1
|
Cai Q, Jing C, Wang X, Xing X, Liu W. STEAP Proteins: Roles in disease biology and potential for therapeutic intervention. Int J Biol Macromol 2025; 309:142797. [PMID: 40185436 DOI: 10.1016/j.ijbiomac.2025.142797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Iron and copper are essential metal ions, and maintaining their metabolic balance is critical for organismal health. The Six-Transmembrane Epithelial Antigen of the Prostate (STEAP) protein family, comprising STEAP1, STEAP2, STEAP3, and STEAP4, plays a vital role in cellular metal homeostasis. These proteins are located on the cell membrane and are characterized by six transmembrane domains. With the exception of STEAP1, the STEAP proteins function as metal oxidoreductases due to their F420H2:NADP+ oxidoreductase (FNO)-like domain. However, STEAP1 contributes to metal metabolism through its heme group and interaction with other STEAP proteins. Beyond metal metabolism, STEAP proteins are involved in critical cellular processes, including the regulation of the cell cycle, proliferation, differentiation, and apoptosis. Notably, STEAP proteins are recognized as potential biomarkers and therapeutic targets in human cancers, particularly prostate cancer. This review outlines the structural features and functional roles of STEAP proteins in various diseases, including cancers, insulin resistance, non-alcoholic fatty liver disease (NAFLD), and benign prostatic hyperplasia, with a focus on their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Qiaomei Cai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Xiangling Xing
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China.
| | - Wancheng Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
2
|
Zhang L, Ren X, An R, Song H, Tian Y, Wei X, Shi M, Wang Z. The Role of STEAP1 in Prostate Cancer: Implications for Diagnosis and Therapeutic Strategies. Biomedicines 2025; 13:794. [PMID: 40299363 PMCID: PMC12024770 DOI: 10.3390/biomedicines13040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/30/2025] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies and the second leading cause of cancer-related death in men worldwide. The six-transmembrane epithelial antigen of the prostate 1 (STEAP1) is exceptionally overexpressed in PCa, maintaining high expression even in the castration-resistant prostate cancer (CRPC) stage, making it a promising target for diagnosis and treatment. STEAP1-positive extracellular vesicles and STEAP1-PET imaging are optimistic approaches for the non-invasive detection of different stages of PCa. STEAP1-targeted therapy includes an antibody-drug conjugate (ADC), chimeric antigen receptor T cell (CAR-T), T-cell engager (TCE), and vaccines, which demonstrate valuable therapeutic prospects. This review presents the structure and pathophysiological function of STEAP1, synthesizes cutting-edge advances in STEAP1-targeted molecular imaging and clinical applications, and critically analyzes their translational potential to overcome the limitations of current PCa diagnosis and treatment.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| | - Xinyi Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| | - Ran An
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| | - Hongchen Song
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China;
| | - Yaqi Tian
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| | - Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| | - Mingjun Shi
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China;
- Institute of Urology, Beijing Municipal Health Commission, Beijing 100054, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| |
Collapse
|
3
|
Che J, Liu Y, Liu Y, Song J, Cui H, Feng D, Tian A, Zhang Z, Xu Y. The application of emerging immunotherapy in the treatment of prostate cancer: progress, dilemma and promise. Front Immunol 2025; 16:1544882. [PMID: 40145100 PMCID: PMC11937122 DOI: 10.3389/fimmu.2025.1544882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, there has been a growing trend towards the utilization of immunotherapy techniques for the treatment of cancer. Some malignancies have acquired significant progress with the use of cancer vaccines, immune checkpoint inhibitors, and adoptive cells therapy. Scholars are exploring the aforementioned methods as potential treatments for advanced prostate cancer (PCa) due to the absence of effective adjuvant therapy to improve the prognosis of metastatic castration-resistant prostate cancer (mCRPC). Immunotherapy strategies have yet to achieve significant advancements in the treatment of PCa, largely attributed to the inhibitory tumor microenvironment and low mutation load characteristic of this malignancy. Hence, researchers endeavor to address these challenges by optimizing the design and efficacy of immunotherapy approaches, as well as integrating them with other therapeutic modalities. To date, studies have also shown potential clinical benefits. This comprehensive review analyzed the utilization of immunotherapy techniques in the treatment of PCa, assessing their advantages and obstacles, with the aim of providing healthcare professionals and scholars with a comprehensive understanding of the progress in this field.
Collapse
Affiliation(s)
- Jizhong Che
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yuanyuan Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yangyang Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Jingheng Song
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Hongguo Cui
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Dongdong Feng
- Department of Urology, Haiyang City People’s Hospital, Yantai, Shandong, China
| | - Aimin Tian
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Zhengchao Zhang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yankai Xu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
4
|
Lai J, Yu S, Li X, Wei Q, Qin J. METTL14/IGF2BP2-MEDIATED M6A MODIFICATION OF STEAP1 AGGRAVATES ACUTE LUNG INJURY INDUCED BY SEPSIS. Shock 2025; 63:217-225. [PMID: 39193903 DOI: 10.1097/shk.0000000000002456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ABSTRACT Background: Acute lung injury (ALI) is a severe complication of sepsis, characterized by inflammation, edema, and injury to alveolar cells, leading to high mortality rates. Septic ALI is a complex disease involving multiple factors and signaling pathways. STEAP family member 1 (STEAP1) has been reported to be upregulated in a sepsis-induced ALI model. However, the role of STEAP1 in the regulation of septic ALI is not yet fully understood. Methods: The study stimulated human pulmonary microvascular endothelial cells (HPMECs) using lipopolysaccharides (LPS) to establish an in vitro ALI model. The study used quantitative real-time polymerase chain reaction to measure mRNA expression, and western blotting assay or immunohistochemistry assay to analyze protein expression. Cell Counting Kit-8 assay was performed to assess cell viability. Flow cytometry was conducted to analyze cell apoptosis. Tube formation assay was used to analyze the tube formation rate of human umbilical vein endothelial cells. Enzyme-linked immunosorbent assays were used to measure the levels of interleukin 1beta and tumor necrosis factor alpha. The levels of Fe 2+ and reactive oxygen species were determined using colorimetric and fluorometric assays, respectively. The glutathione level was also determined using a colorimetric assay. m6A RNA immunoprecipitation assay, dual-luciferase reporter assay, and RNA immunoprecipitation assay were performed to identify the association of STEAP1 with methyltransferase 14, N6-adenosine-methyltransferase noncatalytic subunit (METTL14) and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2). The transcript half-life of STEAP1 was analyzed by actinomycin D assay. Finally, a rat model of polymicrobial sepsis was established to analyze the effects of STEAP1 knockdown on lung injury in vivo . Results: We found that the mRNA expression levels of STEAP1 and METTL14 were upregulated in the blood of ALI patients induced by sepsis compared to healthy volunteers. LPS treatment increased the protein levels of STEAP1 and METTL14 in HPMECs. STEAP1 depletion attenuated LPS-induced promoting effects on HPMECs' apoptosis, inflammatory response, and ferroptosis, as well as LPS-induced inhibitory effect on tube formation. We also found that METTL14 and IGF2BP2 stabilized STEAP1 mRNA expression through the m6A methylation modification process. Moreover, METTL14 silencing attenuated LPS-induced effects by decreasing STEAP1 expression in HPMECs, and STEAP1 silencing ameliorated cecal ligation and puncture-induced lung injury of mice. Conclusion: METTL14/IGF2BP2-mediated m6A modification of STEAP1 aggravated ALI induced by sepsis. These findings suggest potential therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Junhua Lai
- Intensive Care Unit, Liuzhou Worker's Hospital, Liuzhou City, Guangxi, China
| | | | | | | | | |
Collapse
|
5
|
Zhang J, Chadha JS. Developmental Therapeutics in Metastatic Prostate Cancer: New Targets and New Strategies. Cancers (Basel) 2024; 16:3098. [PMID: 39272956 PMCID: PMC11393880 DOI: 10.3390/cancers16173098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
There is an unmet need to develop new treatments for metastatic prostate cancer. With the development of targeted radioligand therapies, bispecific T cell engagers, antibody-drug conjugates and chimeric antigen receptor T cell (CAR T) therapies, tumor-associated cell surface antigens have emerged as new therapeutic targets in metastatic prostate cancer. Ongoing and completed clinical trials targeting prostate-specific membrane antigen (PSMA), six transmembrane epithelial antigens of the prostate 1 (STEAP1), kallikrein-related peptidase 2 (KLK2), prostate stem cell antigen (PSCA), and delta-like protein 3 (DLL3) in metastatic prostate cancer were reviewed. Strategies for sequential or combinational therapy were discussed.
Collapse
Affiliation(s)
- Jingsong Zhang
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Juskaran S Chadha
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Zhang D, Wang Z, Deng H, Yi S, Li T, Kang X, Li J, Li C, Wang T, Xiang B, Li G. Zinc oxide nanoparticles damage the prefrontal lobe in mouse: Behavioral impacts and key mechanisms. Toxicol Lett 2024; 397:129-140. [PMID: 38759938 DOI: 10.1016/j.toxlet.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Zinc Oxide nanoparticles (ZnO NPs) have dualistic properties due to their advantage and toxicity. However, the impact and mechanisms of ZnO NPs on the prefrontal lobe have limited research. This study investigates the behavioral changes following exposure to ZnO NPs (34 mg/kg, 30 days), integrating multiple behaviors and bioinformatics analysis to identify critical factors and regulatory mechanisms. The essential differentially expressed genes (DEGs) were identified, including ORC1, DSP, AADAT, SLITRK6, and STEAP1. Analysis of the DEGs based on fold change reveals that ZnO NPs primarily regulate cell survival, proliferation, and apoptosis in neural cells, damaging the prefrontal lobe. Moreover, disruption of cell communication, mineral absorption, and immune pathways occurs. Gene set enrichment analysis (GSEA) further shows enrichment of behavior, neuromuscular process, signal transduction in function, synapses-related, cAMP signaling, and immune pathways. Furthermore, alternative splicing (AS) genes highlight synaptic structure/function, synaptic signal transduction, immune responses, cell proliferation, and communication.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, China
| | - Zhiyuan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Hongmei Deng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Simeng Yi
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tingting Wang
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou City, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, PR China.
| | - Bo Xiang
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou City, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, PR China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
7
|
Zhang W, Dang R, Liu H, Dai L, Liu H, Adegboro AA, Zhang Y, Li W, Peng K, Hong J, Li X. Machine learning-based investigation of regulated cell death for predicting prognosis and immunotherapy response in glioma patients. Sci Rep 2024; 14:4173. [PMID: 38378721 PMCID: PMC10879095 DOI: 10.1038/s41598-024-54643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastoma is a highly aggressive and malignant type of brain cancer that originates from glial cells in the brain, with a median survival time of 15 months and a 5-year survival rate of less than 5%. Regulated cell death (RCD) is the autonomous and orderly cell death under genetic control, controlled by precise signaling pathways and molecularly defined effector mechanisms, modulated by pharmacological or genetic interventions, and plays a key role in maintaining homeostasis of the internal environment. The comprehensive and systemic landscape of the RCD in glioma is not fully investigated and explored. After collecting 18 RCD-related signatures from the opening literature, we comprehensively explored the RCD landscape, integrating the multi-omics data, including large-scale bulk data, single-cell level data, glioma cell lines, and proteome level data. We also provided a machine learning framework for screening the potentially therapeutic candidates. Here, based on bulk and single-cell sequencing samples, we explored RCD-related phenotypes, investigated the profile of the RCD, and developed an RCD gene pair scoring system, named RCD.GP signature, showing a reliable and robust performance in predicting the prognosis of glioblastoma. Using the machine learning framework consisting of Lasso, RSF, XgBoost, Enet, CoxBoost and Boruta, we identified seven RCD genes as potential therapeutic targets in glioma and verified that the SLC43A3 highly expressed in glioma grades and glioma cell lines through qRT-PCR. Our study provided comprehensive insights into the RCD roles in glioma, developed a robust RCD gene pair signature for predicting the prognosis of glioma patients, constructed a machine learning framework for screening the core candidates and identified the SLC43A3 as an oncogenic role and a prediction biomarker in glioblastoma.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Luohuan Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Abraham Ayodeji Adegboro
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yihao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Wang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Peng
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Fang ZX, Chen WJ, Wu Z, Hou YY, Lan YZ, Wu HT, Liu J. Inflammatory response in gastrointestinal cancers: Overview of six transmembrane epithelial antigens of the prostate in pathophysiology and clinical implications. World J Clin Oncol 2024; 15:9-22. [PMID: 38292664 PMCID: PMC10823946 DOI: 10.5306/wjco.v15.i1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Chronic inflammation is known to increase the risk of gastrointestinal cancers (GICs), the common solid tumors worldwide. Precancerous lesions, such as chronic atrophic inflammation and ulcers, are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis. Unfortunately, due to the lack of effective therapeutic targets, the prognosis of patients with GICs is still unsatisfactory. Interestingly, it is found that six transmembrane epithelial antigens of the prostate (STEAPs), a group of metal reductases, are significantly associated with the progression of malignancies, playing a crucial role in systemic metabolic homeostasis and inflammatory responses. The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress, responding to inflammatory reactions. Under the imbalance status of abnormal oxidative stress, STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process. This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms, with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.
Collapse
Affiliation(s)
- Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
9
|
Nolan-Stevaux O, Li C, Liang L, Zhan J, Estrada J, Osgood T, Li F, Zhang H, Case R, Murawsky CM, Estes B, Moore GL, Bernett MJ, Muchhal U, Desjarlais JR, Staley BK, Stevens J, Cooke KS, Aeffner F, Thomas O, Stieglmaier J, Lee JL, Coxon A, Bailis JM. AMG 509 (Xaluritamig), an Anti-STEAP1 XmAb 2+1 T-cell Redirecting Immune Therapy with Avidity-Dependent Activity against Prostate Cancer. Cancer Discov 2024; 14:90-103. [PMID: 37861452 DOI: 10.1158/2159-8290.cd-23-0984] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
The tumor-associated antigen STEAP1 is a potential therapeutic target that is expressed in most prostate tumors and at increased levels in metastatic castration-resistant prostate cancer (mCRPC). We developed a STEAP1-targeted XmAb 2+1 T-cell engager (TCE) molecule, AMG 509 (also designated xaluritamig), that is designed to redirect T cells to kill prostate cancer cells that express STEAP1. AMG 509 mediates potent T cell-dependent cytotoxicity of prostate cancer cell lines in vitro and promotes tumor regression in xenograft and syngeneic mouse models of prostate cancer in vivo. The avidity-driven activity of AMG 509 enables selectivity for tumor cells with high STEAP1 expression compared with normal cells. AMG 509 is the first STEAP1 TCE to advance to clinical testing, and we report a case study of a patient with mCRPC who achieved an objective response on AMG 509 treatment. SIGNIFICANCE Immunotherapy in prostate cancer has met with limited success due to the immunosuppressive microenvironment and lack of tumor-specific targets. AMG 509 provides a targeted immunotherapy approach to engage a patient's T cells to kill STEAP1-expressing tumor cells and represents a new treatment option for mCRPC and potentially more broadly for prostate cancer. See related commentary by Hage Chehade et al., p. 20. See related article by Kelly et al., p. 76. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
| | - Cong Li
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Lingming Liang
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Jinghui Zhan
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Juan Estrada
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Tao Osgood
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Fei Li
- Structural Biology, Amgen Research, Amgen Inc., South San Francisco, California
| | - Hanzhi Zhang
- Structural Biology, Amgen Research, Amgen Inc., South San Francisco, California
| | - Ryan Case
- Lead Discovery and Characterization, Amgen Research, Amgen Inc., South San Francisco, California
| | | | - Bram Estes
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California
| | | | | | | | | | - Binnaz K Staley
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Jennitte Stevens
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California
| | - Keegan S Cooke
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Famke Aeffner
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, California
| | - Oliver Thomas
- Translational Safety and Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Julia Stieglmaier
- Early Development Oncology, Amgen Research (Munich) GmbH, Munich, Germany
| | - Jae-Lyun Lee
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Angela Coxon
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Julie M Bailis
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| |
Collapse
|
10
|
Fu D, Zhang X, Zhou Y, Hu S. A novel prognostic signature and therapy guidance for hepatocellular carcinoma based on STEAP family. BMC Med Genomics 2024; 17:16. [PMID: 38191397 PMCID: PMC10775544 DOI: 10.1186/s12920-023-01789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The six-transmembrane epithelial antigen of prostate (STEAP) family members are known to be involved in various tumor-related biological processes and showed its huge potential role in tumor immunotherapy. METHODS Biological differences were investigated through Gene set enrichment analysis (GSEA) and tumor microenvironment analysis by CIBERSORT. Tumor mutation burden (TMB), immunotherapy response and chemotherapeutic drugs sensitivity were estimated in R. RESULTS We established a prognostic signature with the formula: risk score = STEAP1 × 0.3994 + STEAP4 × (- 0.7596), which had a favorable concordance with the prediction. The high-risk group were enriched in cell cycle and RNA and protein synthesis related pathways, while the low-risk group were enriched in complement and metabolic related pathways. And the risk score was significantly correlated with immune cell infiltration. Most notably, the patients in the low-risk group were characterized with increased TMB and decreased tumor immune dysfunction and exclusion (TIDE) score, indicating that these patients showed better immune checkpoint blockade response. Meanwhile, we found the patients with high-risk were more sensitive to some drugs related to cell cycle and apoptosis. CONCLUSIONS The novel signature based on STEAPs may be effective indicators for predicting prognosis, and provides corresponding clinical treatment recommendations for HCC patients based on this classification.
Collapse
Affiliation(s)
- Dongxue Fu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xian Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.1 South Baixiang Street, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.1 South Baixiang Street, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Shanshan Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.1 South Baixiang Street, Ouhai District, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
11
|
Nakamura H, Arihara Y, Takada K. Targeting STEAP1 as an anticancer strategy. Front Oncol 2023; 13:1285661. [PMID: 37909017 PMCID: PMC10613890 DOI: 10.3389/fonc.2023.1285661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Although the six-transmembrane epithelial antigen of prostate 1 (STEAP1) was first identified in advanced prostate cancer, its overexpression is recognized in multiple types of cancer and associated with a poor prognosis. STEAP1 is now drawing attention as a promising therapeutic target because of its tumor specificity and membrane-bound localization. The clinical efficacy of an antibody-drug conjugate targeting STEAP1 in metastatic, castration-resistant, prostate cancer was demonstrated in a phase 1 trial. Furthermore, growing evidence suggests that STEAP1 is an attractive target for immunotherapies such as chimeric antigen receptor-T cell therapy. In this review, we summarize the oncogenic functions of STEAP1 by cancer type. This review also provides new insights into the development of new anticancer strategies targeting STEAP1.
Collapse
Affiliation(s)
| | | | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Rocha SM, Santos FM, Socorro S, Passarinha LA, Maia CJ. Proteomic analysis of STEAP1 knockdown in human LNCaP prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119522. [PMID: 37315586 DOI: 10.1016/j.bbamcr.2023.119522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. The six transmembrane epithelial antigen of the prostate 1 (STEAP1) protein is overexpressed in several types of human tumors, particularly in PCa. Our research group has demonstrated that STEAP1 overexpression is associated with PCa progression and aggressiveness. Therefore, understanding the cellular and molecular mechanisms triggered by STEAP1 overexpression will provide important insights to delineate new strategies for PCa treatment. In the present work, a proteomic strategy was used to characterize the intracellular signaling pathways and the molecular targets downstream of STEAP1 in PCa cells. A label-free approach was applied using an Orbitrap LC-MS/MS system to characterize the proteome of STEAP1-knockdown PCa cells. More than 6700 proteins were identified, of which a total of 526 proteins were found differentially expressed in scramble siRNA versus STEAP1 siRNA (234 proteins up-regulated and 292 proteins down-regulated). Bioinformatics analysis allowed us to explore the mechanism through which STEAP1 exerts influence on PCa, revealing that endocytosis, RNA transport, apoptosis, aminoacyl-tRNA biosynthesis, and metabolic pathways are the main biological processes where STEAP1 is involved. By immunoblotting, it was confirmed that STEAP1 silencing induced the up-regulation of cathepsin B, intersectin-1, and syntaxin 4, and the down-regulation of HRas, PIK3C2A, and DIS3. These findings suggested that blocking STEAP1 might be a suitable strategy to activate apoptosis and endocytosis, and diminish cellular metabolism and intercellular communication, leading to inhibition of PCa progression.
Collapse
Affiliation(s)
- Sandra M Rocha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Fátima M Santos
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, Campus de Cantoblanco, 28029 Madrid, Spain
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís A Passarinha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Cláudio J Maia
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
13
|
Carvalho M, Gomes RM, Moreira Rocha S, Barroca-Ferreira J, Maia CJ, Guillade L, Correa-Duarte MA, Passarinha LA, Moreira FTC. Development of a novel electrochemical biosensor based on plastic antibodies for detection of STEAP1 biomarker in cancer. Bioelectrochemistry 2023; 152:108461. [PMID: 37192590 DOI: 10.1016/j.bioelechem.2023.108461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
STEAP1 is a cell surface protein of the STEAP family whose main function focuses on intercellular communication and cell growth. STEAP1 is considered a promising putative biomarker and a candidate target for prostate cancer treatment. For specific and selective detection of STEAP1, a molecularly imprinted polymers (MIP) was developed on a screen-printed electrode (C-SPE) whose surface was modified with a nanocomposite based on carbon nanotubes decorated with dendritic platinum nanoparticles (CNTs- PAH /Pt). Then, the MIPs were produced on the modified C-SPE by electropolymerization of a mixture of STEAP1 and a monomer (pyrrole-2-carboxylic acid). Then, the protein was removed from the polymeric network by enzymatic treatment with trypsin, which created the specific template cavities for further STEAP1 detection. Electrochemical techniques such as EIS and CV were used to follow the chemical modification steps of C-SPE. The analytical performance of the biosensor was evaluated by SWV in PBS buffer and in lysates of neoplastic prostate cancer cells (LNCaP) extracts. The MIP material showing a linear range from 130 pg/ml to 13 µg/ml. Overall, the biosensor exhibits essential properties such as selectivity, sensitivity and reproducibility for its application in medical and clinical research diagnosis and/or prognosis of prostate cancer.
Collapse
Affiliation(s)
- Margarida Carvalho
- BioMark Sensor Research/ISEP, School of Engineering, Polytechnic Institute, Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, Braga, Portugal; CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Rui M Gomes
- BioMark Sensor Research/ISEP, School of Engineering, Polytechnic Institute, Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, Braga, Portugal; Faculty of Engineering, Porto University, Portugal
| | - Sandra Moreira Rocha
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal
| | - Jorge Barroca-Ferreira
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Claudio J Maia
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal
| | - Lucía Guillade
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Center for Biomedical Research (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Spain
| | - Miguel A Correa-Duarte
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Center for Biomedical Research (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Spain
| | - Luís A Passarinha
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Felismina T C Moreira
- BioMark Sensor Research/ISEP, School of Engineering, Polytechnic Institute, Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, Braga, Portugal.
| |
Collapse
|
14
|
Bhatia V, Kamat NV, Pariva TE, Wu LT, Tsao A, Sasaki K, Sun H, Javier G, Nutt S, Coleman I, Hitchcock L, Zhang A, Rudoy D, Gulati R, Patel RA, Roudier MP, True LD, Srivastava S, Morrissey CM, Haffner MC, Nelson PS, Priceman SJ, Ishihara J, Lee JK. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun 2023; 14:2041. [PMID: 37041154 PMCID: PMC10090190 DOI: 10.1038/s41467-023-37874-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
Six transmembrane epithelial antigen of the prostate 1 (STEAP1) is a cell surface antigen for therapeutic targeting in prostate cancer. Here, we report broad expression of STEAP1 relative to prostate-specific membrane antigen (PSMA) in lethal metastatic prostate cancers and the development of a STEAP1-directed chimeric antigen receptor (CAR) T cell therapy. STEAP1 CAR T cells demonstrate reactivity in low antigen density, antitumor activity across metastatic prostate cancer models, and safety in a human STEAP1 knock-in mouse model. STEAP1 antigen escape is a recurrent mechanism of treatment resistance and is associated with diminished tumor antigen processing and presentation. The application of tumor-localized interleukin-12 (IL-12) therapy in the form of a collagen binding domain (CBD)-IL-12 fusion protein combined with STEAP1 CAR T cell therapy enhances antitumor efficacy by remodeling the immunologically cold tumor microenvironment of prostate cancer and combating STEAP1 antigen escape through the engagement of host immunity and epitope spreading.
Collapse
Affiliation(s)
- Vipul Bhatia
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Nikhil V Kamat
- Division of Medical Oncology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Tiffany E Pariva
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Li-Ting Wu
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Annabelle Tsao
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Koichi Sasaki
- Department of Bioengineering, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK
| | - Huiyun Sun
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Gerardo Javier
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Sam Nutt
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Ilsa Coleman
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Lauren Hitchcock
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Ailin Zhang
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Dmytro Rudoy
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Roman Gulati
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Radhika A Patel
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Martine P Roudier
- Department of Urology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Lawrence D True
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Shivani Srivastava
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Colm M Morrissey
- Department of Urology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Michael C Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Division of Medical Oncology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Urology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK.
| | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
- Division of Medical Oncology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
15
|
Rocha SM, Nascimento D, Coelho RS, Cardoso AM, Passarinha LA, Socorro S, Maia CJ. STEAP1 Knockdown Decreases the Sensitivity of Prostate Cancer Cells to Paclitaxel, Docetaxel and Cabazitaxel. Int J Mol Sci 2023; 24:6643. [PMID: 37047621 PMCID: PMC10095014 DOI: 10.3390/ijms24076643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) protein has been indicated as an overexpressed oncoprotein in prostate cancer (PCa), associated with tumor progression and aggressiveness. Taxane-based antineoplastic drugs such as paclitaxel, docetaxel, or cabazitaxel, have been investigated in PCa treatment, namely for the development of combined therapies with the improvement of therapeutic effectiveness. This study aimed to evaluate the expression of STEAP1 in response to taxane-based drugs and assess whether the sensitivity of PCa cells to treatment with paclitaxel, docetaxel, or cabazitaxel may change when the STEAP1 gene is silenced. Thus, wild-type and STEAP1 knockdown LNCaP and C4-2B cells were exposed to paclitaxel, docetaxel or cabazitaxel, and STEAP1 expression, cell viability, and survival pathways were evaluated. The results obtained showed that STEAP1 knockdown or taxane-based drugs treatment significantly reduced the viability and survival of PCa cells. Relatively to the expression of proliferation markers and apoptosis regulators, LNCaP cells showed a reduced proliferation, whereas apoptosis was increased. However, the effect of paclitaxel, docetaxel, or cabazitaxel treatment was reversed when combined with STEAP1 knockdown. Besides, these chemotherapeutic drugs may stimulate the cell growth of PCa cells knocked down for STEAP1. In conclusion, this study demonstrated that STEAP1 expression levels might influence the response of PCa cells to chemotherapeutics drugs, indicating that the use of paclitaxel, docetaxel, or cabazitaxel may lead to harmful effects in PCa cells with decreased expression of STEAP1.
Collapse
Affiliation(s)
- Sandra M. Rocha
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Daniel Nascimento
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Rafaella S. Coelho
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Ana Margarida Cardoso
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Luís A. Passarinha
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
- C4-UBI—Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| | - Cláudio J. Maia
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
- C4-UBI—Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| |
Collapse
|
16
|
Rocha SM, Nascimento D, Cardoso AM, Passarinha L, Socorro S, Maia CJ. STEAP1 regulation and its influence modulating the response of LNCaP prostate cancer cells to bicalutamide, enzalutamide and apalutamide. Mol Med Rep 2023; 27:52. [PMID: 36660947 PMCID: PMC9879076 DOI: 10.3892/mmr.2023.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 01/15/2023] Open
Abstract
Anti‑androgen drugs are the standard pharmacological therapies for treatment of non‑metastatic prostate cancer (PCa). However, the response of PCa cells may depend on the anti‑androgen used and often patients become resistant to treatment. Thus, studying how the anti‑androgen drugs affect oncogenes expression and action and the identification of the best strategy for combined therapies are essential to improve the efficacy of treatments. The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) is an oncogene associated with PCa progression and aggressiveness, although its relationship with the androgen receptor signaling remains to be elucidated. The present study aimed to evaluate the effect of anti‑androgens in regulating STEAP1 expression and investigate whether silencing STEAP1 can make PCa cells more sensitive to anti‑androgen drugs. For this purpose, wild‑type and STEAP1 knockdown LNCaP cells were exposed to bicalutamide, enzalutamide and apalutamide. Bicalutamide decreased the expression of STEAP1, but enzalutamide and apalutamide increased its expression. However, decreased cell proliferation and increased apoptosis was observed in response to all drugs. Overall, the cellular and molecular effects were similar between LNCaP wild‑type and LNCaP‑STEAP1 knockdown cells, except for c‑myc expression levels, where a cumulative effect between anti‑androgen treatment and STEAP1 knockdown was observed. The effect of STEAP1 knockdown alone or combined with anti‑androgens in c‑myc levels is required to be addressed in future studies.
Collapse
Affiliation(s)
- Sandra M. Rocha
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Daniel Nascimento
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Ana Margarida Cardoso
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís Passarinha
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal,Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,C4-UBI-Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| | - Cláudio J. Maia
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,C4-UBI-Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal,Correspondence to: Professor Cláudio J. Maia, CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal, E-mail:
| |
Collapse
|
17
|
Jin Y, Lorvik KB, Jin Y, Beck C, Sike A, Persiconi I, Kvaløy E, Saatcioglu F, Dunn C, Kyte JA. Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer. Mol Ther Oncolytics 2022; 26:189-206. [PMID: 35860008 PMCID: PMC9278049 DOI: 10.1016/j.omto.2022.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/17/2022] [Indexed: 10/29/2022] Open
Abstract
Chimeric antigen receptors (CARs) that retarget T cells against CD19 show clinical efficacy against B cell malignancies. Here, we describe the development of a CAR against the six-transmembrane epithelial antigen of prostate-1 (STEAP1), which is expressed in ∼90% of prostate cancers, and subgroups of other malignancies. STEAP1 is an attractive target, as it is associated with tumor invasiveness and progression and only expressed at low levels in normal tissues, apart from the non-vital prostate gland. We identified the antibody coding sequences from a hybridoma and designed a CAR that is efficiently expressed in primary T cells. The T cells acquired the desired anti-STEAP1 specificity, with a polyfunctional response including production of multiple cytokines, proliferation, and the killing of cancer cells. The response was observed for both CD4+ and CD8+ T cells, and against all STEAP1+ target cell lines tested. We evaluated the in vivo CAR T activity in both subcutaneous and metastatic xenograft mouse models of prostate cancer. Here, the CAR T cells infiltrated tumors and significantly inhibited tumor growth and extended survival in a STEAP1-dependent manner. We conclude that the STEAP1 CAR exhibits potent in vitro and in vivo functionality and can be further developed toward potential clinical use.
Collapse
Affiliation(s)
- Yixin Jin
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Kristina Berg Lorvik
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Carole Beck
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Adam Sike
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Irene Persiconi
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Emilie Kvaløy
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Fahri Saatcioglu
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Claire Dunn
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway.,Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
18
|
STEAP1-4 (Six-Transmembrane Epithelial Antigen of the Prostate 1-4) and Their Clinical Implications for Prostate Cancer. Cancers (Basel) 2022; 14:cancers14164034. [PMID: 36011027 PMCID: PMC9406800 DOI: 10.3390/cancers14164034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Despite recent therapeutic advances in the treatment of prostate cancer, metastatic castration-resistant prostate cancer continues to cause significant morbidity and mortality. New research into highly expressed proteins in metastatic castration-resistant prostate cancer shows that Six-Transmembrane Epithelial Antigen of the Prostate 1–4 (STEAP1–4) are significant drivers of prostate cancer aggressiveness and metastasis. STEAP1, in particular, is highly expressed on the plasma membrane of prostate cancer cells and has received significant attention as a potential therapeutic target. This review highlights what is known about STEAP1–4 and identifies knowledge gaps that require further research. Abstract Six-Transmembrane Epithelial Antigen of the Prostate 1–4 (STEAP1–4) compose a family of metalloproteinases involved in iron and copper homeostasis and other cellular processes. Thus far, five homologs are known: STEAP1, STEAP1B, STEAP2, STEAP3, and STEAP4. In prostate cancer, STEAP1, STEAP2, and STEAP4 are overexpressed, while STEAP3 expression is downregulated. Although the metalloreductase activities of STEAP1–4 are well documented, their other biological functions are not. Furthermore, the properties and expression levels of STEAP heterotrimers, homotrimers, heterodimers, and homodimers are not well understood. Nevertheless, studies over the last few decades have provided sufficient impetus to investigate STEAP1–4 as potential biomarkers and therapeutic targets for prostate cancer. In particular, STEAP1 is the target of many emerging immunotherapies. Herein, we give an overview of the structure, physiology, and pathophysiology of STEAP1–4 to provide context for past and current efforts to translate STEAP1–4 into the clinic.
Collapse
|
19
|
Taxifolin and Lucidin as Potential E6 Protein Inhibitors: p53 Function Re-Establishment and Apoptosis Induction in Cervical Cancer Cells. Cancers (Basel) 2022; 14:cancers14122834. [PMID: 35740499 PMCID: PMC9221127 DOI: 10.3390/cancers14122834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Human papillomavirus (HPV)-related cancers continue to be a major medical concern, and there exists an urgent need to improve the current therapeutic approaches by combining strategies or proposing new compounds to offer more specific and less invasive treatments. The aim of this work was to discover potential inhibitors of the E6/E6AP/p53 complex formation. We started this work with an initial in silico approach including molecular docking and molecular dynamics simulations, and these tools allowed us to select potential inhibitors, using E6 protein as a target. In addition, we found that lucidin and taxifolin were able to selectively decrease the viability of HPV-positive cells to re-establish p53 protein levels and to induce apoptosis. These findings represent a promising starting point for the development of anti-HPV drugs. Abstract Cervical cancer is the fourth leading cause of death in women worldwide, with 99% of cases associated with a human papillomavirus (HPV) infection. Given that HPV prophylactic vaccines do not exert a therapeutic effect in individuals previously infected, have low coverage of all HPV types, and have poor accessibility in developing countries, it is unlikely that HPV-associated cancers will be eradicated in the coming years. Therefore, there is an emerging need for the development of anti-HPV drugs. Considering HPV E6’s oncogenic role, this protein has been proposed as a relevant target for cancer treatment. In the present work, we employed in silico tools to discover potential E6 inhibitors, as well as biochemical and cellular assays to understand the action of selected compounds in HPV-positive cells (Caski and HeLa) vs. HPV-negative (C33A) and non-carcinogenic (NHEK) cell lines. In fact, by molecular docking and molecular dynamics simulations, we found three phenolic compounds able to dock in the E6AP binding pocket of the E6 protein. In particular, lucidin and taxifolin were able to inhibit E6-mediated p53 degradation, selectively reduce the viability, and induce apoptosis in HPV-positive cells. Altogether, our data can be relevant for discovering promising leads for the development of specific anti-HPV drugs.
Collapse
|
20
|
Comprehensive Landscape of STEAP Family Members Expression in Human Cancers: Unraveling the Potential Usefulness in Clinical Practice Using Integrated Bioinformatics Analysis. DATA 2022. [DOI: 10.3390/data7050064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human Six-Transmembrane Epithelial Antigen of the Prostate (STEAP) family comprises STEAP1-4. Several studies have pointed out STEAP proteins as putative biomarkers, as well as therapeutic targets in several types of human cancers, particularly in prostate cancer. However, the relationships and significance of the expression pattern of STEAP1-4 in cancer cases are barely known. Herein, the Oncomine database and cBioPortal platform were selected to predict the differential expression levels of STEAP members and clinical prognosis. The most common expression pattern observed was the combination of the over- and underexpression of distinct STEAP genes, but cervical and gastric cancer and lymphoma showed overexpression of all STEAP genes. It was also found that STEAP genes’ expression levels were already deregulated in benign lesions. Regarding the prognostic value, it was found that STEAP1 (prostate), STEAP2 (brain and central nervous system), STEAP3 (kidney, leukemia and testicular) and STEAP4 (bladder, cervical, gastric) overexpression correlate with lower patient survival rate. However, in prostate cancer, overexpression of the STEAP4 gene was correlated with a higher survival rate. Overall, this study first showed that the expression levels of STEAP genes are highly variable in human cancers, which may be related to different patients’ outcomes.
Collapse
|
21
|
Liu T, Niu X, Li Y, Xu Z, Chen J, Xu G. Expression and prognostic analyses of the significance of STEAP1 and STEAP2 in lung cancer. World J Surg Oncol 2022; 20:96. [PMID: 35346237 PMCID: PMC8962583 DOI: 10.1186/s12957-022-02566-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Lung cancer is the leading cause of cancer-related mortality. STEAP1 and STEAP2 are overexpressed in various cancers. The purpose of this study was to evaluate the expression and prognostic value of STEAP1 and STEAP2 in patients with lung cancer. METHODS The mRNA expression and protein expression of STEAP1 and STEAP2 and their prognostic characteristics were examined using Oncomine, GEPIA, and Kaplan-Meier (KM) plotters. The correlation analysis of STEAP1 and STEAP2 gene and protein levels was conducted using GeneMANIA and STRING. KEGG pathway analysis was used to explore the related signal pathways of STEAP 1 and STEAP2. Immunohistochemical methods were used to compare the expression of STEAP2 in normal lung and non-small cell lung cancer (NSCLC) tissues. Real-time quantitative polymerase chain reaction, western blotting, and immunocytochemistry were used to evaluate the expression of STEAP1 and STEAP2 in three lung cancer cell lines and normal lung epithelial cell lines. RESULTS Analysis of the Oncomine database and GEPIA showed that STEAP1 was upregulated and STEAP2 was downregulated in lung cancer tissue, and both expressions were related to the clinical stage of lung cancer. Immunohistochemical analysis showed that STEAP1 protein expression was significantly upregulated in lung cancer compared to that in adjacent tissues. The expression of STEAP1 was positively correlated with the migration and invasion abilities of lung cancer cells. Compared with paracancer tissues, the expression of STEAP2 protein in lung cancer was significantly downregulated and was correlated with the histological grade of squamous cell carcinoma, pathological classification of adenocarcinoma, tumor, lymph node, and metastasis clinical stage, and lymph node metastasis. The expression of STEAP2 was negatively correlated with the migration and invasion abilities of lung cancer cells. The KM curve showed that the downregulation of STEAP1 expression and upregulation of STEAP2 expression were related to a good lung cancer prognosis. CONCLUSION STEAP1 and STEAP2 are expected to be potential diagnostic and prognostic markers for lung cancer, which may provide more accurate prognostic indicators for lung cancer.
Collapse
Affiliation(s)
- Tianshu Liu
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaoxin Niu
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanqing Li
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zekun Xu
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Geng Xu
- Department of Thoracic Surgery, Heze Municipal Hospital, Heze, 274031, Shandong, China.
| |
Collapse
|
22
|
The Prognostic Value and Immunological Role of STEAP1 in Pan-Cancer: A Result of Data-Based Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8297011. [PMID: 35313641 PMCID: PMC8933652 DOI: 10.1155/2022/8297011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Purpose. This study is aimed at systematically analyzing the expression, function, and prognostic value of six transmembrane epithelial antigen of the prostate 1 (STEAP1) in various cancers. Methods. The expressions of STEAP1 between normal and tumor tissues were analyzed using TCGA and GTEx. Clinicopathologic data was collected from GEPIA and TCGA. Prognostic analysis was conducted by Cox proportional hazard regression and Kaplan-Meier survival. DNA methylation, mutation features, and molecular subtypes of cancers were also investigated. The top-100 coexpressed genes with STEAP1 were involved in functional enrichment analysis. ESTIMATE algorithm was used to analyze the correlation between STEAP1 and immunity value. The relationships of STEAP1 and biomarkers including tumor mutational burden (TMB), microsatellite instability (MSI), and stemness score as well as chemosensitivity were also illustrated. Results. Among 33 cancers, STEAP1 was overexpressed in 19 cancers such as cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocarcinoma, and lymphoid neoplasm diffuse large B cell lymphoma while was downregulated in 5 cancers such as adrenocortical carcinoma, breast invasive carcinoma (BRCA), and kidney chromophobe renal cell carcinoma. STEAP1 has significant prognostic relationships in multiple cancers. 15 cancers exhibited differences of DNA methylation including bladder urothelial carcinoma, BRCA, and CESC. STEAP1 expression was positively correlated to immune molecules especially in thyroid carcinoma and negatively especially in uveal melanoma. STEAP1 was associated with TMB and MSI in certain cancers. In addition, STEAP1 was connected with increased chemosensitivity of drugs such as trametinib and pimasertib. Conclusions. STEAP1 was an underlying target for prognostic prediction in different cancer types and a potential biomarker of TMB, MSI, tumor microenvironment, and chemosensitivity.
Collapse
|
23
|
Rocha SM, Sousa I, Gomes IM, Arinto P, Costa-Pinheiro P, Coutinho E, Santos CR, Jerónimo C, Lemos MC, Passarinha LA, Socorro S, Maia CJ. Promoter Demethylation Upregulates STEAP1 Gene Expression in Human Prostate Cancer: In Vitro and In Silico Analysis. Life (Basel) 2021; 11:1251. [PMID: 34833128 PMCID: PMC8618799 DOI: 10.3390/life11111251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
The Six Transmembrane Epithelial Antigen of the Prostate (STEAP1) is an oncogene overexpressed in several human tumors, particularly in prostate cancer (PCa). However, the mechanisms involved in its overexpression remain unknown. It is well known that epigenetic modifications may result in abnormal gene expression patterns, contributing to tumor initiation and progression. Therefore, this study aimed to analyze the methylation pattern of the STEAP1 gene in PCa versus non-neoplastic cells. Bisulfite amplicon sequencing of the CpG island at the STEAP1 gene promoter showed a higher methylation level in non-neoplastic PNT1A prostate cells than in human PCa samples. Bioinformatic analysis of the GEO datasets also showed the STEAP1 gene promoter as being demethylated in human PCa, and a negative association with STEAP1 mRNA expression was observed. These results are supported by the treatment of non-neoplastic PNT1A cells with DNMT and HDAC inhibitors, which induced a significant increase in STEAP1 mRNA expression. In addition, the involvement of HDAC in the regulation of STEAP1 mRNA expression was corroborated by a negative association between STEAP1 mRNA expression and HDAC4,5,7 and 9 in human PCa. In conclusion, our work indicates that STEAP1 overexpression in PCa can be driven by the hypomethylation of STEAP1 gene promoter.
Collapse
Affiliation(s)
- Sandra M. Rocha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Inês Sousa
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Inês M. Gomes
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Patrícia Arinto
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Pedro Costa-Pinheiro
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (P.C.-P.); (C.J.)
| | - Eduarda Coutinho
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Cecília R. Santos
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (P.C.-P.); (C.J.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, Universidade do Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Manuel C. Lemos
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
- C4-UBI, Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| | - Luís A. Passarinha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Cláudio J. Maia
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
- C4-UBI, Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| |
Collapse
|
24
|
Chen WJ, Wu HT, Li CL, Lin YK, Fang ZX, Lin WT, Liu J. Regulatory Roles of Six-Transmembrane Epithelial Antigen of the Prostate Family Members in the Occurrence and Development of Malignant Tumors. Front Cell Dev Biol 2021; 9:752426. [PMID: 34778263 PMCID: PMC8586211 DOI: 10.3389/fcell.2021.752426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
The human six-transmembrane epithelial antigen of the prostate (STEAP) proteins, which include STEAP1-4 and atypical STEAP1B, contain six transmembrane domains and are located in the cell membrane. STEAPs are considered archaeal metal oxidoreductases, based on their heme groups and F420H2:NADP+ oxidoreductase (FNO)-like structures, and play an important role in cell metal metabolism. Interestingly, STEAPs not only participate in biological processes, such as molecular transport, cell cycling, immune response, and intracellular and extracellular activities, but also are closely related to the occurrence and development of several diseases, especially malignant tumors. Up to now, the expression patterns of STEAPs have been found to be diverse in different types of tumors, with controversial participation in different aspects of malignancy, such as cell proliferation, migration, invasion, apoptosis, and therapeutic resistance. It is clinically important to explore the potential roles of STEAPs as new immunotherapeutic targets for the treatment of different malignant tumors. Therefore, this review focuses on the molecular mechanism and function of STEAPs in the occurrence and development of different cancers in order to understand the role of STEAPs in cancer and provide a new theoretical basis for the treatment of diverse cancers.
Collapse
Affiliation(s)
- Wen-Jia Chen
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chun-Lan Li
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Yi-Ke Lin
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Xuan Fang
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Wen-Ting Lin
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| |
Collapse
|
25
|
Barroca-Ferreira J, Cruz-Vicente P, Santos MFA, Rocha SM, Santos-Silva T, Maia CJ, Passarinha LA. Enhanced Stability of Detergent-Free Human Native STEAP1 Protein from Neoplastic Prostate Cancer Cells upon an Innovative Isolation Procedure. Int J Mol Sci 2021; 22:10012. [PMID: 34576175 PMCID: PMC8472055 DOI: 10.3390/ijms221810012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The STEAP1 is a cell-surface antigen over-expressed in prostate cancer, which contributes to tumor progression and aggressiveness. However, the molecular mechanisms underlying STEAP1 and its structural determinants remain elusive. METHODS The fraction capacity of Butyl- and Octyl-Sepharose matrices on LNCaP lysates was evaluated by manipulating the ionic strength of binding and elution phases, followed by a Co-Immunoprecipitation (Co-IP) polishing. Several potential stabilizing additives were assessed, and the melting temperature (Tm) values ranked the best/worst compounds. The secondary structure of STEAP1 was identified by circular dichroism. RESULTS The STEAP1 was not fully captured with 1.375 M (Butyl), in contrast with interfering heterologous proteins, which were strongly retained and mostly eluted with water. This single step demonstrated higher selectivity of Butyl-Sepharose for host impurities removal from injected crude samples. Co-IP allowed recovering a purified fraction of STEAP1 and contributed to unveil potential physiologically interacting counterparts with the target. A Tm of ~55 °C was determined, confirming STEAP1 stability in the purification buffer. A predominant α-helical structure was identified, ensuring the protein's structural stability. CONCLUSIONS A method for successfully isolating human STEAP1 from LNCaP cells was provided, avoiding the use of detergents to achieve stability, even outside a membrane-mimicking environment.
Collapse
Affiliation(s)
- Jorge Barroca-Ferreira
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Pedro Cruz-Vicente
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Marino F. A. Santos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Sandra M. Rocha
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
| | - Teresa Santos-Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Cláudio J. Maia
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
| | - Luís A. Passarinha
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, University of Beira Interior, 6201-284 Covilhã, Portugal
| |
Collapse
|
26
|
Duarte DR, Barroca-Ferreira J, Gonçalves AM, Santos FM, Rocha SM, Pedro AQ, Maia CJ, Passarinha LA. Impact of glycerol feeding profiles on STEAP1 biosynthesis by Komagataella pastoris using a methanol-inducible promoter. Appl Microbiol Biotechnol 2021; 105:4635-4648. [PMID: 34059939 DOI: 10.1007/s00253-021-11367-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
Currently, the lack of reliable strategies for the diagnosis and treatment of cancer makes the identification and characterization of new therapeutic targets a pressing matter. Several studies have proposed the Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) as a promising therapeutic target for prostate cancer. Although structural and functional studies may provide deeper insights on the role of STEAP1 in cancer, such techniques require high amounts of purified protein through biotechnological processes. Based on the results presented, this work proposes the application, for the first time, of a fed-batch profile to improve STEAP1 biosynthesis in mini-bioreactor Komagataella pastoris X-33 Mut+ methanol-induced cultures, by evaluating three glycerol feeding profiles-constant, exponential, and gradient-during the pre-induction phase. Interestingly, different glycerol feeding profiles produced differently processed STEAP1. This platform was optimized using a combination of chemical chaperones for ensuring the structural stabilization and appropriate processing of the target protein. The supplementation of culture medium with 6 % (v/v) DMSO and 1 M proline onto a gradient glycerol/constant methanol feeding promoted increased biosynthesis levels of STEAP1 and minimized aggregation events. Deglycosylation assays with peptide N-glycosidase F showed that glycerol constant feed is associated with an N-glycosylated pattern of STEAP1. The biological activity of recombinant STEAP1 was also validated, once the protein enhanced the proliferation of LNCaP and PC3 cancer cells, in comparison with non-tumoral cell cultures. This methodology could be a crucial starting point for large-scale production of active and stable conformation of recombinant human STEAP1. Thus, it could open up new strategies to unveil the structural rearrangement of STEAP1 and to better understand the biological role of the protein in cancer onset and progression.
Collapse
Affiliation(s)
- D R Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - J Barroca-Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - A M Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - F M Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Covilhã, Portugal.,Unidad de Proteomica, Centro Nacional de Biotecnologia, CSIC, Campus de Cantoblanco, Calle Darwin 3, 28049, Madrid, Spain
| | - S M Rocha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal
| | - A Q Pedro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - C J Maia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal
| | - L A Passarinha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal. .,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal. .,Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
27
|
The Usefulness of STEAP Proteins in Prostate Cancer Clinical Practice. Prostate Cancer 2021. [DOI: 10.36255/exonpublications.prostatecancer.steap.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
28
|
Rosellini M, Santoni M, Mollica V, Rizzo A, Cimadamore A, Scarpelli M, Storti N, Battelli N, Montironi R, Massari F. Treating Prostate Cancer by Antibody-Drug Conjugates. Int J Mol Sci 2021; 22:ijms22041551. [PMID: 33557050 PMCID: PMC7913806 DOI: 10.3390/ijms22041551] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is the most frequent malignancy in the worldwide male population; it is also one of the most common among all the leading cancer-related death causes. In the last two decades, the therapeutic scenario of metastatic castration-resistant prostate cancer has been enriched by the use of chemotherapy and androgen receptor signaling inhibitors (ARSI) and, more recently, by immunotherapy and poly(ADP–ribose) polymerase (PARP) inhibitors. At the same time, several trials have shown the survival benefits related to the administration of novel ARSIs among patients with non-castration-resistant metastatic disease along with nonmetastatic castration-resistant cancer too. Consequently, the therapeutic course of this malignancy has been radically expanded, ensuring survival benefits never seen before. Among the more recently emerging agents, the so-called “antibody–drug conjugates” (ADCs) are noteworthy because of their clinical practice changing outcomes obtained in the management of other malignancies (including breast cancer). The ADCs are novel compounds consisting of cytotoxic agents (also known as the payload) linked to specific antibodies able to recognize antigens expressed over cancer cells’ surfaces. As for prostate cancer, researchers are focusing on STEAP1, TROP2, PSMA, CD46 and B7-H3 as optimal antigens which may be targeted by ADCs. In this paper, we review the pivotal trials that have currently changed the therapeutic approach to prostate cancer, both in the nonmetastatic castration-resistant and metastatic settings. Therefore, we focus on recently published and ongoing trials designed to investigate the clinical activity of ADCs against prostate malignancy, characterizing these agents. Lastly, we briefly discuss some ADCs-related issues with corresponding strategies to overwhelm them, along with future perspectives for these promising novel compounds.
Collapse
Affiliation(s)
- Matteo Rosellini
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
- Correspondence: (M.S.); (F.M.)
| | - Veronica Mollica
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
| | - Alessandro Rizzo
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Nadia Storti
- Direzione Sanitaria Azienda Sanitaria Unica Regionale, 60122 Ancona, Italy;
| | | | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Francesco Massari
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
- Correspondence: (M.S.); (F.M.)
| |
Collapse
|
29
|
A short deletion in the DNA-binding domain of STAT3 suppresses growth and progression of colon cancer cells. Aging (Albany NY) 2021; 13:5185-5196. [PMID: 33535185 PMCID: PMC7950243 DOI: 10.18632/aging.202439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/25/2020] [Indexed: 01/14/2023]
Abstract
In this study, we investigated the effect of a short deletion in the DNA-binding domain of STAT3 (STAT3del) on the transcriptional activation of STAT3 target genes and its relationship with colon carcinogenesis. We used the CRISPR-CAS9 gene editing system to delete a short sequence encoding amino acids 400-411 in the DNA-binding domain (amino acid sequence: 317-567) from STAT3 gene in SW480, SW620 and HCT116 colon cancer cells. ChIP sequencing analysis showed that STAT3del occupancy was significantly reduced in 1029 genes and significantly increased in 475 genes compared to wild-type STAT3. The mutation altered the DNA motifs recognized by STAT3del as compared to the wild-type STAT3. We observed a strong correlation between expression of the STAT3 target genes and the loss or gain of STAT3del binding to their promoters. CCK-8, wound healing, and TUNEL assays showed reduced proliferation, migration, and survival of SW480, SW620 and HCT-116 cells expressing STAT3del as compared to the corresponding controls. These findings demonstrate that a short deletion in the DNA-binding domain of STAT3 alters its genome-wide DNA-binding and transcriptional profile of STAT3-target proteins, and suppresses the growth, progression and survival of colon cancer cells.
Collapse
|
30
|
Bahreyni A, Luo H. Advances in Targeting Cancer-Associated Genes by Designed siRNA in Prostate Cancer. Cancers (Basel) 2020; 12:E3619. [PMID: 33287240 PMCID: PMC7761674 DOI: 10.3390/cancers12123619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Short interfering RNAs (siRNAs) have provided novel insights into the field of cancer treatment in light of their ability to specifically target and silence cancer-associated genes. In recent years, numerous studies focus on determining genes that actively participate in tumor formation, invasion, and metastasis in order to establish new targets for cancer treatment. In spite of great advances in designing various siRNAs with diverse targets, efficient delivery of siRNAs to cancer cells is still the main challenge in siRNA-mediated cancer treatment. Recent advancements in the field of nanotechnology and nanomedicine hold great promise to meet this challenge. This review focuses on recent findings in cancer-associated genes and the application of siRNAs to successfully silence them in prostate cancer, as well as recent progress for effectual delivery of siRNAs to cancer cells.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
31
|
Wu HT, Chen WJ, Xu Y, Shen JX, Chen WT, Liu J. The Tumor Suppressive Roles and Prognostic Values of STEAP Family Members in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9578484. [PMID: 32802887 PMCID: PMC7421016 DOI: 10.1155/2020/9578484] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the expression patterns and prognostic values of STEAP family members in the occurrence and development of breast cancer. MATERIALS AND METHODS The Human Protein Atlas was used to analyze the expression level of STEAPs in human normal tissues and malignant tumors. ONCOMINE datasets were analyzed for the comparison of the STEAPs levels between malignant cancers and corresponding normal tissues. Kaplan-Meier plotter was used to analyze the prognostic value of STEAPs in breast cancer patients. RESULTS STEAPs were widely distributed in human normal tissues with diverse levels. Normally, it is predicted that STEAP1 and STEAP2 were involved in the mineral absorption process, while STEAP3 participated in the TP53 signaling pathway and iron apoptosis. The results from ONCOMINE showed downregulation of STEAP1, STEAP2, and STEAP4 in breast cancers. Survival analysis revealed that breast cancer patients with high levels of STEAP1, STEAP2, and STEAP4 had a good prognosis, while those with low expression had high overall mortality. CONCLUSION STEAP1, STEAP2, and STEAP4 are predicted to be the potential prognostic biomarkers for breast cancer patients, providing novel therapeutic strategies for them.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Wen-Jia Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Ya Xu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou 515041, China
| | - Jia-Xin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Wen-Tian Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
32
|
Jiao Z, Huang L, Sun J, Xie J, Wang T, Yin X, Zhang H, Chen J. Six-transmembrane epithelial antigen of the prostate 1 expression promotes ovarian cancer metastasis by aiding progression of epithelial-to-mesenchymal transition. Histochem Cell Biol 2020; 154:215-230. [PMID: 32382787 DOI: 10.1007/s00418-020-01877-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Ovarian cancer is a severe malignant tumour of the female genital organs. Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) expression is correlated with the occurrence and progression of multiple cancers. Here, we assessed STEAP1 expression in ovarian cancer and explored the relationship between STEAP1 and ovarian cancer progression. We used immunohistochemistry and public databases to test STEAP1 expression in normal human ovarian tissues, benign ovarian tumours, and ovarian cancer. The expression of STEAP1 and epithelial-to-mesenchymal transition (EMT)-related genes was analysed using immunocytochemistry, quantitative reverse transcription polymerase chain reaction, and western blotting in ovarian cancer cell lines. Lentivirus was used to knockdown and overexpress STEAP1. Invasion, migration, growth, clonogenicity, and apoptosis were assessed using transwell assay, growth curve, plate clone formation assay, and flow cytometry. We used a tumour xenograft to verify the relationship between STEAP1 and in vivo ovarian cancer cell growth. Matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9) activities were examined using Matrix metalloproteinase zymography assay. STEAP1 was highly expressed in the human ovarian cancer tissues and a highly invasive ovarian cancer cell line. Overexpression of STEAP1 was related to poor prognosis in ovarian cancer patients. Down-regulation of STEAP1 suppressed the invasion, migration, proliferation, clonogenicity, EMT progression in human ovarian cancer cells and xenograft tumour growth in vivo, but it enhanced apoptosis. In human ovarian cancer, the STEAP1 gene is highly expressed, and its function is correlated with human ovarian cancer cell metastasis and growth. STEAP1 may be a possible target for suppressing ovarian cancer metastasis.
Collapse
Affiliation(s)
- Zhi Jiao
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Lei Huang
- Department of Pediatrics, Maternal and Child Health Care Hospital of Shandong Province, Jinan, 250014, China
| | - Jiali Sun
- Department of Vascular Anomalies and Interventional Radiology, Qilu Children's Hospital of Shandong University, Jinan, 250022, China
| | - Jie Xie
- Child Healthcare Department, Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Tiantian Wang
- Shibei District Disease Prevention and Control Center, Qingdao, 266012, China
| | - Xiu Yin
- Department of Scientific Research, Jining No. 1 People's Hospital, Jining, 272000, China
| | - Haozheng Zhang
- Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, 250022, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
33
|
Guo Q, Ke XX, Liu Z, Gao WL, Fang SX, Chen C, Song YX, Han H, Lu HL, Xu G. Evaluation of the Prognostic Value of STEAP1 in Lung Adenocarcinoma and Insights Into Its Potential Molecular Pathways via Bioinformatic Analysis. Front Genet 2020; 11:242. [PMID: 32265985 PMCID: PMC7099762 DOI: 10.3389/fgene.2020.00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Background Upregulation of the six-transmembrane epithelial antigen of prostate-1 (STEAP1) is closely associated with prognosis of numerous malignant cancers. However, its role in lung adenocarcinoma (LUAD), the most common type of lung cancer, remains unknown. This study aimed to investigate the role of STEAP1 in the occurrence and progression of LUAD and the potential mechanisms underlying its regulatory effects. Methods STEAP1 mRNA and protein expression were analyzed in 40 LUAD patients via real-time PCR and western blotting, respectively. We accessed the clinical data of 522 LUAD patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to investigate the expression and prognostic role of STEAP1 in LUAD. Further, we performed gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) to elucidate the potential mechanism underlying the role of STEAP1 in LUAD. The protein-protein interaction (PPI) network of STEAP1 was analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and hub genes with significant positive and negative associations with STEAP1 were identified and their role in LUAD prognosis was predicted. Results STEAP1 was significantly upregulated in LUAD patients and associated with LUAD prognosis. Further, TCGA data indicated that STEAP1 upregulation is correlated with the clinical prognosis of LUAD. GO and KEGG analysis revealed that the genes co-expressed with STEAP1 were primarily involved in cell division, DNA replication, cell cycle, apoptosis, cytokine signaling, NF-kB signaling, and TNF signaling. GSEA revealed that homologous recombination, p53 signaling pathway, cell cycle, DNA replication, apoptosis, and toll-like receptor signaling were highly enriched upon STEAP1 upregulation. Gene Expression Profiling Interactive Analysis (GEPIA) analysis revealed that the top 10 hub genes associated with STEAP1 expression were also associated with the LUAD prognosis. Conclusion STEAP1 upregulation potentially influences the occurrence and progression of LUAD and its co-expressed genes via regulation of homologous recombination, p53 signaling, cell cycle, DNA replication, and apoptosis. STEAP1 is a potential prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xi-Xian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhou Liu
- Department of Cardiac Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei-Long Gao
- Department of Cardiac Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shi-Xu Fang
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yong-Xiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hao Han
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong-Ling Lu
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
34
|
Sun J, Ji G, Xie J, Jiao Z, Zhang H, Chen J. Six-transmembrane epithelial antigen of the prostate 1 is associated with tumor invasion and migration in endometrial carcinomas. J Cell Biochem 2019; 120:11172-11189. [PMID: 30714206 DOI: 10.1002/jcb.28393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/16/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Six-transmembrane epithelial antigen of the prostate 1 (STEAP1), a member of the STEAP family, is a general tumor antigen. However, no information has been available to date regarding the function of STEAP1 in the progression of endometrial carcinoma. In this study, we used in vitro and in vivo strategies to prove that STEAP1 plays an important role in the progression of endometrial carcinoma. Immunohistochemistry, immunocytochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blot analysis were used to detect the expression of STEAP1 in normal endometrial cells and endometrial cancer cell lines. The progression of the cell cycle, plate clone formation assay, and transwell migration and invasion assays were performed to examine the effects of STEAP1 on cell proliferation, clonogenicity, migration, and their invasive capacity. In addition, we confirmed that STEAP1 was tightly correlated with the development of tumor in vivo. The relationship between epithelial to mesenchymal transition (EMT) and STEAP1 expression was evaluated by RT-qPCR and Western blot analysis. Matrix metalloproteinase (MMP) zymography assay was used to detect the activities of MMP2 and MMP9. STEAP1 was restrictively expressed in endometrial carcinoma and downregulation of the STEAP1 gene increased proliferation and clonogenicity, as well as promoted cell migration, invasion, and the progress of EMT. STEAP1 is downregulated in endometrial carcinoma and can restrict migration and invasion of endometrial carcinoma cells. Overall, STEAP1 may be an ideal target for tumor therapy and diagnosis in the future.
Collapse
Affiliation(s)
- Jiali Sun
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Guoxin Ji
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jie Xie
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Zhi Jiao
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Haozheng Zhang
- Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| |
Collapse
|
35
|
Chen X, Wang R, Chen A, Wang Y, Wang Y, Zhou J, Cao R. Inhibition of mouse RM-1 prostate cancer and B16F10 melanoma by the fusion protein of HSP65 & STEAP1 186-193. Biomed Pharmacother 2019; 111:1124-1131. [PMID: 30841425 DOI: 10.1016/j.biopha.2019.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/20/2018] [Accepted: 01/05/2019] [Indexed: 01/28/2023] Open
Abstract
The research of tumor vaccine plays a crucial role in tumor immunotherapy. This study has constructed and prepared a fusion protein vaccine of heat shock protein 65 (HSP65) and the octapeptide epitope 186-193 of the six transmembrane epithelial antigen of the prostate 1 (STEAP1 186-193), and investigated the inhibitory effect of the fusion protein on mouse RM-1 prostate cancer and B16F10 melanoma xenografts. The fusion protein His-HSP65-STEAP1 186-193 (HHST1), His-HSP65-2×STEAP1 186-193 (HHST2) and His-HSP65-6×STEAP1 186-193 (HHST6) were obtained by setting different copy number of STEAP1 186-193 and adding His purification tag before HSP65. Firstly the inhibitory effect of fusion protein on mouse RM-1 prostate cancer xenografts has been studied, which could be the basis of the study the inhibitory effect of the best fusion protein on mouse B16F10 melanoma xenografts. All studies compared with the fusion protein His-HSP65 (HHSP65), the fusion proteins HHST1, HHST2 and HHST6 all could significantly inhibit the growth of mouse RM-1 prostate cancer xenografts. In addition, the fusion protein HHST2 was proved to be the best compared with the fusion proteins HHST1 and HHST6 (P<0.05). Apart from this, compared with the fusion protein HHSP65, the fusion protein HHST2 also significantly inhibited the growth of mouse beared B16F10 melanoma. The results above indicate that HSP65 and STEAP1 186-193 can significantly inhibit the growth of mouse RM-1 prostate cancer and B16F10 melanoma xenografts, and the appropriate increase of copy number can effectively improve that the fusion protein has an excellent anti-tumor ability.
Collapse
Affiliation(s)
- Xuan Chen
- Microgene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, No. 24, Tongjia Alley, Central Road, Nanjing, 210009, China
| | - Rui Wang
- Microgene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, No. 24, Tongjia Alley, Central Road, Nanjing, 210009, China
| | - Anji Chen
- Microgene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, No. 24, Tongjia Alley, Central Road, Nanjing, 210009, China
| | - Yongmei Wang
- Microgene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, No. 24, Tongjia Alley, Central Road, Nanjing, 210009, China
| | - Yiqin Wang
- Microgene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, No. 24, Tongjia Alley, Central Road, Nanjing, 210009, China
| | - Jialei Zhou
- Microgene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, No. 24, Tongjia Alley, Central Road, Nanjing, 210009, China
| | - Rongyue Cao
- Microgene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, No. 24, Tongjia Alley, Central Road, Nanjing, 210009, China.
| |
Collapse
|
36
|
Six-transmembrane epithelial antigen of the prostate 1 protects against increased oxidative stress via a nuclear erythroid 2-related factor pathway in colorectal cancer. Cancer Gene Ther 2018; 26:313-322. [PMID: 30401882 DOI: 10.1038/s41417-018-0056-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/06/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022]
Abstract
The over-expression of six-transmembrane epithelial antigen of the prostate 1 (STEAP1) underlies the pathogenesis of a large subset of human cancers. Expressed on the cancer cell surface, STEAP1 is an attractive target for antibody-based therapy or immunotherapy. However, its role in modulating the pathophysiology of colorectal cancer (CRC) remains relatively unexplored. In this study, we first demonstrated that the STEAP1 transcript level was significantly higher in CRC tissues than in normal colonic tissues. Of note, STEAP1 expression negatively correlated with overall survival as determined from a publicly accessible gene expression profile data set. A loss-of-function approach in cultured CRC cell lines revealed that STEAP1 silencing suppressed cell growth and increased reactive oxygen species (ROS) production, followed by apoptosis, through an intrinsic pathway. Mechanistically, the inhibition of STEAP1 was associated with decreased expression of antioxidant molecules regulated by the transcription factor, nuclear erythroid 2-related factor (NRF2), in CRC cells. Taken together, we identified high STEAP1 transcript levels leading to reduced ROS production that prevented apoptosis via the NRF2 pathway in CRC cells as a pathological mechanism in CRC. This study highlights the STEAP1-NRF2 axis as a therapeutic target for CRC and its manipulation as a novel strategy to conquer CRC.
Collapse
|