1
|
Rahman MA, Akter S, Ashrafudoulla M, Rapak MT, Lee KO, Ha SD. Targeted insights into Aeromonas hydrophila biofilms: Surface preferences, resistance mechanisms, and gene expression. Poult Sci 2025; 104:104851. [PMID: 40043669 PMCID: PMC11927691 DOI: 10.1016/j.psj.2025.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/24/2025] Open
Abstract
This study provides a comprehensive analysis of biofilm formation, antibiotic resistance, motility, and gene expression in four Aeromonas hydrophila strains-ATCC 15467, ATCC 7966, KCTC 2358, and KCTC 11533-on stainless steel (SS), silicon rubber (SR), polyethylene terephthalate (PET), and high-density polyethylene (HDPE) surfaces over 24, 48, 72, and 96 h. Biofilm formation peaked at 72 h, with ATCC 7966 demonstrating the highest biofilm density on PET (6.50 ± 0.08 log CFU/cm²), underscoring PET's role as a favorable substrate for biofilm development. In contrast, HDPE consistently exhibited the lowest biofilm levels, reflecting its potential as a biofilm-resistant material. Antibiotic susceptibility profiling revealed multidrug resistance (MDR) in ATCC 15467 and KCTC 11533 (MARI = 0.80), particularly against beta-lactams, aminoglycosides, and fluoroquinolones while ATCC 7966 and KCTC 2358 displayed moderate resistance. Motility assays highlighted strain-specific capabilities, with KCTC 11533 exhibiting the highest swimming motility (76.0 ± 6.6 mm) and KCTC 2358 excelling in swarming (47.7 ± 3.5 mm). Genetic analysis confirmed the presence of luxS and ahyR in all strains, while csgA was exclusive to ATCC 7966, correlating with its superior biofilm formation. Confocal microscopy revealed biofilm maturation dynamics, with red fluorescence indicating cell death and aging at 96 h, while SEM images captured intricate surface-specific biofilm architectures. These findings elucidate the critical interplay between strain characteristics, surface properties, and incubation time, providing a foundation for developing targeted strategies to control A. hydrophila biofilms in food processing environments.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh
| | - Shirin Akter
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Ashrafudoulla
- National Institute of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Meidistria Tandi Rapak
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Kyung Ok Lee
- Food Safety Division Research Institute of Food Hygiene, Hyundai green food, Yongin, Republic of Korea
| | - Sang-Do Ha
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea.
| |
Collapse
|
2
|
Nowotnick AG, Xi Z, Jin Z, Khalatbarizamanpoor S, Brauer DS, Löffler B, Jandt KD. Antimicrobial Biomaterials Based on Physical and Physicochemical Action. Adv Healthc Mater 2024; 13:e2402001. [PMID: 39301968 DOI: 10.1002/adhm.202402001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Developing effective antimicrobial biomaterials is a relevant and fast-growing field in advanced healthcare materials. Several well-known (e.g., traditional antibiotics, silver, copper etc.) and newer (e.g., nanostructured, chemical, biomimetic etc.) approaches have been researched and developed in recent years and valuable knowledge has been gained. However, biomaterials associated infections (BAIs) remain a largely unsolved problem and breakthroughs in this area are sparse. Hence, novel high risk and potential high gain approaches are needed to address the important challenge of BAIs. Antibiotic free antimicrobial biomaterials that are largely based on physical action are promising, since they reduce the risk of antibiotic resistance and tolerance. Here, selected examples are reviewed such antimicrobial biomaterials, namely switchable, protein-based, carbon-based and bioactive glass, considering microbiological aspects of BAIs. The review shows that antimicrobial biomaterials mainly based on physical action are powerful tools to control microbial growth at biomaterials interfaces. These biomaterials have major clinical and application potential for future antimicrobial healthcare materials without promoting microbial tolerance. It also shows that the antimicrobial action of these materials is based on different complex processes and mechanisms, often on the nanoscale. The review concludes with an outlook and highlights current important research questions in antimicrobial biomaterials.
Collapse
Affiliation(s)
- Adrian G Nowotnick
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhongqian Xi
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhaorui Jin
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Sadaf Khalatbarizamanpoor
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Delia S Brauer
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Bettina Löffler
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| |
Collapse
|
3
|
Maggay IV, Liao TY, Venault A, Lin HT, Chao CC, Wei TC, Chang Y. Leveraging the Dielectric Barrier Discharge Plasma Process to Create Regenerative Biocidal ePTFE Membranes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48001-48014. [PMID: 37787514 DOI: 10.1021/acsami.3c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The utilization of dielectric barrier discharge (DBD) plasma treatment for modifying substrate surfaces constitutes an easy and simple approach with a potential for diverse applications. This technique was used to modify the surface of a commercial porous expanded poly(tetrafluoroethylene) (ePTFE) film with either dimethylaminoethyl methacrylate (DMAEMA) or (trimethylamino)ethyl methacrylate chloride (TMAEMA) monomers, aiming to obtain antibacterial ePTFE. Physicochemical analyses of the membranes revealed that DBD successfully enhanced the surface energy and surface charge of the membranes while maintaining high porosity (>75%) and large pore size (>1.0 μm). Evaluation of the bacteria killing-releasing (K-R) function revealed that both DMAEMA and TMAEMA endowed ePTFE with the ability to kill Escherichia coli bacteria. However, only TMAEMA-grafted ePTFE allowed for the release of dead bacteria from the surface upon washing with sodium hexametaphosphate (SHMP) saline solution, owing to its cationic charge derived from the quaternary amine. Washing with SHMP disturbed the electrostatic force between the polymer brushes and dead bacteria, which caused the release of the dead bacteria. Lastly, dead-end bacteria filtration showed that the TMAEMA-grafted ePTFE was able to kill 99.78% of the bacteria, while approximately 61.55% of bacteria were killed upon contact. The present findings support the feasibility of using DBD plasma treatment for designing surfaces that target bacteria and aid in the containment of disease-causing pathogens.
Collapse
Affiliation(s)
- Irish Valerie Maggay
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Ting-Yu Liao
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Hao-Tung Lin
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Chih-Cheng Chao
- Tasheh Biotec Co., LTD, 226, Yuan-Pei Street, Hsinchu City 300, Taiwan, R.O.C
| | - Ta-Chin Wei
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| |
Collapse
|
4
|
Anbumani S, da Silva AM, Alaferdov A, Puydinger dos Santos MV, Carvalho IGB, de Souza e Silva M, Moshkalev S, Carvalho HF, de Souza AA, Cotta MA. Physiochemically Distinct Surface Properties of SU-8 Polymer Modulate Bacterial Cell-Surface Holdfast and Colonization. ACS APPLIED BIO MATERIALS 2022; 5:4903-4912. [PMID: 36162102 PMCID: PMC9580523 DOI: 10.1021/acsabm.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
SU-8 polymer is an excellent platform for diverse applications due to its high aspect ratio of micro/nanostructure fabrication and exceptional physicochemical and biocompatible properties. Although SU-8 polymer has often been investigated for various biological applications, how its surface properties influence the interaction of bacterial cells with the substrate and its colonization is poorly understood. In this work, we tailor SU-8 nanoscale surface properties to investigate single-cell motility, adhesion, and successive colonization of phytopathogenic bacteria, Xylella fastidiosa. Different surface properties of SU-8 thin films have been prepared using photolithography processing and oxygen plasma treatment. A more significant density of carboxyl groups in hydrophilic plasma-treated SU-8 surfaces promotes faster cell motility in the earlier growth stage. The hydrophobic nature of pristine SU-8 surfaces shows no trackable bacterial motility and 5-10 times more single cells adhered to the surface than its plasma-treated counterpart. In addition, plasma-treated SU-8 samples suppressed bacterial adhesion, with surfaces showing less than 5% coverage. These results not only showcase that SU-8 surface properties can impact the spatiotemporal bacterial behavior but also provide insights into pathogens' prominent ability to evolve and adapt to different surface properties.
Collapse
Affiliation(s)
- Silambarasan Anbumani
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Aldeliane M. da Silva
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Andrei Alaferdov
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | | | - Isis G. B. Carvalho
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Mariana de Souza e Silva
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Stanislav Moshkalev
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | - Hernandes F. Carvalho
- Department
of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Alessandra A. de Souza
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Monica A. Cotta
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| |
Collapse
|
5
|
Antibacterial Adhesion Strategy for Dental Titanium Implant Surfaces: From Mechanisms to Application. J Funct Biomater 2022; 13:jfb13040169. [PMID: 36278638 PMCID: PMC9589972 DOI: 10.3390/jfb13040169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Dental implants are widely used to restore missing teeth because of their stability and comfort characteristics. Peri-implant infection may lead to implant failure and other profound consequences. It is believed that peri-implantitis is closely related to the formation of biofilms, which are difficult to remove once formed. Therefore, endowing titanium implants with anti-adhesion properties is an effective method to prevent peri-implant infection. Moreover, anti-adhesion strategies for titanium implant surfaces are critical steps for resisting bacterial adherence. This article reviews the process of bacterial adhesion, the material properties that may affect the process, and the anti-adhesion strategies that have been proven effective and promising in practice. This article intends to be a reference for further improvement of the antibacterial adhesion strategy in clinical application and for related research on titanium implant surfaces.
Collapse
|
6
|
Pellegrino L, Kriem LS, Robles ESJ, Cabral JT. Microbial Response to Micrometer-Scale Multiaxial Wrinkled Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31463-31473. [PMID: 35699282 PMCID: PMC9284519 DOI: 10.1021/acsami.2c08768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We investigate the effect of micrometer-scale surface wrinkling on the attachment and proliferation of model bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli K12) and fungi (Candida albicans). Specifically, sinusoidal (1D), checkerboard (C), and herringbone (H) patterns were fabricated by mechanical wrinkling of plasma-oxidized polydimethylsiloxane (PDMS) bilayers and contrasted with flat (F) surfaces. Microbial deformation and orientation were found to correlate with the aspect ratio and commensurably with surface pattern dimensions and local pattern order. Significantly, the proliferation of P. aeruginosa could be described by a linear scaling between bacterial area coverage and available surface area, defined as a fraction of the line integral along each profile with negative curvature. However, in the early stages of proliferation (up to 6 h examined), that C and H patterns disrupt the spatial arrangement of bacteria, impeding proliferation for several hours and reducing it (by ∼50%) thereafter. Our findings suggest a simple framework to rationalize the impact of micrometer-scale topography on microbial action and demonstrate that multiaxial patterning order provides an effective strategy to delay and frustrate the early stages of bacterial proliferation.
Collapse
Affiliation(s)
- Luca Pellegrino
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Lukas Simon Kriem
- Fraunhofer
Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| | - Eric S. J. Robles
- Procter
& Gamble, Newcastle Innovation Centre, Newcastle upon Tyne NE12
9TS, United Kingdom
| | - João T. Cabral
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| |
Collapse
|
7
|
Preparation of Smart Surfaces Based on PNaSS@PEDOT Microspheres: Testing of E. coli Detection. SENSORS 2022; 22:s22072784. [PMID: 35408397 PMCID: PMC9003540 DOI: 10.3390/s22072784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
The main task of the research is to acquire fundamental knowledge about the effect of polymer structure on the physicochemical properties of films. A novel meta-material that can be used in manufacturing sensor layers was developed as a model. At the first stage, poly(sodium 4-styrenesulfonate) (PNaSS) cross-linked microspheres are synthesized (which are based on strong polyelectrolytes containing sulfo groups in each monomer unit), and at the second stage, PNaSS@PEDOT microspheres are formed. The poly(3,4-ethylenedioxythiophene) (PEDOT) shell was obtained by the acid-assisted self-polymerization of the monomer; this process is biologically safe and thus suitable for biomedical applications. The suitability of electrochemical impedance spectroscopy for E. coli detection was tested; it was revealed that the attached bacterial wall was destroyed upon application of constant oxidation potential (higher than 0.5 V), which makes the PNaSS@PEDOT microsphere particles promising materials for the development of antifouling coatings. Furthermore, under open-circuit conditions, the walls of E. coli bacteria were not destroyed, which opens up the possibility of employing such meta-materials as sensor films. Scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle, and wide-angle X-ray diffraction methods were applied in order to characterize the PNaSS@PEDOT films.
Collapse
|
8
|
Controlled spatial organization of bacterial growth reveals key role of cell filamentation preceding Xylella fastidiosa biofilm formation. NPJ Biofilms Microbiomes 2021; 7:86. [PMID: 34876576 PMCID: PMC8651647 DOI: 10.1038/s41522-021-00258-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
The morphological plasticity of bacteria to form filamentous cells commonly represents an adaptive strategy induced by stresses. In contrast, for diverse human and plant pathogens, filamentous cells have been recently observed during biofilm formation, but their functions and triggering mechanisms remain unclear. To experimentally identify the underlying function and hypothesized cell communication triggers of such cell morphogenesis, spatially controlled cell patterning is pivotal. Here, we demonstrate highly selective cell adhesion of the biofilm-forming phytopathogen Xylella fastidiosa to gold-patterned SiO2 substrates with well-defined geometries and dimensions. The consequent control of both cell density and distances between cell clusters demonstrated that filamentous cell formation depends on cell cluster density, and their ability to interconnect neighboring cell clusters is distance-dependent. This process allows the creation of large interconnected cell clusters that form the structural framework for macroscale biofilms. The addition of diffusible signaling molecules from supernatant extracts provides evidence that cell filamentation is induced by quorum sensing. These findings and our innovative platform could facilitate therapeutic developments targeting biofilm formation mechanisms of X. fastidiosa and other pathogens.
Collapse
|
9
|
Gautam B, Ali SA, Chen JT, Yu HH. Hybrid "Kill and Release" Antibacterial Cellulose Papers Obtained via Surface-Initiated Atom Transfer Radical Polymerization. ACS APPLIED BIO MATERIALS 2021; 4:7893-7902. [PMID: 35006770 DOI: 10.1021/acsabm.1c00817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infectious diseases triggered by bacteria cause a severe risk to human health. To counter this issue, surfaces coated with antibacterial materials have been widely used in daily life to kill these bacteria. The substrates enabled with a hybrid kill and release strategy can be employed not only to kill the bacteria but also to wash them using external stimuli (temperature, pH, etc.). Utilizing this concept, we develop thermoresponsive antibacterial-cellulose papers to exhibit hybrid kill and release properties. Thermoresponsive copolymers [p(NIPAAm-co-AEMA)] are grafted on cellulose papers using a surface-initiated atom transfer radical polymerization approach for bacterial debris release. Later for antibacterial properties, silver nanoparticles (AgNPs) are immobilized on thermoresponsive copolymer-grafted cellulose papers using electrostatic interactions. We confirm the thermoresponsive copolymer grafting and AgNP coating by attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Thermoresponsiveness and reusability of the modified cellulose papers are confirmed through water contact angle measurements. The interaction potency between AgNPs and modified cellulose is validated by inductively coupled plasma atomic emission spectroscopy analysis. Gram-negative bacteria Escherichia coli (E. coli DH5-α) is used to demonstrate antibacterial hybrid kill and release performance. Agar-diffusion testing demonstrates the antibacterial nature of the modified cellulose papers. The fluorescence micrograph reveals that modified cellulose papers can effectively release almost all the dead bacterial debris from their surfaces after thermal stimulus wash. The modified cellulose paper surfaces are expected to have wide applications in the field of exploring more antibacterial and smart surfaces.
Collapse
Affiliation(s)
- Bhaskarchand Gautam
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | - Syed Atif Ali
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | | |
Collapse
|
10
|
Wang F, Sha X, Wu R, Zhang L, Song X, Tian X, Pan G, Liu L. A versatile pH-responsive peptide based dynamic biointerface for tracking bacteria killing and infection resistance. Biomater Sci 2021; 9:5785-5790. [PMID: 34350905 DOI: 10.1039/d1bm00950h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we reported a versatile dynamic biointerface based on pH-responsive peptide self-assembly and disassembly to capture the bacteria to avoid bacteria further infected tissue around that can release peptides from the surface in a slightly acidic environment to kill the bacteria with the specificity. The exposed biointerface still presented infection resistance.
Collapse
Affiliation(s)
- Fenghua Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ghavamian S, Hay ID, Habibi R, Lithgow T, Cadarso VJ. Three-Dimensional Micropatterning Deters Early Bacterial Adherence and Can Eliminate Colonization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23339-23351. [PMID: 33974396 DOI: 10.1021/acsami.1c01902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing strategies to prevent bacterial infections that do not rely on the use of drugs is regarded globally as an important means to stem the tide of antimicrobial resistance, as argued by the World Health Organization (WHO) (Mendelson, M.; Matsoso, M. P. The World Health Organization Global Action Plan for Antimicrobial Resistance. S. Afr. Med. J. 2015, 105 (5), 325-325. DOI: 10.7196/SAMJ.9644). Given that many antimicrobial-resistant infections are caused by the bacterial colonization of indwelling medical devices such as catheters and ventilators, the use of microengineered surfaces to prevent the initial attachment of microbes to these devices is a promising solution. In this work, it is demonstrated that 3D engineered surfaces can inhibit the initial phases of surface colonization for Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, representing the three most common catheter-associated urinary tract bacterial infections, identified by the WHO as urgent threats. A variety of designs including 11 different topographies and configurations that exhibited random distributions, sharp protrusions, and/or curvilinear shapes with dimensions ranging between 500 nm and 2 μm were tested to better understand the initial stages of surface colonization and how to optimize the design of fabricated surfaces for improved inhibition. These topographies were fabricated in two configurations to obtain either a standard 2D cross section or a 3D engineered topography using a novel UV lithography process enabling cost-efficient high-throughput manufacturing. Evaluating both the number of adhered bacteria and microcolonies formed by all three bacterial pathogens on the different surfaces provides insight into the initial colonization phase of bacterial growth on the various surfaces. The results demonstrate that both initial attachment and subsequent colonization can be significantly reduced on concrete 3D engineered patterns when compared to flat substrates and standard 2D micropatterns. Thus, this technology has great potential to reduce the colonization of bacteria on surfaces in clinical settings without the need for chemical treatments that might enhance antimicrobial resistance.
Collapse
Affiliation(s)
- Sara Ghavamian
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Iain D Hay
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Ruhollah Habibi
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
13
|
Engineering High-Yield Biopolymer Secretion Creates an Extracellular Protein Matrix for Living Materials. mSystems 2021; 6:6/2/e00903-20. [PMID: 33758029 PMCID: PMC8546985 DOI: 10.1128/msystems.00903-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The bacterial extracellular matrix forms autonomously, giving rise to complex material properties and multicellular behaviors. Synthetic matrix analogues can replicate these functions but require exogenously added material or have limited programmability. Here, we design a two-strain bacterial system that self-synthesizes and structures a synthetic extracellular matrix of proteins. We engineered Caulobacter crescentus to secrete an extracellular matrix protein composed of an elastin-like polypeptide (ELP) hydrogel fused to supercharged SpyCatcher [SC(-)]. This biopolymer was secreted at levels of 60 mg/liter, an unprecedented level of biomaterial secretion by a native type I secretion apparatus. The ELP domain was swapped with either a cross-linkable variant of ELP or a resilin-like polypeptide, demonstrating this system is flexible. The SC(-)-ELP matrix protein bound specifically and covalently to the cell surface of a C. crescentus strain that displays a high-density array of SpyTag (ST) peptides via its engineered surface layer. Our work develops protein design guidelines for type I secretion in C. crescentus and demonstrates the autonomous secretion and assembly of programmable extracellular protein matrices, offering a path forward toward the formation of cohesive engineered living materials.IMPORTANCE Engineered living materials (ELM) aim to mimic characteristics of natural occurring systems, bringing the benefits of self-healing, synthesis, autonomous assembly, and responsiveness to traditional materials. Previous research has shown the potential of replicating the bacterial extracellular matrix (ECM) to mimic biofilms. However, these efforts require energy-intensive processing or have limited tunability. We propose a bacterially synthesized system that manipulates the protein content of the ECM, allowing for programmable interactions and autonomous material formation. To achieve this, we engineered a two-strain system to secrete a synthetic extracellular protein matrix (sEPM). This work is a step toward understanding the necessary parameters to engineering living cells to autonomously construct ELMs.
Collapse
|
14
|
Proner MC, de Meneses AC, Veiga AA, Schlüter H, Oliveira DD, Luccio MD. Industrial Cooling Systems and Antibiofouling Strategies: A Comprehensive Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariane Carolina Proner
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Alessandra Cristina de Meneses
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Andrea Azevedo Veiga
- Petrobras R&D Center, CENPES, Av. Horácio Macedo, 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 21941-915, Brazil
| | - Helga Schlüter
- Petrobras R&D Center, CENPES, Av. Horácio Macedo, 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 21941-915, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Marco Di Luccio
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|
15
|
Peles F, Sipos P, Kovács S, Győri Z, Pócsi I, Pusztahelyi T. Biological Control and Mitigation of Aflatoxin Contamination in Commodities. Toxins (Basel) 2021; 13:toxins13020104. [PMID: 33535580 PMCID: PMC7912779 DOI: 10.3390/toxins13020104] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins (AFs) are toxic secondary metabolites produced mostly by Aspergillus species. AF contamination entering the feed and food chain has been a crucial long-term issue for veterinarians, medicals, agroindustry experts, and researchers working in this field. Although different (physical, chemical, and biological) technologies have been developed, tested, and employed to mitigate the detrimental effects of mycotoxins, including AFs, universal methods are still not available to reduce AF levels in feed and food in the last decades. Possible biological control by bacteria, yeasts, and fungi, their excretes, the role of the ruminal degradation, pre-harvest biocontrol by competitive exclusion or biofungicides, and post-harvest technologies and practices based on biological agents currently used to alleviate the toxic effects of AFs are collected in this review. Pre-harvest biocontrol technologies can give us the greatest opportunity to reduce AF production on the spot. Together with post-harvest applications of bacteria or fungal cultures, these technologies can help us strictly reduce AF contamination without synthetic chemicals.
Collapse
Affiliation(s)
- Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
| | - Péter Sipos
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary; (P.S.); (Z.G.)
| | - Szilvia Kovács
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary; (P.S.); (Z.G.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary;
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
- Correspondence: ; Tel.: +36-20-210-9491
| |
Collapse
|
16
|
Lee SW, Phillips KS, Gu H, Kazemzadeh-Narbat M, Ren D. How microbes read the map: Effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials 2020; 268:120595. [PMID: 33360301 DOI: 10.1016/j.biomaterials.2020.120595] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Microbes have remarkable capabilities to attach to the surface of implanted medical devices and form biofilms that adversely impact device function and increase the risk of multidrug-resistant infections. The physicochemical properties of biomaterials have long been known to play an important role in biofilm formation. More recently, a series of discoveries in the natural world have stimulated great interest in the use of 3D surface topography to engineer antifouling materials that resist bacterial colonization. There is also increasing evidence that some medical device surface topographies, such as those designed for tissue integration, may unintentionally promote microbial attachment. Despite a number of reviews on surface topography and biofilm control, there is a missing link between how bacteria sense and respond to 3D surface topographies and the rational design of antifouling materials. Motivated by this gap, we present a review of how bacteria interact with surface topographies, and what can be learned from current laboratory studies of microbial adhesion and biofilm formation on specific topographic features and medical devices. We also address specific biocompatibility considerations and discuss how to improve the assessment of the anti-biofilm performance of topographic surfaces. We conclude that 3D surface topography, whether intended or unintended, is an important consideration in the rational design of safe medical devices. Future research on next-generation smart antifouling materials could benefit from a greater focus on translation to real-world applications.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States
| | - K Scott Phillips
- United States Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, Silver Spring, MD, 20993, United States.
| | - Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States
| | - Mehdi Kazemzadeh-Narbat
- United States Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Product Evaluation and Quality, Office of Health Technology 6, Silver Spring, MD, 20993, United States; Musculoskeletal Clinical Regulatory Advisers (MCRA), Washington DC, 20001, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, 13244, United States; Department of Biology, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|
17
|
Magneto-mechanically actuated microstructures to efficiently prevent bacterial biofilm formation. Sci Rep 2020; 10:15470. [PMID: 32963304 PMCID: PMC7508806 DOI: 10.1038/s41598-020-72406-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/26/2020] [Indexed: 01/22/2023] Open
Abstract
Biofilm colonisation of surfaces is of critical importance in various areas ranging from indwelling medical devices to industrial setups. Of particular importance is the reduced susceptibility of bacteria embedded in a biofilm to existing antimicrobial agents. In this paper, we demonstrate that remotely actuated magnetic cantilevers grafted on a substrate act efficiently in preventing bacterial biofilm formation. When exposed to an alternating magnetic field, the flexible magnetic cantilevers vertically deflect from their initial position periodically, with an extremely low frequency (0.16 Hz). The cantilevers’ beating prevents the initial stage of bacterial adhesion to the substrate surface and the subsequent biofilm growth. Our experimental data on E. coli liquid cultures demonstrate up to a 70% reduction in biofilm formation. A theoretical model has been developed to predict the amplitude of the cantilevers vertical deflection. Our results demonstrate proof-of-concept for a device that can magneto-mechanically prevent the first stage in bacterial biofilm formation, acting as on-demand fouling release active surfaces.
Collapse
|
18
|
Gu H, Lee SW, Carnicelli J, Zhang T, Ren D. Magnetically driven active topography for long-term biofilm control. Nat Commun 2020; 11:2211. [PMID: 32371860 PMCID: PMC7200660 DOI: 10.1038/s41467-020-16055-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Microbial biofilm formation on indwelling medical devices causes persistent infections that cannot be cured with conventional antibiotics. To address this unmet challenge, we engineer tunable active surface topographies with micron-sized pillars that can beat at a programmable frequency and force level in an electromagnetic field. Compared to the flat and static controls, active topographies with the optimized design prevent biofilm formation and remove established biofilms of uropathogenic Escherichia coli (UPEC), Pseudomonas aeruginosa, and Staphylococcus aureus, with up to 3.7 logs of biomass reduction. In addition, the detached biofilm cells are found sensitized to bactericidal antibiotics to the level comparable to exponential-phase planktonic cells. Based on these findings, a prototype catheter is engineered and found to remain clean for at least 30 days under the flow of artificial urine medium, while the control catheters are blocked by UPEC biofilms within 5 days.
Collapse
Affiliation(s)
- Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Joseph Carnicelli
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Teng Zhang
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
- Department of Mechanical and Aerospace Engineering, Syracuse University, 214 Link Hall, Syracuse, New York, 13244, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA.
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA.
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York, 13244, USA.
- Department of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York, 13244, USA.
| |
Collapse
|
19
|
Ma J, Lin W, Xu L, Liu S, Xue W, Chen S. Resistance to Long-Term Bacterial Biofilm Formation Based on Hydrolysis-Induced Zwitterion Material with Biodegradable and Self-Healing Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3251-3259. [PMID: 32154728 DOI: 10.1021/acs.langmuir.0c00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Long-term resistance of biomaterials to the bacterial biofilm formation without antibiotic or biocide is highly demanded for biomedical applications. In this work, a novel biodegradable biomaterial with excellent capability to prevent long-term bacterial biofilm formation is prepared by the following two steps. Ethylcarboxybetaine ester analogue methacrylate (ECBEMA), poly(ethylene glycol) monomethacrylate (PEGMA), and 3-methacryloxypropyletris(trimethylsiloxy)silane (TRIS) were copolymerized to obtain p(ECBEMA-PEGMA-TRIS) (PEPT). Then, PEPT was cross-linked by isocyanate-terminated polylactic acid (IPDI-PLA-IPDI) to obtain the final PEPTx-PLAy (x and y are the number-average molecular weights (Mn) of PEPT and PLA, respectively) with optimal mechanical strength and adjustable surface regeneration rate. Static contact angle measurement, protein adsorption measurement, and attenuated total reflectance infrared (ATR-IR) results show that the PEPT19800-PLA800 film surface can generate a zwitterionic layer to resist nonspecific protein adsorption after surface hydrolysis. Quartz crystal microbalance with dissipation (QCM-D) results indicates that the PEPT19800-PLA800 film can undergo gradual degradation of the surface layer at the lowest swelling rate. Particularly, this material can efficiently resist the bacterial biofilm formation of both Gram-positive bacteria and Gram-negative bacteria over 14 and 6 days, respectively. Moreover, the material also shows an ideal self-healing feature to adapt to harsh conditions. Thus, this nonfouling material shows great potential in biomedical applications and marine antifouling coatings without antibiotic or biocide.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weifeng Lin
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liangbo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sihang Liu
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weili Xue
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengfu Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University, Quzhou 324000, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
20
|
Machado-Paula MM, Corat MAF, Lancellotti M, Mi G, Marciano FR, Vega ML, Hidalgo AA, Webster TJ, Lobo AO. A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110706. [PMID: 32279777 DOI: 10.1016/j.msec.2020.110706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/07/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022]
Abstract
One of the important components in tissue engineering is material structure, providing a model for fixing and the development of cells and tissues, which allows for the transport of nutrients and regulatory molecules to and from cells. The community claims the need for new materials with better properties for use in the clinic. Poly (ε-caprolactone) (PCL) is a biodegradable polymer, semi crystalline, with superior mechanical properties and has attracted an increasing interest due to its usefulness in various biomedical applications. Herein, two different methods (electrospinning versus rotary jet spinning) with different concentrations of PCL produced ultra thin-fibers each with particular characteristics, verified and analyzed by morphology, wettability, thermal and cytotoxicity features and for bacteria colonization. Different PCL scaffold morphologies were found to be dependent on the fabrication method used. All PCL scaffolds showed greater mammalian cell interactions. Most impressively, rotary-jet spun fibers showed that a special rough surface decreased bacteria colonization, emphasizing that no nanoparticle or antibiotic was used; maybe this effect is related with physical (scaffold) and/or biological mechanisms. Thus, this study showed that rotary jet spun fibers possess a special topography compared to electrospun fibers to reduce bacteria colonization and present no cytotoxicity when in contact with mammalian cells.
Collapse
Affiliation(s)
- M M Machado-Paula
- Programa de Pós-graduação em Engenharia Biomédica, Universidade do Vale do Paraíba, São Jose dos Campos, SP 12244 - 000, Brazil; Nanomedicine Laboratories, Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - M A F Corat
- Multidisciplinary Center for Biological Research, Universidade Estadual de Campinas, Campinas, SP 13083-877, Brazil
| | - M Lancellotti
- Laboratory of Biotechnology, Faculty of Pharmaceutic Sciences, Universidade Estadual de Campinas, Campinas, SP 13083-877, Brazil
| | - G Mi
- Nanomedicine Laboratories, Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - F R Marciano
- Nanomedicine Laboratories, Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; Department of Physics, UFPI - Federal University of Piaui, 64049-550 Teresina, PI, Brazil
| | - M L Vega
- Materials and Bionanotechnology Laboratory, Department of Physics, UFPI - Federal University of Piaui, 64049-550 Teresina, PI, Brazil
| | - A A Hidalgo
- Materials and Bionanotechnology Laboratory, Department of Physics, UFPI - Federal University of Piaui, 64049-550 Teresina, PI, Brazil
| | - T J Webster
- Nanomedicine Laboratories, Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - A O Lobo
- Nanomedicine Laboratories, Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; LIMAV-Interdisciplinary Laboratory for Advanced Materials, Department of Materials Engineering, UFPI - Federal University of Piaui, 64049-550 Teresina, PI, Brazil.
| |
Collapse
|
21
|
Ripa R, Shen AQ, Funari R. Detecting Escherichia coli Biofilm Development Stages on Gold and Titanium by Quartz Crystal Microbalance. ACS OMEGA 2020; 5:2295-2302. [PMID: 32064391 PMCID: PMC7017401 DOI: 10.1021/acsomega.9b03540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/26/2019] [Indexed: 05/03/2023]
Abstract
Bacterial biofilms are responsible for persistent infections and biofouling, raising serious concerns in both medical and industrial processes. These motivations underpin the need to develop methodologies to study the complex biological structures of biofilms and prevent their formation on medical implants, tools, and industrial apparatuses. Here, we report the detailed comparison of Escherichia coli biofilm development stages (adhesion, maturation, and dispersion) on gold and titanium surfaces by monitoring the changes in both frequency and dissipation of a quartz crystal microbalance (QCM) device, a cheap and reliable microgravimetric sensor which allows the real-time and label-free characterization of various stages of biofilm development. Although gold is the most common electrode material used for QCM sensors, the titanium electrode is also readily available for QCM sensors; thus, QCM sensors with different metal electrodes serve as a simple platform to probe how pathogens interact with different metal substrates. The QCM outcomes are further confirmed by atomic force microscopy and crystal violet staining, thus validating the effectiveness of this surface sensitive sensor for microbial biofilm research. Moreover, because QCM technology can easily modify the substrate types and coatings, QCM sensors also provide well-controlled experimental conditions to study antimicrobial surface treatments and eradication procedures, even on mature biofilms.
Collapse
Affiliation(s)
- Rosa Ripa
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Riccardo Funari
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
22
|
Jiang L, Zhu W, Qian H, Wang C, Chen Y, Liu P. Fabrication of PMPC/PTM/PEGDA micropatterns onto polypropylene films behaving with dual functions of antifouling and antimicrobial activities. J Mater Chem B 2019; 7:5078-5088. [PMID: 31432877 DOI: 10.1039/c9tb00927b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymer materials with high biocompatibility and versatile functions are urgently required in the biomedical field. The hydrophobic surface and inert traits of polymer materials usually encounter severe biofouling and bacterial infection which hinder the potential application of polymers as biomedical materials. Although many antifouling or antimicrobial coatings have been developed for modification of biomedical devices/implants, few can simultaneously fulfill the requirements for antimicrobial and antifouling activities. Herein, we constructed bifunctional micropatterns with antifouling and antimicrobial properties onto polypropylene (PP) films using argon plasma activation treatment, photomask technique and UV-initiated graft polymerization method. Different sizes of PMPC/PTM/PEGDA micropatterns were fabricated on PP films to yield patterned PP-PMPC/PTM/PEGDA as evidenced by infrared (IR) spectroscopy, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), where PMPC is poly(2-methacryloyloxyethyl phosphorylcholine) for enhancement of hydrophilicity and biocompatibility, PTM is poly(methacryloyloxyethyltrimethylammonium chloride) for contribution to antimicrobial activity and PEGDA is poly(ethylene glycol diacrylate) as the crosslinker. The surface hydrophilicity of patterned PP-PMPC/PTM/PEGDA was characterized by the static water contact angle test. The results showed that the PP sample with a micropattern with the size of 5 μm exhibited the best hydrophilicity. For biological assays of patterned PP-PMPC/PTM/PEGDA, the micropattern size at 5 μm performed the best for both antiplatelet adhesion and antimicrobial activities. We anticipate that this work could provide a new method for building bifunctional biomedical materials to promote the application of PP in biomedical fields.
Collapse
Affiliation(s)
- Liu Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wancheng Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Huaming Qian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
23
|
Lv J, Jin J, Chen J, Cai B, Jiang W. Antifouling and Antibacterial Properties Constructed by Quaternary Ammonium and Benzyl Ester Derived from Lysine Methacrylamide. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25556-25568. [PMID: 31265220 DOI: 10.1021/acsami.9b06281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hemocompatibility and antibacterial property are essential for blood contact devices and medical intervention materials. In this study, positively charged quaternary ammonium (QAC) and hydrophobic benzyl group (OBzl) were introduced onto hydrophilic lysine methacrylamide (LysAAm) to obtain two monomers LysAAm-QAC and LysAAm-OBzl, respectively. The structure characterizations of LysAAm-QAC and LysAAm-OBzl were determined by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, and time-of-flight secondary ion mass spectrometry. LysAAm-QAC and LysAAm-OBzl were cografted onto a silicon wafer with different feeding ratios to construct antifouling and antibacterial properties. The results of fibrinogen adsorption and platelet adhesion proved that the modified sample with the feeding ratio of 3:7 had superior antifouling property. Furthermore, an antimicrobial test with both 2 and 24 h indicated that the modified sample with the feeding ratio of 3:7 had antibacterial ability. The antifouling property was provided by the high surface coverage of LysAAm-QAC and LysAAm-OBzl (91.49%) and the hydrophilic main structure LysAAm on LysAAm-QAC and LysAAm-OBzl (water contact angle was 43.6°). The antibacterial property was improved with the proportion of LysAAm-OBzl (43.6-58.5%) because the increasing hydrophobic OBzl enhanced the ability to insert into the membrane of bacteria and raise the bactericidal efficiency. In application, LysAAm-QAC and LysAAm-OBzl with the feeding ratio of 3:7 were grafted onto the surface of poly(styrene-b-(ethylene-co-butylene)-b-styrene), and a bifunctional surface with antifouling and antibacterial properties was fabricated, which had promising applications in blood contact devices and medical intervention materials.
Collapse
Affiliation(s)
- Jianhua Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
- University of Science and Technology of China , Hefei , Anhui 230026 , PR China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Jiayue Chen
- Wego Holding Company Limited , Weihai 264210 , PR China
| | - Bing Cai
- Wego Holding Company Limited , Weihai 264210 , PR China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
- University of Science and Technology of China , Hefei , Anhui 230026 , PR China
| |
Collapse
|
24
|
Simcox LJ, Pereira RPA, Wellington EMH, Macpherson JV. Boron Doped Diamond as a Low Biofouling Material in Aquatic Environments: Assessment of Pseudomonas aeruginosa Biofilm Formation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25024-25033. [PMID: 31260250 DOI: 10.1021/acsami.9b07245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boron doped diamond (BDD), given the robustness of the material, is becoming an electrode of choice for applications which require long-term electrochemical monitoring of analytes in aqueous environments. However, despite the extensive work in this area, there are no studies which directly assess the biofilm formation (biofouling) capabilities of the material, which is an essential consideration because biofouling often causes deterioration in the sensor performance. Pseudomonas aeruginosa is one of the most prevalent bacterial pathogens linked to water-related diseases, with a strong capacity for forming biofilms on surfaces that are exposed to aquatic environments. In this study, we comparatively evaluate the biofouling capabilities of oxygen-terminated (O-)BDD against materials commonly employed as either the packaging or sensing element in water quality sensors, with an aim to identify factors which control biofilm formation on BDD. We assess the monospecies biofilm formation of P. aeruginosa in two different growth media, Luria-Bertani, a high nutrient source and drinking water, a low nutrient source, at two different temperatures (20 and 37 °C). Multispecies biofilm formation is also investigated. The performance of O-BDD, when tested against all other materials, promotes the lowest extent of P. aeruginosa monospecies biofilm formation, even with corrections made for total surface area (roughness). Importantly, O-BDD shows the lowest water contact angle of all materials tested, that is, greatest hydrophilicity, strongly suggesting that for these bacterial species, the factors controlling the hydrophilicity of the surface are important in reducing bacterial adhesion. This was further proven by keeping the surface topography fixed and changing surface termination to hydrogen (H-), to produce a strongly hydrophobic surface. A noticeable increase in biofilm formation was found. Doping with boron also results in changes in hydrophobicity/hydrophilicity compared to the undoped counterpart, which in turn affects the bacterial growth. For practical electrochemical sensing applications in aquatic environments, this study highlights the extremely beneficial effects of employing smooth, O-terminated (hydrophilic) BDD electrodes.
Collapse
|
25
|
Wondraczek L, Pohnert G, Schacher FH, Köhler A, Gottschaldt M, Schubert US, Küsel K, Brakhage AA. Artificial Microbial Arenas: Materials for Observing and Manipulating Microbial Consortia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900284. [PMID: 30993782 DOI: 10.1002/adma.201900284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
From the smallest ecological niche to global scale, communities of microbial life present a major factor in system regulation and stability. As long as laboratory studies remain restricted to single or few species assemblies, however, very little is known about the interaction patterns and exogenous factors controlling the dynamics of natural microbial communities. In combination with microfluidic technologies, progress in the manufacture of functional and stimuli-responsive materials makes artificial microbial arenas accessible. As habitats for natural or multispecies synthetic consortia, they are expected to not only enable detailed investigations, but also the training and the directed evolution of microbial communities in states of balance and disturbance, or under the effects of modulated stimuli and spontaneous response triggers. Here, a perspective on how materials research will play an essential role in generating answers to the most pertinent questions of microbial engineering is presented, and the concept of adaptive microbial arenas and possibilities for their construction from particulate microniches to 3D habitats is introduced. Materials as active and tunable components at the interface of living and nonliving matter offer exciting opportunities in this field. Beyond forming the physical horizon for microbial cultivates, they will enable dedicated intervention, training, and observation of microbial consortia.
Collapse
Affiliation(s)
- Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| | - Georg Pohnert
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743, Jena, Germany
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Felix H Schacher
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Angela Köhler
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Michael Gottschaldt
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Kirsten Küsel
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Dornburger Str. 159, 07743, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103, Leipzig, Germany
| | - Axel A Brakhage
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| |
Collapse
|
26
|
Assaf JC, Nahle S, Chokr A, Louka N, Atoui A, El Khoury A. Assorted Methods for Decontamination of Aflatoxin M1 in Milk Using Microbial Adsorbents. Toxins (Basel) 2019; 11:E304. [PMID: 31146398 PMCID: PMC6628408 DOI: 10.3390/toxins11060304] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 01/30/2023] Open
Abstract
Aflatoxins (AF) are carcinogenic metabolites produced by different species of Aspergillus which readily colonize crops. AFM1 is secreted in the milk of lactating mammals through the ingestion of feedstuffs contaminated by aflatoxin B1 (AFB1). Therefore, its presence in milk, even in small amounts, presents a real concern for dairy industries and consumers of dairy products. Different strategies can lead to the reduction of AFM1 contamination levels in milk. They include adopting good agricultural practices, decreasing the AFB1 contamination of animal feeds, or using diverse types of adsorbent materials. One of the most effective types of adsorbents used for AFM1 decontamination are those of microbial origin. This review discusses current issues about AFM1 decontamination methods. These methods are based on the use of different bio-adsorbent agents such as bacteria and yeasts to complex AFM1 in milk. Moreover, this review answers some of the raised concerns about the binding stability of the formed AFM1-microbial complex. Thus, the efficiency of the decontamination methods was addressed, and plausible experimental variants were discussed.
Collapse
Affiliation(s)
- Jean Claude Assaf
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut P.O. Box 6573/14, Lebanon.
| | - Sahar Nahle
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut P.O. Box 6573/14, Lebanon.
| | - Ali Chokr
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut P.O. Box 6573/14, Lebanon.
| | - Nicolas Louka
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
| | - Ali Atoui
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
| |
Collapse
|
27
|
Raczkowska J, Stetsyshyn Y, Awsiuk K, Brzychczy-Włoch M, Gosiewski T, Jany B, Lishchynskyi O, Shymborska Y, Nastyshyn S, Bernasik A, Ohar H, Krok F, Ochońska D, Kostruba A, Budkowski A. "Command" surfaces with thermo-switchable antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109806. [PMID: 31349441 DOI: 10.1016/j.msec.2019.109806] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 01/11/2023]
Abstract
In the presented work "smart" antibacterial surfaces based on silver nanoparticles (AgNPs) embedded in temperature-responsive poly(di(ethylene glycol)methyl ether methacrylate) - (POEGMA188) as well as poly(4-vinylpyridine) - (P4VP) coatings attached to a glass surface were successfully prepared. The composition, thickness, morphology and wettability of the resulting coatings were analyzed using ToF-SIMS, XPS, EDX, ellipsometry, AFM, SEM and CA measurements, respectively. Temperature-switched killing of the bacteria was tested against Escherichia coli ATCC 25922 (representative of Gram-negative bacteria) and Staphylococcus aureus ATCC 25923 (representative of Gram-positive bacteria) at 4 and 37 °C. In general at 4 °C no significant difference was observed between the amounts of bacteria accounted on the grafted brush coatings and within the control sample. In contrast, at 37 °C almost no bacteria were visible for temperature-responsive coating with AgNPs, whereas the growth of bacteria remains not disturbed for "pure" coating, indicating strong temperature-dependent antibacterial properties of AgNPs integrated into brushes.
Collapse
Affiliation(s)
- Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine.
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Tomasz Gosiewski
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Benedykt Jany
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ostap Lishchynskyi
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Yana Shymborska
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-049 Kraków, Poland
| | - Halyna Ohar
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Franciszek Krok
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Dorota Ochońska
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Andrij Kostruba
- Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Pekarska 50, 79000 Lviv, Ukraine
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
28
|
Assaf JC, Khoury AE, Chokr A, Louka N, Atoui A. A novel method for elimination of aflatoxin M1 in milk using
Lactobacillus rhamnosus
GG
biofilm. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12578] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jean Claude Assaf
- Centre d'Analyses et de Recherche (CAR)Unité de Recherche Technologies et Valorisation agro‐Alimentaire (UR‐TVA) Faculté des Sciences Université Saint‐Joseph de Beyrouth Campus des Sciences et Technologies, Mar Roukos Matn Lebanon
- Laboratory of Microbiology Department of Life and Earth Sciences Faculty of Sciences I Lebanese University Hadat Campus Beirut Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE) Doctoral School of Sciences and Technologies Lebanese University Hadat Campus Beirut Lebanon
- Ecole Doctorale ‘Sciences et Santé’ Université Saint‐Joseph de Beyrouth Campus des Sciences Médicales et Infirmières Riad El Solh, Beyrouth Liban
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR)Unité de Recherche Technologies et Valorisation agro‐Alimentaire (UR‐TVA) Faculté des Sciences Université Saint‐Joseph de Beyrouth Campus des Sciences et Technologies, Mar Roukos Matn Lebanon
| | - Ali Chokr
- Laboratory of Microbiology Department of Life and Earth Sciences Faculty of Sciences I Lebanese University Hadat Campus Beirut Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE) Doctoral School of Sciences and Technologies Lebanese University Hadat Campus Beirut Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche (CAR)Unité de Recherche Technologies et Valorisation agro‐Alimentaire (UR‐TVA) Faculté des Sciences Université Saint‐Joseph de Beyrouth Campus des Sciences et Technologies, Mar Roukos Matn Lebanon
| | - Ali Atoui
- Laboratory of Microbiology Department of Life and Earth Sciences Faculty of Sciences I Lebanese University Hadat Campus Beirut Lebanon
| |
Collapse
|
29
|
Lee SW, Gu H, Kilberg JB, Ren D. Sensitizing bacterial cells to antibiotics by shape recovery triggered biofilm dispersion. Acta Biomater 2018; 81:93-102. [PMID: 30267885 DOI: 10.1016/j.actbio.2018.09.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Abstract
Microbial biofilms are a leading cause of chronic infections in humans and persistent biofouling in industries due to extremely high-level tolerance of biofilm cells to antimicrobial agents. Eradicating mature biofilms is especially challenging because of the protection of the extracellular matrix and slow growth of biofilm cells. Recently, we reported that established biofilms can be effectively removed (e.g. 99.9% dispersion of 48 h Pseudomonas aeruginosa PAO1 biofilms) by shape memory polymer-based dynamic changes in surface topography. Here, we demonstrate that such biofilm dispersion also sensitizes biofilm cells to conventional antibiotics. For example, shape recovery in the presence of 50 µg/mL tobramycin reduced biofilm cell counts by more than 3 logs (2,479-fold) compared to the static flat control. The observed effects were attributed to the disruption of biofilm structure and increase in cellular activities as evidenced by an 11.8-fold increase in intracellular level of adenosine triphosphate (ATP), and 4.1-fold increase in expression of the rrnB gene in detached cells. These results can help guide the design of new control methods to better combat biofilm associated antibiotic-resistant infections. STATEMENT OF SIGNIFICANCE: Microbial infections are challenging due to high-level antibiotic resistance of biofilm cells. The protection of an extracellular matrix and slow growth of biofilm cells render conventional antibiotics ineffective. Thus, it is important to develop new technologies that can remove mature biofilms and sensitize biofilm cells to antibiotics. Recently, we demonstrated that dynamic change in surface topography can remove 48 h Pseudomonas aeruginosa PAO1 biofilms by 99.9%. In this study, we investigated how shape recovery triggered dispersion affect the physiology of biofilm cells and associated antibiotic susceptibility. These results are helpful for understanding biofilm dispersion and developing more effective control methods.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, United States
| | - Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, United States
| | - James Bryan Kilberg
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States; Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
30
|
Boguslavsky Y, Shemesh M, Friedlander A, Rutenberg R, Filossof AM, Buslovich A, Poverenov E. Eliminating the Need for Biocidal Agents in Anti-Biofouling Polymers by Applying Grafted Nanosilica Instead. ACS OMEGA 2018; 3:12437-12445. [PMID: 31457975 PMCID: PMC6645711 DOI: 10.1021/acsomega.8b01438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/22/2018] [Indexed: 05/07/2023]
Abstract
A nondestructive one-step approach was applied for grafting biocide-free monodispersed silica nanoparticles (SNPs) with a diameter of 30 ± 10 nm on polystyrene, polyethylene, and polyvinyl chloride surfaces. The prepared surfaces were comprehensively characterized using spectroscopic (Fourier transform infrared attenuated total reflection, ultraviolet-visible, and X-ray photoelectron spectroscopy) and microscopic (high-resolution scanning electron microscopy and atomic force microscopy) methods. The modified polymers were found to maintain their original mechanical and physical properties, while their nanoroughness on the other hand had risen by 1.6-2.7 times because of SNP grafting. The SNP-grafted surfaces displayed anti-biofouling properties, resulting in a significant reduction in the attached Gram-positive Bacillus licheniformis or Gram-negative Pseudomonas aeruginosa bacteria compared to their nongrafted counterparts. Confocal laser scanning microscopy and scanning electron microscopy studies have confirmed that bacterial cells could not successfully adhere onto the SNP-grafted polymer films regardless of the polymer type, and their biofilm formation was therefore damaged. The presented facile and straightforward protocol allows eliminating the need for biocidal agents and resorts to grafted nanosilica instead. This strategy may serve as a feasible and safe platform for the development of sustainable anti-biofouling surfaces in biomedical devices; food, water, and air treatment systems; and industrial equipment.
Collapse
Affiliation(s)
- Yonit Boguslavsky
- Department
of Food Quality and Safety, Agricultural
Research Organization, The Volcani Center, Rishon LeZion 75288, Israel
| | - Moshe Shemesh
- Department
of Food Quality and Safety, Agricultural
Research Organization, The Volcani Center, Rishon LeZion 75288, Israel
| | - Alon Friedlander
- Department
of Food Quality and Safety, Agricultural
Research Organization, The Volcani Center, Rishon LeZion 75288, Israel
- Biofilm
Research Laboratory, Hadassah School of Dental Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Roi Rutenberg
- Department
of Food Quality and Safety, Agricultural
Research Organization, The Volcani Center, Rishon LeZion 75288, Israel
- Institute
of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Anat Molad Filossof
- Department
of Food Quality and Safety, Agricultural
Research Organization, The Volcani Center, Rishon LeZion 75288, Israel
| | - Aviva Buslovich
- Department
of Food Quality and Safety, Agricultural
Research Organization, The Volcani Center, Rishon LeZion 75288, Israel
- Department
of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Elena Poverenov
- Department
of Food Quality and Safety, Agricultural
Research Organization, The Volcani Center, Rishon LeZion 75288, Israel
| |
Collapse
|
31
|
Zhang J, Huang J, Say C, Dorit RL, Queeney KT. Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates. J Colloid Interface Sci 2018; 519:203-213. [PMID: 29500992 DOI: 10.1016/j.jcis.2018.02.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS The nucleation of biofilms is known to be affected by both the chemistry and topography of the underlying substrate, particularly when topography includes nanoscale (<100 nm) features. However, determining the role of topography vs. chemistry is complicated by concomitant variation in both as a result of typical surface modification techniques. Analyzing the behavior of biofilm-forming bacteria exposed to surfaces with systematic, independent variation of both topography and surface chemistry should allow differentiation of the two effects. EXPERIMENTS Silicon surfaces with reproducible nanotopography were created by anisotropic etching in deoxygenated water. Surface chemistry was varied independently to create hydrophilic (OH-terminated) and hydrophobic (alkyl-terminated) surfaces. The attachment and proliferation of Psuedomonas aeruginosa to these surfaces was characterized over a period of 12 h using fluorescence and confocal microscopy. FINDINGS The number of attached bacteria as well as the structural characteristics of the nucleating biofilm were influenced by both surface nanotopography and surface chemistry. In general terms, the presence of both nanoscale features and hydrophobic surface chemistry enhance bacterial attachment and colonization. However, the structural details of the resulting biofilms suggest that surface chemistry and topography interact differently on each of the four surface types we studied.
Collapse
Affiliation(s)
- Jing Zhang
- Biochemistry Program, Smith College, Northampton, MA 01063, USA.
| | - Jinglin Huang
- Picker Engineering Program, Smith College, Northampton, MA 01063, USA.
| | - Carmen Say
- Biochemistry Program, Smith College, Northampton, MA 01063, USA.
| | - Robert L Dorit
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA.
| | - K T Queeney
- Department of Chemistry, Smith College, Northampton, MA 01063, USA.
| |
Collapse
|
32
|
Alalwan H, Nile CJ, Rajendran R, McKerlie R, Reynolds P, Gadegaard N, Ramage G. Nanoimprinting of biomedical polymers reduces candidal physical adhesion. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1045-1049. [PMID: 29408656 DOI: 10.1016/j.nano.2018.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
Abstract
Management of fungal biofilms represents a significant challenge to healthcare. As a preventive approach, minimizing adhesion between indwelling medical devices and microorganisms would be an important step forward. This study investigated the anti-fouling capacity of engineered nanoscale topographies to the pathogenic yeast Candida albicans. Highly ordered arrays of nano-pit topographies were shown to significantly reduce the physical adherence capacity of C. albicans. This study shows a potential of nanoscale patterns to inhibit and prevent pathogenic biofilm formation on biomedical substrates.
Collapse
Affiliation(s)
- Hasanain Alalwan
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences; College of Dentistry, University of Baghdad, Iraq
| | - Christopher J Nile
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences
| | - Ranjith Rajendran
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences
| | - Robert McKerlie
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences
| | - Paul Reynolds
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | - Gordon Ramage
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences.
| |
Collapse
|
33
|
Abstract
Microbial biofilms can colonize medical devices and human tissues, and their role in microbial pathogenesis is now well established. Not only are biofilms ubiquitous in natural and human-made environments, but they are also estimated to be associated with approximately two-thirds of nosocomial infections. This multicellular aggregated form of microbial growth confers a remarkable resistance to killing by antimicrobials and host defenses, leading biofilms to cause a wide range of subacute or chronic infections that are difficult to eradicate. We have gained tremendous knowledge on the molecular, genetic, microbiological, and biophysical processes involved in biofilm formation. These insights now shape our understanding, diagnosis, and management of many infectious diseases and direct the development of novel antimicrobial therapies that target biofilms. Bacterial and fungal biofilms play an important role in a range of diseases in pulmonary and critical care medicine, most importantly catheter-associated infections, ventilator-associated pneumonia, chronic Pseudomonas aeruginosa infections in cystic fibrosis lung disease, and Aspergillus fumigatus pulmonary infections.
Collapse
|
34
|
Wei T, Tang Z, Yu Q, Chen H. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37511-37523. [PMID: 28992417 DOI: 10.1021/acsami.7b13565] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The attachment and subsequent colonization of bacteria on the surfaces of synthetic materials and devices lead to serious problems in both human healthcare and industrial applications. Therefore, antibacterial surfaces that can prevent bacterial attachment and biofilm formation have been a long-standing focus of considerable interest and research efforts. Recently, a promising "kill-release" strategy has been proposed and applied to construct so-called smart antibacterial surfaces, which can kill bacteria attached to their surface and then undergo on-demand release of the dead bacteria and other debris to reveal a clean surface under an appropriate stimulus, thereby maintaining effective long-term antibacterial activity. This Review focuses on the recent progress (particularly over the past 5 years) on such smart antibacterial surfaces. According to the different design strategies, these surfaces can be divided into three categories: (i) "K + R"-type surfaces, which have both a killing unit and a releasing unit; (ii) "K → R"-type surfaces, which have a surface-immobilized killing unit that can be switched to perform a releasing function; and (iii) "K + (R)"-type surfaces, which have only a killing unit but can release dead bacteria upon the addition of a release solution. In the end, a brief perspective on future research directions and the major challenges in this promising field is also presented.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Zengchao Tang
- Jiangsu Biosurf Biotech Company Ltd. , 218 Xinghu Street, Suzhou, 215123, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| |
Collapse
|
35
|
Cicotte KN, Reed JA, Nguyen PAH, De Lora JA, Hedberg-Dirk EL, Canavan HE. Optimization of electrospun poly(N-isopropyl acrylamide) mats for the rapid reversible adhesion of mammalian cells. Biointerphases 2017; 12:02C417. [PMID: 28610429 PMCID: PMC5469682 DOI: 10.1116/1.4984933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Poly(N-isopropyl acrylamide) (pNIPAM) is a "smart" polymer that responds to changes in altering temperature near physiologically relevant temperatures, changing its relative hydrophobicity. Mammalian cells attach to pNIPAM at 37 °C and detach spontaneously as a confluent sheet when the temperature is shifted below the lower critical solution temperature (∼32 °C). A variety of methods have been used to create pNIPAM films, including plasma polymerization, self-assembled monolayers, and electron beam ionization. However, detachment of confluent cell sheets from these pNIPAM films can take well over an hour to achieve potentially impacting cellular behavior. In this work, pNIPAM mats were prepared via electrospinning (i.e., espNIPAM) by a previously described technique that the authors optimized for cell attachment and rapid cell detachment. Several electrospinning parameters were varied (needle gauge, collection time, and molecular weight of the polymer) to determine the optimum parameters. The espNIPAM mats were then characterized using Fourier-transform infrared, x-ray photoelectron spectroscopy, and scanning electron microscopy. The espNIPAM mats showing the most promise were seeded with mammalian cells from standard cell lines (MC3T3-E1) as well as cancerous tumor (EMT6) cells. Once confluent, the temperature of the cells and mats was changed to ∼25 °C, resulting in the extremely rapid swelling of the mats. The authors find that espNIPAM mats fabricated using small, dense fibers made of high molecular weight pNIPAM are extremely well-suited as a rapid release method for cell sheet harvesting.
Collapse
Affiliation(s)
- Kirsten N Cicotte
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jamie A Reed
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Phuong Anh H Nguyen
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131 and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jacqueline A De Lora
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Elizabeth L Hedberg-Dirk
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Heather E Canavan
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
36
|
Gu H, Lee SW, Buffington SL, Henderson JH, Ren D. On-Demand Removal of Bacterial Biofilms via Shape Memory Activation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21140-4. [PMID: 27517738 PMCID: PMC5222513 DOI: 10.1021/acsami.6b06900] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/12/2016] [Indexed: 05/19/2023]
Abstract
Bacterial biofilms are a major cause of chronic infections and biofouling; however, effective removal of established biofilms remains challenging. Here we report a new strategy for biofilm control using biocompatible shape memory polymers with defined surface topography. These surfaces can both prevent bacterial adhesion and remove established biofilms upon rapid shape change with moderate increase of temperature, thereby offering more prolonged antifouling properties. We demonstrate that this strategy can achieve a total reduction of Pseudomonas aeruginosa biofilms by 99.9% compared to the static flat control. It was also found effective against biofilms of Staphylococcus aureus and an uropathogenic strain of Escherichia coli.
Collapse
Affiliation(s)
- Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Department of Civil
and Environmental Engineering, and Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Department of Civil
and Environmental Engineering, and Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Shelby Lois Buffington
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Department of Civil
and Environmental Engineering, and Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - James H. Henderson
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Department of Civil
and Environmental Engineering, and Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Department of Civil
and Environmental Engineering, and Department of Biology, Syracuse University, Syracuse, New York 13244, United States
- Dacheng Ren. Phone: 001-315-443-4409. Fax: 001-315-443-9175.
| |
Collapse
|
37
|
Gu H, Chen A, Song X, Brasch ME, Henderson JH, Ren D. How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography. Sci Rep 2016; 6:29516. [PMID: 27412365 PMCID: PMC4944170 DOI: 10.1038/srep29516] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns.
Collapse
Affiliation(s)
- Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Aaron Chen
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Xinran Song
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Megan E Brasch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - James H Henderson
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA.,Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA.,Department of Biology, Syracuse University, Syracuse, NY 13244, United States
| |
Collapse
|
38
|
Susarrey-Arce A, Sorzabal-Bellido I, Oknianska A, McBride F, Beckett AJ, Gardeniers JGE, Raval R, Tiggelaar RM, Diaz Fernandez YA. Bacterial viability on chemically modified silicon nanowire arrays. J Mater Chem B 2016; 4:3104-3112. [PMID: 32263048 DOI: 10.1039/c6tb00460a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The global threat of antimicrobial resistance is driving an urgent need for novel antimicrobial strategies. Functional surfaces are essential to prevent spreading of infection and reduce surface contamination. In this study we have fabricated and characterized multiscale-functional nanotopographies with three levels of functionalization: (1) nanostructure topography in the form of silicon nanowires, (2) covalent chemical modification with (3-aminopropyl)triethoxysilane, and (3) incorporation of chlorhexidine digluconate. Cell viability assays were carried out on two model microorganisms E. coli and S. aureus over these nanotopographic surfaces. Using SEM we have identified two growth modes producing distinctive multicellular structures, i.e. in plane growth for E. coli and out of plane growth for S. aureus. We have also shown that these chemically modified SiNWs arrays are effective in reducing the number of planktonic and surface-attached microorganisms.
Collapse
Affiliation(s)
- A Susarrey-Arce
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre, University of Liverpool, Oxford Street, L69 3BX, Liverpool, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dou XQ, Zhang D, Feng C, Jiang L. Bioinspired Hierarchical Surface Structures with Tunable Wettability for Regulating Bacteria Adhesion. ACS NANO 2015; 9:10664-72. [PMID: 26434605 DOI: 10.1021/acsnano.5b04231] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
To circumvent the influence from varied topographies, the systematic study of wettability regulated Gram-positive bacteria adhesion is carried out on bioinspired hierarchical structures duplicated from rose petal structures. With the process of tuning the interfacial chemical composition of the self-assembled films from supramolecular gelators, the varied wettable surfaces from superhydrophilicity to superhydrophobicity can be obtained. The investigation of Gram-positive bacteria adhesion on the hierarchical surfaces reveals that Gram-positive bacteria adhesion is crucially mediated by peptidoglycan due to its different interaction mechanisms with wettable surfaces. The study makes it possible to systematically study the influence mechanism of wettability regulated bacteria adhesion and provides a sight to make the bioinspired topographies in order to investigate wettability regulated bioadhesion.
Collapse
Affiliation(s)
- Xiao-Qiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Di Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
40
|
Kolewe KW, Peyton SR, Schiffman JD. Fewer Bacteria Adhere to Softer Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19562-9. [PMID: 26291308 PMCID: PMC4631609 DOI: 10.1021/acsami.5b04269] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Clinically, biofilm-associated infections commonly form on intravascular catheters and other hydrogel surfaces. The overuse of antibiotics to treat these infections has led to the spread of antibiotic resistance and underscores the importance of developing alternative strategies that delay the onset of biofilm formation. Previously, it has been reported that during surface contact, bacteria can detect surfaces through subtle changes in the function of their motors. However, how the stiffness of a polymer hydrogel influences the initial attachment of bacteria is unknown. Systematically, we investigated poly(ethylene glycol) dimethacrylate (PEGDMA) and agar hydrogels that were 20 times thicker than the cumulative size of bacterial cell appendages, as a function of Young's moduli. Soft (44.05-308.5 kPa), intermediate (1495-2877 kPa), and stiff (5152-6489 kPa) hydrogels were synthesized. Escherichia coli and Staphylococcus aureus attachment onto the hydrogels was analyzed using confocal microscopy after 2 and 24 h incubation periods. Independent of hydrogel chemistry and incubation time, E. coli and S. aureus attachment correlated positively to increasing hydrogel stiffness. For example, after a 24 h incubation period, there were 52 and 82% fewer E. coli adhered to soft PEGDMA hydrogels than to the intermediate and stiff PEGDMA hydrogels, respectively. A 62 and 79% reduction in the area coverage by the Gram-positive microbe S. aureus occurred after 24 h incubation on the soft versus intermediate and stiff PEGDMA hydrogels. We suggest that hydrogel stiffness is an easily tunable variable that could potentially be used synergistically with traditional antimicrobial strategies to reduce early bacterial adhesion and therefore the occurrence of biofilm-associated infections.
Collapse
Affiliation(s)
- Kristopher W. Kolewe
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003–9303
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003–9303
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003–9303
| |
Collapse
|
41
|
Song F, Koo H, Ren D. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation. J Dent Res 2015; 94:1027-34. [DOI: 10.1177/0022034515587690] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adhesion of microbes, such as bacteria and fungi, to surfaces and the subsequent formation of biofilms cause multidrug-tolerant infections in humans and fouling of medical devices. To address these challenges, it is important to understand how material properties affect microbe-surface interactions and engineer better nonfouling materials. Here we review the recent progresses in this field and discuss the main challenges and opportunities. In particular, we focus on bacterial biofilms and review the effects of surface energy, charge, topography, and stiffness of substratum material on bacterial adhesion. We summarize how these surface properties influence oral biofilm formation, and we discuss the important findings from nondental systems that have potential applications in dental medicine.
Collapse
Affiliation(s)
- F. Song
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, USA
| | - H. Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, University of Pennsylvania, Philadelphia, PA, USA
| | - D. Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, USA
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, USA
- Department of Biology, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
42
|
Schober L, Büttner E, Laske C, Traube A, Brode T, Traube AF, Bauernhansl T. Cell Dispensing in Low-Volume Range with the Immediate Drop-on-Demand Technology (I-DOT). ACTA ACUST UNITED AC 2015; 20:154-63. [DOI: 10.1177/2211068214562450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Natural Green coating inhibits adhesion of clinically important bacteria. Sci Rep 2015; 5:8287. [PMID: 25655943 PMCID: PMC4319173 DOI: 10.1038/srep08287] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/13/2015] [Indexed: 01/01/2023] Open
Abstract
Despite many advances, biomaterial-associated infections continue to be a major clinical problem. In order to minimize bacterial adhesion, material surface modifications are currently being investigated and natural products possess large potential for the design of innovative surface coatings. We report the bioguided phytochemical investigation of Pityrocarpa moniliformis and the characterization of tannins by mass spectrometry. It was demonstrated that B-type linked proanthocyanidins-coated surfaces, here termed Green coatings, reduced Gram-positive bacterial adhesion and supported mammalian cell spreading. The proposed mechanism of bacterial attachment inhibition is based on electrostatic repulsion, high hydrophilicity and the steric hindrance provided by the coating that blocks bacterium-substratum interactions. This work shows the applicability of a prototype Green-coated surface that aims to promote necessary mammalian tissue compatibility, while reducing bacterial colonization.
Collapse
|
44
|
Xu X. Plant Polysaccharides and Their Effects on Cell Adhesion. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
45
|
Plant polysaccharides and their effects on cell adhesion. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_67-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|