophosphate triesters - a biomonitoring study of mother-child pairs. ENVIRONMENT INTERNATIONAL 2015; 75:159-65. [PMID: 25461425 DOI: 10.1016/j.envint.2014.11.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/15/2014] [Accepted: 11/12/2014] [Indexed: 05/22/2023]
Abstract
The worldwide ban of several formulations of brominated flame retardants has caused an increase in the production of organophosphorus flame retardants (PFRs) to meet the existing fire regulations for a wide range of household products. This biomonitoring study surveys the occurrence of the metabolites from PFRs and related plasticizers (dialkyl and diaryl phosphates; DAPs) in urine from a Norwegian mother-child cohort (48 mothers and 54 children). Concentrations of DAPs were higher in the children than in their mothers (Wilcoxon signed-rank test p=0.001). Median urinary concentrations of diphenyl phosphate (DPHP) were 1.1 and 0.51ng/mL in children and mothers, respectively, followed by bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) with medians of 0.23 and 0.12ng/mL, respectively. Detection frequencies for bis(2-butoxyethyl) phosphate (BBOEP) in urine from children and mothers were 32 and 1%, respectively (median<0.18ng/mL), and for di-n-butyl phosphate (DNBP) 15 and 8%, respectively (median<0.12ng/mL). The concentrations of DPHP and BDCIPP in urine from children were significantly correlated with those found for their parent compounds in air and dust from the households (Spearman's rank correlations 0.30<Rs<0.36; p<0.05). For mothers, only the urinary concentration of BDCIPP was correlated to its precursor in dust from the households (Rs=0.40; p<0.01), which might indicate higher impact of the household environment on children than mothers. A diurnal variability study of the mothers' urinary concentrations of DPHP and BDCIPP showed lower concentrations at time periods when women were likely to be outside the household. In contrast, no relevant associations between organophosphate metabolites in urine and food consumption data obtained through a 24hour recall were seen. This suggests that the residential environment is a more important exposure pathway to PFRs than the diet.
Collapse
Affiliation(s)
- Enrique Cequier
- Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, 0403 Oslo, Norway; Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
| | - Amrit Kaur Sakhi
- Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, 0403 Oslo, Norway
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Georg Becher
- Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, 0403 Oslo, Norway; Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Cathrine Thomsen
- Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, 0403 Oslo, Norway
| |
Collapse
|
49
|
Sallach JB, Zhang Y, Hodges L, Snow D, Li X, Bartelt-Hunt S. Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 197:269-277. [PMID: 25483595 DOI: 10.1016/j.envpol.2014.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
The use of wastewater for irrigation may introduce antimicrobials and human pathogens into the food supply through vegetative uptake. The objective of this study was to investigate the uptake of three antimicrobials and Salmonella in two lettuce cultivars. After repeated subirrigation with synthetic wastewater, lettuce leaves and soil were collected at three sequential harvests. The internalization frequency of Salmonella in lettuce was low. A soil horizon-influenced Salmonella concentration gradient was determined with concentrations in bottom soil 2 log CFU/g higher than in top soil. Lincomycin and sulfamethoxazole were recovered from lettuce leaves at concentrations as high as 822 ng/g and 125 ng/g fresh weight, respectively. Antimicrobial concentrations in lettuce decreased from the first to the third harvest suggesting that the plant growth rate may exceed antimicrobial uptake rates. Accumulation of antimicrobials was significantly different between cultivars demonstrating a subspecies level variation in uptake of antibiotics in lettuce.
Collapse
Affiliation(s)
- J Brett Sallach
- University of Nebraska-Lincoln, Department of Civil Engineering, N104 SLNK, Lincoln, NE 68588-0531, USA
| | - Yuping Zhang
- University of Nebraska-Lincoln, Department of Civil Engineering, N104 SLNK, Lincoln, NE 68588-0531, USA
| | - Laurie Hodges
- University of Nebraska-Lincoln, Department of Agronomy and Horticulture, 377N PLSH, Lincoln, NE 68583-0724, USA.
| | - Daniel Snow
- University of Nebraska-Lincoln, Water Sciences Laboratory, 202 Water Sciences Laboratory, 1840 North 37th Street, Lincoln, NE 68583-0844, USA.
| | - Xu Li
- University of Nebraska-Lincoln, Department of Civil Engineering, N104 SLNK, Lincoln, NE 68588-0531, USA.
| | - Shannon Bartelt-Hunt
- University of Nebraska-Lincoln, Department of Civil Engineering, 203B Peter Kiewit Institute, Omaha, NE 68182-0178, USA.
| |
Collapse
|
50
|
Trapp S. Calibration of a plant uptake model with plant- and site-specific data for uptake of chlorinated organic compounds into radish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:395-402. [PMID: 25426767 DOI: 10.1021/es503437p] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The uptake of organic pollutants by plants is an important process for the exposure of humans to toxic chemicals. The objective of this study was to calibrate the parameters of a common plant uptake model by comparison to experimental results from literature. Radish was grown in contaminated soil (maximum concentration 2.9 mg/kg dw) and control plot. Uptake of HCHs, HCB, PCBs, and DDT plus metabolites was studied (log K(ow) 3.66 to 7.18). Measured BCF roots-to-soil were near 1 g/g dw on the control plot and about factor 10 lower for the contaminated soil. With default data set, uptake into roots of most substances was under predicted up to factor 100. The use of site-specific data improved the predictions. Consideration of uptake from air into radish bulbs was relevant for PCBs. Measured BCF shoots ranged from <0.1 to >10 g/g dw and were much better predicted by the standard model. The results with default data and site-specific data were similar. Deposition from air was the major uptake mechanism into shoots. Transport from soil with resuspended particles was only relevant for the contaminated plot. The calculation results (in dry weight) were most sensitive to changes of the water content of plant tissue.
Collapse
Affiliation(s)
- Stefan Trapp
- Technical University of Denmark , DK-2800 Kongens Lyngby, Miljøvej bd 113, Denmark
| |
Collapse
|