1
|
Costa-Beber LC, Dantas RM, Peres AM, Obelar Ramos JM, Farias HR, Santos Silva Bast RK, Custódio de Souza IC, Gioda A, de Oliveira J, Costa Rodrigues Guma FT. The effects of direct and macrophage-mediated exposure to aqueous fine particulate matter on vascular endothelial dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126407. [PMID: 40348271 DOI: 10.1016/j.envpol.2025.126407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/14/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Fine particulate matter (PM2.5) is an independent risk factor for vascular diseases. In this context, activated macrophages release inflammatory molecules that can contribute to endothelial dysfunction. While the effects of PM2.5's solid fraction on vascular endothelial cells are well-documented, the effect of its polar compounds circulating in the bloodstream remains unclear. In this study, we examined the effects of direct and indirect (macrophage-mediated) exposure to aqueous PM2.5 on the endothelium. CF-1 mice received intranasal instillations of PM2.5 (30 μg in 10 μL) or saline, 5 days per week for two weeks. These animals exhibited considerable endothelial dysfunction linked to oxidative stress. Similarly, macrophages (RAW264.7 lineage) exposed to aqueous PM2.5 (10-fold dilution) exhibited oxidative stress and inflammation, indicating that their reactive phenotype may contribute to the outcomes observed in vivo. Interestingly, their conditioned medium (10 % v/v) enhanced endothelial cell function (EOMA lineage) by reducing reactive oxygen species (ROS) production and promoting an endothelial nitric oxide synthase (eNOS)-dependent increase in nitrite levels, with the exact opposite effect observed in cells directly exposed to aqueous PM2.5. These findings suggest that the macrophage secretome, rather than residual metals, may be responsible for these effects. Consistent with these findings, incubation with the animals' plasma (1 % v/v) also stimulated nitrite production. Additionally, caveolin-1, a key mediator of vesicle uptake, was overexpressed in endothelial cells exposed to conditioned medium, suggesting its involvement in monocyte-endothelium crosstalk. Finally, our results indicated that the macrophage secretome might serve as a mild stimulus, activating protective mechanisms in endothelial cells, whereas direct exposure to aqueous PM2.5 induces dysfunction.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Ricardo Maia Dantas
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ariadni Mesquita Peres
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jéssica Marques Obelar Ramos
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Hémelin Resende Farias
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | - Adriana Gioda
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Department of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Jade de Oliveira
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | | |
Collapse
|
2
|
Trevisan Schroeder H, de Lemos Muller CH, Rodrigues MIL, Alves de Azevedo M, Borges VDS, Sponchiado CM, Homem de Bittencourt PI. Chronic whole-body heat treatment in obese insulin-resistant C57BL/6J mice. Arch Physiol Biochem 2025; 131:234-251. [PMID: 39324220 DOI: 10.1080/13813455.2024.2406904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
AIM This study examined the effects of hyperthermic therapy (HT) on mice fed normal chow or a high-fat diet (HFD) for 18 or 22 weeks, undergoing four or eight weekly HT sessions. METHODS Mice were housed within their thermoneutral zone (TNZ) to simulate a physiological response. HFD-induced obesity-related changes, including weight gain, visceral fat accumulation, muscle loss (indicative of obesity sarcopenia), glucose intolerance, and hepatic triglyceride buildup. MAIN RESULTS HT upregulated HSP70 expression in muscles, mitigated weight gain, normalised QUICK index, and reduced plasma HSP70 concentrations. It also lowered the H-index of HSP70 balance, indicating improved immunoinflammatory status, and decreased activated caspase-1 and proliferative senescence in adipose tissue, both linked to insulin resistance. CONCLUSION The findings suggest that even animals on a "control" diet but with insufficient physical activity and within their TNZ may experience impaired glycaemic homeostasis.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria Inês Lavina Rodrigues
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcela Alves de Azevedo
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Victor de Souza Borges
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cristiana Maria Sponchiado
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
3
|
Schroeder HT, de Lemos Muller CH, Rodrigues MIL, Azevedo MAD, Heck TG, Krause M, Homem de Bittencourt PI. Early detection and progression of insulin resistance revealed by impaired organismal anti-inflammatory heat shock response during ex vivo whole-blood heat challenge. Clin Sci (Lond) 2025; 139:85-113. [PMID: 39716481 DOI: 10.1042/cs20243515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Chronic inflammatory diseases, e.g., obesity, cardiovascular disease and type-2 diabetes, progressively suppress the anti-inflammatory heat shock response (HSR) by impairing the synthesis of key components, perpetuating inflammation. Monitoring HSR progression offers predictive value for countering chronic inflammation. This study quantified HSR in high-fat diet (HFD) and normal chow (NC) mice by measuring 70 kDa heat shock protein (HSP70) expression after heat treatment of whole blood samples. To align with human translational relevance, animals were housed within their thermoneutral zone (TNZ). Whole blood was heat-challenged weekly at 42 °C for 1-2 hours over 22 weeks, and ΔHSP70 was calculated as the difference between HSP70 expressions at 42 °C and 37 °C. Results correlated with fasting glycaemia, oral glucose tolerance test, intraperitoneal insulin tolerance test and 2-hour post-glucose load glycaemia. ΔHSP70 levels >0.2250 indicated normal fasting glycaemia, while levels <0.2125 signalled insulin resistance and type-2 diabetes onset. A logistic model (five-parameter logistic) showed progressive HSR decline, with HFD mice exhibiting earlier ΔHSP70 reduction (t1/2 = 3.14 weeks) compared with NC mice (t1/2 = 8.24 weeks), highlighting compromised anti-inflammatory capacity in both groups of mice maintained at TNZ. Remarkably, even NC mice surpassed insulin resistance thresholds by week 22, relevant as control diets confronted interventions. Observed HSR decline mirrors tissue-level suppression in obese and type-2 diabetic individuals, underscoring HSR failure as a hallmark of obesity-driven inflammation. This study introduces a practical whole-blood assay to evaluate HSR suppression, allowing assessment of glycaemic status during obesity onset before any clinical manifestation.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, 90035-003 Porto Alegre, RS, Brazil
| | - Maria Inês Lavina Rodrigues
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| | - Marcela Alves de Azevedo
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| | - Thiago Gomes Heck
- Postgraduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), 98700-000 Ijuí, RS, Brazil
- Postgraduate Program in Mathematical and Computational Modelling (PPGMMC), UNIJUI, 98700-000 Ijuí, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, 90035-003 Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Lobato S, Salomón-Soto VM, Espinosa-Méndez CM, Herrera-Moreno MN, García-Solano B, Pérez-González E, Comba-Marcó-del-Pont F, Montesano-Villamil M, Mora-Ramírez MA, Mancilla-Simbro C, Álvarez-Valenzuela R. Molecular Pathways Linking High-Fat Diet and PM 2.5 Exposure to Metabolically Abnormal Obesity: A Systematic Review and Meta-Analysis. Biomolecules 2024; 14:1607. [PMID: 39766314 PMCID: PMC11674716 DOI: 10.3390/biom14121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity, influenced by environmental pollutants, can lead to complex metabolic disruptions. This systematic review and meta-analysis examined the molecular mechanisms underlying metabolically abnormal obesity caused by exposure to a high-fat diet (HFD) and fine particulate matter (PM2.5). Following the PRISMA guidelines, articles from 2019 to 2024 were gathered from Scopus, Web of Science, and PubMed, and a random-effects meta-analysis was performed, along with subgroup analyses and pathway enrichment analyses. This study was registered in the Open Science Framework. Thirty-three articles, mainly case-control studies and murine models, were reviewed, and they revealed that combined exposure to HFD and PM2.5 resulted in the greatest weight gain (82.835 g, p = 0.048), alongside increases in high-density lipoproteins, insulin, and the superoxide dismutase. HFD enriched pathways linked to adipocytokine signaling in brown adipose tissue, while PM2.5 impacted genes associated with fat formation. Both exposures downregulated protein metabolism pathways in white adipose tissue and activated stress-response pathways in cardiac tissue. Peroxisome proliferator-activated receptor and AMP-activated protein kinase signaling pathways in the liver were enriched, influencing non-alcoholic fatty liver disease. These findings highlight that combined exposure to HFD and PM2.5 amplifies body weight gain, oxidative stress, and metabolic dysfunction, suggesting a synergistic interaction with significant implications for metabolic health.
Collapse
Affiliation(s)
- Sagrario Lobato
- Departamento de Investigación en Salud, Servicios de Salud del Estado de Puebla, 603 North 6th Street, Centro Colony, Puebla 72000, Mexico;
- Clínica de Medicina Familiar con Especialidades y Quirófano ISSSTE, 27 North Street 603, Santa Maria la Rivera Colony, Puebla 72045, Mexico
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| | - Víctor Manuel Salomón-Soto
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| | - Claudia Magaly Espinosa-Méndez
- Facultad de Cultura Física, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue and 22nd South Boulevard, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - María Nancy Herrera-Moreno
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- Departamento de Medio Ambiente, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Instituto Politécnico Nacional, Juan de Dios Bátiz Boulevard 250, San Joachin Colony, Guasave 81049, Mexico
| | - Beatriz García-Solano
- Facultad de Enfermería, Benemérita Universidad Autónoma de Puebla, 25th Avenue West 1304, Los Volcanes Colony, Puebla 74167, Mexico
| | - Ernestina Pérez-González
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- Departamento de Medio Ambiente, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Instituto Politécnico Nacional, Juan de Dios Bátiz Boulevard 250, San Joachin Colony, Guasave 81049, Mexico
| | - Facundo Comba-Marcó-del-Pont
- Facultad de Cultura Física, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue and 22nd South Boulevard, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - Mireya Montesano-Villamil
- Subsecretaría de Servicios de Salud Zona B, Servicios de Salud del Estado de Puebla, 603 North 6th Street, Centro Colony, Puebla 72000, Mexico;
| | - Marco Antonio Mora-Ramírez
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue 1814, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - Claudia Mancilla-Simbro
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- HybridLab, Fisiología y Biología Molecular de Células Excitables, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Prolongation of 14th South Street 6301, Ciudad Universitaria Colony, Puebla 72560, Mexico
| | - Ramiro Álvarez-Valenzuela
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| |
Collapse
|
5
|
Bahr AC, Scherer NB, de Gregório E, Kieling L, de Castro AL, Araujo ASDR, Türck P, Dal Lago P. Photobiomodulation and Physical Exercise Modulate of Cell Survival Proteins in the Skeletal Muscle of Rats with Heart Failure and Diabetes Mellitus. Photobiomodul Photomed Laser Surg 2024; 42:768-778. [PMID: 39441652 DOI: 10.1089/photob.2024.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Introduction: Heart failure (HF) and type 2 diabetes mellitus (DM2) are global health problems that often lead to muscle atrophy. These conditions are associated with increased autophagy and apoptosis in the muscle cells, resulting in decreased muscle mass. Physical exercise associated with photobiomodulation (PBM) seems promising to attenuate the skeletal muscle changes caused by HF and DM2, due to its direct effects on mitochondria, which may result in an increase in antioxidant capacity. Objective: To verify the influence of physical exercise and the association with PBM on autophagy, apoptosis, and cell survival signaling pathways in myocytes from rats with HF and DM2. Materials and Methods: Male rats were assigned to one of four groups: control (CT), HF+DM (disease model), exercise+HF+DM (EX+HF+DM), and EX+HF+DM+PBM (EX+HF+DM+PBM). To induce DM2, we administered streptozotocin (STZ) (0.25 mL/kg, intraperitoneally). HF was induced by coronary ligation. One week post-induction, an 8-week aerobic exercise and PBM protocol was initiated. Western blot analysis was used to measure the expression of apoptosis-related proteins and autophagy. Results: The EX+HF+DM+PBM group showed a substantial increase in Nrf2, p-AKT, and LC3-I levels compared to the HF+DM group. Conclusions: These findings suggest that physical exercise combined with PBM can upregulate proteins that promote myocyte survival in rats with HF and DM2.
Collapse
Affiliation(s)
- Alan Christhian Bahr
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Naira Bohrer Scherer
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Elizama de Gregório
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lucas Kieling
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alexandre Luz de Castro
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Patrick Türck
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Pedro Dal Lago
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| |
Collapse
|
6
|
Ganguly A, Ghosh S, Jin P, Wadehra M, Devaskar SU. Omega-3 reverses the metabolic and epigenetically regulated placental phenotype acquired from preconceptional and peri-conceptional exposure to air pollutants. J Nutr Biochem 2024; 134:109735. [PMID: 39122219 DOI: 10.1016/j.jnutbio.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Air pollution is detrimental to pregnancy adversely affecting maternal and child health. Our objective was to unravel epigenetic mechanisms mediating the effect of preconception, periconception, and gestational exposure to inhaled air pollutants (AP) upon the maternal and placental-fetal phenotype and explore the benefit of an omega-3 rich dietary intervention. To this end, we investigated intranasal instilled AP during 8 weeks of preconception, periconception, and gestation (G; D0 to 18) upon GD16-19 maternal mouse metabolic status, placental nutrient transporters, placental-fetal size, and placental morphology. Prepregnant mice were glucose intolerant and insulin resistant, while pregnant mice were glucose intolerant but displayed no major placental macro-nutrient transporter changes, except for an increase in CD36. Placentas revealed inflammatory cellular infiltration with cellular edema, necrosis, hemorrhage, and an increase in fetal body weight. Upon examination of placental genome-wide epigenetic processes of DNA sequence specific 5'-hydroxymethylation (5'-hmC) and 5'-methylation (5'-mC) upon RNA sequenced gene expression profiles, revealed changes in key metabolic, inflammatory, transcriptional, and cellular processing genes and pathways. An omega-3 rich anti-inflammatory diet from preconception (8 weeks) through periconception and gestation (GD0-18), ameliorated all these maternal and placental-fetal adverse effects. We conclude that preconceptional, periconceptional and gestational exposures to AP incite a maternal inflammatory response resulting in features of pre-existing maternal diabetes mellitus with injury to the placental-fetal unit. DNA 5'-mC more than 5'-hmC mediated AP induced maternal inflammatory and metabolic dysregulation which together alter placental gene expression and phenotype. A dietary intervention partially reversing these adversities provides possibilities for a novel nutrigenomic therapeutic strategy.
Collapse
Affiliation(s)
- Amit Ganguly
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shubhamoy Ghosh
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Madhuri Wadehra
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
7
|
Chen C, Xiao X, Rang Y, Li W, Huang H, Ou G, Liu C. PBAT-modified starch blended film extract induces in vitro toxicity in L-02 cells: induction of oxidative stress, inflammation, and modulation of AMPK pathway. Drug Chem Toxicol 2024; 47:1139-1154. [PMID: 38726972 DOI: 10.1080/01480545.2024.2343748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/09/2024] [Indexed: 11/21/2024]
Abstract
PBAT-modified starch blended film are thermoplastic biodegradable materials with good properties and a wide range of applications. In this study, L-02 cells were used as an in vitro toxicity evaluation system for risk assessment of PBAT-modified starch films with migration studies obtained in different food simulants. Determination of total migration and organic matter revealed that the results were in accordance with the standard except for the total organic matter under 95% (v/v) ethanol food simulant which exceeded the standard. The CCK-8 assay showed that these compounds affect the cell viability of L-02 cells. It was observed that the compounds made the cells express increased AST, ALT, TNF-α, IL-6, IL-1β, and ROS, and decreased SOD, GSH, and ATP. In addition, we explored the effect of migration in PBAT-modified starch composites on protein and gene expression levels in L-02 cells using a transcriptomic approach and found that the AMPK signaling pathway was affected. The expression of AMPK signaling pathway-related proteins was detected by Western Blot, and the expression levels of p-AMPK/AMPK were found to be upregulated, and those of p-mTOR/mTOR, SIRT1, PGC-1α, NRF1 and TFAM were downregulated. The above data suggest that the compounds migrating into the PBAT-modified starch film when exposed to food may induce oxidative stress and inflammation in hepatocytes, and may cause damage to hepatocytes through the AMPK pathway.
Collapse
Affiliation(s)
- Congying Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, China
| | - Xueman Xiao
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, China
| | - Weiye Li
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, China
| | - Huiying Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, China
| | - Genghua Ou
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, China
| |
Collapse
|
8
|
Ganguly A, Ghosh S, Shin BC, Touma M, Wadehra M, Devaskar SU. Gestational exposure to air pollutants perturbs metabolic and placenta-fetal phenotype. Reprod Toxicol 2024; 128:108657. [PMID: 39002939 DOI: 10.1016/j.reprotox.2024.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Air pollution (AP) is detrimental to pregnancies including increasing risk factors of gestational diabetes mellitus. We hypothesized that exposure to AP causes cardiovascular and metabolic disruption thereby altering placental gene expression, which in turn affects the placental phenotype and thereby embryonic/fetal development. To test this hypothesis, we investigated the impact of intra-nasal instilled AP upon gestational day 16-19 maternal mouse cardiovascular and metabolic status, placental nutrient transporters, and placental-fetal size and morphology. To further unravel mechanisms, we also examined placental total DNA 5'-hydroxymethylation and bulk RNA sequenced gene expression profiles. AP exposed pregnant mice and fetuses were tachycardic with a reduction in maternal left ventricular fractional shortening and increased uterine artery with decreased umbilical artery systolic peak velocities. In addition, they were hyperglycemic, glucose intolerant and insulin resistant, with changes in placental glucose (Glut3) and fatty acid (Fatp1 & Cd36) transporters, and a spatial disruption of cells expressing Glut10 that imports L-dehydroascorbic acid in protecting against oxidative stress. Placentas revealed inflammatory cellular infiltration with associated cellular edema and necrosis, with dilated vascular spaces and hemorrhage. Placental and fetal body weights decreased in mid-gestation with a reduction in brain cortical thickness emerging in late gestation. Placental total DNA 5'-hydroxymethylation was 2.5-fold higher, with perturbed gene expression profiles involving key metabolic, inflammatory, transcriptional, cellular polarizing and processing genes and pathways. We conclude that gestational exposure to AP incites a maternal inflammatory response resulting in features mimicking maternal gestational diabetes mellitus with altered placental DNA 5'-hydroxymethylation, gene expression, and associated injury.
Collapse
Affiliation(s)
- Amit Ganguly
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Shubhamoy Ghosh
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Bo-Chul Shin
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Marlin Touma
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Madhuri Wadehra
- Department of Pathology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Sherin U Devaskar
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA.
| |
Collapse
|
9
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
10
|
Sun M, Li T, Sun Q, Ren X, Sun Z, Duan J. Associations of long-term particulate matter exposure with cardiometabolic diseases: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166010. [PMID: 37541522 DOI: 10.1016/j.scitotenv.2023.166010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND This review aimed to establish a holistic perspective of long-term PM exposure and cardiometabolic diseases, identify long-term PM-related cardiovascular and metabolic risk factors, and provide practical significance to preventative measures. METHOD A combination of computer and manual retrieval was used to search for keywords in PubMed (2903 records), Embase (2791 records), Web of Science (5488 records) and Cochrane Library (163 records). Finally, a total of 82 articles were considered in this meta-analysis. Stata 13.0 was accustomed to inspecting the studies' heterogeneity and calculating the combined effect value (RR) by selecting the matching models. The subgroup analysis, sensitivity analysis and publication bias tests were also performed. RESULTS Meta-analysis figured an association between PM and cardiometabolic diseases. PM2.5 (per 10 μg/m3 increase) boosted the risk of hypertension (RR = 1.14, 95 % CI: 1.09-1.19), coronary heart disease (CHD) (RR = 1.21, 95 % CI: 1.08-1.35), diabetes (RR = 1.16, 95 % CI: 1.11-1.21) and stroke (including ischemic stroke and hemorrhagic stroke). PM10 (per 10 μg/m3 increase) elevated the incidence of hypertension (RR = 1.11, 95 % CI: 1.07-1.16) and diabetes (RR = 1.26, 95 % CI: 1.08-1.47). PM1 (per 10 μg/m3 increase) exposure increased the risk of total dyslipidemia, yielding the RR of 1.10 (95 % CI: 1.01-1.18). Furthermore, the elderly, overweight and higher background pollutant level were potentially susceptible to related diseases. CONCLUSION There was a virtual connection between long-term exposure to PM and cardiometabolic diseases. PM2.5 or PM10 (per 10 μg/m3) increased the risk of hypertension, CHD, diabetes, stroke and dyslipidemia, causing cardiovascular "multimorbidity" in high-risk populations.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
11
|
Bilibio BLE, Dos Reis WR, Compagnon L, de Batista DG, Sulzbacher LM, Pinheiro JF, Ludwig MS, Frizzo MN, Cruzat V, Heck TG. Effects of alternate-day fasting and time-restricted feeding in obese middle-aged female rats. Nutrition 2023; 116:112198. [PMID: 37717500 DOI: 10.1016/j.nut.2023.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVES Obesity is a multifactorial condition associated with metabolic alterations that can be aggravated during female aging. Calorie restriction via intermittent fasting (IF) diets may reduce body weight and therefore have the potential to decrease obesity and associated comorbidities, such as insulin resistance. This study investigated the effects of two IF protocols, alternate-day fasting (ADF) and time-restricted feeding (TRF) in middle-aged obese female rats. METHODS Wistar rats (age 15 mo) were fed with standard chow or high-fat diet for 8 wk and then separated into the following groups (n = 5-8 each) for another 8 wk: control (received standard chow), obese (received high-fat diet), obese + ADF (24-h fasting protocol), and obese + TRF (14 h daily). RESULTS At the end of the study, both IF protocols were able to reduce body weight and body mass index compared with the obese group. However, no changes were observed in adiposity and glucose homeostasis. We also found an increase in total leukocytes, lymphocytes, and monocytes in the TRF group and a higher number of platelets in the ADF group. Blood lipid profiles, including triglycerides and high-density lipoprotein, as well as liver stress responses, such as heat shock protein 70 and malondialdehyde, were not changed by IF. CONCLUSIONS Although ADF and TRF protocols resulted in a reduction of body weight and body mass index, these dietary interventions did not promote health benefits, such as reducing blood lipid profile, adiposity, and insulin resistance. In addition, ADF and TRF increased inflammatory biomarkers, which may increase the risk of obesity-associated comorbidities.
Collapse
Affiliation(s)
- Bruna L Endl Bilibio
- Research Group in Physiology, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil; Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil
| | - Welerson R Dos Reis
- Research Group in Physiology, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil
| | - Letícia Compagnon
- Research Group in Physiology, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil; Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil
| | - Diovana G de Batista
- Research Group in Physiology, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil; Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil; Postgraduate Program in Mathematical and Computational Modelling, Regional University of North-western Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil
| | - Lucas M Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil; Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil
| | - Juliana F Pinheiro
- Research Group in Physiology, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil
| | - Mirna S Ludwig
- Research Group in Physiology, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil; Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil
| | - Matias N Frizzo
- Research Group in Physiology, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil; Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil
| | - Vinicius Cruzat
- Faculty of Health, Southern Cross University, Gold Coast, Queensland, Australia.
| | - Thiago G Heck
- Research Group in Physiology, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil; Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil; Postgraduate Program in Mathematical and Computational Modelling, Regional University of North-western Rio Grande do Sul State, Ijuí, Rio Grande do Sul State, Brazil
| |
Collapse
|
12
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Air pollution combined with high-fat feeding aggravates metabolic and cardiovascular diseases: A dangerous, oxidative, and immune-inflammatory association. Life Sci 2023; 317:121468. [PMID: 36736766 DOI: 10.1016/j.lfs.2023.121468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Obesity and particulate air pollutant (PM2.5) are important risk factors for cardiometabolic diseases. PM2.5 exacerbates insulin resistance and lipid ectopic deposition in obese animals. The inorganic fraction of PM2.5, the Residual Oil Fly Ash (ROFA), is related to cardiovascular events, by enhancing the generation of reactive species, inflammatory cytokines, and leukocyte activation. However, the synergistic effects of ROFA and a high-fat diet (HFD) are still poorly described, and the studies were mainly conducted with males. AIMS To investigate if ROFA could potentiate the cardiometabolic effects of diet-induced obesity in female rats. MATERIAL AND METHODS Wistar female rats were divided into four groups: Control (n = 6), Polluted (n = 6), HFD (n = 6), and HFD + Polluted (n = 6). HFD and HFD + Polluted received a high-fat diet (HFD) (58.3 % as fats), whilst Control and Polluted groups received a standard diet (Nuvilab CR-1). In addition, Polluted and HFD + Polluted groups received intranasal instillation of ROFA (250 μg/50 μL), while Control and HFD groups received saline solution (50 μL) daily, five days per week. Both interventions occurred 24 weeks after the animals were euthanized. KEY FINDINGS HFD combined with ROFA exposure impaired lipid profile challenged systemic and cardiac antioxidant defense, and presented a synergistic effect in inducing an immune-inflammatory condition. We found that the lipid profile disturbance is associated with HFD-induced hepatic, but not cardiac, deposition of triglycerides in female animals. SIGNIFICANCE Our results support the hypothesis that ROFA exposure combined with bad feeding can exacerbate metabolic and cardiovascular diseases.
Collapse
|
14
|
Wang R, Liu J, Qin Y, Chen Z, Li J, Guo P, Shan L, Li Y, Hao Y, Jiao M, Qi X, Meng N, Jiang S, Kang Z, Wu Q. Global attributed burden of death for air pollution: Demographic decomposition and birth cohort effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160444. [PMID: 36435245 DOI: 10.1016/j.scitotenv.2022.160444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/19/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND To identify the high-risk pollutants and evolving patterns of attributed mortality burden, more detailed evidence is needed to examine the contribution of different air pollutants to death across the disease spectrum, particularly considering population change as well as the context of the era. METHODS We explored the evolving patterns of all-cause and disease-specific deaths attributed to overall air pollution and its main subcategories by using the estimated annual percentage change and additionally assessing the contribution of population growth and ageing to death burden using the decomposition method. Age-period-cohort model and Joinpoint analysis were used to evaluate birth cohort effects specific-disease death burden owing to high-risk air pollution subcategories. FINDINGS The number of deaths caused by air pollution increased by 2.62 %, which was driven by ambient particulate matter pollution and ambient ozone pollution, whereas household air pollution decreased. Population ageing contributed 28.88 % of the deaths increase change for air pollution. Compared with other subcategories, the age-standardized mortality rate (ASMR) attributed to ambient particulate matter pollution remained the heaviest attributed death burden, comprehensively considering of bivariate burden. In 2019, ischemic heart disease attributed to ambient particulate matter pollution exhibited the highest ASMR, which may be impacted by a rapid increase era from 1950 to 1980 birth cohort in woman and 1970 to 1990 birth cohort in man. Diabetes mellitus attributed to ambient particulate matter pollution showed the largest increase for ASMR, which was driven primarily by men born 1910-1975 and women born 1950-1975.Uzbekistan showed the highest ASMR for ischemic heart disease, with Equatorial Guinea showing the fastest increase for diabetes mellitus. CONCLUSION Priority intervention targets for air pollution and health should emphasize the susceptibility of the elderly population as well as the structural factors of the era, in particular sensitive diseases to the ambient particulate matter pollution.
Collapse
Affiliation(s)
- Rizhen Wang
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Jingjing Liu
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Yinghua Qin
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China; Department of Health Economy and Social Security, College of Humanities and Management, Guilin Medical University, Guilin 541199, China
| | - Zhuo Chen
- College of Public Health, University of Georgia, Athens 30602, GA, USA; School of Economics, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jiacheng Li
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Pengfei Guo
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Linghan Shan
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Ye Li
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Yanhua Hao
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Mingli Jiao
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Xinye Qi
- Department of Social Medicine and Health Management, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Nan Meng
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Shengchao Jiang
- Department of Personnel Department, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Zheng Kang
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China
| | - Qunhong Wu
- Department of Health Policy, School of Health Management, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
15
|
Dos Santos AB, Costa-Beber LC, de Pelegrin Basso EG, Donato YH, Sulzbacher MM, Sulzbacher LM, Ludwig MS, Heck TG. Moderate aerobic training is safe and improves glucose intolerance induced by the association of high fat diet and air pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1908-1918. [PMID: 35925459 DOI: 10.1007/s11356-022-22196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Obesity and exposure to fine particulate matter (PM2.5) are risk factors for insulin resistance, to which physical exercise is the most powerful non-pharmacological strategy. However, public concern over whether exercise could be protective in a polluted environment exists. Therefore, evaluating the possible benefits of exercise in polluted conditions in different contexts (age, gender, and cardiometabolic health) is imperative. In this sense, muscle plays a major role in maintaining glucose homeostasis, and its oxidative status is closely affected during exercise. This study tested whether moderate aerobic training could alleviate the metabolic and oxidative impairment in the gastrocnemius induced by the combination of a high-fat diet (HFD) and PM2.5 exposure. Female mice (B6129SF2/J) received HFD (58.3% of fat) or standard diet, intranasal instillation of 20 μg residual oil fly ash (ROFA: inorganic portion of PM2.5), or saline seven times per week for 19 weeks. In the 13th week, animals were submitted to moderate training or remained sedentary. Trained animals followed a progressive protocol for 6 weeks, ending at swimming with 5% body weight of workload for 60 min, while sedentary animals remained in shallow water. Aerobic moderate training attenuated weight gain and glucose intolerance and prevented muscle and pancreatic mass loss induced by a HFD plus ROFA exposure. Interestingly, a HFD combined with ROFA enhanced the catalase antioxidant activity, regardless of physical exercise. Therefore, our study highlights that, even in polluted conditions, moderate training is the most powerful non-pharmacological treatment for obesity and insulin resistance.
Collapse
Affiliation(s)
- Analú Bender Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern State's Rio Grande Do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario, Ijui, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijui, RS, Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern State's Rio Grande Do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario, Ijui, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijui, RS, Brazil.
| | - Eloisa Gabriela de Pelegrin Basso
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern State's Rio Grande Do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario, Ijui, RS, 98700-000, Brazil
| | - Yohanna Hannah Donato
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern State's Rio Grande Do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario, Ijui, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijui, RS, Brazil
| | - Maicon Machado Sulzbacher
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern State's Rio Grande Do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario, Ijui, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijui, RS, Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern State's Rio Grande Do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario, Ijui, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijui, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern State's Rio Grande Do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario, Ijui, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijui, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern State's Rio Grande Do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario, Ijui, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijui, RS, Brazil
| |
Collapse
|
16
|
The macrophage senescence hypothesis: the role of poor heat shock response in pulmonary inflammation and endothelial dysfunction following chronic exposure to air pollution. Inflamm Res 2022; 71:1433-1448. [PMID: 36264363 DOI: 10.1007/s00011-022-01647-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/18/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Cardiovascular diseases (CVD) have been associated with high exposure to fine particulate air pollutants (PM2.5). Alveolar macrophages are the first defense against inhaled particles. As soon as they phagocytize the particles, they reach an inflammatory phenotype, which affects the surrounding cells and associates with CVD. Not coincidentally, CVD are marked by a depleted heat shock response (HSR), defined by a deficit in inducing 70-kDa heat shock protein (HSP70) expression during stressful conditions. HSP70 is a powerful anti-inflammatory chaperone, whose reduced levels trigger a pro-inflammatory milieu, cellular senescence, and a senescence-associated secretory phenotype (SASP). However, whether macrophage senescence is the main mechanism by which PM2.5 propagates low-grade inflammation remains unclear. OBJECTIVE AND DESIGN In this article, we review evidence supporting that chronic exposure to PM2.5 depletes HSR and determines the ability to solve the initial stress. RESULTS AND DISCUSSION When exposed to PM2.5, macrophages increase the production of reactive oxygen species, which activate nuclear factor-kappa B (NF-κB). NF-κB is naturally a pro-inflammatory factor that drives prostaglandin E2 (PGE2) synthesis and causes fever. PGE2 can be converted into prostaglandin A2, a powerful inducer of HSR. Therefore, when transiently activated, NF-κB can trigger the anti-inflammatory response through negative feedback, by inducing HSP70 expression. However, when chronically activated, NF-κB heads a set of pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, unfolded protein response, inflammasome activation, and apoptosis. During chronic exposure to PM2.5, cells cannot properly express sirtuin-1 or activate heat shock factor-1 (HSF-1), which delays the resolution phase of inflammation. Since alveolar macrophages are the first immune defense against PM2.5, we suppose that the pollutant impairs HSR and, consequently, induces cellular senescence. Accordingly, senescent macrophages change its secretory phenotype to a more inflammatory one, known as SASP. Finally, macrophages' SASP would propagate the systemic inflammation, leading to endothelial dysfunction and atherosclerosis.
Collapse
|
17
|
Zhong Z, Dong H, Wu Y, Zhou S, Li H, Huang P, Tian H, Li X, Xiao H, Yang T, Xiong K, Zhang G, Tang Z, Li Y, Fan X, Yuan C, Ning J, Li Y, Xie J, Li P. Remote ischemic preconditioning enhances aerobic performance by accelerating regional oxygenation and improving cardiac function during acute hypobaric hypoxia exposure. Front Physiol 2022; 13:950086. [PMID: 36160840 PMCID: PMC9500473 DOI: 10.3389/fphys.2022.950086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) may improve exercise performance. However, the influence of RIPC on aerobic performance and underlying physiological mechanisms during hypobaric hypoxia (HH) exposure remains relatively uncertain. Here, we systematically evaluated the potential performance benefits and underlying mechanisms of RIPC during HH exposure. Seventy-nine healthy participants were randomly assigned to receive sham intervention or RIPC (4 × 5 min occlusion 180 mm Hg/reperfusion 0 mm Hg, bilaterally on the upper arms) for 8 consecutive days in phases 1 (24 participants) and phase 2 (55 participants). In the phases 1, we measured the change in maximal oxygen uptake capacity (VO2max) and muscle oxygenation (SmO2) on the leg during a graded exercise test. We also measured regional cerebral oxygenation (rSO2) on the forehead. These measures and physiological variables, such as cardiovascular hemodynamic parameters and heart rate variability index, were used to evaluate the intervention effect of RIPC on the changes in bodily functions caused by HH exposure. In the phase 2, plasma protein mass spectrometry was then performed after RIPC intervention, and the results were further evaluated using ELISA tests to assess possible mechanisms. The results suggested that RIPC intervention improved VO2max (11.29%) and accelerated both the maximum (18.13%) and minimum (53%) values of SmO2 and rSO2 (6.88%) compared to sham intervention in hypobaric hypoxia exposure. Cardiovascular hemodynamic parameters (SV, SVRI, PPV% and SpMet%) and the heart rate variability index (Mean RR, Mean HR, RMSSD, pNN50, Lfnu, Hfnu, SD1, SD2/SD1, ApEn, SampEn, DFA1and DFA2) were evaluated. Protein sequence analysis showed 42 unregulated and six downregulated proteins in the plasma of the RIPC group compared to the sham group after HH exposure. Three proteins, thymosin β4 (Tβ4), heat shock protein-70 (HSP70), and heat shock protein-90 (HSP90), were significantly altered in the plasma of the RIPC group before and after HH exposure. Our data demonstrated that in acute HH exposure, RIPC mitigates the decline in VO2max and regional oxygenation, as well as physiological variables, such as cardiovascular hemodynamic parameters and the heart rate variability index, by influencing plasma Tβ4, HSP70, and HSP90. These data suggest that RIPC may be beneficial for acute HH exposure.
Collapse
Affiliation(s)
- Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaping Dong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Wu
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Simin Zhou
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pei Huang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaijun Tian
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoxu Li
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Heng Xiao
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Yang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kun Xiong
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Zhang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhongwei Tang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaling Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xueying Fan
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Yuan
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaolin Ning
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Li
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaxin Xie
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| |
Collapse
|
18
|
Seibert P, Anklam CFV, Costa-Beber LC, Sulzbacher LM, Sulzbacher MM, Sangiovo AMB, dos Santos FK, Goettems-Fiorin PB, Heck TG, Frizzo MN, Ludwig MS. Increased eHSP70-to-iHSP70 ratio in prediabetic and diabetic postmenopausal women: a biomarker of cardiometabolic risk. Cell Stress Chaperones 2022; 27:523-534. [PMID: 35767179 PMCID: PMC9485348 DOI: 10.1007/s12192-022-01288-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
Decreased estrogen levels in menopause are associated with anthropometric, metabolic, and inflammatory impairments, predisposing women to cardiometabolic risk factors such as diabetes. Menopause and type two diabetes (DM2) are marked by altered heat shock response (HSR), shown by decreased expression of the 70-kDa heat shock protein in the intracellular milieu (iHSP70). While iHSP70 plays an anti-inflammatory role, extracellular HSP70 (eHSP70) may mediate pro-inflammatory pathways and has been associated with insulin resistance in DM2. Considering the roles of these proteins according to localization, the eHSP70-to-iHSP70 ratio (H-index) has been proposed as a biomarker for HSR. We, therefore, evaluated whether this biomarker is associated with glycemic and inflammatory status in postmenopausal women. In this transversal study, 36 postmenopausal women were grouped according to fasting glycemia status as either the control group (normoglycemic, ≤ 99 mg/dL) or DM2 (prediabetic and diabetic, glycemia ≥ 100 mg/dL). DM2 group showed higher triglyceride/glucose (TyG) index and plasma atherogenic index (PAI), both of which are indicators of cardiometabolic risk. In addition, we found that the eHSP70-to-iHSP70 ratio (plasma/peripheral blood mononuclear cells-PBMC ratio) was higher in the DM2 group, compared with the control group. Furthermore, blood leukocyte and glycemia levels were positively correlated with the eHSP70-to-iHSP70 ratio in women that presented H-index values above 1.0 (a.u.). Taken together, our results highlight the eHSP70-to-iHSP70 ratio as a biomarker of altered HSR in DM2 postmenopausal women.
Collapse
Affiliation(s)
- Priscila Seibert
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Carolain Felipin Vincensi Anklam
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Maicon Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Angela Maria Blanke Sangiovo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Fernanda Knopp dos Santos
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Mathematical and Computational Modeling (PPGMMC-UNIJUI), Ijuí, RS Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| |
Collapse
|
19
|
Costa-Beber LC, Hirsch GE, Heck TG, Ludwig MS. Chaperone duality: the role of extracellular and intracellular HSP70 as a biomarker of endothelial dysfunction in the development of atherosclerosis. Arch Physiol Biochem 2022; 128:1016-1023. [PMID: 32293198 DOI: 10.1080/13813455.2020.1745850] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The 70-kDa heat shock proteins (HSP70) may provide relevant information about the endothelial dysfunction in cardiovascular diseases. Located in the intracellular milieu (iHSP70), they are essential chaperones that inhibit nuclear factor kappa B activation, stimulate nitric oxide production and superoxide dismutase activity, and inhibit apoptosis. However, under stressful conditions, HSP70 can be released into the extracellular medium (eHSP70) and act as an inflammatory mediator. Although studies have reported the vasoprotective role of iHSP70, the evidence regarding eHSP70 is contradictory. eHSP70 can activate NFκB and activator protein-1, thus stimulating the release of inflammatory cytokines and production of reactive oxygen species. Due to the antagonistic nature of HSP70 according to its location, the eHSP70/iHSP70 ratio (Heck index) has been proposed as a better marker of inflammatory status; however, more studies are required to confirm this hypothesis. Therefore, this review summarises studies that, together, describe the role of HSP70 in endothelial dysfunction.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| |
Collapse
|
20
|
Wang L, Bao Y, Tong H, Zhang K, Cheng Y, Jin H, Shi J, Wang T, Wang H, Chen G, Wang C. Traditional Mongolian medicine (HHQG) attenuates CCl 4-induced acute liver injury through inhibiting monocyte/macrophage infiltration via the p-P38/p-JNK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115152. [PMID: 35240240 DOI: 10.1016/j.jep.2022.115152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Honghua Qinggan 13 Flavor Pills (HHQG), whose Mongolian name is Guri Gumu-13, is a traditional Mongolian medicine, that was stated in the "Diagnosis and Treatment of Ming Medical Code". The HHQG has been included in the Mongolian Medicine Division of the Ministry of Health Drug Standards (1998 edition). Based on our clinical expertise, HHQG demonstrated satisfactory therapeutic effects in hepatitis and liver failure. However, the pharmacological effects and potential mechanisms of HHQG have not been investigated. AIM OF THE STUDY In this study, we combined network pharmacology, transcriptomics, and molecular biology to detect the underlying mechanism for the effect of HHQG on acute liver injury in mice. MATERIALS AND METHODS Network pharmacology was used to explore the pathways involved in the protective effect HHQG in acute liver injury. This effect was further verified by injecting carbon tetrachloride (CCl4; 10 mL/kg, i.p.) to induce acute liver injury in mice. Serum markers of liver injury, morphology, histology, and monocyte/macrophage infiltration in the liver tissue were investigated. Transcriptomics further defined the HHQG targets. Transwell analysis was performed to confirm that HHQG inhibited monocyte/macrophage RAW.264.7 infiltration. qPCR and Western blot were performed to explore the mechanism of action of HHQG. RESULTS Network pharmacology showed that HHQG exerted anti-oxidative and anti-inflammatory effects and promoted metabolic effects against acute liver injury. Pretreatment of mice with HHQG significantly maintained their body weight and decreased serum tumor necrosis factor-alpha (TNF-α) levels induced by CCl4 treatment in vivo. Histopathological examination further confirmed that HHQG protected the liver cells from CCl4-induced damage. Importantly, HHQG significantly inhibited CCl4-induced monocyte/macrophage infiltration. Transcriptomic analysis revealed that HHQG significantly reduced the expression of chemokines and cell adhesion molecules. We determined that HHQG significantly downregulated the expression of the key chemokine (monocyte chemokine protein-1, CCL2) at the gene and protein levels. Further research showed that HHQG inhibited chemokine production in hepatocytes by inhibiting the p-P38 and p-JNK pathways, thereby reducing monocyte/macrophage infiltration. CONCLUSIONS These combined data showed that HHQG alleviated acute liver injury in mice, and further verified that HHQG exerted protective effects by inhibiting the production of CCL2 and reducing the infiltration of monocyte/macrophage by inhibiting the p-P38 and p-JNK pathways.
Collapse
Affiliation(s)
- Li Wang
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China.
| | - Yulong Bao
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - He Tong
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China
| | - Kefan Zhang
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China
| | - Yipeng Cheng
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China
| | - Haowei Jin
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China
| | - Jing Shi
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China
| | - Tegexibaiyin Wang
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot, Inner Mongolia, 010065, China
| | - Haisheng Wang
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Guilin Chen
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China.
| | - Changshan Wang
- School of Life Science, Inner Mongolia University, Xin Lin Guo Le Nan Road 49, Yu Quan District, Hohhot, Inner Mongolia, 010020, China; Affiliated Hospital, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, 028007, China.
| |
Collapse
|
21
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
22
|
Hirsch GE, Heck TG. Inflammation, oxidative stress and altered heat shock response in type 2 diabetes: the basis for new pharmacological and non-pharmacological interventions. Arch Physiol Biochem 2022; 128:411-425. [PMID: 31746233 DOI: 10.1080/13813455.2019.1687522] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (DM2) is a chronic disease characterised by variable degrees of insulin resistance and impaired insulin secretion. Besides, several pieces of evidence have shown that chronic inflammation, oxidative stress, and 70 kDa heat shock proteins (HSP70) are strongly involved in DM2 and its complications, and various pharmacological and non-pharmacological treatment alternatives act in these processes/molecules to modulate them and ameliorate the disease. Besides, uncontrolled hyperglycaemia is related to several complications as diabetic retinopathy, neuropathy and hepatic, renal and cardiac complications. In this review, we address discuss the involvement of different inflammatory and pro-oxidant pathways related to DM2, and we described molecular targets modulated by therapeutics currently available to treat DM2.
Collapse
Affiliation(s)
- Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Rua do Comércio, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Rua do Comércio, Brazil
| |
Collapse
|
23
|
He Z, Zhang H, Song Y, Yang Z, Cai Z. Exposure to ambient fine particulate matter impedes the function of spleen in the mouse metabolism of high-fat diet. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127129. [PMID: 34509742 DOI: 10.1016/j.jhazmat.2021.127129] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological and experimental evidence has been associating the exposure with ambient fine particulate matter (PM2.5) with metabolic malfunctions such as obesity and cardiovascular disease. As the blood-filter and the important lymphatic organ, spleen participates in the regulation of metabolic balance. In this work, liquid chromatography-mass spectrometry (LC-MS)-based lipidomics, metabolomics and proteomics were performed to study the effects of PM2.5 exposure and high-fat diet (HFD) induced obesity on mice spleen. By comparing the differences in lipids, metabolites, and proteins in the spleens from PM2.5 and HFD treated mice, we discovered the individual and combined effects of the two risk factors. The results showed the PM2.5 exposure altered energy metabolism of the mice, as evidenced by the upregulation of TCA cycle. In addition, the metabolism of branched-chain amino acids was also significantly changed, which might be related to the preventive function of spleen in lipid metabolism. The PM2.5-induced metabolic changes in spleen could further aggravate the adverse impacts of HFD on mice, resulting in impeded splenic metabolism of lipids. This study revealed the effects of PM2.5 and obesity mice spleen, which might be of great significance to public health.
Collapse
Affiliation(s)
- Zhao He
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
24
|
Costa-Beber LC, Heck TG, Fiorin PBG, Ludwig MS. HSP70 as a biomarker of the thin threshold between benefit and injury due to physical exercise when exposed to air pollution. Cell Stress Chaperones 2021; 26:889-915. [PMID: 34677749 PMCID: PMC8578518 DOI: 10.1007/s12192-021-01241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Physical exercise has acute and chronic effects on inflammatory balance, metabolic regulation, and redox status. Exercise-induced adaptations are mediated by enhanced 70-kDa heat shock protein (HSP70) levels and an improved heat shock response (HSR). Therefore, exercise could be useful against disease conditions [obesity, diabetes mellitus (DM), and exposure to atmospheric pollutants] marked by an impaired HSR. However, exercise performed by obese or diabetic subjects under pollution conditions might also be dangerous at certain intensities. Intensity correlates with an increase in HSP70 levels during physical exercise until a critical point at which the effort becomes harmful and impairs the HSR. Establishing a unique biomarker able to indicate the exercise intensity on metabolism and cellular fatigue is essential to ensure adequate and safe exercise recommendations for individuals with obesity or DM who require exercise to improve their metabolic status and live in polluted regions. In this review, we examined the available evidence supporting our hypothesis that HSP70 could serve as a biomarker for determining the optimal exercise intensity for subjects with obesity or diabetes when exposed to air pollution and establishing the fine threshold between anti-inflammatory and pro-inflammatory exercise effects.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil.
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| | - Pauline Brendler Goettems Fiorin
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
25
|
Song L, Lei L, Jiang S, Pan K, Zeng X, Zhang J, Zhou J, Xie Y, Zhou L, Dong C, Zhao J. NLRP3 inflammasome is involved in ambient PM 2.5-related metabolic disorders in diabetic model mice but not in wild-type mice. Inhal Toxicol 2021; 33:260-267. [PMID: 34641747 DOI: 10.1080/08958378.2021.1980637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIMS To explore the role of nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome in ambient fine particulate matter (PM2.5)-related metabolic disorders. METHODS In this study, the C57BL/6 and db/db mice were exposed to concentrated PM2.5 or filtered air (FA) using Shanghai Meteorological and Environmental Animal Exposure System (Shanghai-METAS) for 12 weeks. Indices of lipid metabolism, glucose metabolism, insulin sensitivity, and protein expression of NLRP3 inflammasome in visceral adipose tissue (VAT) were measured, respectively. RESULTS The results showed that PM2.5 exposure increased circulatory insulin, triglycerides (TG), and total cholesterol (TC), and decreased high-density lipoprotein (HDL) in both C57BL/6 and db/db mice. The levels of NLRP3-related circulatory inflammatory cytokines including both interleukin (IL)-18 and IL-1β in serum were increased in the PM2.5-exposed mice and accompanied by the elevation in fasting blood glucose and insulin. The results also showed that exposure to PM2.5 promoted the activation of NLRP3, pro-caspase-1, caspase-1, and apoptosis-associated speck-like protein containing CARD (ASC), simultaneously accompanied by the increase of IL-18 and IL-1β expression in VAT, but the statistically significant difference only found in the db/db mice, not in C57BL/6 mice. CONCLUSION The activation of NLRP3 inflammasome might be not the main mechanism of PM2.5-related metabolic disorders in wide type mice but it partly mediated the exacerbation of metabolic disorders in diabetic model mice.
Collapse
Affiliation(s)
- Liying Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Lei Lei
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.,Shanghai Changning Center for Disease Control and Prevention, Shanghai, China
| | - Kun Pan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xuejiao Zeng
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jia Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Ji Zhou
- Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| | - Yuquan Xie
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Dong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.,Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China.,IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Qin F, Cui S, Dong Y, Xu M, Wang Z, Qu C, Zhao J. Aerobic exercise ameliorates particulate matter-induced lung injury in aging rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116889. [PMID: 33774542 DOI: 10.1016/j.envpol.2021.116889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Particulate matter 2.5 (PM2.5) is an inflammatory-inducing factor that is considered to be related to many adverse respiratory problems, especially in the elderly. This study aimed to examine whether pre-exercise training could prevent pulmonary injury induced by urban PM2.5 in aging rats and investigate its relationship with inflammatory pathways. Male Wistar rats (aged 16 months) were randomly divided into four groups: sedentary, exercise, sedentary + PM2.5 exposure, and exercise + PM2.5 exposure. All rats in exercise-related groups were treadmill-trained for 8 weeks (65%-75% VO2max for 30 min every other day). Sedentary groups' rats lived freely in cages without exercise intervention. Rats in the PM-related groups were exposed to ambient PM2.5 (4 h day-1) for 2 weeks after an 8-week exercise intervention or sedentary treatment. Finally, all rats' pulmonary function, lung morphology, degree of inflammation, and relevant protein and mRNA transcript expression levels were examined. The results indicated that PM2.5 exposure induced lung injury in the sedentary + PM2.5 exposure group, as evidenced by the deterioration of pulmonary function, histopathological characteristics, and inflammatory changes. Aerobic exercise alleviated PM2.5-induced airway obstruction, deterioration of pulmonary function, bronchial mucosal exfoliation, and inflammatory responses in aging rats. These effects in exercise groups were associated with the increased expression of intracellular 70 kDa heat shock protein (iHSP70) and the suppression of nuclear transcription factor-κB (NF-κB) activation, as confirmed by increased expression of inhibitor of NF-κB (IκBα) and a reduction in phospho-IKBα (p-IκBα), which is regulated by inhibiting kappa B kinase beta (IKKβ). Taken together, aerobic pre-exercise had protective effects on lung injury and reduced vulnerability to inflammation induced by PM2.5 exposure, possibly through the toll-like receptor 4 (TLR4)/NF-κB signaling pathways mediated by the extracellular-to-intracellular HSP70 ratio. Pre-exercise training may be an effective way to protect against PM2.5-induced lung toxicity in aging individuals.
Collapse
Affiliation(s)
- Fei Qin
- China Institute of Sport Science, Beijing, China; School of Physical Education, Jinan University, Guangzhou, China
| | - Shuqiang Cui
- Beijing Research Institute of Sports Science, Beijing, China
| | - Yanan Dong
- Beijing Research Institute of Sports Science, Beijing, China
| | - Minxiao Xu
- China Institute of Sport Science, Beijing, China; Shanghai University of Sport, Shanghai, China
| | - Zhongwei Wang
- China Institute of Sport Science, Beijing, China; Changzhou Research Institute of Science and Medical Treatment, Changzhou, China
| | - Chaoyi Qu
- China Institute of Sport Science, Beijing, China
| | - Jiexiu Zhao
- China Institute of Sport Science, Beijing, China.
| |
Collapse
|
27
|
Costa-Beber LC, Goettems-Fiorin PB, Dos Santos JB, Friske PT, Heck TG, Hirsch GE, Ludwig MS. Ovariectomy reduces the cardiac cytoprotection in rats exposed to particulate air pollutant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23395-23404. [PMID: 33443732 DOI: 10.1007/s11356-021-12350-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) has been considered a risk factor for cardiovascular diseases by inducing an oxidative and inflammatory phenotype. Besides, the reduction of 17β-estradiol (E2) levels during menopause is a natural risk for cardiovascular outcomes. During the E2 downfall, there is a high requirement of the 70-kDa heat shock proteins (HSP70), which present essential antioxidant, anti-inflammatory, and anti-senescence roles. We investigated if the ovariectomy, an animal model for menopause, could induce additional effects in cardiac health by impairing oxidative and heat shock response parameters of female rats chronically exposed to residual oil fly ash (ROFA; an inorganic fraction of PM2.5). Thus, ROFA was obtained from São Paulo (Brazil) and solubilized it in saline. Further, female Wistar rats were exposed to 50 μL of saline (control group) or ROFA solution (250 μg) (polluted) by intranasal instillation, 5 days/week, 12 weeks. At the 12th week, animals were subdivided into four groups (n = 6 p/group): control, OVX, polluted, and polluted + OVX. Control and polluted were submitted to false surgery, while OVX and polluted + OVX were ovariectomized. ROFA or saline exposure continued for 12 weeks. Ovariectomy reduced the cardiac catalase activity and iHSP70 expression in female rats exposed to ROFA. Neither plasma eHSP72 levels nor H-index (eHSP72 to cardiac iHSP70 ratio) was affected. In conclusion, ovariectomy reduces the cardiac cytoprotection and antioxidant defense, and enhances the susceptibility to premature cellular senescence in rats exposed to ROFA.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil.
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Paula Taís Friske
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
- Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
- Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| |
Collapse
|
28
|
Snow SJ, Henriquez AR, Fisher A, Vallanat B, House JS, Schladweiler MC, Wood CE, Kodavanti UP. Peripheral metabolic effects of ozone exposure in healthy and diabetic rats on normal or high-cholesterol diet. Toxicol Appl Pharmacol 2021; 415:115427. [PMID: 33524448 PMCID: PMC8086744 DOI: 10.1016/j.taap.2021.115427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Epidemiological studies show that individuals with underlying diabetes and diet-associated ailments are more susceptible than healthy individuals to adverse health effects of air pollution. Exposure to air pollutants can induce metabolic stress and increase cardiometabolic disease risk. Using male Wistar and Wistar-derived Goto-Kakizaki (GK) rats, which exhibit a non-obese type-2 diabetes phenotype, we investigated whether two key metabolic stressors, type-2 diabetes and a high-cholesterol atherogenic diet, exacerbate ozone-induced metabolic effects. Rats were fed a normal control diet (ND) or high-cholesterol diet (HCD) for 12 weeks and then exposed to filtered air or 1.0-ppm ozone (6 h/day) for 1 or 2 days. Metabolic responses were analyzed at the end of each day and after an 18-h recovery period following the 2-day exposure. In GK rats, baseline hyperglycemia and glucose intolerance were exacerbated by HCD vs. ND and by ozone vs. air. HCD also resulted in higher insulin in ozone-exposed GK rats and circulating lipase, aspartate transaminase, and alanine transaminase in all groups (Wistar>GK). Histopathological effects induced by HCD in the liver, which included macrovesicular vacuolation and hepatocellular necrosis, were more severe in Wistar vs. GK rats. Liver gene expression in Wistar and GK rats fed ND showed numerous strain differences, including evidence of increased lipid metabolizing activity and ozone-induced alterations in glucose and lipid transporters, specifically in GK rats. Collectively, these findings indicate that peripheral metabolic alterations induced by diabetes and high-cholesterol diet can enhance susceptibility to the metabolic effects of inhaled pollutants.
Collapse
MESH Headings
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Air Pollutants/toxicity
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Body Composition/drug effects
- Cholesterol, Dietary/metabolism
- Cholesterol, Dietary/toxicity
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Energy Metabolism/drug effects
- Gene Expression Regulation
- Inhalation Exposure
- Insulin/blood
- Lipids/blood
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Ozone/toxicity
- Rats, Wistar
- Species Specificity
- Rats
Collapse
Affiliation(s)
- Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Anna Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Beena Vallanat
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - John S House
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Charles E Wood
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States; Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States.
| |
Collapse
|
29
|
Okada T, Iwayama T, Murakami S, Torimura M, Ogura T. Nanoscale observation of PM2.5 incorporated into mammalian cells using scanning electron-assisted dielectric microscope. Sci Rep 2021; 11:228. [PMID: 33420286 PMCID: PMC7794539 DOI: 10.1038/s41598-020-80546-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022] Open
Abstract
PM2.5 has been correlated with risk factors for various diseases and infections. It promotes tissue injury by direct effects of particle components. However, effects of PM2.5 on cells have not been fully investigated. Recently, we developed a novel imaging technology, scanning electron-assisted dielectric-impedance microscopy (SE-ADM), which enables observation of various biological specimens in aqueous solution. In this study, we successfully observed PM2.5 incorporated into living mammalian cells in culture media. Our system directly revealed the process of PM2.5 aggregation in the cells at a nanometre resolution. Further, we found that the PM2.5 aggregates in the intact cells were surrounded by intracellular membrane-like structures of low-density in the SE-ADM images. Moreover, the PM2.5 aggregates were shown by confocal Raman microscopy to be located inside the cells rather than on the cell surface. We expect our method to be applicable to the observation of various nanoparticles inside cells in culture media.
Collapse
Affiliation(s)
- Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0851, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0851, Japan
| | - Masaki Torimura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
30
|
Costa-Beber LC, Goettems-Fiorin PB, Dos Santos JB, Friske PT, Frizzo MN, Heck TG, Hirsch GE, Ludwig MS. Ovariectomy enhances female rats' susceptibility to metabolic, oxidative, and heat shock response effects induced by a high-fat diet and fine particulate matter. Exp Gerontol 2020; 145:111215. [PMID: 33340683 DOI: 10.1016/j.exger.2020.111215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 01/21/2023]
Abstract
Obesity and exposure to fine particulate matter (air pollutant PM2.5) are important risk factors for metabolic and cardiovascular diseases. They are also related to early menopause. The reduction of 17β-estradiol (E2) levels during female climacteric, marked by menopause, is of significant concern because of its imminent influence on metabolism, redox and inflammatory status. This complex homeostasis-threatening scenario may induce a heat shock response (HSR) in cells, enhancing the expression of the 70 kDa heat shock protein (HSP70). A failure in this mechanism could predispose women to cardiovascular diseases. In this study, we evaluated if the climacteric could represent an additional risk among obese rats exposed to PM2.5 by worsening lipid, oxidative, and inflammatory parameters and HSP70 in cardiac tissue. We induced obesity in female Wistar rats using a high-fat diet (HFD) (58.3% as fats) and exposed them to 50 μL of saline 0.9% (control, n = 15) or 250 μg residual oil fly ash (ROFA, the inorganic portion of PM2.5) (polluted, n = 15) by intranasal instillation, 5 days/w for 12 weeks. At the 12th week, we subdivided these animals into four groups: control (n = 6), OVX (n = 9), polluted (n = 6) and polluted + OVX (n = 9). OVX and polluted + OVX were submitted to a bilateral ovariectomy (OVX), a surgical model for menopause, while control and polluted received a false surgery (sham). ROFA exposure and HFD consumption were continued for 12 additional weeks, after which the animals were euthanized. ROFA enhanced the susceptibility to ovariectomy-induced dyslipidemia, while ovariectomy predisposed female rats to the ROFA-induced decrease of cardiac iHSP70 expression. Ovariectomy also decreased the IL-6 levels and IL-6/IL-10 in obese animals, reinforcing a metabolic impairment and a failure to respond to unfavorable conditions. Our results support the hypothesis that obese ovariectomized animals are predisposed to a metabolic worsening under polluted conditions and are at higher risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil.
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Porto Alegre, RS, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil
| | - Paula Taís Friske
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Porto Alegre, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| |
Collapse
|
31
|
Snow SJ, Henriquez AR, Fenton JI, Goeden T, Fisher A, Vallanat B, Angrish M, Richards JE, Schladweiler MC, Cheng WY, Wood CE, Tong H, Kodavanti UP. Diets enriched with coconut, fish, or olive oil modify peripheral metabolic effects of ozone in rats. Toxicol Appl Pharmacol 2020; 410:115337. [PMID: 33217375 DOI: 10.1016/j.taap.2020.115337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Dietary factors may modulate metabolic effects of air pollutant exposures. We hypothesized that diets enriched with coconut oil (CO), fish oil (FO), or olive oil (OO) would alter ozone-induced metabolic responses. Male Wistar-Kyoto rats (1-month-old) were fed normal diet (ND), or CO-, FO-, or OO-enriched diets. After eight weeks, animals were exposed to air or 0.8 ppm ozone, 4 h/day for 2 days. Relative to ND, CO- and OO-enriched diet increased body fat, serum triglycerides, cholesterols, and leptin, while all supplements increased liver lipid staining (OO > FO > CO). FO increased n-3, OO increased n-6/n-9, and all supplements increased saturated fatty-acids. Ozone increased total cholesterol, low-density lipoprotein, branched-chain amino acids (BCAA), induced hyperglycemia, glucose intolerance, and changed gene expression involved in energy metabolism in adipose and muscle tissue in rats fed ND. Ozone-induced glucose intolerance was exacerbated by OO-enriched diet. Ozone increased leptin in CO- and FO-enriched groups; however, BCAA increases were blunted by FO and OO. Ozone-induced inhibition of liver cholesterol biosynthesis genes in ND-fed rats was not evident in enriched dietary groups; however, genes involved in energy metabolism and glucose transport were increased in rats fed FO and OO-enriched diet. FO- and OO-enriched diets blunted ozone-induced inhibition of genes involved in adipose tissue glucose uptake and cholesterol synthesis, but exacerbated genes involved in adipose lipolysis. Ozone-induced decreases in muscle energy metabolism genes were similar in all dietary groups. In conclusion, CO-, FO-, and OO-enriched diets modified ozone-induced metabolic changes in a diet-specific manner, which could contribute to altered peripheral energy homeostasis.
Collapse
Affiliation(s)
- Samantha J Snow
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Travis Goeden
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Anna Fisher
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Michelle Angrish
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Judy E Richards
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Wan-Yun Cheng
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Charles E Wood
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Haiyan Tong
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
32
|
Soares M, Santos ABD, Weich TM, Mânica GG, Homem de Bittencourt PI, Ludwig MS, Heck TG. Heat shock response in noise-induced hearing loss: effects of alanyl-glutamine dipeptide supplementation on heat shock proteins status. Braz J Otorhinolaryngol 2020; 86:703-710. [PMID: 31255578 PMCID: PMC9422582 DOI: 10.1016/j.bjorl.2019.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/30/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Introduction Objective Methods Results Conclusions
Collapse
Affiliation(s)
- Marcos Soares
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí), Departamento de Ciências da Vida, Programa de Pós-Graduação em Atenção Integral à Saúde, Ijuí, RS, Brazil.
| | - Analu B Dos Santos
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí), Departamento de Ciências da Vida, Programa de Pós-Graduação em Atenção Integral à Saúde, Ijuí, RS, Brazil
| | - Tainara M Weich
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí), Departamento de Ciências da Vida, Programa de Pós-Graduação em Atenção Integral à Saúde, Ijuí, RS, Brazil
| | - Gabriela Gomes Mânica
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí), Departamento de Ciências da Vida, Programa de Pós-Graduação em Atenção Integral à Saúde, Ijuí, RS, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Porto Alegre, RS, Brazil
| | - Mirna Stela Ludwig
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí), Departamento de Ciências da Vida, Programa de Pós-Graduação em Atenção Integral à Saúde, Ijuí, RS, Brazil
| | - Thiago Gomes Heck
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí), Departamento de Ciências da Vida, Programa de Pós-Graduação em Atenção Integral à Saúde, Ijuí, RS, Brazil.
| |
Collapse
|
33
|
Costa Beber LC, da Silva MOAF, Dos Santos AB, Mai AS, Goettems-Fiorin PB, Frizzo MN, Hirsch GE, Ludwig MS, Heck TG. The association of subchronic exposure to low concentration of PM 2.5 and high-fat diet potentiates glucose intolerance development, by impairing adipose tissue antioxidant defense and eHSP72 levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32006-32016. [PMID: 32506396 DOI: 10.1007/s11356-020-09581-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The subchronic exposure to fine particulate matter (PM2.5) and high-fat diet (HFD) consumption lead to glucose intolerance by different mechanisms involving oxidative stress and inflammation. Under stressful conditions, the cells exert a heat shock response (HSR), by releasing the 72-kDa heat shock proteins (eHSP72), fundamental chaperones. The depletion of the HSR can exacerbate the chronic inflammation. However, there are few studies about the early effects of the association of HFD consumption and exposure to low concentrations of PM2.5 in the oxidative stress and HSR, in the genesis of glucose intolerance. Thus, we divided 23 male B6129SF2/J mice into control (n = 6), polluted (n = 6), HFD (n = 6), and high-fat diet + polluted (HFD + polluted) (n = 5) groups. Control and polluted received a standard diet (11.4% of fats), while HFD and HFD + polluted received HFD (58.3% of fats). Simultaneously, polluted and HFD + polluted received 5 μg/10 μL of PM2.5, daily, 7×/week, while control and HFD were exposed to 10 μL of saline solution 0.9% for 12 weeks. At the 12th week, animals were euthanized. We collected the metabolic tissues to analyze oxidative parameters, total blood to the hematological parameters, and plasma to eHSP72 measurement. The association of HFD and PM2.5 impaired glucose tolerance in the 12th week. Besides, it triggered an antioxidant defense by the adipose tissue, which was negatively correlated with eHSP72 levels. In conclusion, a low concentration of PM2.5 exposure associated with HFD consumption leads to glucose intolerance, by impairing adipose tissue antioxidant defense and systemic eHSP72 levels.
Collapse
Affiliation(s)
- Lílian Corrêa Costa Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário -, Ijuí, RS, 98700-000, Brazil.
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil.
| | - Marieli Oara Amaral Fagundes da Silva
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário -, Ijuí, RS, 98700-000, Brazil
| | - Analú Bender Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário -, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Aline Sfalcin Mai
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário -, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário -, Ijuí, RS, 98700-000, Brazil
- Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, 245, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário -, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário -, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário -, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário -, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
34
|
Lissarassa YPS, Vincensi CF, Costa-Beber LC, Dos Santos AB, Goettems-Fiorin PB, Dos Santos JB, Donato YH, Wildner G, Homem de Bittencourt Júnior PI, Frizzo MN, Heck TG, Ludwig MS. Chronic heat treatment positively impacts metabolic profile of ovariectomized rats: association with heat shock response pathways. Cell Stress Chaperones 2020; 25:467-479. [PMID: 32215846 PMCID: PMC7192980 DOI: 10.1007/s12192-020-01087-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 01/11/2023] Open
Abstract
Low estrogen levels may predispose women to increased bodyweight and dyslipidemia. Previous studies from our laboratory suggest an involvement of depressed heat shock response (HSR) in this scenario because estrogen potently stimulates HSR. As heat treatment induces the expression of the anti-inflammatory heat shock proteins of the 70-kDa family (HSP70) and its accompanying HSR, we aimed to investigate whether chronic heat treatment promotes beneficial effects on biometric, lipid profile, oxidative stress, and HSR in ovariectomized rats. Wistar adult female rats (n = 32) were divided into four groups: control (C, n = 7), ovariectomized (OVX, n = 9), heat-treated (HT, n = 9), and heat-treated ovariectomized rats (OVX+HT, n = 7). HT and OVX+HT rats were anesthetized and submitted to heat treatment (once a week for 12 weeks) in a water bath (41 °C) to increase rats' rectal temperature up to 41 °C for 15 min, while C and OVX animals were submitted to a 36 °C water bath. HT attenuated the weight gain induced by OVX and increased HDL cholesterol and triglyceride serum levels. Also, OVX rats showed increased total cholesterol and LDL cholesterol levels that were not influenced by HT. Interestingly, it was found that an overall trend for HT to decrease tissue catalase and superoxide dismutase antioxidant activities was paralleled by a decrease in malondialdehyde levels (indicative of lower lipoperoxidation), especially in the skeletal muscle. Surprisingly, OVX was not able to depress intracellular HSP70 expression in the skeletal muscle, as expected, and this remained unchanged with HT. However, chronic HT did enhance intracellular HSP70 contents in white adipose tissue of OVX animals. As both glucose and insulin tolerance tests were not affected by OVX, which was not modified by HT, we suppose that estrogen absence alone is not sufficient to determine a state of insulin resistance associated with low intramuscular HSP70 content.
Collapse
Affiliation(s)
- Yana Picinin Sandri Lissarassa
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Carolain Felipin Vincensi
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Analú Bender Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Yohanna Hannnah Donato
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Guilherme Wildner
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Paulo Ivo Homem de Bittencourt Júnior
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, ICBS, Porto Alegre, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
| |
Collapse
|
35
|
Wang M, Gong L, Zou Z, Jiang A, Wang H, Luo J, Zhang X, Luo C, Wang H, Zhao H, Pan D, Jing J, Wu Y, Wang R, Ma J, Ma Y, Chen Y. The relationship between long-term exposure to PM 2.5 and fasting plasma glucose levels in Chinese children and adolescents aged 6-17 years: A national cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136211. [PMID: 32050359 DOI: 10.1016/j.scitotenv.2019.136211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Previous studies investigating the association between PM2.5 exposure and fasting plasma glucose levels (FPGLs) are mostly limited to short- and mid-term PM2.5 exposure and lack adjustments for key confounders in adult research. OBJECTIVES Exploring the relationship between seven years long-term PM2.5 exposure and FPGLs in Chinese children and adolescents aged 6-17 years. METHODS Between September 2013 and December 2013, 16,489 participants aged 6-17 years were recruited using a four-staged, stratified, cluster sampling strategy from 7 provinces, autonomous regions and municipalities of mainland China. A generalized linear mixed model (GLMM) was used to estimate the relationship between annual PM2.5 exposure (2007-2013) and FPGLs stratified by sex and one-year age increments. Sociodemographic characteristics, living with both parents, early-life factors, behaviours, and infection symptoms were gradually adjusted from the crude model to regression model 6, and BMI was adjusted for in model 7. RESULTS The annual concentration of PM2.5 was 56.23 (±12.99) μg/m3. The mean FPGLs in the 8551 boys (4.75 mmol/L ± 0.52) was significantly higher than that in the 8194 girls (4.63 mmol/L ± 0.48) (P < 0.0001). In model 6, for every 10 μg/m3 increase in PM2.5 exposure, the FPGLs in boys and girls increased by 0.048 (95% CIs 0.031 to 0.065) mmol/L (P < 0.0001) and 0.054 (95% CIs 0.039 to 0.069) mmol/L (P < 0.0001), respectively. The FPGLs were significantly positively associated with long-term PM2.5 exposure at the ages of 12, 15 and 16 years in both the boys and girls and exhibited age differences in model 7. The prevalence of impaired fasting plasma glucose (IFP) and diabetes decreased by 0.8% when the exposure concentration of PM2.5 was reduced by 10 μg/m3 in model 6, which assessed the negative effects of PM2.5 exposure and revealed that 1,298,920 children and adolescents could have been protected from IFP and diabetes in 2013 in China. CONCLUSIONS Long-term PM2.5 exposure may be an independent risk factor of elevated FPGLs. The adverse effect of PM2.5 exposure on FPGLs in children and adolescents could appear after 10 years of cumulative exposure. The precise intervention time was revealed as approximately 12 and 11 years in boys and girls, respectively. There are great public health implications associated with early prevention strategies for the eradication of the negative effects of long-term exposure to PM2.5 on FPGLs.
Collapse
Affiliation(s)
- Mao Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Gong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Aili Jiang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haijun Wang
- School of Public Health, Peking University, Beijing, China
| | - Jiayou Luo
- Department of Maternal and Child Health, School of Public Health, Central South University, Changsha, China
| | - Xin Zhang
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Chunyan Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Hong Wang
- Chongqing Medical University, Chongqing, China
| | | | - Dehong Pan
- Liaoning Health Supervision Bureau, Shenyang, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yinglin Wu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruijie Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yinghua Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China.
| | - Yajun Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Kodavanti UP. Susceptibility Variations in Air Pollution Health Effects: Incorporating Neuroendocrine Activation. Toxicol Pathol 2019; 47:962-975. [PMID: 31594484 PMCID: PMC9353182 DOI: 10.1177/0192623319878402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Diverse host factors/phenotypes may exacerbate or diminish biological responses induced by air pollutant exposure. We lack an understanding of biological indicators of environmental exposures that culminate in a physiological response versus those that lead to adversity. Variations in response phenotype might arise centrally and/or at the local tissue level. In addition to genetic differences, the current evidence supports the roles of preexisting cardiopulmonary diseases, diabetes, diet, adverse prenatal environments, neurobehavioral disorders, childhood infections, microbiome, sex, and psychosocial stressors in modifying the susceptibility to air pollutant exposures. Animal models of human diseases, obesity, nutritional inadequacies, and neurobehavioral conditions have been compared with healthy controls to understand the causes of variations in susceptibility. Although psychosocial stressors have been associated with increased susceptibility to air pollutant effects, the contribution of neuroendocrine stress pathways in mediating these effects is just emerging. The new findings of neuroendocrine activation leading to systemic metabolic and immunological effects of air pollutants, and the potential contribution to allostatic load, emphasize the consideration of these mechanisms into susceptibility. Variations in susceptibility to air pollution health effects are likely to underlie host genetic and physiological conditions in concert with disrupted neuroendocrine circuitry that alters physiological stability under the influence of stressors.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
37
|
Bittencourt A, Schroeder HT, Porto RR, de Lemos Muller CH, Krause M, Homem de Bittencourt PI. Heat shock response to exercise in pancreatic islets of obese mice. Biochimie 2019; 168:28-40. [PMID: 31678111 DOI: 10.1016/j.biochi.2019.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/27/2019] [Indexed: 12/18/2022]
Abstract
Chronic obesity imposes an organismal state of low-grade inflammation because the physiological resolution of inflammation is progressively repressed giving rise to cellular senescence and its accompanying Senescence-Associated Secretory Phenotype (SASP), which avoids apoptosis but perpetuates the relay of inflammatory signals from adipose tissue toward the rest of the body. Conversely, resolution of inflammation depends on the integrity of heat shock response (HSR) pathway that leads to the expression of cytoprotective and anti-inflammatory protein chaperones of the 70 kDa family (HSP70). However, chronic exposure to the aforementioned injuring factors leads to SASP, which, in turn, suppresses the HSR. A main metabolic tissue severely jeopardized by obesity-related dysfunctions is the endocrine pancreas, particularly β-cells of the islets of Langerhans. Because exercise is a powerful inducer of HSR and predicted to alleviate negative health outcomes of obesity, we sought whether obesity influence HSP70 expression in pancreatic islets and other metabolic tissues (adipose tissue and skeletal muscle) of adult B6.129SF2/J mice fed on a high-fat diet (HFD) for 13 weeks since the weaning and whether acute exercise as well as moderate-intensity exercise training (8 weeks) could interfere with this scenario. We showed that acute exercise of moderate intensity protects pancreatic islets against cytokine-induced cell death. In addition, acute exercise challenge time-dependently increased islet HSP70 that peaked at 12 h post-exercise in both trained and untrained mice fed on a control diet, suggesting an adequate HSR to exercise training. Unexpectedly, however, neither exercise training nor acute exercise challenges were able to increase islet HSP70 contents in trained mice submitted to HFD, but only in untrained HFD animals. In parallel, HFD disrupted glycemic status which is accompanied by loss of muscular mass resembling sarcopenic obesity that could not be rescued by exercise training. These results suggest that exercise influences HSR in pancreatic islets but obesity undermines islet, muscle and adipose tissue HSR, which is associated with metabolic abnormalities observed in such tissues.
Collapse
Affiliation(s)
- Aline Bittencourt
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rossana Rosa Porto
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
38
|
Curbani F, de Oliveira Busato F, do Nascimento MM, Olivieri DN, Tadokoro CE. Inhale, exhale: Why particulate matter exposure in animal models are so acute? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:230-237. [PMID: 31082607 DOI: 10.1016/j.envpol.2019.04.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Ecotoxicological studies that try to describe the effects of particulate matter (PM) on human health are important in order to gain a deeper understanding of their effects in disease outcomes. Because exposure protocols are not easily comparable, evaluating human PM exposure is a difficult task. Thus, interpreting ambiguous or conflicting results from different experiments could lead to misleading conclusions about the true nature of PM effects. To address these issues, we compiled a collection of relevant research articles in order to compare present PM exposure methods and extract data related to concentration, inhalation rates (IR), and doses. We also compare the experimental exposure levels reported in these articles to PM levels around the world. In particular, our dataset covers reported results from 75 research articles. To allow for comparison between protocols, we used this data to fit a normalization equation that depends upon concentration, exposure time, dose, inhalability, and physiological parameters. Based on the collected research papers, instillation is the prevalent exposure method. Also, the median PM IR from these experiments is three orders of magnitude higher than the PM IR found in environmental conditions (EAP). Experiments employing inhalation of concentrated PM show IR results that are two orders of magnitude higher than EAP; these results are cause for concerns, since the PM exposure were acute, sudden, and higher than the worst-case exposure scenarios reported by the world megacities. We also found that different PM exposure protocols are sources for the observed variability in physiological response results found from animal models. We discuss these findings and make suggestions for future exposure methodologies. Such considerations should be valuable for quantifying PM exposure in disease outcomes.
Collapse
Affiliation(s)
- Flávio Curbani
- Programa de Pós-Graduação Em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil; Departamento de Tecnologia Industrial, Centro Tecnológico, Universidade Federal Do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, CEP 29060-970, Vitória, ES, Brazil
| | - Fernanda de Oliveira Busato
- Laboratory of Immunobiology, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | - Maynara Marcarini do Nascimento
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | | | - Carlos Eduardo Tadokoro
- Programa de Pós-Graduação Em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil.
| |
Collapse
|
39
|
Curbani F, de Oliveira Busato F, Marcarini do Nascimento M, Olivieri DN, Tadokoro CE. Inhale, exhale: Why particulate matter exposure in animal models are so acute? Data and facts behind the history. Data Brief 2019; 25:104237. [PMID: 31367664 PMCID: PMC6646918 DOI: 10.1016/j.dib.2019.104237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
We present a dataset obtained by extracting information from an extensive literature search of toxicological experiments using mice and rat animal models to study the effects of exposure to airborne particulate matter (PM). Our dataset covers results reported from 75 research articles considering paper published in 2017 and seminal papers from previous years. The compiled data and normalization were processed with an equation based on a PM dosimetry model. This equation allows the comparison of different toxicological experiments using instillation and inhalation as PM exposure protocols with respect to inhalation rates, concentrations and PM exposure doses of the toxicological experiments performed by different protocols using instillation and inhalation PM as exposure methods. This data complements the discussions and interpretations presented in the research article “Inhale, exhale: why particulate matter exposure in animal models are so acute?” Curbani et al., 2019.
Collapse
Affiliation(s)
- Flávio Curbani
- Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil.,Departamento de Tecnologia Industrial, Centro Tecnológico, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, CEP 29060-970, Vitória, ES, Brazil
| | - Fernanda de Oliveira Busato
- Laboratory of Immunobiology, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | - Maynara Marcarini do Nascimento
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | | | - Carlos Eduardo Tadokoro
- Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| |
Collapse
|
40
|
Goettems-Fiorin PB, Costa-Beber LC, Dos Santos JB, Friske PT, Sulzbacher LM, Frizzo MN, Ludwig MS, Rhoden CR, Heck TG. Ovariectomy predisposes female rats to fine particulate matter exposure's effects by altering metabolic, oxidative, pro-inflammatory, and heat-shock protein levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20581-20594. [PMID: 31104233 DOI: 10.1007/s11356-019-05383-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The reduction of estrogen levels, as a result of menopause, is associated with the development of metabolic diseases caused by alterations in oxidative stress (OS), inflammatory biomarkers, and 70-kDa heat-shock protein (HSP70) expression. Additionally, exposure to fine particulate matter air pollution modifies liver OS levels and predisposes organisms to metabolic diseases, such as type 2 diabetes (T2DM). We investigated whether ovariectomy affects hepatic tissue and alters glucose metabolism in female rats exposed to particulate air pollution. First, 24 female Wistar rats received an intranasal instillation of saline or particles suspended in saline 5 times per week for 12 weeks. The animals then received either bilateral ovariectomy (OVX) or false surgery (sham) and continued to receive saline or particles for 12 additional weeks, comprising four groups: CTRL, Polluted, OVX, and Polluted+OVX. Ovariectomy increased body weight and adiposity and promoted edema in hepatic tissue, hypercholesterolemia, glucose intolerance, and a pro-inflammatory profile (reduced IL-10 levels and increased IL-6/IL-10 ratio levels), independent of particle exposure. The Polluted+OVX group showed an increase in neutrophils and neutrophil/lymphocyte ratios, decreased antioxidant defense (SOD activity), and increased liver iHSP70 levels. In conclusion, alterations in the reproductive system predispose female organisms to particulate matter air pollution effects by affecting metabolic, oxidative, pro-inflammatory, and heat-shock protein expression.
Collapse
Affiliation(s)
- Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil.
| | - Lilian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Paula Taís Friske
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Cláudia Ramos Rhoden
- Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil.
| |
Collapse
|
41
|
Liang F, Yang X, Liu F, Li J, Xiao Q, Chen J, Liu X, Cao J, Shen C, Yu L, Lu F, Wu X, Zhao L, Wu X, Li Y, Hu D, Huang J, Liu Y, Lu X, Gu D. Long-term exposure to ambient fine particulate matter and incidence of diabetes in China: A cohort study. ENVIRONMENT INTERNATIONAL 2019; 126:568-575. [PMID: 30852444 DOI: 10.1016/j.envint.2019.02.069] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Diabetes caused substantial economic and health burden worldwide. However, the associations between air pollution and diabetes incidence were rarely reported in the developing countries, especially in China with relatively high PM2.5 concentrations. OBJECTIVES A cohort-based study was conducted to assess the diabetes incidence associated with long-term exposure to ambient PM2.5. METHODS We collected individual health data and risk factors from the project of Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR Project) from 15 provinces over China. Diabetes was defined as fasting glucose levels ≥7.0 mmol/L at the follow-ups and/or the use of insulin or oral hypoglycemic agents and/or diagnosed medical history of diabetes during 2004 to 2015. Individual-level PM2.5 exposures were estimated from satellite-based PM2.5 concentrations (10 km spatial resolution) during the study period. Cox proportional hazards models with random intercepts of each cohort and region were employed to estimate the diabetes incidence attributable to PM2.5, after the adjustment for age, gender, body mass index, smoking status, education, work-related physical activity level, hypertension, urbanicity, county-level averaged years of education, and long-term levels of temperature and relative humidity. RESULTS A total of 88,397 subjects were analyzed with 580,928 person-years of follow-up after 2004, among which 6439 new cases of diabetes were observed. The mean age of the subjects was 51.7 years at baseline. For an increase of 10 μg/m3 in long-term PM2.5 exposure, the multivariable-adjusted percent increase in the diabetes incidence was estimated to be 15.66% (95% confidence interval: 6.42%, 25.70%). The adverse effects of PM2.5 were larger among females, rural subjects, non-smokers, normotensives, subjects younger than 65 years and subjects with body mass index <25 kg/m2. CONCLUSIONS Our findings provided evidence for the association of long-term exposure to PM2.5 with diabetes incidence in China. A sustained improvement of air quality will benefit the reduction for diabetes epidemic in China.
Collapse
Affiliation(s)
- Fengchao Liang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xueli Yang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Fangchao Liu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jianxin Li
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qingyang Xiao
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jichun Chen
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People's Hospital and Cardiovascular Institute, Guangzhou 510080, China
| | - Jie Cao
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Yu
- Department of Cardiology, Fujian Provincial People's Hospital, Fuzhou 350014, China
| | - Fanghong Lu
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Liancheng Zhao
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xigui Wu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ying Li
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Dongsheng Hu
- Department of Prevention Medicine, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Jianfeng Huang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yang Liu
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
42
|
Kostrycki IM, Wildner G, Donato YH, dos Santos AB, Beber LCC, Frizzo MN, Ludwig MS, Keane KN, Cruzat V, Rhoden CR, Heck TG. Effects of High-Fat Diet on eHSP72 and Extra-to-Intracellular HSP70 Levels in Mice Submitted to Exercise under Exposure to Fine Particulate Matter. J Diabetes Res 2019; 2019:4858740. [PMID: 30723746 PMCID: PMC6339705 DOI: 10.1155/2019/4858740] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022] Open
Abstract
Obesity, air pollution, and exercise induce alterations in the heat shock response (HSR), in both intracellular 70 kDa heat shock proteins (iHSP70) and the plasmatic extracellular form (eHSP72). Extra-to-intracellular HSP70 ratio (H-index = eHSP70/iHSP70 ratio) represents a candidate biomarker of subclinical health status. This study investigated the effects of moderate- and high-intensity exercise in the HSR and oxidative stress parameters, in obese mice exposed to fine particulate matter (PM2.5). Thirty-day-old male isogenic B6129F2/J mice were maintained for 16 weeks on standard chow or high-fat diet (HFD). Then, mice were exposed to either saline or 50 μg of PM2.5 by intranasal instillation and subsequently maintained at rest or subjected to moderate- or high-intensity swimming exercise. HFD mice exhibited high adiposity and glucose intolerance at week 16th. HFD mice submitted to moderate- or high-intensity exercise were not able to complete the exercise session and showed lower levels of eHSP70 and H-index, when compared to controls. PM2.5 exposure modified the glycaemic response to exercise and modified hematological responses in HFD mice. Our study suggests that obesity is a critical health condition for exercise prescription under PM2.5 exposure.
Collapse
Affiliation(s)
- Iberê Machado Kostrycki
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Laboratory of Oxidative Stress and Air Pollution, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guilherme Wildner
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
| | - Yohanna Hannah Donato
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
| | - Analú Bender dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Lílian Corrêa Costa Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, Australia
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Melbourne, Victoria 3065, Australia
| | - Cláudia Ramos Rhoden
- Laboratory of Oxidative Stress and Air Pollution, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
43
|
Ten Caten Martins E, Dos Santos RZ, Dos Santos AB, Fiorin PBG, Sandri YP, Frizzo MN, Ludwig MS, Heck TG, Benetti M. Detectable levels of eHSP72 in plasma are associated with physical activity and antioxidant enzyme activity levels in hypertensive subjects. Cell Stress Chaperones 2018; 23:1319-1327. [PMID: 30238325 PMCID: PMC6237681 DOI: 10.1007/s12192-018-0939-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 02/05/2023] Open
Abstract
Previous studies reported that extracellular HSP72 (eHSP72) correlates with poor prognosis, markers of vascular dysfunction, and the severity of cardiovascular diseases, associated with a systemic oxidative and inflammatory profile. On the other hand, eHSP72 may represent immune-regulatory signaling that is related to exercise benefits, but the association between physical activity levels and eHSP72 levels is not established. Thus, since regular physical activity may avoid oxidative stress and inflammation, we investigate whether detectable levels of eHSP72 in plasma are associated with physical activity and antioxidant enzyme activity levels in hypertensive subjects. Physical activity levels of hypertensive subjects (n = 140) were measured by tri-axial movement sensor pedometer for 24 h during 5 consecutive days. One day after, blood was collected into heparinized tubes for oxidative stress analyses (catalase-CAT and superoxide dismutase-SOD activities and malondialdehyde levels) or in disodium EDTA tubes for eHSP72 assays. Thus, hypertensive subjects were classified as physically inactive (< 10,000 footsteps/day) or active (> than 10,000 footsteps/day) and according detectable or not detectable eHSP72 levels in plasma, performing the inactive/eHSP72-, active/eHSP72-, inactive/eHSP72+, and active/eHSP72+ groups. We found that detectable levels of eHSP72 in plasma were associated with physical activity levels and low oxidative stress profile (Higher CAT and SOD activities and low malondialdehyde levels). eHSP72 levels can be used as a biomarker of the amount of physical activity necessary to improve antioxidant defense and thus cardiovascular health in hypertensive subjects.
Collapse
Affiliation(s)
- Eliara Ten Caten Martins
- Research Group in Cardiology, Postgraduate Program in Science of Human Movement (PPGCMH-UDESC), Center of Health and Sport Sciences, State University of Santa Catarina (UDESC), Florianópolis, SC, Brazil
| | - Rafaella Zulianello Dos Santos
- Research Group in Cardiology, Postgraduate Program in Science of Human Movement (PPGCMH-UDESC), Center of Health and Sport Sciences, State University of Santa Catarina (UDESC), Florianópolis, SC, Brazil
| | - Analu Bender Dos Santos
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Pauline Brendler Goettems Fiorin
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Yana Picinin Sandri
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, Brazil.
| | - Magnus Benetti
- Research Group in Cardiology, Postgraduate Program in Science of Human Movement (PPGCMH-UDESC), Center of Health and Sport Sciences, State University of Santa Catarina (UDESC), Florianópolis, SC, Brazil
| |
Collapse
|
44
|
Baldissera FG, Dos Santos AB, Sulzbacher MM, Goettems-Fiorin PB, Frizzo MN, Ludwig MS, Rhoden CR, Heck TG. Subacute exposure to residual oil fly ash (ROFA) increases eHSP70 content and extracellular-to-intracellular HSP70 ratio: a relation with oxidative stress markers. Cell Stress Chaperones 2018; 23:1185-1192. [PMID: 29934712 PMCID: PMC6237679 DOI: 10.1007/s12192-018-0924-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to evaluate whether exposure to particles induces an imbalance in 70-kDa heat shock proteins (HSP70). Since intracellularly (iHSP70) it has anti-inflammatory roles whereas extracellularly (eHSP70) it has pro-inflammatory roles, we evaluate the effect of residual oil fly ash (ROFA) exposure on eHSP70-to-iHSP70 ratio (H index), a biomarker of inflammatory status that is related to oxidative stress in plasma and lymphoid tissue. Wistar rats that received ROFA suspension for three consecutive days (750 μg) showed an increase in plasma eHSP70 levels (mainly the 72-kDa inducible form). Also, ROFA promoted alterations on plasma oxidative stress (increased protein carbonyl groups and superoxide dismutase activity, and decrease sulfhydryl groups). There was an increase in H index of the plasma/thymus with no changes in circulating leukocyte level, iHSP70, or oxidative stress markers in lymphoid tissues. Our results support the hypothesis that eHSP70 content and H index represent inflammatory and oxidative biomarkers.
Collapse
Affiliation(s)
- Fernanda Giesel Baldissera
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Analú Bender Dos Santos
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Maicon Machado Sulzbacher
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Pauline Brendler Goettems-Fiorin
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Matias Nunes Frizzo
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Mirna Stela Ludwig
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Claudia Ramos Rhoden
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil.
| |
Collapse
|
45
|
Bandeira Corrêa J, Pezzini Moreira B, Lohmanm L, Machado Sulzbacher L, Bender Dos Santos A, Ruiz A, Stela Ludwig M, Hirsch GE, Santos C, Seibel Gehrke IT, Gomes Heck T. Characterization of Schinus lentiscifolius Marchand (Anacardiaceae) Bark Extract and Its Effects on Lymphocyte Oxidative Stress and Heat Shock Response. Chem Biodivers 2018; 16:e1800303. [PMID: 30351529 DOI: 10.1002/cbdv.201800303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/23/2018] [Indexed: 11/10/2022]
Abstract
Schinus lentiscifolius Marchand has been used in folk medicine to treat immunoinflammatory related diseases, which are marked by OS and altered HSR. Our study aimed to evaluate OS and HSR in lymphocytes treated with S. lentiscifolius bark extracts. S. lentiscifolius barks were partitioned with solvents to obtain hexane (SL-HEX), ethyl acetate (SL-ACOET) and methanol (SL-MEOH) extracts, and the presence of bioactive compounds was evaluated by thin layer chromatography. Total phenols were measured by the Folin-Ciocalteu method and flavonoids were identified by HPLC-DAD-ESI-MS/MS. Antioxidant capacity was verified by DPPH method, cell viability by Trypan Blue method, lipid peroxidation by TBARS and HSP70 by immunoblotting. The SL-ACOET extract presented higher content of phenolic compounds and antioxidant activity in vitro. It was able to reduce lipid peroxidation levels in lymphocytes induced by H2 O2 and improved cell viability. The SL-ACOET extract inhibited HSR by a decrease in both intracellular content and release of 70 kDa heat shock proteins (HSP70) and also by decrease extra-to-intracellular HSP70 ratio in lymphocytes submitted to heat shock (2 h, 41 °C). S. lentiscifolius bark extract has antioxidant activity and inhibitory effect on HSR probably due to the presence of polyphenols as the flavonoids quercetin and kaempferol.
Collapse
Affiliation(s)
- Jéssyca Bandeira Corrêa
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil.,Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Ijuí RS, 98700-000, Brazil
| | - Bárbara Pezzini Moreira
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil
| | - Larissa Lohmanm
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil
| | - Analú Bender Dos Santos
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil.,Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Ijuí RS, 98700-000, Brazil
| | - Antonieta Ruiz
- Department of Chemical Sciences and Natural Resources, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 4811-230, Chile
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil.,Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Ijuí RS, 98700-000, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil.,Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Ijuí RS, 98700-000, Brazil
| | - Cledir Santos
- Department of Chemical Sciences and Natural Resources, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 4811-230, Chile
| | - Ilaine Teresinha Seibel Gehrke
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil.,Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Ijuí RS, 98700-000, Brazil
| |
Collapse
|
46
|
Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. In Vitro and In Vivo Experimental Studies of PM 2.5 on Disease Progression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1380. [PMID: 29966381 PMCID: PMC6068560 DOI: 10.3390/ijerph15071380] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/14/2022]
Abstract
Air pollution is a very critical issue worldwide, particularly in developing countries. Particulate matter (PM) is a type of air pollution that comprises a heterogeneous mixture of different particle sizes and chemical compositions. There are various sources of fine PM (PM2.5), and the components may also have different effects on people. The pathogenesis of PM2.5 in several diseases remains to be clarified. There is a long history of epidemiological research on PM2.5 in several diseases. Numerous studies show that PM2.5 can induce a variety of chronic diseases, such as respiratory system damage, cardiovascular dysfunction, and diabetes mellitus. However, the epidemiological evidence associated with potential mechanisms in the progression of diseases need to be proved precisely through in vitro and in vivo investigations. Suggested mechanisms of PM2.5 that lead to adverse effects and chronic diseases include increasing oxidative stress, inflammatory responses, and genotoxicity. The aim of this review is to provide a brief overview of in vitro and in vivo experimental studies of PM2.5 in the progression of various diseases from the last decade. The summarized research results could provide clear information about the mechanisms and progression of PM2.5-induced disease.
Collapse
Affiliation(s)
- Ching-Chang Cho
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| | - Wen-Yeh Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chin-Hung Tsai
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, 699 Section 8, Taiwan Blvd., Taichung 435, Taiwan.
| | - Cheng-Yi Chen
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Hui-Fang Chang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Endocrinology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| |
Collapse
|
47
|
Miragem AA, Homem de Bittencourt PI. Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response. Hum Reprod Update 2018; 23:600-628. [PMID: 28903474 DOI: 10.1093/humupd/dmx020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although some unequivocal underlying mechanisms of menopausal hot flushes have been demonstrated in animal models, the paucity of similar approaches in humans impedes further mechanistic outcomes. Human studies might show some as yet unexpected physiological mechanisms of metabolic adaptation that permeate the phase of decreased oestrogen levels in both symptomatic and asymptomatic women. This is particularly relevant because both the severity and time span of hot flushes are associated with increased risk of chronic inflammatory disease. On the other hand, oestrogen induces the expression of heat shock proteins of the 70 kDa family (HSP70), which are anti-inflammatory and cytoprotective protein chaperones, whose expression is modulated by different types of physiologically stressful situations, including heat stress and exercise. Therefore, lower HSP70 expression secondary to oestrogen deficiency increases cardiovascular risk and predisposes the patient to senescence-associated secretory phenotype (SASP) that culminates in chronic inflammatory diseases, such as obesities, type 2 diabetes, neuromuscular and neurodegenerative diseases. OBJECTIVE AND RATIONALE This review focuses on HSP70 and its accompanying heat shock response (HSR), which is an anti-inflammatory and antisenescent pathway whose intracellular triggering is also oestrogen-dependent via nitric oxide (NO) production. The main goal of the manuscript was to show that the vasomotor symptoms that accompany hot flushes may be a disguised clue for important neuroendocrine alterations linking oestrogen deficiency to the anti-inflammatory HSR. SEARCH METHODS Results from our own group and recent evidence on hypothalamic control of central temperature guided a search on PubMed and Google Scholar websites. OUTCOMES Oestrogen elicits rapid production of the vasodilatory gas NO, a powerful activator of HSP70 expression. Whence, part of the protective effects of oestrogen over cardiovascular and neuroendocrine systems is tied to its capacity of inducing the NO-elicited HSR. The hypothalamic areas involved in thermoregulation (infundibular nucleus in humans and arcuate nucleus in other mammals) and whose neurons are known to have their function altered after long-term oestrogen ablation, particularly kisspeptin-neurokinin B-dynorphin neurons, (KNDy) are the same that drive neuroprotective expression of HSP70 and, in many cases, this response is via NO even in the absence of oestrogen. From thence, it is not illogical that hot flushes might be related to an evolutionary adaptation to re-equip the NO-HSP70 axis during the downfall of circulating oestrogen. WIDER IMPLICATIONS Understanding of HSR could shed light on yet uncovered mechanisms of menopause-associated diseases as well as on possible manipulation of HSR in menopausal women through physiological, pharmacological, nutraceutical and prebiotic interventions. Moreover, decreased HSR indices (that can be clinically determined with ease) in perimenopause could be of prognostic value in predicting the moment and appropriateness of starting a HRT.
Collapse
Affiliation(s)
- Antônio Azambuja Miragem
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil.,Federal Institute of Education, Science and Technology 'Farroupilha', Rua Uruguai 1675, Santa Rosa, RS 98900-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
48
|
Exercise Training under Exposure to Low Levels of Fine Particulate Matter: Effects on Heart Oxidative Stress and Extra-to-Intracellular HSP70 Ratio. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9067875. [PMID: 29387296 PMCID: PMC5745714 DOI: 10.1155/2017/9067875] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
Abstract
Fine particulate matter (PM2.5) promotes heart oxidative stress (OS) and evokes anti-inflammatory responses observed by increased intracellular 70 kDa heat shock proteins (iHSP70). Furthermore, PM2.5 increases the levels of these proteins in extracellular fluids (eHSP70), which have proinflammatory roles. We investigated whether moderate and high intensity training under exposure to low levels of PM2.5 modifies heart OS and the eHSP70 to iHSP70 ratio (H-index), a biomarker of inflammatory status. Male mice (n = 32), 30 days old, were divided into six groups for 12 weeks: control (CON), moderate (MIT) and high intensity training (HIT), exposure to 5 μg of PM2.5 daily (PM2.5), and moderate and high intensity training exposed to PM2.5 (MIT + PM2.5 and HIT + PM2.5 groups). The CON and PM2.5 groups remained sedentary. The MIT + PM2.5 group showed higher heart lipid peroxidation levels than the MIT and PM2.5 groups. HIT and HIT + PM2.5 showed higher heart lipid peroxidation levels and lower eHSP70 and H-index levels compared to sedentary animals. No alterations were found in heart antioxidant enzyme activity or iHSP70 levels. Moderate exercise training under exposure to low levels of PM2.5 induces heart OS but does not modify eHSP70 to iHSP70 ratio (H-index). High intensity exercise training promotes anti-inflammatory profile despite exposure to low levels of PM2.5.
Collapse
|
49
|
Heck TG, Scomazzon SP, Nunes PR, Schöler CM, da Silva GS, Bittencourt A, Faccioni-Heuser MC, Krause M, Bazotte RB, Curi R, Homem de Bittencourt PI. Acute exercise boosts cell proliferation and the heat shock response in lymphocytes: correlation with cytokine production and extracellular-to-intracellular HSP70 ratio. Cell Stress Chaperones 2017; 22:271-291. [PMID: 28251488 PMCID: PMC5352601 DOI: 10.1007/s12192-017-0771-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022] Open
Abstract
Exercise stimulates immune responses, but the appropriate "doses" for such achievements are unsettled. Conversely, in metabolic tissues, exercise improves the heat shock (HS) response, a universal cytoprotective response to proteostasis challenges that are centred on the expression of the 70-kDa family of intracellular heat shock proteins (iHSP70), which are anti-inflammatory. Concurrently, exercise triggers the export of HSP70 towards the extracellular milieu (eHSP70), where they work as pro-inflammatory cytokines. As the HS response is severely compromised in chronic degenerative diseases of inflammatory nature, we wondered whether acute exercise bouts of different intensities could alter the HS response of lymphocytes from secondary lymphoid organs and whether this would be related to immunoinflammatory responses. Adult male Wistar rats swam for 20 min at low, moderate, high or strenuous intensities as per an overload in tail base. Controls remained at rest under the same conditions. Afterwards, mesenteric lymph node lymphocytes were assessed for the potency of the HS response (42 °C for 2 h), NF-κB binding activity, mitogen-stimulated proliferation and cytokine production. Exercise stimulated cell proliferation in an "inverted-U" fashion peaking at moderate load, which was paralleled by suppression of NF-κB activation and nuclear location, and followed by enhanced HS response in relation to non-exercised animals. Comparative levels of eHSP70 to iHSP70 (H-index) matched IL-2/IL-10 ratios. We conclude that exercise, in a workload-dependent way, stimulates immunoinflammatory performance of lymphocytes of tissues far from the circulation and this is associated with H-index of stress response, which is useful to assess training status and immunosurveillance balance.
Collapse
Affiliation(s)
- Thiago Gomes Heck
- Physiology Research Group, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of the Northwestern Rio Grande do Sul State, Rua do Comércio, 3000, Ijuí, RS, 98700-000, Brazil.
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil.
| | - Sofia Pizzato Scomazzon
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Patrícia Renck Nunes
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Cinthia Maria Schöler
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Gustavo Stumpf da Silva
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Aline Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Maria Cristina Faccioni-Heuser
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Rua Galvão Bueno, 868 - 13° Andar, Bloco B, Sala 1302, Liberdade, São Paulo, SP, 01506-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|