1
|
Rai HP, Mishra DN. Effect of ashwagandha ( Withania somnifera) extract with Sominone (Somin-On™) to improve memory in adults with mild cognitive impairment: A randomized, double-blind, placebo-controlled study. J Psychopharmacol 2025; 39:350-363. [PMID: 40099725 DOI: 10.1177/02698811251324377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a condition in which people have memory or thinking problems than other people of their age. This study evaluated the effectiveness and safety of ashwagandha extract standardized with Sominone (Somin-On™) in enhancing memory and cognitive functioning in adults with MCI. METHODS In this randomized double-blind, placebo-controlled pilot study, 40 subjects with MCI were randomized in a 1:1 ratio to receive either Somin-On™ (250 mg daily) or a placebo for 60 days. The outcome measures, improvement in memory and other cognitive functions after 30 and 60 days were assessed using Montreal Cognitive Assessment (MoCA); Mini-mental state examination (MMSE); Wechsler Memory Scale-III (WMS-III)); and Shepard mental rotation task. RESULTS Subjects treated with Somin-On™ showed significant improvements in immediate memory, general memory, working memory and visuospatial processing and the response assessed using WMS-III after 30 and 60 days outperforming the placebo group. Scores on the Shepard Mental Rotation test in Somin-On™ group showed a significant rise by 12.22% at 30 days and 31.67% at 60 days, from baseline. Significant improvement was observed with Somin-On™ in memory assessment scales viz. MoCA (7.83% at 30 days and 14.77% at 60 days, from baseline) and MMSE (9.26% at 30 days and 19.21% at 60 days, from baseline) compared to placebo group. CONCLUSIONS The supplementation of Somin-On™ is an effective therapy to improve the immediate, general and working memory, as well as cognitive functions like attention and information processing speed in adults with MCI.
Collapse
Affiliation(s)
- Hari Prakash Rai
- Department of Neuroscience, Hitech Hospital and Trauma Center, Jhansi, UP, India
| | - Deo Nidhi Mishra
- Department of Internal Medicine, Nirmal Hospital, Jhansi, UP, India
| |
Collapse
|
2
|
Varada S, Chamberlin SR, Bui L, Brandes MS, Gladen-Kolarsky N, Harris CJ, Hack W, Neff CJ, Brumbach BH, Soumyanath A, Quinn JF, Gray NE. Oral Asiatic Acid Improves Cognitive Function and Modulates Antioxidant and Mitochondrial Pathways in Female 5xFAD Mice. Nutrients 2025; 17:729. [PMID: 40005058 PMCID: PMC11858387 DOI: 10.3390/nu17040729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Extracts of the plant Centella asiatica can enhance mitochondrial function, promote antioxidant activity and improve cognitive deficits. Asiatic acid (AA) is one of the constituent triterpene compounds present in the plant. In this study, we explore the effects of AA on brain mitochondrial function, antioxidant response and cognition in a beta-amyloid (Aβ)-overexpressing 5xFAD mouse line. Methods: Six- to seven-month-old 5xFAD mice were treated with 1% AA for 4 weeks. In the last week of treatment, associative memory was assessed along with mitochondrial bioenergetics and the expression of mitochondrial and antioxidant response genes from isolated cortical synaptosomes. The Aβ plaque burden was also evaluated. Results: AA treatment resulted in improvements in associative memory in female 5xFAD mice without altering the Aβ plaque burden. Cortical mitochondrial function and mitochondrial gene expression were increased in the AA-treated female 5xFAD mice, as was the expression of antioxidant genes. More modest effects of AA on cortical mitochondrial function and mitochondrial and antioxidant gene expression were observed in male 5xFAD mice. Conclusions: Oral AA treatment improved cognitive and mitochondrial function and activated antioxidant in Aβ-overexpressing mice. These changes occurred independent of alterations in Aβ plaque burden, suggesting that AA could have translational therapeutic relevance in later-stage AD when plaques are well established.
Collapse
Affiliation(s)
- Samantha Varada
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (S.V.); (A.S.); (J.F.Q.)
| | - Stephen R. Chamberlin
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (S.V.); (A.S.); (J.F.Q.)
| | - Lillie Bui
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (S.V.); (A.S.); (J.F.Q.)
| | - Mikah S. Brandes
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (S.V.); (A.S.); (J.F.Q.)
| | - Noah Gladen-Kolarsky
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (S.V.); (A.S.); (J.F.Q.)
| | - Christopher J. Harris
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (S.V.); (A.S.); (J.F.Q.)
| | - Wyatt Hack
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (S.V.); (A.S.); (J.F.Q.)
| | - Cody J. Neff
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (S.V.); (A.S.); (J.F.Q.)
| | - Barbara H. Brumbach
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (S.V.); (A.S.); (J.F.Q.)
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (S.V.); (A.S.); (J.F.Q.)
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland, OR 97239, USA
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (S.V.); (A.S.); (J.F.Q.)
| |
Collapse
|
3
|
Prasad K, Raghu KS, Maruthiyodan S, Wadhwa R, Kaul SC, Satyamoorthy K, Guruprasad KP. Promotion of cellular differentiation and DNA repair potential in brain cancer cells by Clitoria ternatea L. with rasayana properties in vitro. J Ayurveda Integr Med 2025; 16:101050. [PMID: 39798267 PMCID: PMC11773022 DOI: 10.1016/j.jaim.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/03/2024] [Accepted: 08/08/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Brain ageing is accompanied by the diminution of neuronal plasticity, which is correlated with the inability to respond to loss of memory, various stress-induced stimuli, and increased risk of neurodegenerative disorders. In the recent past, plant based herbal medicines are of interest over synthetic drugs for therapeutic purposes due to lower side effects. The Indian traditional medicine Ayurveda describes several herbal remedies, such as rasayana (elixirs for rejuvenation), to treat many age-related diseases. Medhya rasayana (brain elixir) is a class of rasayana used for its nootropic functions, such as enhancement of memory and intellect, in addition to promoting normal health. Clitoria ternatea L. is one such plant used in the preparation of medhya rasayana. OBJECTIVE To investigate the neuronal differentiation and DNA repair potential of Shankhpushpi (Clitoria ternatea L.) in neuroblastoma cells. MATERIALS & METHODS The effect of Clitoria ternatea L. on neuronal cell differentiation, DNA repair (base excision repair, comet, γH2AX immunostaining assays), autophagy by cadaverine uptake and mitochondrial functions by fluorescent dye staining through flow cytometry were evaluated. RESULTS The results revealed that Clitoria ternatea L. enhanced DNA repair and mitochondrial membrane potential and reduced autophagy and reactive oxygen species (ROS) in IMR-32 neuroblastoma cells. Treatment of IMR-32 neuroblastoma and C6 glioblastoma cells with shankhpushpi induced neuronal differentiation and exhibited markers such as MAP2, Mortalin and GFAP. CONCLUSION Neurobiological pathways and molecular mechanisms influenced by rasayana herb shankhpushpi suggests its therapeutic potential for neurodegenerative diseases.
Collapse
Affiliation(s)
- Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India
| | - Kothanahalli S Raghu
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India
| | - Swathi Maruthiyodan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India
| | - Renu Wadhwa
- Drug Discovery and Assets Innovation DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Sunil C Kaul
- Drug Discovery and Assets Innovation DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India; Shri Dharmasthala Manjunatheshwara (SDM) University, SDM College of Medical Sciences and Hospital, Manjushree Nagar, Sattur, Dharwad, 580009, Karnataka, India
| | - Kanive Parashiva Guruprasad
- Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
4
|
Harykrishnan S, Ganapathy M, Abinaya K, Meenakumari S, Thirumavalavan M, Anbu P, Pachaiappan R. An evaluation study on screening, partial purification, and characterization of proteins and antioxidant peptides from two varieties of Clitoria Ternatea. Int J Biol Macromol 2025; 285:138312. [PMID: 39638174 DOI: 10.1016/j.ijbiomac.2024.138312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This study focused on the unexplored bioactive proteins derived from the flower of Clitoria ternatea. The profiling of blue and white C. ternatea flowers was compared. After extraction, the samples underwent ultrafiltration and the isolation of the protein peptides was done by using four different buffers. The highest yield was found in the case of phosphate buffered-based extracts in blue C. ternatea flower. The single HPLC peak at 220 nm with a high area percentage confirmed the presence of peptides in all the 3 kDa filtrates of C. ternatea. These 3 kDa filtrates were concentrated by using a C-18 zip tip method, with alpha-cyano-4-hydroxycinnamic acid as a substrate for MALDI-TOF-MS-based peptide mass analysis. To determine the antioxidant activity of the peptides, four different assays including DPPH, ABTS, FRAP and NOS were used and it was observed that the blue C. ternatea flower exhibited the potential activity when compared to the white C. ternatea flower. Among all, the phosphate buffer filtrate exhibited the highest antioxidant activity. The binding affinity of the identified protein peptides APCPNR, LGLFR, LIPQE and SISWSS from blue and white flower were evaluated against amyloid beta (Aβ) and acetylcholinesterase (AChE) targets of Alzheimer's disease by in silico analysis.
Collapse
Affiliation(s)
- Suresh Harykrishnan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Mariappan Ganapathy
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kanagaraja Abinaya
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sakthivelu Meenakumari
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Munusamy Thirumavalavan
- Department of Chemistry, Saveetha Engineering College, Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India.
| | - Periasamy Anbu
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
5
|
Abdian S, Fakhri S, Moradi SZ, Khirehgesh MR, Echeverría J. Saffron and its major constituents against neurodegenerative diseases: A mechanistic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156097. [PMID: 39577115 DOI: 10.1016/j.phymed.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Neurodegeneration has been recognized as the main pathophysiological alteration in the majority of brain-related diseases. Despite contemporary attempts to provide acceptable medicinal therapies, the conclusion has not been much beneficial. Besides, the complex pathophysiological mechanisms behind neurodegenerative diseases (NDDs) urge the needs for finding novel multi-target agents. Accordingly, saffron with major active constituents and as multi-targeting agents have shown beneficial effects in modulating NDDs with higher efficacy and lower side effects. PURPOSE The present study provides a systematic and comprehensive review of the existing in vitro, in vivo, and clinical data on the effectiveness, and signaling pathways of saffron and its key phytochemical components in the management of NDDs. The need to develop novel saffron delivery systems is also considered. METHODS Studies were identified through a systematic and comprehensive search in Science Direct, PubMed, and Scopus databases through April 30, 2024. The whole saffron major constituents (e.g., saffron, crocin, crocetin, picrocrocin, and safranal) and NDDs (e.g., neuro*, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Huntington*, Parkinson*, Alzheimer*, and brain) were selected as keywords to find related studies. In the systematic analysis, 64 articles were directly included in the current study. Additional reports were added within the comprehensive studies in the review. RESULTS Saffron and its active metabolites crocin, crocetin, safranal, and picrocrocin have shown acceptable efficacy in managing NDDs like Alzheimer's disease, Parkinson's disease, Attention deficit hyperactivity disorder, depression, and other NDDs via modulating apoptotic (e.g., caspases, Bax/Bcl-2, cytochrome c, and death receptors), inflammatory (e.g., NF-κB, IL-1β, IL-6, TNF-α, and COX-2), and oxidative strass (e.g., Nrf2, GSH, GPx, CAT, SOD, MDA, ROS, and nitrite) signaling pathways. The presented in vitro, in vivo, and clinical evidences showed us a better future of controlling NDDs with higher efficacy, while decreasing associated side effects with no significant toxicity. Additionally, employing novel delivery systems could increase the efficacy of saffron phytoconstituents to resolve the issues pharmacokinetic limitations. CONCLUSION Saffron and its major constituents employ anti-inflammatory, anti-apoptotic and antioxidant mechanisms in modulating several dysregulated-signaling pathways in NDDs. However, further research is necessary to elucidate the precise underlying mechanisms in exploring the feasibility of using saffron active compounds against NDDs. More studies should focus on dose-response relationships, long-term effects, highlighting key mechanisms, and designing more well-controlled clinical trials. Additionally, developing stable and cost-benefit novel delivery systems in future works helps to remove the pharmacokinetic limitations of saffron major constituents.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Wang XX, Ji X, Lin J, Wong IN, Lo HH, Wang J, Qu L, Wong VKW, Chung SK, Law BYK. GPCR-mediated natural products and compounds: Potential therapeutic targets for the treatment of neurological diseases. Pharmacol Res 2024; 208:107395. [PMID: 39241934 DOI: 10.1016/j.phrs.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
G protein-coupled receptors (GPCRs), widely expressed in the human central nervous system (CNS), perform numerous physiological functions and play a significant role in the pathogenesis of diseases. Consequently, identifying key therapeutic GPCRs targets for CNS-related diseases is garnering immense interest in research labs and pharmaceutical companies. However, using GPCRs drugs for treating neurodegenerative diseases has limitations, including side effects and uncertain effective time frame. Recognizing the rich history of herbal treatments for neurological disorders like stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), modern pharmacological research is now focusing on the understanding of the efficacy of traditional Chinese medicinal herbs and compounds in modulating GPCRs and treatment of neurodegenerative conditions. This paper will offer a comprehensive, critical review of how certain natural products and compounds target GPCRs to treat neurological diseases. Conducting an in-depth study of herbal remedies and their efficacies against CNS-related disorders through GPCRs targeting will augment our strategies for treating neurological disorders. This will not only broaden our understanding of effective therapeutic methodologies but also identify the root causes of altered GPCRs signaling in the context of pathophysiological mechanisms in neurological diseases. Moreover, it would be informative for the creation of safer and more effective GPCR-mediated drugs, thereby establishing a foundation for future treatment of various neurological diseases.
Collapse
Affiliation(s)
- Xing Xia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jing Lin
- Department of Endocrinology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jian Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Faculty of Medicine, Macau University of Science and Technology, Macau SAR China.
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China.
| |
Collapse
|
7
|
Franco RR, Franco RM, Justino AB, Borges ALS, Bittar VP, Saito N, Saraiva AL, Júnior NN, Otoni WC, Espindola FS. Phytochemical composition of aerial parts and roots of Pfaffia glomerata (Spreng.) Pedersen and anticholinesterase, antioxidant, and antiglycation activities. PROTOPLASMA 2024; 261:609-624. [PMID: 38200344 DOI: 10.1007/s00709-023-01916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The Pfaffia glomerata, a plant popularly called Brazilian ginseng, is widely used in Brazil for the treatment of various pathologies, including those associated with the Central Nervous System. 20-hydroxyecdysone (20E), a phytosteroid present in this plant, can promote adaptogenic effects in the organism, providing greater body resistance to stressors. This study aimed to evaluate the phytochemical composition and the anticholinesterase, antioxidant, and antiglycation effects of extracts and fractions of aerial parts and roots of P. glomerata, also analyzing their possible cytotoxic effects. The fractions were obtained by partitioning methanol extracts from the aerial part and roots of P. glomerata with hexane, dichloromethane, ethyl acetate, n-butanol, and water. The samples were initially tested in anticholinesterase, antioxidant, and antiglycation assays, and the most promising samples were submitted for cytotoxicity and chromatographic analyses. Mass spectrometry and chromatography methods revealed that 20E was the main compound in the dichloromethane fractions, there being 35% more 20E in the aerial part (APD) than in the roots (RD). Added to the higher concentration of 20E, the APD fraction also presented more promising results than the RD fraction in anticholinesterase and antioxidant analyses, indicating that their effects may be related to the concentration of 20E. These same fractions showed no hemolytic effects but were cytotoxic in high concentrations. These new findings contribute to scientific information about P. glomerata and open more perspectives for the understanding of its therapeutic properties, allowing the association of biological activity with the presence of 20E.
Collapse
Affiliation(s)
- Rodrigo Rodrigues Franco
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil
- Departamento de Medicina, Instituto de Biotecnologia, Universidade Federal de Catalão, Catalão, GO, 75706-881, Brazil
| | - Rafaella Martins Franco
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil
| | - Allisson Benatti Justino
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil
| | - Ana Luiza Silva Borges
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil
| | - Vinícius Prado Bittar
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil
| | - Natieli Saito
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil
| | - André Lopes Saraiva
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil
| | - Nilson Nicolau Júnior
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal, Laboratório de Cultura de Tecidos/BIOAGRO, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Foued Salmen Espindola
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil.
| |
Collapse
|
8
|
Dhamodiran M, Chinnaperumal K, J D, Venkatesan G, A Alshiekheid M, Suseem SR. Isolation, structural elucidation of bioactive compounds and their wound-healing ability, antibacterial and In silico molecular docking applications. ENVIRONMENTAL RESEARCH 2024; 252:119023. [PMID: 38685295 DOI: 10.1016/j.envres.2024.119023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Andrographis echioides has been extensively utilized in traditional Indian folk medicines for several skin disorders and other biological actions such as diuretic, antimicrobial, anthelmintic, anti-ulcer, and hepatoprotective properties. Different crude extracts were extracted from A. echioides leaves using various solvents such as methanol and water. The prepared crude extracts were utilized to formulate different herbal ointments. Further, the prepared ointments were examined against wounds and bacterial pathogens. The wound healing ability of the prepared formulations was observed for F1, F2, and F3, to be (89.84%, 95.11%, and 95.75%) respectively. Moreover, wound healing capabilities were compared with standard Betadine which exhibits 98.12%, those results indicating that the prepared herbal ointment also has a promising wound healing ability. The F2 formulations outperform the other two formulations (F1 and F2) in terms of their antibacterial ability to combat Staphylococcus aureus, Klebsiella pneumoniae Bacillus subtilis, and Escherichia coli. Moreover, there are two compounds were successfully isolated and identified from methanolic extract, which are 2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol and 3-(3,4-Dihydroxyphenyl)-2-propenoic acid. Meanwhile, the molecular docking investigation exposed high binding energy Staphylococcus aureus TyrRS (-8.9 kcal/mol), Isoleucyl-tRNA synthetase (-7.5 kcal/mol), Penicillin-binding protein 2a (-8.0 kcal/mol), S. aureus DNA Gyrase (-7.2 kcal/mol), GSK-3beta (Glycogen synthase kinase-3 beta) (-8.3 kcal/mol) and TGF - Beta Receptor Type 1 Kinase Domain (-8.7 kcal/mol) indicating high degree of interaction between Compound-1 2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol (DHPDHC) and 7 clinically important skin infective pathogen Staphylococcus aureus proteins at the active sites. Additionally, the standard drug Povidone iodine, Sulphothiazole, and Nitrofurazone (<-8 kcal/mol), displayed low binding affinity on targeted proteins. A molecular dynamics simulation research with high free energy showed stable interaction between the ligand and protein. Which endorses the capabilities of A. echioides derived compounds as a potential wound healer and antibacterial therapeutic candidate for drug development in the future.
Collapse
Affiliation(s)
- Mathivanan Dhamodiran
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Kamaraj Chinnaperumal
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India.
| | - Dhanish J
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Geetha Venkatesan
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, India
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh - 11451, Saudi Arabia
| | - S R Suseem
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Zhang LJ, Zhang HZ, Liu YW, Tang M, Jiang YJ, Li FN, Guan LP, Jin QH. Sulphated Fucooligosaccharide from Sargassum Horneri: Structural Analysis and Anti-Alzheimer Activity. Neurochem Res 2024; 49:1592-1602. [PMID: 38305960 DOI: 10.1007/s11064-024-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
In the present study, sulfated polysaccharides were obtained by digestion of Sargassum horneri and preparation with enzyme-assisted extraction using three food-grade enzymes, and their anti- Alzheimer's activities were investigated. The results demonstrated that the crude sulfated polysaccharides extracted using AMGSP, CSP and VSP dose-dependently (25-100 µg·mL- 1) raised the spontaneous alternating manner (%) in the Y maze experiment of mice and reduced the escape latency time in Morris maze test. AMGSP, CSP and VSP also exhibited good anti-AChE and moderate anti-BuChE activities. CSP displayed the best inhibitory efficacy against AChE. with IC50 values of 9.77 µM. And, CSP also exhibited good inhibitory selectivity of AChE over BuChE. Next, CSP of the best active crude extract was separated by the preparation type high performance liquid phase to obtain the sulphated fucooligosaccharide section: SFcup (→3-α-L-fucp(2-SO3-)-1→4-α-L-fucp(2,3-SO3-)-1→section), SFcup showed a best inhibitory efficacy against AChE with IC50 values of 4.03 µM. The kinetic research showed that SFcup inhibited AChE through dual binding sites. Moreover, the molecular docking of SFcup at the AChE active site was in accordance with the acquired pharmacological results.
Collapse
Affiliation(s)
- Ling-Jian Zhang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Hao-Zheng Zhang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Ya-Wen Liu
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Min Tang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Yong-Jun Jiang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Fu-Nan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Li-Ping Guan
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China.
| | - Qing-Hao Jin
- College of Nursing, Zhejiang Pharmaceutical University, Zhejiang, Ningbo, 315153, China.
| |
Collapse
|
10
|
Adeniyi IA, Oregbesan PO, Adesanya A, Olubori MA, Olayinka GS, Ajayi AM, Onasanwo SA. Olax subscorpioidea prevented scopolamine-induced memory impairment through the prevention of oxido-inflammatory damage and modulation of cholinergic transmission. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116995. [PMID: 37541399 DOI: 10.1016/j.jep.2023.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Olax subscorpioidea oliv. is a shrub plant of the Olacaceae family with reported usage in ethnomedicine as a nootropic agent for the management of Alzheimer's-like dementia. AIM The aim of this study is to investigate the nootropic potential of methanol extract of Olax subscorpioidea (MEOS) in scopolamine-induced Alzheimer's-like dementia. MATERIALS AND METHODS Thirty male mice, assigned into six groups (n = 8), were used for this study. Group, I received distilled water, group II received scopolamine (1 mg/kg, i.p.), groups iii-v received 25, 50, and 100 mg/kg, p.o. of MEOS and scopolamine (1 mg/kg/i.p.), and group vi received donepezil 5 mg/kg, p.o.and scopolamine (1 mg/kg, i.p.). The animals were pre-treated with MEOS and Donepezil for 14 days, and scopolamine from the 8th to 14th day. Followed by cognitive, oxidative stress, neuroinflammation, and histology assessments. RESULTS 100 mg/kg MEOS significantly reduced transfer latency and increased discrimination index in the elevated plus maze and novel object recognition test cognitive assessments. 100 mg/kg MEOS, significantly reduced oxidative stress, protect endogenous antioxidants, suppressed neuroinflammation, and acetylcholinesterase (ACHE) activity. The histomorphometry study of the hippocampus revealed that MEOS prevented extensive pyknosis, karyolysis, chromatolysis, and loss of hippocampal neurons that accompanied scopolamine treatment. CONCLUSION MEOS protected against Alzheimer's-like dementia via the suppression of neuroinflammation and oxidative stress associated with scopolamine-induced amnesic behavior.
Collapse
Affiliation(s)
- Ismaheel Akinwale Adeniyi
- Neuroscience and Oral Physiology Unit, Department of Physiology, University of Ibadan, Ibadan, Nigeria.
| | | | - Adegboyega Adesanya
- Neuroscience and Oral Physiology Unit, Department of Physiology, University of Ibadan, Ibadan, Nigeria.
| | | | - Gbenga Stanley Olayinka
- Neuroscience and Oral Physiology Unit, Department of Physiology, University of Ibadan, Ibadan, Nigeria.
| | | | - Samuel Adetunji Onasanwo
- Neuroscience and Oral Physiology Unit, Department of Physiology, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
11
|
Aljarari RM. Neuroprotective effects of a combination of Boswellia papyrifera and Syzygium aromaticum on AlCl3 induced Alzheimer's disease in male albino rat. BRAZ J BIOL 2023; 83:e272466. [PMID: 37851769 DOI: 10.1590/1519-6984.272466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/24/2023] [Indexed: 10/20/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by hippocampal, and cortical neuron deterioration, oxidative stress, and severe cognitive dysfunction. Aluminum is a neurotoxin inducer for cognitive impairments associated with AD. The treatment approaches for AD are unsatisfactory. Boswellia papyrifera and Syzygium aromaticum are known for their pharmacological assets, including antioxidant activity. Therefore, the current study explored the possible mitigating effects of a combination of Boswellia papyrifera and Syzygium aromaticum against aluminum chloride (AlCl3) induced AD. The AD model was established using AlCl3 (100 mg/kg), and the rats were orally administrated with Boswellia papyrifera or Syzygium aromaticum or a combination of them daily for 8 weeks. The Y-maze test was used to test cognition in the rats, while acetylcholinesterase (AChE) and oxidative stress markers were estimated in homogenates of the cerebral cortex and hippocampus. Also, the histopathological examination of the cortex and hippocampus were investigated. The results revealed that administration of either B. papyrifera or S. aromaticum extracts significantly improved the cognitive functions of AD rats, enhanced AChE levels, increased oxidative enzymes levels, including SOD and GSH, and reduced MDA levels in homogenates of the cerebral cortex and hippocampus and confirmed by improvement in histological examination. However, using a combination therapy gave better results compared to a single treatment. In conclusion, the present study provided primary evidence for using a combination of B. papyrifera and S. aromaticum to treat cognitive dysfunction associated with AlCl3 Induced AD by improving the AChE levels and modulating oxidative stress in the brain.
Collapse
Affiliation(s)
- R M Aljarari
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Reza-Zaldívar E, Jacobo-Velázquez DA. Comprehensive Review of Nutraceuticals against Cognitive Decline Associated with Alzheimer's Disease. ACS OMEGA 2023; 8:35499-35522. [PMID: 37810693 PMCID: PMC10552500 DOI: 10.1021/acsomega.3c04855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Nowadays, nutraceuticals are being incorporated into functional foods or used as supplements with nonpharmacological approaches in the prevention and management of several illnesses, including age-related conditions and chronic neurodegenerative diseases. Nutraceuticals are apt for preventing and treating such disorders because of their nontoxic, non-habit-forming, and efficient bioactivities for promoting neurological well-being due to their ability to influence cellular processes such as neurogenesis, synaptogenesis, synaptic transmission, neuro-inflammation, oxidative stress, cell death modulation, and neuronal survival. The capacity of nutraceuticals to modify all of these processes reveals the potential to develop food-based strategies to aid brain development and enhance brain function, prevent and ameliorate neurodegeneration, and possibly reverse the cognitive impairment observed in Alzheimer's disease, the most predominant form of dementia in the elderly. The current review summarizes the experimental evidence of the neuroprotective capacity of nutraceuticals against Alzheimer's disease, describing their mechanisms of action and the in vitro and in vivo models applied to evaluate their neuroprotective potential.
Collapse
Affiliation(s)
- Edwin
E. Reza-Zaldívar
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. 64849 Monterrey, NL, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. 64849 Monterrey, NL, Mexico
- Tecnologico
de Monterrey, Escuela de Ingeniería
y Ciencias, Campus Guadalajara, Av. General Ramon Corona 2514, C. 45201 Zapopan, Jalisco, Mexico
| |
Collapse
|
13
|
Zhang RL, Lei BX, Wu GY, Wang YY, Huang QH. Protective effects of berberine against β-amyloid-induced neurotoxicity in HT22 cells via the Nrf2/HO-1 pathway. Bioorg Chem 2023; 133:106210. [PMID: 36724611 DOI: 10.1016/j.bioorg.2022.106210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023]
Abstract
Neuronal apoptosis has been found to have a pivotal role in the course of Alzheimer's disease (AD). Berberine (BBR), a potent antioxidant, occurs in plants such as Berberis, Phellodendron chinense, and Hydrastis canadensis. In this study, a neuronal apoptotic model was established in vitro using HT22 cells induced by Aβ25-35 to explore whether BBR contributes to protecting neurons against Aβ25-35-induced neurotoxicity, as well as its potential mechanisms. BBR was applied to HT22 cells for 1 h prior to exposing the cells to Aβ25-35 for 24 h. A CCK-8 assay was utilized to assess cell viability, and Annexin V - fluorescein isothiocyanate (FITC)/propidium iodide and Hoechst 33342 fluorescence staining were used to measure the rate of cell apoptosis. Existing scientific literature was also reviewed to further determine the effects of BBR on ROS production and mitochondrial function in HT22 cells. Furthermore, the expressions of proteins, including cytochrome C, cleaved caspase-3, p-p65, p65, and Nrf2/HO-1 antioxidant axis were assessed by Western blotting. The data indicated that BBR markedly improved cell viability, inhibited apoptosis and intracellular ROS levels, improved mitochondrial membrane potentials, decreased the rate of p-p65/p65, cytochrome C, and cleaved caspase-3, and intensified the activity of Nrf2/HO-1 antioxidants in HT22 cells. Overall, the findings indicated that BBR provides a certain level of neuroprotectiveness in HT22 cells exposed to Aβ25-35 via relieving oxidative stress, as well as by restraining the mitochondrial pathway of cellular apoptosis. In addition, the restraint of NF-κB activity and sensitization of the Nrf2/HO-1 antioxidant axis, which together are intimately involved in the neuroprotection of BBR, may be possible mechanisms accounting for its effectiveness against Aβ25-35in vitro.
Collapse
Affiliation(s)
- Ru-Lan Zhang
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Bing-Xi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Guo-Yong Wu
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Yuan-Yuan Wang
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Qi-Hui Huang
- Department of Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
14
|
Gupta VS, Kale PP. Combinatory Approaches Targeting Cognitive Impairments and Memory Enhancement: A Review. Curr Drug Targets 2023; 24:55-70. [PMID: 36173073 DOI: 10.2174/1389450123666220928152743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
The objective of this paper is to look at how natural medicines can improve cognition and memory when used with sildenafil, a popular erectile dysfunction medicine that also has nootropic properties. Newer treatment strategies to treat the early stages of these diseases need to be developed. Multiple factors lead to complex pathophysiological conditions, which are responsible for various long-term complications. In this review, a combination of treatments targeting these pathologies is discussed. These combinations may help manage early and later phases of cognitive impairments. The purpose of this article is to discuss a link between these pathologies and a combinational approach with the objective of considering newer therapeutic strategies in the treatment of cognitive impairments. The natural drugs and their ingredients play a major role in the management of disease progression. Additionally, their combination with sildenafil allows for more efficacy and better response. Studies showing the effectiveness of natural drugs and sildenafil are mentioned, and how these combinations could be beneficial for the treatment of cognitive impairments and amnesia are summarised. Furthermore, preclinical and clinical trials are required to explore the medicinal potential of these drug combinations.
Collapse
Affiliation(s)
- Varun Santosh Gupta
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| | - Pravin Popatrao Kale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| |
Collapse
|
15
|
Malik J, Mandal SC, Choudhary S, Parihar S, Rahamathulla M. Herbal Medicines for Management of Alzheimer’s Disease. ROLE OF HERBAL MEDICINES 2023:231-250. [DOI: 10.1007/978-981-99-7703-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Bhat JA, Akther T, Najar RA, Rasool F, Hamid A. Withania somnifera (L.) Dunal (Ashwagandha); current understanding and future prospect as a potential drug candidate. Front Pharmacol 2022; 13:1029123. [PMID: 36578541 PMCID: PMC9790970 DOI: 10.3389/fphar.2022.1029123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer and Neurodegenerative diseases are one of the most dreadful diseases to cure and chemotherapy has found a prime place in cancerous treatments while as different strategies have been tested in neurodegenerative diseases as well. However, due to adverse shortcomings like the resistance of cancerous cells and inefficiency in neurodegenerative disease, plant sources have always found a prime importance in medicinal use for decades, Withania somnifera (L.) Dunal (W. somnifera) is a well-known plant with medicinal use reported for centuries. It is commonly known as winter cherry or ashwagandha and is a prime source of pharmaceutically active compounds withanolides. In recent years research is being carried in understanding the extensive role of W. somnifera in cancer and neurological disorders. W. somnifera has been reported to be beneficial in DNA repair mechanisms; it is known for its cellular repairing properties and helps to prevent the apoptosis of normal cells. This review summarizes the potential properties and medicinal benefits of W. somnifera especially in cancer and neurodegenerative diseases. Available data suggest that W. somnifera is effective in controlling disease progressions and could be a potential therapeutic target benefiting human health status. The current review also discusses the traditional medicinal applications of W. somnifera, the experimental evidence supporting its therapeutical potential as well as obstacles that necessitate being overcome for W. somnifera to be evaluated as a curative agent in humans.
Collapse
Affiliation(s)
- Javeed Ahmad Bhat
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, United States,*Correspondence: Javeed Ahmad Bhat, ; Abid Hamid,
| | - Tahira Akther
- B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Rauf Ahmad Najar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Faheem Rasool
- Government College for Women, Jammu, Jammu and Kashmir, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Srinagar, India,*Correspondence: Javeed Ahmad Bhat, ; Abid Hamid,
| |
Collapse
|
17
|
Xing D, Yoo C, Gonzalez D, Jenkins V, Nottingham K, Dickerson B, Leonard M, Ko J, Faries M, Kephart W, Purpura M, Jäger R, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Acute Ashwagandha Ingestion on Cognitive Function. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191911852. [PMID: 36231152 PMCID: PMC9565281 DOI: 10.3390/ijerph191911852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Ashwagandha (Withania somnifera) has been reported to decrease perceptions of stress, enhance mood, and improve cognitive function. However, it is currently unknown whether acute ashwagandha supplementation affects memory and cognitive function. This study evaluated the effects of acute ashwagandha extract ingestion on executive function. MATERIALS AND METHODS 13 healthy volunteers were administered the Berg-Wisconsin Card Sorting (BCST), Go/No-Go (GNG), Sternberg Task (STT), and Psychomotor Vigilance Task (PVTT) tests. Participants then ingested in a double-blind, placebo-controlled, and crossover manner 400 mg of a placebo (PLA) or ashwagandha (ASH) extract (NooGandha®, Specnova Inc., Boca Raton, FL, USA). Participants then performed cognitive function tests every hour for 6 h. After a 4-day washout period, volunteers repeated the experiment while receiving the remaining supplement. Data were analyzed by repeated measures General Linear Model multivariate and univariate statistics with body weight as a covariate. RESULTS Acute ASH supplementation increased STT-determined working memory as demonstrated by an improvement in 6 letter length, Present Reaction Time at 3 and 6 h. PVTT analysis revealed that ASH sustained attention by helping maintain reaction times, preventing mental fatigue, and remaining vigilant. Conversely, reaction times (at task 20, hour 6; overall, hour 3) increased with PLA. In the BCST, there was evidence that ASH increased the ability to recognize and 'shift' to a new rule compared with baseline. However, this was not seen when evaluating changes from baseline, suggesting that differences in baseline values influence results. In the GNG test, ASH ingestion promoted faster response times to respond correctly than PLA, indicating less metal fatigue. However, ASH did not affect accuracy compared to PLA, as both treatments decreased the percentage of correct answers. CONCLUSIONS Acute supplementation with 400 mg of ashwagandha improved selected measures of executive function, helped sustain attention, and increased short-term/working memory.
Collapse
Affiliation(s)
- Dante Xing
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Choongsung Yoo
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Drew Gonzalez
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Kay Nottingham
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Broderick Dickerson
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Megan Leonard
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Mark Faries
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Extension, Texas A&M University, College Station, TX 77843, USA
| | - Wesley Kephart
- Department of Kinesiology, University of Wisconsin, Whitewater, WI 53190, USA
| | | | | | - Ryan Sowinski
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| |
Collapse
|
18
|
Hussnain Siddique M, Andleeb R, Ashraf A, Zubair M, Fakhar-e-Alam M, Hayat S, Muzammil S, Atif M, Shafeeq S, Afzal M. Integration of in silicoand in vitroapproaches to evaluate antioxidant and anticancer properties of Tribulus terrestris extracts. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Zeng Y, Nie L, Liu L, Niu C, Li Y, Bozorov K, Zhao J, Shen J, Aisa HA. Design, Synthesis, in vitro Evaluation of a New Pyrrolo[1,2‐
a
]thiazolo[5,4‐
d
]pyrimidinone Derivatives as Cholinesterase Inhibitors Against Alzheimer's Disease. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Zeng
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
| | - Chao Niu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Yi Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Khurshed Bozorov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- Faculty of Chemistry Samarkand State University Samarkand Uzbekistan
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Jingshan Shen
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
20
|
Ahmad MA, Kareem O, Khushtar M, Akbar M, Haque MR, Iqubal A, Haider MF, Pottoo FH, Abdulla FS, Al-Haidar MB, Alhajri N. Neuroinflammation: A Potential Risk for Dementia. Int J Mol Sci 2022; 23:ijms23020616. [PMID: 35054805 PMCID: PMC8775769 DOI: 10.3390/ijms23020616] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Dementia is a neurodegenerative condition that is considered a major factor contributing to cognitive decline that reduces independent function. Pathophysiological pathways are not well defined for neurodegenerative diseases such as dementia; however, published evidence has shown the role of numerous inflammatory processes in the brain contributing toward their pathology. Microglia of the central nervous system (CNS) are the principal components of the brain’s immune defence system and can detect harmful or external pathogens. When stimulated, the cells trigger neuroinflammatory responses by releasing proinflammatory chemokines, cytokines, reactive oxygen species, and nitrogen species in order to preserve the cell’s microenvironment. These proinflammatory markers include cytokines such as IL-1, IL-6, and TNFα chemokines such as CCR3 and CCL2 and CCR5. Microglial cells may produce a prolonged inflammatory response that, in some circumstances, is indicated in the promotion of neurodegenerative diseases. The present review is focused on the involvement of microglial cell activation throughout neurodegenerative conditions and the link between neuroinflammatory processes and dementia.
Collapse
Affiliation(s)
- Md Afroz Ahmad
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow 226021, India; (M.A.A.); (M.K.); (M.F.H.)
| | - Ozaifa Kareem
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India;
| | - Mohammad Khushtar
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow 226021, India; (M.A.A.); (M.K.); (M.F.H.)
| | - Md Akbar
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.); (A.I.)
| | - Md Rafiul Haque
- Department of Pharmacognosy, School of Pharmacy, Al-Karim University, Katihar 854106, India;
| | - Ashif Iqubal
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.); (A.I.)
| | - Md Faheem Haider
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow 226021, India; (M.A.A.); (M.K.); (M.F.H.)
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Fatima S. Abdulla
- College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (F.S.A.); (M.B.A.-H.)
| | - Mahia B. Al-Haidar
- College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (F.S.A.); (M.B.A.-H.)
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
21
|
Chauhan BS, Kumar R, Kumar P, Kumar P, Sinha S, Mishra SK, Kumar P, Tiwari KN, Critchley AT, Prithiviraj B, Srikrishna S. Neuroprotective potential of flavonoid rich Ascophyllum nodosum (FRAN) fraction from the brown seaweed on an Aβ 42 induced Alzheimer's model of Drosophila. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153872. [PMID: 34906893 DOI: 10.1016/j.phymed.2021.153872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND In Alzheimer Disease (AD) pathogenesis, aggregation of Aβ42 fibrils strongly correlates with memory dysfunction and neurotoxicity. Till date, no promising cures for AD. Report shows that flavonoids contributed anti-oxidant, anti-cancer and neuroprotection activity by regulating the mitochondrial machinery. Here, we first report the identification of flavonoids from Ascophyllum nodosum as having the ability to dissolve Aβ42 fibrils in an AD model of Drosophila. FRAN could be superior anti-AD agents for neuroprotection, their underlying mechanism and how they collectively halted amyloidogenesis is currently being investigated. PURPOSE This study aimed to investigate the neuroprotective role of FRAN in the Aβ42 expressing AD model of Drosophila. METHODS Drosophila stocks: OregonR+, ey-GAL4/CyO, elavc155-GAL4, UAS-mitoGFP, UAS-mcherry.mito.OMM, UAS-Aβ42/CyO were used, cultured at 28±1 °C in a BOD incubator. Ascophyllum extract rich in flavonoids as revealed by LC-MS study and employed against the AD flies. The validation of Aβ42 expression was done by immunostaining and q-RT PCR. The eye roughness of AD flies was scored in a dose-dependent manner. Further, In vivo and in silico studies of FRAN extract was executed against Aβ42 induced neurotoxicity. RESULTS In order to determine the most effective lethal dose of FRAN extract concentration 1, 2, 5, 10 mg/ml were screened using OregonR+flies. Extract 1 and 2 mg/ml did not show any lethality. Hence, extract 2 mg/ml was employed on AD flies and a ≥ 50% rescue in the eye phenotype was observed using SEM images. This dose had a strong effect on cell apoptosis, viability, longevity, mitochondrial dysfunction and oxidative stress by regulating mitochondrial dynamic markers in comparable to control. Extract also scavenging free radicals in order to maintain in situ cellular ROS and prevent Aβ42-induced neurotoxicity in vivo and in silico. Hence, we suggest its great potential as a future therapeutic agent for AD treatment. CONCLUSION In conclusion, FRAN extract rich in flavonoids as having largest neuroprotective activity against Aβ42 aggregation in eye tissue of Drosophila. Extract shows strong effect against Aβ42-induced neurotoxicity by altering the various cellular and molecular events. So, it could be considered as strong anti-AD agents for neuroprotection.
Collapse
Affiliation(s)
- Brijesh Singh Chauhan
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rohit Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prabhat Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saket Sinha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | | | - Alan T Critchley
- Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, Sydney, Nova Scotia, B1P 6L2 Canada
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3 Canada
| | - Saripella Srikrishna
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
22
|
Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, Almikhlafi MA, Alghamdi SQ, Alruwaili AS, Hossain MS, Ahmed M, Das R, Emran TB, Uddin MS. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2021; 27:233. [PMID: 35011465 PMCID: PMC8746501 DOI: 10.3390/molecules27010233] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
Inflammation is a natural protective mechanism that occurs when the body's tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds work in tandem with nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit pro-inflammatory mediators' activity or gene expression, including cyclooxygenase (COX). Various phenolic compounds can also act on transcription factors, such as nuclear factor-κB (NF-κB) or nuclear factor-erythroid factor 2-related factor 2 (Nrf-2), to up-or downregulate elements within the antioxidant response pathways. Phenolic compounds can inhibit enzymes associated with the development of human diseases and have been used to treat various common human ailments, including hypertension, metabolic problems, incendiary infections, and neurodegenerative diseases. The inhibition of the angiotensin-converting enzyme (ACE) by phenolic compounds has been used to treat hypertension. The inhibition of carbohydrate hydrolyzing enzyme represents a type 2 diabetes mellitus therapy, and cholinesterase inhibition has been applied to treat Alzheimer's disease (AD). Phenolic compounds have also demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis, and inflammatory bowel disease. Plant extracts and phenolic compounds exert protective effects against oxidative stress and inflammation caused by airborne particulate matter, in addition to a range of anti-inflammatory, anticancer, anti-aging, antibacterial, and antiviral activities. Dietary polyphenols have been used to prevent and treat allergy-related diseases. The chemical and biological contributions of phenolic compounds to cardiovascular disease have also been described. This review summarizes the recent progress delineating the multifunctional roles of phenolic compounds, including their anti-inflammatory properties and the molecular pathways through which they exert anti-inflammatory effects on metabolic disorders. This study also discusses current issues and potential prospects for the therapeutic application of phenolic compounds to various human diseases.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, Taibah University, Madinah 41477, Saudi Arabia;
| | - Samia Qasem Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Albaha 65527, Saudi Arabia;
| | - Abdullah S Alruwaili
- Department of Clinical Laboratory, College of Applied Medical Science, Northern Border University, P.O. Box 1321, Arar 9280, Saudi Arabia;
| | - Md. Sohel Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| |
Collapse
|
23
|
Guan L, Peng D, Zhang L, Jia J, Jiang H. Design, synthesis, and cholinesterase inhibition assay of liquiritigenin derivatives as anti-Alzheimer's activity. Bioorg Med Chem Lett 2021; 52:128306. [PMID: 34371131 DOI: 10.1016/j.bmcl.2021.128306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/30/2022]
Abstract
The marine environment is a rich resource for discovering functional materials, and seaweed is recognized for its potential use in biology and medicine. Liquiritigenin has been isolated and identified from Sargassum pallidum. To find new anti-Alzheimer's activity, we designed and synthesized thirty-two 7-prenyloxy-2,3-dihydroflavanone derivatives (3a-3p) and 5-hydroxy-7-prenyloxy-2,3-dihydro-flavanone derivatives (4a-4p) as cholinesterases inhibitors based on liquiritigenin as the lead compound. Inhibition screening against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) indicated that all synthesized compounds possessed potent AChE inhibitory activity and moderated to weak BuChE inhibitory activity in vitro. Kinetic studies demonstrated that compound 4o inhibited AChE via a dual binding site ability. In addition, all compounds displayed the radical scavenging effects. Finally, the molecular docking simulation of 4o in AChE active site displayed good agreement with the obtained the pharmacological results.
Collapse
Affiliation(s)
- Liping Guan
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan 316022, China
| | - Dingxin Peng
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan 316022, China
| | - Li Zhang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan 316022, China
| | - Jinjing Jia
- Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing 314001, China
| | - Haiying Jiang
- Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing 314001, China.
| |
Collapse
|
24
|
Antimicrobial, antioxidant and wound healing activities of methanol leaf extract of Bridelia micrantha (Hochst.) Baill. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
25
|
Uddin MS, Kabir MT, Jakaria M, Sobarzo-Sánchez E, Barreto GE, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Exploring the Potential of Neuroproteomics in Alzheimer's Disease. Curr Top Med Chem 2021; 20:2263-2278. [PMID: 32493192 DOI: 10.2174/1568026620666200603112030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is progressive brain amyloidosis that damages brain regions associated with memory, thinking, behavioral and social skills. Neuropathologically, AD is characterized by intraneuronal hyperphosphorylated tau inclusions as neurofibrillary tangles (NFTs), and buildup of extracellular amyloid-beta (Aβ) peptide as senile plaques. Several biomarker tests capturing these pathologies have been developed. However, for the full clinical expression of the neurodegenerative events of AD, there exist other central molecular pathways. In terms of understanding the unidentified underlying processes for the progression and development of AD, a complete comprehension of the structure and composition of atypical aggregation of proteins is essential. Presently, to aid the prognosis, diagnosis, detection, and development of drug targets in AD, neuroproteomics is elected as one of the leading essential tools for the efficient exploratory discovery of prospective biomarker candidates estimated to play a crucial role. Therefore, the aim of this review is to present the role of neuroproteomics to analyze the complexity of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Das R, Rauf A, Akhter S, Islam MN, Emran TB, Mitra S, Khan IN, Mubarak MS. Role of Withaferin A and Its Derivatives in the Management of Alzheimer's Disease: Recent Trends and Future Perspectives. Molecules 2021; 26:3696. [PMID: 34204308 PMCID: PMC8234716 DOI: 10.3390/molecules26123696] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Globally, Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative disorders associated with cognitive decline and memory deficits due to beta-amyloid deposition (Aβ) and tau protein hyperphosphorylation. To date, approximately 47 million people worldwide have AD. This figure will rise to an estimated 75.6 million by 2030 and 135.5 million by 2050. According to the literature, the efficacy of conventional medications for AD is statistically substantial, but clinical relevance is restricted to disease slowing rather than reversal. Withaferin A (WA) is a steroidal lactone glycowithanolides, a secondary metabolite with comprehensive biological effects. Biosynthetically, it is derived from Withania somnifera (Ashwagandha) and Acnistus breviflorus (Gallinero) through the mevalonate and non-mevalonate pathways. Mounting evidence shows that WA possesses inhibitory activities against developing a pathological marker of Alzheimer's diseases. Several cellular and animal models' particulates to AD have been conducted to assess the underlying protective effect of WA. In AD, the neuroprotective potential of WA is mediated by reduction of beta-amyloid plaque aggregation, tau protein accumulation, regulation of heat shock proteins, and inhibition of oxidative and inflammatory constituents. Despite the various preclinical studies on WA's therapeutic potentiality, less is known regarding its definite efficacy in humans for AD. Accordingly, the present study focuses on the biosynthesis of WA, the epidemiology and pathophysiology of AD, and finally the therapeutic potential of WA for the treatment and prevention of AD, highlighting the research and augmentation of new therapeutic approaches. Further clinical trials are necessary for evaluating the safety profile and confirming WA's neuroprotective potency against AD.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (R.D.); (S.M.)
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Pakistan;
| | - Saima Akhter
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (R.D.); (S.M.)
| | - Ishaq N. Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | | |
Collapse
|
27
|
Hericium erinaceus (Bull.) Pers. Ethanolic Extract with Antioxidant Properties on Scopolamine-Induced Memory Deficits in a Zebrafish Model of Cognitive Impairment. J Fungi (Basel) 2021; 7:jof7060477. [PMID: 34204787 PMCID: PMC8231562 DOI: 10.3390/jof7060477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/16/2023] Open
Abstract
Hericium erinaceus (H. erinaceus) is a rare and appreciated fungal species belonging to the division Basidiomycota used for centuries in traditional Chinese medicine for its medicinal value. This species of mushrooms brings the most diverse benefits for the human body, and can have beneficial effects for treating Alzheimer’s disease (AD). This study investigated whether ethanolic extract from the fungal biomass of H. erinaceus enhances cognitive function via the action on cholinergic neurons using the scopolamine (SCOP)-induced zebrafish (Danio rerio) model of memory impairment. The ethanolic extract from the fungal biomass of H. erinaceus was previously obtained using an ultrasonic extraction method (UE). The administration of H. erinaceus extract to zebrafish, with a pattern of AD induced by scopolamine, showed an improvement in memory evaluated by behavioral and biochemical tests on brain tissue. These results suggest that H. erinaceus has preventive and therapeutic potentials in managing memory deficits and brain oxidative stress in zebrafish with AD.
Collapse
|
28
|
Jan H, Usman H, Shah M, Zaman G, Mushtaq S, Drouet S, Hano C, Abbasi BH. Phytochemical analysis and versatile in vitro evaluation of antimicrobial, cytotoxic and enzyme inhibition potential of different extracts of traditionally used Aquilegia pubiflora Wall. Ex Royle. BMC Complement Med Ther 2021; 21:165. [PMID: 34098912 PMCID: PMC8186222 DOI: 10.1186/s12906-021-03333-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Himalayan Columbine (Aquilegia pubiflora Wall. Ex Royle) is a medicinal plant and have been used as traditional treatments for various human diseases including skin burns, jaundice, hepatitis, wound healing, cardiovascular and circulatory diseases. Till now there is no report available on phytochemical investigation of Himalayan Columbine and to the best of our knowledge, through present study we have reported for the first time, the phytochemical analysis and pharmacological potentials of different leaf extracts of Aquilegia pubiflora. METHODS Four types of extracts were prepared using solvent of different polarities (Distilled water APDW, Methanol APM, Ethanol APE and Ethyl acetate APEA), and were evaluated to determine the best candidate for potent bioactivity. Phytochemical constituents in prepared extracts were quantified through HPLC analysis. Subsequently, all four types of leaf extracts were then evaluated for their potential bioactivities including antimicrobial, protein kinase inhibition, anti-inflammatory, anti-diabetic, antioxidant, anti-Alzheimer, anti-aging and cytotoxic effect. RESULTS HPLC analysis demonstrated the presence of dvitexin, isovitexin, orientin, isoorientin, ferulic acid, sinapic acid and chlorogenic acid in varied proportions in all plant extracts. Antimicrobial studies showed that, K. pneumonia was found to be most susceptible to inhibition zones of 11.2 ± 0.47, 13.9 ± 0.33, 12.7 ± 0.41, and 13.5 ± 0.62 measured at 5 mg/mL for APDW, APM, APE and APEA respectively. A. niger was the most susceptible strain in case of APDW with the highest zone of inhibition 14.3 ± 0.32, 13.2 ± 0.41 in case of APM, 13.7 ± 0.39 for APE while 15.4 ± 0.43 zone of inhibition was recorded in case of APEA at 5 mg/mL. The highest antioxidant activity of 92.6 ± 1.8 μgAAE/mg, 89.2 ± 2.4 μgAAE/mg, 277.5 ± 2.9 μM, 289.9 ± 1.74 μM for TAC, TRP, ABTS and FRAP, respectively, was shown by APE. APM, APE and APEA extracts showed a significant % cell inhibition (above 40%) against HepG2 cells. The highest anti-inflammatory of the samples was shown by APE (52.5 ± 1.1) against sPLA2, (41.2 ± 0.8) against 15-LOX, followed by (38.5 ± 1.5) and (32.4 ± 0.8) against COX-1 and COX-2, respectively. CONCLUSIONS Strong antimicrobial, Protein Kinase potency and considerable α-glucosidase, α-amylase, and cytotoxic potential were exhibited by plant samples. Significant anti-Alzheimer, anti-inflammatory, anti-aging, and kinase inhibitory potential of each plant sample thus aware us for further detailed research to determine novel drugs.
Collapse
Affiliation(s)
- Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Hazrat Usman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Gouhar Zaman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sadaf Mushtaq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans Team, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, 28000, Chartres, France
- Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS/Université d'Orléans, 45067, Orléans, CÉDEX 2, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans Team, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, 28000, Chartres, France
- Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS/Université d'Orléans, 45067, Orléans, CÉDEX 2, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
29
|
Uddin MS, Al Mamun A, Rahman MA, Behl T, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Emerging Proof of Protein Misfolding and Interactions in Multifactorial Alzheimer's Disease. Curr Top Med Chem 2021; 20:2380-2390. [PMID: 32479244 DOI: 10.2174/1568026620666200601161703] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a devastating neurodegenerative disorder, characterized by the extracellular accumulations of amyloid beta (Aβ) as senile plaques and intracellular aggregations of tau in the form of neurofibrillary tangles (NFTs) in specific brain regions. In this review, we focus on the interaction of Aβ and tau with cytosolic proteins and several cell organelles as well as associated neurotoxicity in AD. SUMMARY Misfolded proteins present in cells accompanied by correctly folded, intermediately folded, as well as unfolded species. Misfolded proteins can be degraded or refolded properly with the aid of chaperone proteins, which are playing a pivotal role in protein folding, trafficking as well as intermediate stabilization in healthy cells. The continuous aggregation of misfolded proteins in the absence of their proper clearance could result in amyloid disease including AD. The neuropathological changes of AD brain include the atypical cellular accumulation of misfolded proteins as well as the loss of neurons and synapses in the cerebral cortex and certain subcortical regions. The mechanism of neurodegeneration in AD that leads to severe neuronal cell death and memory dysfunctions is not completely understood until now. CONCLUSION Examining the impact, as well as the consequences of protein misfolding, could help to uncover the molecular etiologies behind the complicated AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Imran M, Jan H, Faisal S, Ali Shah S, Shah S, Naeem Khan M, Taj Akbar M, Rizwan M, Jan F, Syed S. In vitro examination of anti-parasitic, anti-Alzheimer, insecticidal and cytotoxic potential of Ajuga bracteosa Wallich leaves extracts. Saudi J Biol Sci 2021; 28:3031-3036. [PMID: 34025179 PMCID: PMC8117137 DOI: 10.1016/j.sjbs.2021.02.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/29/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
This research study is mainly focused to evaluate the anti-parasitic, insecticidal, cytotoxic and anti-alzheimer potential of various leaf extracts of Ajuga bracteosa Wallich ex Bentham. 04 different extracts were prepared using solvent of different polarity to determine the best candidate for potent bioactivity i.e. n-hexane (NH), Ethyl acetate (EA), Ethanol (EL) and Chloroform (CH). Concentrations of each extracts were made specified for all activities. All extracts were exploited for broad range of biomedical applications including leishmaniasis, in vitro anti-Alzheimer, insecticidal and cytotoxic studies. Our results showed that A. bracteosa n-hexane extract was highly active against Leishmania Tropica with significant inhibition of 58 ± 1.61 for promastigote and 63 ± 2.29 for amastigote at 1000 μg/mL. Furthermore, promising anti-alzheimer activity acetylcholinesterase (AChE) 46 ± 0.83 and butrylcholineterase (BChE) 49 ± 1.17 was noted for n-hexane. The insecticidal potential of these extracts were test against five different insects (Rhyzopertha dominica, Trogoderma granarium, Tribolium castaneum, Sitophilus oryze, and Callosobruchus analis). The higest mortality rate of insecticidal activity was recorded by n-hexane followed by Ethyl acetate whereas ethanol extract was found to be less effective against all the test species. Significant cytotoxic potential of each plant sample against Artemia salina thus aware us for further detailed research to find out novel drugs. Based on our results we believe that Ajuga bracteosa could be used to develop as a potential botanical insecticide against different insect and pests, such as aphids as well as an excellent source for the compound isolation as anti-tumor agent.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Botany, Government Post Graduate College Charsadda, KPK, Pakistan
- Department of Botany, Islamia College Peshawar, KPK, Pakistan
| | - Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University 45320, Islamabad, Pakistan
| | - Shah Faisal
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Sajjad Ali Shah
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Sumaira Shah
- Department of Botany, Bacha Khan University Charsadda, KPK, Pakistan
| | - Muhammad Naeem Khan
- Department of Botany, Government Post Graduate College Charsadda, KPK, Pakistan
- Department of Biotechnology and Genetic Engineering, Agriculture University KPK, Pakistan
| | - Muhammad Taj Akbar
- Department of Microbiology, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology University of Swat, KPK, Pakistan
| | - Faheem Jan
- Programmatic Management of Drug Resistant T.B Unit Ayub Teaching Hospital, Abbotabad, Pakistan
| | - Suliman Syed
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| |
Collapse
|
31
|
Uddin MS, Kabir MT, Al Mamun A, Behl T, Mansouri RA, Aloqbi AA, Perveen A, Hafeez A, Ashraf GM. Exploring Potential of Alkaloidal Phytochemicals Targeting Neuroinflammatory Signaling of Alzheimer's Disease. Curr Pharm Des 2021; 27:357-366. [PMID: 32473620 DOI: 10.2174/1381612826666200531151004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is marked by cognitive dysfunctions and the existence of neuropathological hallmarks such as amyloid plaques, and neurofibrillary tangles. It has been observed that a persistent immune response in the brain has appeared as another neuropathological hallmark in AD. The sustained activation of the microglia, the brain's resident macrophages, and other immune cells has been shown to aggravate both tau and amyloid pathology and may consider as a connection in the AD pathogenesis. However, the basic mechanisms that link immune responses in the pathogenesis of AD are unclear until now since the process of neuroinflammation can have either a harmful or favorable effect on AD, according to the phase of the disease. Numerous researches recommend that nutritional fruits, as well as vegetables, possess neurodefensive properties against the detrimental effects of neuroinflammation and aging. Moreover, these effects are controlled by diverse phytochemical compounds that are found in plants and demonstrate anti-inflammatory, neuroprotective, as well as other beneficial actions. In this review, we focus on the link of neuroinflammation in AD as well as highlight the probable mechanisms of alkaloidal phytochemicals to combat the neuroinflammatory aspect of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Majumdar S, Gupta S, Prajapati SK, Krishnamurthy S. Neuro-nutraceutical potential of Asparagus racemosus: A review. Neurochem Int 2021; 145:105013. [PMID: 33689806 DOI: 10.1016/j.neuint.2021.105013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Debilitating neuropsychiatric and neurodegenerative conditions are associated with complex multifactorial pathophysiology. Their treatment strategies often only provide symptomatic relief, delaying disease progression without giving a complete cure. Potent and safer treatment alternatives beyond symptomatic relief are sought. Herbal supplements have surely been explored due to their multiple component nature to enhance the effect of western medications. One such well-documented nutraceutical in the ancient Greek, Chinese, and Ayurvedic medicine system known for its various medicinal benefits is Asparagus racemosus. Widely used for its lactogenic properties, A. racemosus is also cited in Ayurveda as a nervine tonic. A. racemosus based nutraceuticals have shown to possess adaptogenic, neuroprotective, antioxidant, anti-inflammatory, and nootropic activity under preclinical and clinical settings without posing significant adverse effects. A. racemosus extracts restore the perturbed neurotransmitters and prevent oxidative neuronal damage. From the available neuropharmacological researches, the physiological actions of A. racemosus can ultimately be directed for either augmentation of cognitive ability or in the management of neurological conditions such as stress, anxiety, depression, epilepsy, Parkinson's, and Alzheimer's disease. The studies focus on the multi-component extract, and the lack of standardization has been a major hurdle in preventing the allotment of reported neuropharmacological activity to one of the phytoconstituent. Herbal standardization of the plant extract based on a specific biomarker can help elucidate the intricate biomolecular pathway and neurocircuitries being involved. This, followed by rigorous standardized clinical trials, fixing dosages, and determining contraindications would facilitate the translation of A. racemosus to a FDA-approved neuromedicine for neurological disorders.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
33
|
Franco RR, de Almeida Takata L, Chagas K, Justino AB, Saraiva AL, Goulart LR, de Melo Rodrigues Ávila V, Otoni WC, Espindola FS, da Silva CR. A 20-hydroxyecdysone-enriched fraction from Pfaffia glomerata (Spreng.) pedersen roots alleviates stress, anxiety, and depression in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113599. [PMID: 33220360 DOI: 10.1016/j.jep.2020.113599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/19/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pfaffia glomerata roots are widely used in Brazil to treat various pathological conditions, particularly psychological disorders. 20-hydroxyecdysone, a phytosteroid present in the plant, can promote greater body resistance against exogenous and endogenous stressors. The objective of this study was to evaluate the possible neuroprotective effect of a 20-hydroxyecdysone-enriched fraction (20E-EF), obtained from P. glomerata roots, in an acute murine stress model. MATERIAL AND METHODS The 20E-EF was obtained by partitioning the methanol extract from P. glomerata roots with dichloromethane. Mice were treated by gavage with three doses of 20E-EF (3, 10, and 30 mg/kg) and parameters of stress, anxiety, and depression were evaluated. Biomarkers of oxidative stress (enzymes, antioxidant profile, and oxidized molecules) were evaluated in the cortex, striatum (basal ganglia), and hippocampus of animals treated with 30 mg/kg of 20E-EF. RESULTS Mass spectrometry revealed that 20E was the main compound in the dichloromethane fraction. At a dose of 30 mg/kg, 20E-EF reduced stress, anxiety, and depression, while stimulating antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase), promoting antioxidant activity (antioxidant capacity, sulfhydryl groups, and reduced glutathione), and reducing oxidative markers (lipid peroxidation). In addition, 20E increased the concentration of NO in the striatum, possibly improving memory function and antioxidant activity. CONCLUSION A 30 mg/kg dose of 20E-EF was able to reduce stress, anxiety, and depression, in addition to maintaining antioxidant defenses of the cortex and striatum. These findings open new perspectives for understanding the therapeutic properties of P. glomerata and the underlying mechanism(s).
Collapse
Affiliation(s)
- Rodrigo Rodrigues Franco
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Letícia de Almeida Takata
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Kristhiano Chagas
- Department of Plant Biology, Plant Tissue Culture Laboratory/BIOAGRO, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Allisson Benatti Justino
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - André Lopes Saraiva
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Luiz Ricardo Goulart
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | | | - Wagner Campos Otoni
- Department of Plant Biology, Plant Tissue Culture Laboratory/BIOAGRO, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Foued Salmen Espindola
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Cássia Regina da Silva
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil.
| |
Collapse
|
34
|
Kabir MT, Uddin MS, Mathew B, Das PK, Perveen A, Ashraf GM. Emerging Promise of Immunotherapy for Alzheimer's Disease: A New Hope for the Development of Alzheimer's Vaccine. Curr Top Med Chem 2021; 20:1214-1234. [PMID: 32321405 DOI: 10.2174/1568026620666200422105156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the characteristics of this devastating disorder include the progressive and disabling deficits in the cognitive functions including reasoning, attention, judgment, comprehension, memory, and language. OBJECTIVE In this article, we have focused on the recent progress that has been achieved in the development of an effective AD vaccine. SUMMARY Currently, available treatment options of AD are limited to deliver short-term symptomatic relief only. A number of strategies targeting amyloid-beta (Aβ) have been developed in order to treat or prevent AD. In order to exert an effective immune response, an AD vaccine should contain adjuvants that can induce an effective anti-inflammatory T helper 2 (Th2) immune response. AD vaccines should also possess the immunogens which have the capacity to stimulate a protective immune response against various cytotoxic Aβ conformers. The induction of an effective vaccine's immune response would necessitate the parallel delivery of immunogen to dendritic cells (DCs) and their priming to stimulate a Th2-polarized response. The aforesaid immune response is likely to mediate the generation of neutralizing antibodies against the neurotoxic Aβ oligomers (AβOs) and also anti-inflammatory cytokines, thus preventing the AD-related inflammation. CONCLUSION Since there is an age-related decline in the immune functions, therefore vaccines are more likely to prevent AD instead of providing treatment. AD vaccines might be an effective and convenient approach to avoid the treatment-related huge expense.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
36
|
Hannan MA, Haque MN, Munni YA, Oktaviani DF, Timalsina B, Dash R, Afrin T, Moon IS. Centella asiatica promotes early differentiation, axodendritic maturation and synaptic formation in primary hippocampal neurons. Neurochem Int 2021; 144:104957. [PMID: 33444677 DOI: 10.1016/j.neuint.2021.104957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Centella asiatica is a 'medhya-rasayana (nootrophic or memory booster)' herb that has been indicated in Ayurveda for improving memory function and treating dementia disorders. Although the neuroprotective effects of C. asiatica have been reported in earlier studies, the information on whether this nootropic herb could promote early differentiation and development of axon and dendrites in primary hippocampal neurons is currently limited. THE AIM OF THE STUDY To investigate the effects of C. asiatica and asiatic acid, one of the principal active constituents of C. asiatica, on the various stages of neuronal polarity, including early neuronal differentiation, axonal outgrowth, dendritic arborization, axonal maturation, and synaptic formation. MATERIALS AND METHODS Embryonic rat hippocampal neurons were incubated with C. asiatica leaf extract (CAE) or asiatic acid. After an indicated time, neurons were fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for early neuronal differentiation, axonal and dendritic maturation and synaptogenesis were performed using Image J software. Neuronal viability was determined using trypan blue exclusion assay. RESULTS CAE at varying concentrations ranging from 3.75 to 15 μg/mL enhanced neurite outgrowth with the highest optimal concentration of 7.5 μg/mL. The effects of CAE commenced immediately after cell seeding, as indicated by its accelerating effect on neuronal differentiation. Subsequently, CAE significantly elaborated dendritic and axonal morphology and facilitated synapse formation. Asiatic acid also facilitated neurite outgrowth, but to a lesser extent than CAE. CONCLUSION These findings revealed that CAE exerted its modulatory effects in every stage of neuronal development, supporting its previously claimed neurotrophic function and suggest that this natural nootropic and its active component asiatic acid can be further investigated to explore a promising solution for degenerative brain disorders and injuries.
Collapse
Affiliation(s)
- Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Tania Afrin
- Interdisciplinary Institute for Food Security, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
37
|
Pharmacological insights into Merremia vitifolia (Burm.f.) Hallier f. leaf for its antioxidant, thrombolytic, anti-arthritic and anti-nociceptive potential. Biosci Rep 2021; 41:227320. [PMID: 33324970 PMCID: PMC7791546 DOI: 10.1042/bsr20203022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Merremia vitifolia (Burm.f.) Hallier f., an ethnomedicinally important plant, used in the tribal areas to treat various ailments including fever, headache, eye inflammation, rheumatism, dysentery, jaundice and urinary diseases. The present study explored the biological efficacy of the aqueous fraction of M. vitifolia leaves (AFMV) through in vitro and in vivo experimental models. The thrombolytic and anti-arthritic effects of AFMV were evaluated by using the clot lysis technique and inhibition of protein denaturation technique, respectively. The anti-nociceptive activity of AFMV was investigated in Swiss Albino mice by acetic acid-induced writhing test and formalin-induced paw licking test. The antioxidant activities of AFMV, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and total reducing power, were also tested. The qualitative phytochemical assays exhibited AFMV contains secondary metabolites such as alkaloid, carbohydrate, flavonoid, tannin, triterpenoids and phenols. In addition, AFMV showed strong antioxidant effects with the highest scavenging activity (IC50 146.61 µg/mL) and reducing power was increased with a dose-dependent manner. AFMV also revealed notable clot lysis effect and substantial anti-arthritic activity at higher doses (500 µg/mL) as compared with the control. The results demonstrated a promising reduction of the number of writhing and duration of paw licking in acetic acid-induced writhing test and formalin-induced paw licking test in a dose-dependent manner, respectively. In conclusion, AFMV provides the scientific basis of its folkloric usage, suggesting it as the vital source of dietary supplement.
Collapse
|
38
|
Afewerky HK, Ayodeji AE, Tiamiyu BB, Orege JI, Okeke ES, Oyejobi AO, Bate PNN, Adeyemi SB. Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:176. [PMID: 34697529 PMCID: PMC8529567 DOI: 10.1186/s42269-021-00635-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Withania somnifera (L.) Dunal (W. somnifera) is a herb commonly known by its English name as Winter Cherry. Africa is indigenous to many medicinal plants and natural products. However, there is inadequate documentation of medicinal plants, including W. somnifera, in Africa. There is, therefore, a need for a comprehensive compilation of research outcomes of this reviewed plant as used in traditional medicine in different regions of Africa. METHODOLOGY Scientific articles and publications were scooped and sourced from high-impact factor journals and filtered with relevant keywords on W. somnifera. Scientific databases, including GBIF, PubMed, NCBI, Google Scholar, Research Gate, Science Direct, SciFinder, and Web of Science, were accessed to identify the most influential articles and recent breakthroughs published on the contexts of ethnography, ethnomedicinal uses, phytochemistry, pharmacology, and commercialization of W. somnifera. RESULTS This critical review covers the W. somnifera ethnography, phytochemistry, and ethnomedicinal usage to demonstrate the use of the plant in Africa and elsewhere to prevent or alleviate several pathophysiological conditions, including cardiovascular, neurodegenerative, reproductive impotence, as well as other chronic diseases. CONCLUSION W. somnifera is reportedly safe for administration in ethnomedicine as several research outcomes confirmed its safety status. The significance of commercializing this plant in Africa for drug development is herein thoroughly covered to provide the much-needed highlights towards its cultivations economic benefit to Africa.
Collapse
Affiliation(s)
- Henok Kessete Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- School of Allied Health Professions, Asmara College of Health Sciences, 00291 Asmara, Eritrea
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
| | - Ayeni Emmanuel Ayodeji
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Pharmacognosy and Drug Development, Ahmadu Bello University Zaria, PMB 1044, Kaduna, 800211 Nigeria
| | - Bashir Bolaji Tiamiyu
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
| | - Joshua Iseoluwa Orege
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Industrial Chemistry, Ekiti State University, PMB 5363, Ado-Ekiti, 362001 Nigeria
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Biochemistry, FBS and Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001 Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Aanuoluwapo Opeyemi Oyejobi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Petuel Ndip Ndip Bate
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Guangzhou Institute of Biomedicine and Health, Guangzhou, 510530 China
| | - Sherif Babatunde Adeyemi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli-Mahuva Road, Bardoli, Surat, Gujarat 394350 India
| |
Collapse
|
39
|
In Silico Identification of Novel Interactions for FABP5 (Fatty Acid-Binding Protein 5) with Nutraceuticals: Possible Repurposing Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:589-599. [PMID: 33861460 DOI: 10.1007/978-3-030-64872-5_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fatty Acid Binding-Protein 5 (FABP5) is a cytoplasmic protein, which binds long-chain fatty acids and other hydrophobic ligands. This protein is implicated in several physiological processes including mitochondrial β-oxidation and transport of fatty acids, membrane phospholipid synthesis, lipid metabolism, inflammation and pain. In the present study, we used molecular docking tools to determine the possible interaction of FABP5 with six selected compounds retrieved form Drugbank. Our results showed that FABP5 binding pocket included 31 polar and non-polar amino acids, and these residues may be related to phosphorylation, acetylation, ubiquitylation, and mono-methylation. Docking results showed that the most energetically favorable compounds are NADH (-9.12 kcal/mol), 5'-O-({[(Phosphonatooxy)phosphinato]oxy}phosphinato)adenosine (-8.62 kcal/mol), lutein (-8.25 kcal/mol), (2S)-2-[(4-{[(2-Amino-4-oxo-1,4,5,6,7,8-hexahydro-6-pteridinyl)methyl]amino}benzoyl)amino]pentanedioate (-7.17 kcal/mol), Pteroyl-L-glutamate (-6.86 kcal/mol) and (1S,3R,5E,7Z)-9,10-Secocholesta-5,7,10-triene-1,3,25-triol (-6.79 kcal/mol). Common interacting residues of FABP5 with nutraceuticals included SER16, LYS24, LYS34, LYS40 and LYS17. Further, we used the SwissADME server to determine the physicochemical and pharmacokinetic characteristics and to predict the ADME parameters of the selected nutraceuticals after molecular analysis by docking with the FABP5 protein. Amongst all compounds, pteroyl-L-glutamate is the only one meeting the Lipinski's rule of five criteria, demonstrating its potential pharmacological use. Finally, our results also suggest the importance of FABP5 in mediating the anti-inflammatory activity of the nutraceutical compounds.
Collapse
|
40
|
Zweig JA, Brandes MS, Brumbach BH, Caruso M, Wright KM, Quinn JF, Soumyanath A, Gray NE. Prolonged Treatment with Centella asiatica Improves Memory, Reduces Amyloid-β Pathology, and Activates NRF2-Regulated Antioxidant Response Pathway in 5xFAD Mice. J Alzheimers Dis 2021; 81:1453-1468. [PMID: 33935097 PMCID: PMC10878128 DOI: 10.3233/jad-210271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The medicinal herb Centella asiatica has been long been used for its neuroprotective and cognitive enhancing effects. We have previously shown that two weeks of treatment with a water extract of Centella asiatica (CAW) improves cognition and activates the endogenous antioxidant response pathway without altering amyloid-β (Aβ) plaque burden. OBJECTIVE Here, we assess the effect of long-term treatment of CAW in the 5xFAD mouse model of Aβ accumulation. METHODS Four-month-old 5xFAD mice were treated with CAW in their drinking water (2 g/L) for three months at which point they underwent cognitive testing as well as analysis of Aβ plaque levels and antioxidant and synaptic gene expression. In order to confirm the involvement of the antioxidant regulatory transcription factor NRF2 on the effects of CAW on synaptic plasticity, neurons isolated from 5xFAD mice were also treated with CAW and the targeted inhibitor ML385. RESULTS Three months of treatment with CAW improved spatial and contextual memory as well as executive function in 5xFAD mice. This improvement was accompanied by increased antioxidant gene expression and a decrease in Aβ plaque burden relative to untreated 5xFAD animals. In isolated neurons, treatment with ML385 blocked the effects of CAW on dendritic arborization and synaptic gene expression. CONCLUSION These results suggest that prolonged CAW exposure could be beneficial in Alzheimer's disease and that these effects likely involve NRF2 activation. Moreover, these findings suggest that targeting NRF2 itself may be a relevant therapeutic strategy for improving synaptic plasticity and cognitive function in Alzheimer's disease.
Collapse
Affiliation(s)
- Jonathan A. Zweig
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Mikah S. Brandes
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Barbara H. Brumbach
- Biostatistics & Design Program Core, Oregon Health & Science University, Portland, OR, USA
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten M. Wright
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland, OR, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Nora E. Gray
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
41
|
Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM. Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease. Curr Pharm Des 2021; 27:402-414. [PMID: 33213314 DOI: 10.2174/1381612826666201118092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
42
|
Adeowo FY, Lawal MM, Kumalo HM. Design and Development of Cholinesterase Dual Inhibitors towards Alzheimer's Disease Treatment: A Focus on Recent Contributions from Computational and Theoretical Perspective. ChemistrySelect 2020. [DOI: 10.1002/slct.202003573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fatima Y. Adeowo
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| | - Monsurat M. Lawal
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| |
Collapse
|
43
|
Uddin MS, Al Mamun A, Kabir MT, Ahmad J, Jeandet P, Sarwar MS, Ashraf GM, Aleya L. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. Eur J Pharmacol 2020; 886:173412. [DOI: 10.1016/j.ejphar.2020.173412] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
|
44
|
Biological evidence of gintonin efficacy in memory disorders. Pharmacol Res 2020; 163:105221. [PMID: 33007419 DOI: 10.1016/j.phrs.2020.105221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Gintonin is a novel glycolipoprotein, which has been abundantly found in the root of Korean ginseng. It holds lysophosphatidic acids (LPAs), primarily identified LPA C18:2, and is an exogenous agonist of LPA receptors (LPARs). Gintonin maintains blood-brain barrier integrity, and it has recently been studied in several models of neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Gintonin demonstrated neuroprotective activity by providing action against neuroinflammation-, apoptosis- and oxidative stress-mediated neurodegeneration. Gintonin showed an emerging role as a modulator of synaptic transmission and neurogenesis and also potentially regulated autophagy in primary cortical astrocytes. It also ameliorated the toxic agent-induced and genetic models of cognitive deficits in experimental NDDs. As a novel agonist of LPARs, gintonin regulated several G protein-coupled receptors (GPCRs) including GPR40 and GPR55. However, further study needs to be investigated to understand the underlying mechanism of action of gintonin in memory disorders.
Collapse
|
45
|
Uddin MS, Al Mamun A, Kabir MT, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Multi-Target Drug Candidates for Multifactorial Alzheimer's Disease: AChE and NMDAR as Molecular Targets. Mol Neurobiol 2020; 58:281-303. [PMID: 32935230 DOI: 10.1007/s12035-020-02116-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia among elder people, which is a progressive neurodegenerative disease that results from a chronic loss of cognitive activities. It has been observed that AD is multifactorial, hence diverse pharmacological targets that could be followed for the treatment of AD. The Food and Drug Administration has approved two types of medications for AD treatment such as cholinesterase inhibitors (ChEIs) and N-methyl-D-aspartic acid receptor (NMDAR) antagonists. Rivastigmine, donepezil, and galantamine are the ChEIs that have been approved to treat AD. On the other hand, memantine is the only non-competitive NMDAR antagonist approved in AD treatment. As compared with placebo, it has been revealed through clinical studies that many single-target therapies are unsuccessful to treat multifactorial Alzheimer's symptoms or disease progression. Therefore, due to the complex nature of AD pathophysiology, diverse pharmacological targets can be hunted. In this article, based on the entwined link of acetylcholinesterase (AChE) and NMDAR, we represent several multifunctional compounds in the rational design of new potential AD medications. This review focus on the significance of privileged scaffolds in the generation of the multi-target lead compound for treating AD, investigating the idea and challenges of multi-target drug design. Furthermore, the most auspicious elementary units for designing as well as synthesizing hybrid drugs are demonstrated as pharmacological probes in the rational design of new potential AD therapeutics.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
46
|
Emerging Therapeutic Promise of Ketogenic Diet to Attenuate Neuropathological Alterations in Alzheimer's Disease. Mol Neurobiol 2020; 57:4961-4977. [PMID: 32820459 DOI: 10.1007/s12035-020-02065-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and chronic neurodegenerative disorder that interferes with memory, thinking, and behavior. The consumption of dietary fat has been considered a vital factor for AD as this disease is related to blood-brain barrier function and cholesterol signaling. The ε4 allele of apolipoprotein E (APOE4) is a primary genetic risk factor that encodes one of many proteins accountable for the transport of cholesterol and it is deemed as the leading cholesterol transport proteins in the brain. In case of AD development, the causative factor is the high level of serum/plasma cholesterol. However, this statement is arguable and, in the meantime, the levels of brain cholesterol in individuals with AD are extremely inconstant and levels of cholesterol in the brain and serum/plasma of AD individuals do not reflect cholesterol as a risk factor. In fact, APOE4 is neither fundamental nor sufficient for the advancement of AD; it just acts as a synergistic and increases the danger of AD. Another noticeable characteristic of AD is area-specific decreases in the metabolism of brain glucose. It has been found that the brain cells cannot efficiently metabolize fats; hence, they totally rely upon glucose as a vitality substrate. Thus, suppression of glucose metabolism can possess an intense effect on brain actions. Hypometabolism is frequently found in AD and has quite recently achieved impressive consideration as a plausible target for interfering in the progression of the disease. One promising approach is to keep up the normal supply of glucose to the brain with ketone bodies from the ketogenic diet signifies a potential therapeutic agent for AD. Therefore, this review represents the role of ketogenic diets to combat AD pathogenesis by considering the influence of APOE.
Collapse
|
47
|
Uddin MS, Hossain MF, Mamun AA, Shah MA, Hasana S, Bulbul IJ, Sarwar MS, Mansouri RA, Ashraf GM, Rauf A, Abdel-Daim MM, Bin-Jumah MN. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138313. [PMID: 32464743 DOI: 10.1016/j.scitotenv.2020.138313] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Neurodegeneration is the progressive loss of neuronal structures and functions that lead to copious disorders like Alzheimer's (AD), Parkinson's (PD), Huntington's (HD), amyotrophic lateral sclerosis (ALS), and other less recurring diseases. Aging is the prime culprit for most neurodegenerative events. Moreover, the shared pathogenic factors of many neurodegenerative processes are inflammatory responses and oxidative stress (OS). Unfortunately, it is very complicated to treat neurodegeneration and there is no effective remedy. The rapid progression of the neurodegenerative diseases that exacerbate the burden and the concurrent absence of effective treatment strategies force the researchers to investigate more therapeutic approaches that ultimately target the causative factors of the neurodegeneration. Phytochemicals have great potential to exert their neuroprotective effects by targeting various mechanisms, such as OS, neuroinflammation, abnormal protein aggregation, neurotrophic factor deficiency, disruption in mitochondrial function, and apoptosis. Therefore, this review represents the molecular mechanisms of neuroprotection by multifunctional phytochemicals to combat age-linked neurodegenerative disorders.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Md Farhad Hossain
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh; Department of Physical Therapy, Graduate School of Inje University, Gimhae, South Korea
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| |
Collapse
|
48
|
Uddin MS, Tewari D, Mamun AA, Kabir MT, Niaz K, Wahed MII, Barreto GE, Ashraf GM. Circadian and sleep dysfunction in Alzheimer's disease. Ageing Res Rev 2020; 60:101046. [PMID: 32171783 DOI: 10.1016/j.arr.2020.101046] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating and irreversible cognitive impairment and the most common type of dementia. Along with progressive cognitive impairment, dysfunction of the circadian rhythms also plays a pivotal role in the progression of AD. A mutual relationship among circadian rhythms, sleep, and AD has been well-recommended. The etiopathogenesis of the disturbances of the circadian system and AD share some general features that also unlock the outlook of observing them as a mutually dependent pathway. Indeed, the burden of amyloid β (Aβ), neurofibrillary tangles (NFTs), neuroinflammation, oxidative stress, and dysfunction of circadian rhythms may lead to AD. Aging can alter both sleep timings and quality that can be strongly disrupted in AD. Increased production of Aβ and reduced Aβ clearance are caused by a close interplay of Aβ, sleep disturbance and raised wakefulness. Besides Aβ, the impact of tau pathology is possibly noteworthy to the sleep deprivation found in AD. Hence, this review is focused on the primary mechanistic complexities linked to disruption of circadian rhythms, sleep deprivation, and AD. Furthermore, this review also highlights the potential therapeutic strategies to abate AD pathogenesis.
Collapse
|
49
|
Dar NJ, Muzamil Ahmad. Neurodegenerative diseases and Withania somnifera (L.): An update. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112769. [PMID: 32240781 DOI: 10.1016/j.jep.2020.112769] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/28/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal also known as 'Ashwaghanda' in Sanskrit and as 'Indian Winter Cherry' in english. is an important medicinal herb in India. It is widely used in Indian systems of medicine as an adaptogen, nerve tonic, anti-stress, memory enhancer and against cognitive deficits, insomnia, anxiety, infectious diseases, infertility, rheumatoid arthritis and gout over thousands of years. Its formulations are mainly used in Unani and Ayurvedic system of medicine. It is a remarkable centuries old herbal Rasayana used to treat neuronal ailments and is known as ''Sattvic Kapha Rasayana. AIM OF THE STUDY To review neuroprotective properties of Withania somnifera (L.)extract as well as its active constituents in neurodegenerative diseases and other neurological ailments. MATERIALS AND METHODS The sources of information used in present article include Indian system of Medicine reports on the use of natural products, Medicinal books, research articles and scientific databases like PubMed, Google Scholar, Web of Science, Science-Direct, SciFinder, ACS Publications and Wiley Online Library. RESULTS Research reports based largely on preclinical studies as well as few clinical trials have highlighted the neuroprotective role of Ashwagandha against many neurodegenerative diseases including Alzheimer's, Huntington's and Parkinson's disease. The protective effects of Ashwagandha were accomplished by restoring mitochondrial and endothelial function, mitigation of apoptosis, inflammation and oxidative stress mechanisms. CONCLUSION In this review, we recapitulated neuroprotective properties of Ashwagandha extracts and/or its major constituents and discussed their mechanisms of action and potential therapeutic applications. The pre-clinical as well as clinical studies suggest the use of Withania somnifera (L.) against neurodegenerative disease. However, extensive studies are warranted to validate the use of extract or its single constituents for its clinical use.
Collapse
Affiliation(s)
- Nawab John Dar
- Neuropharmacology Laboratory, Indian Institute of Integrative Medicine-CSIR, Sanat Nagar, Srinagar, 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Muzamil Ahmad
- Neuropharmacology Laboratory, Indian Institute of Integrative Medicine-CSIR, Sanat Nagar, Srinagar, 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
50
|
Uddin M, Alam T, Islam M, Khan T, Zaman R, Azam S, Kamal ATM, Jakaria M. Evaluation of carbon tetrachloride fraction of Actinodaphne angustifolia Nees (Lauraceae) leaf extract for antioxidant, cytotoxic, thrombolytic and antidiarrheal properties. Biosci Rep 2020; 40:BSR20201110. [PMID: 32537632 PMCID: PMC7308611 DOI: 10.1042/bsr20201110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Actinodaphne angustifolia Nees (Family: Lauraceae) is commonly used in folk medicine against urinary disorder and diabetes. The objective of the present study was to evaluate the antioxidant, cytotoxic, thrombolytic, and antidiarrheal activities of carbon tetrachloride (CCl4) fraction of leaves of A. angustifolia (CTFAA) in different experimental models. Antioxidant activity was evaluated by using qualitative and quantitative assays, while antidiarrheal effects assessed with castor oil-induced diarrheal models in mice. The clot lysis and brine shrimp lethality bioassay were used to investigate the thrombolytic and cytotoxic activities, respectively. CTFAA showed antioxidant effects in all qualitative and quantitative procedures. The fraction produced dose-dependent and significant (P<0.05 and P<0.01) activities in castor oil-induced diarrheal models. Moreover, CTFAA significantly (P<0.05) demonstrated a 15.29% clot lysis effect in the thrombolytic test, and the brine shrimp lethality assay LC50 value was 424.16 μg/ml bioassay. In conclusion, the current study showed CTFAA has significant antidiarrheal effects along with modest antioxidant and thrombolytic effects, and these data warrant further experiment to justify and include CTFAA as a supplement to mitigate the onset of diarrheal and cardiovascular disease.
Collapse
Affiliation(s)
- Mohammad Najim Uddin
- Department of Pharmacy, Faculty of Science & Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Towsif Alam
- Department of Pharmacy, Faculty of Science & Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Muhammad Azharul Islam
- Department of Pharmacy, Faculty of Science & Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Tawhidul Amin Khan
- Department of Pharmacy, Faculty of Science & Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Raihan Uz Zaman
- Department of Thai Traditional Medicine, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Shofiul Azam
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea
| | - ATM Mostafa Kamal
- Department of Pharmacy, Faculty of Science & Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Md. Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|