1
|
Likitsatian T, Koonyosying P, Paradee N, Roytrakul S, Ge H, Pourzand C, Srichairatanakool S. Camellia Tea Saponin Ameliorates 5-Fluorouracil-Induced Damage of HaCaT Cells by Regulating Ferroptosis and Inflammation. Nutrients 2025; 17:764. [PMID: 40077634 PMCID: PMC11902211 DOI: 10.3390/nu17050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVE Ferroptosis is an iron-dependent form of programmed cell death characterized by lipid peroxidation products (LPOs). A chemotherapeutic drug, 5-fluorouracil (5-FU), can induce epithelial mucositis and favor drug synergism with erastin in ferroptosis. Camellia tea saponin extract (TS) is known to exert antioxidative properties. This study aims to delineate the protective role of TS in mitigating 5-FU-induced ferroptosis and inflammation in human keratinocytes. METHODS HaCaT cells were induced by 5-FU and erastin, treated with different TS doses, and their viability was then determined. Levels of cellular reactive oxygen species (ROS), LPOs, labile iron pool (LIP), glutathione (GSH), glutathione peroxidase 4 (GPX-4) activity, as well as IL-6, IL-1β, and TNF-α levels, and their wound healing properties were assessed. RESULTS TS per se (at up to 25 µg/mL) was not toxic to HaCaT cells but was unable to restore the viability of 5-FU-induced cells up to the baseline levels. The compound significantly diminished increases in cellular ROS, LPOs, and LIP, while restoring GSH content and GPX-4 activity. Additionally, it suppressed the cytokine production of 5-FU-induced cells in a concentration-dependent manner. Moreover, TS exerted wound-healing effects against skin injuries and 5-FU damage significantly and dose dependently. CONCLUSIONS The insights of this work have identified biochemical mechanisms using tea saponin extract to protect against 5-FU-induced keratinocyte ferroptosis and inflammation. This study highlights the promising adjunctive potential of tea saponin in the mitigation and management of chemotherapy-induced mucositis.
Collapse
Affiliation(s)
- Tanrada Likitsatian
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.L.); (P.K.); (N.P.)
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.L.); (P.K.); (N.P.)
| | - Narisara Paradee
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.L.); (P.K.); (N.P.)
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang 12120, Thailand;
| | - Haobo Ge
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK; (H.G.); (C.P.)
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK; (H.G.); (C.P.)
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.L.); (P.K.); (N.P.)
| |
Collapse
|
2
|
Butrungrod W, Chaiyasut C, Makhamrueang N, Peerajan S, Chaiyana W, Sirilun S. Postbiotic Metabolite Derived from Lactiplantibacillus plantarum PD18 Maintains the Integrity of Cell Barriers and Affects Biomarkers Associated with Periodontal Disease. Antibiotics (Basel) 2024; 13:1054. [PMID: 39596748 PMCID: PMC11591352 DOI: 10.3390/antibiotics13111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Periodontal disease is caused by oral infections, biofilms, persistent inflammation, and degeneration of cell barrier integrity, allowing pathogens to invade host cells. Probiotics have been extensively studied for the treatment of periodontal disease. However, research on the involvement of beneficial substances produced by probiotics, called "postbiotics," in periodontal diseases remains in its early stages. The present study aimed to evaluate the effect of a postbiotic metabolite (PM) from Lactiplantibacillus plantarum PD18 on immunomodulation and maintenance of cell barrier integrity related to periodontal disease. Method: The main substance in PM PD18 was analyzed by GC-MS. The cytotoxic effect of PM PD18 was performed using the MTT assay, wound healing through the scratch assay, cell permeability through TEER value, modulation of inflammatory cytokines through ELISA, and gene expression of inflammatory cytokines and tight junction protein was determined using qRT-PCR. Results: The main substance found in PM PD18 is 2,3,5,6-tetramethylpyrazine. PM PD18 did not exhibit cytotoxic effects on RAW 264.7 cells but promoted wound healing and had an antiadhesion effect on Porphyromonas gingivalis concerning SF-TY cells. This postbiotic could maintain cell barrier integrity by balancing transepithelial electrical resistance (TEER) and alkaline phosphatase (ALP) activity. In addition, the gene and protein expression levels of zonula occludens-1 (ZO-1) increased. PM PD18 was found to have immunomodulatory properties, as demonstrated by regulated anti- and pro-inflammatory cytokines. Interleukin-10 (IL-10) increased, while IL-6 and IL-8 were reduced. Conclusions: This study demonstrated that PM PD18 is efficient as a natural treatment for maintaining cell barrier integrity and balancing inflammatory responses associated with periodontal disease.
Collapse
Affiliation(s)
- Widawal Butrungrod
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (W.B.); (C.C.); (N.M.); (W.C.)
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (W.B.); (C.C.); (N.M.); (W.C.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Netnapa Makhamrueang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (W.B.); (C.C.); (N.M.); (W.C.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (W.B.); (C.C.); (N.M.); (W.C.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (W.B.); (C.C.); (N.M.); (W.C.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Alsayed MF, Alodaini HA, Aziz IM, Alshalan RM, Rizwana H, Alkhelaiwi F, ALSaigh SM, Alkubaisi NA. Silver nanoparticles synthesized using aerial part of Achillea fragrantissima and evaluation of their bioactivities. Sci Rep 2024; 14:24703. [PMID: 39433875 PMCID: PMC11494013 DOI: 10.1038/s41598-024-75558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Achillea fragrantissima (A. fragrantissima), a desert plant, is used internally in Arabian traditional medicine to treat inflammatory, spasmodic gastrointestinal disorders, and hepatobiliary diseases. The study focuses on the environmentally friendly production of silver nanoparticles (AgNPs) from the water-based aerial parts of the A. fragrantissima plant and their ability to kill bacteria and cells. Ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) were used to describe the AgNPs. They were then tested for their ability to fight cancer and bacteria. A change in colour from yellow to brown and a surface plasmon resonance peak at 440 nm, seen with UV-Vis spectroscopy, showed that AgNPs had formed. In a Gas Chromatography-Mass Spectrometry (GC-MS) test of the aerial parts of A. fragrantissima, twenty bioactive components were found. These included isolongifolol and 3E,10Z-Oxacyclotrideca-3,10-diene-2,7-dione, methylbuta-1,3-dienyl)-7-oxabicyclo [4.1.0] heptan-3-ol. The extract exhibited high phenolic and flavonoid content (77.52 ± 1.46 mg GAE/g dry weight and 59 ± 2.17 mg QE/g dry weight, respectively). According to the IC50 values of 17.2 ± 1.18 and 14 ± 2.43 µg/mL, the AgNPs had a lot of power to kill cancer cells from the MCF-7 and HepG2 lines. Some genes that cause cell death (caspase-3, 8, 9, and Bax) were turned on more in the treated cells compared to the control cells that had not been treated. These genes were Bcl-xL and Bcl-2. Additionally, substantial activity against both Gram-positive bacteria and Gram-negative bacteria was found by antibacterial screening. Overall, this study underscores A. fragrantissima's diverse biological activity and its potential in drug discovery and nanomedicine, promoting the development of natural antibacterial and anticancer therapies.
Collapse
Affiliation(s)
- Mashail Fahad Alsayed
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Rawan M Alshalan
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fetoon Alkhelaiwi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sara Mohammed ALSaigh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433, Riyadh, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Zeng Q, Chen H, Wang Z, Guo Y, Wu Y, Hu Y, Liang P, Zheng Z, Liang T, Zhai D, Guo Y, Liu L, Shen C, Jiang C, Shen Q, Yi Y, Liu Q. Carrier-free cryptotanshinone-peptide conjugates self-assembled nanoparticles: An efficient and low-risk strategy for acne vulgaris. Asian J Pharm Sci 2024; 19:100946. [PMID: 39246508 PMCID: PMC11374989 DOI: 10.1016/j.ajps.2024.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 09/10/2024] Open
Abstract
Acne vulgaris ranks as the second most prevalent dermatological condition worldwide, and there are still insufficient safe and reliable drugs to treat it. Cryptotanshinone (CTS), a bioactive compound derived from traditional Chinese medicine Salvia miltiorrhiza, has shown promise for treating acne vulgaris due to its broad-spectrum antimicrobial and significant anti-inflammatory properties. Nevertheless, its local application is hindered by its low solubility and poor skin permeability. To overcome these challenges, a carrier-free pure drug self-assembled nanosystem is employed, which can specifically modify drug molecules based on the disease type and microenvironment, offering a potential for more effective treatment. We designed and synthesized three distinct structures of cationic CTS-peptide conjugates, creating self-assembled nanoparticles. This study has explored their self-assembly behavior, skin permeation, cellular uptake, and both in vitro and in vivo anti-acne effects. Molecular dynamics simulations revealed these nanoparticles form through intermolecular hydrogen bonding and π-π stacking interactions. Notably, self-assembled nanoparticles demonstrated enhanced bioavailability with higher skin permeation and cellular uptake rates. Furthermore, the nanoparticles exhibited superior anti-acne effects compared to the parent drug, attributed to heightened antimicrobial activity and significant downregulation of the MAPK/NF-κB pathway, leading to reduced expression of pro-inflammatory factors including TNF-α, IL-1β and IL-8. In summary, the carrier-free self-assembled nanoparticles based on CTS-peptide conjugate effectively address the issue of poor skin bioavailability, offering a promising new approach for acne treatment.
Collapse
Affiliation(s)
- Quanfu Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongkai Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yinglin Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zeying Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dan Zhai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaling Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qiang Liu
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| |
Collapse
|
5
|
Balasubramaniam M, Sapuan S, Hashim IF, Ismail NI, Yaakop AS, Kamaruzaman NA, Ahmad Mokhtar AM. The properties and mechanism of action of plant immunomodulators in regulation of immune response - A narrative review focusing on Curcuma longa L. , Panax ginseng C. A. Meyer and Moringa oleifera Lam. Heliyon 2024; 10:e28261. [PMID: 38586374 PMCID: PMC10998053 DOI: 10.1016/j.heliyon.2024.e28261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Herbal treatments have been utilized for millennia to cure a variety of ailments. There are over 20, 000 herbal remedies available to treat cancer and other disease in humans. In Ayurveda, traditional plants having revitalizing and nourishing characteristics are known as "Rasayanas." They have anti-inflammatory, anticancer, anti-microbicidal, antiviral, and immunomodulatory effects on the immune system. Immunomodulation is a mechanism through which the body stimulates, suppresses, or boosts the immune system to maintain homeostasis. Plant-derived immunomodulators are typically phytocompounds, including carbohydrates, phenolics, lipids, alkaloids, terpenoids, organosulfur, and nitrogen-containing chemicals. Immunomodulation activity of phytocompounds from traditional plants is primarily mediated through macrophage activation, phagocytosis stimulation, peritoneal macrophage stimulation, lymphoid cell stimulation, and suppression or enhancement of specific and non-specific cellular immune systems via numerous signalling pathways. Despite extensive research, the precise mechanism of immunomodulation of most traditional plants has not yet been fully elucidated, justifying the need for further experimentation. Therefore, this review describes the immunomodulatory agents from traditional plants such as Curcuma longa L., Panax ginseng C.A. Meyer, and Moringa oleifera Lam, further highlighting the common molecular targets and immunomodulatory mechanism involved in eradicating diseases.
Collapse
Affiliation(s)
- Muggunna Balasubramaniam
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Sarah Sapuan
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Ilie Fadzilah Hashim
- Department of Clinical Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Nurul Izza Ismail
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | | | - Ana Masara Ahmad Mokhtar
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
- Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| |
Collapse
|
6
|
Hassanin HA, Taha A, Ibrahim HIM, Ahmed EA, Mohamed H, Ahmed H. Cytotoxic activity of bimetallic Ag@Se green synthesized nanoparticles using Jerusalem Thorn ( Parkinsonia aculeata). Front Chem 2024; 12:1343506. [PMID: 38591059 PMCID: PMC11000268 DOI: 10.3389/fchem.2024.1343506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/23/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction: The process of green synthesis of metal nanoparticles is considered to be eco-friendly and cost-effective. Methods: In this study, bimetallic Ag@Se-P and Ag@Se-S nanoparticles were synthesized successfully using Parkinsonia aculeata aerial parts and seed extracts. The phytochemical contents in P. aculeata aerial parts and seed aqueous extract serve as reducing and stabilizing capping agents without the need for any chemical stabilization additive in the synthesis of bimetallic nanoparticles. Result and Discussion: The obtained results from UV-vis spectrophotometry, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR) confirmed the successful synthesis of bimetallic nanoparticles with cluster irregular spherical morphology, crystalline nature, and average particle sizes of 17.65 and 24.36 nm for Ag@Se-S and Ag@Se-P, respectively. The cytotoxicity assessment of greenly synthesized nanomaterials using seed and plant extracts showed cell inhibition >50 μg/mL. Ag@Se-S and Ag@Se-P seed and plant extracts significantly reduced LPS-induced inflammation, which was assessed by NO and cytokines IL-1β, IL-6, and TNF-α. The mRNA and protein expression levels of phosphoinositide 3 kinase (PI3K) and nuclear factor kappa B (NFkB) were significantly overexpressed in LPS-induced RAW 264.7 cell lines. Ag@Se-S and Ag@Se-P downregulated the expression of PI3K and NFkB in LPS-induced cell models.
Collapse
Affiliation(s)
- Hanaa A. Hassanin
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amel Taha
- Department of Chemistry, College of Science, King Faisal University, Hufof, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Hairul-Islam Mohamed Ibrahim
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Division of Microbiology and Immunology, Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry, India
| | - Emad A. Ahmed
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Lab of Molecular Physiology, Department of Zoology, Faculty of Science, Assiut University, Asyut, Egypt
| | - Hisham Mohamed
- Date Palm Research Center of Excellence, King Faisal University, Hufof, Saudi Arabia
- Agricultural Research Center, Ministry of Agricultural, Giza, Egypt
| | - Hoda Ahmed
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Kim HJ, Kim SY, Bae HJ, Choi YY, An JY, Cho YE, Cho SY, Lee SJ, Lee S, Sin M, Yun YM, Lee JR, Park SJ. Anti-Inflammatory Effects of the LK5 Herbal Complex on LPS- and IL-4/IL-13-Stimulated HaCaT Cells and a DNCB-Induced Animal Model of Atopic Dermatitis in BALB/c Mice. Pharmaceutics 2023; 16:40. [PMID: 38258052 PMCID: PMC10821371 DOI: 10.3390/pharmaceutics16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease influenced by a complex interplay of genetic and environmental factors. The activation of the JAK-STAT pathway increases the expression of inflammatory cytokines such as IL-4 and IL-13, further deteriorating AD. Therefore, for the treatment of AD, the JAK-STAT pathway is emerging as a significant target, alongside inflammatory cytokines. This study investigates the potential therapeutic effects of a novel herbal complex, LK5, composed of Scutellaria baicalensis, Liriope platyphylla, Sophora flavescens, Dictammus dasycarpus, and Phellodendron schneider, known for their anti-inflammatory and immune-modulating properties. We examined the anti-inflammatory and anti-AD effects of the LK5 herbal complex in HaCaT cells stimulated by LPS and IL-4/IL-13, as well as in a mouse model of AD induced by DNCB. In HaCaT cells stimulated with LPS or IL-4/IL-13, the LK5 herbal complex demonstrated anti-inflammatory effects by inhibiting the expression of inflammatory cytokines including TNF-α, IL-6, and IL-1β, and downregulating the phosphorylation of STAT proteins. In a murine AD-like model induced by DNCB, administration of the LK5 herbal complex significantly ameliorated clinical symptoms, including dermatitis, ear thickness, and TEWL. Histological analysis revealed a reduction in epidermal thickness and mast cell infiltration. The LK5 herbal complex also inhibited pruritus induced by compound 48/80. Furthermore, the LK5 herbal complex treatment significantly decreased the levels of inflammatory cytokines such as TSLP, IL-6, and IgE in plasma and ear tissue of AD-induced mice. These findings suggest that the LK5 herbal complex may modulate the immune response and alleviate AD symptoms by inhibiting STAT pathways.
Collapse
Affiliation(s)
- Hyun-Jeong Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yu-Yeong Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - Ju-Yeon An
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - Ye Eun Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - So-Young Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - Su-Jung Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - MinSub Sin
- LK Co., Ltd., Hwaseong 18469, Republic of Korea; (M.S.); (Y.M.Y.); (J.R.L.)
| | - Young Min Yun
- LK Co., Ltd., Hwaseong 18469, Republic of Korea; (M.S.); (Y.M.Y.); (J.R.L.)
| | - Jong Ryul Lee
- LK Co., Ltd., Hwaseong 18469, Republic of Korea; (M.S.); (Y.M.Y.); (J.R.L.)
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.-J.K.); (Y.-Y.C.); (J.-Y.A.); (Y.E.C.); (S.-Y.C.); (S.-J.L.)
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
8
|
Kim R, Kim JW, Choi H, Oh JE, Kim TH, Go GY, Lee SJ, Bae GU. Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling. J Ginseng Res 2023; 47:726-734. [PMID: 38107401 PMCID: PMC10721479 DOI: 10.1016/j.jgr.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 12/19/2023] Open
Abstract
Background Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce. Methods To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1). Results Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1. Conclusion This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.
Collapse
Affiliation(s)
- Ryuni Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jee Won Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyerim Choi
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ji-Eun Oh
- Department of Biomedical Laboratory Science, Far East University, Chungbuk-do, Republic of Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ga-Yeon Go
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, Republic of Korea
| | - Gyu-Un Bae
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Xia W, Zhu Z, Xiang S, Yang Y. Ginsenoside Rg5 promotes wound healing in diabetes by reducing the negative regulation of SLC7A11 on the efferocytosis of dendritic cells. J Ginseng Res 2023; 47:784-794. [PMID: 38107390 PMCID: PMC10721477 DOI: 10.1016/j.jgr.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 12/19/2023] Open
Abstract
Background: ginsenoside Rg5 is a rare ginsenoside with known hypoglycemic effects in diabetic mice. This study aimed to explore the effects of ginsenoside Rg5 on skin wound-healing in the Leprdb/db mutant (db/db) mice (C57BL/KsJ background) model and the underlying mechanisms. Methods Seven-week-old male C57BL/6J, SLC7A11-knockout (KO), the littermate wild-type (WT), and db/db mice were used for in vivo and ex vivo studies. Results Ginsenoside Rg5 provided through oral gavage in db/db mice significantly alleviated the abundance of apoptotic cells in the wound areas and facilitated skin wound healing. 50 μM ginsenoside Rg5 treatment nearly doubled the efferocytotic capability of bone marrow-derived dendritic cells (BMDCs) from db/db mice. It also reduced NF-κB p65 and SLC7A11 expression in the wounded areas of db/db mice dose-dependently. Ginsenoside Rg5 physically interacted with SLC7A11 and suppressed the cystine uptake and glutamate secretion of BMDCs from db/db and SLC7A11-WT mice but not in BMDCs from SLC7A11-KO mice. In BMDCs and conventional type 1 dendritic cells (cDC1s), ginsenoside Rg5 reduced their glycose storage and enhanced anaerobic glycolysis. Glycogen phosphorylase inhibitor CP-91149 almost abolished the effect of ginsenoside Rg5 on promoting efferocytosis. Conclusion: ginsenoside Rg5 can suppress the expression of SLC7A11 and inhibit its activity via physical binding. These effects collectively alleviate the negative regulations of SLC7A11 on anaerobic glycolysis, which fuels the efferocytosis of dendritic cells. Therefore, ginsenoside Rg5 has a potential adjuvant therapeutic reagent to support patients with wound-healing problems, such as diabetic foot ulcers.
Collapse
Affiliation(s)
- Wei Xia
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongdong Zhu
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Song Xiang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Liu XX, Chen CY, Li L, Guo MM, He YF, Meng H, Dong YM, Xiao PG, Yi F. Bibliometric Study of Adaptogens in Dermatology: Pharmacophylogeny, Phytochemistry, and Pharmacological Mechanisms. Drug Des Devel Ther 2023; 17:341-361. [PMID: 36776447 PMCID: PMC9912821 DOI: 10.2147/dddt.s395256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Background Adaptogens are a class of medicinal plants that can nonspecifically enhance human resistance. Most of the plant adaptogens have relevant applications in dermatology, but there are still few studies related to their particular action and co-operative mechanisms in topical skin application. Methods Plant adaptogens related articles and reviews that published between 1999 and 2022 were obtained from the Web of Science Core Collection database. Various bibliographic elements were collected, including the annual number of publications, countries/regions, and keywords. CiteSpace, a scientometric software, was used to conduct bibliometric analyses. Also, the patsnap global patent database was used to analyze the patent situation of plant adaptogens in the field of cosmetics up to 2021. Results We found that the effects of plant adaptogens on skin diseases mainly involve atopic dermatitis, acne, allergic contact dermatitis, psoriasis, eczema, and androgenetic alopecia, etc. And the effects on skin health mainly involve anti-aging and anti-photoaging, anti-bacterial and anti-fungal, anti-inflammatory, whitening, and anti-hair loss, etc. Also, based on the results of patent analysis, it is found that the effects of plant adaptogens on skin mainly focus on aging retardation. The dermatological effects of plant adaptogens are mainly from Fabaceae Lindl., Araliaceae Juss. and Lamiaceae Martinov., and their mainly efficacy phytochemical components are terpenoids, phenolic compounds and flavonoids. Conclusion The plant adaptogens can repair the skin barrier and maintain skin homeostasis by regulating the skin HPA-like axis, influencing the oxidative stress pathway to inhibit inflammation, and regulating the extracellular matrix (ECM) components to maintain a dynamic equilibrium, ultimately achieving the treatment of skin diseases and the maintenance of a healthy state.
Collapse
Affiliation(s)
- Xiao-Xing Liu
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Chun-Yu Chen
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Miao-Miao Guo
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yi-Fan He
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Hong Meng
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yin-Mao Dong
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China,Correspondence: Fan Yi, Email
| |
Collapse
|
11
|
Bak SG, Lim HJ, Park EJ, Won YS, Lee SW, Lee S, Park SI, Lee SJ, Rho MC. Effects of Vigna angularis extract and its active compound hemiphloin against atopic dermatitis-like skin inflammation. Heliyon 2023; 9:e12994. [PMID: 36793948 PMCID: PMC9922827 DOI: 10.1016/j.heliyon.2023.e12994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Vigna angularis is an edible crop and herbal medicine that is known to have antipyretic, anti-inflammatory, and anti-edema effects. Many studies have been conducted on the 95% ethanol extract of V. angularis, but there is little research on the 70% ethanol extract and hemiphloin, which is a new indicator component of the 70% ethanol extract of V. angularis. To investigate the in vitro anti-atopic effect and verify the mechanism action of 70% ethanol extract of V. angularis (VAE), TNF-α/IFN-γ-induced HaCaT keratinocytes were used. The VAE treatment alleviated TNF-α/IFN-γ-induced IL-1β, IL-6, IL-8, CCL17/TARC, and CCL22/MDC gene expressions and productions. VAE also inhibited the phosphorylation of MAPKs, including p38, ERK, JNK, STAT1, and NF-κB in TNF-α/IFN-γ-induced HaCaT cells. 2,4-dinitochlorobenzene (DNCB)-induced skin inflammation mice model, and HaCaT keratinocytes were used. In the DNCB-induced mouse model, VAE treatment alleviated ear thicknesses and IgE levels. Furthermore, VAE decreased IL-1β, IL-6, IL-8, CCL17/TARC, and CCL22/MDC gene expressions of DNCB-applied ear tissue. Additionally, we investigated the anti-atopic and anti-inflammatory effects of hemiphloin using TNF-α/IFN-γ-induced HaCaT keratinocytes and LPS-induced J774 macrophages. Treatment hemiphloin decreased gene expressions and productions of IL-1β, IL-6, IL-8, CCL17/TARC, and CCL22/MDC in TNF-α/IFN-γ-induced HaCaT cells. The phosphorylations of p38, ERK, STAT1, and NF-κB were inhibited by hemiphloin in TNF-α/IFN-γ-induced HaCaT cells. Finally, hemiphloin showed anti-inflammatory activities in LPS-induced J774 cells. It decreased LPS-induced NO productions and iNOS and COX-2 expressions. Treatment of hemiphloin also inhibited LPS-induced TNF-α, IL-1β, and IL-6 gene expressions. These results suggest that VAE is an anti-inflammatory agent for inflammatory skin diseases and that hemiphloin could be a therapeutic candidate for inflammatory skin diseases.
Collapse
Affiliation(s)
- Seon Gyeong Bak
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Hyung Jin Lim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Eun Jae Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Yeong Seon Won
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Seung Woong Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Soyoung Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Sang-Ik Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Seung Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea,Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, South Korea,Corresponding author. Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea.
| | - Mun-Chual Rho
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| |
Collapse
|
12
|
Kim KM, Kim SY, Mony TJ, Bae HJ, Choi SH, Choi YY, An JY, Kim HJ, Cho YE, Sowndhararajan K, Park SJ. Moringa concanensis L. Alleviates DNCB-Induced Atopic Dermatitis-like Symptoms by Inhibiting NLRP3 Inflammasome-Mediated IL-1β in BALB/c Mice. Pharmaceuticals (Basel) 2022; 15:ph15101217. [PMID: 36297328 PMCID: PMC9610696 DOI: 10.3390/ph15101217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by pruritus, dry skin and redness on the face and inside elbows or knees. Most patients with AD are children and youths, but it can also develop in adults. In the therapeutic aspect, treatment with corticosteroids for AD has several side effects, such as weight loss, atrophy and acne. In the current study, we examined the anti-inflammatory effect of Moringa concanensis leaves on HaCaT keratinocytes and 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis-like symptoms in BALB/c mice. We observed that M. concanensis treatment exhibited significant inhibition in the production of inflammatory mediators and proinflammatory cytokines, such as IL-1β, in LPS-induced HaCaT keratinocytes by downregulating the NLRP3 inflammasome activation. Moreover, M. concanensis inhibited the activation of JNK, AP-1 and p65, which resulted in the deformation of NLRP3 in LPS-stimulated HaCaT cells. In mice with DNCB-induced AD-like skin lesions, the administration of M. concanensis ameliorated the clinical symptoms, such as the dermatitis score, thickness of lesional ear skin and TEWL. Furthermore, M. concanensis could attenuate the activation of the immune system, such as reducing the spleen index, concentration of the IgE levels and expression of the NLRP3 inflammasome in ear tissues. Therefore, our results suggest that M. concanensis exerts anti-atopic dermatitis effects by inhibiting the NLRP3 inflammasome-mediated IL-1β.
Collapse
Affiliation(s)
- Kyeong-Min Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Tamanna Jahan Mony
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Seung-Hyuk Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Yu-Yeong Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Ju-Yeon An
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hyun-Jeong Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Ye Eun Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | | | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Korea
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6441
| |
Collapse
|
13
|
The Renshen Chishao Decoction Could Ameliorate the Acute Lung Injury but Could Not Reduce the Neutrophil Extracellular Traps Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7784148. [PMID: 36072401 PMCID: PMC9444383 DOI: 10.1155/2022/7784148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/18/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
The acute lung injury (ALI) causes severe pulmonary diseases, leading to a high mortality rate. The Renshen and Chishao have protective and anti-inflammatory effects against the ALI. To explore the protective effects of the Renshen Chishao (RC) decoction against the ALI, we established the lipopolysaccharide-indued ALI model and randomly divided the mice into seven groups: control group, ALI group, high-dose RC group, middle-dose RC group, low-dose RC group, middle-dose RC group + CXCR2 antagonist group, and ALI + CXCR2 antagonist group. We estimated the lung injury by the hematoxylin and eosin staining, the neutrophil extracellular traps (NETs) formations by the immunofluorescence colocalization and enzyme-linked immunosorbent assay (ELISA), and the CXCR2/CXCL2 pathway by the flow cytometry, ELISA, and real-time polymerase chain reaction. We conducted the high-throughput sequencing and enrichment analyses to explore the potential mechanisms. The results showed that the RC decoction pathologically ameliorated the lipopolysaccharide-induced lung injury and inflammatory response but failed to reduce the circulating and lung tissue NETs formation and the blood neutrophil percent. The high-dose RC decoction increased the plasma CXCL2 level, but the RC decoction had no effects on the neutrophilic CXCR2 levels. Under the inhibition of the CXCR2, the middle-dose RC decoction still decreased the lung injury score but as yet had unobvious influence on the NETs formation. Other potential mechanisms of the RC decoction against the ALI involved the pathways of ribosome and coronavirus disease 2019 (COVID-19); the target genes of inflammatory factors, such as Ccl17, Cxcl17, Cd163, Cxcr5, and Il31ra, and lncRNAs; and the regulations of the respiratory cilia. In conclusion, the RC decoction pathologically ameliorated the lipopolysaccharide-induced lung inflammatory injury via upregulating the CXCL2/CXCR2 pathway but could not reduce the circulating or lung tissue NETs formation.
Collapse
|
14
|
Binary Effects of Gynostemma Gold Nanoparticles on Obesity and Inflammation via Downregulation of PPARγ/CEPBα and TNF-α Gene Expression. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092795. [PMID: 35566145 PMCID: PMC9104634 DOI: 10.3390/molecules27092795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
Abstract
Nanoscience is a multidisciplinary skill with elucidated nanoscale particles and their advantages in applications to various fields. Owing to their economical synthesis, biocompatible nature, and widespread biomedical and environmental applications, the green synthesis of metal nanoparticles using medicinal plants has become a potential research area in biomedical research and functional food formulations. Gynostemma pentaphyllum (GP) has been extensively used in traditional Chinese medicine to cure several diseases, including diabetes mellitus (DM). This is the first study in which we examined the efficacy of G. pentaphyllum gold nanoparticles (GP-AuNPs) against obesity and related inflammation. GP extract was used as a capping agent to reduce Au2+ to Au0 to form stable gold nanoparticles. The nanoparticles were characterized by using UV–VIS spectroscopy, and TEM images were used to analyze morphology. In contrast, the existence of the functional group was measured using FTIR, and size and shape were examined using XRD analysis. In vitro analysis on GP-AuNPs was nontoxic to RAW 264.7 cells and 3T3-L1 cells up to a specific concentration. It significantly decreased lipid accumulation in 3T3-L1 obese and reduced NO production in Raw 264.7 macrophage cells. The significant adipogenic genes PPARγ and CEPBα and a major pro-inflammatory cytokine TNF-α expression were quantified using RT-PCR. The GP-AuNPs decreased the face of these genes remarkably, revealing the antiadipogenic and anti-inflammatory activity of our synthesized GP-AuNPs. This study represents thorough research on the antiobesity effect of Gynostemma pentaphyllum gold nanoparticles synthesized using a green approach and the efficacy instead of related inflammatory responses.
Collapse
|
15
|
Ginsenosides Conversion and Anti-Oxidant Activities in Puffed Cultured Roots of Mountain Ginseng. Processes (Basel) 2021. [DOI: 10.3390/pr9122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CRMG (Cultured Roots of Mountain Ginseng) have the advantages in scale-up production, safety, and pharmacological efficacies. Though several methods are available for the conversion of major to minor ginsenosides, which has more pharmacological activities, a single step process with high temperature and pressure as a puffing method took place in this study to gain and produce more pharmacologically active compounds. Puffed CRMG exhibited an acceleration of major ginsenosides to minor ginsenosides conversions, and released more phenolic and flavonoid compounds. HPLC analysis was used to detect a steep decrease in the contents of major ginsenosides (Re, Rf, Rg1, Rg2, Rb1, Rb2, Rb3, Rc and Rd) with increasing pressure; on the contrary, the minor ginsenosides (20 (S, R)-Rg3, Rg5, Rk1, Rh1, Rh2, Rg6, F4 and Rk3) contents increased. Minor ginsenosides, such as Rg6, F4 and Rk3, were firstly reported to be produced from puffed CRMG. After the puffing process, phenolics, flavonoids, and minor ginsenoside contents were increased, and also, the antioxidant properties, such as DPPH inhibition and reducing the power of puffed CRMG, were significantly enhanced. Puffed CRMG at 490.3 kPa and 588.4 kPa had a low toxicity on HaCaT (immortalized human epidermal keratinocyte) cells at 200 μg/mL, and could significantly reduce ROS by an average of 60%, compared to the group treated with H2O2. Therefore, single step puffing of CRMG has the potential to be utilized for functional food and cosmeceuticals.
Collapse
|
16
|
Arafa ESA, Refaey MS, Abd El-Ghafar OAM, Hassanein EHM, Sayed AM. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition. Heliyon 2021; 7:e08354. [PMID: 34825082 PMCID: PMC8605069 DOI: 10.1016/j.heliyon.2021.e08354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
The p38 mitogen-activated protein kinases (p38 MAPK) is a 38kD polypeptide recognized as the target for many potential anti-inflammatory agents. Accumulating evidence indicates that p38 MAPK could perform many roles in human disease pathophysiology. Therefore, great therapeutic benefits can be attained from p38 MAPK inhibitors. Ginseng is an exceptionally valued medicinal plant of the family Araliaceae (Panax genus). Recently, several studies targeted the therapeutic effects of purified individual ginsenoside, the most significant active ingredient of ginseng, and studied its particular molecular mechanism(s) of action rather than whole-plant extracts. Interestingly, several ginsenosides: ginsenosides compound K, F1, Rb1, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, Rg5, Rh1, Rh2, Ro, notoginsenoside R1, and protopanaxadiol have shown to possess great therapeutic potentials mediated by their ability to downregulate p38 MAPK signaling in different cell lines and experimental animal models. Our review compiles the research findings of various ginsenosides as potent anti-inflammatory agents, highlighting the crucial role of p38 MAPK suppression in their pharmacological actions. In addition, in silico studies were conducted to explore the probable binding of these ginsenosides to p38 MAPK. The results obtained proposed p38 MAPK involvement in the beneficial pharmacological activities of ginsenosides in different ailments. p38 MAPK plays many roles in human disease pathophysiology. Therefore, great therapeutic benefits can be attained from p38 MAPK inhibitors. Several ginsenosides showed to possess great therapeutic potentials mediated by its ability to downregulate p38 MAPK signaling. in silico studies were conducted to explore the binding of these ginsenosides to p38 MAPK and evidenced the promising their inhibitory effect.
Collapse
Affiliation(s)
- El-Shaimaa A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates.,Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufiya, 32958, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
17
|
Kim M, Mok H, Yeo WS, Ahn JH, Choi YK. Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier. J Ginseng Res 2021; 45:599-609. [PMID: 34803430 PMCID: PMC8587512 DOI: 10.1016/j.jgr.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/28/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Ginseng has long been considered as an herbal medicine. Recent data suggest that ginseng has anti-inflammatory properties and can improve learning- and memory-related function in the central nervous system (CNS) following the development of CNS neuroinflammatory diseases such as Alzheimer's disease, cerebral ischemia, and other neurological disorders. In this review, we discuss the role of ginseng in the neurovascular unit, which is composed of endothelial cells surrounded by astrocytes, pericytes, microglia, neural stem cells, oligodendrocytes, and neurons, especially their blood-brain barrier maintenance, anti-inflammatory effects and regenerative functions. In addition, cell-cell communication enhanced by ginseng may be attributed to regeneration via induction of neurogenesis and angiogenesis in CNS diseases. Thus, ginseng may have therapeutic potential to exert cognitive improvement in neuroinflammatory diseases such as stroke, traumatic brain injury, multiple sclerosis, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Anti-Inflammatory Effects of Lagerstroemia ovalifolia Teijsm. & Binn. in TNF α/IFN γ-Stimulated Keratinocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2439231. [PMID: 34795780 PMCID: PMC8594990 DOI: 10.1155/2021/2439231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Ethnopharmacological Relevance. Atopic dermatitis is a chronic inflammatory skin disease. Lagerstroemia ovalifolia Teijsm. & Binn. (LO) has traditionally been used as an herbal medicine for anti-inflammatory diseases. The effect of LO on atopic dermatitis has not been verified scientifically. We investigated the effects of CHCl3 fraction number 5 of LO (LOC) on atopic dermatitis through cell-based experiments. HaCaT cells were treated with tumor necrosis factor-alpha (TNFα)/interferon-gamma (IFNγ) to induce an inflammatory reaction. Proinflammatory cytokines, interleukin- (IL-) 6, IL-8, and IL-1β and chemokines such as thymus and activation-regulated chemokine (TARC/CCL17), monocyte chemoattractant protein 1 (MCP1/CCL2), and macrophage-derived chemokine (MDC/CCL22) were measured by RT-PCR and ELISA. In addition, the degree of phosphorylation and activation of JAK/STAT1, PI3K/AKT, and nuclear factor-kappa B (NF-κB) were measured by western blot and luciferase assays. The production of inflammatory cytokines and chemokines and activation of the JAK/STAT1, PI3K/AKT, and NF-κB pathways were induced by TNFα/IFNγ in HaCaT cells. Under these conditions, LOC treatment inhibited the production of targeted cytokines and chemokines and decreased the phosphorylation and activation of JAK/STAT1, PI3K/AKT, and NF-κB. These results suggest that LOC reduces the production of proinflammatory cytokines and chemokines by suppressing the JAK/STAT1, PI3K/AKT, and NF-κB pathways. Therefore, LOC may have potential as a drug for atopic dermatitis.
Collapse
|
19
|
Oleanolic Acid Alleviates Atopic Dermatitis-like Responses In Vivo and In Vitro. Int J Mol Sci 2021; 22:ijms222112000. [PMID: 34769428 PMCID: PMC8584529 DOI: 10.3390/ijms222112000] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid, abundantly found in plants of the Oleaceae family, and is well known for its beneficial pharmacological activities. Previously, we reported the inhibitory effect of OA on mast cell-mediated allergic inflammation. In this study, we investigated the effects of OA on atopic dermatitis (AD)-like skin lesions and its underlying mechanism of action. We evaluated the inhibitory effect of OA on AD-like responses and the possible mechanisms using a 1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD animal model and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated HaCaT keratinocytes. We found that OA has anti-atopic effects, including histological alterations, on DNCB-induced AD-like lesions in mice. Moreover, it suppressed the expression of Th2 type cytokines and chemokines in the AD mouse model and TNF-α/IFN-γ-induced HaCaT keratinocytes by blocking the activation of serine-threonine kinase Akt, nuclear factor-κB, and the signal transducer and activator of transcription 1. The results demonstrate that OA inhibits AD-like symptoms and regulates the inflammatory mediators; therefore, it may be used as an effective and attractive therapeutic agent for allergic disorders, such as AD. Moreover, the findings of this study provide novel insights into the potential pharmacological targets of OA for treating AD.
Collapse
|
20
|
Panossian A, Abdelfatah S, Efferth T. Network Pharmacology of Red Ginseng (Part I): Effects of Ginsenoside Rg5 at Physiological and Sub-Physiological Concentrations. Pharmaceuticals (Basel) 2021; 14:ph14100999. [PMID: 34681222 PMCID: PMC8537973 DOI: 10.3390/ph14100999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Numerous in vitro studies on isolated cells have been conducted to uncover the molecular mechanisms of action of Panax ginseng Meyer root extracts and purified ginsenosides. However, the concentrations of ginsenosides and the extracts used in these studies were much higher than those detected in pharmacokinetic studies in humans and animals orally administered with ginseng preparations at therapeutic doses. Our study aimed to assess: (a) the effects of ginsenoside Rg5, the major “rare” ginsenoside of Red Ginseng, on gene expression in the murine neuronal cell line HT22 in a wide range of concentrations, from 10−4 to 10−18 M, and (b) the effects of differentially expressed genes on cellular and physiological functions in organismal disorders and diseases. Gene expression profiling was performed by transcriptome-wide mRNA microarray analyses in HT22 cells after treatment with ginsenoside Rg5. Ginsenoside Rg5 exhibits soft-acting effects on gene expression of neuronal cells in a wide range of physiological concentrations and strong reversal impact at high (toxic) concentration: significant up- or downregulation of expression of about 300 genes at concentrations from 10−6 M to 10−18 M, and dramatically increased both the number of differentially expressed target genes (up to 1670) and the extent of their expression (fold changes compared to unexposed cells) at a toxic concentration of 10−4 M. Network pharmacology analyses of genes’ expression profiles using ingenuity pathway analysis (IPA) software showed that at low physiological concentrations, ginsenoside Rg5 has the potential to activate the biosynthesis of cholesterol and to exhibit predictable effects in senescence, neuroinflammation, apoptosis, and immune response, suggesting soft-acting, beneficial effects on organismal death, movement disorders, and cancer.
Collapse
Affiliation(s)
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55131 Mainz, Germany;
- Correspondence: (A.P.); (T.E.)
| |
Collapse
|
21
|
Xiong J, Yang J, Yan K, Guo J. Ginsenoside Rk1 protects human melanocytes from H 2O 2‑induced oxidative injury via regulation of the PI3K/AKT/Nrf2/HO‑1 pathway. Mol Med Rep 2021; 24:821. [PMID: 34558653 PMCID: PMC8485120 DOI: 10.3892/mmr.2021.12462] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Vitiligo is a cutaneous depigmentation disorder caused by melanocyte injury or aberrant functioning. Oxidative stress (OS) is considered to be a major cause of the onset and progression of vitiligo. Ginsenoside Rk1 (RK1), a major compound isolated from ginseng, has antioxidant activity. However, whether RK1 can protect melanocytes against oxidative injury remains unknown. The aim of the present study was to investigate the potential protective effect of RK1 against OS in the human PIG1 melanocyte cell line induced with hydrogen peroxide (H2O2), and to explore its underlying mechanism. PIG1 cells were pretreated with RK1 (0, 0.1, 0.2 and 0.4 mM) for 2 h followed by exposure to 1.0 mM H2O2 for 24 h. Cell viability and apoptosis were determined with Cell Counting Kit‑8 and flow cytometry assays, respectively. The activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH‑Px) were analyzed using ELISA kits. Protein expression levels, including Bax, caspase‑3, Bcl‑2, phosphorylated‑AKT, AKT, nuclear factor erythroid 2‑related factor 2 (Nrf2), heme oxygenase‑1 (HO‑1), cytosolic Nrf2 and nuclear Nrf2, were analyzed using western blot analysis. In addition, the expression and localization of Nrf2 were detected by immunofluorescence. RK1 treatment significantly improved cell viability, reduced the apoptotic rate and increased the activity levels of SOD, CAT and GSH‑Px in the PIG1 cell line exposed to H2O2. In addition, RK1 treatment notably induced Nrf2 nuclear translocation, increased the protein expression levels of Nrf2 and HO‑1, and the ratio of phosphorylated‑AKT to AKT in the PIG1 cells exposed to H2O2. Furthermore, LY294002 could reverse the protective effect of RK1 in melanocytes against oxidative injury. These data demonstrated that RK1 protected melanocytes from H2O2‑induced OS by regulating Nrf2/HO‑1 protein expression, which may provide evidence for the application of RK1 for the treatment of vitiligo.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Jianing Yang
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Kai Yan
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
22
|
Ahn S, Simu SY, Yang DC, Jang M, Um BH. Effects of Ginsenoside Rf on dextran sodium sulfate-induced colitis in mice. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1950128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Sungeun Ahn
- Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shakina Yesmin Simu
- College of pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Mi Jang
- Food Standard Research Center, Korea Food Research Institute (KFRI), Wanju, Republic of Korea
| | - Byung-Hun Um
- Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Republic of Korea
| |
Collapse
|
23
|
Liu MY, Liu F, Gao YL, Yin JN, Yan WQ, Liu JG, Li HJ. Pharmacological activities of ginsenoside Rg5 (Review). Exp Ther Med 2021; 22:840. [PMID: 34149886 PMCID: PMC8210315 DOI: 10.3892/etm.2021.10272] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Ginseng, a perennial plant belonging to genus Panax, has been widely used in traditional herbal medicine in East Asia and North America. Ginsenosides are the most important pharmacological component of ginseng. Variabilities in attached positions, inner and outer residues and types of sugar moieties may be associated with the specific pharmacological activities of each ginsenoside. Ginsenoside Rg5 (Rg5) is a minor ginsenoside synthesized during ginseng steaming treatment that exhibits superior pharmaceutical activity compared with major ginsenosides. With high safety and various biological functions, Rg5 may act as a potential therapeutic candidate for diverse diseases. To date, there have been no systematic studies on the activity of Rg5. Therefore, in this review, all available literature was reviewed and discussed to facilitate further research on Rg5.
Collapse
Affiliation(s)
- Ming-Yang Liu
- Department of Immunity, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fei Liu
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan-Li Gao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia-Ning Yin
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei-Qun Yan
- Department of Tissue Engineering, School of Pharmaceutical Sciences in Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian-Guo Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai-Jun Li
- Department of Immunity, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
24
|
A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds. Biomed Pharmacother 2021; 140:111741. [PMID: 34087696 DOI: 10.1016/j.biopha.2021.111741] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/24/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Atopic dermatitis (AD) is considered a great challenge for human communities and imposes both physiological and mental burdens on patients. Natural products have widely been used to treat a wide range of diseases, including cancer, gastrointestinal diseases, asthma, neurological disorders, and infections. To seek potential natural products against AD, in the current review, we searched the terms "atopic dermatitis" and "natural product" in Pubmed, Medline, Web of Science,Science Direct, Embase, EBSCO, CINAHL, ACS. The results show that many natural products, especially puerarin, ferulic acid and ginsenosides, cound protect against AD. Meanwhile, we discussed the therapeutic mechanisms and showed that the natural products exert their anti-inflammatory effects by suppressing the quantity and activity of many inflammatory cell types and cytokines, including neutrophils, monocytes, lymphocytes, Langerhans cells, interleukins (ILs, including IL-1α, IL-1β, IL-4), TNF-α, and TSLP, IgE. via inhibition of JAK/STAT, MAPKs and NF-κB signaling pathways, thereby, halting the inflammatory cascade. Future investigations should focus on studies with more reflective of the clinical characteristics and demographics, so as to develop natural products that will be hopefully available for the treatment of human AD disease.
Collapse
|
25
|
You L, Cho JY. The regulatory role of Korean ginseng in skin cells. J Ginseng Res 2021; 45:363-370. [PMID: 34025129 PMCID: PMC8134839 DOI: 10.1016/j.jgr.2020.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
As the largest organ in our body, the skin acts as a barrier against external stress and damages. There are various cell types of skin, such as keratinocytes, melanocytes, fibroblasts, and skin stem cells. Korean ginseng, which is one of the biggest distributions of ginseng worldwide, is processed into different products, such as functional food, cosmetics, and medical supplies. This review aims to introduce the functional role of Korean ginseng on different dermal cell types, including the impact of Korean ginseng in anti-photodamaging, anti-inflammatory, anti-oxidative, anti-melanogenic, and wound healing activities, etc. We propose that this information could form the basis of future research of ginseng-derived components in skin health.
Collapse
Affiliation(s)
- Long You
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
26
|
Gu H, Han SM, Park KK. Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins (Basel) 2020; 12:195. [PMID: 32204567 PMCID: PMC7150898 DOI: 10.3390/toxins12030195] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Bee venom is a natural toxin produced by honeybees and plays an important role in defending bee colonies. Bee venom has several kinds of peptides, including melittin, apamin, adolapamine, and mast cell degranulation peptides. Apamin accounts for about 2%-3% dry weight of bee venom and is a peptide neurotoxin that contains 18 amino acid residues that are tightly crosslinked by two disulfide bonds. It is well known for its pharmacological functions, which irreversibly block Ca2+-activated K+ (SK) channels. Apamin regulates gene expression in various signal transduction pathways involved in cell development. The aim of this study was to review the current understanding of apamin in the treatment of apoptosis, fibrosis, and central nervous system diseases, which are the pathological processes of various diseases. Apamin's potential therapeutic and pharmacological applications are also discussed.
Collapse
Affiliation(s)
- Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Sang Mi Han
- National Academy of Agricultural Science, Jeonjusi, Jeonbuk 54875, Korea;
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| |
Collapse
|
27
|
Im DS. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng. Biomolecules 2020; 10:biom10030444. [PMID: 32183094 PMCID: PMC7175368 DOI: 10.3390/biom10030444] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Panax ginseng, also known as Korean ginseng, is a famous medicinal plant used for the treatment of many inflammatory diseases. Ginsenosides (ginseng saponins) are the main class of active constituents of ginseng. The anti-inflammatory effects of ginseng extracts were proven with purified ginsenosides, such as ginsenosides Rb1, Rg1, Rg3, and Rh2, as well as compound K. The negative regulation of pro-inflammatory cytokine expressions (TNF-α, IL-1β, and IL-6) and enzyme expressions (iNOS and COX-2) was found as the anti-inflammatory mechanism of ginsenosides in M1-polarized macrophages and microglia. Recently, another action mechanism emerged explaining the anti-inflammatory effect of ginseng. This is a pro-resolution of inflammation derived by M2-polarized macrophages. Direct and indirect evidence supports how several ginsenosides (ginsenoside Rg3, Rb1, and Rg1) induce the M2 polarization of macrophages and microglia, and how these M2-polarized cells contribute to the suppression of inflammation progression and promotion of inflammation resolution. In this review, the new action mechanism of ginseng anti-inflammation is summarized.
Collapse
Affiliation(s)
- Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; ; Tel.: +82-2-961-9377; Fax: +82-2-961-9580
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
28
|
Fei F, Su N, Li X, Fei Z. Neuroprotection mediated by natural products and their chemical derivatives. Neural Regen Res 2020; 15:2008-2015. [PMID: 32394948 PMCID: PMC7716029 DOI: 10.4103/1673-5374.282240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuronal injuries can lead to various diseases such as neurodegenerative diseases, stroke, trauma, ischemia and, more specifically, glaucoma and optic neuritis. The cellular mechanisms that regulate neuronal death include calcium influx and calcium overload, excitatory amino acid release, oxidative stress, inflammation and microglial activation. Much attention has been paid to the effective prevention and treatment of neuroprotective drugs by natural products. This review summarizes the neuroprotective aspects of natural products, extracted from Panax ginseng, Camellia sinensis, soy and some other plants, and some of their chemical derivatives. Their antioxidative and anti-inflammatory action and their inhibition of apoptosis and microglial activation are assessed. This will provide new directions for the development of novel drugs and strategies to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Fei Fei
- Department of Ophthalmology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ning Su
- Department of Radiation Oncology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
29
|
Ko E, Park S, Lee JH, Cui CH, Hou J, Kim MH, Kim SC. Ginsenoside Rh2 Ameliorates Atopic Dermatitis in NC/Nga Mice by Suppressing NF-kappaB-Mediated Thymic Stromal Lymphopoietin Expression and T Helper Type 2 Differentiation. Int J Mol Sci 2019; 20:ijms20246111. [PMID: 31817146 PMCID: PMC6940811 DOI: 10.3390/ijms20246111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023] Open
Abstract
Ginsenosides are known to have various highly pharmacological activities, such as anti-cancer and anti-inflammatory effects. However, the search for the most effective ginsenosides against the pathogenesis of atopic dermatitis (AD) and the study of the effects of ginsenosides on specific cytokines involved in AD remain unclear. In this study, ginsenoside Rh2 was shown to exert the most effective anti-inflammatory action on thymic stromal lymphopoietin (TSLP) and interleukin 8 in tumor necrosis factor-alpha and polyinosinic: polycytidylic acid induced normal human keratinocytes by inhibiting proinflammatory cytokines at both protein and transcriptional levels. Concomitantly, Rh2 also efficiently alleviated 2,4-dinitrochlorobenzene-induced AD-like skin symptoms when applied topically, including suppression of immune cell infiltration, cytokine expression, and serum immunoglobulin E levels in NC/Nga mice. In line with the in vitro results, Rh2 inhibited TSLP levels in AD mice via regulation of an underlying mechanism involving the nuclear factor κB pathways. In addition, in regard to immune cells, we showed that Rh2 suppressed not only the expression of TSLP but the differentiation of naïve CD4+ T-cells into T helper type 2 cells and their effector function in vitro. Collectively, our results indicated that Rh2 might be considered as a good therapeutic candidate for the alternative treatment of AD.
Collapse
Affiliation(s)
- Eunsu Ko
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
| | - Sungjoo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
| | - Jun Hyoung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
| | - Chang-Hao Cui
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (C.-H.C.); (J.H.)
| | - Jingang Hou
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (C.-H.C.); (J.H.)
| | - Myung-ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea;
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (C.-H.C.); (J.H.)
- Correspondence: ; Tel.: +82-042-2619
| |
Collapse
|
30
|
Lee YJ, Oh MJ, Lee DH, Lee YS, Lee J, Kim DH, Choi CH, Song MJ, Song HS, Hong JT. Anti-inflammatory effect of bee venom in phthalic anhydride-induced atopic dermatitis animal model. Inflammopharmacology 2019; 28:253-263. [PMID: 31786805 DOI: 10.1007/s10787-019-00646-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
Globally, many people have been affected with atopic dermatitis (AD), a chronic inflammatory skin disease. AD is associated with multiple factors such as genetic, inflammatory, and immune factors. Bee venom (BV) is now widely used for the treatment of several inflammatory diseases. However, its effect on 5% phthalic anhydride (PA)-induced AD has not been reported yet. We investigated the anti-inflammatory and anti-AD effects of BV in a PA-induced animal model of AD. Balb/c mice were treated with topical application of 5% PA to the dorsal skin and ears for induction of AD. After 24 h, BV was applied on the back and ear skin of the mice three times a week for 4 weeks. BV treatment significantly reduced the PA-induced AD clinical score, back and ear epidermal thickness, as well as IgE level and infiltration of immune cells in the skin tissues compared to those of control mice. The levels of inflammatory cytokines in the serum were significantly decreased in BV-treated group compared to PA-treated group. In addition, BV inhibited the expression of iNOS and COX-2 as well as the activation of mitogen-activated protein kinase (MAPK) and NF-ҡB induced by PA in the skin tissues. We also found that BV abrogated the lipopolysaccharide or TNF-α/IFN-γ-induced NO production, expression of iNOS and COX-2, as well as MAPK and NF-ҡB signaling pathway in RAW 264.7 and HaCaT cells. These results suggest that BV may be a potential therapeutic macromolecule for the treatment of AD.
Collapse
Affiliation(s)
- Yu Jin Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Myung Jin Oh
- College of Oriental Medicine, Gachon University, San 65, Bokjeong-dong, Sujeong-gu, Seongnam, Gyeonggii-do, 461-701, Republic of Korea
| | - Dong Hun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jiin Lee
- College of Oriental Medicine, Gachon University, San 65, Bokjeong-dong, Sujeong-gu, Seongnam, Gyeonggii-do, 461-701, Republic of Korea
| | - Deok-Hyun Kim
- College of Oriental Medicine, Gachon University, San 65, Bokjeong-dong, Sujeong-gu, Seongnam, Gyeonggii-do, 461-701, Republic of Korea
| | - Cheol-Hoon Choi
- College of Oriental Medicine, Gachon University, San 65, Bokjeong-dong, Sujeong-gu, Seongnam, Gyeonggii-do, 461-701, Republic of Korea
| | - Min Jong Song
- Department of Obstetrics and Gynecology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 64 Daeheung-ro, Jung gu, Daejeon, 301-723, Republic of Korea
| | - Ho Sueb Song
- College of Oriental Medicine, Gachon University, San 65, Bokjeong-dong, Sujeong-gu, Seongnam, Gyeonggii-do, 461-701, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
31
|
Dong Y, Fu R, Yang J, Ma P, Liang L, Mi Y, Fan D. Folic acid-modified ginsenoside Rg5-loaded bovine serum albumin nanoparticles for targeted cancer therapy in vitro and in vivo. Int J Nanomedicine 2019; 14:6971-6988. [PMID: 31507319 PMCID: PMC6718740 DOI: 10.2147/ijn.s210882] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Ginsenoside Rg5 (Rg5), a triterpene saponin, extracted from the natural herbal plant ginseng, is one of the most potent anticancer drugs against various carcinoma cells. However, the therapeutic potential of Rg5 is limited by its low solubility in water, poor bioavailability, and nontargeted delivery. Therefore, we prepared folic acid (FA)-modified bovine serum albumin (BSA) nanoparticles (FA-Rg5-BSA NPs) to improve the therapeutic efficacy and tumor targetability of Rg5. METHODS Various aspects of the FA-Rg5-BSA NPs were characterized, including size, polydispersity, zeta potential, morphology, entrapment efficiency (EE), drug loading (DL), in vitro drug release, thermal stability, in vitro cytotoxicity, cell apoptosis, cellular uptake, in vivo antitumor effects and in vivo biodistribution imaging. RESULTS The FA-Rg5-BSA NPs showed a particle size of 201.4 nm with a polydispersity index of 0.081, uniform spherical shape, and drug loading of 12.64±4.02%. The aqueous solution of FA-Rg5-BSA NPs had favorable stability for 8 weeks at 4°C. The FA-Rg5-BSA NPs dissolved under acidic conditions. Moreover, the Rg5-BSA NPs and FA-Rg5-BSA NPs had advanced anticancer activity compared with Rg5 in MCF-7 cells, while poor cytotoxicity was observed in L929 cells. The FA-Rg5-BSA NPs facilitated cellular uptake and induced apoptosis in MCF-7 cells. In addition, in an MCF-7 xenograft mouse model, the in vivo antitumor evaluation revealed that FA-Rg5-BSA NPs were more effective in inhibiting tumor growth than Rg5 and Rg5-BSA NPs. The in vivo real-time bioimaging study showed that the FA-Rg5-BSA NPs exhibited superior tumor accumulation ability. CONCLUSION The results suggested that FA-Rg5-BSA NPs could serve as a promising system to improve the antitumor effect of Rg5.
Collapse
Affiliation(s)
- Yanan Dong
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Biotech & Biomed Research Institute, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Biotech & Biomed Research Institute, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
| | - Jing Yang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Biotech & Biomed Research Institute, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
| | - Pei Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Biotech & Biomed Research Institute, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
| | - Lihua Liang
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
| | - Yu Mi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Biotech & Biomed Research Institute, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
- Biotech & Biomed Research Institute, Northwest University, Xi’an, Shaanxi710069, People’s Republic of China
| |
Collapse
|
32
|
Lee JI, Park KS, Cho IH. Panax ginseng: a candidate herbal medicine for autoimmune disease. J Ginseng Res 2019; 43:342-348. [PMID: 31308804 PMCID: PMC6606836 DOI: 10.1016/j.jgr.2018.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Panax ginseng Meyer (P. ginseng; Korean ginseng) is well known for its medicinal properties. It can alleviate pathological symptoms, promote health, and prevent potential diseases via its anti-inflammatory, antioxidant, homeostatic, and other positive effects on biological metabolism. Although many studies have determined effects of P. ginseng on various diseases, such as cardiovascular, neurological, and immunological diseases, little is known about the effect of P. ginseng on autoimmune diseases. Here, we review a few reports about effects of P. ginseng on autoimmune diseases (e.g., multiple sclerosis, Crohn's disease, ulcerative colitis, atopic dermatitis, and rheumatoid arthritis) and suggest the possibility of P. ginseng as a candidate herbal medicine to prevent and treat autoimmune diseases as well as the need to study it.
Collapse
Affiliation(s)
- Joon-Il Lee
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kyoung Sun Park
- Department of Korean Medicine Obstetrics & Gynecology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Convergence Medical Science and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Lee YY, Saba E, Irfan M, Kim M, Chan JYL, Jeon BS, Choi SK, Rhee MH. The anti-inflammatory and anti-nociceptive effects of Korean black ginseng. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:169-181. [PMID: 30668366 DOI: 10.1016/j.phymed.2018.09.186] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/25/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Different processing conditions alter the ginseng bioactive compounds, promoting or reducing its anti-inflammatory effects. We compared black ginseng (BG) - that have been steamed 5 times - with red ginseng (RG). HYPOTHESIS/ PURPOSE To compare the anti-inflammatory activities and the anti-nociceptive properties of RG and BG. METHODS Nitric Oxide (NO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay, quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR), western blot, xylene-induced ear edema, carrageenan-induced paw edema RESULTS: The ginsenoside contents were confirmed using high-performance liquid chromatography (HPLC) and has been altered through increased processing. The highest concentration of these extracts inhibited NO production to near-basal levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 without exhibiting cytotoxicity. Pro-inflammatory cytokine expression at the mRNA level was investigated using qRT-PCR. Comparatively, BG exhibited better inhibition of pro-inflammatory mediators, iNOS and COX-2 and pro-inflammatory cytokines, IL-1β, IL-6 and TNF-α. Protein expression was determined using western blot analysis and BG exhibited stronger inhibition. Xylene-induced ear edema model in mice and carrageenan-induced paw edema in rats were carried out and tested with the effects of ginseng as well as dexamethasone and indomethacin - commonly used drugs. BG is a more potent anti-inflammatory agent, possesses anti-nociceptive properties, and has a strong potency comparable to the NSAIDs. CONCLUSION BG has more potent anti-inflammatory and anti-nociceptive effects due to the change in ginsenoside component with increased processing.
Collapse
Key Words
- Abbreviations: TLR, Toll-like receptor
- Anti-inflammation
- Anti-nociceptive
- Black ginseng
- COX-2, Cyclooxygenase-2
- Carrageenan-induced paw edema
- ERK, extracellular-signal-regulated kinases
- FBS, Fetal bovine serum
- I(max), Maximal inhibition
- IKK, inhibitor of kappa B kinase
- IL, Interleukin
- IκB/α, inhibitor kappa B-alpha
- JNK, c-Jun N-terminal kinases
- LPS, Lipopolysaccharides
- MAPK, mitogen-activated protein kinases
- NF-κB, Nuclear factor Kappa-B
- NO, Nitric oxide
- Panax ginseng
- TLR, Toll-like receptors
- TNF-α, Tumor necrotic factor alpha
- TRPV-1, transient receptor potential vanilloid 1
- Xylene-induced ear edema
- iNOS, inducible NO synthase
Collapse
Affiliation(s)
- Yuan Yee Lee
- Laboratory of Cell Signaling and Physiology, Department of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Evelyn Saba
- Laboratory of Cell Signaling and Physiology, Department of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Muhammad Irfan
- Laboratory of Cell Signaling and Physiology, Department of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Minki Kim
- Laboratory of Cell Signaling and Physiology, Department of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Jireh Yi-Le Chan
- Department of Finance, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Byeong Seon Jeon
- Research Institute, Daedong Korea Ginseng Co., Geumsan-gun, Chungnam, South Korea
| | - Sung Keun Choi
- Research Institute, Daedong Korea Ginseng Co., Geumsan-gun, Chungnam, South Korea
| | - Man Hee Rhee
- Laboratory of Cell Signaling and Physiology, Department of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea.; Cardiovascular Research Institute, Kyungpook National University, South Korea..
| |
Collapse
|
34
|
Kim YJ, Perumalsamy H, Markus J, Balusamy SR, Wang C, Ho Kang S, Lee S, Park SY, Kim S, Castro-Aceituno V, Kim SH, Yang DC. Development of Lactobacillus kimchicus DCY51T-mediated gold nanoparticles for delivery of ginsenoside compound K: in vitro photothermal effects and apoptosis detection in cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:30-44. [DOI: 10.1080/21691401.2018.1541900] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Haribalan Perumalsamy
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Josua Markus
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| | | | - Chao Wang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Sang Yong Park
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Sung Kim
- Center for Global Converging Humanities, Kyung Hee University, Yongin-si, Republic of Korea
| | - Verónica Castro-Aceituno
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Seung Hyun Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Deok Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| |
Collapse
|
35
|
Jin SE, Ha H, Shin HK, Seo CS. Anti-Allergic and Anti-Inflammatory Effects of Kuwanon G and Morusin on MC/9 Mast Cells and HaCaT Keratinocytes. Molecules 2019; 24:molecules24020265. [PMID: 30642008 PMCID: PMC6359505 DOI: 10.3390/molecules24020265] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/24/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease. The use of immunomodulatory corticosteroids in AD treatment causes adverse side effects. Therefore, novel natural anti-inflammatory therapeutics are needed. The aim of the present study was to investigate the anti-allergic and anti-inflammatory activities of kuwanon G and morusin. To investigate the effect of kuwanon G and morusin on skin inflammation, enzyme-linked immunosorbent assays (ELISA) to quantitate secreted (RANTES/CCL5), thymus- and activation-regulated chemokine (TARC/CCL17), and macrophage-derived chemokine (MDC/CCL22) were performed, followed by Western blotting to measure the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and nuclear transcription factor-κB (NF-κB) p65 in tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ)-stimulated HaCaT keratinocytes. In order to evaluate the anti-allergic effects, ELISA to quantify histamine and leukotriene C4 (LTC4) production and Western blotting to measure 5-lipoxygenase (5-LO) activation were performed using PMA and A23187-stimulated MC/9 mast cells. Kuwanon G reduced the release of RANTES/CCL5, TARC/CCL17, and MDC/CCL22 via down-regulation of STAT1 and NF-κB p65 signaling in TNF-α and IFN-γ-stimulated HaCaT keratinocytes. Kuwanon G also inhibited histamine production and 5-LO activation in PMA and A23187-stimulated MC/9 mast cells. Morusin inhibited RANTES/CCL5 and TARC/CCL17 secretion via the suppression of STAT1 and NF-κB p65 phosphorylation in TNF-α and IFN-γ-stimulated HaCaT keratinocytes, and the release of histamine and LTC4 by suppressing 5-LO activation in PMA and A23187-stimulated MC/9 mast cells. Kuwanon G and morusin are potential anti-inflammatory mediators for the treatment of allergic and inflammatory skin diseases such as AD.
Collapse
Affiliation(s)
- Seong Eun Jin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Hyekyung Ha
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Hyeun-Kyoo Shin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| |
Collapse
|
36
|
Markus J, Mathiyalagan R, Kim YJ, Han Y, Jiménez-Pérez ZE, Veronika S, Yang DC. Synthesis of hyaluronic acid or O-carboxymethyl chitosan-stabilized ZnO–ginsenoside Rh2 nanocomposites incorporated with aqueous leaf extract of Dendropanax morbifera Léveille: in vitro studies as potential sunscreen agents. NEW J CHEM 2019. [DOI: 10.1039/c8nj06044d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synthesis of Rh2–ZnO nanocomposites stabilized with hyaluronic acid or O-carboxymethyl chitosan.
Collapse
Affiliation(s)
- Josua Markus
- Graduate School of Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Yaxi Han
- Department of Oriental Medicinal Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | | | - Soshnikova Veronika
- Department of Oriental Medicinal Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| |
Collapse
|
37
|
Watanabe K, Karuppagounder V, Sreedhar R, Kandasamy G, Harima M, Velayutham R, Arumugam S. Basidiomycetes-X, an edible mushroom, alleviates the development of atopic dermatitis in NC/Nga mouse model. Exp Mol Pathol 2018; 105:322-327. [PMID: 30312598 DOI: 10.1016/j.yexmp.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Basidiomycetes-X (BDM-X) is a novel edible mushroom recently identified as a new fungi species and is effective against oxidative stress and anti-inflammation associated with immune response. However the effect of BDM-X on atopic dermatitis (AD) has not been elucidated. In this study, we have investigated the effect of BDM-X on AD skin lesions in NC/Nga mouse model. AD-like lesion was induced by the application of house dust mite extract (DfE) to the dorsal skin of NC/Nga mouse. After AD induction, BDM-X was administered once daily for 2 weeks. We have analyzed the effects of BDM-X on dermatitis severity, histopathological changes and changes in inflammatory and proinflammatory proteins expressions in DfE induced AD mice skin. Treatment with BDM-X attenuated the development of AD-like clinical symptoms and effectively inhibited hyperkeratosis, parakeratosis, acanthosis and mast cells in AD mice skin. Furthermore, BDM-X treatment inhibited DfE induced tumor necrosis factor (TNF)α, high mobility group protein (HMG)B1, nuclear factor kappa (NFκ)B and inflammatory cytokines. These results indicate that BDM-X inhibits AD through modulating Th1 and Th2 responses and diminishing the mast cells infiltration in the skin lesions in NC/Nga mice.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Graduate School of Medical and Dental Sciences, 757, Ichibancho, Asahimachidori, Chuo ku, Niigata City 951-8510, Japan; Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha ku, Niigata 956-8603, Japan.
| | - Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha ku, Niigata 956-8603, Japan; Department of Orthopedics and Rehabilitation, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Remya Sreedhar
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha ku, Niigata 956-8603, Japan
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Meilei Harima
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha ku, Niigata 956-8603, Japan; Faculty of Allied Health Sciences, Niigata University of Rehabilitation, 2-16, Kaminoyama, Murakami, Niigata 958-0053, Japan
| | - Ravichandiran Velayutham
- National Institute of Pharmaceutical Education and Research, Chuilal Bhawan, 168 Manicktala Main Road, Kolkata 700054, West Bengal, India
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha ku, Niigata 956-8603, Japan; National Institute of Pharmaceutical Education and Research, Chuilal Bhawan, 168 Manicktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
38
|
Yang JH, Lee E, Lee B, Cho WK, Ma JY, Park KI. Ethanolic Extracts of Artemisia apiacea Hance Improved Atopic Dermatitis-Like Skin Lesions In Vivo and Suppressed TNF-Alpha/IFN-Gamma⁻Induced Proinflammatory Chemokine Production In Vitro. Nutrients 2018; 10:nu10070806. [PMID: 29932162 PMCID: PMC6073925 DOI: 10.3390/nu10070806] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022] Open
Abstract
Artemisia apiacea Hance is a traditional herbal medicine used for treating eczema and jaundice in Eastern Asia including China, Korea, and Japan. However, the biological and pharmacological actions of Artemisia apiacea Hance in atopic dermatitis (AD) are not fully understood. An ethanolic extract of Artemisia apiacea Hance (EAH) was tested in vitro and in vivo to investigate its anti-inflammatory activity and anti-atopic dermatitis effects. The results showed that EAH dose-dependence inhibited production of regulated on activation, normal T-cell expressed and secreted (RANTES), interleukin (IL)-6, IL-8, and thymus and activation-regulated chemokine (TARC). EAH inhibited the activation of p38, extracellular signal-regulated kinases (ERK), and STAT-1 and suppressed the degradation of inhibited both nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha (IκB-α) in TNF-α/IFN-γ–stimulated HaCaT cells. EAH also suppressed the translocation of inflammation transcription factors such as NF-κB p65 in TNF-α/IFN-γ–stimulated HaCaT cells. In addition, EAH reduced 2,4-dinitrochlorobenzene (DNCB)-induced ear thickness and dorsal skin thickness in a dose-dependent manner. EAH appeared to regulate chemokine formation by inhibiting activation of and ERK as well as the NK-κB pathways. Furthermore, EAH significantly improved the skin p38 conditions in a DNCB-induced AD-like mouse model.
Collapse
Affiliation(s)
- Ju-Hye Yang
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea.
| | - Esther Lee
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea.
| | - BoHyoung Lee
- ViroMed Co., Ltd., Seoul National University 1, Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| | - Won-Kyung Cho
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea.
| | - Jin Yeul Ma
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea.
| | - Kwang-Il Park
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea.
| |
Collapse
|
39
|
Tang CZ, Li KR, Yu Q, Jiang Q, Yao J, Cao C. Activation of Nrf2 by Ginsenoside Rh3 protects retinal pigment epithelium cells and retinal ganglion cells from UV. Free Radic Biol Med 2018; 117:238-246. [PMID: 29427790 DOI: 10.1016/j.freeradbiomed.2018.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/11/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
Excessive Ultra-violet (UV) radiation shall induce damages to resident retinal pigment epithelium (RPE) cells (RPEs) and retinal ganglion cells (RGCs). Here we tested the potential activity of Ginsenoside Rh3 ("Rh3") against the process. In cultured human RPEs and RGCs, pretreatment with Rh3 inhibited UV-induced reactive oxygen species (ROS) production and following apoptotic/non-apoptotic cell death. Rh3 treatment in retinal cells induced nuclear-factor-E2-related factor 2 (Nrf2) activation, which was evidenced by Nrf2 protein stabilization and its nuclear translocation, along with transcription of antioxidant responsive element (ARE)-dependent genes (HO1, NOQ1 and GCLC). Nrf2 knockdown by targeted-shRNA almost abolished Rh3-induced retinal cell protection against UV. Further studies found that Rh3 induced microRNA-141 ("miR-141") expression, causing downregulation of its targeted gene Keap1 in RPEs and RGCs. On the other hand, Rh3-induced Nrf2 activation and retinal cell protection were largely attenuated by the miR-141's inhibitor, antagomiR-141. In vivo, intravitreal injection of Rh3 inhibited retinal dysfunction by light damage in mice. Rh3 intravitreal injection also induced miR-141 expression, Keap1 downregulation and Nrf2 activation in mouse retinas. We conclude that Rh3 protects retinal cells from UV via activating Nrf2 signaling.
Collapse
Affiliation(s)
- Chun-Zhou Tang
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China; Ophthalmology Department, Jiangsu Jiangyin people's Hospital, Jiangyin, China
| | - Ke-Ran Li
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Yu
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China.
| | - Jin Yao
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China.
| | - Cong Cao
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China; Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China; North District, The Municipal Hospital of Suzhou, Suzhou, China.
| |
Collapse
|
40
|
Shen R, Laval S, Cao X, Yu B. Synthesis of Δ20-Ginsenosides Rh4, (20E)-Rh3, Rg6, and Rk1: A General Approach To Access Dehydrated Ginsenosides. J Org Chem 2018; 83:2601-2610. [DOI: 10.1021/acs.joc.7b02987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Renzeng Shen
- State Key Laboratory of Bio-organic
and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Stephane Laval
- State Key Laboratory of Bio-organic
and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xin Cao
- State Key Laboratory of Bio-organic
and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-organic
and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
41
|
Yang JH, Yoo JM, Lee E, Lee B, Cho WK, Park KI, Yeul Ma J. Anti-inflammatory effects of Perillae Herba ethanolic extract against TNF-α/IFN-γ-stimulated human keratinocyte HaCaT cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:217-223. [PMID: 28970155 DOI: 10.1016/j.jep.2017.09.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perillae Herba is a perennial plant that is widely distributed throughout Asia. The leaves of Perillae Herba have been widely used to treat various diseases, such as cold due to wind-cold, headache, cough, abdominal fullness, distention, and fish and crab poisoning. MATERIALS AND METHODS To assess the anti-inflammatory activity of Perillae Herba leaf ethanolic extract (PHE) in human keratinocytes, we measured the tumor necrosis factor (TNF)-α/interferon (IFN)-γ-induced mRNA expression and production of proinflammatory chemokines such as thymus and activation-regulated chemokines; regulated on activation, normal T cell expressed and secreted; interleukin (IL)-6; and IL-8 in HaCaT cells. We evaluated the ability of PHE to decrease the expression of proinflammatory marker proteins, such as mitogen-activated protein kinase (MAPK), STAT-1, and NK-κB, using western blot analysis and immunocytochemistry. RESULTS PHE inhibited activation of p38, ERK, and JNK and suppressed the phosphorylation of STAT-1 and NK-κB in TNF-α/IFN-γ-stimulated HaCaT cells. PHE also suppressed chemokine mRNA and protein levels in TNF-α/IFN-γ-stimulated HaCaT cells. PHE appears to regulate chemokine formation by inhibiting activation of MAPK, as well as the STAT-1 and NK-κB pathways. CONCLUSIONS PHE suppresses the expression and production of TNF-α/IFN-γ-stimulated proinflammatory chemokines by blocking NF-κB, STAT-1, and MAPK activation.
Collapse
Affiliation(s)
- Ju-Hye Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 701-300, Republic of Korea
| | - Jae-Myung Yoo
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 701-300, Republic of Korea
| | - Esther Lee
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 701-300, Republic of Korea
| | - BoHyoung Lee
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 701-300, Republic of Korea
| | - Won-Kyung Cho
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 701-300, Republic of Korea
| | - Kwang-Il Park
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 701-300, Republic of Korea.
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 701-300, Republic of Korea.
| |
Collapse
|
42
|
Yesmin Simu S, Ahn S, Castro-Aceituno V, Yang DC. Ginsenoside Rg5: Rk1 Exerts an Anti-obesity Effect on 3T3-L1 Cell Line by the Downregulation of PPARγ and CEBPα. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:252-259. [PMID: 29845077 DOI: 10.15171/ijb.1517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023]
Abstract
Background: Obesity, a global health problem and a chronic disease, is associated with increased risk of developing type 2 diabetes and coronary heart diseases. A wide variety of natural remedies have been explored for their obesity treatment potential. Objective: The anti-adipogenic effect of ginsenoside Rg5:Rk1 (Rg5:Rk1) on 3T3-L1 mature adipocytes was investigated. Materials and Methods: To elucidate the anti-obesity effect of Rg5:Rk1, a mixture of protopanaxadiol type ginsenosides isolated from Panax ginseng Meyer in a 3T3-L1 adipocytes. In order to determine the anti-obesity effect of Rg5:Rk1, based on oil Red O Staining, triglyceride (TG) content in adipose cells was assessed. Furthermore, to elucidate the possible mechanism of Rg5:RK1 effect on lipid accumulation, mRNA and protein expression analyses of adipocyte markers such as STAT3, PPARγ, CBEPα and ap2 were carried out. Results: Rg5:Rk1 treatment showed an inhibition of lipid droplet accumulation and decrease of TG content. In addition, expression of STAT3, PPARγ, CEBPα and ap2 were decreased in a dose dependent manner. Similarly, the Rg5:Rk1 treatment reduced PPARγ and CEBPα protein expression. Conclusion: Rg5:Rk1 treatment exhibits anti-adipogenic activity by down-regulation of the STAT3/ PPARg/CEBPa signaling pathway in 3T3-L1 adipocyte cell line.
Collapse
Affiliation(s)
- Shakina Yesmin Simu
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Sungeun Ahn
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Veronica Castro-Aceituno
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea.,Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
43
|
Publisher’s note. Colloids Surf B Biointerfaces 2017; 160:423-428. [DOI: 10.1016/j.colsurfb.2017.09.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 01/22/2023]
|
44
|
Markus J, Wang D, Kim YJ, Ahn S, Mathiyalagan R, Wang C, Yang DC. Biosynthesis, Characterization, and Bioactivities Evaluation of Silver and Gold Nanoparticles Mediated by the Roots of Chinese Herbal Angelica pubescens Maxim. NANOSCALE RESEARCH LETTERS 2017; 12:46. [PMID: 28097599 PMCID: PMC5241258 DOI: 10.1186/s11671-017-1833-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/04/2017] [Indexed: 05/25/2023]
Abstract
A facile synthesis and biological applications of silver (DH-AgNps) and gold nanoparticles (DH-AuNps) mediated by the aqueous extract of Angelicae Pubescentis Radix (Du Huo) are explored. Du Huo is a medicinal root belonging to Angelica pubescens Maxim which possesses anti-inflammatory, analgesic, and antioxidant properties. The absorption spectra of nanoparticles in varying root extract and metal ion concentration, pH, reaction temperatures, and time were recorded by ultraviolet-visible (UV-Vis) spectroscopy. The presence of DH-AgNps and DH-AuNps was confirmed from the surface plasmon resonance intensified at ~414 and ~540 nm, respectively. Field emission transmission electron micrograph (FE-TEM) analysis revealed the formation of quasi-spherical DH-AgNps and spherical icosahedral DH-AuNps. These novel DH-AgNps and DH-AuNps maintained an average crystallite size of 12.48 and 7.44 nm, respectively. The biosynthesized DH-AgNps and DH-AuNps exhibited antioxidant activity against 2,2-diphenyl-1-picrylhydrzyl (DPPH) radicals and the former exhibited antimicrobial activity against clinical pathogens including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica. The expected presence of flavonoids, sesquiterpenes, and phenols on the nanoparticle surface were conjectured to grant protection against aggregation and free radical scavenging activity. DH-AgNps and DH-AuNps were further investigated for their cytotoxic properties in RAW264.7 macrophages for their potential application as drug carriers to sites of inflammation. In conclusion, this green synthesis is favorable for the advancement of plant mediated nano-carriers in drug delivery systems, cancer diagnostic, and medical imaging. Schematic diagram of biosynthesis of DH-AgNps and DH-AuNps and evaluation of their bioactivities.
Collapse
Affiliation(s)
- Josua Markus
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Dandan Wang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Sungeun Ahn
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Chao Wang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 Republic of Korea
| |
Collapse
|
45
|
Singh P, Ahn S, Kang JP, Veronika S, Huo Y, Singh H, Chokkaligam M, El-Agamy Farh M, Aceituno VC, Kim YJ, Yang DC. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:2022-2032. [PMID: 29190154 DOI: 10.1080/21691401.2017.1408117] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, green metal nanoparticles have received global attention owing to their economical synthesis, biocompatible nature, widespread biomedical and environmental applications. Current study demonstrates a sustainable approach for the green synthesis of silver nanoparticles (P-AgNPs) and gold nanoparticles (P-AuNPs) from P. serrulata fresh fruit extract. The silver and gold nanoparticles were synthesized in a very rapid, efficient and facile manner, within 50 min and 30 s at 80 °C, respectively. The nanoparticles were characterized by using visual observation, UV-Vis, FE-TEM, EDX, elemental mapping, FT-IR, XRD and DLS, which confirmed the formation of monodispersed, crystalline and stable nanoparticles. Further, we explored these nanoparticles for anti-inflammatory activity through inhibition of downstream NF-κB activation in macrophages (RAW264.7). We demonstrated that the nanoparticles reduced expression of inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PEG2), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was attenuated in lipopolysaccharide (LPS)-induced RAW264.7 cells. Furthermore, nanoparticles significantly suppressed LPS-induced activation of NF-κB signalling pathway via p38 MAPK in RAW 264.7 cells. To the best of our knowledge, this is the first report on the efficient green synthesis of P-AgNPs and P-AuNPs using P. serrulata fresh fruit extract and its in vitro anti-inflammatory effects. Collectively, our results suggest that P. serrulata fresh fruit extract is a green resource for the eco-friendly synthesis of P-AgNPs and P-AuNPs, which further can be utilized as a novel therapeutic agent for prevention and cure of inflammation due to their biocompatible nature.
Collapse
Affiliation(s)
- Priyanka Singh
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea.,b Graduate School of Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Sungeun Ahn
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Jong-Pyo Kang
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Soshnikova Veronika
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Yue Huo
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Hina Singh
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Mohan Chokkaligam
- b Graduate School of Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Mohamed El-Agamy Farh
- b Graduate School of Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Verónica Castro Aceituno
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Yeon Ju Kim
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Deok-Chun Yang
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea.,b Graduate School of Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| |
Collapse
|
46
|
Lim H, Yo S, Lee M, Seo C, Shin H, Jeong S. Potential inhibitory effects of the traditional herbal prescription Hyangso-san against skin inflammation via inhibition of chemokine production and inactivation of STAT1 in HaCaT keratinocytes. Mol Med Rep 2017; 17:2515-2522. [DOI: 10.3892/mmr.2017.8172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/20/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hye‑Sun Lim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong, Daejeon 34054, Republic of Korea
| | - Sae‑Rom Yo
- K-herb Research Center, Korea Institute of Oriental Medicine, Yuseong, Daejeon 34054, Republic of Korea
| | - Mee‑Young Lee
- K-herb Research Center, Korea Institute of Oriental Medicine, Yuseong, Daejeon 34054, Republic of Korea
| | - Chang‑Seob Seo
- K-herb Research Center, Korea Institute of Oriental Medicine, Yuseong, Daejeon 34054, Republic of Korea
| | - Hyeun‑Kyoo Shin
- K-herb Research Center, Korea Institute of Oriental Medicine, Yuseong, Daejeon 34054, Republic of Korea
| | - Soo‑Jin Jeong
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong, Daejeon 34054, Republic of Korea
| |
Collapse
|
47
|
Elshafay A, Tinh NX, Salman S, Shaheen YS, Othman EB, Elhady MT, Kansakar AR, Tran L, Van L, Hirayama K, Huy NT. Ginsenoside Rk1 bioactivity: a systematic review. PeerJ 2017; 5:e3993. [PMID: 29158964 PMCID: PMC5695252 DOI: 10.7717/peerj.3993] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022] Open
Abstract
Ginsenoside Rk1 (G-Rk1) is a unique component created by processing the ginseng plant (mainly Sung Ginseng (SG)) at high temperatures. The aim of our study was to systematically review the pharmacological effects of G-Rk1. We utilized and manually searched eight databases to select in vivo and in vitro original studies that provided information about biological, pharmaceutical effects of G-Rk1 and were published up to July 2017 with no restriction on language or study design. Out of the 156 papers identified, we retrieved 28 eligible papers in the first skimming phase of research. Several articles largely described the G-Rk1 anti-cancer activity investigating "cell viability", "cell proliferation inhibition", "apoptotic activity", and "effects of G-Rk1 on G1 phase and autophagy in tumor cells" either alone or in combination with G-Rg5. Others proved that it has antiplatelet aggregation activities, anti-inflammatory effects, anti-insulin resistance, nephroprotective effect, antimicrobial effect, cognitive function enhancement, lipid accumulation reduction and prevents osteoporosis. In conclusion, G-Rk1 has a significant anti-tumor effect on liver cancer, melanoma, lung cancer, cervical cancer, colon cancer, pancreatic cancer, gastric cancer, and breast adenocarcinoma against in vitro cell lines. In vivo experiments are further warranted to confirm these effects.
Collapse
Affiliation(s)
| | - Ngo Xuan Tinh
- Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
| | | | | | | | | | | | - Linh Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Le Van
- Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
48
|
Ahn S, Singh P, Jang M, Kim YJ, Castro-Aceituno V, Simu SY, Kim YJ, Yang DC. Gold nanoflowers synthesized using Acanthopanacis cortex extract inhibit inflammatory mediators in LPS-induced RAW264.7 macrophages via NF-κB and AP-1 pathways. Colloids Surf B Biointerfaces 2017; 162:398-404. [PMID: 29245117 DOI: 10.1016/j.colsurfb.2017.11.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We reported the rapid synthesis (<8s) of gold nanoparticles at room temperature using Acanthopanacis cortex extract (A-AuNPs). We characterized the A-AuNPs using several analytical techniques and found that nano-flower type A-AuNPs, which are known to possess a coarse surface with a high surface to volume ratio, conferring these particles with high binding capacity for various biological molecules. After confirming the stability of the nanoparticles, we investigated the anti-inflammatory effect of A-AuNPs in LPS-stimulated RAW264.7 cells. These nanoparticles inhibited LPS-induced iNOS and COX-2 protein as well as gene expression level, along with reduction of NO and PGE2 production. Furthermore, we observed that the A-AuNPs inhibited translocation of NF-κB and AP-1 through phosphorylation of MAPK signaling by western blot analysis. In summary, we synthesized gold nanoflowers in an economical and eco-friendly way using Acanthopanacis cortex extract and the resultant flower-like A-AuNPs had anti-inflammatory activity, highlighting their potential as therapeutic candidates for suppression of inflammatory-mediated diseases.
Collapse
Affiliation(s)
- Sungeun Ahn
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea; Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Priyanka Singh
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea; Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Mi Jang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Verónica Castro-Aceituno
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Shakina Yesmin Simu
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yeon Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea; Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
49
|
Simu SY, Castro-Aceituno V, Lee S, Ahn S, Lee HK, Hoang VA, Yang DC. Fermentation of soybean hull by Monascus pilosus
and elucidation of its related molecular mechanism involved in the inhibition of lipid accumulation. An in sílico and in vitro approach. J Food Biochem 2017. [DOI: 10.1111/jfbc.12442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shakina Yesmin Simu
- Graduate School of Biotechnology and Ginseng Bank; College of Life Sciences, Kyung Hee University; Yongin Republic of Korea
| | - Verónica Castro-Aceituno
- Department of Oriental Medicinal Biotechnology; College of Life Sciences, Kyung Hee University; Yongin Republic of Korea
| | - Sangchul Lee
- Department of Oriental Medicinal Biotechnology; College of Life Sciences, Kyung Hee University; Yongin Republic of Korea
- LeeHyunKoo Fermentation Lab, Aejiwon; Kyung Hee University; Yongin Republic of Korea
| | - Sungeun Ahn
- Department of Oriental Medicinal Biotechnology; College of Life Sciences, Kyung Hee University; Yongin Republic of Korea
| | - Hyun Koo Lee
- LeeHyunKoo Fermentation Lab, Aejiwon; Kyung Hee University; Yongin Republic of Korea
| | - Van-An Hoang
- Graduate School of Biotechnology and Ginseng Bank; College of Life Sciences, Kyung Hee University; Yongin Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank; College of Life Sciences, Kyung Hee University; Yongin Republic of Korea
- Department of Oriental Medicinal Biotechnology; College of Life Sciences, Kyung Hee University; Yongin Republic of Korea
| |
Collapse
|
50
|
Kim WH, An HJ, Kim JY, Gwon MG, Gu H, Lee SJ, Park JY, Park KD, Han SM, Kim MK, Park KK. Apamin inhibits TNF-α- and IFN-γ-induced inflammatory cytokines and chemokines via suppressions of NF-κB signaling pathway and STAT in human keratinocytes. Pharmacol Rep 2017; 69:1030-1035. [PMID: 28958612 DOI: 10.1016/j.pharep.2017.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/26/2017] [Accepted: 04/11/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is identified by an increase in infiltrations of several inflammatory cells including type 2 helper (Th2) lymphocytes. Th2-related chemokines such as thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), and pro-inflammatory cytokines including interleukin (IL)-1β and IL-6 are considered to play a crucial role in AD. Tumor necrosis factor (TNF)-α- and interferon (IFN)-γ induce the inflammatory condition through production of TARC, MDC, IL-1β and IL-6, and activations of related transcription factors, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT) in keratinocytes. Apamin, a peptide component of bee venom, has been reported its beneficial activities in various diseases. However, anti-inflammatory effects of apamin on inflammatory condition in keratinocytes have not been explored. Therefore, the present study aimed to demonstrate the anti-inflammatory effect of apamin on TNF-α- and IFN-γ-induced inflammatory condition in keratinocytes. METHODS HaCaT was used as human keratinocytes cell line. Cell Counting Kit-8 was performed to measure a cytotoxicity of apamin. The effects of apamin on TNF-α-/IFN-γ-induced inflammatory condition were determined by real-time PCR and Western blot analysis. Further, NF-κB signaling pathways, STAT1, and STAT3 were analyzed by Western blot and immunofluorescence. RESULTS Apamin ameliorated the inflammatory condition through suppression of Th2-related chemokines and pro-inflammatory cytokines. Further, apamin down-regulated the activations of NF-κB signaling pathways and STATs in HaCaT cells. CONCLUSIONS These results suggest that apamin has therapeutic effect on AD through improvement of inflammatory condition.
Collapse
Affiliation(s)
- Woon-Hae Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Jung-Yeon Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Mi-Gyeong Gwon
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Sun-Jae Lee
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Ji Y Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Kyung-Duck Park
- Department of Dermatology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Sang-Mi Han
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, 300, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 54875, Republic of Korea.
| | - Min-Kyung Kim
- Department of Pathology, College of Medicine, Dongguk University, 123, Dongdae-ro, Gyeongju-si, Gyeongsangbuk-do 38066, Republic of Korea.
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| |
Collapse
|