1
|
Xun QQ, Zhang J, Feng L, Ma YY, Li Y, Shi XL. Identification of a novel pyrrolo[2,3- b]pyridine compound as a potent glycogen synthase kinase 3β inhibitor for treating Alzheimer's disease. J Enzyme Inhib Med Chem 2025; 40:2466846. [PMID: 39976249 PMCID: PMC11843656 DOI: 10.1080/14756366.2025.2466846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
Herein, a novel pyrrolo[2,3-b]pyridine-based glycogen synthase kinase 3β (GSK-3β) inhibitor, S01, was rationally designed and synthesised to target Alzheimer's disease (AD). S01 inhibited GSK-3β, with an IC50 of 0.35 ± 0.06 nM, and had an acceptable kinase selectivity for 24 structurally similar kinases. Western blotting assays indicated that S01 efficiently increased the expression of p-GSK-3β-Ser9 and decreased p-tau-Ser396 levels in a dose-dependent manner. In vitro cell experiments, S01 showed low cytotoxicity to SH-SY5Y cells, significantly upregulated the expression of β-catenin and neurogenesis-related biomarkers, and effectively promoted the outgrowth of differentiated neuronal neurites. Moreover, S01 substantially ameliorated dyskinesia in AlCl3-induced zebrafish AD models at a concentration of 0.12 μM, which was more potent than Donepezil (8 μM) under identical conditions. Acute toxicity experiments further confirmed the safety of S01 in vivo. Our findings suggested that S01 is a prospective GSK-3β inhibitor and can be tested as a candidate for treating AD.
Collapse
Affiliation(s)
- Qing-Qing Xun
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Jing Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lei Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yu-Ying Ma
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Ying Li
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xiao-Long Shi
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Teng Y, Xue H, Deng X, Luo Y, Wu T. The role of phosphatidylethanolamine-binding protein (PEBP) family in various diseases: Mechanisms and therapeutic potential. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:102-113. [PMID: 40220872 DOI: 10.1016/j.pbiomolbio.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
This article focuses on the phosphatidylethanolamine-binding protein (PEBP) family proteins, detailing PEBP1 and PEBP4 due to limited information on PEBP2 and PEBP3, in cellular signaling pathways and research in a spectrum of pathologies, including diverse cancers, metabolic disorders, immunological diseases and a subset of organ-specific diseases. It outlines the mechanisms through which PEBP1 and PEBP4 regulate essential signaling pathways that are critical for cellular processes such as proliferation, apoptosis, and metastasis. Recent advancements have shown further understanding of these proteins' roles in pathophysiology and their potential as future therapeutic targets. The findings suggest that the impact of PEBP1 and PEBP4 on the course of different diseases has underscored their potential for more in-depth medical research and novel clinically targeted therapies.
Collapse
Affiliation(s)
- Yeying Teng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiping Xue
- Industrial Development Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoliang Deng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Xu S, Liu K, Qian S, Wu J, Hu J, Zhou D, Zheng T. Mechanism of Tau protein incorporation into exosomes via cooperative recognition of KFERQ-like motifs by LAMP2A and HSP70. Neurochem Int 2025; 186:105976. [PMID: 40187566 DOI: 10.1016/j.neuint.2025.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Aggregates of the tau protein is a well-known hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau can be propagated between nerve cells or brain areas, similar as 'seed'. As a member of small extracellular vesicles, exosomes may act as one of the most important 'seeding machines', disseminating toxic tau and phosphorylated tau proteins between cells and thereby amplifying their neurotoxic effects. Therefore, exploring the underlying mechanisms of Tau loading into exosomes is of great importance. In this study, human P301L tau transfections were established in SH-SY5Y cells (SY5Y-EGFP-TauP301L cells). The content of membrane protein LAMP2A and HSP70 proteins was significantly increased in the SY5Y-EGFP-Tau P301L cells compared to control group. Tau containing KFERQ-like motifs pentapeptide interact with LAMP2A and HSP70, forming a multi-protein complex, which can be loaded into a subpopulation of exosomes. Moreover, knockout of LAMP2A significantly reduced the content of Tau protein in exosomes obtained from SY5Y-EGFP-Tau P301L cells. Thus, exosome-mediated secretion of tau protein may depend on the formation of multi-protein (KFERQ-like motif pentapeptide in tau,LAMP2A and HSP70) complex. These findings revealed the presence of a novel mechanism by which release of tau through exosome secretion pathway and that LAMP2A may play an important role in the regulation of exosome-mediated secretion of tau, which may become a potential therapeutic target for AD or other Tauopathies.
Collapse
Affiliation(s)
- Shan Xu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Kangyan Liu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shiyan Qian
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jingying Wu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jialing Hu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
| |
Collapse
|
4
|
Bilginer‐Kartal R, Arslan‐Yildiz A. Magnetic Levitational Assembly of Differentiated SH-SY5Y Cells for Aβ-Induced 3D Alzheimer's Disease Modeling and Curcumin Screening. Macromol Biosci 2025; 25:e2400658. [PMID: 40130456 PMCID: PMC12169503 DOI: 10.1002/mabi.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/04/2025] [Indexed: 03/26/2025]
Abstract
Alzheimer's disease is one of the prevalent neurodegenerative diseases and is characterized by amyloid beta aggregate (Aβ) accumulation. This study reports an Aβ 1-42 induced 3D Alzheimer's disease modeling utilizing differentiated SH-SY5Y spheroids, which is carried out by Magnetic levitation approach, and the neuroprotective effect of Curcumin is further investigated on this model. For this purpose, SH-SY5Y spheroids are differentiated using Retinoic acid-Brain-derived neurotrophic factor sequentially during 3D cell culture. Differentiated spheroids maintained high viability and exhibited significant neuronal characteristics, as evidenced by increasing β-III tubulin and NeuN expressions. 3D Alzheimer's disease model formation and neurotoxicity of Aβ 1-42 aggregates are investigated on un-/differentiated spheroids, resulting in 65% and 51% cell viability, respectively. Characterization of the 3D Alzheimer's disease model is done by immunostaining of Choline acetyltransferase to investigate cholinergic neuron activity loss, showing a 2.2 decrease in fluorescence intensity. Further, Curcumin treatment on the 3D Alzheimer's disease model resulted in augmenting cell viability, confirming neuroprotective effect of Curcumin on Aβ 1-42 induced Alzheimer's disease model. This study highlighted the magnetic levitation-based fabrication of Aβ 1-42-induced 3D Alzheimer's disease model successfully, offering a promising experimental platform for other neurodegenerative disease research and potential clinical applications.
Collapse
Affiliation(s)
| | - Ahu Arslan‐Yildiz
- Department of BioengineeringIzmir Institute of Technology (IZTECH)Izmir35430Turkey
| |
Collapse
|
5
|
Chavez-López LM, Silvestre-Martínez JH, Del Carmen Lugo-Ibarra K, Castro-Ceseña AB. A comprehensive approach to Alzheimer's Disease: Exploring Nanotechnology, treatment Innovations, and sex differences. Brain Res 2025; 1862:149718. [PMID: 40436233 DOI: 10.1016/j.brainres.2025.149718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/23/2025] [Accepted: 05/18/2025] [Indexed: 06/01/2025]
Abstract
In the world, over 50 million people are living with Alzheimer's disease (AD), and in thirty years, this number is expected to double or even exceed that. AD is a form of dementia characterized by memory loss, language difficulties, and impaired thinking skills. It involves the accumulation of beta-amyloid plaques and tau tangles in the brain, leading to neurodegeneration and disrupted neuron communication. After diagnosis, patients typically survive for four to eight years, though some may live up to 20 years. Currently, there is no cure, and the available treatment options are limited in improving the quality of patients' lives. However, a promising perspective for treatment based on nanotechnology narrows down the possibility of personalized treatment. In this review, we explore several topics related to Alzheimer's disease to provide a comprehensive understanding of how nanotechnology can enhance treatment approaches. We examine various types of nano treatments and delivery methods, as well as the challenges they face and their associated benefits. Additionally, we highlight current nano treatments in development and discuss improved cell and animal models that can effectively test these treatments for patient safety. We also address sex differences in the pathophysiology of Alzheimer's disease, which may allow for more targeted treatment strategies. By considering these factors in conjunction, we move closer to realizing personalized medicine, ultimately improving the quality of life for patients. Nano treatments offer the potential for more specific, safer, and effective solutions in managing Alzheimer's disease.
Collapse
Affiliation(s)
- Lucia M Chavez-López
- Facultad de Medicina, Centro de Estudios Universitarios Xochicalco Campus Ensenada, San Francisco 1139, Fraccionamiento Misión, C.P., 22830 Ensenada, Baja CA, México; Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P., 22860 Ensenada, Baja CA, México
| | - J Horacio Silvestre-Martínez
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P., 22860 Ensenada, Baja CA, México; Centro de Nanociencias y Nanotecnología, (CNYN,UNAM), Carretera Tijuana-Ensenada Km 107, C.P., 22860 Ensenada, Baja CA, México
| | | | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P., 22860 Ensenada, Baja CA, México; SECIHTI- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P., 22860 Ensenada, Baja CA, México.
| |
Collapse
|
6
|
Datki Z, Sinka R, Dingmann BJ, Galik B, Szabo A, Galik-Olah Z, Toth GK, Bozso Z. Protective Effect of a Hexapeptide Derived from Rotifer-Specific SCO-Spondin Against Beta-Amyloid Toxicity. Int J Mol Sci 2025; 26:5109. [PMID: 40507923 PMCID: PMC12154537 DOI: 10.3390/ijms26115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 05/19/2025] [Accepted: 05/24/2025] [Indexed: 06/16/2025] Open
Abstract
The Rotimer (rotifer-specific biopolymer) like SCO-spondin (R-SSPO/1), predicted as the main component of this biopolymer, is an adequate base for the design of functional small peptides. This macromolecule is interactive and protective against neurotoxic human-type beta-amyloid 1-42 aggregates (agg-Aβ). The current work presents biological investigations and predictable molecular interaction analysis of DSSNDL and PNCRDGSDE peptides that were synthesized based on the sequences of R-SSPO/1. Viability assays (NADH-dependent cellular reduction capacity, intracellular esterase activity, and motility) were performed on differentiated neuro-type cell cultures (SH-SY5Y and PC12) and on Rotimer-depleted rotifers (Euchlanis dilatata and Lecane bulla). A control peptide (STTRPTGTT), not found in Rotimer, was also included in the study. All three peptides are present in both rotifer and human proteomes. Among these small molecules, DSSNDL showed a significant protective effect against the toxicity of agg-Aβ both in vitro and in vivo and presumably interacted with its aggregates. The stagogram analysis of amyloid-peptide complexes and the possible bonding competition of these small molecules against aggregation-specific dyes on agg-Aβ surface suggest that DSSNDL affects the properties of these neurotoxic macromolecules. This effective hexapeptide can serve as a promising candidate for further investigations into the inactivation of beta-amyloid toxicity.
Collapse
Affiliation(s)
- Zsolt Datki
- Micro-In Vivo Biomolecule Research Laboratory, Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Dugonics ter 13, 6720 Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Brian J. Dingmann
- Department of Math Science and Technology, University of Minnesota Crookston, 2900 University Avenue, Crookston, MN 56716, USA
| | - Bence Galik
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, 7622 Pecs, Hungary
| | - Antal Szabo
- Micro-In Vivo Biomolecule Research Laboratory, Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Dugonics ter 13, 6720 Szeged, Hungary
| | | | - Gabor K. Toth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary; (G.K.T.); (Z.B.)
| | - Zsolt Bozso
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary; (G.K.T.); (Z.B.)
| |
Collapse
|
7
|
Rathod SS, Agrawal YO. β-Caryophyllene (CB2 agonist) mitigates rotenone-induced neurotoxicity and apoptosis in SH-SY5Y neuroblastoma cells via modulation of GSK-3β/NRF2/HO-1 axis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04281-x. [PMID: 40410551 DOI: 10.1007/s00210-025-04281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025]
Abstract
Rotenone-induced neurotoxicity in SH-SY5Y cells is an essential hallmark of neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD). β-Caryophyllene (BCP), a cannabinoid receptor 2 (CB2) agonist, has anti-inflammatory, antioxidant, and cytoprotective efficacy. The involvement of the GSK-3β/NRF2/HO-1 axis in neuroprotection has garnered attention as a possible mechanism for BCP to exhibit multitargeted neuroprotective effects. Hence, this study investigates the effects of BCP against rotenone-induced neurotoxicity and apoptosis in SH-SY5Y cells, focusing on the involvement of the GSK-3β/NRF2/HO-1 signaling pathway. Initially, we performed the in silico molecular docking of BCP with GSK-3β, NRF2, and HO-1 proteins to ensure the degree of binding affinities. The in vitro MTT assay was performed to evaluate cell viability, followed by the assessment of biomarkers such as LDH leakage, oxidative stress, reactive species, caspase 3 activity, pro-inflammatory markers, and GSK-3β, NRF2, and HO-1 proteins in BCP, as well as specific receptor modulators (chir98023 and quercetin) against the rotenone pre-treated cells. In silico molecular docking studies revealed that BCP exhibits a strong binding affinity for GSK-3β, NRF2, and HO-1 proteins. Also, in vitro studies revealed that BCP (100 µg/ml), as compared to the rotenone-treated group, significantly restored cell viability (72%). Moreover, BCP significantly modulates cell cytotoxicity (LDH leakage), pro-apoptotic, pro-inflammatory, reactive species, and oxidative stress markers. Molecular docking established robust binding affinities of BCP with GSK-3β, NRF2, and HO-1 proteins. Furthermore, protein estimation by ELISA confirmed the BCP-mediated modulation of these pathways. These findings suggest that BCP protects SH-SY5Y cells from rotenone-induced neurotoxicity, offering a potential therapeutic candidate for neurodegenerative diseases like AD.
Collapse
Affiliation(s)
- Sumit S Rathod
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Shirpur, 425405, Maharashtra, India
| | - Yogeeta O Agrawal
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Shirpur, 425405, Maharashtra, India.
| |
Collapse
|
8
|
Xu H, Wang G, Jiang Z, Han Y, Zhao W, Zhang H, Liu H, Liu H, Li Z, Ji F. Ultrasmall Nanoparticles Mitigate Tau Hyperphosphorylation to Restore Synaptic Integrity and Boost Cognitive Function in Alzheimer's Disease. Adv Healthc Mater 2025:e2500941. [PMID: 40376857 DOI: 10.1002/adhm.202500941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Indexed: 05/18/2025]
Abstract
Tau hyperphosphorylation represents a critical pathological hallmark of Alzheimer's disease (AD), a prevalent neurodegenerative disorder characterized by progressive cognitive decline. The ubiquitin-specific proteases 14 (USP14) impairs proteasomal function and accelerates hyperphosphorylated Tau accumulation, making it an attractive therapeutic target for modulating the ubiquitin-proteasome pathway in AD treatment. In this study, it is reported that wogonoside-functionalized ultrasmall Cu2-xSe nanoparticles (CSPW NPs) significantly reduce hyperphosphorylated Tau accumulation and alleviate AD symptoms. The therapeutic mechanism involves activation of the ubiquitin-proteasome pathway through USP14 inhibition by CSPW NPs, thereby preventing hyperphosphorylated Tau accumulation. Furthermore, after cell membrane coating (CSPW@CM NPs), these nanoparticles efficiently cross the blood-brain barrier with focused ultrasound assistance and accumulate in the brain to target neurons. Within neurons, they inhibit USP14, reduce phosphorylated Tau deposition, enhance microtubule stability, mitigate synaptic loss, restore synaptic integrity, and ultimately alleviate cognitive dysfunction in AD mice. The findings highlight the substantial potential of USP14 modulation for mitigating Tau hyperphosphorylation in the treatment of AD and related tauopathies.
Collapse
Affiliation(s)
- Hanbing Xu
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| | - Gang Wang
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Weiming Zhao
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Huayue Liu
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
- Ambulatory Surgery Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Fuhai Ji
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| |
Collapse
|
9
|
Skóra B, Szychowski KA. Proteostasis and autophagy disruption by the aging-related VGVAPG hexapeptide - preliminary insights into a potential novel elastin-induced neurodegeneration pathway in an in vitro human cellular neuron model. Neurochem Int 2025; 187:105992. [PMID: 40348194 DOI: 10.1016/j.neuint.2025.105992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
The hexapeptide Val-Gly-Val-Ala-Pro-Gly (VGVAPG) is the most readily released product of elastin degradation, a process closely associated with aging. Recent studies have demonstrated the ability of this peptide to upregulate Sirtuin 2 (SIRT2) mRNA and protein expression. The correlation between HRD1 ligase (Synoviolin 1) and the degradation of SIRT2 has been previously reported in the literature. This study aimed to explore the impact of VGVAPG-induced interaction between HRD1 and SIRT2 and its effects on autophagy in differentiated SH-SY5Y cells in vitro (a simplified model of neurons). The results revealed that VGVAPG decreases HRD1 mRNA and protein expression while correlating with SIRT2 overexpression. Further analysis showed reduced SEL1L protein levels and an increase in p97/VCP protein expression. Additionally, enhanced phosphorylation of IRE1α indicated induction of ER stress in the tested cell model without affecting mTOR. Decreased proteasome activity and accumulation of ubiquitin were also noted. This phenomenon triggered VGVAPG-induced autophagy, as evidenced by increased expression of autophagy-related proteins ATG16L1, ATG5, ATG18, and FIP200. However, autophagy was suppressed probably as a result of VGVAPG-induced phosphorylation of ERK1/2. These findings demonstrate that the aging-related hexapeptide VGVAPG downregulates the function of the SEL1L-HRD1 complex, leading to SIRT2 accumulation and subsequent ER stress due to ERAD and UPS. This cascade, in turn, activates autophagy as an alternative clearance pathway aimed at restoring proteostasis; however, the process becomes dysregulated, leading to persistent ER stress. This dual effect may have significant implications in neurobiology, given the well-established correlation between autophagy impairment and aging-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35 -225, Rzeszów, Poland.
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35 -225, Rzeszów, Poland
| |
Collapse
|
10
|
Feng Z, Li F, Lin Z, Liu J, Chen X, Yan W, Liu Z. ALOX15-Mediated Neuron Ferroptosis Was Involved in Diabetic Peripheral Neuropathic Pain. CNS Neurosci Ther 2025; 31:e70440. [PMID: 40387519 PMCID: PMC12087304 DOI: 10.1111/cns.70440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Diabetic peripheral neuropathic pain (DPNP) is one of the most common complications in diabetic patients. Current treatment strategies primarily focus on blood glucose control and pain relief, but they often yield limited effects. Ferroptosis, a regulated form of cell death driven by lipid peroxidation and iron imbalance, plays a crucial role in various diseases, including neuropathic pain. METHODS In this study, we employed a combined bioinformatics and machine learning approach to identify genes most strongly associated with DPNP and ferroptosis. Subsequently, we established a DPNP mouse model via streptozotocin (STZ) injection and a high-glucose-induced SH-SY5Y cell injury model. ALOX15 was knocked down in the in vitro model using siRNA transfection. RESULTS Bioinformatics analysis identified ALOX15 as a hub gene linking DPNP and ferroptosis. In both in vivo and in vitro DPNP models, ALOX15 expression was significantly upregulated and correlated with ferroptosis biomarkers. Knockdown of ALOX15 in the cellular model mitigated high-glucose-induced ferroptosis, reduced lipid peroxidation and free iron ion accumulation, and restored cell viability. CONCLUSION In conclusion, ALOX15 contributes to the onset and progression of DPNP by promoting ferroptosis, and its knockdown effectively suppresses ferroptosis, providing a novel target and strategy for DPNP treatment.
Collapse
Affiliation(s)
- Zhiye Feng
- Department of Anesthesiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Fuye Li
- Department of Critical Care Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhiqiang Lin
- Department of Anesthesiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Liu
- Zhongshan Hospital of Traditional Chinese MedicineZhongshanChina
| | - Xi Chen
- Shenzhen LuoHu People's HospitalShenzhenChina
| | - Wenxu Yan
- Department of Anesthesiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhongjie Liu
- Department of Anesthesiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Department of AnesthesiologyShenzhen Children's HospitalShenzhenChina
| |
Collapse
|
11
|
Cokdinleyen M, Valdés A, Kara H, Ibáñez E, Cifuentes A. Neuroprotective Potential of Tetraselmis chuii Compounds: Insights into Blood-Brain Barrier Permeability and Intestinal Transport. Pharmaceuticals (Basel) 2025; 18:629. [PMID: 40430450 PMCID: PMC12115197 DOI: 10.3390/ph18050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Alzheimer's disease (AD) is the most common type of dementia, characterized by complex processes such as neuro-inflammation, oxidative damage, synaptic loss, and neuronal death. Carotenoids are among the potential therapeutic molecules that have attracted attention due to their neuroprotective properties, but their efficacy is limited mainly by their capacity to cross the blood-brain barrier (BBB). Results: The results showed that T. chuii extracts could protect neuronal cells from neurotoxic damage, especially against L-glutamate and H2O2. Moreover, the BBB permeability and the intestinal transport analyses revealed that fucoxanthinol, crocoxanthin, diatoxanthin, neoxanthin, violaxanthin, and prasinoxanthin have diverse permeabilities depending on the incubation time and the cell model used. Fucoxanthinol was the carotenoid with the highest and similar permeability in HBMEC cells (4.41%, 5.13%, and 18.94% at 2, 4, and 24 h, respectively) and Caco-2 cells (7.01%, 8.63%, and 18.36% at the same times), while crocoxanthin, diatoxanthin, and neoxanthin showed different kinetics. Methods: The neuroprotective potential of two extracts obtained from Tetraselmis chuii microalga were evaluated against Aβ1-42-, L-glutamate-, and H2O2-induced toxicities in SH-SY5Y cells. In addition, the BBB permeability and the intestinal transepithelial transport of the main carotenoids present in the extracts were evaluated and compared using two cell culture models, HBMEC and Caco-2 cells. For that aim, the transport of the bioactive molecules across the barriers was evaluated using UHPLC-q-TOF-MS after 2, 4, and 24 h of incubation. Conclusions: These findings indicate that T. chuii is a promising natural source of bioactive compounds to develop functional foods against neurodegenerative diseases.
Collapse
Affiliation(s)
- Melis Cokdinleyen
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain; (M.C.); (A.C.)
| | - Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain; (M.C.); (A.C.)
| | - Huseyin Kara
- Department of Chemistry, Faculty of Sciences, Selçuk University, Ardicli, Ismetpasa Cad, Selçuklu, 42250 Konya, Turkey;
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain; (M.C.); (A.C.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain; (M.C.); (A.C.)
| |
Collapse
|
12
|
Zhdanova DY, Bobkova NV, Chaplygina AV, Svirshchevskaya EV, Poltavtseva RA, Vodennikova AA, Chernyshev VS, Sukhikh GT. Effect of Small Extracellular Vesicles Produced by Mesenchymal Stem Cells on 5xFAD Mice Hippocampal Cultures. Int J Mol Sci 2025; 26:4026. [PMID: 40362265 PMCID: PMC12071690 DOI: 10.3390/ijms26094026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common progressive neurodegenerative diseases leading to impairments in memory, orientation, and behavior. However, significant work is still needed to fully understand the progression of such disease and develop novel therapeutic agents for AD prevention and treatment. Small extracellular vesicles (sEVs) have received attention in recent years due to their potential therapeutic effects on AD. The aim of this study was to determine the potential effect of sEVs in an in vitro model of AD. sEVs were isolated from human Wharton's jelly mesenchymal stem cells (MSCs) by asymmetric depth filtration, a method developed recently by us. AD was modeled in vitro using cells obtained from the hippocampi of newborn 5xFAD transgenic mice carrying mutations involved in familial AD. After isolation, sEVs underwent detailed characterization that included scanning electron microscopy, nanoparticle tracking analysis, confocal microscopy, Western blotting, and Luminex assay. When added to 5xFAD hippocampal cells, sEVs were nontoxic, colocalized with neurons and astrocytes, decreased the level of Aβ peptide, and increased the synaptic density. These results support the possibility that sEVs can improve brain cell function during aging, decrease the risk of AD, and potentially be used for AD therapeutics.
Collapse
Affiliation(s)
- Daria Y. Zhdanova
- Institute of Cell Biophysics, Federal Research Center Pushchino Research Center for Biological Studies, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia (A.V.C.)
| | - Natalia V. Bobkova
- Institute of Cell Biophysics, Federal Research Center Pushchino Research Center for Biological Studies, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia (A.V.C.)
| | - Alina V. Chaplygina
- Institute of Cell Biophysics, Federal Research Center Pushchino Research Center for Biological Studies, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia (A.V.C.)
| | - Elena V. Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa M0iklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V. I. Kulakov, Ministry of Healthcare of the Russian Federation, Oparina St. 4, 117997 Moscow, Russia; (R.A.P.); (V.S.C.); (G.T.S.)
| | - Rimma A. Poltavtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V. I. Kulakov, Ministry of Healthcare of the Russian Federation, Oparina St. 4, 117997 Moscow, Russia; (R.A.P.); (V.S.C.); (G.T.S.)
| | - Anastasia A. Vodennikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa M0iklukho-Maklaya 16/10, 117997 Moscow, Russia;
- Institute of Bioorganic Chemistry, National Research Nuclear University “MEPhI”, Kashirskoe Shosse 31, 115409 Moscow, Russia
| | - Vasiliy S. Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V. I. Kulakov, Ministry of Healthcare of the Russian Federation, Oparina St. 4, 117997 Moscow, Russia; (R.A.P.); (V.S.C.); (G.T.S.)
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Gennadiy T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V. I. Kulakov, Ministry of Healthcare of the Russian Federation, Oparina St. 4, 117997 Moscow, Russia; (R.A.P.); (V.S.C.); (G.T.S.)
| |
Collapse
|
13
|
Xia Y, Tsim KWK, Wang WX. Disruption of Copper Redox Balance and Dysfunction under In Vivo and In Vitro Alzheimer's Disease Models. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:238-249. [PMID: 40144323 PMCID: PMC11934196 DOI: 10.1021/envhealth.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 03/28/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder disease mainly caused by extracellular senile plaques (SP) formed by β-amyloid (Aβ1-42) protein deposits. Copper (Cu) is an essential metal involved in neural system, and its homeostasis is the key to maintain its proper function. Herein, the subcellular locations of Cu(I) and Cu(II) in human neurodegenerative disease SH-SY5Y cells and AD mouse brains were imaged. We found that the content of Cu(II) decreased while that of Cu(I) increased under Aβ exposure, which were further verified in the brain tissues of the AD mouse model, strongly suggesting the disruption of Cu homeostasis under Aβ exposure or AD. Remarkably, the mitochondrial and lysosomal Cu(II) decreased significantly, whereas Cu(I) decreased in mitochondria but increased in lysosome. Lysosomes digested the damaged mitochondria via mitophagy to remove excess Cu(I) and maintain Cu homeostasis. The Aβ induced Cu(I) in mitochondria resulted in an overformation of reactive oxygen species and altered the morphology of this organelle. Due to the oxidative stress, glutathione (GSH) was converted into glutathione disulfide (GSSG), and Cu(I) bound with GSH was further released into the cytoplasm and absorbed by the lysosome. Transcriptomic analysis showed that genes (ATP7A/B) related to Cu transportation were upregulated, whereas genes related to mitochondrial complex were down-regulated, representing the damage of this organelle. This study demonstrated that Aβ exposure caused the disruption of intracellular homeostasis by reducing Cu(II) to Cu(I) and damaging the mitochondria, which further triggered detoxification by the lysosome. Our finding provided new insights in Aβ and AD induced Cu redox transformation and toxicity.
Collapse
Affiliation(s)
- Yiteng Xia
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong
Kong, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Karl W. K. Tsim
- Division
of Life Science, Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong
Kong, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
14
|
Takomthong P, Waiwut P, Yenjai C, Wangboonskul J, Plekratoke K, Arsito PN, Ballatore C, Boonyarat C. Kaempferia parviflora extract and its methoxyflavones as potential anti-Alzheimer assessing in vitro, integrated computational approach, and in vivo impact on behaviour in scopolamine-induced amnesic mice. PLoS One 2025; 20:e0316888. [PMID: 40063637 PMCID: PMC11892870 DOI: 10.1371/journal.pone.0316888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/16/2024] [Indexed: 05/13/2025] Open
Abstract
Alzheimer's disease (AD), a growing global challenge, lacks effective preventive and therapeutic strategies. This study explored the promising potential of the Kaempferia parviflora (KP) and its methoxyflavones (MFs) against the disease. We evaluated KP extract and its five MFs for antioxidant capacity, cholinesterase inhibition (AChE, and BChE), amyloid plaque (Aβ) reduction, neuroprotection, and memory improvement in a mouse model. HPLC quantified the five MFs in KP extract, with 5,7-dimethoxyflavone (F1) being the most abundant. 5,7,4'-Trimethoxyflavone (F3) and 5-hydroxy-3,7-dimethoxyflavone (F4) exhibited the strongest AChE and BChE inhibitory activities, respectively. MFs hindered Aβ1-42 aggregation and destabilized fibrils, with F3 showing the potent anti-aggregation and the strongest fibril destabilization. They also protected SH-SY5Y cells from Aβ1-42-induced damage. Notably, F3 combined anti-cholinesterase and anti-Aβ activities, suggesting its potential as a multi-target agent. KP extract ameliorated scopolamine-induced memory deficits in mice, suggesting its potential for cognitive improvement. These findings revealed that KP can be a promising candidate for herbal medicine development against AD. Its multi-target MFs offered a unique advantage by targeting multiple AD pathways. KP may have a great potential to modify the disease and overcome the challenge of drug development as cognitive enhancing herbal medicine.
Collapse
Affiliation(s)
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Chavi Yenjai
- Faculty of Sciences, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Puguh Novi Arsito
- School of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, California, United States of America
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Guler E, Yekeler HB, Uner B, Dogan M, Asghar A, Ikram F, Yazir Y, Gunduz O, Kalaskar DM, Cam ME. In Vitro Neuroprotective Effect Evaluation of Donepezil‐Loaded PLGA Nanoparticles‐Embedded PVA/PEG Nanofibers on SH‐SY5Y Cells and AP‐APP Plasmid Related Alzheimer Cell Line Model. MACROMOLECULAR MATERIALS AND ENGINEERING 2025; 310. [DOI: 10.1002/mame.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 03/30/2025]
Abstract
AbstractRecently developed nanoparticles and nanofibers present new brain‐specific treatment strategies, especially for Alzheimer's disease treatment. In this study, donepezil (DO)‐loaded PLGA nanoparticles (DNP) are embedded in PVA/PEG nanofibers (DNPF) produced by pressurized gyration for sublingual administration. SEM images showed produced drug‐loaded and pure nanofibers, which have sizes between 978 and 1123 nm, demonstrated beadless morphology and homogeneous distribution. FT‐IR, XRD, and DSC results proved the produced nanoparticles and fibers to consist of the DO and other polymers. The in vitro drug release test presented that the release profile of DO is completed at the end of the 18th day. It is released by the first order kinetic model. DNPF has an ultra‐fast release profile via its disintegration within 2 sec, which proved itself to be suitable for the administration sublingually. All samples presented above ≈90% cell viability via their non‐toxic natures on SH‐SY5Y human neuroblastoma cells by using Alamar blue assay. The anti‐Alzheimer effects of DO, DNP, and DNPF are evaluated on the Aβ1−42‐induced SH‐SY5Y cells at 1, 5, and 10 µM as treatment groups. The 1 µM dosage exhibited the most significant neuroprotective effects, which showed enhanced cellular uptake and superior modulation of Alzheimer's‐related proteins, including tau and Aβ.
Collapse
Affiliation(s)
- Ece Guler
- Department of Pharmacology, School of Pharmacy Istanbul Kent University Istanbul 34406 Kagithane Türkiye
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
| | - Humeyra Betul Yekeler
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Department of Pharmacology, Faculty of Pharmacy Marmara University Istanbul 34854 Türkiye
| | - Burcu Uner
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Department of Pharmaceutical Technology, School of Pharmacy Istanbul Kent University Istanbul 34406 Türkiye
- Department of Pharmaceutical and Administrative Science University of Health Science and Pharmacy in St. Louis St. Louis 63110 MO USA
- Department of Anesthesiology Center for Clinical Pharmacology Washington University School of Medicine in St. Louis St. Louis 63110 MO USA
| | - Murat Dogan
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Sivas Cumhuriyet University Sivas 58140 Türkiye
- Cancer Survivorship Institute Robert H. Lurie Comprehensive Cancer Center Northwestern University 625 N. Michigan Ave., Suite 2100 Chicago 60611 IL USA
| | - Asima Asghar
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | - Fakhera Ikram
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | - Yusufhan Yazir
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty Kocaeli University Kocaeli 41380 Turkiye
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- Department of Metallurgical and Materials Engineering Faculty of Technology Marmara University Istanbul 34730 Türkiye
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
| | - Muhammet Emin Cam
- Department of Pharmacology, School of Pharmacy Istanbul Kent University Istanbul 34406 Kagithane Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Biomedical Engineering Department University of Aveiro Aveiro 3810‐193 Portugal
| |
Collapse
|
16
|
Guler E, Yekeler HB, Uner B, Dogan M, Asghar A, Ikram F, Yazir Y, Gunduz O, Kalaskar DM, Cam ME. In Vitro Neuroprotective Effect Evaluation of Donepezil‐Loaded PLGA Nanoparticles‐Embedded PVA/PEG Nanofibers on SH‐SY5Y Cells and AP‐APP Plasmid Related Alzheimer Cell Line Model. MACROMOLECULAR MATERIALS AND ENGINEERING 2025; 310. [DOI: 4.https:/doi.org/10.1002/mame.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 03/30/2025]
Abstract
AbstractRecently developed nanoparticles and nanofibers present new brain‐specific treatment strategies, especially for Alzheimer's disease treatment. In this study, donepezil (DO)‐loaded PLGA nanoparticles (DNP) are embedded in PVA/PEG nanofibers (DNPF) produced by pressurized gyration for sublingual administration. SEM images showed produced drug‐loaded and pure nanofibers, which have sizes between 978 and 1123 nm, demonstrated beadless morphology and homogeneous distribution. FT‐IR, XRD, and DSC results proved the produced nanoparticles and fibers to consist of the DO and other polymers. The in vitro drug release test presented that the release profile of DO is completed at the end of the 18th day. It is released by the first order kinetic model. DNPF has an ultra‐fast release profile via its disintegration within 2 sec, which proved itself to be suitable for the administration sublingually. All samples presented above ≈90% cell viability via their non‐toxic natures on SH‐SY5Y human neuroblastoma cells by using Alamar blue assay. The anti‐Alzheimer effects of DO, DNP, and DNPF are evaluated on the Aβ1−42‐induced SH‐SY5Y cells at 1, 5, and 10 µM as treatment groups. The 1 µM dosage exhibited the most significant neuroprotective effects, which showed enhanced cellular uptake and superior modulation of Alzheimer's‐related proteins, including tau and Aβ.
Collapse
Affiliation(s)
- Ece Guler
- Department of Pharmacology, School of Pharmacy Istanbul Kent University Istanbul 34406 Kagithane Türkiye
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
| | - Humeyra Betul Yekeler
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Department of Pharmacology, Faculty of Pharmacy Marmara University Istanbul 34854 Türkiye
| | - Burcu Uner
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Department of Pharmaceutical Technology, School of Pharmacy Istanbul Kent University Istanbul 34406 Türkiye
- Department of Pharmaceutical and Administrative Science University of Health Science and Pharmacy in St. Louis St. Louis 63110 MO USA
- Department of Anesthesiology Center for Clinical Pharmacology Washington University School of Medicine in St. Louis St. Louis 63110 MO USA
| | - Murat Dogan
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Sivas Cumhuriyet University Sivas 58140 Türkiye
- Cancer Survivorship Institute Robert H. Lurie Comprehensive Cancer Center Northwestern University 625 N. Michigan Ave., Suite 2100 Chicago 60611 IL USA
| | - Asima Asghar
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | - Fakhera Ikram
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | - Yusufhan Yazir
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty Kocaeli University Kocaeli 41380 Turkiye
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research Marmara University Istanbul 34722 Türkiye
- Department of Metallurgical and Materials Engineering Faculty of Technology Marmara University Istanbul 34730 Türkiye
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
| | - Muhammet Emin Cam
- Department of Pharmacology, School of Pharmacy Istanbul Kent University Istanbul 34406 Kagithane Türkiye
- UCL Division of Surgery and Interventional Sciences Rowland Hill Street London NW3 2PF UK
- MecNano Technologies Cube Incubation Istanbul 34906 Teknopark İstanbul Türkiye
- Biomedical Engineering Department University of Aveiro Aveiro 3810‐193 Portugal
| |
Collapse
|
17
|
Rennie C, Morshed N, Faria M, Collins-Praino L, Care A. Nanoparticle Association with Brain Cells Is Augmented by Protein Coronas Formed in Cerebrospinal Fluid. Mol Pharm 2025; 22:940-957. [PMID: 39805033 DOI: 10.1021/acs.molpharmaceut.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored. Indeed, less than 1% of protein corona studies have investigated protein coronas formed in cerebrospinal fluid (CSF), the fluid surrounding the brain. Herein, we utilize two clinically relevant polymeric nanoparticles (PLGA and PLGA-PEG) to evaluate the formation of serum and CSF protein coronas. LC-MS analysis revealed distinct protein compositions, with selective enrichment/depletion profiles. Enhanced association of CSF precoated particles with brain cells demonstrates the importance of selecting physiologically relevant biological fluids to more accurately study protein corona formation and subsequent nanoparticle-cell interactions, paving the way for improved nanoparticle engineering for in vivo applications.
Collapse
Affiliation(s)
- Claire Rennie
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
- Australian Institute for Microbiology and Infection, Sydney 2007, New South Wales, Australia
| | - Nabila Morshed
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Lyndsey Collins-Praino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
| |
Collapse
|
18
|
Sanajou S, Yirün A, Demirel G, Erkekoğlu P, Şahin G, Baydar T. The ameliorative potential of metformin against aluminum-induced neurotoxicity: Insights from in vitro studies. J Appl Toxicol 2025; 45:245-255. [PMID: 39275926 PMCID: PMC11738538 DOI: 10.1002/jat.4695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Alzheimer's disease (AD) is increasingly recognized as a metabolic disorder, often referred to as type 3 diabetes, due to its strong association with insulin resistance. Chronic exposure to aluminum, a known neurotoxin, has been identified as a significant risk factor in the development and progression of AD. This study explores the potential of metformin, a common anti-diabetic drug, to mitigate aluminum-induced neurotoxicity in an in vitro model of AD. Our findings reveal that metformin significantly reduces oxidative stress markers such as malonaldehyde, carbonyl groups, and reactive oxygen species while enhancing antioxidant defenses. Metformin modulates critical signaling pathways, including glycogen synthase kinase 3 beta (GSK3-β)/RAC-alpha serine/threonine protein kinase (RAC-alpha serine/threonine protein kinase (Akt1)/protein phosphatase 2A (PP2A) and Wnt/β-catenin, decreasing Tau protein levels and promoting neurogenesis. These results suggest that metformin may offer a novel therapeutic approach for AD, particularly in cases where aluminum exposure is a contributing factor.
Collapse
Affiliation(s)
- Sonia Sanajou
- Faculty of Pharmacy, Department of Pharmaceutical ToxicologyHacettepe UniversityAnkaraTurkey
- Faculty of Pharmacy, Department of ToxicologyIstanbul Aydin UniversityIstanbulTurkey
| | - Anil Yirün
- Faculty of Pharmacy, Department of ToxicologyCukurova UniversityAdanaTurkey
| | - Göksun Demirel
- Faculty of Pharmacy, Department of ToxicologyCukurova UniversityAdanaTurkey
| | - Pinar Erkekoğlu
- Faculty of Pharmacy, Department of Pharmaceutical ToxicologyHacettepe UniversityAnkaraTurkey
| | - Gönül Şahin
- Faculty of Pharmacy, Department of Pharmaceutical ToxicologyHacettepe UniversityAnkaraTurkey
| | - Terken Baydar
- Faculty of Pharmacy, Department of Pharmaceutical ToxicologyHacettepe UniversityAnkaraTurkey
| |
Collapse
|
19
|
Solana-Manrique C, Sánchez-Pérez AM, Paricio N, Muñoz-Descalzo S. Two- and Three-Dimensional In Vitro Models of Parkinson's and Alzheimer's Diseases: State-of-the-Art and Applications. Int J Mol Sci 2025; 26:620. [PMID: 39859333 PMCID: PMC11766061 DOI: 10.3390/ijms26020620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In vitro models play a pivotal role in advancing our understanding of neurodegenerative diseases (NDs) such as Parkinson's and Alzheimer's disease (PD and AD). Traditionally, 2D cell cultures have been instrumental in elucidating the cellular mechanisms underlying these diseases. Cultured cells derived from patients or animal models provide valuable insights into the pathological processes at the cellular level. However, they often lack the native tissue environment complexity, limiting their ability to fully recapitulate their features. In contrast, 3D models offer a more physiologically relevant platform by mimicking the 3D brain tissue architecture. These models can incorporate multiple cell types, including neurons, astrocytes, and microglia, creating a microenvironment that closely resembles the brain's complexity. Bioengineering approaches allow researchers to better replicate cell-cell interactions, neuronal connectivity, and disease-related phenotypes. Both 2D and 3D models have their advantages and limitations. While 2D cultures provide simplicity and scalability for high-throughput screening and basic processes, 3D models offer enhanced physiological relevance and better replicate disease phenotypes. Integrating findings from both model systems can provide a better understanding of NDs, ultimately aiding in the development of novel therapeutic strategies. Here, we review existing 2D and 3D in vitro models for the study of PD and AD.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain;
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain
| | - Ana María Sánchez-Pérez
- Instituto de Materiales Avanzados (INAM), Universidad de Jaume I, Avda Sos Banyat s/n, 12071 Castellón de la Plana, Spain;
| | - Nuria Paricio
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain;
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain
| | - Silvia Muñoz-Descalzo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe “Físico” 17, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
20
|
Kushwaha V, Sahu KK. A Comprehensive Review on Preclinical Alzheimer's Disease Models: Evaluating their Clinical Relevance. Curr Pharm Biotechnol 2025; 26:186-207. [PMID: 39161136 DOI: 10.2174/0113892010331845240802073645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024]
Abstract
Alzheimer's disease (AD) is a neurological disorder that increases with age and must be treated immediately by worldwide healthcare systems. Internal neurofibrillary tau tangles and extracellular amyloid accumulation have been widely recognized as the primary causes of Alzheimer's disease. These degenerative age-related ailments are expected to proliferate exponentially as life expectancy rises. Experimental models of AD are essential for acquiring a deep knowledge of its pathogenesis and determining the viability of novel therapy options. Although there isn't a model that encompasses all the characteristics of real AD, these models are nonetheless highly helpful for the research of various modifications associated with it, even though they are only partially indicative of the disease circumstances being studied. Better knowledge of the advantages and disadvantages of each of the different models, as well as the use of more than one model to evaluate potential medications, would increase the effectiveness of therapy translation from preclinical research to patients. We outline the pathogenic characteristics and limitations of the main experimental models of AD in this review, including transgenic mice, transgenic rats, primates and non-primate models along with in-vitro cell culture models in humans. Additionally, it highlights the possible future of experimental modeling of AD and includes the co-morbid models.
Collapse
Affiliation(s)
- Virendra Kushwaha
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| |
Collapse
|
21
|
Jin D, Zhang M, Shi L, Liu H. Investigating the Impact of IL-6 and CXCL8 on Neurodegeneration and Cognitive Decline in Alzheimer Disease. Int J Neuropsychopharmacol 2024; 28:pyae038. [PMID: 39223908 PMCID: PMC11781222 DOI: 10.1093/ijnp/pyae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alzheimer disease (AD) is a progressive neurodegenerative disorder primarily affecting the elderly, characterized by severe cognitive impairment and memory loss. Emerging evidence suggests that neuroinflammation plays a significant role in AD pathogenesis, with cytokines like interleukin-6 (IL-6) and C-X-C motif chemokine ligand 8 (CXCL8) contributing to the disease progression. METHODS We utilized Gene Expression Omnibus datasets to identify IL-6 and CXCL8 as pivotal inflammatory markers in AD. In vitro experiments were conducted using SK-N-BE(2)-M17 and THP-1 cell lines treated with IL-6 and CXCL8 to model AD. Additionally, in vivo tests on Amyloid Precursor Protein/Presenilin 1 (APP/PS1) AD mouse models were performed to assess the impact of these cytokines on cognitive functions and brain pathology. RESULTS The results indicated a significant decrease in cell viability, increased apoptosis, and elevated inflammatory factor secretion following IL-6 and CXCL8 treatment in vitro. In vivo, AD mouse models treated with these cytokines exhibited exacerbated emotional distress, decreased social interaction, impaired cognitive functions, and increased amyloid protein deposition in neural tissues. CONCLUSIONS The study highlights the detrimental effects of IL-6 and CXCL8 on neuronal health and cognitive functions in AD. These findings suggest that targeting these cytokines could offer potential therapeutic interventions for improving patient outcomes in Alzheimer disease.
Collapse
Affiliation(s)
- Dongdong Jin
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Shi
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengfang Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Naghshbandieh A, Naghshbandieh A, Barfi E, Abkhooie L. Assessment of the level of apoptosis in differentiated pseudo-neuronal cells derived from neural stem cells under the influence of various inducers. AMERICAN JOURNAL OF STEM CELLS 2024; 13:250-270. [PMID: 39850017 PMCID: PMC11751472 DOI: 10.62347/bptg6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/25/2025]
Abstract
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others. Developing inventive therapies for neurodegenerative illnesses depends on a knowledge of how these inducers impact mortality in differentiated pseudo-neuronal cells. Using flow cytometry, Western blotting, and fluorescence microscopy among other techniques, the degree of death in many pseudo-neuronal cells is evaluated. Flow cytometry generates dead cell counts from measurements of cell size, granularity, and DNA content. Whereas fluorescence microscopy visualizes dead cells using fluorescent dyes or antibodies, Western blotting detects caspases and Bcl-2 family proteins. This review attempts to offer a thorough investigation of present studies on death in differentiated pseudo-neuronal cells produced from neural stem cells under the effect of different inducers. Through investigating how these inducers influence death, the review aims to provide information that might direct the next studies and support treatment plans for neurodegenerative diseases. With an eye toward inducers like retinoic acid, selegiline, cytokines, valproic acid, and small compounds, we examined research to evaluate death rates. The findings offer important new perspectives on the molecular processes guiding death in these cells. There is still a complete lack of understanding of how different factors affect the molecular processes that lead to death, so understanding these processes can contribute to new therapeutic approaches to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Adele Naghshbandieh
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Atefe Naghshbandieh
- Department of Pharmaceutical Biotechnology and Department of Pharmaceutical and Bimolecular Science, University of MilanMilan, Italy
| | - Elahe Barfi
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical SciencesKhorramabad, Iran
| |
Collapse
|
23
|
Merighi S, Nigro M, Travagli A, Fernandez M, Vincenzi F, Varani K, Pasquini S, Borea PA, Salati S, Cadossi R, Gessi S. Effect of Low-Frequency, Low-Energy Pulsed Electromagnetic Fields in Neuronal and Microglial Cells Injured with Amyloid-Beta. Int J Mol Sci 2024; 25:12847. [PMID: 39684558 DOI: 10.3390/ijms252312847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathology covering about 70% of all cases of dementia. It is associated with neuroinflammation and neuronal cell death, which are involved in disease progression. There is a lack of effective therapies, and halting this process represents a therapeutic challenge. Data in the literature suggest several neuroprotective effects of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) on biological systems, and clinical studies report that PEMF stimulation is safe and well tolerated. The aim of this work is to investigate the effects of PEMF exposure on oxidative stress and cell death in in vitro-injured cellular models of neurons and microglia. SH-SY5Y cells were stimulated by hydrogen peroxide (H2O2) or amyloid-β (Aβ) peptide, and N9 microglial cells were activated with lipopolysaccharide (LPS) or Aβ peptide. Reactive oxygen production, mitochondrial integrity, and cell death modulation were investigated through 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbo-cyanine iodide (JC-1) biochemical assays, fluorescence, and MTS experiments. Cells were exposed to PEMFs producing a pulsed signal with the following parameters: pulse duration of 1.3 ms and frequency of 75 Hz. The outcomes demonstrated that PEMFs defended SH-SY5Y cells against Aβ peptide- or H2O2-induced oxidative stress, mitochondrial damage, and cell death. Furthermore, in microglia activated by LPS or Aβ peptide, they reverted the reduction in mitochondrial potential, oxidative damage, and cell death. Overall, these findings imply that PEMFs influence the redox state of the cells by significantly boosting antioxidant levels in both injured microglia and neuronal in vitro cells mimicking in vitro AD.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mercedes Fernandez
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | | | - Simona Salati
- Igea Clinical Biophysics, Medical Division, 41012 Carpi, Italy
| | - Ruggero Cadossi
- Igea Clinical Biophysics, Medical Division, 41012 Carpi, Italy
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
24
|
Nguyen DL, Le MPT, Lee KW, Kim JH, Yoon HC, Pham HTM. Development of a Disease Modeling Framework for Glutamatergic Neurons Derived from Neuroblastoma Cells in 3D Microarrays. Sci Rep 2024; 14:29144. [PMID: 39587250 PMCID: PMC11589682 DOI: 10.1038/s41598-024-80369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Neurodegenerative diseases (NDDs) present significant challenges due to limited treatment options, ethical concerns surrounding traditional animal models, and the time-consuming and costly process of using human-induced pluripotent stem cells (iPSCs). We addressed these issues by developing a 3D culture protocol for differentiating SH-SY5Y cells into glutamatergic neurons, enhancing physiological relevance with a 3D microarray culture plate. Our protocol optimized serum concentration and incorporated retinoic acid (RA) to improve differentiation. We analyzed the proportions of N-type and S-type cells, observing that RA in the maturation stage not only reduced cell proliferation but also enhanced the expression of MAP2 and VGLUT1, indicating effective neuronal differentiation. Our approach demonstrates the strong expression of glutamatergic neuron phenotypes in 3D SH-SY5Y neural spheroids, offering a promising tool for high-throughput NDD modeling and advancing drug discovery and therapeutic development. This method overcomes limitations associated with conventional 2D cultures and animal models, providing a more effective platform for NDD research.
Collapse
Affiliation(s)
- Duc Long Nguyen
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - My Phuong Thi Le
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Kyung Won Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
- Advanced College of Bio-convergence Engineering, Ajou University, Suwon, 16499, South Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
- ANK corporation, TheANK, Suwon, 16522, South Korea
| | - Hyun C Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
- Advanced College of Bio-convergence Engineering, Ajou University, Suwon, 16499, South Korea.
| | - Huyen T M Pham
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
25
|
Canoyra A, Martín-Cordero C, Muñoz-Mingarro D, León-González AJ, Parsons RB, Acero N. Corema album Berry Juice as a Protective Agent Against Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:1535. [PMID: 39598444 PMCID: PMC11597836 DOI: 10.3390/ph17111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Corema album berries are edible fruits from the Iberian Atlantic coast, characterized by a rich polyphenolic composition, which endows their juice with potential protective effects against neurodegeneration. This study aimed to evaluate the potential of the relatively lesser-known C. album berries as a novel neuroprotective agent against neurodegenerative diseases. Methods: The phenolic compounds of the juice were characterized using UHPLC-HRMS (Orbitrap). The SH-SY5Y neuroblastoma line was used to determine the preventive effect of the juice against H2O2-induced oxidative stress. Furthermore, neuronal cells were differentiated into dopaminergic and cholinergic lines and exposed to 6-hydroxydopamine and okadaic acid, respectively, to simulate in vitro models of Parkinson's disease and Alzheimer's disease. The ability of the juice to enhance neuronal viability under toxic conditions was examined. Additionally, its inhibitory effects on neuroprotective-related enzymes, including MAO-A and MAO-B, were assessed in vitro. Results: Phytochemical characterization reveals that 5-O-caffeoylquinic acid constitutes 80% of the total phenolic compounds. Higher concentrations of the juice effectively protected both differentiated and undifferentiated SH-SY5Y cells from H2O2-induced oxidative damage, reducing oxidative stress by approximately 20% and suggesting a dose-dependent mechanism. Moreover, the presence of the juice significantly enhanced the viability of dopaminergic and cholinergic cells exposed to neurotoxic agents. In vitro, the juice inhibited the activity of MAO-A (IC50 = 87.21 µg/mL) and MAO-B (IC50 = 56.50 µg/mL). Conclusions: While these findings highlight C. album berries as a promising neuroprotective agent, further research is required to elucidate its neuroprotective mechanisms in cell and animal models and, ultimately, in human trials.
Collapse
Affiliation(s)
- Antonio Canoyra
- Pharmaceutical and Health Science Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe Boadilla del Monte, 28660 Madrid, Spain;
| | - Carmen Martín-Cordero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain; (C.M.-C.); (A.J.L.-G.)
| | - Dolores Muñoz-Mingarro
- Chemistry and Biochemistry Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain;
| | - Antonio J. León-González
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain; (C.M.-C.); (A.J.L.-G.)
| | - Richard B. Parsons
- King’s College London, Institute of Pharmaceutical Sciences, 150 Stamford Street, London SE1 9NH, UK;
| | - Nuria Acero
- Pharmaceutical and Health Science Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe Boadilla del Monte, 28660 Madrid, Spain;
| |
Collapse
|
26
|
Yoon G, Kam MK, Koh YH, Jo C. Palmitoyl-L-carnitine induces tau phosphorylation and mitochondrial dysfunction in neuronal cells. PLoS One 2024; 19:e0313507. [PMID: 39536002 PMCID: PMC11560007 DOI: 10.1371/journal.pone.0313507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and memory loss, involving mechanisms such as tau hyperphosphorylation and mitochondrial dysfunction. Increasing evidence suggests that age-related alterations in metabolite levels are crucial for the pathogenesis of AD. Here, we analyzed serum metabolites from mice of various ages (2, 4, 14, and 21 months old) using mass spectrometry. We identified palmitoyl-L-carnitine as a key metabolite with significantly increased levels in aged mice. In vitro experiments with SH-SY5Y neuronal cells demonstrated that palmitoyl-L-carnitine treatment enhanced tau phosphorylation, increased mitochondrial fission, and elevated intracellular calcium levels. Furthermore, the increased levels of tau phosphorylation were significantly reduced by the inhibition of GSK-3β, CDK5, and calpain, indicating that tau kinases activated by calcium overload are directly involved in the increase of tau phosphorylation. Considering that mitochondrial fission is related to mitochondrial dysfunction, we propose that the elevated level of serum palmitoyl-L-carnitine during aging contributes to AD pathology through these pathways. These findings highlight the significant role of lipid metabolism in neurodegeneration and offer potential therapeutic targets for age-related diseases, including AD.
Collapse
Affiliation(s)
- Gwangho Yoon
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Min Kyoung Kam
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Chulman Jo
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
27
|
Singh R, Joshi A, Koundal M, Sabharwal A, Verma N, Gahalot D, Sunkaria A. Proteomic insights into early-stage Alzheimer's disease: Identifying key neuronal proteins impacted by amyloid beta oligomers in an in vitro model. Neuroscience 2024; 560:254-262. [PMID: 39362622 DOI: 10.1016/j.neuroscience.2024.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Alzheimer's disease (AD) remains a pressing global health concern, necessitating comprehensive investigations into its underlying molecular mechanisms. While the late-stage pathophysiology of this disease is well understood, it is crucial to examine the role of amyloid beta oligomers (Aβo), which form in the brain during the early stages of disease development. These toxic oligomers could affect neuronal viability and generate oxidative stress in the brain. In this study, we exposed SHSY-5Y cells to Aβo. The increase in intracellular reactive oxygen species and apoptosis observed in Aβo-treated cells mimics the early stages of AD. Comprehensive proteomic profiling identified 2966 differentially expressed proteins, with 123 significantly modulated. Utilizing the NeuroPro database, we identified 80 confirmed AD-related proteins and 43 novel candidates. Seven AD-related proteins with a NeuroPro score ≥ 5 were shortlisted. Furthermore, these proteins are found to be associated with Aβ plaques in AD brains. VGF, LTF, PARP1, and MAOA have been implicated in various mechanisms underlying AD, including synaptic plasticity, iron homeostasis, DNA repair, and neurotransmitter degradation. Our study also revealed the involvement of less-explored proteins like MYH9, CISD1, and SNRNP70, which play critical roles in cytoskeletal dynamics, mitochondrial function, and RNA splicing, respectively. These findings underscore the complex pathophysiology of AD, highlighting potential biomarkers and therapeutic targets for early intervention. The present study advances the understanding of Aβo-induced oxidative stress and neuronal damage, providing a foundation for future research into early-stage AD diagnosis and subsequent treatment strategies.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aaradhana Joshi
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Muskan Koundal
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aanchal Sabharwal
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Naveen Verma
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Dharmendra Gahalot
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
28
|
Sanajou S, Yirün A, Arca Çakır D, Demirel G, Şahin G, Erkekoğlu P, Baydar T. Unraveling the neuroprotective mechanisms of naltrexone against aluminum-induced neurotoxicity. Drug Chem Toxicol 2024; 47:854-865. [PMID: 38221775 DOI: 10.1080/01480545.2024.2303975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Aluminum (Al) is a known neurotoxic trace element linked to Alzheimer's disease (AD). Naltrexone, an opioid antagonist, has shown promising effects in reducing neuroinflammation at lower doses than those prescribed for addiction. This study aimed to determine the neuroprotective effects of naltrexone on Al-induced neurotoxicity in an in vitro AD model. The SH-SY5Y cells were first cultivated in a standard growth medium. Subsequently, the cells were induced to differentiate by decreasing the concentration of fetal bovine serum and introducing retinoic acid (RA) into the culture media. Subsequently, the inclusion of brain-derived neurotrophic factor (BDNF) was implemented in conjunction with RA. The process of differentiation was concluded on the seventh day. Study groups (n = 3) were designed as the control group, naltrexone group, Al group, Al-Nal group, Alzheimer' model (AD) group, Alzheimer model + Al-exposed group (AD-Al), Alzheimer model + Nal applied group (AD-Nal) and Alzheimer model + Al-exposed + Nal applied group (AD-Al-Nal). Hyperphosphorylated Tau protein as the specific marker of AD was measured in all groups. Glycogen synthase kinase-3 (GSK-3)β, Protein phosphatase 2A (PP2A), Akt and Wnt signaling pathways were analyzed comparatively. In addition, oxidative stress parameters (total antioxidant capacity, lipid peroxidase, protein carbonyl and reactive oxygen species) were measured comparatively in the study groups. The results showed that naltrexone reduced hyperphosphorylated tau protein levels by regulating GSK-3β, PP2A, Akt and Wnt signaling. Also, exposure to naltrexone decreased oxidative stress parameters. Based on these results, naltrexone shows promise as a potential therapy for AD, subject to additional clinical assessments.
Collapse
Affiliation(s)
- Sonia Sanajou
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Anil Yirün
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Toxicology, Faculty of Pharmacy, Çukurova University, Adana, Turkey
| | - Deniz Arca Çakır
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University, Vaccine Institute, Ankara, Turkey
| | - Göksun Demirel
- Department of Toxicology, Faculty of Pharmacy, Çukurova University, Adana, Turkey
| | - Gönül Şahin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Pinar Erkekoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University, Vaccine Institute, Ankara, Turkey
| | - Terken Baydar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
29
|
Magnusson A, Wu R, Demirel I. Porphyromonas gingivalis triggers microglia activation and neurodegenerative processes through NOX4. Front Cell Infect Microbiol 2024; 14:1451683. [PMID: 39469453 PMCID: PMC11513391 DOI: 10.3389/fcimb.2024.1451683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024] Open
Abstract
Periodontitis and infections with periodontal bacteria have been highlighted as risk factors for dementia. In recent years, attention has been drawn to the role of microglia cells in neurodegenerative diseases. However, there is limited knowledge of the influence of periodontal bacteria on microglia cells. The aim of the present study was to investigate the interactions between the periodontal bacteria Porphyromonas gingivalis and microglia cells and to unravel whether these interactions could contribute to the pathology of Alzheimer's disease. We found, through microarray analysis, that stimulation of microglia cells with P. gingivalis resulted in the upregulation of several Alzheimer's disease-associated genes, including NOX4. We also showed that P. gingivalis lipopolysaccharides (LPS) mediated reactive oxygen species (ROS) production and interleukin 6 (IL-6) and interleukin 8 (IL-8) induction via NOX4 in microglia. The viability of neurons was shown to be reduced by conditioned media from microglia cells stimulated with P. gingivalis LPS and the reduction was NOX4 dependent. The levels of total and phosphorylated tau in neurons were increased by conditioned media from microglia cells stimulated with P. gingivalis or LPS. This increase was NOX4-dependent. In summary, our findings provide us with a potential mechanistic explanation of how the periodontal pathogen P. gingivalis could trigger or exacerbate AD pathogenesis.
Collapse
Affiliation(s)
- Anna Magnusson
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Periodontology and Implantology, Postgraduate Dental Education Center and School of Medical Sciences, Faculty of Medicine and Health, Orebro University, Örebro, Sweden
| | - Rongrong Wu
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
30
|
Mânica da Cruz IB, Chelotti ME, Turra BO, Cardoso de Afonso Bonotto N, Pulcinelli DF, Kerkhoff Escher AL, Klein C, de Azevedo Mello P, Bitencourt GR, Barbisan F. Achyrocline satureioides infusion, popularly prepared and consumed, has an in vitro protective effect on human neural cells exposed to rotenone. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118350. [PMID: 38763375 DOI: 10.1016/j.jep.2024.118350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional harvest of Achyrocline satureioides (AS) occurs at dawn on Good Friday in some South American countries. Inflorescences are traditionally used as infusions for several disorders, including neuropsychiatric disorders. Pillows and cushions are popularly filled with AS to attenuate the symptoms of depression, anxiety, and sleep disturbances. However, evidence for the potential beneficial effects of AS on human neural cells remains unclear. AIM OF THE STUDY An in vitro model of SH-SY5Y human neural cells was applied to evaluate the effect of AS infusion, prepared as commonly used, on cells exposed to rotenone and to investigate its potential for neuropsychiatric disorders. MATERIALS AND METHODS A hot aqueous extract was obtained from a traditionally prepared AS inflorescence infusion and chemically characterized by high-resolution mass spectrometry and spectrophotometric quantification of total polyphenols, tannins, and flavonoids. The SH-SY5Y cell cultures were treated with AS extract at concentrations of 1, 3, 5, 10, 50, 100, and 300 μL/mL to determine the potential cyto- and genotoxic effects of AS on neural cells using MTT, Neutral Red, and GEMO assays. Apoptosis modulation was assessed using flow cytometry and apoptosis-modulating genes were evaluated by qRT-PCR. The protective effect of AS on the neurotoxicity triggered by rotenone exposure (30 nM) was determined by analyzing cellular viability and oxidative markers such as lipid peroxidation and protein carbonylation, and DNA damage was assessed by micronucleus assay. RESULTS The AS extract, as traditionally prepared, had estimated concentrations of 409.973 ± 31.107 μg/mL, 0.1041 ± 0.0246 mg GAE/mL, and 63.309 ± 3.178 mg QE/mL of total tannins, total polyphenols, and flavonoids, respectively. At concentrations of 30 and 100 μl/mL, AS decreased apoptotic events, whereas the highest concentration (300 μl/mL) increased apoptosis compared to that in the control (p < 0.05). In cells exposed to rotenone, AS treatment induced cell proliferation, reduced DNA damage (as evaluated by micronuclei), and reduced lipid and protein oxidation. CONCLUSIONS The data indicate the non-cytotoxic and beneficial effects of AS extract on human neural cells by reducing cellular mortality and oxidative stress in neural cells triggered by rotenone exposure.
Collapse
Affiliation(s)
- Ivana Beatrice Mânica da Cruz
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Maria Eduarda Chelotti
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Barbara Osmarin Turra
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Nathália Cardoso de Afonso Bonotto
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Débora Felipetto Pulcinelli
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Ana Laura Kerkhoff Escher
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Caroline Klein
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Paola de Azevedo Mello
- Departamento de Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Gustavo Rossato Bitencourt
- Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Fernanda Barbisan
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
31
|
Maramai S, Saletti M, Paolino M, Giuliani G, Cazzola J, Spaiardi P, Talpo F, Frosini M, Pifferi A, Ballarotto M, Carotti A, Poggialini F, Vagaggini C, Dreassi E, Giorgi G, Dondio G, Cappelli A, Rosario Biella G, Anzini M. Novel multitarget directed ligands inspired by riluzole: A serendipitous synthesis of substituted benzo[b][1,4]thiazepines potentially useful as neuroprotective agents. Bioorg Med Chem 2024; 112:117872. [PMID: 39153378 DOI: 10.1016/j.bmc.2024.117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Riluzole, the first clinically approved treatment for amyotrophic lateral sclerosis (ALS), represents a successful example of a drug endowed with a multimodal mechanism of action. In recent years, different series of riluzole-based compounds have been reported, including several agents acting as Multi-Target-Directed Ligands (MTLDs) endowed with neuroprotective effects. Aiming at identical twin structures inspired by riluzole (2a-c), a synthetic procedure was planned, but the reactivity of the system took a different path, leading to the serendipitous isolation of benzo[b][1,4]thiazepines 3a-c and expanded intermediates N-cyano-benzo[b][1,4]thiazepines 4a-c, which were fully characterized. The newly obtained structures 3a-c, bearing riluzole key elements, were initially tested in an in vitro ischemia/reperfusion injury protocol, simulating the cerebral stroke. Results identified compound 3b as the most effective in reverting the injury caused by an ischemia-like condition, and its activity was comparable, or even higher than that of riluzole, exhibiting a concentration-dependent neuroprotective effect. Moreover, derivative 3b completely reverted the release of Lactate Dehydrogenase (LDH), lowering the values to those of the control slices. Based on its very promising pharmacological properties, compound 3b was then selected to assess its effects on voltage-dependent Na+ and K+ currents. The results indicated that derivative 3b induced a multifaceted inhibitory effect on voltage-gated currents in SH-SY5Y differentiated neurons, suggesting its possible applications in epilepsy and stroke management, other than ALS. Accordingly, brain penetration was also measured for 3b, as it represents an elegant example of a MTDL and opens the way to further ex-vivo and/or in-vivo characterization.
Collapse
Affiliation(s)
- Samuele Maramai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Jessica Cazzola
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy
| | - Paolo Spaiardi
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy; INFN - Sezione di Pavia, Dipartimento di Fisica, Via Agostino Bassi 6, 27100 Pavia, Italy
| | - Francesca Talpo
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alice Pifferi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Ballarotto
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Andrea Carotti
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Federica Poggialini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Chiara Vagaggini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Elena Dreassi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gianluca Giorgi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza 65, 20090 Buccinasco, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gerardo Rosario Biella
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy; INFN - Sezione di Pavia, Dipartimento di Fisica, Via Agostino Bassi 6, 27100 Pavia, Italy
| | - Maurizio Anzini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
32
|
Targett IL, Crompton LA, Conway ME, Craig TJ. Differentiation of SH-SY5Y neuroblastoma cells using retinoic acid and BDNF: a model for neuronal and synaptic differentiation in neurodegeneration. In Vitro Cell Dev Biol Anim 2024; 60:1058-1067. [PMID: 39017752 PMCID: PMC11534981 DOI: 10.1007/s11626-024-00948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
There has been much interest in the use of cell culture models of neurones, to avoid the animal welfare and cost issues of using primary and human-induced pluripotent stem cell (hiPSC)-derived neurones respectively. The human neuroblastoma cell line, SH-SY5Y, is extensively used in laboratories as they can be readily expanded, are of low cost and can be differentiated into neuronal-like cells. However, much debate remains as to their phenotype once differentiated, and their ability to recapitulate the physiology of bona fide neurones. Here, we characterise a differentiation protocol using retinoic acid and BDNF, which results in extensive neurite outgrowth/branching within 10 days, and expression of key neuronal and synaptic markers. We propose that these differentiated SH-SY5Y cells may be a useful substitute for primary or hiPSC-derived neurones for cell biology studies, in order to reduce costs and animal usage. We further propose that this characterised differentiation timecourse could be used as an in vitro model for neuronal differentiation, for proof-of principle studies on neurogenesis, e.g. relating to neurodegenerative diseases. Finally, we demonstrate profound changes in Tau phosphorylation during differentiation of these cells, suggesting that they should not be used for neurodegeneration studies in their undifferentiated state.
Collapse
Affiliation(s)
- Imogen L Targett
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Lucy A Crompton
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | | | - Tim J Craig
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| |
Collapse
|
33
|
Wang Y, Pradhan A, Gupta P, Hanrieder J, Zetterberg H, Cans AS. Analyzing Fusion Pore Dynamics and Counting the Number of Acetylcholine Molecules Released by Exocytosis. J Am Chem Soc 2024; 146:25902-25906. [PMID: 39259049 PMCID: PMC11440489 DOI: 10.1021/jacs.4c08450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Acetylcholine (ACh) is a critical neurotransmitter influencing various neurophysiological functions. Despite its significance, quantitative methods with adequate spatiotemporal resolution for recording a single exocytotic ACh efflux are lacking. In this study, we introduce an ultrafast amperometric ACh biosensor that enables 50 kHz electrochemical recording of spontaneous single exocytosis events at axon terminals of differentiated cholinergic human SH-SY5Y neuroblastoma cells with sub-millisecond temporal resolution. Characterization of the recorded amperometric traces revealed seven distinct current spike types, each displaying variations in shape, time scale, and ACh quantities released. This finding suggests that exocytotic release is governed by complex fusion pore dynamics in these cells. The absolute number of ACh molecules released during exocytosis was quantified by calibrating the sensor through the electroanalysis of liposomes preloaded with varying ACh concentrations. Notably, the largest quantal release involving approximately 8000 ACh molecules likely represents full exocytosis, while a smaller release of 5000 ACh molecules may indicate partial exocytosis. Following a local administration of bafilomycin A1, a V-ATPase inhibitor, the cholinergic cells exhibited both a larger quantity of ACh released and a higher frequency of exocytosis events. Therefore, this ACh sensor provides a means to monitor minute amounts of ACh and investigate regulatory release mechanisms at the single-cell level, which is vital for understanding healthy brain function and pathologies and optimizing drug treatment for disorders.
Collapse
Affiliation(s)
- Yuanmo Wang
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden
| | - Ajay Pradhan
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience &
Physiology, The Sahlgrenska Academy at the
University of Gothenburg, SE-43141 Mölndal, Sweden
| | - Pankaj Gupta
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience &
Physiology, The Sahlgrenska Academy at the
University of Gothenburg, SE-43141 Mölndal, Sweden
- Department
of Neurodegenerative Disease, UCL Institute
of Neurology, Queen Square, WC1N 3BG London, U.K.
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience &
Physiology, The Sahlgrenska Academy at the
University of Gothenburg, SE-43141 Mölndal, Sweden
- Department
of Neurodegenerative Disease, UCL Institute
of Neurology, Queen Square, WC1N 3BG London, U.K.
- Clinical
Neurochemistry Laboratory, The Sahlgrenska
University Hospital, SE-43141 Mölndal, Sweden
- UK
Dementia
Research Institute at UCL, WC1N 3BG London, U.K.
- Hong
Kong Center for Neurodegenerative Diseases, Clear Water Bay, 999077 Hong Kong, China
- Wisconsin
Alzheimer’s Disease Research Center, University of Wisconsin
School of Medicine and Public Health, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| | - Ann-Sofie Cans
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
34
|
Morshed N, Rennie C, Deng W, Collins-Praino L, Care A. Serum-derived protein coronas affect nanoparticle interactions with brain cells. NANOTECHNOLOGY 2024; 35:495101. [PMID: 39284320 DOI: 10.1088/1361-6528/ad7b40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Neuronanomedicine is an emerging field bridging the gap between neuromedicine and novel nanotherapeutics. Despite promise, clinical translation of neuronanomedicine remains elusive, possibly due to a dearth of information regarding the effect of the protein corona on these neuronanomedicines. The protein corona, a layer of proteins adsorbed to nanoparticles following exposure to biological fluids, ultimately determines the fate of nanoparticles in biological systems, dictating nanoparticle-cell interactions. To date, few studies have investigated the effect of the protein corona on interactions with brain-derived cells, an important consideration for the development of neuronanomedicines. Here, two polymeric nanoparticles, poly(lactic-co-glycolic acid) (PLGA) and PLGA-polyethylene glycol (PLGA-PEG), were used to obtain serum-derived protein coronas. Protein corona characterization and liquid chromatography mass spectrometry analysis revealed distinct differences in biophysical properties and protein composition. PLGA protein coronas contained high abundance of globins (60%) and apolipoproteins (21%), while PLGA-PEG protein coronas contained fewer globins (42%) and high abundance of protease inhibitors (28%). Corona coated PLGA nanoparticles were readily internalized into microglia and neuronal cells, but not into astrocytes. Internalization of nanoparticles was associated with pro-inflammatory cytokine release and decreased neuronal cell viability, however, viability was rescued in cells treated with corona coated nanoparticles. These results showcase the importance of the protein corona in mediating nanoparticle-cell interactions.
Collapse
Affiliation(s)
- Nabila Morshed
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Claire Rennie
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Gadigal Country, Sydney, NSW 2007, Australia
| | - Lyndsey Collins-Praino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
- Biologics Innovation Facility, University of Technology Sydney, Gadigal Country, Sydney, NSW 2007, Australia
| |
Collapse
|
35
|
Camera F, Colantoni E, Casciati A, Tanno B, Mencarelli L, Di Lorenzo F, Bonnì S, Koch G, Merla C. Dosimetry for repetitive transcranial magnetic stimulation: a translational study from Alzheimer's disease patients to controlled in vitroinvestigations. Phys Med Biol 2024; 69:185001. [PMID: 39142335 DOI: 10.1088/1361-6560/ad6f69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Objective.Recent studies have indicated that repetitive transcranial magnetic stimulation (rTMS) could enhance cognition in Alzheimer's Disease (AD) patients, but to now the molecular-level interaction mechanisms driving this effect remain poorly understood. While cognitive scores have been the primary measure of rTMS effectiveness, employing molecular-based approaches could offer more precise treatment predictions and prognoses. To reach this goal, it is fundamental to assess the electric field (E-field) and the induced current densities (J) within the stimulated brain areas and to translate these values toin vitrosystems specifically devoted in investigating molecular-based interactions of this stimulation.Approach.This paper offers a methodological procedure to guide dosimetric assessment to translate the E-field induced in humans (in a specific pilot study) intoin vitrosettings. Electromagnetic simulations on patients' head models and cellular holders were conducted to characterize exposure conditions and determine necessary adjustments forin vitroreplication of the same dose delivered in humans using the same stimulating coil.Main results.Our study highlighted the levels of E-field andJinduced in the target brain region and showed that the computed E-field andJwere different among patients that underwent the treatment, so to replicate the exposure to thein vitrosystem, we have to consider a range of electric quantities as reference. To match the E-field to the levels calculated in patients' brains, an increase of at least the 25% in the coil feeding current is necessary whenin vitrostimulations are performed. Conversely, to equalize current densities, modifications in the cells culture medium conductivity have to be implemented reducing it to one fifth of its value.Significance.This dosimetric assessment and subsequent experimental adjustments are essential to achieve controlledin vitroexperiments to better understand rTMS effects on AD cognition. Dosimetry is a fundamental step for comparing the cognitive effects with those obtained by stimulating a cellular model at an equal dose rigorously evaluated.
Collapse
Affiliation(s)
| | | | | | - Barbara Tanno
- Division of Biotechnologies, ENEA, Rome 00123, Italy
| | - Lucia Mencarelli
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome 00179, Italy
| | - Francesco Di Lorenzo
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome 00179, Italy
| | - Sonia Bonnì
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome 00179, Italy
| | - Giacomo Koch
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome 00179, Italy
| | | |
Collapse
|
36
|
Hossain MS, Mawatari S, Honsho M, Okauchi T, Fujino T. KIT-13, a novel plasmalogen derivative, attenuates neuroinflammation and amplifies cognition. Front Cell Dev Biol 2024; 12:1443536. [PMID: 39286482 PMCID: PMC11402709 DOI: 10.3389/fcell.2024.1443536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Plasmalogens (Pls) are specialized phospholipids integral to brain health, whose decline due to aging and stress contributes to cognitive impairment and neuroinflammation. This study explores the potential of a novel Pls derivative, KIT-13 (1-O-octadecyl-2-arachidonoyl-sn-glycerol-3-phosphoethanolamine), in mitigating neuroinflammation and enhancing cognition. When administered to mice, KIT-13 exhibited potent memory enhancement attributed to upregulated brain-derived neurotrophic factor (BDNF), a key player in cognitive processes. In vitro experiments with neuronal cells revealed KIT-13's ability to induce robust cellular signaling, surpassing natural plasmalogens. KIT-13 also promoted neurogenesis and inhibited apoptosis of neuronal-like cells, highlighting its potential in fostering neuronal growth and plasticity. Additionally, KIT-13 treatments reduced pro-inflammatory cytokine expression and attenuated glial activation in the brain. KIT-13's superior efficacy over natural Pls positions it as a promising therapeutic candidate for neurodegenerative conditions such as Alzheimer's disease, characterized by cognitive decline and neuroinflammation. This study presents KIT-13 as an innovative approach for addressing cognitive impairment and neuroinflammatory pathologies.
Collapse
Affiliation(s)
- Md Shamim Hossain
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Shiro Mawatari
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, Japan
| | - Takehiko Fujino
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| |
Collapse
|
37
|
Kalwarczyk E, Lukasiak A, Woznica D, Switlik W, Anchimowicz J, Zielonka P, Jakiela S. Proliferation of SH-SY5Y neuroblastoma cells on confined spaces. J Neurosci Methods 2024; 409:110204. [PMID: 38925370 DOI: 10.1016/j.jneumeth.2024.110204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Microfluidics offers precise drug delivery and continuous monitoring of cell functions, which is crucial for studying the effects of toxins and drugs. Ensuring proper cell growth in these space-constrained systems is essential for obtaining consistent results comparable to standard Petri dishes. NEW METHOD We investigated the proliferation of SH-SY5Y cells on circular polycarbonate chambers with varying surface areas. SH-SY5Y cells were chosen for their relevance in neurodegenerative disease research. RESULTS Our study demonstrates a correlation between the chamber surface area and SH-SY5Y cell growth rates. Cells cultured in chambers larger than 10 mm in diameter exhibited growth comparable to standard 60-mm dishes. In contrast, smaller chambers significantly impeded growth, even at identical seeding densities. Similar patterns were observed for HeLaGFP cells, while 16HBE14σ cells proliferated efficiently regardless of chamber size. Additionally, SH-SY5Y cells were studied in a 12-mm diameter sealed chamber to assess growth under restricted gas exchange conditions. COMPARISON WITH EXISTING METHODS Our findings underscore the limitations of small chamber sizes in microfluidic systems for SH-SY5Y cells, an issue not typically addressed by conventional methods. CONCLUSIONS SH-SY5Y cell growth is highly sensitive to spatial constraints, with markedly reduced proliferation in chambers smaller than 10 mm. This highlights the need to carefully consider chamber size in microfluidic experiments to achieve cell growth rates comparable to standard culture dishes. The study also shows that while SH-SY5Y and HeLaGFP cells are affected by chamber size, 16HBE14σ cells are not. These insights are vital for designing effective microfluidic systems for bioengineering research.
Collapse
Affiliation(s)
- Ewelina Kalwarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 159 Nowoursynowska Street, Warsaw, 02776, Poland.
| | - Agnieszka Lukasiak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 159 Nowoursynowska Street, Warsaw, 02776, Poland.
| | - Damian Woznica
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 159 Nowoursynowska Street, Warsaw, 02776, Poland.
| | - Weronika Switlik
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, 159 Nowoursynowska Street, Warsaw, 02776, Poland.
| | - Julia Anchimowicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, 159 Nowoursynowska Street, Warsaw, 02776, Poland.
| | - Piotr Zielonka
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 159 Nowoursynowska Street, Warsaw, 02776, Poland.
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 159 Nowoursynowska Street, Warsaw, 02776, Poland.
| |
Collapse
|
38
|
Peng D, Wang L, Fang Y, Lu L, Li Z, Jiang S, Chen J, Aschner M, Li S, Jiang Y. Lead exposure induces neurodysfunction through caspase-1-mediated neuronal pyroptosis. ENVIRONMENTAL RESEARCH 2024; 255:119210. [PMID: 38795947 DOI: 10.1016/j.envres.2024.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Chronic lead (Pb) exposure causes neurodysfunction and contributes to the development of neurodegenerative disease. However, the mechanism of Pb-induced neurological dysfunction have yet to be fully elucidated. This study determined the role pyroptosis plays in Pb-induced neurodysfunction in neurons. We used both in vitro and in vivo approaches to explore whether Pb exposure induces caspase-1-mediated pyroptosis in neurons and its relationship to Pb-induced neurological disorders. Our findings showed that caspase-1-mediated pyroptosis in Pb-exposed neurons activated glycogen synthase kinase 3 protease activity by disrupting Ca2+/calmodulin-dependent protein kinase II/cAMP-response element binding protein pathway, leading to neurological disorders. Moreover, the caspase-1 inhibition VX-765 or the non-steroidal anti-inflammatory drug sodium para-aminosalicylic acid (PAS-Na) attenuated the Pb-induced neurological disorders by alleviating caspase-1 mediated neuronal pyroptosis. Our novel studies suggest that caspase-1-mediated pyroptosis in neurons represents a potential mechanism for Pb-induced neurodysfunction, identifying a putative target for attenuating the neurodegenerative effects induced by this metal.
Collapse
Affiliation(s)
- Dongjie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Leilei Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yuanyuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lili Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Zhaocong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Siyang Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jing Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
39
|
Thammasart S, Namchaiw P, Pasuwat K, Tonsomboon K, Khantachawana A. Neuroprotective Potential of Photobiomodulation Therapy: Mitigating Amyloid-Beta Accumulation and Modulating Acetylcholine Levels in an In Vitro Model of Alzheimer's Disease. Photobiomodul Photomed Laser Surg 2024; 42:524-533. [PMID: 39058735 DOI: 10.1089/pho.2024.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Objective: To investigate the effects of photobiomodulation therapy (PBMT) at 660 and 810 nm on amyloid-beta (Aβ)42-induced toxicity in differentiated SH-SY5Y cells and to assess its impact on Aβ42 accumulation and cholinergic neurotransmission. Background: Alzheimer's disease (AD) is characterized by the accumulation of Aβ peptides, leading to neurodegeneration, cholinergic deficit, and cognitive decline. PBMT has emerged as a potential therapeutic approach to mitigate Aβ-induced toxicity and enhance cholinergic function. Methods: Differentiated neurons were treated with 1 μM Aβ42 for 1 day, followed by daily PBMT at wavelengths of 660 and 810 nm for 7 days. Treatments used LEDs emitting continuous wave light at a power density of 5 mW/cm2 for 10 min daily to achieve an energy density of 3 J/cm2. Results: Differentiated SH-SY5Y cells exhibited increased Aβ42 aggregation, neurite retraction, and reduced cell viability. PBMT at 810 nm significantly mitigated the Aβ42-induced toxicity in these cells, as evidenced by reduced Aβ42 aggregation, neurite retraction, and improved cell viability and neuronal morphology. Notably, this treatment also restored acetylcholine levels in the neurons exposed to Aβ42. Conclusions: PBMT at 810 nm effectively reduces Aβ42-induced toxicity and supports neuronal survival, highlighting its neuroprotective effects on cholinergic neurons. By shedding light on the impact of low-level light therapy on Aβ42 accumulation and cellular processes. These findings advocate for further research to elucidate the mechanisms of PBMT and validate its clinical relevance in AD management.
Collapse
Affiliation(s)
- Siriluk Thammasart
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Poommaree Namchaiw
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Kwanchanok Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Khaow Tonsomboon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anak Khantachawana
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| |
Collapse
|
40
|
Cardoso S, Carvalho C, Correia SC, Moreira PI. Protective effects of 2,4-dinitrophenol in okadaic acid-induced cellular model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167222. [PMID: 38729530 DOI: 10.1016/j.bbadis.2024.167222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) research started several decades ago and despite the many efforts employed to develop new treatments or approaches to slow and/or revert disease progression, AD treatment remains an unsolved issue. Knowing that mitochondria loss of function is a central hub for many AD-associated pathophysiological processes, there has been renewed interest in exploring mitochondria as targets for intervention. In this perspective, the present study was aimed to investigate the possible beneficial effects of 2,4 dinitrophenol (DNP), a mitochondrial uncoupler agent, in an in vitro model of AD. Retinoic acid-induced differentiated SH-SY5Y cells were incubated with okadaic acid (OA), a neurotoxin often used as an AD experimental model, and/or with DNP. OA caused a decrease in neuronal cells viability, induced multiple mitochondrial anomalies including increased levels of reactive oxygen species, decreased bioenergetics and mitochondria content markers, and an altered mitochondria morphology. OA-treated cells also presented increased lipid peroxidation levels, and overactivation of tau related kinases (GSK3β, ERK1/2 and AMPK) alongside with a significant augment in tau protein phosphorylation levels. Interestingly, DNP co-treatment ameliorated and rescued OA-induced detrimental effects not only on mitochondria but also but also reinstated signaling pathways homeostasis and ameliorated tau pathology. Overall, our results show for the first time that DNP has the potential to preserve mitochondria homeostasis under a toxic insult, like OA exposure, as well as to reestablish cellular signaling homeostasis. These observations foster the idea that DNP, as a mitochondrial modulator, might represent a new avenue for treatment of AD.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| | - Cristina Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sónia C Correia
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paula I Moreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
41
|
Demirel G, Sanajou S, Yirün A, Çakır DA, Özyurt AB, Berkkan A, Baydar T, Erkekoğlu P. Walnut oil: a promising nutraceutical in reducing oxidative stress and improving cholinergic activity in an in vitro Alzheimer's disease model. Toxicol Res (Camb) 2024; 13:tfae097. [PMID: 38957781 PMCID: PMC11215158 DOI: 10.1093/toxres/tfae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Improving the quality of life in elderly patients and finding new treatment options for neurological diseases such as Alzheimer's has become one of the priorities in the scientific world. In recent years, the beneficial effects and therapeutic properties of natural foods on neurological health have become a very remarkable issue. Walnut oil (WO) is a promising nutraceutical, with many phytochemicals and polyunsaturated fatty acids and is thought to be promising in the treatment of many neurological diseases and cognitive deficits, such as Alzheimer's disease (AD). Polyphenolic compounds found in WO enhance intraneuronal signaling and neurogenesis and improve the sequestration of insoluble toxic protein aggregates. The objective of this study was to investigate the potential protective and therapeutic effects of WO in a model of AD induced by retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). In order to achieve this, the experimental groups were formed as follows: Control group, WO group, Alzheimer's disease (AD) group, AD + WO applied group (AD + WO). WO supplementation almost significantly reduced oxidative stress in the ad model, providing 2-fold protection against protein oxidation. Additionally, WO showed a significant reduction in tau protein levels (2-fold), increased acetylcholine (ACh) levels (12%), and decreased acetylcholine esterase (AChE) activity (~50%). Since it has been known for centuries that WO does show any adverse effects on human health and has neuroprotective properties, it may be used in the treatment of AD as an additional nutraceutical to drug treatments.
Collapse
Affiliation(s)
- Göksun Demirel
- Faculty of Pharmacy, Department of Toxicology, Çukurova University, Adana 01330, Turkey
- Institute of Addiction and Forensic Sciences, Department of Forensic Sciences, Çukurova University 01330, Adana, Turkey
| | - Sonia Sanajou
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul Aydin University, Istanbul 34320, Türkiye
| | - Anıl Yirün
- Faculty of Pharmacy, Department of Toxicology, Çukurova University, Adana 01330, Turkey
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
| | - Deniz Arca Çakır
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
- Vaccine Institute, Department of Vaccine Technology, Hacettepe University, Ankara 06100, Turkey
| | - Aylin Balcı Özyurt
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
- Faculty of Pharmacy, Department of Toxicology, Bahçeşehir University, Istanbul 34353, Turkey
| | - Aysel Berkkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, Ankara 06500, Turkey
| | - Terken Baydar
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
| | - Pınar Erkekoğlu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
- Vaccine Institute, Department of Vaccine Technology, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
42
|
Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Charoenlappanit S, Thaisakun S, Kumsri N, Arpornsuwan T. Secretomic changes of amyloid beta peptides on Alzheimer's disease related proteins in differentiated human SH-SY5Y neuroblastoma cells. PeerJ 2024; 12:e17732. [PMID: 39035166 PMCID: PMC11260076 DOI: 10.7717/peerj.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes physical damage to neuronal connections, leading to brain atrophy. This disruption of synaptic connections results in mild to severe cognitive impairments. Unfortunately, no effective treatment is currently known to prevent or reverse the symptoms of AD. The aim of this study was to investigate the effects of three synthetic peptides, i.e., KLVFF, RGKLVFFGR and RIIGL, on an AD in vitro model represented by differentiated SH-SY5Y neuroblastoma cells exposed to retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). The results demonstrated that RIIGL peptide had the least significant cytotoxic activity to normal SH-SY5Y while exerting high cytotoxicity against the differentiated cells. The mechanism of RIIGL peptide in the differentiated SH-SY5Y was investigated based on changes in secretory proteins compared to another two peptides. A total of 380 proteins were identified, and five of them were significantly detected after treatment with RIIGL peptide. These secretory proteins were found to be related to microtubule-associated protein tau (MAPT) and amyloid-beta precursor protein (APP). RIIGL peptide acts on differentiated SH-SY5Y by regulating amyloid-beta formation, neuron apoptotic process, ceramide catabolic process, and oxidative phosphorylation and thus has the potentials to treat AD.
Collapse
Affiliation(s)
- Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nitithorn Kumsri
- Undergraduate Student of Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
| | - Teerakul Arpornsuwan
- Medical Technology Research and Service Unit, Health Care Service Center, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
43
|
Pereira ME, Lima LS, Souza JV, de Souza da Costa N, da Silva JF, Guiloski IC, Irioda AC, Oliveira CS. Evaluation of the Neuroprotective Effect of Organic Selenium Compounds: An in Vitro Model of Alzheimer's Disease. Biol Trace Elem Res 2024; 202:2954-2965. [PMID: 37803188 DOI: 10.1007/s12011-023-03893-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Selenium (Se) is an essential trace element for human health and plays an important role in the development and maintenance of central nervous system functions. Se deficiency has been associated with cognitive decline and increased oxidative stress. The increase in oxidative stress is one of the hypotheses for the emergence and worsening of neurodegenerative diseases, such as Alzheimer's disease (AD). To investigate the neuroprotective effects of organic Se compounds in human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons-like. The SH-SY5Y cells were differentiated into cholinergic neuron-like with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). AD was mimicked exposing the cells to okadaic acid (OA) and beta-amyloid protein (Aβ). The neuroprotective effect of organic Se compounds, selenomethionine (SeMet) and Ebselen, was evaluated through cell viability tests, acetylcholinesterase and antioxidant enzyme activities, and detection of reactive oxygen species (ROS). None of the SeMet concentrations tested protected against the toxic effect of OA + Aβ. On the other hand, previous exposure to 0.1 and 1 µM Ebselen protected cells from the toxic effect of OA + Aβ. Cell differentiation induced by RA and BDNF exposure was effective, showing characteristics of neuronal cells, and pointing to a promising model of AD. Ebselen showed a protective effect, but more studies are needed to identify the mechanism of action.
Collapse
Affiliation(s)
- Meire Ellen Pereira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Luiza Siqueira Lima
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Júlia Vicentin Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nayara de Souza da Costa
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Juliana Ferreira da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Cláudia Sirlene Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
44
|
Jarero-Basulto JJ, Gasca-Martínez Y, Rivera-Cervantes MC, Gasca-Martínez D, Carrillo-González NJ, Beas-Zárate C, Gudiño-Cabrera G. Cytotoxic Effect of Amyloid-β1-42 Oligomers on Endoplasmic Reticulum and Golgi Apparatus Arrangement in SH-SY5Y Neuroblastoma Cells. NEUROSCI 2024; 5:141-157. [PMID: 39483494 PMCID: PMC11469764 DOI: 10.3390/neurosci5020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 11/03/2024] Open
Abstract
Amyloid-β oligomers are a cytotoxic structure that is key for the establishment of the beginning stages of Alzheimer's disease (AD). These structures promote subcellular alterations that cause synaptic dysfunction, loss of cell communication, and even cell death, generating cognitive deficits. The aim of this study was to investigate the cytotoxic effects of amyloid-β1-42 oligomers (AβOs) on the membranous organelles involved in protein processing: the endoplasmic reticulum (ER) and Golgi apparatus (GA). The results obtained with 10 μM AβOs in SH-SY5Y neuroblastoma cells showed that oligomeric structures are more toxic than monomers because they cause cell viability to decrease as exposure time increases. Survivor cells were analyzed to further understand the toxic effects of AβOs on intracellular organelles. Survivor cells showed morphological alterations associated with abnormal cytoskeleton modification 72-96 h after exposure to AβOs. Moreover, the ER and GA presented rearrangement throughout the cytoplasmic space, which could be attributed to a lack of constitutive protein processing or to previous abnormal cytoskeleton modification. Interestingly, the disorganization of both ER and GA organelles exposed to AβOs is likely an early pathological alteration that could be related to aberrant protein processing and accumulation in AD.
Collapse
Affiliation(s)
- José J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (J.J.J.-B.); (M.C.R.-C.)
| | - Yadira Gasca-Martínez
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (N.J.C.-G.)
| | - Martha C Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (J.J.J.-B.); (M.C.R.-C.)
| | - Deisy Gasca-Martínez
- Behavioral Analysis Unit, Neurobiology Institute, Campus UNAM, Juriquilla 76230, Mexico;
| | - Nidia Jannette Carrillo-González
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (N.J.C.-G.)
| | - Carlos Beas-Zárate
- Neurobiotechnology Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico;
| | - Graciela Gudiño-Cabrera
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (N.J.C.-G.)
| |
Collapse
|
45
|
Lin EY, Hsu SX, Wu BH, Deng YC, Wuli W, Li YS, Lee JH, Lin SZ, Harn HJ, Chiou TW. Engineered Exosomes Containing microRNA-29b-2 and Targeting the Somatostatin Receptor Reduce Presenilin 1 Expression and Decrease the β-Amyloid Accumulation in the Brains of Mice with Alzheimer's Disease. Int J Nanomedicine 2024; 19:4977-4994. [PMID: 38828204 PMCID: PMC11144417 DOI: 10.2147/ijn.s442876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Exosomes are membrane vesicles secreted by various cells and play a crucial role in intercellular communication. They can be excellent delivery vehicles for oligonucleotide drugs, such as microRNAs, due to their high biocompatibility. MicroRNAs have been shown to be more stable when incorporated into exosomes; however, the lack of targeting and immune evasion is still the obstacle to the use of these microRNA-containing nanocarriers in clinical settings. Our goal was to produce functional exosomes loaded with target ligands, immune evasion ligand, and oligonucleotide drug through genetic engineering in order to achieve more precise medical effects. Methods To address the problem, we designed engineered exosomes with exogenous cholecystokinin (CCK) or somatostatin (SST) as the targeting ligand to direct the exosomes to the brain, as well as transduced CD47 proteins to reduce the elimination or phagocytosis of the targeted exosomes. MicroRNA-29b-2 was the tested oligonucleotide drug for delivery because our previous research showed that this type of microRNA was capable of reducing presenilin 1 (PSEN1) gene expression and decreasing the β-amyloid accumulation for Alzheimer's disease (AD) in vitro and in vivo. Results The engineered exosomes, containing miR29b-2 and expressing SST and CD47, were produced by gene-modified dendritic cells and used in the subsequent experiments. In comparison with CD47-CCK exosomes, CD47-SST exosomes showed a more significant increase in delivery efficiency. In addition, CD47-SST exosomes led to a higher delivery level of exosomes to the brains of nude mice when administered intravenously. Moreover, it was found that the miR29b-2-loaded CD47-SST exosomes could effectively reduce PSEN1 in translational levels, which resulted in an inhibition of beta-amyloid oligomers production both in the cell model and in the 3xTg-AD animal model. Conclusion Our results demonstrated the feasibility of the designed engineered exosomes. The application of this exosomal nanocarrier platform can be extended to the delivery of other oligonucleotide drugs to specific tissues for the treatment of diseases while evading the immune system.
Collapse
Affiliation(s)
- En-Yi Lin
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shao-Xi Hsu
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Bing-Hua Wu
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Yu-Chen Deng
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- Everfront Biotech Inc, Taipei, Taiwan
| | - Wei Wuli
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | | | | | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
46
|
Kulatunga DCM, Ranaraja U, Kim EY, Kim RE, Kim DE, Ji KB, Kim MK. A novel APP splice variant-dependent marker system to precisely demarcate maturity in SH-SY5Y cell-derived neurons. Sci Rep 2024; 14:12113. [PMID: 38802572 PMCID: PMC11130256 DOI: 10.1038/s41598-024-63005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
SH-SY5Y, a neuroblastoma cell line, can be converted into mature neuronal phenotypes, characterized by the expression of mature neuronal and neurotransmitter markers. However, the mature phenotypes described across multiple studies appear inconsistent. As this cell line expresses common neuronal markers after a simple induction, there is a high chance of misinterpreting its maturity. Therefore, sole reliance on common neuronal markers is presumably inadequate. The Alzheimer's disease (AD) central gene, amyloid precursor protein (APP), has shown contrasting transcript variant dynamics in various cell types. We differentiated SH-SY5Y cells into mature neuron-like cells using a concise protocol and observed the upregulation of total APP throughout differentiation. However, APP transcript variant-1 was upregulated only during the early to middle stages of differentiation and declined in later stages. We identified the maturity state where this post-transcriptional shift occurs, terming it "true maturity." At this stage, we observed a predominant expression of mature neuronal and cholinergic markers, along with a distinct APP variant pattern. Our findings emphasize the necessity of using a differentiation state-sensitive marker system to precisely characterize SH-SY5Y differentiation. Moreover, this study offers an APP-guided, alternative neuronal marker system to enhance the accuracy of the conventional markers.
Collapse
Affiliation(s)
- D Chanuka M Kulatunga
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Umanthi Ranaraja
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | | | | | - Dong Ern Kim
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Kuk Bin Ji
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Min Kyu Kim
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
- MK Biotech Inc., Daejeon, Republic of Korea.
| |
Collapse
|
47
|
Lu Q, Yu A, Pu J, Chen D, Zhong Y, Bai D, Yang L. Post-stroke cognitive impairment: exploring molecular mechanisms and omics biomarkers for early identification and intervention. Front Mol Neurosci 2024; 17:1375973. [PMID: 38845616 PMCID: PMC11153683 DOI: 10.3389/fnmol.2024.1375973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a major stroke consequence that has a severe impact on patients' quality of life and survival rate. For this reason, it is especially crucial to identify and intervene early in high-risk groups during the acute phase of stroke. Currently, there are no reliable and efficient techniques for the early diagnosis, appropriate evaluation, or prognostication of PSCI. Instead, plenty of biomarkers in stroke patients have progressively been linked to cognitive impairment in recent years. High-throughput omics techniques that generate large amounts of data and process it to a high quality have been used to screen and identify biomarkers of PSCI in order to investigate the molecular mechanisms of the disease. These techniques include metabolomics, which explores dynamic changes in the organism, gut microbiomics, which studies host-microbe interactions, genomics, which elucidates deeper disease mechanisms, transcriptomics and proteomics, which describe gene expression and regulation. We looked through electronic databases like PubMed, the Cochrane Library, Embase, Web of Science, and common databases for each omics to find biomarkers that might be connected to the pathophysiology of PSCI. As all, we found 34 studies: 14 in the field of metabolomics, 5 in the field of gut microbiomics, 5 in the field of genomics, 4 in the field of transcriptomics, and 7 in the field of proteomics. We discovered that neuroinflammation, oxidative stress, and atherosclerosis may be the primary causes of PSCI development, and that metabolomics may play a role in the molecular mechanisms of PSCI. In this study, we summarized the existing issues across omics technologies and discuss the latest discoveries of PSCI biomarkers in the context of omics, with the goal of investigating the molecular causes of post-stroke cognitive impairment. We also discuss the potential therapeutic utility of omics platforms for PSCI mechanisms, diagnosis, and intervention in order to promote the area's advancement towards precision PSCI treatment.
Collapse
Affiliation(s)
- Qiuyi Lu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Anqi Yu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Dawei Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Yujie Zhong
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Dingqun Bai
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Lining Yang
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| |
Collapse
|
48
|
Gao F, Zhang Z, Xue N, Ma Y, Jiao J, Wang C, Zhang K, Lin Y, Li S, Guo Z, An J, Wang P, Xu B, Lei H. Identification of a novel oligopeptide from defatted walnut meal hydrolysate as a potential neuroprotective agent. Food Funct 2024; 15:5566-5578. [PMID: 38712886 DOI: 10.1039/d3fo05501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Free radical damage and oxidative stress are thought to play a crucial role in the development of neurodegenerative diseases. Walnut peptides, especially walnut oligopeptides, have been shown to protect nerve cells from oxidative stress and inflammatory damage, as well as improve memory function. In this study, walnut peptides were obtained from walnut meal through enzymatic hydrolysis, ultrafiltration, and gel filtration chromatography. A novel oligopeptide called AQ was successfully isolated and its chemical structure was identified as AASCDQ using ESI-MS/MS. AQ demonstrated remarkable scavenging activity against O2- free radicals (81.00%), DPPH free radicals (79.40%), and ABTS free radicals (67.09%) at a concentration of 1 mg mL-1. Furthermore, AQ exhibited strong neuroprotective effects against hydrogen peroxide-induced damage in SH-SY5Y cells, reducing cell injury and apoptosis. AQ also effectively inhibited the secretion of pro-inflammatory factors NO (IC50 = 46.03 ± 0.32 μM) and suppressed the expression of IL-6 and TNF-α in RAW264.7 cells stimulated by LPS. In vivo experiments demonstrated that AQ promoted angiogenesis in the quail chick chorioallantoic membrane assay and reduced ROS accumulation in Caenorhabditis elegans, thereby extending its lifespan. The anti-inflammatory mechanism of AQ was further confirmed by western blotting. In summary, the novel oligopeptide AQ possesses potential neuroprotective effects, including antioxidant, anti-inflammatory, angiogenic, and anti-aging properties, making it a promising candidate for the development of functional foods and pharmaceutical products.
Collapse
Affiliation(s)
- Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Zixuan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Nannan Xue
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Yunnan Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Jingyi Jiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Cheng Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Keyi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Yixuan Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| |
Collapse
|
49
|
Liu Y, Tan Y, Cheng G, Ni Y, Xie A, Zhu X, Yin C, Zhang Y, Chen T. Customized Intranasal Hydrogel Delivering Methylene Blue Ameliorates Cognitive Dysfunction against Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307081. [PMID: 38395039 DOI: 10.1002/adma.202307081] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The accumulation of hyperphosphorylated tau protein aggregates is a key pathogenic event in Alzheimer's disease (AD) and induces mitochondrial dysfunction and reactive oxygen species overproduction. However, the treatment of AD remains challenging owning to the hindrance caused by the blood-brain barrier (BBB) and the complex pathology of AD. Nasal delivery represents an effective means of circumventing the BBB and delivering drugs to the brain. In this study, black phosphorus (BP) is used as a drug carrier, as well as an antioxidant, and loaded with a tau aggregation inhibitor, methylene blue (MB), to obtain BP-MB. For intranasal (IN) delivery, a thermosensitive hydrogel is fabricated by cross-linking carboxymethyl chitosan and aldehyde Pluronic F127 (F127-CHO) micelles. The BP-MB nanocomposite is incorporated into the hydrogel to obtain BP-MB@Gel. BP-MB@Gel could be injected intranasally, providing high nasal mucosal retention and controlled drug release. After IN administration, BP-MB is continuously released and delivered to the brain, exerting synergistic therapeutic effects by suppressing tau neuropathology, restoring mitochondrial function, and alleviating neuroinflammation, thus inducing cognitive improvements in mouse models of AD. These findings highlight a potential strategy for brain-targeted drug delivery in the management of the complex pathologies of AD.
Collapse
Affiliation(s)
- Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yun Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Aihua Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaozhen Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
50
|
Bilginer Kartal R, Arslan Yildiz A. Exploring Neuronal Differentiation Profiles in SH-SY5Y Cells through Magnetic Levitation Analysis. ACS OMEGA 2024; 9:14955-14962. [PMID: 38585102 PMCID: PMC10993277 DOI: 10.1021/acsomega.3c08962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
Magnetic levitation (MagLev) is a powerful and versatile technique that can sort objects based on their density differences. This paper reports the sorting of SH-SY5Y cells for neuronal differentiation by the MagLev technique. Herein, SH-SY5Y cells were differentiated with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). Neuronal differentiation was confirmed by neurite extension measurement and the immunostaining assay. Neurites reached the maximum length on day 9 after sequential treatment with RA-BDNF. Neuronal marker expression of un-/differentiated cells was investigated by β-III tubulin and neuronal nuclei (NeuN) and differentiated cells exhibited a higher fluorescence intensity compared to un-/differentiated cells. MagLev results revealed that the density of differentiated SH-SY5Y cells gradually increased from 1.04 to 1.06 g/mL, while it remained stable at 1.05 g/mL for un-/differentiated cells. These findings signified that cell density would be a potent indicator of neuronal differentiation. Overall, it was shown that MagLev methodology can provide rapid, label-free, and easy sorting to analyze the differentiation of cells at a single-cell level.
Collapse
Affiliation(s)
| | - Ahu Arslan Yildiz
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), 35430 Izmir, Turkey
| |
Collapse
|