1
|
Yu Y, Yi Q, Yang C, Song X, Tan D, Peng Q, Sun X, Liang H. Application of Metabolomics and the Discovery of Potential Serum Biomarkers for Diuretic Resistance in Heart Failure. Rev Cardiovasc Med 2025; 26:27001. [PMID: 40351663 PMCID: PMC12059756 DOI: 10.31083/rcm27001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 05/14/2025] Open
Abstract
Background Diuretic resistance (DR) is characterized by insufficient fluid and sodium excretion enhancement despite maximum loop diuretic doses, indicating a phenotype of refractory heart failure (HF). Recently, metabolomics has emerged as a crucial tool for diagnosing and understanding the pathogenesis of various diseases. This study aimed to differentiate diuretic-resistant patients from non-resistant HF to identify biomarkers linked to the emergence of DR. Methods Serum samples from HF patients, both with and without DR, were subjected to non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry. Metabolite variations between groups were identified using principal component analysis and orthogonal partial least-square discriminant analysis. Metabolic pathways were assessed through the Kyoto Encyclopedia of Genes and Genomes database enrichment analysis, and potential biomarkers were determined using receiver operating characteristic curves (ROCs). Results In total, 192 metabolites exhibited significant differences across the two sample groups. Among these, up-regulation was observed in 164 metabolites, while 28 metabolites were down-regulated. A total of 28 pathways involving neuroactive ligand-receptor interaction and amino acid biosynthesis were affected. The top five metabolites identified by ROC analysis as potential DR biomarkers were hydroxykynurenine, perillic acid, adrenic acid, 5-acetamidovalerate, and adipic acid. Conclusions Significant differences in metabolite profiles were observed between the diuretic-resistant and non-diuretic-resistant groups among patients with HF. The top five differentially expressed endogenous metabolites were hydroxykynurenine, perillic acid, adrenic acid, 5-acetamidovalerate, and adipic acid. The metabolic primary pathways implicated in DR were noted as amino acid, energy, and nucleotide metabolism. Clinical Trial Registration This study was registered with the China Clinical Trials Registry (https://www.chictr.org.cn/hvshowproject.html?id=197183&v=1.7, ChiCTR2100053587).
Collapse
Affiliation(s)
- Yipin Yu
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Qiong Yi
- ICU Department, The First Hospital of Hunan University of Chinese Medicine, 410021 Changsha, Hunan, China
| | - Chenglong Yang
- Cardiovascular Department, The First Hospital of Hunan University of Chinese Medicine, 410021 Changsha, Hunan, China
| | - Xudong Song
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Duoting Tan
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Qinghua Peng
- Hunan Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Xiang Sun
- Cardiology Department, Changsha Hospital of Chinese Medicine, 410001 Changsha, Hunan, China
| | - Hao Liang
- Hunan Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| |
Collapse
|
2
|
Han Y, Qin S, Chen C, Su D, Pang Y. A predictive model for left ventricular reverse remodeling after pharmacological therapy in children with recent-onset dilated cardiomyopathy. PLoS One 2025; 20:e0321126. [PMID: 40168366 PMCID: PMC11960990 DOI: 10.1371/journal.pone.0321126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Pharmacological advances have improved pediatric dilated cardiomyopathy (DCM) prognosis, which manifests as left ventricular reverse remodeling (LVRR). However, significant inter-individual variability exists in therapeutic response. Identifying predictors is critical for individualizing management to inform device and transplant timing. AIM To develop a nomogram for predicting LVRR in pediatric DCM. METHODS A retrospective analysis of 146 children hospitalized for DCM from January 2012 to June 2023. 55 exhibited LVRR. A nomogram predicting pediatric DCM-LVRR was developed using univariate analysis and logistic regression to select predictors. The nomogram was validated via bootstrapping and receiver operating characteristic curves for discrimination. Calibration was assessed with the Hosmer-Lemeshow test. Decision curve analysis evaluated performance and utility. RESULTS Age, left ventricular end-diastolic dimension Z-score, and QRS interval were associated with the occurrence of LVRR. Discrimination was high (C-index 0.903) and internally validated on bootstrapping with 1000 repetitions (Adjusted C-index 0.895). The Hosmer-Lemeshow test revealed no significant deviation between nomogram predictions and outcomes (χ2 = 10.883; P = 0.207). DCA revealed that the model was clinically useful at threshold probabilities > 4%. CONCLUSIONS We developed and internally validated a nomogram predicting LVRR for pediatric DCM patients, exhibiting high sensitivity, specificity and clinical utility.
Collapse
Affiliation(s)
- Yong Han
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Suyuan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Cheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Danyan Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yusheng Pang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Chang YK, Park JY, Song TJ. Association Between Triglyceride/High-Density Lipoprotein Ratio and Incidence Risk of Heart Failure: A Population-Based Cohort Study. J Clin Med 2025; 14:950. [PMID: 39941621 PMCID: PMC11818675 DOI: 10.3390/jcm14030950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/11/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: The triglyceride/high-density lipoprotein (TG/HDL) ratio serves as a simple marker for insulin resistance. We investigated whether the TG/HDL ratio would be associated with the incidence risk of heart failure (HF). Methods: The study utilized data from the National Health Insurance Service-Health Screening Cohort database of South Korea from 2002 to 2019. The TG/HDL ratio was utilized as a time-dependent covariate or average value of at least three times throughout the follow-up period. The outcome of interest was incident heart failure (HF) corresponding with the International Classification of Disease, Tenth Revision code of I50. Results: A total of 293,968 individuals were included in this study. During the median 9.6 years (interquartile range 9.2-10.13), 27,852 individuals (9.47%) had a cumulative incidence of HF. Considering the multivariable time-dependent Cox proportional hazard model with the repeated measures of the TG/HDL ratio, per unit increase in the TG/HDL ratio significantly increased the risk of HF in the entire cohort (hazard ratio (HR): 1.007, 95% confidence interval (CI): 1.002-1.011), diabetes mellitus (DM) cohort (HR: 1.006. 95% CI: 1.002-1.010), and non-DM cohort (HR: 1.008, 95% CI: 1.003-1.013). Regarding average TG/HDL ratio quartiles, compared to the lowest quartiles (Q1), the highest quartiles (Q4) were positively associated with the incidence risk of HF accompanied by a significant p for trend (HR: 1.114, 95% CI: 1.075-1.155) in fully adjusted multivariable analysis. Conclusions: Our study demonstrated that the repeatedly measured TG/HDL ratio was associated with the incidence risk of HF regardless of the presence of DM history in the general population.
Collapse
Affiliation(s)
- Yoon-Kyung Chang
- Department of Neurology, Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea;
| | - Ju-Young Park
- Department of Applied Statistics, Yonsei University, Seoul 03722, Republic of Korea
- Department of Statistics and Data Science, Yonsei University, Seoul 03722, Republic of Korea;
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
4
|
Lyhne MD, Liteplo AS, Zeleznik OA, Dudzinski DM, Andersen A, Shokoohi H, Al Jalbout N, Eke OF, Morone CC, Huang CK, Heyne TF, Kalra MK, Kabrhel C. Supplemental oxygen for pulmonary embolism (SO-PE): study protocol for a mechanistic, randomised, blinded, cross-over study. BMJ Open 2024; 14:e091567. [PMID: 39532350 PMCID: PMC11574393 DOI: 10.1136/bmjopen-2024-091567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Acute pulmonary embolism (PE) mortality is linked to abrupt rises in pulmonary artery (PA) pressure due to mechanical obstruction and pulmonary vasoconstriction, leading to right ventricular (RV) dilation, increased RV wall tension and oxygen demand, but compromised right coronary artery oxygen supply. Oxygen is a known pulmonary vasodilator, and in preclinical animal models of PE, supplemental oxygen reduces PA pressures and improves RV function. However, the mechanisms driving these interactions, especially in humans, remain poorly understood. The overall objective of the supplemental oxygen in pulmonary embolism (SO-PE) study is to investigate the mechanisms of supplemental oxygen in patients with acute PE. METHODS AND ANALYSIS This randomised, double-blind, cross-over trial at Massachusetts General Hospital will include adult patients with acute PE and evidence of RV dysfunction but without hypoxaemia (SaO2 ≥90% on room air). We will enrol 80 patients, each serving as their own control, with 40 randomised to start on supplemental oxygen, and 40 randomised to start on room air. Over 180 min, patients will alternate between supplemental oxygen delivered by non-rebreather mask (60% FiO2) and room air (21% FiO2). The primary outcome will be the difference in pulmonary artery systolic pressure with and without oxygen. Secondary outcomes include additional echocardiographic measures, metabolomic profiles, vital signs and dyspnoea scores. Echocardiographic data will be compared by a paired t-test or Wilcoxon signed-rank test. For metabolomic analyses, we will perform multivariable mixed effects logistic regression models and calculate false discovery rate (q-value ≤0.05) to account for multiple comparisons. Data will be collected in compliance with National Institutes of Health and National Heart Lung and Blood Institute (NHLBI) policies for data and safety monitoring. ETHICS AND DISSEMINATION The SO-PE study is funded by the NHLBI and has been approved by the Institutional Review Board of Mass General Brigham (no. 2023P000252). The study will comply with the Helsinki Declaration on medical research involving human subjects. All participants will provide prospective, written informed consent. TRIAL REGISTRATION NUMBER NCT05891886.
Collapse
Affiliation(s)
- Mads Dam Lyhne
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andrew S Liteplo
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Oana Alina Zeleznik
- Channing Division of Network Medicine, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - David M Dudzinski
- Department of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Asger Andersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hamid Shokoohi
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nour Al Jalbout
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Onyinyechi Franca Eke
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christina C Morone
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Calvin K Huang
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas F Heyne
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christopher Kabrhel
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Adamu UG, Badianyama M, Mpanya D, Maseko M, Tsabedze N. The Use of Metabolomes in Risk Stratification of Heart Failure Patients: Protocol for a Scoping Review. JMIR Res Protoc 2024; 13:e53905. [PMID: 38781584 PMCID: PMC11157175 DOI: 10.2196/53905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a significant health problem that is often associated with major morbidity and mortality. Metabolic abnormalities occur in HF and may be used to identify individuals at risk of developing the condition. Furthermore, these metabolic changes may play a role in the pathogenesis and progression of HF. Despite this knowledge, the utility of metabolic changes in diagnosis, management, prognosis, and therapy for patients with chronic HF has not been systematically reviewed. OBJECTIVE This scoping review aims to systematically appraise the literature on metabolic changes in patients with HF, describe the role of these changes in pathogenesis, progression, and care, and identify knowledge gaps to inform future research. METHODS This review will be conducted using a strategy based on previous reports, the JBI Manual for Evidence Synthesis, and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines. A comprehensive search of electronic databases (Medline, EBSCOhost, Scopus, and Web of Science) will be conducted using keywords related to HF, myocardial failure, metabolomes, metabonomics, and analytical chemistry techniques. The search will include original peer-reviewed research papers (clinical studies conducted on humans and systematic reviews with or without a meta-analysis) published between January 2010 and September 2023. Studies that include patients with HF younger than 18 years or those not published in English will be excluded. Two authors (UGA and MB) will screen the titles and abstracts independently and perform a full-text screen of the relevant and eligible papers. Relevant data will be extracted and synthesized, and a third author or group will be consulted to resolve discrepancies. RESULTS This scoping review will span from January 2010 to September 2023, and the results will be published in a peer-reviewed, open-access journal as a scoping review in 2024. The presentation of the findings will use the PRISMA-ScR flow diagram and descriptive and narrative formats, including tables and graphical displays, to provide a comprehensive overview of the extracted data. CONCLUSIONS This review aims to collect and analyze the available evidence on metabolic changes in patients with HF, aiming to enhance our current understanding of this topic. Additionally, this review will identify the most commonly used and suitable sample, analytical method, and specific metabolomes to facilitate standardization, reproducibility of results, and application in the diagnosis, treatment, and risk stratification of patients with HF. Finally, it is hoped that this review's outcomes will inspire further research into the metabolomes of patients with HF in low- and middle-income countries. TRIAL REGISTRATION Open Science Framework; https://osf.io/sp6xj. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/53905.
Collapse
Affiliation(s)
- Umar Gati Adamu
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marheb Badianyama
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dineo Mpanya
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muzi Maseko
- Nutrition and Hypertension Laboratory, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nqoba Tsabedze
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Thonusin C, Osataphan N, Leemasawat K, Nawara W, Sriwichaiin S, Supakham S, Gunaparn S, Apaijai N, Somwangprasert A, Phrommintikul A, Chattipakorn SC, Chattipakorn N. Changes in blood metabolomes as potential markers for severity and prognosis in doxorubicin-induced cardiotoxicity: a study in HER2-positive and HER2-negative breast cancer patients. J Transl Med 2024; 22:398. [PMID: 38685030 PMCID: PMC11059746 DOI: 10.1186/s12967-024-05088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND We aimed to compare the changes in blood metabolomes and cardiac parameters following doxorubicin treatment in HER2-positive and HER2-negative breast cancer patients. Additionally, the potential roles of changes in blood metabolomes as severity and prognostic markers of doxorubicin-induced cardiotoxicity were determined. METHODS HER2-positive (n = 37) and HER2-negative (n = 37) breast cancer patients were enrolled. Cardiac function assessment and blood collection were performed at baseline and 2 weeks after completion of doxorubicin treatment in all patients, as well as at three months after completion of doxorubicin treatment in HER2-negative breast cancer patients. Blood obtained at all three-time points was processed for measuring cardiac injury biomarkers. Blood obtained at baseline and 2 weeks after completion of doxorubicin treatment were also processed for measuring systemic oxidative stress and 85 metabolome levels. RESULTS Cardiac injury and systolic dysfunction 2 weeks after completion of doxorubicin treatment were comparable between these two groups of patients. However, only HER2-negative breast cancer patients exhibited increased systemic oxidative stress and cardiac autonomic dysfunction at this time point. Moreover, 33 and 29 blood metabolomes were altered at 2 weeks after completion of doxorubicin treatment in HER2-positive and HER2-negative breast cancer patients, respectively. The changes in most of these metabolomes were correlated with the changes in cardiac parameters, both at 2 weeks and 3 months after completion of doxorubicin treatment. CONCLUSIONS The changes in blood metabolomes following doxorubicin treatment were dependent on HER2 status, and these changes might serve as severity and prognostic markers of doxorubicin-induced cardiotoxicity. TRIAL REGISTRATION The study was conducted under ethical approval from the Institutional Review Board of the Faculty of Medicine, Chiang Mai University (Registration number: MED-2563-07001; Date: April 28, 2020). The study also complied with the Declaration of Helsinki.
Collapse
Affiliation(s)
- Chanisa Thonusin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nichanan Osataphan
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Leemasawat
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Supakham
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriluck Gunaparn
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | | | - Arintaya Phrommintikul
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
7
|
Wahid M, Saqib F, Abbas G, Shah S, Alshammari A, Albekairi TH, Ali A, Khurm M, Mubarak MS. Cardioprotective and hypotensive mechanistic insights of hydroethanolic extract of Cucumis melo L. kernels in isoprenaline-induced cardiotoxicity based on metabolomics and in silico electrophysiological models. Front Pharmacol 2024; 14:1277594. [PMID: 38348351 PMCID: PMC10859416 DOI: 10.3389/fphar.2023.1277594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
Background: Cardiovascular diseases (CVD) continue to threaten health worldwide, and account for a significant portion of deaths and illnesses. In both developing and industrialized nations, they challenge their health systems. There are several traditional uses of Cucurbitaceae seeds in Pakistan, India, Iran, and China, including treating cardiovascular, neurological, and urogenital diseases. Methods: In the present work, integrated techniques of metabolomics profiling and computational cardiomyocyte stimulation were used to investigate possible mechanisms of C. melo in isoprenaline (ISO)-induced myocardial infarction. In vitro, vasoconstrictions, paired atria, and in vivo invasive blood pressure measurement models were performed to explore the mechanism of action of C. melo hydroethanolic seed extract (Cm-EtOH). Results: Results showed that Cm-EtOH demonstrates NO-based endothelium-derived relaxing factor (EDRF) vasorelaxant response, negative chronotropic and inotropic response in the atrium, and hypotensive effects in normotensive rats. Results also revealed that Cm-EtOH decreases cardiomyocyte hypertrophy and reverts the altered gene expressions, biochemical, and metabolites in ISO-induced myocardial infarction (MI) rats. The extract additionally reversed ISO-induced MI-induced oxidative stress, energy consumption, and amino acid metabolism. Moreover, C. melo seeds increased EDRF function, energy production, and antioxidant capacity to treat myocardial and vascular disorders. In computational cardiomyocyte simulation, gallic acid reduced action potential duration, upstroke velocity (dV/dtmax), and effective refractory period. Conclusion: This study highlights the therapeutic potential of C. melo seeds to treat cardiovascular diseases and provides mechanistic insight into its antihypertensive and cardioprotective activities.
Collapse
Affiliation(s)
- Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anam Ali
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Khurm
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | | |
Collapse
|
8
|
Nogal A, Alkis T, Lee Y, Kifer D, Hu J, Murphy RA, Huang Z, Wang-Sattler R, Kastenmüler G, Linkohr B, Barrios C, Crespo M, Gieger C, Peters A, Price J, Rexrode KM, Yu B, Menni C. Predictive metabolites for incident myocardial infarction: a two-step meta-analysis of individual patient data from six cohorts comprising 7897 individuals from the COnsortium of METabolomics Studies. Cardiovasc Res 2023; 119:2743-2754. [PMID: 37706562 PMCID: PMC10757581 DOI: 10.1093/cvr/cvad147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
AIMS Myocardial infarction (MI) is a major cause of death and disability worldwide. Most metabolomics studies investigating metabolites predicting MI are limited by the participant number and/or the demographic diversity. We sought to identify biomarkers of incident MI in the COnsortium of METabolomics Studies. METHODS AND RESULTS We included 7897 individuals aged on average 66 years from six intercontinental cohorts with blood metabolomic profiling (n = 1428 metabolites, of which 168 were present in at least three cohorts with over 80% prevalence) and MI information (1373 cases). We performed a two-stage individual patient data meta-analysis. We first assessed the associations between circulating metabolites and incident MI for each cohort adjusting for traditional risk factors and then performed a fixed effect inverse variance meta-analysis to pull the results together. Finally, we conducted a pathway enrichment analysis to identify potential pathways linked to MI. On meta-analysis, 56 metabolites including 21 lipids and 17 amino acids were associated with incident MI after adjusting for multiple testing (false discovery rate < 0.05), and 10 were novel. The largest increased risk was observed for the carbohydrate mannitol/sorbitol {hazard ratio [HR] [95% confidence interval (CI)] = 1.40 [1.26-1.56], P < 0.001}, whereas the largest decrease in risk was found for glutamine [HR (95% CI) = 0.74 (0.67-0.82), P < 0.001]. Moreover, the identified metabolites were significantly enriched (corrected P < 0.05) in pathways previously linked with cardiovascular diseases, including aminoacyl-tRNA biosynthesis. CONCLUSIONS In the most comprehensive metabolomic study of incident MI to date, 10 novel metabolites were associated with MI. Metabolite profiles might help to identify high-risk individuals before disease onset. Further research is needed to fully understand the mechanisms of action and elaborate pathway findings.
Collapse
Affiliation(s)
- Ana Nogal
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, Westminster Bridge Road, SE1 7EH London, UK
| | - Taryn Alkis
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Yura Lee
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Jie Hu
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rachel A Murphy
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Zhe Huang
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Birgit Linkohr
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Clara Barrios
- Department of Nephrology, Hospital del Mar, Institut Hospital del Mar d´Investigacions Mediques, Barcelona, Spain
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Institut Hospital del Mar d´Investigacions Mediques, Barcelona, Spain
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jackie Price
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Kathryn M Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Cristina Menni
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, Westminster Bridge Road, SE1 7EH London, UK
| |
Collapse
|
9
|
Klobučar I, Hinteregger H, Lechleitner M, Trbušić M, Pregartner G, Berghold A, Sattler W, Frank S, Degoricija V. Association between Serum Free Fatty Acids and Clinical and Laboratory Parameters in Acute Heart Failure Patients. Biomedicines 2023; 11:3197. [PMID: 38137418 PMCID: PMC10740773 DOI: 10.3390/biomedicines11123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Very little is known about the association between individual serum free fatty acids (FFAs) and clinical and laboratory parameters (indicators of heart failure severity) in acute heart failure (AHF) patients. Here, the baseline serum levels of FFAs, 16:0 (palmitic acid), 16:1 (palmitoleic acid), 18:0 (stearic acid), 18:1 (oleic acid), 18:2 (linoleic acid), 18:3 (alpha-linolenic acid or gamma-linolenic acid), 20:4 (arachidonic acid), 20:5 (eicosapentaenoic acid), and 22:6 (docosahexaenoic acid), were determined in 304 AHF patients (94.7% belonged to New York Heart Association functional class IV) using gas chromatography. Spearman correlation coefficients were used to examine the associations between the individual and total (the sum of all FFAs) FFAs and clinical and laboratory parameters. After applying a Bonferroni correction to correct for multiple testing, the total FFAs, as well as the individual FFAs (except FFAs 18:0, 20:5, and 22:6), were found to be significantly positively correlated with serum albumin. Only a few additional associations were found: FFA 16:0 was significantly negatively correlated with systolic pulmonary artery pressure, FFA 18:3 was significantly negatively correlated with C-reactive protein and body mass index, and FFA 20:4 was significantly negatively correlated with blood urea nitrogen. Based on our results, we conclude that in patients with severe AHF, individual and total serum FFAs are slightly associated with established laboratory and clinical parameters, which are indicators of heart failure severity.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
| | - Helga Hinteregger
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (M.L.); (W.S.)
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (M.L.); (W.S.)
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Wolfgang Sattler
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (M.L.); (W.S.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (M.L.); (W.S.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Wei H, Wu J, Wang H, Huang J, Li C, Zhang Y, Song Y, Zhou Z, Sun Y, Xiao L, Peng L, Chen C, Zhao C, Wang DW. Increased circulating phenylacetylglutamine concentration elevates the predictive value of cardiovascular event risk in heart failure patients. J Intern Med 2023; 294:515-530. [PMID: 37184278 DOI: 10.1111/joim.13653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Phenylacetylglutamine (PAGln)-a newly discovered microbial metabolite produced by phenylalanine metabolism-is reportedly associated with cardiovascular events via adrenergic receptors. Nonetheless, its association with cardiovascular outcomes in heart failure (HF) patients remains unknown. OBJECTIVES This study aimed to prospectively investigate the prognostic value of PAGln for HF. METHODS Plasma PAGln levels were quantified by liquid chromatography-tandem mass spectrometry. We first assessed the association between plasma PAGln levels and the incidence of adverse cardiovascular events in 3152 HF patients (including HF with preserved and reduced ejection fraction) over a median follow-up period of 2 years. The primary endpoint was the composite of cardiovascular death or heart transplantation. We then assessed the prognostic role of PAGln in addition to the classic biomarker N-terminal pro-B-type natriuretic peptide (NT-proBNP). The correlation between PAGln levels and β-blocker use was also investigated. RESULTS In total, 520 cardiovascular deaths or heart transplantations occurred in the HF cohort. Elevated PAGln levels were independently associated with a higher risk of the primary endpoint in a dose-response manner, regardless of HF subtype. Concurrent assessment of PAGln and NT-proBNP levels enhanced risk stratification among HF patients. PAGln further showed prognostic value at low NT-proBNP levels. Additionally, the interaction effects between PAGln and β-blocker use were not significant. CONCLUSIONS Plasma PAGln levels are an independent predictor of an increased risk of adverse cardiovascular events in HF. Our work could provide joint and complementary prognostic value to NT-proBNP levels in HF patients.
Collapse
Affiliation(s)
- Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqing Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jin Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yuxuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yaonan Song
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zhitong Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Liyuan Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chunxia Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
11
|
Niezen S, Connelly MA, Hirsch C, Kizer JR, Benitez ME, Minchenberg S, Perez‐Matos MC, Jiang ZG, Mukamal KJ. Elevated Plasma Levels of Ketone Bodies Are Associated With All-Cause Mortality and Incidence of Heart Failure in Older Adults: The CHS. J Am Heart Assoc 2023; 12:e029960. [PMID: 37609928 PMCID: PMC10547348 DOI: 10.1161/jaha.123.029960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 08/24/2023]
Abstract
Background Chronic disease, such as heart failure, influences cellular metabolism and shapes circulating metabolites. The relationships between key energy metabolites and chronic diseases in aging are not well understood. This study aims to determine the relationship between main components of energy metabolism with all-cause mortality and incident heart failure. Methods and Results We analyzed the association between plasma metabolite levels with all-cause mortality and incident heart failure among US older adults in the CHS (Cardiovascular Health Study). We followed 1758 participants without heart failure at baseline with hazard ratios (HRs) of analyte levels and metabolic profiles characterized by high levels of ketone bodies for all-cause mortality and incident heart failure. Multivariable Cox analyses revealed a dose-response relationship of 50% increase in all-cause mortality between lowest and highest quintiles of ketone body concentrations (HR, 1.5 [95% CI, 1.0-1.9]; P=0.007). Ketone body levels remained associated with incident heart failure after adjusting for cardiovascular disease confounders (HR, 1.2 [95% CI, 1.0-1.3]; P=0.02). Using K-means cluster analysis, we identified a cluster with higher levels of ketone bodies, citrate, interleukin-6, and B-type natriuretic peptide but lower levels of pyruvate, body mass index, and estimated glomerular filtration rate. The cluster with elevated ketone body levels was associated with higher all-cause mortality (HR, 1.7 [95% CI, 1.1-2.7]; P=0.01). Conclusions Higher concentrations of ketone bodies predict incident heart failure and all-cause mortality in an older US population, independent of metabolic and cardiovascular confounders. This association suggests a potentially important relationship between ketone body metabolism and aging.
Collapse
Affiliation(s)
- Sebastian Niezen
- Department of MedicineUniversity of Pittsburgh Medical Center, University of PittsburghPittsburghPA
| | | | - Calvin Hirsch
- Department of General Internal MedicineUniversity of California Davis HealthSacramentoCA
| | - Jorge R. Kizer
- Cardiac Section, San Francisco Veterans Affairs Health Care System, Departments of Medicine, and Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCA
| | - Maria E. Benitez
- Department of Internal MedicineAdvocate Illinois Masonic Medical CenterChicagoIL
| | - Scott Minchenberg
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | | | - Zhenghui Gordon Jiang
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Kenneth J. Mukamal
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| |
Collapse
|
12
|
Klobučar I, Vidović L, Arih I, Lechleitner M, Pregartner G, Berghold A, Habisch H, Madl T, Frank S, Degoricija V. Low Valine Serum Levels Predict Increased 1-Year Mortality in Acute Heart Failure Patients. Biomolecules 2023; 13:1323. [PMID: 37759723 PMCID: PMC10527293 DOI: 10.3390/biom13091323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Considering the relationship between disease severity and the extent of metabolic derangement in heart failure, we hypothesized that the serum levels of metabolites may have prognostic value for 1-year mortality in acute heart failure (AHF). The AHF study was a prospective, observational study enrolling consecutive patients hospitalized due to AHF. Metabolites were measured in serum collected at admission using NMR spectroscopy. Out of 315 AHF patients, 118 (37.5%) died within 1 year after hospitalization for AHF. The serum levels of 8 out of 49 identified metabolites were significantly different between patients who were alive and those who died within 1 year after hospitalization for AHF. Of these, only valine was significantly associated with 1-year mortality (hazard ratio 0.73 per 1 standard deviation increase, 95% confidence interval: 0.59-0.90, p = 0.003) in the multivariable Cox regression analyses. Kaplan-Maier analysis showed significantly higher survival rates in AHF patients with valine levels above the median (>279.2 µmol/L) compared to those with valine levels ≤ 279.2 µmol/L. In a receiver operating characteristics curve analysis, valine was able to discriminate between the two groups with an area under the curve of 0.65 (95% CI 0.59-0.72). We conclude that valine serum levels might be of prognostic value in AHF.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia;
| | - Luka Vidović
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (L.V.); (V.D.)
| | - Ilona Arih
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Hansjörg Habisch
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vesna Degoricija
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (L.V.); (V.D.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
13
|
Thonusin C, Nawara W, Khuanjing T, Prathumsup N, Arinno A, Ongnok B, Arunsak B, Sriwichaiin S, Chattipakorn SC, Chattipakorn N. Blood metabolomes as non-invasive biomarkers and targets of metabolic interventions for doxorubicin and trastuzumab-induced cardiotoxicity. Arch Toxicol 2023; 97:603-618. [PMID: 36357623 DOI: 10.1007/s00204-022-03412-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
This study aimed to identify the alterations of blood metabolome levels and their association with cardiac dysfunction and cardiac injury following treatment with doxorubicin and trastuzumab. Eight-week-old male Wistar rats were divided into four groups (n = 6 per group) to receive intraperitoneal injection with either: (1) 1 mL of normal saline solution (NSS) at days 0, 4, 8, 15, 22, and 29 (control group for doxorubicin); (2) 3 mg/kg/day of doxorubicin at days 0, 4, 8, 15, 22, and 29 (doxorubicin group); (3) 1 mL of NSS at days 0-6 (control group for trastuzumab); or (4) 4 mg/kg/day of trastuzumab at days 0-6 (trastuzumab group). Four days after the last injected dose, cardiac function was determined. The rats were then euthanized to collect venous blood and the heart for the quantification of 107 serum and 100 cardiac metabolomes using mass spectrometry-based targeted metabolomics. We observed strong relationships between 72 cardiac versus 61 serum metabolomes in doxorubicin and trastuzumab groups. Moreover, significant correlations between cardiac function and the cardiac injury biomarker versus 28 and 58 serum metabolomes were revealed in doxorubicin and trastuzumab-treated rats, respectively. Interestingly, the patterns of both serum and cardiac metabolome alterations differed between doxorubicin and trastuzumab groups. Our findings emphasize the potential role of the constituents of the blood metabolome as non-invasive biomarkers to assess severity and prognosis of heart failure induced by doxorubicin and trastuzumab. These findings may contribute to the development of metabolic-targeted therapy specific for cardioprotection during different phases of cancer treatment.
Collapse
Affiliation(s)
- Chanisa Thonusin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nanthip Prathumsup
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
14
|
Rasicci DV, Ge J, Milburn GN, Wood NB, Pruznak AM, Lang CH, Previs MJ, Campbell KS, Yengo CM. Cardiac myosin motor deficits are associated with left ventricular dysfunction in human ischemic heart failure. Am J Physiol Heart Circ Physiol 2023; 324:H198-H209. [PMID: 36525480 PMCID: PMC9829461 DOI: 10.1152/ajpheart.00272.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
During ischemic heart failure (IHF), cardiac muscle contraction is typically impaired, though the molecular changes within the myocardium are not fully understood. Thus, we aimed to characterize the biophysical properties of cardiac myosin in IHF. Cardiac tissue was harvested from 10 age-matched males, either with a history of IHF or nonfailing (NF) controls that had no history of structural or functional cardiac abnormalities. Clinical measures before cardiac biopsy demonstrated significant differences in measures of ejection fraction and left ventricular dimensions. Myofibrils and myosin were extracted from left ventricular free wall cardiac samples. There were no changes in myofibrillar ATPase activity or calcium sensitivity between groups. Using isolated myosin, we found a 15% reduction in the IHF group in actin sliding velocity in the in vitro motility assay, which was observed in the absence of a myosin isoform shift. Oxidative damage (carbonylation) of isolated myosin was compared, in which there were no significant differences between groups. Synthetic thick filaments were formed from purified myosin and the ATPase activity was similar in both basal and actin-activated conditions (20 µM actin). Correlation analysis and Deming linear regression were performed between all studied parameters, in which we found statistically significant correlations between clinical measures of contractility with molecular measures of sliding velocity and ELC carbonylation. Our data indicate that subtle deficits in myosin mechanochemical properties are associated with reduced contractile function and pathological remodeling of the heart, suggesting that the myosin motor may be an effective pharmacological intervention in ischemia.NEW & NOTEWORTHY Ischemic heart failure is associated with impairments in contractile performance of the heart. This study revealed that cardiac myosin isolated from patients with ischemic heart failure had reduced mechanical activity, which correlated with the impaired clinical phenotype of the patients. The results suggest that restoring myosin function with pharmacological intervention may be a viable method for therapeutic intervention.
Collapse
Affiliation(s)
- D. V. Rasicci
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - J. Ge
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - G. N. Milburn
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - N. B. Wood
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - A. M. Pruznak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - C. H. Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - M. J. Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - K. S. Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - C. M. Yengo
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
15
|
Gladding PA, Cooper M, Young R, Loader S, Smith K, Zarate E, Green S, Villas Boas SG, Shepherd P, Kakadiya P, Thorstensen E, Keven C, Coe M, Jüllig M, Zhang E, Schlegel TT. Metabolomics and a Breath Sensor Identify Acetone as a Biomarker for Heart Failure. Biomolecules 2022; 13:biom13010013. [PMID: 36671398 PMCID: PMC9856097 DOI: 10.3390/biom13010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multi-omics delivers more biological insight than targeted investigations. We applied multi-omics to patients with heart failure with reduced ejection fraction (HFrEF). METHODS 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas chromatography mass spectrometry (LC-MS/GC-MS) and solid-phase microextraction (SPME) volatilomics in plasma and urine. HFrEF was defined using left ventricular global longitudinal strain, ejection fraction and NTproBNP. A consumer breath acetone (BrACE) sensor validated results in n = 73. RESULTS 28 metabolites were identified by GCMS, 35 by LCMS and 4 volatiles by SPME in plasma and urine. Alanine, aspartate and glutamate, citric acid cycle, arginine biosynthesis, glyoxylate and dicarboxylate metabolism were altered in HFrEF. Plasma acetone correlated with NT-proBNP (r = 0.59, 95% CI 0.4 to 0.7), 2-oxovaleric and cis-aconitic acid, involved with ketone metabolism and mitochondrial energetics. BrACE > 1.5 ppm discriminated HF from other cardiac pathology (AUC 0.8, 95% CI 0.61 to 0.92, p < 0.0001). CONCLUSION Breath acetone discriminated HFrEF from other cardiac pathology using a consumer sensor, but was not cardiac specific.
Collapse
Affiliation(s)
- Patrick A. Gladding
- Cardiology Department, Waitemata District Health Board, Auckland 0620, New Zealand; (M.C.); (R.Y.); (S.L.)
- Auckland Bioengineering Institute, Auckland 1142, New Zealand
- Correspondence:
| | - Maxine Cooper
- Cardiology Department, Waitemata District Health Board, Auckland 0620, New Zealand; (M.C.); (R.Y.); (S.L.)
| | - Renee Young
- Cardiology Department, Waitemata District Health Board, Auckland 0620, New Zealand; (M.C.); (R.Y.); (S.L.)
| | - Suzanne Loader
- Cardiology Department, Waitemata District Health Board, Auckland 0620, New Zealand; (M.C.); (R.Y.); (S.L.)
| | - Kevin Smith
- Clinical Laboratory, Waitemata District Health Board, Auckland 0622, New Zealand;
| | - Erica Zarate
- School of Biological Science, University of Auckland, Auckland 1010, New Zealand; (E.Z.); (S.G.); (S.G.V.B.)
| | - Saras Green
- School of Biological Science, University of Auckland, Auckland 1010, New Zealand; (E.Z.); (S.G.); (S.G.V.B.)
| | - Silas G. Villas Boas
- School of Biological Science, University of Auckland, Auckland 1010, New Zealand; (E.Z.); (S.G.); (S.G.V.B.)
| | - Phillip Shepherd
- Grafton Genomics Ltd., Liggins Institute, University of Auckland, Auckland 1010, New Zealand; (P.S.); (P.K.)
| | - Purvi Kakadiya
- Grafton Genomics Ltd., Liggins Institute, University of Auckland, Auckland 1010, New Zealand; (P.S.); (P.K.)
| | - Eric Thorstensen
- Liggins Institute, University of Auckland, Auckland 1010, New Zealand; (E.T.); (C.K.); (M.C.)
| | - Christine Keven
- Liggins Institute, University of Auckland, Auckland 1010, New Zealand; (E.T.); (C.K.); (M.C.)
| | - Margaret Coe
- Liggins Institute, University of Auckland, Auckland 1010, New Zealand; (E.T.); (C.K.); (M.C.)
| | - Mia Jüllig
- Paper Dog Ltd., Waiheke Island, Auckland 1081, New Zealand;
| | - Edmond Zhang
- Precision Driven Health Initiative, Auckland 1021, New Zealand;
| | - Todd T. Schlegel
- Karolinska Institutet, 17177 Stockholm, Sweden;
- Nicollier-Schlegel Sàrl, 1270 Trélex, Switzerland
| |
Collapse
|
16
|
Wang CH, Chen WS, Liu MH, Lee CY, Wang MY, Liang CY, Chu CM, Wu HP, Chen WH. Stress Hyperphenylalaninemia Is Associated With Mortality in Cardiac ICU: Clinical Factors, Genetic Variants, and Pteridines. Crit Care Med 2022; 50:1577-1587. [PMID: 35916411 PMCID: PMC9555827 DOI: 10.1097/ccm.0000000000005640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Hyperphenylalaninemia predicts poor outcomes in patients with cardiovascular disease. However, the prognostic value and factors associated with stress hyperphenylalaninemia (SHP) were unknown in critical patients in the cardiac ICU. DESIGN Prospective observational study. SETTING Single-center, cardiac ICU in Taiwan. PATIENTS Patients over 20 years old with Acute Physiology And Chronic Health Evaluation II scores greater than or equal to 15 and/or ventilatory support in the cardiac ICU. INTERVENTIONS We measured plasma phenylalanine levels serially during patients' stays in the ICU to investigate their prognostic value for 90-day mortality. Gene array was performed to identify genetic polymorphisms associated with SHP (phenylalanine level ≥ 11.2 μmol/dL) and to develop a Genetic Risk Score (GRS). We analyzed the associations between SHP and clinical factors and genetic variants and identified the correlation between pteridines and genetic variants. MEASUREMENTS AND MAIN RESULTS The study enrolled 497 patients. Increased phenylalanine concentration was independently associated with increased mortality risk. Patients with SHP had a higher mortality risk compared with those without SHP (log rank = 41.13; p < 0.001). SHP was associated with hepatic and renal dysfunction and with genetic polymorphisms on the pathway of tetrahydrobiopterin (BH4) synthesis (CBR1 and AKR1C3) and recycling (PCBD2). Higher GRSs were associated with lower BH4 bioavailability in response to stress ( p < 0.05). In patients without SHP at baseline, those with GRSs gretaer than or equal to 2 had a higher frequency of developing SHP during the ICU stay (31.5% vs 16.1%; p = 0.001) and a higher mortality risk ( p = 0.004) compared with those with GRSs less than 2. In patients with SHP at baseline, genetic variants did not provide additional prognostic value. CONCLUSIONS SHP in patients admitted to the ICU was associated with a worse prognosis. In patients without SHP, genetic polymorphisms associated with SHP measured using a GRS of greater than or equal to 2 was associated with the subsequent SHP and higher mortality risk.
Collapse
Affiliation(s)
- Chao-Hung Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wei-Siang Chen
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Min-Hui Liu
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Nursing, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chi-Ying Lee
- Department of Medical Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Ying Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chung-Yu Liang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chien-Ming Chu
- Division of pulmonary, critical care and sleep medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Huang-Ping Wu
- Division of pulmonary, critical care and sleep medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Wen-Hsin Chen
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|
17
|
Degoricija V, Klobučar I, Potočnjak I, Dokoza Terešak S, Vidović L, Pregartner G, Berghold A, Habisch H, Madl T, Frank S. Cholesterol Content of Very-Low-Density Lipoproteins Is Associated with 1-Year Mortality in Acute Heart Failure Patients. Biomolecules 2022; 12:1542. [PMID: 36291751 PMCID: PMC9599569 DOI: 10.3390/biom12101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the relationship between the extent of metabolic derangement and the disease severity in heart failure, we hypothesized that the lipid content of very-low-density lipoprotein (VLDL) may have prognostic value for 1 year mortality in acute heart failure (AHF). Baseline serum levels of VLDL cholesterol (VLDL-C), VLDL triglycerides (VLDL-TG), VLDL phospholipids (VLDL-PL), and VLDL apolipoprotein B (VLDL-apoB) were measured using NMR spectroscopy. We calculated the ratios of the respective VLDL lipids and VLDL apoB (VLDL-C/VLDL-apoB, VLDL-TG/VLDL-apoB, and VLDL-PL/VLDL-apoB), as estimators of the cholesterol, triglyceride, and phospholipid content of VLDL particles and tested their association with mortality. Out of 315 AHF patients, 118 (37.5%) patients died within 1 year after hospitalization for AHF. Univariable Cox regression analyses revealed a significant inverse association of VLDL-C/VLDL-apoB (hazard ratio (HR) 0.43, 95% confidence interval (CI) 0.29−0.64, p < 0.001), VLDL-TG/VLDL-apoB (HR 0.79, 95% CI 0.71−0.88, p < 0.001), and VLDL-PL/VLDL-apoB (HR 0.37, 95% CI 0.25−0.56, p < 0.001) with 1 year mortality. Of the tested parameters, only VLDL-C/VLDL-apoB remained significant after adjustment for age and sex, as well as other clinical and laboratory parameters that showed a significant association with 1 year mortality in the univariable analyses. We conclude that cholesterol content of circulating VLDL (VLDL-C/VLDL-apoB) might be of prognostic value in AHF.
Collapse
Affiliation(s)
- Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Ines Potočnjak
- Institute for Clinical Medical Research and Education, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Sanda Dokoza Terešak
- Department of Emergency Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Luka Vidović
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Hansjörg Habisch
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
18
|
Klobučar I, Degoricija V, Potočnjak I, Trbušić M, Pregartner G, Berghold A, Fritz-Petrin E, Habisch H, Madl T, Frank S. HDL-apoA-II Is Strongly Associated with 1-Year Mortality in Acute Heart Failure Patients. Biomedicines 2022; 10:1668. [PMID: 35884971 PMCID: PMC9313377 DOI: 10.3390/biomedicines10071668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
The prognostic value of the subset of high-density lipoprotein (HDL) particles containing apolipoprotein (apo)A-II (HDL-apoA-II) in acute heart failure (AHF) remains unexplored. In this study, baseline serum levels of HDL-apoA-II (total and subfractions 1−4) were measured in 315 AHF patients using NMR spectroscopy. The mean patient age was 74.2 ± 10.5 years, 136 (43.2%) were female, 288 (91.4%) had a history of cardiomyopathy, 298 (94.6%) presented as New York Heart Association class 4, and 118 (37.5%) patients died within 1 year after hospitalization for AHF. Multivariable Cox regression analyses, adjusted for age and sex as well as other clinical and laboratory parameters associated with 1-year mortality in the univariable analyses, revealed a significant inverse association of HDL-apoA-II (hazard ratio (HR) 0.67 per 1 standard deviation (1 SD) increase, 95% confidence interval (CI) 0.47−0.94, p = 0.020), HDL2-apoA-II (HR 0.72 per 1 SD increase, 95% CI 0.54−0.95, p = 0.019), and HDL3-apoA-II (HR 0.59 per 1 SD increase, 95% CI 0.43−0.80, p < 0.001) with 1-year mortality. We conclude that low baseline HDL-apoA-II, HDL2-apoA-II, and HDL3-apoA-II serum levels are associated with increased 1-year mortality in AHF patients and may thus be of prognostic value in AHF.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Ines Potočnjak
- Institute for Clinical Medical Research and Education, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia;
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Eva Fritz-Petrin
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria;
| | - Hansjörg Habisch
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
19
|
Ferro F, Spelat R, Valente C, Contessotto P. Understanding How Heart Metabolic Derangement Shows Differential Stage Specificity for Heart Failure with Preserved and Reduced Ejection Fraction. Biomolecules 2022; 12:biom12070969. [PMID: 35883525 PMCID: PMC9312956 DOI: 10.3390/biom12070969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a clinical condition defined by structural and functional abnormalities in the heart that gradually result in reduced cardiac output (HFrEF) and/or increased cardiac pressures at rest and under stress (HFpEF). The presence of asymptomatic individuals hampers HF identification, resulting in delays in recognizing patients until heart dysfunction is manifested, thus increasing the chance of poor prognosis. Given the recent advances in metabolomics, in this review we dissect the main alterations occurring in the metabolic pathways behind the decrease in cardiac function caused by HF. Indeed, relevant preclinical and clinical research has been conducted on the metabolite connections and differences between HFpEF and HFrEF. Despite these promising results, it is crucial to note that, in addition to identifying single markers and reliable threshold levels within the healthy population, the introduction of composite panels would strongly help in the identification of those individuals with an increased HF risk. That said, additional research in the field is required to overcome the current drawbacks and shed light on the pathophysiological changes that lead to HF. Finally, greater collaborative data sharing, as well as standardization of procedures and approaches, would enhance this research field to fulfil its potential.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
- Correspondence:
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
| | - Camilla Valente
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.V.); (P.C.)
| | - Paolo Contessotto
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.V.); (P.C.)
| |
Collapse
|
20
|
Lerman JB, Giamberardino SN, Hernandez AF, Felker GM, Shah SH, McGarrah RW. Plasma metabolites associated with functional and clinical outcomes in heart failure with reduced ejection fraction with and without type 2 diabetes. Sci Rep 2022; 12:9183. [PMID: 35654972 PMCID: PMC9163122 DOI: 10.1038/s41598-022-12973-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) is increasingly treated with medications for type 2 diabetes mellitus (T2DM). Whether metabolic derangements in HFrEF and T2DM are associated with differential outcomes remains unclear. Therefore, understanding molecular pathways in HFrEF and T2DM and their effects on clinical endpoints is important. The FIGHT trial randomized 300 individuals with HFrEF and a recent HF hospitalization to liraglutide (a GLP-1 receptor agonist) versus placebo to assess effects on mortality, HF rehospitalization, and 6-month change in NT-ProBNP. Although the trial showed no clinical benefit of liraglutide, the trial population was highly enriched for individuals with T2DM. Sixty metabolites were quantified via mass spectrometry in plasma from 254 FIGHT participants (N = 147 (57.9%) with T2DM). Principal components analysis reduced the high number of correlated metabolites into uncorrelated factors. The association of factor levels with 90-day changes in 6-min walk distance (6MWD) and NT-proBNP, and with time to mortality or HF hospitalization were evaluated. There were no changes in metabolite factors according to treatment assignment. However, in analyses stratified by T2DM status, changes in five plasma metabolite factors correlated with changes in functional outcomes beyond adjustment: factor 2 (branched-chain amino acids [BCAA]) correlated with changes in NT-proBNP (ρ = − 0.291, p = 4 × 10–4) and 6MWD (ρ= 0.265, p = 0.011); factor 1 (medium-chain acylcarnitines; ρ = 0.220, p = 0.008), factor 4 (long-chain dicarboxylacylcarnitines; ρ = 0.191, p = 0.019), factor 5 (long-chain acylcarnitines; ρ = 0.198, p = 0.017), and factor 8 (urea cycle metabolites; ρ = − 0.239, p = 4 × 10–3), correlated with change in NT-proBNP. Factor 4 was associated with time-to-event (HR = 1.513 [95% CI 1.208–1.896], p = 3 × 10–4) with a trend towards stronger prognostic effect in T2DM (T2DM: p = 1 × 10–3, non-T2DM: p = 0.1). We identified metabolites of BCAA, urea cycle and fatty acid metabolism as biomarkers of HFrEF outcomes, with observed differences in HFrEF patients with T2DM. Such biomarkers might enable future diagnostic or therapeutic interventions in individuals with HFrEF and T2DM. Trial Registration: Clinicaltrials.gov. Identifier: NCT01800968. First posted: February 28, 2013.
Collapse
Affiliation(s)
- Joseph B Lerman
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie N Giamberardino
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N. Duke St, Durham, NC, 27701, USA
| | - Adrian F Hernandez
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - G Michael Felker
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Svati H Shah
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N. Duke St, Durham, NC, 27701, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Robert W McGarrah
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA. .,Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N. Duke St, Durham, NC, 27701, USA.
| |
Collapse
|
21
|
Saqib F, Wahid M, Al-Huqail AA, Ahmedah HT, Bigiu N, Irimie M, Moga M, Marc Vlaic RA, Pop OL, Chicea LM. Metabolomics based mechanistic insights to vasorelaxant and cardioprotective effect of ethanolic extract of Citrullus lanatus (Thunb.) Matsum. & Nakai. seeds in isoproterenol induced myocardial infraction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154069. [PMID: 35364560 DOI: 10.1016/j.phymed.2022.154069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/14/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are a significant cause of morbidity and death in the current world, posing a challenge to both developing and industrialized nation's health systems. Citrullus lanatus (Thunb.) Matsum. & Nakai. seeds have long been utilized to supplement and enhance health and treat cardiovascular illnesses. However, its treatments for CVDs are still unknown. More research is required to fully comprehend the impact of C. lanatus seeds on vasorelaxation and myocardial infractions. PURPOSE Therefore, an integrated metabolomics profiling technique was used to investigate possible pathways of C. lanatus in isoproterenol (ISO)-induced myocardial infarction (MI). Isoproterenol causes long-term cardiac hypertrophy by causing cardiomyocyte compensatory loss, eventually leading to heart failure. METHODS In vitro models of vasoconstriction, atrium, and in vivo models of invasive blood pressure measurement and isoproterenol (ISO) induced cardiac hypertrophy in rats were used to understand underlying mechanistic by LC-MS/MS based dynamic metabolomics analysis of the serum and heart samples to be investigated the effect of ethanolic extract of C. lanatus (Cl.EtOH). RESULTS Cl.EtOH exhibited vasorelaxant, negative chronotropic, and inotropic effects in in-vitro models whereas, a potent hypotensive effect was observed in normotensive rats. The Cl.EtOH protected the animals from ISO-induced myocardial infarction (MI) with therapeutic interventions in left ventricular thickness, cardiomyocyte hypertrophy, mRNA gene expression, biochemical assays, and metabolomic profiling of serum and heart tissues. CONCLUSIONS For the first time, our study confirmed that C. lanatus seeds (Cl.EtOH) possess significant antihypertensive and prevent ISO-induced myocardial infarction. These findings comprehensively demonstrated mechanistic insights of Cl.EtOH in vasorelaxation and myocardial infarction. The current study provides evidence for further mechanistic studies and the development of C. lanatus seeds as a potential therapeutic intervention for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Nicusor Bigiu
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov.
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov
| | - Marius Moga
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov
| | - Romina Alina Marc Vlaic
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | | |
Collapse
|
22
|
González A, Richards AM, de Boer RA, Thum T, Arfsten H, Hülsmann M, Falcao-Pires I, Díez J, Foo RSY, Chan MY, Aimo A, Anene-Nzelu CG, Abdelhamid M, Adamopoulos S, Anker SD, Belenkov Y, Ben Gal T, Cohen-Solal A, Böhm M, Chioncel O, Delgado V, Emdin M, Jankowska EA, Gustafsson F, Hill L, Jaarsma T, Januzzi JL, Jhund PS, Lopatin Y, Lund LH, Metra M, Milicic D, Moura B, Mueller C, Mullens W, Núñez J, Piepoli MF, Rakisheva A, Ristić AD, Rossignol P, Savarese G, Tocchetti CG, Van Linthout S, Volterrani M, Seferovic P, Rosano G, Coats AJS, Bayés-Genís A. Cardiac remodelling - Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022; 24:927-943. [PMID: 35334137 DOI: 10.1002/ejhf.2493] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiac remodelling refers to changes in left ventricular structure and function over time, with a progressive deterioration that may lead to heart failure (HF) development (adverse remodelling) or vice versa a recovery (reverse remodelling) in response to HF treatment. Adverse remodelling predicts a worse outcome, whilst reverse remodelling predicts a better prognosis. The geometry, systolic and diastolic function and electric activity of the left ventricle are affected, as well as the left atrium and on the long term even right heart chambers. At a cellular and molecular level, remodelling involves all components of cardiac tissue: cardiomyocytes, fibroblasts, endothelial cells and leucocytes. The molecular, cellular and histological signatures of remodelling may differ according to the cause and severity of cardiac damage, and clearly to the global trend toward worsening or recovery. These processes cannot be routinely evaluated through endomyocardial biopsies, but may be reflected by circulating levels of several biomarkers. Different classes of biomarkers (e.g. proteins, non-coding RNAs, metabolites and/or epigenetic modifications) and several biomarkers of each class might inform on some aspects on HF development, progression and long-term outcomes, but most have failed to enter clinical practice. This may be due to the biological complexity of remodelling, so that no single biomarker could provide great insight on remodelling when assessed alone. Another possible reason is a still incomplete understanding of the role of biomarkers in the pathophysiology of cardiac remodelling. Such role will be investigated in the first part of this review paper on biomarkers of cardiac remodelling.
Collapse
Affiliation(s)
- Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - A Mark Richards
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) and Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Martin Hülsmann
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Inês Falcao-Pires
- Department od Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Departments of Cardiology and Cardiac Surgery, and Nephrology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Roger S Y Foo
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Mark Y Chan
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Chukwuemeka G Anene-Nzelu
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Montreal Heart Institute, Montreal, Canada
| | | | - Stamatis Adamopoulos
- 2nd Department of Cardiovascular Medicine, Onassis Cardiac Surgery Center, Athens, Greece
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | | | - Tuvia Ben Gal
- Cardiology Department, Rabin Medical Center, Beilinson, Israel
| | | | - Michael Böhm
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Saarland University, Homburg/Saar, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu' Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ewa A Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Finn Gustafsson
- Rigshospitalet-Copenhagen University Hospital, Heart Centre, Department of Cardiology, Copenhagen, Denmark
| | | | | | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | - Pardeep S Jhund
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Yuri Lopatin
- Volgograd State Medical University, Volgograd, Russia
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Metra
- Cardiology, ASST Spedali Civili; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Davor Milicic
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Portugal
| | | | | | - Julio Núñez
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Massimo F Piepoli
- Cardiology Division, Castelsangiovanni Hospital, Castelsangiovanni, Italy
| | - Amina Rakisheva
- Scientific Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Arsen D Ristić
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Patrick Rossignol
- Université de Lorraine, Centre d'Investigations Cliniques- Plurithématique 1433, and Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Sophie Van Linthout
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Petar Seferovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Giuseppe Rosano
- St. George's Hospitals, NHS Trust, University of London, London, UK
| | | | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Vignoli A, Fornaro A, Tenori L, Castelli G, Cecconi E, Olivotto I, Marchionni N, Alterini B, Luchinat C. Metabolomics Fingerprint Predicts Risk of Death in Dilated Cardiomyopathy and Heart Failure. Front Cardiovasc Med 2022; 9:851905. [PMID: 35463749 PMCID: PMC9021397 DOI: 10.3389/fcvm.2022.851905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Heart failure (HF) is a leading cause of morbidity and mortality worldwide. Metabolomics may help refine risk assessment and potentially guide HF management, but dedicated studies are few. This study aims at stratifying the long-term risk of death in a cohort of patients affected by HF due to dilated cardiomyopathy (DCM) using serum metabolomics via nuclear magnetic resonance (NMR) spectroscopy. Methods A cohort of 106 patients with HF due to DCM, diagnosed and monitored between 1982 and 2011, were consecutively enrolled between 2010 and 2012, and a serum sample was collected from each participant. Each patient underwent half-yearly clinical assessments, and survival status at the last follow-up visit in 2019 was recorded. The NMR serum metabolomic profiles were retrospectively analyzed to evaluate the patient's risk of death. Overall, 26 patients died during the 8-years of the study. Results The metabolomic fingerprint at enrollment was powerful in discriminating patients who died (HR 5.71, p = 0.00002), even when adjusted for potential covariates. The outcome prediction of metabolomics surpassed that of N-terminal pro b-type natriuretic peptide (NT-proBNP) (HR 2.97, p = 0.005). Metabolomic fingerprinting was able to sub-stratify the risk of death in patients with both preserved/mid-range and reduced ejection fraction [hazard ratio (HR) 3.46, p = 0.03; HR 6.01, p = 0.004, respectively]. Metabolomics and left ventricular ejection fraction (LVEF), combined in a score, proved to be synergistic in predicting survival (HR 8.09, p = 0.0000004). Conclusions Metabolomic analysis via NMR enables fast and reproducible characterization of the serum metabolic fingerprint associated with poor prognosis in the HF setting. Our data suggest the importance of integrating several risk parameters to early identify HF patients at high-risk of poor outcomes.
Collapse
Affiliation(s)
- Alessia Vignoli
- Department of Chemistry “Ugo Schiff”, Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
- Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy
| | | | - Leonardo Tenori
- Department of Chemistry “Ugo Schiff”, Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
- Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy
| | | | - Elisabetta Cecconi
- Division of Cardiovascular and Perioperative Medicine, Careggi University Hospital, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Niccolò Marchionni
- Division of General Cardiology, Department of Experimental and Clinical Medicine, Careggi University Hospital, University of Florence, Florence, Italy
| | - Brunetto Alterini
- Division of Cardiovascular and Perioperative Medicine, Careggi University Hospital, Florence, Italy
- *Correspondence: Brunetto Alterini
| | - Claudio Luchinat
- Department of Chemistry “Ugo Schiff”, Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
- Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy
- Claudio Luchinat
| |
Collapse
|
24
|
Kamerzell TJ, Mikell B, Chen L, Elias H, Dawn B, MacRae C, Middaugh CR. The structural basis of histone modifying enzyme specificity and promiscuity: Implications for metabolic regulation and drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:189-243. [PMID: 35534108 DOI: 10.1016/bs.apcsb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Histone modifying enzymes regulate chromatin architecture through covalent modifications and ultimately control multiple aspects of cellular function. Disruption of histone modification leads to changes in gene expression profiles and may lead to disease. Both small molecule inhibitors and intermediary metabolites have been shown to modulate histone modifying enzyme activity although our ability to identify successful drug candidates or novel metabolic regulators of these enzymes has been limited. Using a combination of large scale in silico screens and in vivo phenotypic analysis, we identified several small molecules and intermediary metabolites with distinctive HME activity. Our approach using unsupervised learning identifies the chemical fingerprints of both small molecules and metabolites that facilitate recognition by the enzymes active sites which can be used as a blueprint to design novel inhibitors. Furthermore, this work supports the idea that histone modifying enzymes sense intermediary metabolites integrating genes, environment and cellular physiology.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States; Division of Internal Medicine, HCA MidWest Health, Overland Park, KS, United States; Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States; Applied AI Technologies, LLC, Overland Park, KS, United States.
| | - Brittney Mikell
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lei Chen
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Harold Elias
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Calum MacRae
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
25
|
Heart Failure and Drug Therapies: A Metabolic Review. Int J Mol Sci 2022; 23:ijms23062960. [PMID: 35328390 PMCID: PMC8950643 DOI: 10.3390/ijms23062960] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality globally with at least 26 million people worldwide living with heart failure (HF). Metabolism has been an active area of investigation in the setting of HF since the heart demands a high rate of ATP turnover to maintain homeostasis. With the advent of -omic technologies, specifically metabolomics and lipidomics, HF pathologies have been better characterized with unbiased and holistic approaches. These techniques have identified novel pathways in our understanding of progression of HF and potential points of intervention. Furthermore, sodium-glucose transport protein 2 inhibitors, a drug that has changed the dogma of HF treatment, has one of the strongest types of evidence for a potential metabolic mechanism of action. This review will highlight cardiac metabolism in both the healthy and failing heart and then discuss the metabolic effects of heart failure drugs.
Collapse
|
26
|
Morad H, Abou-Elzahab MM, Aref S, EL-Sokkary AMA. Diagnostic Value of 1H NMR-Based Metabolomics in Acute Lymphoblastic Leukemia, Acute Myeloid Leukemia, and Breast Cancer. ACS OMEGA 2022; 7:8128-8140. [PMID: 35284729 PMCID: PMC8908535 DOI: 10.1021/acsomega.2c00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/10/2022] [Indexed: 05/05/2023]
Abstract
Cancer refers to a massive number of diseases distinguished by the development of abnormal cells that divide uncontrollably and have the capability of infiltration and destroying the normal body tissue. It is critical to detect biomarkers that are early detectable and noninvasive to save millions of lives. The aim of the present work is to use NMR as a noninvasive diagnostic tool for cancer diseases. This study included 30 plasma and 21 urine samples of patients diagnosed with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), 25 plasma and 17 urine samples of patients diagnosed with breast cancer (BC), and 9 plasma and urine samples obtained from healthy individuals as controls. They were prepared for NMR measurements; then, the metabolites were identified and the data were analyzed using multivariate statistical procedures. The OPLS-DA score plots clearly discriminated ALL, AML, and BC from healthy controls. Plots of the PLS-DA loadings and S-line plots showed that all metabolites in plasma were greater in BC than in the healthy controls, whereas lactate, O-acetylcarnitine, pyruvate, trimethylamine-N-oxide (TMAO), and glucose were higher in healthy controls than in ALL and AML. On the other hand, urine samples showed lower amounts of lactate, melatonin, pyruvate, and succinate in all of the studied types of cancer when compared to those of healthy controls. 1H NMR can be a successful and noninvasive tool for the diagnosis of different types of cancer.
Collapse
Affiliation(s)
- Hanaa
M. Morad
- Biochemistry
Division, Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | | - Salah Aref
- Department
of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. A. EL-Sokkary
- Biochemistry
Division, Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
27
|
Wahid M, Saqib F, Chicea L, Ahmedah HT, Sajer BH, Marc Vlaic RA, Pop OL, Moga M, Gavris C. Metabolomics analysis delineates the therapeutic effects of hydroethanolic extract of Cucumis sativus L. seeds on hypertension and isoproterenol-induced myocardial infarction. Biomed Pharmacother 2022; 148:112704. [PMID: 35180666 DOI: 10.1016/j.biopha.2022.112704] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Cucumis sativus L., widely cultivated as an edible vegetable. Its seeds are well reputed for cardiovascular preventive properties. However, the mechanisms underlying for cardiovascular protection of C. sativus are still unidentified. Therefore, this study utilized a metabolomics approach to investigate putative mechanisms of C. sativus seeds in myocardial infarction (MI) and in vitro models of vasoconstriction, atrium, and invasive blood pressure measurement. Results showed that Cu.EtOH extract showed a vasorelaxant response with potent hypotensive effect in normotensive rats and L-NAME induced hypertension. Cu.EtOH caused a negative inotropic and positive chronotropic effect on the atrium. Cu.EtOH protected the animals from ISO-induced myocardial infarction (MI) interventions in left ventricular thickness, cardiomyocyte hypertrophy, mRNA gene expression, and biochemical assays. The metabolomics data suggested that Cu.EtOH mainly affected amino acid metabolism, BCAA degradation, ketone bodies degradation, and oxidative stress. Our study showed that Cu.EtOH suppressed inflammation with a strong anti-myocardial infarction impact. Additionally, our findings indicated Cu.EtOH reverted the amino acid metabolism, BCAA, and ketone bodies degradation. The findings show the antihypertensive mechanism of Cu.EtOH may include the modulation of endothelium-derived relaxing factor (EDRF) produced from nitric oxide (NO) and is connected with vascular endothelial function. C. sativus seeds, in particular, played a pivotal role in the treatment of myocardial and vascular disorders by enhancing the EDRF mechanism, energy generation, and antioxidant capacity. In summary, our findings showed the mechanistic insights on the therapeutic potential of C. sativus seeds for cardiovascular disorders.
Collapse
Affiliation(s)
- Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Liana Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania.
| | - Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh 25732, Saudi Arabia.
| | - Bayan Hussein Sajer
- Department of Biological Sciences, King Abdulaziz University, Jeddah 80200, Saudi Arabia.
| | - Romina Alina Marc Vlaic
- Departament of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Marius Moga
- Faculty of Medicine, Transilvania University of Brasov, Romania.
| | - Claudia Gavris
- Faculty of Medicine, Transilvania University of Brasov, Romania.
| |
Collapse
|
28
|
Wang S, Gan J, Li J, Wang Y, Zhang J, Song L, Yang Z, Guo M, Jiang X. Shengmai Yin formula exerts cardioprotective effects on rats with chronic heart failure via regulating Linoleic Acid metabolism. Prostaglandins Other Lipid Mediat 2021; 158:106608. [PMID: 34958945 DOI: 10.1016/j.prostaglandins.2021.106608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The objective of this study was to investigate the protective effects of Shengmai Yin(SMY) on rats with chronic heart failure(CHF).Sprague-Dawley rats were used to establish a CHF animal model via ligation of the left anterior descending branch of the coronary artery and exhaustive swimming.Echocardiography, serum biochemical indicators and histopathology were used to evaluate the pharmacodynamics of SMY in CHF rats.UPLC-Q-TOF/MS analysis based on serum was performed to identify the potential metabolites in the pathological process of CHF. Metabolic pathway analysis was carried out to elucidate the metabolic network associated with SMY treatment of CHF.Moreover,quantitative real-time PCR (qRT-PCR), Western blotting (WB), and Enzyme-linked immunosorbent assay (ELISA) were used to measure the RNA and protein expression levels in related pathways. Results revealed that SMY significantly restored the cardiac function of CHF rats, reduced the serum biochemical indicators, and alleviated cardiac histological damage. Metabolomics analysis shows that the therapeutic effect of SMY for CHF involves 14 biomarkers and 8 metabolic pathways, especially linoleic acid pathway, to be influenced, which implied the potential mechanism of SMY in treating CHF. Two key indicators Lipoxygenase arachidonic acid 15 lipoxygenase (ALOX15) and Cytochrome P450 1A2(CYP1A2) of linoleic acid metabolism pathway were verified by RT-PCR, WB and ELISA. Verification result showed that compared with the model group, expression levels of ALOX15 and CYP1A2 in SMY group were lower. In conclusion, SMY has cardioprotective effect on chronic heart failure rats, and its mechanism may be related to linoleic acid metabolism pathway.
Collapse
Affiliation(s)
- Shuangcui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jingfang Li
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yuli Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiaqi Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lili Song
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Zhen Yang
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
29
|
Tuerhongjiang G, Guo M, Qiao X, Lou B, Wang C, Wu H, Wu Y, Yuan Z, She J. Interplay Between Gut Microbiota and Amino Acid Metabolism in Heart Failure. Front Cardiovasc Med 2021; 8:752241. [PMID: 34746265 PMCID: PMC8566708 DOI: 10.3389/fcvm.2021.752241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 11/14/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome of which the incidence is on the rise worldwide. Cardiometabolic disorders are associated with the deterioration of cardiac function and progression of HF. Recently, there has been renewed interest in gut microbiota (GM) and its metabolites in the cardiovascular disease. HF-caused hypoperfusion could increase intestinal permeability, and a “leaky” bowel leads to bacterial translocation and make its metabolites more easily enter the circulation. Considerable evidence shows that the composition of microbiota and amino acids (AAs) has been altered in HF patients, and AAs could serve as a diagnostic and prognostic biomarker in HF. The findings indicate that the gut–amino acid–HF axis may play a key role in the progression of HF. In this paper, we focus on the interrelationship between the AA metabolism and GM alterations during the development of heart failure. We also discuss the potential prognostic and therapeutic value of the gut–amino acid–HF axis in the cortex of HF.
Collapse
Affiliation(s)
- Gulinigaer Tuerhongjiang
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Manyun Guo
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Xiangrui Qiao
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Bowen Lou
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Chen Wang
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Haoyu Wu
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Yue Wu
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Zuyi Yuan
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Jianqing She
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| |
Collapse
|
30
|
Alam A, Van Zyl J, Nayyar N, Hall S, Jermyn R. Improvement in Metabolic Co-Morbidities after Implantation of CardioMEMS in Patients with Heart Failure with Preserved Ejection Fraction Phenotype. J Clin Med 2021; 10:jcm10194308. [PMID: 34640323 PMCID: PMC8509547 DOI: 10.3390/jcm10194308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/22/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Heart failure with preserved ejection fraction (HFpEF) patients often have other comorbidities, including obesity, dyslipidemia, hypertension, and diabetes, comprising the metabolic syndrome. The impacts of hemodynamic monitoring via CardioMEMS on these co-morbidities remain unknown. Methods: A retrospective analysis of 29 patients with HFpEF (EF 45% or greater) and CardioMEMS was performed at a single center. Weight, body mass index (BMI), systolic blood pressures (SBP), high-density lipoprotein (HDL), triglycerides (TGL), hemoglobin A1C (HbA1c), and pulmonary artery diastolic pressures (PADP) were assessed at baseline and six months post-implant. Paired t-tests and the Wilcoxon signed-rank test were used, as appropriate, to test differences between time points. Results: These patients were 69% female, with a mean age of 73 years, and 62% had non-ischaemic cardiomyopathies (NICM). At the time of CardioMEMS implantation, average PADP was 20.1 mmHg ± 5.7, weight was 102.6 kg ± 22.7, BMI was 38.0 kg/m2 ± 8.3, SBP was 135 mmHg ± 19, HDL was 42.4 mg/dL ± 11.3, and median TGL was 130 mg/dL (100, 180). At six months we witnessed a decrease by 20.9% in PADP to 15.9 mmHg ± 5.8, (p < 0.001). In addition, the following was noted: weight decreased by 2.5% to 100.0 kg ± 23.2, (p = 0.006), BMI reduced by 2.6% to 37.0 ± 8.2, (p = 0.002), SBP decreased by 6.7% to 126 mmHg ± 16 (p < 0.001), HDL increased by 10.8% to 47 mg/dL ± 11.9 (p < 0.001), and TGL decreased by 15.4% to 110 mg/dL (105, 135) (p = 0.001). 62% of patients were diabetic with no significant improvements in HbA1C values at the 6-month follow-up. Conclusion: The utilization of CardioMEMS to optimize PADP results in an improvement in the comorbidities associated with the metabolic syndrome. Further studies are warranted to validate these findings and delineate clinical significance.
Collapse
Affiliation(s)
- Amit Alam
- Baylor University Medical Center, Department of Advanced Heart Failure and Transplantation, Dallas, TX 75246, USA;
- College of Medicine, Texas A&M University, Bryan, TX 77801, USA;
- Correspondence: ; Tel.: +1-214-820-6856
| | - Johanna Van Zyl
- College of Medicine, Texas A&M University, Bryan, TX 77801, USA;
- Baylor University Medical Center, Department of Cardiovascular Research, Dallas, TX 75246, USA
| | - Navdeep Nayyar
- Department of Cardiology, St. Francis Hospital, Roslyn, New York, NY 10001, USA; (N.N.); (R.J.)
| | - Shelley Hall
- Baylor University Medical Center, Department of Advanced Heart Failure and Transplantation, Dallas, TX 75246, USA;
- College of Medicine, Texas A&M University, Bryan, TX 77801, USA;
| | - Rita Jermyn
- Department of Cardiology, St. Francis Hospital, Roslyn, New York, NY 10001, USA; (N.N.); (R.J.)
| |
Collapse
|
31
|
Zhou J, Chen X, Chen W, Zhong L, Cui M. Comprehensive plasma metabolomic and lipidomic analyses reveal potential biomarkers for heart failure. Mol Cell Biochem 2021; 476:3449-3460. [PMID: 33974232 DOI: 10.1007/s11010-021-04159-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
Heart failure is a syndrome with symptoms or signs caused by cardiac dysfunction. In clinic, four stages (A, B, C, and D) were used to describe heart failure progression. This study was aimed to explore plasma metabolomic and lipidomic profiles in different HF stages to identify potential biomarkers. Metabolomics and lipidomics were performed using plasma of heart failure patients at stages A (n = 49), B (n = 61), and C+D (n = 26). Analysis of Variance (ANOVA) was used for screening dysregulated molecules. Bioinformatics was used to retrieve perturbed metabolic pathways. Univariate and multivariate receiver operating characteristic curve (ROC) analyses were used for potential biomarker screening. Stage A showed significant difference to other stages, and 142 dysregulated lipids and 134 dysregulated metabolites were found belonging to several metabolic pathways. Several marker panels were proposed for the diagnosis of heart failure stage A versus stage B-D. Several molecules, including lysophosphatidylcholine 18:2, cholesteryl ester 18:1, alanine, choline, and Fructose, were found correlated with B-type natriuretic peptide or left ventricular ejection fractions. In summary, using untargeted metabolomic and lipidomic profiling, several dysregulated small molecules were successfully identified between HF stages A and B-D. These molecules would provide valuable information for further pathological researches and biomarker development.
Collapse
Affiliation(s)
- Juntuo Zhou
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, No. 49, Hua Yuan North Rd, Hai Dian District, Beijing, 100191, China
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100191, China
| | - Xi Chen
- Department of Pathology, School of Basic Medical Science, Peking University Health Science Center, Beijing, 100191, China
| | - Wei Chen
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100191, China
| | - Lijun Zhong
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100191, China.
| | - Ming Cui
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, No. 49, Hua Yuan North Rd, Hai Dian District, Beijing, 100191, China.
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
32
|
Gordon-Larsen P, French JE, Moustaid-Moussa N, Voruganti VS, Mayer-Davis EJ, Bizon CA, Cheng Z, Stewart DA, Easterbrook JW, Shaikh SR. Synergizing Mouse and Human Studies to Understand the Heterogeneity of Obesity. Adv Nutr 2021; 12:2023-2034. [PMID: 33885739 PMCID: PMC8483969 DOI: 10.1093/advances/nmab040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is routinely considered as a single disease state, which drives a "one-size-fits-all" approach to treatment. We recently convened the first annual University of North Carolina Interdisciplinary Nutrition Sciences Symposium to discuss the heterogeneity of obesity and the need for translational science to advance understanding of this heterogeneity. The symposium aimed to advance scientific rigor in translational studies from animal to human models with the goal of identifying underlying mechanisms and treatments. In this review, we discuss fundamental gaps in knowledge of the heterogeneity of obesity ranging from cellular to population perspectives. We also advocate approaches to overcoming limitations in the field. Examples include the use of contemporary mouse genetic reference population models such as the Collaborative Cross and Diversity Outbred mice that effectively model human genetic diversity and the use of translational models that integrate -omics and computational approaches from pre-clinical to clinical models of obesity. Finally, we suggest best scientific practices to ensure strong rigor that will allow investigators to delineate the sources of heterogeneity in the population with obesity. Collectively, we propose that it is critical to think of obesity as a heterogeneous disease with complex mechanisms and etiologies, requiring unique prevention and treatment strategies tailored to the individual.
Collapse
Affiliation(s)
| | - John E French
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Naima Moustaid-Moussa
- Obesity Research Institute and Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Venkata S Voruganti
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Bizon
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, NC, USA
| | - Zhiyong Cheng
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Delisha A Stewart
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - John W Easterbrook
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
33
|
Bottacini M, Scollo A, Contiero B, Mazzoni C, Pace V, Gottardo F. Prevalence of fibrinous pericarditis in heavy pigs (170 kg) and its association with other pluck lesions at slaughter inspection. Vet J 2021; 273:105680. [PMID: 34148603 DOI: 10.1016/j.tvjl.2021.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
This study determined the prevalence of fibrinous pericarditis and its correlation with other pluck lesions in 658 batches of pigs from 236 intensive farms located in Northern Italy over a 12-month period. All pigs were slaughtered at 170 kg, and a total 57,943 plucks (approximately 90 pigs/batch) were individually assessed for the presence of fibrinous pericarditis, pneumonia, pleuritis, and liver milk spots. There was no seasonal variation in the prevalence of plucks with fibrinous pericarditis and annual mean prevalence was 5.6% (range, 0-26.3% at batch level; median, 4.71%). Farm of origin, evaluated as a random effect, accounted for 17.7% batch variation. Batches with a high prevalence of fibrinous pericarditis (≥7.7%) had higher prevalences of pleural, pulmonary, and liver lesions than those with low-middle prevalence of pericarditis; high prevalence of pericarditis was predictive of pluck lesions (P < 0.001). There was a highly significant association between fibrinous pericarditis and severe pleuritis, and 55% of plucks with the highest score for pleuritis also had ongoing fibrinous pericarditis, with a positive correlation at batch level (r2 = 0.52; P < 0.001). The co-existence of pericarditis and pleuritis (73.5% of all pericarditis cases) suggests that pleuritis plays a role in the pathogenesis of pericarditis. Based on the prevalence fibrinous pericarditis, and the role of pleuritis as a potential comorbidity, abattoir data on pluck lesions with accompanying farm history, could aid the interpretation and management of on-farm health problems, and inform diagnostic protocols.
Collapse
Affiliation(s)
- M Bottacini
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, Legnaro 35020, PD, Italy; Swivet Research snc, Via Ernesto Che Guevara 55, Reggio Emilia 42123, Italy.
| | - A Scollo
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, Grugliasco 10095, TO, Italy
| | - B Contiero
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - C Mazzoni
- Swivet Research snc, Via Ernesto Che Guevara 55, Reggio Emilia 42123, Italy
| | - V Pace
- O.P.A.S. Coop, Organizzazione di Produttori Allevatori di Suini, Via Guastalla 21/A, Carpi 46030, MO, Italy
| | - F Gottardo
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, Legnaro 35020, PD, Italy
| |
Collapse
|
34
|
Hiraiwa H, Okumura T, Kondo T, Kato T, Kazama S, Kimura Y, Ishihara T, Iwata E, Shimojo M, Kondo S, Aoki S, Kanzaki Y, Tanimura D, Sano H, Awaji Y, Yamada S, Murohara T. Prognostic value of leucine/phenylalanine ratio as an amino acid profile of heart failure. Heart Vessels 2021; 36:965-977. [PMID: 33481086 DOI: 10.1007/s00380-020-01765-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/25/2020] [Indexed: 12/16/2022]
Abstract
Heart failure (HF) causes a hypercatabolic state that enhances the catabolic activity of branched-chain amino acids (BCAA; leucine, isoleucine, and valine) in the heart and skeletal muscles and reduces protein synthesis in the liver. Consequently, free plasma aromatic amino acids (AAA, tyrosine and phenylalanine) are increased. To date, we have reported the prognostic value of the BCAA/AAA ratio (Fischer's ratio) in patients with HF. However, the leucine/phenylalanine ratio, which is a simpler index than the Fischer's ratio, has not been examined. Therefore, the prognostic value of the leucine/phenylalanine ratio in patients with HF was investigated. Overall 157 consecutive patients hospitalized for worsening HF (81 men, median age 78 years) were enrolled in the study. Plasma amino acid levels were measured when the patients were stabilized at discharge. Cardiac events were defined as a composite of cardiac death and hospitalization for worsening HF. A total of 46 cardiac events occurred during the median follow-up period of 238 (interquartile range 93-365) days. The median leucine/phenylalanine ratio was significantly lower in patients with cardiac events than in those without cardiac events (1.4 vs. 1.8, P < 0.001). The best cutoff value of the leucine/phenylalanine ratio was determined as 1.7 in the receiver operating characteristic (ROC) curve for cardiac events. Following a Kaplan-Meier survival analysis, the low group (leucine/phenylalanine ratio < 1.7, n = 72) had more cardiac events than the high group (leucine/phenylalanine ratio ≥ 1.7, n = 85) (log-rank, P < 0.001). Multivariate Cox proportional hazards regression analysis showed that the leucine/phenylalanine ratio was an independent predictor of cardiac events. Furthermore, on comparing the prognostic values for cardiac events based on ROC curves of leucine levels, BCAA levels, Fischer's ratio, and leucine/phenylalanine ratio, the leucine/phenylalanine ratio was the most accurate in predicting future cardiac events (area under the curve 0.763,; sensitivity 0.783,; specificity 0.676,; P < 0.001). The leucine/phenylalanine ratio could be a useful predictor of future cardiac events in patients with HF, reflecting an imbalance in amino acid metabolism.
Collapse
Affiliation(s)
- Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
- Department of Cardiology, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan.
| | - Toru Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Toshiaki Kato
- Department of Cardiology, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Shingo Kazama
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Yuki Kimura
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Toshikazu Ishihara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Etsuo Iwata
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Masafumi Shimojo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Sayano Kondo
- Department of Cardiology, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Soichiro Aoki
- Department of Cardiology, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Yasunori Kanzaki
- Department of Cardiology, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Daisuke Tanimura
- Department of Cardiology, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Hiroaki Sano
- Department of Cardiology, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Yoshifumi Awaji
- Department of Cardiology, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Sumio Yamada
- Department of Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| |
Collapse
|
35
|
Cheng CW, Liu MH, Tang HY, Cheng ML, Wang CH. Factors associated with elevated plasma phenylalanine in patients with heart failure. Amino Acids 2021; 53:149-157. [PMID: 33398528 DOI: 10.1007/s00726-020-02933-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023]
Abstract
Elevated phenylalanine has been observed in patients with advanced heart failure (HF) and in community cohorts at risk of HF, and has been shown to have prognostic value. This study aimed to explore the factors associated with elevated phenylalanine in HF patients. Mass spectrometry was performed on blood from 669 participants, including 75 normal controls and 594 HF patients (stages A, B, and C). We measured phenylalanine and associated degradation products on the catecholamine pathway, C-reactive protein, valerylcarnitine, methionine sulfoxide, estimated glomerular filtration rate (eGFR), and B-type natriuretic peptide. Longitudinal analysis was conducted on 61 stage C HF patients who had recovered systolic function after 1 year. Phenylalanine and tyrosine levels increased from normal through stages A, B and C. Cross-sectional analysis in patients at stage C showed that phenylalanine levels were related to total bilirubin, eGFR, valerylcarnitine, methionine sulfoxide, C-reactive protein, and male gender. Longitudinal analysis in the patients at stage C with recovered systolic function after 1 year revealed that phenylalanine, tyrosine, methionine sulfoxide, total bilirubin, and C-reactive protein levels significantly decreased from baseline to 12 months. Based on a generalized estimating equations analysis model with time interaction considered, the only significant factor associated with changes in phenylalanine was changes in C-reactive protein concentrations from baseline to 12 months [B (coefficient) = 0.81, P < 0.001] after adjusting for methionine sulfoxide and total bilirubin levels. In conclusion, phenylalanine levels respond sensitively to HF improvement. Our findings suggest that inflammation plays a pivotal role in the elevation of phenylalanine levels in patients with HF.
Collapse
Affiliation(s)
- Chi-Wen Cheng
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Min-Hui Liu
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taiwan.,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Clinical Metabolomics Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taiwan. .,Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
36
|
Michel M, Salvador C, Wiedemair V, Adam MG, Laser KT, Dubowy KO, Entenmann A, Karall D, Geiger R, Zlamy M, Scholl-Bürgi S. Method comparison of HPLC-ninhydrin-photometry and UHPLC-PITC-tandem mass spectrometry for serum amino acid analyses in patients with complex congenital heart disease and controls. Metabolomics 2020; 16:128. [PMID: 33319318 PMCID: PMC7736021 DOI: 10.1007/s11306-020-01741-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Metabolomics studies are not routine when quantifying amino acids (AA) in congenital heart disease (CHD). OBJECTIVES Comparative analysis of 24 AA in serum by traditional high-performance liquid chromatography (HPLC) based on ion exchange and ninhydrin derivatisation followed by photometry (PM) with ultra-high-performance liquid chromatography and phenylisothiocyanate derivatisation followed by tandem mass spectrometry (TMS); interpretation of findings in CHD patients and controls. METHODS PM: Sample analysis as above (total run time, ~ 119 min). TMS: Sample analysis by AbsoluteIDQ® p180 kit assay (BIOCRATES Life Sciences AG, Innsbruck, Austria), which employs PITC derivatisation; separation of analytes on a Waters Acquity UHPLC BEH18 C18 reversed-phase column, using water and acetonitrile with 0.1% formic acid as the mobile phases; and quantification on a Triple-Stage Quadrupole tandem mass spectrometer (Thermo Fisher Scientific, Waltham, MA) with electrospray ionisation in the presence of internal standards (total run time, ~ 8 min). Calculation of coefficients of variation (CV) (for precision), intra- and interday accuracies, limits of detection (LOD), limits of quantification (LOQ), and mean concentrations. RESULTS Both methods yielded acceptable results with regard to precision (CV < 10% PM, < 20% TMS), accuracies (< 10% PM, < 34% TMS), LOD, and LOQ. For both Fontan patients and controls AA concentrations differed significantly between methods, but patterns yielded overall were parallel. CONCLUSION Serum AA concentrations differ with analytical methods but both methods are suitable for AA pattern recognition. TMS is a time-saving alternative to traditional PM under physiological conditions as well as in patients with CHD. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Identifier NCT03886935, date of registration March 27th, 2019 (retrospectively registered).
Collapse
Affiliation(s)
- Miriam Michel
- grid.5361.10000 0000 8853 2677Department of Pediatrics III, Division of Pediatric Cardiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- grid.5570.70000 0004 0490 981XCenter of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Christina Salvador
- grid.5361.10000 0000 8853 2677Department of Pediatrics I, Division of Pediatric Cardiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Verena Wiedemair
- grid.5771.40000 0001 2151 8122Management Center Innsbruck, Department of Food Technologies, Maximilianstraße 2, 6020 Innsbruck, Austria
| | - Mark Gordian Adam
- grid.431833.e0000 0004 0521 4243BIOCRATES Life Sciences AG, Eduard-Bodem-Gasse 8, 6020 Innsbruck, Austria
| | - Kai Thorsten Laser
- grid.5570.70000 0004 0490 981XCenter of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Karl-Otto Dubowy
- grid.5570.70000 0004 0490 981XCenter of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Andreas Entenmann
- grid.5361.10000 0000 8853 2677Department of Pediatrics I, Division of Pediatric Cardiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Daniela Karall
- grid.5361.10000 0000 8853 2677Department of Pediatrics I, Division of Pediatric Cardiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Ralf Geiger
- grid.5361.10000 0000 8853 2677Department of Pediatrics III, Division of Pediatric Cardiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Manuela Zlamy
- grid.5361.10000 0000 8853 2677Department of Pediatrics I, Division of Pediatric Cardiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Sabine Scholl-Bürgi
- grid.5361.10000 0000 8853 2677Department of Pediatrics I, Division of Pediatric Cardiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
37
|
Yuan Y, Fan S, Shu L, Huang W, Xie L, Bi C, Yu H, Wang Y, Li Y. Exploration the Mechanism of Doxorubicin-Induced Heart Failure in Rats by Integration of Proteomics and Metabolomics Data. Front Pharmacol 2020; 11:600561. [PMID: 33362553 PMCID: PMC7758990 DOI: 10.3389/fphar.2020.600561] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a common systemic disease with high morbidity and mortality worldwide. Doxorubicin (DOX) is a commonly used anthracycline broad-spectrum antitumor antibiotic with strong antitumor effect and definite curative effect. However, cardiotoxicity is the adverse reaction of drug dose cumulative toxicity, but the mechanism is still unclear. In this study, proteomics and metabonomics techniques were used to analyze the tissue and plasma of DOX-induced heart failure (HF) in rats and to clarify the molecular mechanism of the harmful effects of DOX on cardiac metabolism and function in rats from a new point of view. The results showed that a total of 278 proteins with significant changes were identified by quantitative proteomic analysis, of which 118 proteins were significantly upregulated and 160 proteins were significantly downregulated in myocardial tissue. In the metabonomic analysis, 21 biomarkers such as L-octanoylcarnitine, alpha-ketoglutarate, glutamine, creatine, and sphingosine were detected. Correlation analysis showed that DOX-induced HF mainly affected phenylalanine, tyrosine, and tryptophan biosynthesis, D-glutamine and D-glutamate metabolism, phenylalanine metabolism, biosynthesis of unsaturated fatty acids, and other metabolic pathways, suggesting abnormal amino acid metabolism, fatty acid metabolism, and glycerol phospholipid metabolism. It is worth noting that we have found the key upstream target of DOX-induced HF, PTP1B, which inhibits the expression of HIF-1α by inhibiting the phosphorylation of IRS, leading to disorders of fatty acid metabolism and glycolysis, which together with the decrease of Nrf2, SOD, Cytc, and AK4 proteins lead to oxidative stress. Therefore, we think that PTP1B may play an important role in the development of heart failure induced by doxorubicin and can be used as a potential target for the treatment of heart failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuming Wang
- Department of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- Department of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
38
|
Mamic P, Chaikijurajai T, Tang WHW. Gut microbiome - A potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review. J Mol Cell Cardiol 2020; 152:105-117. [PMID: 33307092 DOI: 10.1016/j.yjmcc.2020.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiome (GMB) has been increasingly recognized as a contributor to development and progression of heart failure (HF), immune-mediated subtypes of cardiomyopathy (myocarditis and anthracycline-induced cardiotoxicity), response to certain cardiovascular drugs, and HF-related comorbidities, such as chronic kidney disease, cardiorenal syndrome, insulin resistance, malnutrition, and cardiac cachexia. Gut microbiome is also responsible for the "gut hypothesis" of HF, which explains the adverse effects of gut barrier dysfunction and translocation of GMB on the progression of HF. Furthermore, accumulating evidence has suggested that gut microbial metabolites, including short chain fatty acids, trimethylamine N-oxide (TMAO), amino acid metabolites, and bile acids, are mechanistically linked to pathogenesis of HF, and could, therefore, serve as potential therapeutic targets for HF. Even though there are a variety of proposed therapeutic approaches, such as dietary modifications, prebiotics, probiotics, TMAO synthesis inhibitors, and fecal microbial transplant, targeting GMB in HF is still in its infancy and, indeed, requires further preclinical and clinical evidence. In this review, we aim to highlight the role gut microbiome plays in HF pathophysiology and its potential as a novel therapeutic target in HF.
Collapse
Affiliation(s)
- Petra Mamic
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, Stanford, CA, United States of America
| | - Thanat Chaikijurajai
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| |
Collapse
|
39
|
Tang HY, Wang CH, Ho HY, Lin JF, Lo CJ, Huang CY, Cheng ML. Characteristic of Metabolic Status in Heart Failure and Its Impact in Outcome Perspective. Metabolites 2020; 10:E437. [PMID: 33138215 PMCID: PMC7692076 DOI: 10.3390/metabo10110437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
Metabolic alterations have been documented in peripheral tissues in heart failure (HF). Outcomes might be improved by early identification of risk. However, the prognostic information offered is still far from enough. We hypothesized that plasma metabolic profiling potentially provides risk stratification for HF patients. Of 61 patients hospitalized due to acute decompensated HF, 31 developed HF-related events in one year after discharge (Event group), and the other 30 patients did not (Non-event group). The plasma collected during hospital admission was analyzed by an ultra-high performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOFMS)-based metabolomic approach. The orthogonal projection to latent structure discriminant analysis (OPLS-DA) reveals that the metabolomics profile is able to distinguish between events in HF. Levels of 19 metabolites including acylcarnitines, lysophospholipids, dimethylxanthine, dimethyluric acid, tryptophan, phenylacetylglutamine, and hypoxanthine are significantly different between patients with and without event (p < 0.05). Established risk prediction models of event patients by using receiver operating characteristics analysis reveal that the combination of tetradecenoylcarnitine, dimethylxanthine, phenylacetylglutamine, and hypoxanthine has better discrimination than B-type natriuretic peptide (BNP) (AUC 0.871 and 0.602, respectively). These findings suggest that metabolomics-derived metabolic profiling have the potential of identifying patients with high risk of HF-related events and provide insights related to HF outcome.
Collapse
Affiliation(s)
- Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (J.-F.L.); (C.-J.L.); (C.-Y.H.)
| | - Chao-Hung Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung City 20401, Taiwan;
| | - Hung-Yao Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
| | - Jui-Fen Lin
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (J.-F.L.); (C.-J.L.); (C.-Y.H.)
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (J.-F.L.); (C.-J.L.); (C.-Y.H.)
| | - Cheng-Yu Huang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (J.-F.L.); (C.-J.L.); (C.-Y.H.)
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; (H.-Y.T.); (J.-F.L.); (C.-J.L.); (C.-Y.H.)
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
40
|
Degoricija V, Trbušić M, Potočnjak I, Radulović B, Pregartner G, Berghold A, Scharnagl H, Stojakovic T, Tiran B, Frank S. Serum concentrations of free fatty acids are associated with 3-month mortality in acute heart failure patients. Clin Chem Lab Med 2020; 57:1799-1804. [PMID: 31188747 PMCID: PMC6779572 DOI: 10.1515/cclm-2019-0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/02/2019] [Indexed: 01/10/2023]
Abstract
Background Plasma free fatty acids (FFA) are higher in heart failure (HF) patients compared to healthy controls. Considering that the extent of FFA elevation in HF might mirror the severity of HF, we hypothesized that the serum levels of FFA may be a useful prognostic indicator for 3-month mortality in acute heart failure (AHF). Methods We analyzed the serum samples of AHF patients obtained at admission to the emergency department. Serum levels of FFA were analyzed using an enzymatic reagent on an automatic analyzer. Results Out of 152 included AHF patients that were originally included, serum samples of 132 patients were available for the quantification of FFA. Of these, 35 (26.5%) died within 3 months of onset of AHF. These patients had significantly higher serum levels of FFA compared to AHF patients who were alive 3 months after onset of AHF. Univariable logistic regression analyses showed a significant positive association of FFA levels with 3-month mortality (odds ratio [OR] 2.76 [95% confidence interval 1.32–6.27], p = 0.010). Importantly, this association remained significant after adjusting for age and sex, as well as for further clinical and laboratory parameters that showed a significant association with 3-month mortality in the univariate analyses. Conclusions We conclude that the admission serum levels of FFA are associated with 3-month mortality in AHF patients. Therefore, measurements of circulating FFA levels may help identifying high-risk AHF patients.
Collapse
Affiliation(s)
- Vesna Degoricija
- University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Medicine, University Hospital Centre Sisters of Charity, Zagreb, Croatia
| | - Matias Trbušić
- University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Medicine, University Hospital Centre Sisters of Charity, Zagreb, Croatia
| | - Ines Potočnjak
- Department of Medicine, University Hospital Centre Sisters of Charity, Zagreb, Croatia
| | | | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Beate Tiran
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstr. 6/6, 8010 Graz, Austria
| |
Collapse
|
41
|
Kumar A, Dhiman D, Shaha C. Sestrins: Darkhorse in the regulation of mitochondrial health and metabolism. Mol Biol Rep 2020; 47:8049-8060. [DOI: 10.1007/s11033-020-05769-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
|
42
|
Hage C, Löfgren L, Michopoulos F, Nilsson R, Davidsson P, Kumar C, Ekström M, Eriksson MJ, Lyngå P, Persson B, Wallén H, Gan LM, Persson H, Linde C. Metabolomic Profile in HFpEF vs HFrEF Patients. J Card Fail 2020; 26:1050-1059. [PMID: 32750486 DOI: 10.1016/j.cardfail.2020.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF) are associated with metabolic derangements, which may have different pathophysiological implications. METHODS AND RESULTS In new-onset HFpEF (EF of ≥50%, n = 46) and HFrEF (EF of <40%, n = 75) patients, 109 endogenous plasma metabolites including amino acids, phospholipids and acylcarnitines were assessed using targeted metabolomics. Differentially altered metabolites and associations with clinical characteristics were explored. Patients with HFpEF were older, more often female with hypertension, atrial fibrillation, and diabetes compared with patients with HFrEF. Patients with HFpEF displayed higher levels of hydroxyproline and symmetric dimethyl arginine, alanine, cystine, and kynurenine reflecting fibrosis, inflammation and oxidative stress. Serine, cGMP, cAMP, l-carnitine, lysophophatidylcholine (18:2), lactate, and arginine were lower compared with patients with HFrEF. In patients with HFpEF with diabetes, kynurenine was higher (P = .014) and arginine lower (P = .014) vs patients with no diabetes, but did not differ with diabetes status in HFrEF. Decreasing kynurenine was associated with higher eGFR only in HFpEF (Pinteraction = .020). CONCLUSIONS Patients with new-onset HFpEF compared with patients with new-onset HFrEF display a different metabolic profile associated with comorbidities, such as diabetes and kidney dysfunction. HFpEF is associated with indices of increased inflammation and oxidative stress, impaired lipid metabolism, increased collagen synthesis, and downregulated nitric oxide signaling. Together, these findings suggest a more predominant systemic microvascular endothelial dysfunction and inflammation linked to increased fibrosis in HFpEF compared with HFrEF. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT03671122 https://clinicaltrials.gov.
Collapse
Affiliation(s)
- Camilla Hage
- Karolinska Institutet, Department of Medicine, Cardiology unit, Stockholm, Sweden.
| | - Lars Löfgren
- Translational Science and Experimental Medicine; Research and early Development, Cardiovascular, Renal and Metabolism, Biopharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Ralph Nilsson
- Translational Science and Experimental Medicine; Research and early Development, Cardiovascular, Renal and Metabolism, Biopharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Pia Davidsson
- Translational Science and Experimental Medicine; Research and early Development, Cardiovascular, Renal and Metabolism, Biopharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Chanchal Kumar
- Translational Science and Experimental Medicine; Research and early Development, Cardiovascular, Renal and Metabolism, Biopharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Mattias Ekström
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine Stockholm, Sweden
| | - Maria J Eriksson
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden
| | - Patrik Lyngå
- Karolinska Institutet, Department of Clinical Science and Education, Sodersjukhuset, Stockholm, Sweden
| | - Bengt Persson
- Uppsala University, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala, Sweden
| | - Hakan Wallén
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine Stockholm, Sweden
| | - Li Ming Gan
- Early Clinical Development, Research and early Development, Cardiovascular, Renal and Metabolism, Biopharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Hans Persson
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine Stockholm, Sweden
| | - Cecilia Linde
- Karolinska Institutet, Department of Medicine, Cardiology unit, Stockholm, Sweden
| |
Collapse
|
43
|
Li C, Wang L, Li Y, Feng Z, Wang Q, Luo W. Common Variants in the ARG1 Gene Contribute to the Risk of Dilated Cardiomyopathy in the Han Chinese Population. Genet Test Mol Biomarkers 2020; 24:584-591. [PMID: 32721242 DOI: 10.1089/gtmb.2020.0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Arginase I, encoded by the ARG1 gene, is an enzyme that catalyzes the conversion of arginine to ornithine in the urea cycle; mutations in this gene has recently been reported to be associated with dilated cardiomyopathy (DCM) in Pakistan. The present study aimed to investigate the relationship between ARG1 gene mutations and DCM in the Han Chinese population. Methods: A total of 488 DCM cases and 924 matched-healthy controls were recruited. All subjects were genotyped for 12 tag single nucleotide polymorphisms (SNPs) within the ARG1 gene. Genetic association studies, including SNP and haplotype analyses, were performed. Further analyses were conducted to examine the correlations between the associated SNPs and specific clinical characteristics. Results: Only the rs2781666 and rs2781667 loci in the ARG1 gene were found to be significantly associated with DCM compared to the healthy controls. The risk of DCM at both of these loci for T allele carriers was ∼1.42-fold higher than that for carriers of the alternative alleles. There were significant differences in end-diastolic interventricular septal diameter, end-diastolic left ventricular posterior wall diameter, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and left ventricular ejection fraction among the genotype distributions of both SNPs. Furthermore, we found that the T alleles at the rs2781666 and rs2781667 loci were significantly associated with DCM in gender subgroups and the subgroup of patients <58 years of age. The haplotype T-T (rs2781666-rs2781667) also showed a significant association with DCM. Conclusion: Our results support the hypothesis that alleles and haplotypes of the ARG1 gene are significantly involved in the etiology of DCM in the Han Chinese population, but further research is necessary to elucidate the mechanism governing this association.
Collapse
Affiliation(s)
- Chaomin Li
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liping Wang
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuanbo Li
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhang Feng
- Department of Cardiology, Xi'an Central Hospital, Xi'an, China
| | - Qiang Wang
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Luo
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
44
|
Chen WS, Wang CH, Cheng CW, Liu MH, Chu CM, Wu HP, Huang PC, Lin YT, Ko T, Chen WH, Wang HJ, Lee SC, Liang CY. Elevated plasma phenylalanine predicts mortality in critical patients with heart failure. ESC Heart Fail 2020; 7:2884-2893. [PMID: 32618142 PMCID: PMC7524095 DOI: 10.1002/ehf2.12896] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Aims Previous studies found a relationship between elevated phenylalanine levels and poor cardiovascular outcomes. Potential strategies are available to manipulate phenylalanine metabolism. This study investigated whether increased phenylalanine predicted mortality in critical patients with either acute heart failure (HF) or acute on chronic HF, and its correlation with inflammation and immune cytokines. Methods and results This study recruited 152 subjects, including 115 patients with HF admitted for critical conditions and 37 normal controls. We measured left ventricular ejection fraction (LVEF), plasma concentrations of phenylalanine, C‐reactive protein, albumin, pre‐albumin, transferrin, and pro‐inflammatory and immune cytokines. Acute Physiology and Chronic Health Evaluation (APACHE II), Sequential Organ Failure Assessment (SOFA), and maximal vasoactive–inotropic scores (VISmax) were calculated. Patients were followed up until death or a maximum of 1 year. The primary endpoint was all‐cause death. Of the 115 patients, 37 (32.2%) were admitted owing to acute HF, and 78 (67.8%) were admitted owing to acute on chronic HF; 64 (55.7%) had ST elevation/non‐ST elevation myocardial infarction. An LVEF measured during the hospitalization of <40%, 40–50%, and ≥50% was noted in 51 (44.3%), 15 (13.1%), and 49 (42.6%) patients, respectively. During 1 year follow‐up, 51 (44.3%) patients died. Death was associated with higher APACHE II, SOFA, and VISmax scores; higher levels of C‐reactive protein and phenylalanine; higher incidence of atrial fibrillation and use of inotropic agents; lower cholesterol, albumin, pre‐albumin, and transferrin levels; and significant changes in pro‐inflammatory and immune cytokines. Phenylalanine levels demonstrated an area under the receiver operating characteristic curve of 0.80 for mortality, with an optimal cut‐off value set at 112 μM. Phenylalanine ≥ 112 μM was associated with a higher mortality rate than was phenylalanine < 112 μM (80.5% vs. 24.3%, P < 0.001) [hazard ratio = 5.07 (2.83–9.05), P < 0.001]. The Kaplan–Meier curves revealed that phenylalanine ≥ 112 μM was associated with a lower accumulative survival rate (log rank = 36.9, P < 0.001). Higher phenylalanine levels were correlated with higher APACHE II and SOFA scores, higher C‐reactive protein levels and incidence of using inotropic agents, and changes in cytokines suggestive of immunosuppression, but lower levels of pre‐albumin and transferrin. Further multivariable analysis showed that phenylalanine ≥ 112 μM predicted death over 1 year independently of age, APACHE II and SOFA scores, atrial fibrillation, C‐reactive protein, cholesterol, pre‐albumin, transferrin, and interleukin‐8 and interleukin‐10. Conclusions Elevated phenylalanine levels predicted mortality in critical patients, phenotypically predominantly presenting with HF, independently of traditional prognostic factors and cytokines associated with inflammation and immunity.
Collapse
Affiliation(s)
- Wei-Siang Chen
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.,Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chi-Wen Cheng
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Hui Liu
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chien-Ming Chu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Huang-Ping Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Pao-Chin Huang
- Nutrition Department, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yi-Tsen Lin
- Nutrition Department, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ta Ko
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.,Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Hsin Chen
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.,Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Huei-Jen Wang
- Department of Nursing, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shu-Chiu Lee
- Department of Nursing, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chung-Yu Liang
- Intensive Care Unit, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.,Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
45
|
Bravo CA, Hua S, Deik A, Lazar J, Hanna DB, Scott J, Chai JC, Kaplan RC, Anastos K, Robles OA, Clish CB, Kizer JR, Qi Q. Metabolomic Profiling of Left Ventricular Diastolic Dysfunction in Women With or at Risk for HIV Infection: The Women's Interagency HIV Study. J Am Heart Assoc 2020; 9:e013522. [PMID: 32063116 PMCID: PMC7070185 DOI: 10.1161/jaha.119.013522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
Background People living with HIV have an increased risk of left ventricular diastolic dysfunction (LVDD) and heart failure. HIV-associated LVDD may reflect both cardiomyocyte and systemic metabolic derangements, but the underlying pathways remain unclear. Methods and Results To explore such pathways, we conducted a pilot study in the Bronx and Brooklyn sites of the WIHS (Women's Interagency HIV Study) who participated in concurrent, but separate, metabolomics and echocardiographic ancillary studies. Liquid chromatography tandem mass spectrometry-based metabolomic profiling was performed on plasma samples from 125 HIV-infected (43 with LVDD) and 35 HIV-uninfected women (9 with LVDD). Partial least squares discriminant analysis identified polar metabolites and lipids in the glycerophospholipid-metabolism and fatty-acid-oxidation pathways associated with LVDD. After multivariable adjustment, LVDD was significantly associated with higher concentrations of diacylglycerol 30:0 (odds ratio [OR], 1.60, 95% CI [1.01-2.55]); triacylglycerols 46:0 (OR 1.60 [1.04-2.48]), 48:0 (OR 1.63 [1.04-2.54]), 48:1 (OR 1.62 [1.01-2.60]), and 50:0 (OR 1.61 [1.02-2.53]); acylcarnitine C7 (OR 1.88 [1.21-2.92]), C9 (OR 1.99 [1.27-3.13]), and C16 (OR 1.80 [1.13-2.87]); as well as lower concentrations of phosphocholine (OR 0.59 [0.38-0.91]). There was no evidence of effect modification of these relationships by HIV status. Conclusions In this pilot study, women with or at risk of HIV with LVDD showed alterations in plasma metabolites in the glycerophospholipid-metabolism and fatty-acid-oxidation pathways. Although these findings require replication, they suggest that improved understanding of metabolic perturbations and their potential modification could offer new approaches to prevent cardiac dysfunction in this high-risk group.
Collapse
Affiliation(s)
- Claudio A. Bravo
- Division of CardiologyDepartment of MedicineColumbia University Medical CenterNew YorkNY
| | - Simin Hua
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
| | - Amy Deik
- Metabolomics PlatformBroad Institute of MIT and HarvardCambridgeMA
| | - Jason Lazar
- Division of Cardiovascular MedicineState University of New York Downstate Medical CenterBrooklynNY
| | - David B. Hanna
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
| | - Justin Scott
- Metabolomics PlatformBroad Institute of MIT and HarvardCambridgeMA
| | - Jin Choul Chai
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
| | - Robert C. Kaplan
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWA
| | - Kathryn Anastos
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
- Department of MedicineAlbert Einstein College of MedicineBronxNY
| | | | - Clary B. Clish
- Metabolomics PlatformBroad Institute of MIT and HarvardCambridgeMA
| | - Jorge R. Kizer
- Division of CardiologySan Francisco Veterans Affairs Health Care SystemUniversity of California San FranciscoSan FranciscoCA
| | - Qibin Qi
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
| |
Collapse
|
46
|
Razavi AC, Bazzano LA, He J, Fernandez C, Whelton SP, Krousel-Wood M, Li S, Nierenberg JL, Shi M, Li C, Mi X, Kinchen J, Kelly TN. Novel Findings From a Metabolomics Study of Left Ventricular Diastolic Function: The Bogalusa Heart Study. J Am Heart Assoc 2020; 9:e015118. [PMID: 31992159 PMCID: PMC7033875 DOI: 10.1161/jaha.119.015118] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Diastolic dysfunction is one important causal factor for heart failure with preserved ejection fraction, yet the metabolic signature associated with this subclinical phenotype remains unknown. Methods and Results Ultra‐high‐performance liquid chromatography–tandem mass spectroscopy was used to conduct untargeted metabolomic analysis of fasting serum samples in 1050 white and black participants of the BHS (Bogalusa Heart Study). After quality control, 1202 metabolites were individually tested for association with 5 echocardiographic measures of left ventricular diastolic function using multivariable‐adjusted linear regression. Measures of left ventricular diastolic function included the ratio of peak early filling velocity to peak late filling velocity, ratio of peak early filling velocity to mitral annular velocity, deceleration time, isovolumic relaxation time, and left atrial maximum volume index (LAVI). Analyses adjusted for multiple cardiovascular disease risk factors and used Bonferroni‐corrected alpha thresholds. Eight metabolites robustly associated with left ventricular diastolic function in the overall population and demonstrated consistent associations in white and black study participants. N‐formylmethionine (B=0.05; P=1.50×10−7); 1‐methylhistidine (B=0.05; P=1.60×10−7); formiminoglutamate (B=0.07; P=5.60×10−7); N2, N5‐diacetylornithine (B=0.05; P=1.30×10−7); N‐trimethyl 5‐aminovalerate (B=0.04; P=5.10×10−6); 5‐methylthioadenosine (B=0.04; P=1.40×10−5); and methionine sulfoxide (B=0.04; P=3.80×10−6) were significantly associated with the natural log of the ratio of peak early filling velocity to mitral annular velocity. Butyrylcarnitine (B=3.18; P=2.10×10−6) was significantly associated with isovolumic relaxation time. Conclusions The current study identified novel findings of metabolite associations with left ventricular diastolic function, suggesting that the serum metabolome, and its underlying biological pathways, may be implicated in heart failure with preserved ejection fraction pathogenesis.
Collapse
Affiliation(s)
- Alexander C Razavi
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA.,Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Lydia A Bazzano
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA.,Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Jiang He
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA.,Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Camilo Fernandez
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA.,Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Seamus P Whelton
- The Ciccarone Center for the Prevention of Heart Disease Johns Hopkins University School of Medicine Baltimore MD
| | - Marie Krousel-Wood
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA.,Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Shengxu Li
- Children's Minnesota Research Institute Children's Hospitals & Clinics of Minnesota Minneapolis MN
| | - Jovia L Nierenberg
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA
| | - Mengyao Shi
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA
| | - Changwei Li
- Department of Epidemiology and Biostatistics University of Georgia College of Public Health Athens GA
| | - Xuenan Mi
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA
| | | | - Tanika N Kelly
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA
| |
Collapse
|
47
|
Spiller W, Jung KJ, Lee JY, Jee SH. Precision Medicine and Cardiovascular Health: Insights from Mendelian Randomization Analyses. Korean Circ J 2019; 50:91-111. [PMID: 31845553 PMCID: PMC6974657 DOI: 10.4070/kcj.2019.0293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 11/11/2022] Open
Abstract
Cardiovascular disease (CVD) is considered a primary driver of global mortality and is estimated to be responsible for approximately 17.9 million deaths annually. Consequently, a substantial body of research related to CVD has developed, with an emphasis on identifying strategies for the prevention and effective treatment of CVD. In this review, we critically examine the existing CVD literature, and specifically highlight the contribution of Mendelian randomization analyses in CVD research. Throughout this review, we assess the extent to which research findings agree across a range of studies of differing design within a triangulation framework. If differing study designs are subject to non-overlapping sources of bias, consistent findings limit the extent to which results are merely an artefact of study design. Consequently, broad agreement across differing studies can be viewed as providing more robust causal evidence in contrast to limiting the scope of the review to a single specific study design. Utilising the triangulation approach, we highlight emerging patterns in research findings, and explore the potential of identified risk factors as targets for precision medicine and novel interventions.
Collapse
Affiliation(s)
- Wes Spiller
- Department of Population Health Sciences, University of Bristol, Bristol, UK
| | - Keum Ji Jung
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Ji Young Lee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea.
| |
Collapse
|
48
|
Song Z, Wang H, Yin X, Deng P, Jiang W. Application of NMR metabolomics to search for human disease biomarkers in blood. Clin Chem Lab Med 2019; 57:417-441. [PMID: 30169327 DOI: 10.1515/cclm-2018-0380] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/16/2018] [Indexed: 02/05/2023]
Abstract
Recently, nuclear magnetic resonance spectroscopy (NMR)-based metabolomics analysis and multivariate statistical techniques have been incorporated into a multidisciplinary approach to profile changes in small molecules associated with the onset and progression of human diseases. The purpose of these efforts is to identify unique metabolite biomarkers in a specific human disease so as to (1) accurately predict and diagnose diseases, including separating distinct disease stages; (2) provide insights into underlying pathways in the pathogenesis and progression of the malady and (3) aid in disease treatment and evaluate the efficacy of drugs. In this review we discuss recent developments in the application of NMR-based metabolomics in searching disease biomarkers in human blood samples in the last 5 years.
Collapse
Affiliation(s)
- Zikuan Song
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Haoyu Wang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaotong Yin
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Pengchi Deng
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
49
|
Nguyen AB, Imamura T, Besser S, Rodgers D, Chung B, Raikhelkar J, Kalantari S, Smith B, Sarswat N, LaBuhn C, Jeevanandam V, Kim G, Sayer G, Uriel N. Metabolic Dysfunction in Continuous-Flow Left Ventricular Assist Devices Patients and Outcomes. J Am Heart Assoc 2019; 8:e013278. [PMID: 31718441 PMCID: PMC6915293 DOI: 10.1161/jaha.119.013278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Metabolic impairment is common in heart failure patients. Continuous‐flow left ventricular assist devices (CF‐LVADs) improve hemodynamics and outcomes in patients with advanced heart failure; however, the effect of CF‐LVADs on metabolic status is unknown. This study aims to evaluate the changes in metabolic status following CF‐LVAD implantation and measure the correlation of metabolic status with outcomes. Methods and Results Prospective data on CF‐LVAD patients were obtained. Metabolic evaluation, including hemoglobin A1C, free and total testosterone, thyroid‐stimulating hormone (TSH), and free T4, was obtained before and at multiple time points following implantation. Patients with nonelevated thyroid‐stimulating hormone and normal hemoglobin A1C and testosterone levels were defined as having normal metabolic status. Baseline characteristics, hemodynamics, and outcomes were collected. One hundred six patients were studied, of which 56 had paired data at baseline and 1‐ to 3‐month follow‐up. Before implantation, 75% of patients had insulin resistance, 86% of men and 39% of women had low free testosterone, and 44% of patients had abnormal thyroid function. There was a significant improvement in hemoglobin A1C, free testosterone, and thyroid‐stimulating hormone following implantation (P<0.001 for all). Patients with normal hemoglobin A1C (<5.7%) following implantation had higher 1‐year survival free of heart failure readmissions (78% versus 23%; P<0.001). Patients with normal metabolic status following implantation also had higher 1‐year survival free of heart failure readmissions (92% versus 54%; P=0.04). Conclusions Metabolic dysfunction is highly prevalent in advanced heart failure patients and improves after CF‐LVAD implantation. Normal metabolic status is associated with a significantly higher rate of 1‐year survival free of heart failure readmissions.
Collapse
Affiliation(s)
- Ann B Nguyen
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Teruhiko Imamura
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Stephanie Besser
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Daniel Rodgers
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Ben Chung
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Jayant Raikhelkar
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Sara Kalantari
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Bryan Smith
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Nitasha Sarswat
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Colleen LaBuhn
- Section of Cardiac Surgery Department of Surgery University of Chicago IL
| | | | - Gene Kim
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Gabriel Sayer
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Nir Uriel
- Section of Cardiology Department of Medicine University of Chicago IL
| |
Collapse
|
50
|
Metabolic Profiling Associates with Disease Severity in Nonischemic Dilated Cardiomyopathy. J Card Fail 2019; 26:212-222. [PMID: 31541741 DOI: 10.1016/j.cardfail.2019.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Metabolomic profiling may have diagnostic and prognostic value in heart failure. This study investigated whether targeted blood and urine metabolomics reflects disease severity in patients with nonischemic dilated cardiomyopathy (DCM) and compared its incremental value on top of N-terminal prohormone of brain natriuretic peptide (NT-proBNP). METHODS AND RESULTS A total of 149 metabolites were measured in plasma and urine samples of 273 patients with DCM and with varying stages of disease (patients with DCM and normal left ventricular reverse remodeling, n = 70; asymptomatic DCM, n = 72; and symptomatic DCM, n = 131). Acylcarnitines, sialic acid and glutamic acid are the most distinctive metabolites associated with disease severity, as repeatedly revealed by unibiomarker linear regression, sparse partial least squares discriminant analysis, random forest, and conditional random forest analyses. However, the absolute difference in the metabolic profile among groups was marginal. A decision-tree model based on the top metabolites did not surpass NT-proBNP in classifying stages. However, a combination of NT-proBNP and the top metabolites improved the decision tree to distinguish patients with DCM and left ventricular reverse remodeling from symptomatic DCM (area under the curve 0.813 ± 0.138 vs 0.739 ± 0.114; P = 0.02). CONCLUSION Functional cardiac recovery is reflected in metabolomics. These alterations reveal potential alternative treatment targets in advanced symptomatic DCM. The metabolic profile can complement NT-proBNP in determining disease severity in nonischemic DCM.
Collapse
|