1
|
Jia Z, Zhang D, Zhu L, Xue J. Animal models of human herpesvirus infection. Animal Model Exp Med 2025; 8:615-628. [PMID: 39921263 PMCID: PMC12067922 DOI: 10.1002/ame2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/18/2025] [Indexed: 02/10/2025] Open
Abstract
Human herpesvirus, a specific group within the herpesvirus family, is responsible for a variety of human diseases. These viruses can infect humans and other vertebrates, primarily targeting the skin, mucous membranes, and neural tissues, thereby significantly impacting the health of both humans and animals. Animal models are crucial for studying virus pathogenesis, vaccine development, and drug testing. Despite several vaccine candidates being in preclinical and clinical stages, no vaccines are current available to prevent lifelong infections caused by these human herpesviruses, except for varicella-zoster virus (VZV) vaccine. However, the strict host tropism of herpesviruses and other limitations mean that no single animal model can fully replicate all key features of human herpesvirus-associated diseases. This makes it challenging to evaluate vaccines and antivirals against human herpesvirus comprehensively. Herein, we summarize the current animal models used to study the human herpesviruses including α-herpesviruses (herpes simplex virus type 1(HSV-1), HSV-2, VZV), β-herpesviruses (human cytomegalovirus (HCMV), γ-herpesviruses (Epstein-Barr virus (EBV)) and Kaposi's sarcoma herpesvirus (KSHV)). By providing concise information and detailed analysis of the potential, limitations and applications of various models, such as non-human primates, mice, rabbits, guinea pigs, and tree shrews, this summary aims to help researchers efficiently select the most appropriate animal model, offering practical guidance for studying human herpesvirus.
Collapse
Affiliation(s)
- Ziqing Jia
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dong Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lin Zhu
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Ministry of EducationChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Bai B, Srinivas Kandadai A, Hena M, Belovodskiy A, Shen J, Houghton M, Nieman JA. Discovery of Novel Pyrido[2,3-b]Pyrazine Human Cytomegalovirus Polymerase Inhibitors with Broad Spectrum Antiherpetic Activity and Reduced hERG Inhibition. ChemMedChem 2025; 20:e202400629. [PMID: 39656778 PMCID: PMC11911297 DOI: 10.1002/cmdc.202400629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The development of non-nucleoside inhibitors targeting human cytomegalovirus (HCMV) polymerase presents a promising approach for enhancing therapeutic treatment for patients with sustained HCMV viremia. A series of non-nucleoside HCMV DNA polymerase inhibitors with various substitution groups at 2-postition of the novel pyrido[2,3-b]pyrazine core was synthesized and investigated. The study focused on optimizing HCMV polymerase inhibition while minimizing off-target inhibition of human ether-à-go-go (hERG) ion channel. Several compounds exhibited strong antiviral activity against HCMV (typical EC50<1 μM), with favorable cytotoxicity profiles. A potent lead compound, 27, with an EC50 of 0.33 μM and improved aqueous solubility was identified. Further antiviral assessments revealed the potential of select compounds to target a broad spectrum of herpesviruses, including herpes simplex virus (HSV-1, HSV-2) and Epstein-Barr virus (EBV).
Collapse
Affiliation(s)
- Bing Bai
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| | - Appan Srinivas Kandadai
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| | - Mostofa Hena
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| | - Alexandr Belovodskiy
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| | - John Shen
- ProFoldin10 Technology Drive, Suite 40HudsonMA 01749–2791USA
| | - Michael Houghton
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| | - James A. Nieman
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| |
Collapse
|
3
|
Suzuki K, Akiyama M, Kaneko Y. Visceral disseminated varicella zoster virus infection masquerading as lupus mesenteric vasculitis recurrence. Mod Rheumatol Case Rep 2025; 9:63-65. [PMID: 39219550 DOI: 10.1093/mrcr/rxae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Koji Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Onisiforou A, Charalambous EG, Zanos P. Shattering the Amyloid Illusion: The Microbial Enigma of Alzheimer's Disease Pathogenesis-From Gut Microbiota and Viruses to Brain Biofilms. Microorganisms 2025; 13:90. [PMID: 39858858 PMCID: PMC11767882 DOI: 10.3390/microorganisms13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
For decades, Alzheimer's Disease (AD) research has focused on the amyloid cascade hypothesis, which identifies amyloid-beta (Aβ) as the primary driver of the disease. However, the consistent failure of Aβ-targeted therapies to demonstrate efficacy, coupled with significant safety concerns, underscores the need to rethink our approach to AD treatment. Emerging evidence points to microbial infections as environmental factors in AD pathoetiology. Although a definitive causal link remains unestablished, the collective evidence is compelling. This review explores unconventional perspectives and emerging paradigms regarding microbial involvement in AD pathogenesis, emphasizing the gut-brain axis, brain biofilms, the oral microbiome, and viral infections. Transgenic mouse models show that gut microbiota dysregulation precedes brain Aβ accumulation, emphasizing gut-brain signaling pathways. Viral infections like Herpes Simplex Virus Type 1 (HSV-1) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) may lead to AD by modulating host processes like the immune system. Aβ peptide's antimicrobial function as a response to microbial infection might inadvertently promote AD. We discuss potential microbiome-based therapies as promising strategies for managing and potentially preventing AD progression. Fecal microbiota transplantation (FMT) restores gut microbial balance, reduces Aβ accumulation, and improves cognition in preclinical models. Probiotics and prebiotics reduce neuroinflammation and Aβ plaques, while antiviral therapies targeting HSV-1 and vaccines like the shingles vaccine show potential to mitigate AD pathology. Developing effective treatments requires standardized methods to identify and measure microbial infections in AD patients, enabling personalized therapies that address individual microbial contributions to AD pathogenesis. Further research is needed to clarify the interactions between microbes and Aβ, explore bacterial and viral interplay, and understand their broader effects on host processes to translate these insights into clinical interventions.
Collapse
Affiliation(s)
- Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Center of Applied Neuroscience, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| | - Eleftheria G. Charalambous
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 1–2, Ellernholzstr., 17489 Greifswald, Germany
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Center of Applied Neuroscience, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| |
Collapse
|
5
|
Srikanth P, Arumugam I, Jeganathan SN, Ramesh R, Ranganathan LN, Vijayaraghavan S. Expanded spectrum of varicella disease and the need for vaccination in India. Hum Vaccin Immunother 2024; 20:2328955. [PMID: 38517089 PMCID: PMC10962579 DOI: 10.1080/21645515.2024.2328955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Varicella vaccine was first licensed in Japan and South Korea in 1989 for use in healthy children and was introduced in US in 1995. So far, 29 countries have adopted varicella vaccine in their universal immunization program (UIP). No Asian country, India included, has adopted the varicella vaccine as part of their UIP. The extra-cutaneous sites for VZV diseases are central nervous system and gastrointestinal tract, the expanded disease spectrum includes vasculopathy, myelitis, inflammatory bowel disease, perforated ulcers, and gastritis. The actual disease burden of varicella is not known as most of the infected individuals may not visit the physician. The amplifiable VZV DNA will not always be detectable in cerebrospinal fluid (CSF) samples in protracted illnesses such as vasculopathies, but demonstrable anti-VZV IgG in CSF has diagnostic value. The World Health Organization (WHO) position paper 2014 recommends two doses of varicella and zoster vaccines in targeted population. In India, varicella vaccine is not included in the UIP due to the cost and the belief that lifelong immunity occurs following primary infection. The expanded spectrum of VZV disease and the mounting body of evidence, however, suggest the need for both varicella and zoster vaccines in routine immunization schedule.
Collapse
Affiliation(s)
- Padma Srikanth
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute (SRIHER, DU), Chennai, India
| | - Ilakkiya Arumugam
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute (SRIHER, DU), Chennai, India
| | - Seetha N. Jeganathan
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute (SRIHER, DU), Chennai, India
| | - Rithvik Ramesh
- Department of Neurology, Sri Ramachandra Medical College and Research Institute (SRIHER, DU), Chennai, India
| | | | - Shanthi Vijayaraghavan
- Department of Hepatology and Medical Gastroenterology, Sri Ramachandra Medical College and Research Institute (SRIHER, DU), Chennai, India
| |
Collapse
|
6
|
Niemeyer CS, Merle L, Bubak AN, Baxter BD, Gentile Polese A, Colon-Reyes K, Vang S, Hassell JE, Bruce KD, Nagel MA, Restrepo D. Olfactory and trigeminal routes of HSV-1 CNS infection with regional microglial heterogeneity. J Virol 2024; 98:e0096824. [PMID: 39475273 PMCID: PMC11575344 DOI: 10.1128/jvi.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/29/2024] [Indexed: 11/06/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) primarily targets the oral and nasal epithelia before establishing latency in the trigeminal ganglion (TG) and other peripheral ganglia. HSV-1 can also infect and become latent in the central nervous system (CNS) independent of latency in the TGs. Recent studies suggest entry to the CNS via two distinct routes: the TG-brainstem connection and olfactory nerve; however, to date, there is no characterization of brain regions targeted during HSV-1 primary infection. Furthermore, the immune response by microglia may also contribute to the heterogeneity between different brain regions. However, the response to HSV-1 by microglia has not been characterized in a region-specific manner. This study investigated the time course of HSV-1 spread within the olfactory epithelium (OE) and CNS following intranasal inoculation and the corresponding macrophage/microglial response in a C57BL/6 mouse model. We found an apical to basal spread of HSV-1 within the OE and underlying tissue accompanied by an inflammatory response of macrophages. OE infection was followed by infection of a small subset of brain regions targeted by the TG in the brainstem and other cranial nerve nuclei, including the vagus and hypoglossal nerve. Furthermore, other brain regions were positive for HSV-1 antigens, such as the locus coeruleus (LC), raphe nucleus (RaN), and hypothalamus while sparing the hippocampus and cortex. Within each brain region, microglia activation also varied widely. These findings provide critical insights into the region-specific dissemination of HSV-1 within the CNS, elucidating potential mechanisms linking viral infection to neurological and neurodegenerative diseases.IMPORTANCEThis study shows how herpes simplex virus type 1 (HSV-1) spreads within the brain after infecting the nasal passages. Our data reveal the distinct pattern of HSV-1 through the brain during a non-encephalitic infection. Furthermore, microglial activation was also temporally and spatially specific, with some regions of the brain having sustained microglial activation even in the absence of viral antigens. Previous reports have identified specific brain regions found to be positive for HSV-1 infection; however, to date, there has not been a concise investigation of the anatomical spread of HSV-1 and the brain regions consistently vulnerable to viral entry and spread. Understanding these region-specific differences in infection and immune response is crucial because it links HSV-1 infection to potential triggers for neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christy S. Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laetitia Merle
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Andrew N. Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - B. Dnate’ Baxter
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Arianna Gentile Polese
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Katherine Colon-Reyes
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sandy Vang
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James E. Hassell
- Department of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kimberley D. Bruce
- Department of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maria A. Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Niemeyer CS, Merle L, Bubak AN, Dnate' Baxter B, Polese AG, Colon-Reyes K, Vang S, Hassell JE, Bruce KD, Nagel MA, Restrepo D. Olfactory and Trigeminal Routes of HSV-1 CNS Infection with Regional Microglial Heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614340. [PMID: 39386674 PMCID: PMC11463476 DOI: 10.1101/2024.09.22.614340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) primarily targets the oral and nasal epithelia before establishing latency in the trigeminal and other peripheral ganglia (TG). HSV-1 can also infect and go latent in the central nervous system (CNS) independent of latency in the TGs. Recent studies suggest entry to the CNS via two distinct routes: the TG-brainstem connection and olfactory nerve; however, to date, there is no characterization of brain regions targeted during HSV-1 primary infection. Furthermore, the immune response by microglia may also contribute to the heterogeneity between different brain regions. However, the response to HSV-1 by microglia has not been characterized in a region-specific manner. This study investigated the time course of HSV-1 spread within the olfactory epithelium (OE) and CNS following intranasal inoculation and the corresponding macrophage/microglial response in a C57BL/6 mouse model. We found an apical to basal spread of HSV-1 within the OE and underlying tissue accompanied by an inflammatory response of macrophages. OE Infection was followed by infection of a small subset of brain regions targeted by the TG in the brainstem, as well as other cranial nerve nuclei, including the vagus and hypoglossal nerve. Furthermore, other brain regions were positive for HSV-1 antigens, such as the locus coeruleus (LC), raphe nucleus (RaN), and hypothalamus, while sparing the hippocampus and cortex. Within each brain region, microglia activation also varied widely. These findings provide critical insights into the region-specific dissemination of HSV-1 within the CNS, elucidating potential mechanisms linking viral infection to neurological and neurodegenerative diseases. Importance This study sheds light on how herpes simplex virus type 1 (HSV-1) spreads within the brain after infecting the nasal passages. Our data reveals the distinct pattern of HSV-1 through the brain during a non-encephalitic infection. Furthermore, microglial activation was also temporally and spatially specific, with some regions of the brain having sustained microglial activation even in the absence of viral antigen. Previous reports have identified specific regions of the brain found to be positive for HSV-1 infection; however, to date, there has not been a concise investigation of the anatomical spread of HSV-1 and the regions of the brain consistently vulnerable to viral entry and spread. Understanding these region-specific differences in infection and immune response is crucial because it links HSV-1 infection to potential triggers for neurological and neurodegenerative diseases.
Collapse
|
8
|
Doratt BM, Malherbe DC, Messaoudi I. Transcriptional and functional remodeling of lung-resident T cells and macrophages by Simian varicella virus infection. Front Immunol 2024; 15:1408212. [PMID: 38887303 PMCID: PMC11180879 DOI: 10.3389/fimmu.2024.1408212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Varicella zoster virus (VZV) causes varicella and can reactivate as herpes zoster, and both diseases present a significant burden worldwide. However, the mechanisms by which VZV establishes latency in the sensory ganglia and disseminates to these sites remain unclear. Methods We combined a single-cell sequencing approach and a well-established rhesus macaque experimental model using Simian varicella virus (SVV), which recapitulates the VZV infection in humans, to define the acute immune response to SVV in the lung as well as compare the transcriptome of infected and bystander lung-resident T cells and macrophages. Results and discussion Our analysis showed a decrease in the frequency of alveolar macrophages concomitant with an increase in that of infiltrating macrophages expressing antiviral genes as well as proliferating T cells, effector CD8 T cells, and T cells expressing granzyme A (GZMA) shortly after infection. Moreover, infected T cells harbored higher numbers of viral transcripts compared to infected macrophages. Furthermore, genes associated with cellular metabolism (glycolysis and oxidative phosphorylation) showed differential expression in infected cells, suggesting adaptations to support viral replication. Overall, these data suggest that SVV infection remodels the transcriptome of bystander and infected lung-resident T cells and macrophages.
Collapse
Affiliation(s)
| | | | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
9
|
Dong ZY, Shi RX, Song XB, Du MY, Wang JJ. Postoperative abdominal herpes zoster complicated by intestinal obstruction: A case report. World J Clin Cases 2024; 12:1138-1143. [PMID: 38464934 PMCID: PMC10921300 DOI: 10.12998/wjcc.v12.i6.1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Intestinal obstruction is a common occurrence in clinical practice. However, the occurrence of herpes zoster complicated by intestinal obstruction after abdominal surgery is exceedingly rare. In the diagnostic and treatment process, clinicians consider it crucial to identify the primary causes of its occurrence to ensure effective treatment and avoiding misdiagnosis. CASE SUMMARY Herein, we present the case of a 40-year-old female patient with intestinal obstruction who underwent laparoscopic appendectomy and developed herpes zoster after surgery. Combining the patient's clinical manifestations and relevant laboratory tests, it was suggested that the varicella zoster virus reactivated during the latent period after abdominal surgery, causing herpes zoster. Subsequently, the herpes virus invaded the visceral nerve fibers, causing gastrointestinal dysfunction and loss of intestinal peristalsis, which eventually led to intestinal obstruction. The patient was successfully treated through conservative treatment and antiviral therapy and subsequently discharged from the hospital. CONCLUSION Pseudo-intestinal obstruction secondary to herpes zoster infection is difficult to distinguish from mechanical intestinal obstruction owing to various causes. In cases of inexplicable intestinal obstructions, considering the possibility of a viral infection is essential to minimize misdiagnosis and missed diagnoses.
Collapse
Affiliation(s)
- Zhen-Yu Dong
- Department of General Surgery, Baotou Central Hospital, Baotou 014040, Inner Mongolia Autonomous Region, China
- Department of General Surgery, Baotou Medical College, Baotou 014040, Inner Mongolia Autonomous Region, China
| | - Rui-Xian Shi
- Department of Neurology, Baotou Central Hospital, Baotou 014040, Inner Mongolia Autonomous Region, China
- Department of Neurology, Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia Autonomous Region, China
| | - Xiao-Biao Song
- Department of General Surgery, Baotou Central Hospital, Baotou 014040, Inner Mongolia Autonomous Region, China
| | - Ming-Yue Du
- Department of General Surgery, Baotou Medical College, Baotou 014040, Inner Mongolia Autonomous Region, China
| | - Ji-Jun Wang
- Department of General Surgery, Baotou Central Hospital, Baotou 014040, Inner Mongolia Autonomous Region, China
| |
Collapse
|
10
|
Yin Y, Yang J, Gao G, Zhou H, Chi B, Yang HY, Li J, Wang Y. Enhancing cell-scale performance via sustained release of the varicella-zoster virus antigen from a microneedle patch under simulated microgravity. Biomater Sci 2024; 12:763-775. [PMID: 38164004 DOI: 10.1039/d3bm01440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The immune system of astronauts might become weakened in the microgravity environment in space, and the dormant varicella-zoster virus (VZV) in the body might be reactivated, seriously affecting their work and safety. For working in orbit for the long term, there is currently no efficient and durable delivery system of general vaccines in a microgravity environment. Accordingly, based on the previous foundation, we designed, modified, and synthesized a biodegradable and biocompatible copolymer, polyethylene glycol-polysulfamethazine carbonate urethane (PEG-PSCU) that could be mainly adopted to fabricate a novel sustained-release microneedle (S-R MN) patch. Compared with conventional biodegradable microneedles, this S-R MN patch could not only efficiently encapsulate protein vaccines (varicella-zoster virus glycoprotein E, VZV gE) but also further prolong the release time of VZV gE in a simulated microgravity (SMG) environment. Eventually, we verified the activation of dendritic cells by VZV gE released from the S-R MN patch in an SMG environment and the positive bioeffect of activated dendritic cells on lymphocytes using an in vitro lymph node model. This study is of great significance for the exploration of long-term specific immune responses to the VZV in an SMG environment.
Collapse
Affiliation(s)
- Yue Yin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Junyuan Yang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Bowen Chi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
11
|
Li Y, Chen Q, Wang L, Chen X, Wang B, Zhong W. The mechanisms of nerve injury caused by viral infection in the occurrence of gastrointestinal motility disorder-related diseases. Virol J 2023; 20:251. [PMID: 37915051 PMCID: PMC10621196 DOI: 10.1186/s12985-023-02185-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023] Open
Abstract
Gastrointestinal motility refers to the peristalsis and contractility of gastrointestinal muscles, including the force and frequency of gastrointestinal muscle contraction. Gastrointestinal motility maintains the normal digestive function of the human body and is a critical component of the physiological function of the digestive tract. At present, gastrointestinal motility disorder-related diseases are gradually affecting human production and life. In recent years, it has been consistently reported that the enteric nervous system has a coordinating and controlling role in gastrointestinal motility. Motility disorders are closely related to functional or anatomical changes in the gastrointestinal nervous system. At the same time, some viral infections, such as herpes simplex virus and varicella-zoster virus infections, can cause damage to the gastrointestinal nervous system. Therefore, this paper describes the mechanisms of viral infection in the gastrointestinal nervous system and the associated clinical manifestations. Studies have indicated that the means by which viruses can cause the infection of the enteric nervous system are various, including retrograde transport, hematogenous transmission and centrifugal transmission from the central nervous system. When viruses infect the enteric nervous system, they can cause clinical symptoms, such as abdominal pain, abdominal distension, early satiation, belching, diarrhea, and constipation, by recruiting macrophages, lymphocytes and neutrophils and regulating intestinal microbes. The findings of several case‒control studies suggest that viruses are the cause of some gastrointestinal motility disorders. It is concluded that one of the causes of gastrointestinal motility disorders is viral infection of the enteric nervous system. In such disorders, the relationships between viruses and nerves remain to be studied more deeply. Further studies are necessary to evaluate whether prophylactic antiviral therapy is feasible in gastrointestinal motility disorders.
Collapse
Affiliation(s)
- Yaqian Li
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiuyu Chen
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gastroenterology, Tianjin First Central Hospital, Tianjin, 300110, China
| | - Liwei Wang
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
12
|
Valdetaro L, Thomasi B, Ricciardi MC, Santos KDM, Coelho-Aguiar JDM, Tavares-Gomes AL. Enteric nervous system as a target and source of SARS-CoV-2 and other viral infections. Am J Physiol Gastrointest Liver Physiol 2023; 325:G93-G108. [PMID: 37253656 PMCID: PMC10390051 DOI: 10.1152/ajpgi.00229.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/02/2023] [Accepted: 05/29/2023] [Indexed: 06/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been demonstrated to affect several systems of the human body, including the gastrointestinal and nervous systems. The enteric nervous system (ENS) is a division of the autonomic nervous system that extends throughout the gut, regulates gastrointestinal function, and is therefore involved in most gut dysfunctions, including those resulting from many viral infections. Growing evidence highlights enteric neural cells and microbiota as important players in gut inflammation and dysfunction. Furthermore, the ENS and gastrointestinal immune system work together establishing relevant neuroimmune interactions during both health and disease. In recent years, gut-driven processes have also been implicated as players in systemic inflammation and in the initiation and propagation of several central nervous system pathologies, which seem to be hallmarks of COVID-19. In this review, we aim to describe evidence of the gastrointestinal and ENS infection with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss here viral-induced mechanisms, neuroplasticity, and neuroinflammation to call attention to the enteric neuroglial network as a nervous system with a sensitive and crucial position to be not only a target of the new coronavirus but also a way in and trigger of COVID-19-related symptoms.
Collapse
Affiliation(s)
- Luisa Valdetaro
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, United States
| | - Beatriz Thomasi
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Maria Carolina Ricciardi
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Karoline de Melo Santos
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Lúcia Tavares-Gomes
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Vogel C, Wetzel L, Wutzler P, Gruhn B. Treatment with Brivudine in Immunocompromised Pediatric Patients with Herpes Zoster. Chemotherapy 2023; 68:222-227. [PMID: 37231819 DOI: 10.1159/000531034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Herpes zoster (HZ) is caused by endogenous reactivation of latent varicella-zoster virus (VZV) that persists in sensory ganglia after primary infection. The incidence and severity of HZ increase during immunosuppression. Especially, immunocompromised patients are at high risk of developing a cutaneous rash and suffering from delayed healing of lesions. Bromovinyl deoxyuridine (brivudine), one of the most potent oral inhibitors of VZV replication, is widely used in the therapy of HZ in adult patients, particularly in Europe. In this study, we investigated the efficacy of brivudine in immunocompromised children to provide an outpatient treatment option. METHODS In this retrospective study, we included 64 immunocompromised pediatric patients with a median age of 14 years. Forty-seven patients received immunosuppressive therapy as part of hematopoietic stem cell transplantation and 17 patients as part of chemotherapy. Primary diagnosis was made clinically by examining the nature and the localization of the skin lesions. Laboratory confirmation was conducted based on the detection of VZV DNA in vesicle fluid and blood samples. Brivudine was administered orally at a single dose of 2 mg/kg per day. We monitored the patients' response for the full time of treatment and observed the time of full crusting of lesions, loss of crusts, and any adverse effects that occurred. RESULTS Patients received medication for 7-21 days (median: 14 days). All children responded promptly to antiviral treatment and recovered completely from their HZ infections without complications. Crusting of lesions was reached after 3-14 days (median: 6 days). Full healing of skin lesions was ascertained within 7-21 days (median: 12 days). Overall, brivudine therapy was well tolerated. No clinical side effects during or after the treatment were observed. High compliance was achieved due to the once-daily dosing regimen. All patients were treated in an outpatient manner. CONCLUSION Oral brivudine was a very effective and well-tolerated therapy in immunocompromised children with HZ infection. The oral administration offers the potential for outpatient treatment of HZ in these patients.
Collapse
Affiliation(s)
- Clara Vogel
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Laura Wetzel
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Peter Wutzler
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
14
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
15
|
The Potential Role of Microorganisms on Enteric Nervous System Development and Disease. Biomolecules 2023; 13:biom13030447. [PMID: 36979382 PMCID: PMC10046024 DOI: 10.3390/biom13030447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The enteric nervous system (ENS), the inherent nervous system of the gastrointestinal (GI) tract is a vast nervous system that controls key GI functions, including motility. It functions at a critical interface between the gut luminal contents, including the diverse population of microorganisms deemed the microbiota, as well as the autonomic and central nervous systems. Critical development of this axis of interaction, a key determinant of human health and disease, appears to occur most significantly during early life and childhood, from the pre-natal through to the post-natal period. These factors that enable the ENS to function as a master regulator also make it vulnerable to damage and, in turn, a number of GI motility disorders. Increasing attention is now being paid to the potential of disruption of the microbiota and pathogenic microorganisms in the potential aetiopathogeneis of GI motility disorders in children. This article explores the evidence regarding the relationship between the development and integrity of the ENS and the potential for such factors, notably dysbiosis and pathogenic bacteria, viruses and parasites, to impact upon them in early life.
Collapse
|
16
|
Jankeel A, Coimbra-Ibraim I, Messaoudi I. Simian Varicella Virus: Molecular Virology and Mechanisms of Pathogenesis. Curr Top Microbiol Immunol 2023; 438:163-188. [PMID: 34669041 PMCID: PMC9577235 DOI: 10.1007/82_2021_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Simian varicella virus (SVV) was first isolated in 1966 from African green monkeys (Cercopithecus aethiops) imported from Nairobi, Kenya, to the Liverpool School of Tropical Medicine in the United Kingdom (UK) (Clarkson et al., Arch Gesamte Virusforsch 22:219-234, 1967). SVV infection caused severe disease that resulted in a 56% case fatality rate (CFR) in the imported animals within 48 h of the appearance of a varicella-like rash (Clarkson et al., Arch Gesamte Virusforsch 22:219-234, 1967; Hemme et al., Am J Trop Med Hyg 94:1095-1099, 2016). The deceased animals presented with fever, widespread vesicular rash, and multiple hemorrhagic foci throughout the lungs, liver, and spleen (Clarkson et al., Arch Gesamte Virusforsch 22:219-234, 1967). This outbreak was quickly followed by a second outbreak in 47 patas monkeys (Erythrocebus patas) imported from Chad and Nigeria by Glaxo Laboratories (London, England, UK), which quickly spread within the facility (McCarthy et al., Lancet 2:856-857, 1968).
Collapse
Affiliation(s)
- Allen Jankeel
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, USA
| | - Izabela Coimbra-Ibraim
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, USA,Institute for Immunology, University of California Irvine, Irvine, CA, USA,Center for Virus Research, University of California Irvine, Irvine, CA, USA,To whom correspondence should be addressed: Ilhem Messaoudi, PhD, Molecular Biology and Biochemistry, University of California Irvine, 2400 Biological Sciences III, Irvine, CA 92697, Phone: 949-824-3078,
| |
Collapse
|
17
|
Lin YC, Cui XG, Wu LZ, Zhou DQ, Zhou Q. Resolution of herpes zoster-induced small bowel pseudo-obstruction by epidural nerve block: A case report. World J Clin Cases 2022; 10:9873-9878. [PMID: 36186216 PMCID: PMC9516924 DOI: 10.12998/wjcc.v10.i27.9873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND When herpes zoster is complicated with paralytic ileus, this mostly involves acute intestinal pseudo-obstruction of Ogilvie's syndrome manifesting as obvious dilatation of the cecum and right colon; small intestinal obstruction is rare. Here, we present a patient with a very rare case of small bowel pseudo-obstruction. CASE SUMMARY A 76-year-old female patient complained of right upper quadrant pain. Two days later, a blistering, right-sided rash of the thoracoabdominal dermatome (T5-T10) emerged in conjunction with small intestinal dilatation and the inability to defecate. Computed tomography of the abdomen confirmed small bowel pseudo-obstruction. Antiviral therapy, gastrointestinal decompression, and enemas proved unproductive. After 4 d of stagnation, an epidural block was performed for pain relief and prompted the passage of gas and stool, resolving the obstructive problem. Three days later, the rash appeared dry and crusted, and the pain diminished. After 5 d, no abnormality was visible by gastroenteroscopy, and the patient was discharged on day 7. CONCLUSION This case shows that herpes zoster may induce small bowel pseudo-obstruction in addition to colonic pseudo-obstruction. Epidural block can not only treat intercostal neuralgia but also resolve small bowel pseudo-obstruction caused by herpes zoster.
Collapse
Affiliation(s)
- You-Cai Lin
- Department of Anesthesiology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
| | - Xiao-Guang Cui
- Department of Anesthesiology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
| | - Li-Zhu Wu
- Department of Anesthesiology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
| | - Dong-Qing Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
| | - Qi Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
| |
Collapse
|
18
|
Zhao J, Tian M. Systemic lupus erythematosus with visceral varicella: A case report. World J Clin Cases 2022; 10:9168-9175. [PMID: 36157653 PMCID: PMC9477021 DOI: 10.12998/wjcc.v10.i25.9168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND As an autoimmune disease, systemic lupus erythaematosus (SLE) can affect multiple systems of the body and is mainly treated by steroids and immunosuppressive agents. SLE results in a long-term immunocompromised state with the potential of infection complications (e.g., bacterial, fungal and viral infections). Abdominal pain or acute abdomen are frequently the only manifestations of SLE at disease onset or during the early stage of the disease course. Thus, multidisciplinary collaboration is required to identify these patients because timely diagnosis and treatment are crucial for improving their prognosis.
CASE SUMMARY Herein, we reported a case of an SLE patient with visceral varicella that was identified after the onset of abdominal pain. The 16-year-old female patient with SLE was admitted to our hospital due to initial attacks of abdominal pain and intermittent fever. The patient’s condition rapidly became aggravated within a short time after admission, with large areas of vesicular rash, severe pneumonia, respiratory failure, shock, and haematologic system and hepatic function impairment. Based on multidisciplinary collaboration, the patient was diagnosed with visceral disseminated varicella and was administered life support, antiviral (acyclovir), immunomodulatory (intravenous injection of human immunoglobulin), anti-infection (vancomycin) and anti-inflammatory (steroid) therapies. After treatment, her clinical symptoms and laboratory indicators gradually improved, and the patient was discharged.
CONCLUSION SLE patients long treated with steroids and immunosuppressive agents are susceptible to various infections. Considering that visceral varicella with abdominal pain as the initial presentation is characterized by rapid progression and often coexists with serious complications, prompt diagnosis and early antiviral therapy are critical to prevent severe life-threatening complications.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Rheumatology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Mei Tian
- Department of Rheumatology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| |
Collapse
|
19
|
Zhang J, Han X, Su D, Gu X, Yu W. Research Trends and Hotspots on Herpes Zoster: A 10-Year Bibliometric Analysis (2012-2021). Front Med (Lausanne) 2022; 9:850762. [PMID: 35559334 PMCID: PMC9089455 DOI: 10.3389/fmed.2022.850762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/18/2022] [Indexed: 12/30/2022] Open
Abstract
Purpose Herpes zoster infection, with its considerable burden to individuals and society, remains a challenge around the world. However, to the knowledge of the authors, little bibliometric quantitative or qualitative analysis has been carried out to evaluate herpes zoster research. This study aimed to use a bibliometric analysis to evaluate current publication trends and hotspots on herpes zoster research worldwide, in order to advance research in this field. Methods Relevant publications from January 2012 to December 2021 were collected from the Web of Science Core Collection database. Citespace (V5.8.R3) was used to analyze the research points, including publication countries, institutions and authors, cited author, cited reference and their clustering, and keyword co-occurrence, and burst keyword to acquire research trends and hotspots. Results A total of 9,259 publications were obtained, with a steady increase in the number of annual publications during the decade. Articles were the main type of publication. The United States is the leading country in this research, and the University of Colorado has the highest influence in this field. Oxman is the most representative author, with a main research interest in herpes zoster vaccines. The top five cited authors' publications focused on herpes zoster vaccines, molecular mechanisms, and postherpetic neuralgia. A co-citation map resulted 19 main clusters, and revealed that vaccines, postherpetic neuralgia, treatments, varicella zoster virus and its mechanisms, and epidemiology of herpes zoster were the current research focus after clustering co-cited publications. Human herpesviruses, antiviral prophylaxis, rheumatoid arthritis, recombinant zoster vaccine, varicella vaccination and postherpetic neuralgia were the top clusters after co-occurrence keywords analysis. Moreover, burst keywords detection showed that the subunit vaccine was the new hotspot in the field of herpes zoster. Conclusion This bibliometric study defined the overall prospects in the field of herpes zoster and provided valuable instruction for the ongoing research. The keyword "subunit vaccine" indicated that a vaccine for herpes zoster prevention was the hotspot. Efforts to prevent varicella zoster virus infection will be essential to improve herpes zoster outcomes.
Collapse
Affiliation(s)
- Jian Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key laboratory of Anesthesia and Analgesia, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Han
- Department of Anesthesiology, Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Diansan Su
- Department of Anesthesiology, Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiyao Gu
- Department of Anesthesiology, Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key laboratory of Anesthesia and Analgesia, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Synthesis and Applications of Nitrogen-Containing Heterocycles as Antiviral Agents. Molecules 2022; 27:molecules27092700. [PMID: 35566055 PMCID: PMC9101374 DOI: 10.3390/molecules27092700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses have been a long-term source of infectious diseases that can lead to large-scale infections and massive deaths. Especially with the recent highly contagious coronavirus (COVID-19), antiviral drugs were developed nonstop to deal with the emergence of new viruses and subject to drug resistance. Nitrogen-containing heterocycles have compatible structures and properties with exceptional biological activity for the drug design of antiviral agents. They provided a broad spectrum of interference against viral infection at various stages, from blocking early viral entry to disrupting the viral genome replication process by targeting different enzymes and proteins of viruses. This review focused on the synthesis and application of antiviral agents derived from various nitrogen-containing heterocycles, such as indole, pyrrole, pyrimidine, pyrazole, and quinoline, within the last ten years. The synthesized scaffolds target HIV, HCV/HBV, VZV/HSV, SARS-CoV, COVID-19, and influenza viruses.
Collapse
|
21
|
Gastric herpes simplex virus type 1 infection is associated with functional gastrointestinal disorders in the presence and absence of comorbid fibromyalgia: a pilot case-control study. Infection 2022; 50:1303-1311. [PMID: 35445970 PMCID: PMC9522778 DOI: 10.1007/s15010-022-01823-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Animal studies have linked gastric herpesvirus infections to symptoms associated with functional gastrointestinal disorders (FGIDs). Herpesviruses have also been hypothesized to contribute to fibromyalgia (FM), a chronic pain syndrome frequently comorbid with FGIDs. The purpose of this study was to compare the prevalence of gastric herpesvirus infection in patients with FGIDs, with and without comorbid FM, to that of controls. METHODS For this pilot case-control study, we enrolled 30 patients who met both the Rome IV diagnostic criteria for one or more FGIDs and the American College of Rheumatology 2010 criteria for FM, 15 patients with one or more FGIDs without comorbid FM, and 15 control patients. Following endoscopic examination, gastric biopsies were analyzed for herpesvirus DNA and protein, Helicobacter pylori infection, and histological evidence of gastritis. Importantly, the viral nonstructural protein ICP8 was used as a marker to differentiate cell-associated actively replicating virus from latent infection and/or free virus passing through the GI tract. RESULTS Gastric herpes simplex virus type 1 (HSV-1) infection, as indicated by ICP8 presence, was significantly associated with FGIDs in the presence (OR 70.00, 95% CI 7.42-660.50; P < .001) and absence (OR 38.50, 95% CI 3.75-395.40; P < .001) of comorbid FM. Neither histological gastritis nor H. pylori infection were found to be associated with FGIDs or FM. CONCLUSIONS HSV-1 infection was identified in gastric mucosal biopsies from patients with diverse FGIDs, with and without comorbid FM. Larger, multi-center studies investigating the prevalence of this association are warranted.
Collapse
|
22
|
Abendroth A, Slobedman B. Modulation of MHC and MHC-Like Molecules by Varicella Zoster Virus. Curr Top Microbiol Immunol 2022; 438:85-102. [DOI: 10.1007/82_2022_254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Goldstein RS, Kinchington PR. Varicella Zoster Virus Neuronal Latency and Reactivation Modeled in Vitro. Curr Top Microbiol Immunol 2021; 438:103-134. [PMID: 34904194 DOI: 10.1007/82_2021_244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Latency and reactivation in neurons are critical aspects of VZV pathogenesis that have historically been difficult to investigate. Viral genomes are retained in many human ganglia after the primary infection, varicella; and about one-third of the naturally infected VZV seropositive population reactivates latent virus, which most often clinically manifests as herpes zoster (HZ or Shingles). HZ is frequently complicated by acute and chronic debilitating pain for which there remains a need for more effective treatment options. Understanding of the latent state is likely to be essential in the design of strategies to reduce reactivation. Experimentally addressing VZV latency has been difficult because of the strict human species specificity of VZV and the fact that until recently, experimental reactivation had not been achieved. We do not yet know the neuron subtypes that harbor latent genomes, whether all can potentially reactivate, what the drivers of VZV reactivation are, and how immunity interplays with the latent state to control reactivation. However, recent advances have enabled a picture of VZV latency to start to emerge. The first is the ability to detect the latent viral genome and its expression in human ganglionic tissues with extraordinary sensitivity. The second, the subject of this chapter, is the development of in vitro human neuron systems permitting the modeling of latent states that can be experimentally reactivated. This review will summarize recent advances of in vitro models of neuronal VZV latency and reactivation, the limitations of the current systems, and discuss outstanding questions and future directions regarding these processes using these and yet to be developed models. Results obtained from the in vitro models to date will also be discussed in light of the recent data gleaned from studies of VZV latency and gene expression learned from human cadaver ganglia, especially the discovery of VZV latency transcripts that seem to parallel the long-studied latency-associated transcripts of other neurotropic alphaherpesviruses.
Collapse
Affiliation(s)
| | - Paul R Kinchington
- Department of Ophthalmology, and Department of Molecular Microbiology and Genetics, University of Pittsburgh, EEI 1020, 203 Lothrop Street, Pittsburgh, PA, 156213, USA.
| |
Collapse
|
24
|
Prikhodchenko NG. Varicella-pox virus infection: features of the course, clinical manifestations, complications, and possibilities for prevention. TERAPEVT ARKH 2021; 93:1401-1406. [DOI: 10.26442/00403660.2021.11.201192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
Varicella zoster virus (VZV) is a pathogenic human herpes virus that causes chickenpox as a primary infection, after which it persists for a long time and latently in the peripheral ganglia. Decades later, the virus can reactivate spontaneously, or after exposure to a number of triggering factors, causing herpes zoster (shingles). The reasons for the long-term persistence of VZV are gradually being revealed, but some issues remain unknown at the moment. Chickenpox and its complications are especially difficult in immunocompromised patients, but they are often found in people without risk factors. The most frequent and important complication of VZV reactivation is postherpetic neuralgia; encephalitis, segmental motor weakness and myelopathy, cranial neuropathies, and gastrointestinal complications often develop. The only scientifically proven effective and affordable way of mass prevention at the moment is vaccination. Chickenpox vaccines are safe and effective in preventing morbidity and mortality associated with the disease.
Collapse
|
25
|
Brun P, Conti J, Zatta V, Russo V, Scarpa M, Kotsafti A, Porzionato A, De Caro R, Scarpa M, Fassan M, Calistri A, Castagliuolo I. Persistent Herpes Simplex Virus Type 1 Infection of Enteric Neurons Triggers CD8 + T Cell Response and Gastrointestinal Neuromuscular Dysfunction. Front Cell Infect Microbiol 2021; 11:615350. [PMID: 34094993 PMCID: PMC8169984 DOI: 10.3389/fcimb.2021.615350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
Behind the central nervous system, neurotropic viruses can reach and persist even in the enteric nervous system (ENS), the neuronal network embedded in the gut wall. We recently reported that immediately following orogastric (OG) administration, Herpes simplex virus (HSV)-1 infects murine enteric neurons and recruits mononuclear cells in the myenteric plexus. In the current work, we took those findings a step forward by investigating the persistence of HSV-1 in the ENS and the local adaptive immune responses against HSV-1 that might contribute to neuronal damage in an animal model. Our study demonstrated specific viral RNA transcripts and proteins in the longitudinal muscle layer containing the myenteric plexus (LMMP) up to 10 weeks post HSV-1 infection. CD3+CD8+INFγ+ lymphocytes skewed towards HSV-1 antigens infiltrated the myenteric ganglia starting from the 6th week of infection and persist up to 10 weeks post-OG HSV-1 inoculation. CD3+CD8+ cells isolated from the LMMP of the infected mice recognized HSV-1 antigens expressed by infected enteric neurons. In vivo, infiltrating activated lymphocytes were involved in controlling viral replication and intestinal neuromuscular dysfunction. Indeed, by depleting the CD8+ cells by administering specific monoclonal antibody we observed a partial amelioration of intestinal dysmotility in HSV-1 infected mice but increased expression of viral genes. Our findings demonstrate that HSV-1 persistently infects enteric neurons that in turn express viral antigens, leading them to recruit activated CD3+CD8+ lymphocytes. The T-cell responses toward HSV-1 antigens persistently expressed in enteric neurons can alter the integrity of the ENS predisposing to neuromuscular dysfunction.
Collapse
Affiliation(s)
- Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jessica Conti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Veronica Zatta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Venera Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Andromachi Kotsafti
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | | | - Raffaele De Caro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Marco Scarpa
- General Surgery Unit, Azienda Ospedaliera di Padova, Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
26
|
Windster JD, Ouwendijk WJD, Sloots CEJ, Verjans GMGM, Verdijk RM. Ileocolic Intussusception as the Presenting Symptom of Primary Enteric Varicella-Zoster Virus Infection in a 7-Month-Old Infant. J Infect Dis 2021; 222:305-308. [PMID: 32232390 PMCID: PMC7323496 DOI: 10.1093/infdis/jiaa148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/27/2020] [Indexed: 12/29/2022] Open
Abstract
Ileocolic intussusception is the invagination of ileum into the colon. In a subset of patients, the disease is caused by mesenteric lymphadenopathy in response to (viral) infection. We present a case of an ileocolic intussusception necessitating surgery in a 7-month-old immunocompetent infant with concurrent primary wild-type varicella-zoster virus (VZV) infection, in whom chickenpox rash developed 2 days after surgery. Detailed in situ analyses of resected intestine for specific cell type markers and VZV RNA demonstrated VZV-infected lymphocytes and neurons in the gut wall and in ganglion cells of the myenteric plexus.
Collapse
Affiliation(s)
- Jonathan D Windster
- Department of Pediatric Surgery, Erasmus University Medical Center Rotterdam, Sophia's Children's Hospital, Rotterdam, the Netherlands
| | - Werner J D Ouwendijk
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cornelius E J Sloots
- Department of Pediatric Surgery, Erasmus University Medical Center Rotterdam, Sophia's Children's Hospital, Rotterdam, the Netherlands
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Robert M Verdijk
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
27
|
Sinagra E, Pellegatta G, Maida M, Rossi F, Conoscenti G, Pallio S, Alloro R, Raimondo D, Anderloni A. Could Chronic Idiopatic Intestinal Pseudo-Obstruction Be Related to Viral Infections? J Clin Med 2021; 10:268. [PMID: 33450988 PMCID: PMC7828444 DOI: 10.3390/jcm10020268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic idiopathic intestinal pseudo-obstruction (CIIPO) is a disease characterized by symptoms and signs of small bowel obstruction in the absence of displayable mechanical obstruction. Due to the known neuropathic capacity of several viruses, and their localization in the intestine, it has been hypothesized that such viruses could be involved in the pathogenesis of CIIPO. The most frequently involved viruses are John Cunningham virus, Herpesviridae, Flaviviruses, Epstein-Barr virus and Citomegalovirus. Therefore, the present narrative review aims to sum up some new perspectives in the etiology and pathophysiology of CIIPO.
Collapse
Affiliation(s)
- Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele-Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy; (F.R.); (G.C.); (D.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Gaia Pellegatta
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Clinical and Research Center (IRCCS), 20089 Rozzano, Italy; (G.P.); (A.A.)
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, 93100 Caltanissetta, Italy;
| | - Francesca Rossi
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele-Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy; (F.R.); (G.C.); (D.R.)
| | - Giuseppe Conoscenti
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele-Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy; (F.R.); (G.C.); (D.R.)
| | - Socrate Pallio
- Endoscopy Unit, University Hospital Policlinic G. Martino, 98125 Messina, Italy;
| | - Rita Alloro
- Division of General and Oncologic Surgery, Department of Surgical, Oncological and Oral Sciences (DICHIRONS), University of Palermo, 90133 Palermo, Italy;
| | - Dario Raimondo
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele-Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy; (F.R.); (G.C.); (D.R.)
| | - Andrea Anderloni
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Clinical and Research Center (IRCCS), 20089 Rozzano, Italy; (G.P.); (A.A.)
| |
Collapse
|
28
|
Qiao LY, Tiwari N. Spinal neuron-glia-immune interaction in cross-organ sensitization. Am J Physiol Gastrointest Liver Physiol 2020; 319:G748-G760. [PMID: 33084399 PMCID: PMC7792669 DOI: 10.1152/ajpgi.00323.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), historically considered as regional gastrointestinal disorders with heightened colonic sensitivity, are increasingly recognized to have concurrent dysfunction of other visceral and somatic organs, such as urinary bladder hyperactivity, leg pain, and skin hypersensitivity. The interorgan sensory cross talk is, at large, termed "cross-organ sensitization." These organs, anatomically distant from one another, physiologically interlock through projecting their sensory information into dorsal root ganglia (DRG) and then the spinal cord for integrative processing. The fundamental question of how sensitization of colonic afferent neurons conveys nociceptive information to activate primary afferents that innervate distant organs remains ambiguous. In DRG, primary afferent neurons are surrounded by satellite glial cells (SGCs) and macrophage accumulation in response to signals of injury to form a neuron-glia-macrophage triad. Astrocytes and microglia are major resident nonneuronal cells in the spinal cord to interact, physically and chemically, with sensory synapses. Cumulative evidence gathered so far indicate the indispensable roles of paracrine/autocrine interactions among neurons, glial cells, and immune cells in sensory cross-activation. Dichotomizing afferents, sensory convergency in the spinal cord, spinal nerve comingling, and extensive sprouting of central axons of primary afferents each has significant roles in the process of cross-organ sensitization; however, more results are required to explain their functional contributions. DRG that are located outside the blood-brain barrier and reside upstream in the cascade of sensory flow from one organ to the other in cross-organ sensitization could be safer therapeutic targets to produce less central adverse effects.
Collapse
Affiliation(s)
- Liya Y. Qiao
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia,2Department of Internal Medicine, Commonwealth University School of Medicine, Richmond, Virginia
| | - Namrata Tiwari
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
29
|
Unexpected High Prevalence of Lymphocytic Infiltrates in Myenteric Ganglions in Intestinal Inertia. Am J Surg Pathol 2020; 44:1137-1142. [PMID: 32271192 DOI: 10.1097/pas.0000000000001484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intestinal inertia is a severe form of gut dysmotility that may require surgical resection. Loss of myenteric ganglion cells has been proposed as a possible etiology. Preclinical models have also suggested that virus infection-associated ganglionitis may be an alternative pathogenic factor. We determined to the extent intestinal inertia is associated with the lack of myenteric ganglion cells or ganglionitis using resection specimens from 27 intestinal inertia and 28 colon cancer patients. A hot spot approach with 5 HPFs was used for quantifying inflammatory cells. CD3, CD8, and CD20 immunohistochemistry was used to quantify T and B lymphocytes, along with subtyping the T-lymphocyte population by CD8. None of the intestinal inertia nor control cases showed the absence of myenteric ganglion cells. A total of 15 (55.6%) of the intestinal inertia cases showed inflammatory cell infiltration in the myenteric ganglion cells, compared with only 1 of 28 (3.6%) control cases (P<0.0001 by Fisher exact test). The inertia cases with inflammatory infiltrates were all associated predominantly with lymphocytes, including 3 cases (11.1%) with concurrent eosinophil infiltration, and 1 case (3.7%) with concurrent neutrophil infiltration. Furthermore, all 15 inertia cases with myenteric lymphocytic ganglionitis were associated with T lymphocytes (100%), including 1 case with a subset of concurrent B lymphocytes. The average CD3 count was 3.8 cells/HPF. CD8 immunohistochemical stain showed positive staining in 12 of the 15 cases (80%) with CD8-positive cells ranging from 1 to 8/HPF. In contrast, the only control case with lymphocytic ganglionitis showed mixed B and T lymphocytes and eosinophils. The high prevalence of T-lymphocyte infiltration in the myenteric ganglion in intestinal inertia cases suggests a possible pathogenic role.
Collapse
|
30
|
Abstract
Purpose of review Varicella zoster virus (VZV) is a highly contagious, neurotropic alpha herpes virus that causes varicella (chickenpox). VZV establishes lifelong latency in the sensory ganglia from which it can reactivate to induce herpes zoster (HZ), a painful disease that primarily affects older individuals and those who are immune-suppressed. Given that VZV infection is highly specific to humans, developing a reliable in vivo model that recapitulates the hallmarks of VZV infection has been challenging. Simian Varicella Virus (SVV) infection in nonhuman primates reproduces the cardinal features of VZV infections in humans and allows the study of varicella virus pathogenesis in the natural host. In this review, we summarize our current knowledge about genomic and virion structure of varicelloviruses as well as viral pathogenesis and antiviral immune responses during acute infection, latency and reactivation. We also examine the immune evasion mechanisms developed by varicelloviruses to escape the host immune responses and the current vaccines available for protecting individuals against chickenpox and herpes zoster. Recent findings Data from recent studies suggest that infected T cells are important for viral dissemination to the cutaneous sites of infection as well as site of latency and that a viral latency-associated transcript might play a role in the transition from lytic infection to latency and then reactivation. Summary Recent studies have provided exciting insights into mechanisms of varicelloviruses pathogenesis such as the critical role of T cells in VZV/SVV dissemination from the respiratory mucosa to the skin and the sensory ganglia; the ability of VZV/SVV to interfere with host defense; and the identification of VLT transcripts in latently infected ganglia. However, our understanding of these phenomena remains poorly understood. Therefore, it is critical that we continue to investigate host-pathogen interactions during varicelloviruses infection. These studies will lead to a deeper understanding of VZV biology as well as novel aspects of cell biology.
Collapse
|
31
|
Hsu PY, Jang TY. Hypopharyngeal and Laryngeal Lesions in a Patient with Chickenpox. EAR, NOSE & THROAT JOURNAL 2020; 100:1029S-1030S. [PMID: 32551963 DOI: 10.1177/0145561320932312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Po-Yao Hsu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Tyng-Yuan Jang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Department of Internal Medicine, Ministry of Health and Welfare Pingtung Hospital, Pingtung
| |
Collapse
|
32
|
Gerada C, Campbell TM, Kennedy JJ, McSharry BP, Steain M, Slobedman B, Abendroth A. Manipulation of the Innate Immune Response by Varicella Zoster Virus. Front Immunol 2020; 11:1. [PMID: 32038653 PMCID: PMC6992605 DOI: 10.3389/fimmu.2020.00001] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Varicella zoster virus (VZV) is the causative agent of chickenpox (varicella) and shingles (herpes zoster). VZV and other members of the herpesvirus family are distinguished by their ability to establish a latent infection, with the potential to reactivate and spread virus to other susceptible individuals. This lifelong relationship continually subjects VZV to the host immune system and as such VZV has evolved a plethora of strategies to evade and manipulate the immune response. This review will focus on our current understanding of the innate anti-viral control mechanisms faced by VZV. We will also discuss the diverse array of strategies employed by VZV to regulate these innate immune responses and highlight new knowledge on the interactions between VZV and human innate immune cells.
Collapse
Affiliation(s)
- Chelsea Gerada
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Tessa M Campbell
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Jarrod J Kennedy
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Brian P McSharry
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Megan Steain
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Barry Slobedman
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Allison Abendroth
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Kozawa K, Miura H, Kawamura Y, Tanaka M, Kudo K, Higashimoto Y, Ihira M, Yoshikawa T. Frequency of subclinical herpes zoster in pediatric hematology-oncology patients receiving chemotherapy: A retrospective cohort analysis. J Med Virol 2019; 92:1260-1265. [PMID: 31821586 DOI: 10.1002/jmv.25650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Varicella-zoster virus (VZV) reactivation from the enteric nervous system can cause ileus (Ogilvie's syndrome) in adult patients. Since no pediatric cases have been described, we sought to retrospectively analyze VZV reactivation in pediatric hematology-oncology patients to determine whether VZV infection including subclinical VZV reactivation can induce gastrointestinal complications such as Ogilvie's syndrome. Thirty-five patients who received chemotherapy at our institution between September 2013 and June 2018 were included. Serum samples were collected weekly during hospitalization and every 3 months during outpatient maintenance chemotherapy. A real-time polymerase chain reaction assay was used to measure VZV DNA load in serum. The clinical features of patients with VZV infection were retrospectively analyzed. Of 1165 serum samples, 7 (0.6%) were positive for VZV DNA. VZV DNA was detected in 3 of 35 patients. In patient A, VZV DNA was detected during two episodes. The first episode involved varicella-like eruptions caused by the Oka VZV vaccine strain. The second episode involved herpes zoster (HZ) caused by the same strain. Patients B and C had a clinical course that was typical for HZ caused by wild-type VZV. No gastrointestinal symptoms were observed at the time of VZV infection in these three patients. VZV DNA was not detected in any other samples. No pediatric cases with Ogilvie's syndrome caused by VZV reactivation were demonstrated in this cohort. Additionally, no subclinical VZV reactivation was found in this cohort. Further study is needed to elucidate the precise incidence of pediatric Ogilvie's syndrome caused by VZV reactivation.
Collapse
Affiliation(s)
- Kei Kozawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hiroki Miura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Makito Tanaka
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kazuko Kudo
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yuki Higashimoto
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Masaru Ihira
- Faculty of Clinical Engineering, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
34
|
Laemmle L, Goldstein RS, Kinchington PR. Modeling Varicella Zoster Virus Persistence and Reactivation - Closer to Resolving a Perplexing Persistent State. Front Microbiol 2019; 10:1634. [PMID: 31396173 PMCID: PMC6667558 DOI: 10.3389/fmicb.2019.01634] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
The latent state of the human herpesvirus varicella zoster virus (VZV) has remained enigmatic and controversial. While it is well substantiated that VZV persistence is established in neurons after the primary infection (varicella or chickenpox), we know little of the types of neurons harboring latent virus genomes, if all can potentially reactivate, what exactly drives the reactivation process, and the role of immunity in the control of latency. Viral gene expression during latency has been particularly difficult to resolve, although very recent advances indicate that it is more restrictive than was once thought. We do not yet understand how genes expressed in latency function in the maintenance and reactivation processes. Model systems of latency are needed to pursue these questions. This has been especially challenging for VZV because the development of in vivo models of VZV infection has proven difficult. Given that up to one third of the population will clinically reactivate VZV to develop herpes zoster (shingles) and suffer from its common long term problematic sequelae, there is still a need for both in vivo and in vitro model systems. This review will summarize the evolution of models of VZV persistence and address insights that have arisen from the establishment of new in vitro human neuron culture systems that not only harbor a latent state, but permit experimental reactivation and renewed virus production. These models will be discussed in light of the recent data gleaned from the study of VZV latency in human cadaver ganglia.
Collapse
Affiliation(s)
- Lillian Laemmle
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
35
|
Current In Vivo Models of Varicella-Zoster Virus Neurotropism. Viruses 2019; 11:v11060502. [PMID: 31159224 PMCID: PMC6631480 DOI: 10.3390/v11060502] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Varicella-zoster virus (VZV), an exclusively human herpesvirus, causes chickenpox and establishes a latent infection in ganglia, reactivating decades later to produce zoster and associated neurological complications. An understanding of VZV neurotropism in humans has long been hampered by the lack of an adequate animal model. For example, experimental inoculation of VZV in small animals including guinea pigs and cotton rats results in the infection of ganglia but not a rash. The severe combined immune deficient human (SCID-hu) model allows the study of VZV neurotropism for human neural sub-populations. Simian varicella virus (SVV) infection of rhesus macaques (RM) closely resembles both human primary VZV infection and reactivation, with analyses at early times after infection providing valuable information about the extent of viral replication and the host immune responses. Indeed, a critical role for CD4 T-cell immunity during acute SVV infection as well as reactivation has emerged based on studies using RM. Herein we discuss the results of efforts from different groups to establish an animal model of VZV neurotropism.
Collapse
|
36
|
Baird NL, Zhu S, Pearce CM, Viejo-Borbolla A. Current In Vitro Models to Study Varicella Zoster Virus Latency and Reactivation. Viruses 2019; 11:v11020103. [PMID: 30691086 PMCID: PMC6409813 DOI: 10.3390/v11020103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022] Open
Abstract
Varicella zoster virus (VZV) is a highly prevalent human pathogen that causes varicella (chicken pox) during primary infection and establishes latency in peripheral neurons. Symptomatic reactivation often presents as zoster (shingles), but it has also been linked to life-threatening diseases such as encephalitis, vasculopathy and meningitis. Zoster may be followed by postherpetic neuralgia, neuropathic pain lasting after resolution of the rash. The mechanisms of varicella zoster virus (VZV) latency and reactivation are not well characterized. This is in part due to the human-specific nature of VZV that precludes the use of most animal and animal-derived neuronal models. Recently, in vitro models of VZV latency and reactivation using human neurons derived from stem cells have been established facilitating an understanding of the mechanisms leading to VZV latency and reactivation. From the models, c-Jun N-terminal kinase (JNK), phosphoinositide 3-kinase (PI3K) and nerve growth factor (NGF) have all been implicated as potential modulators of VZV latency/reactivation. Additionally, it was shown that the vaccine-strain of VZV is impaired for reactivation. These models may also aid in the generation of prophylactic and therapeutic strategies to treat VZV-associated pathologies. This review summarizes and analyzes the current human neuronal models used to study VZV latency and reactivation, and provides some strategies for their improvement.
Collapse
Affiliation(s)
- Nicholas L Baird
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Shuyong Zhu
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany.
| | - Catherine M Pearce
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
37
|
White JP, Xiong S, Malvin NP, Khoury-Hanold W, Heuckeroth RO, Stappenbeck TS, Diamond MS. Intestinal Dysmotility Syndromes following Systemic Infection by Flaviviruses. Cell 2018; 175:1198-1212.e12. [PMID: 30293866 DOI: 10.1016/j.cell.2018.08.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
Although chronic gastrointestinal dysmotility syndromes are a common worldwide health problem, underlying causes for these disorders are poorly understood. We show that flavivirus infection of enteric neurons leads to acute neuronal injury and cell death, inflammation, bowel dilation, and slowing of intestinal transit in mice. Flavivirus-primed CD8+ T cells promote these phenotypes, as their absence diminished enteric neuron injury and intestinal transit delays, and their adoptive transfer reestablished dysmotility after flavivirus infection. Remarkably, mice surviving acute flavivirus infection developed chronic gastrointestinal dysmotility that was exacerbated by immunization with an unrelated alphavirus vaccine or exposure to a non-infectious inflammatory stimulus. This model of chronic post-infectious gastrointestinal dysmotility in mice suggests that viral infections with tropism for enteric neurons and the ensuing immune response might contribute to the development of bowel motility disorders in humans. These results suggest an opportunity for unique approaches to diagnosis and therapy of gastrointestinal dysmotility syndromes.
Collapse
Affiliation(s)
- James P White
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole P Malvin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Robert O Heuckeroth
- Department of Pediatrics, the Children's Hospital of Philadelphia Research Institute, the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Abstract
Varicella zoster virus (VZV) infects and becomes latent in sensory, enteric, and other autonomic neurons during the viremia of varicella. Reactivation of VZV in neurons that project to the skin causes the rash of zoster; however, reactivation of VZV in enteric neurons can cause a painful gastrointestinal disorder ("enteric zoster") without cutaneous manifestations. Detection of VZV DNA in saliva of patients with gastrointestinal symptoms may suggest enteric zoster. This diagnosis is reinforced by observing a response to antiviral therapy and can be confirmed by detecting VZV gene products in intestinal mucosal biopsies. We developed an in vivo guinea pig model that may be useful in studies of VZV latency and reactivation. VZV-infected lymphocytes are used to induce latent infection in sensory and enteric neurons; evidence suggests that exosomes and stimulator of interferon genes (STING) may, by preventing proliferation play roles in the establishment of neuronal latency.
Collapse
Affiliation(s)
- Michael Gershon
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Anne Gershon
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
39
|
Chaudhury A, Dendi VSR, Chaudhury M, Jain A, Kasarla MR, Panuganti K, Jain G, Ramanujam A, Rena B, Koyagura SR, Fogla S, Kumar S, Shekhawat NS, Maddur S. HSV1/2 Genital Infection in Mice Cause Reversible Delayed Gastrointestinal Transit: A Model for Enteric Myopathy. Front Med (Lausanne) 2018; 5:176. [PMID: 30065927 PMCID: PMC6056620 DOI: 10.3389/fmed.2018.00176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
In an interesting investigation by Khoury-Hanold et al. (1), genital infection of mice with herpes simplex virus 1 (HSV1) were reported to cause multiple pelvic organ involvement and obstruction. A small subset of mice succumbed after the first week of HSV1 infection. The authors inferred that the mice died due to toxic megacolon. In a severe form of mechanical and/or functional obstruction involving gross dilation of the colon and profound toxemia, the presentation is called "toxic megacolon." The representative observations by Khoury-Hanold likely do not resemble toxic megacolon. The colon was only slightly dilated and benign appearing. Importantly, HSV1 infection affected the postjunctional mechanisms of smooth muscle relaxation like the sildenafil-response proteins, which may have been responsible for defective nitrergic neurotransmission and the delayed transit. Orally administered polyethylene glycol reversed the gastrointestinal "obstruction," suggesting a mild functional type of slowed luminal transit, resembling constipation, rather than toxic megacolon, which cannot be reversed by an osmotic laxative without perforating the gut. The authors suggest that the mice did not develop HSV1 encephalitis, the commonly known cause of mortality. The premature death of some of the mice could be related to the bladder outlet obstruction, whose backflow effects may alter renal function, electrolyte abnormalities and death. Muscle strip recordings of mechanical relaxation after electrical field stimulation of gastrointestinal, urinary bladder or cavernosal tissues shall help obtain objective quantitative evidence of whether HSV infection indeed cause pelvic multi-organ dysfunction and impairment of autonomic neurotransmission and postjunctional electromechanical relaxation mechanisms of these organs.
Collapse
Affiliation(s)
| | | | | | - Astha Jain
- Wanderful Media/University of Southern California, Los Angeles, CA, United States
| | | | | | - Gaurav Jain
- Berkshire Medical Center, Pittsfield, MA, United States
| | | | - Bhavin Rena
- Xenco Laboratories, Houston, TX, United States
| | | | - Sumit Fogla
- Beaumont Hospital, Grosse Pointe, MI, United States
| | - Sunil Kumar
- Neshoba County General Hospital, Philadelphia, MS, United States
| | | | - Srinivas Maddur
- All India Institute of Medical Sciences, New Delhi, India
- ESIC Medical College, Sanathnagar, India
| |
Collapse
|
40
|
Depledge DP, Sadaoka T, Ouwendijk WJD. Molecular Aspects of Varicella-Zoster Virus Latency. Viruses 2018; 10:v10070349. [PMID: 29958408 PMCID: PMC6070824 DOI: 10.3390/v10070349] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Primary varicella-zoster virus (VZV) infection causes varicella (chickenpox) and the establishment of a lifelong latent infection in ganglionic neurons. VZV reactivates in about one-third of infected individuals to cause herpes zoster, often accompanied by neurological complications. The restricted host range of VZV and, until recently, a lack of suitable in vitro models have seriously hampered molecular studies of VZV latency. Nevertheless, recent technological advances facilitated a series of exciting studies that resulted in the discovery of a VZV latency-associated transcript (VLT) and provide novel insights into our understanding of VZV latency and factors that may initiate reactivation. Deducing the function(s) of VLT and the molecular mechanisms involved should now be considered a priority to improve our understanding of factors that govern VZV latency and reactivation. In this review, we summarize the implications of recent discoveries in the VZV latency field from both a virus and host perspective and provide a roadmap for future studies.
Collapse
Affiliation(s)
- Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Werner J D Ouwendijk
- Department of Viroscience, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
41
|
Ouwendijk WJD, van Veen S, Mehraban T, Mahalingam R, Verjans GMGM. Simian Varicella Virus Infects Enteric Neurons and α4β7 Integrin-Expressing Gut-Tropic T-Cells in Nonhuman Primates. Viruses 2018; 10:E156. [PMID: 29597335 PMCID: PMC5923450 DOI: 10.3390/v10040156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
The pathogenesis of enteric zoster, a rare debilitating complication of reactivation of latent varicella-zoster virus (VZV) in the enteric nervous system (ENS), is largely unknown. Infection of monkeys with the closely related Varicellovirus simian varicella virus (SVV) mimics VZV disease in humans. In this study, we determined the applicability of the SVV nonhuman primate model to study Varicellovirus infection of the ENS. We confirmed VZV infection of the gut in latently infected adults and demonstrated that SVV DNA was similarly present in gut of monkeys latently infected with SVV using quantitative real-time PCR. In situ analyses showed that enteric neurons expressed SVV open reading frame (ORF) 63 RNA, but not viral nucleocapsid proteins, suggestive of latent ENS infection. During primary infection, SVV-infected T-cells were detected in gut-draining mesenteric lymph nodes and located in close vicinity to enteric nerves in the gut. Furthermore, flow cytometric analysis of blood from acutely SVV-infected monkeys demonstrated that virus-infected T-cells expressed the gut-homing receptor α4β7 integrin. Collectively, the data demonstrate that SVV infects ENS neurons during primary infection and supports the role of T-cells in virus dissemination to the gut. Because SVV reactivation can be experimentally induced, the SVV nonhuman primate model holds great potential to study the pathogenesis of enteric zoster.
Collapse
Affiliation(s)
| | - Suzanne van Veen
- Department of Viroscience, Erasmus MC, 3015 CE Rotterdam, The Netherlands.
| | - Tamana Mehraban
- Department of Viroscience, Erasmus MC, 3015 CE Rotterdam, The Netherlands.
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus MC, 3015 CE Rotterdam, The Netherlands.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
42
|
Attenuation of Simian Varicella Virus Infection by Enhanced Green Fluorescent Protein in Rhesus Macaques. J Virol 2018; 92:JVI.02253-17. [PMID: 29343566 DOI: 10.1128/jvi.02253-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 01/14/2023] Open
Abstract
Simian varicella virus (SVV), the primate counterpart of varicella-zoster virus, causes varicella (chickenpox), establishes latency in ganglia, and reactivates to produce zoster. We previously demonstrated that a recombinant SVV expressing enhanced green fluorescent protein (rSVV.eGFP) is slightly attenuated both in culture and in infected monkeys. Here, we generated two additional recombinant SVVs to visualize infected cells in vitro and in vivo One harbors eGFP fused to the N terminus of open reading frame 9 (ORF9) (rSVV.eGFP-2a-ORF9), and another harbors eGFP fused to the C terminus of ORF66 (rSVV.eGFP-ORF66). Both recombinant viruses efficiently expressed eGFP in cultured cells. Both recombinant SVV infections in culture were comparable to that of wild-type SVV (SVV.wt). Unlike SVV.wt, eGFP-tagged SVV did not replicate in rhesus cells in culture. Intratracheal (i.t.) or i.t. plus intravenous (i.v.) inoculation of rhesus macaques with these new eGFP-tagged viruses resulted in low viremia without varicella rash, although SVV DNA was abundant in bronchoalveolar lavage (BAL) fluid at 10 days postinoculation (dpi). SVV DNA was also found in trigeminal ganglia of one monkey inoculated with rSVV.eGFP-ORF66. Intriguingly, a humoral response to both SVV and eGFP was observed. In addition, monkeys inoculated with the eGFP-expressing viruses were protected from superinfection with SVV.wt, suggesting that the monkeys had mounted an efficient immune response. Together, our results show that eGFP expression could be responsible for their reduced pathogenesis.IMPORTANCE SVV infection in nonhuman primates has served as an extremely useful animal model to study varicella-zoster virus (VZV) pathogenesis. eGFP-tagged viruses are a great tool to investigate their pathogenesis. We constructed and tested two new recombinant SVVs with eGFP inserted into two different locations in the SVV genome. Both recombinant SVVs showed robust replication in culture but reduced viremia compared to that with SVV.wt during primary infection in rhesus macaques. Our results indicate that conclusions on eGFP-tagged viruses based on in vitro results should be handled with care, since eGFP expression could result in attenuation of the virus.
Collapse
|
43
|
Ramirez-Fort MK, Zeng J, Feily A, Ramirez-Pacheco LA, Jenrette JM, Mayhew DL, Syed T, Cooper SL, Linden C, Graybill WS, French LE, Lange CS. Radiotherapy-induced reactivation of neurotrophic human herpes viruses: Overview and management. J Clin Virol 2017; 98:18-27. [PMID: 29197712 DOI: 10.1016/j.jcv.2017.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/20/2017] [Accepted: 11/11/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Infection by Human Herpes Viruses (HHV) types 1-3, are prevalent throughout the world. It is known that radiotherapy can reactivate HHVs, but it is unclear how and to what extent reactivations can interact with or affect radiotherapeutic efficacy, patient outcomes and mortality risk. Herein, we aim to summarize what is known about Herpes Simplex Virus (HSV)-1,2 and Varicella Zoster Virus (VZV) pathophysiology as it relates to tumor biology, radiotherapy, chemo-radiotherapy, diagnosis and management so as to optimize cancer treatment in the setting of active HHV infection. Our secondary aim is to emphasize the need for further research to elucidate the potential adverse effects of active HHV infection in irradiated tumor tissue and to design optimal management strategies to incorporate into cancer management guidelines. MATERIALS AND METHODS The literature regarding herpetic infection, herpetic reactivation, and recurrence occurring during radiotherapy and that regarding treatment guidelines for herpetic infections are reviewed. We aim to provide the oncologist with a reference for the infectious dangers of herpetic reactivation in patients under their care and well established methods for prevention, diagnosis, and treatment of such infections. Pain management is also considered. CONCLUSIONS In the radiotherapeutic setting, serologic assays for HSV-1 and HSV-2 are feasible and can alert the clinician to patients at risk for viral reactivation. RT-PCR is specific in identifying the exact viral culprit and is the preferred diagnostic method to measure interventional efficacy. It can also differentiate between herpetic infection and radionecrosis. The MicroTrak® HSV1/HSV2/VZV staining kit has high sensitivity and specificity in acute lesions, is also the most rapid means to confirm diagnosis. Herpetic reactivation and recurrences during radiotherapy can cause interruptions, cessations, or prolongations of the radiotherapeutic course, thus decreasing the biologically effective dose, to sub-therapeutic levels. Active HHV infection within the treatment volume results in increased tumor radio-resistance and potentially sub-therapeutic care if left untreated. Visceral reactivations may result in fatality and therefore, a high index of suspicion is important to identify these active infections. The fact that such infections may be mistaken for acute and/or late radiation effects, leading to less than optimal treatment decisions, makes knowledge of this problem even more relevant. To minimize the risk of these sequelae, prompt anti-viral therapy is recommended, lasting the course of radiotherapy.
Collapse
Affiliation(s)
- Marigdalia K Ramirez-Fort
- Radiation Oncology, Medical University of South Carolina, Charleston, SC, United States; Urological Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Jianying Zeng
- Pathology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Amir Feily
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Joseph M Jenrette
- Radiation Oncology, Medical University of South Carolina, Charleston, SC, United States
| | - David L Mayhew
- Radiation Oncology, Tufts Medical Center, Boston, MA, United States; Medicine, Dana Farber Cancer Institute, Boston, MA, United States
| | - Talal Syed
- Radiation Oncology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - S Lewis Cooper
- Radiation Oncology, Medical University of South Carolina, Charleston, SC, United States
| | - Craig Linden
- Radiology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Witney S Graybill
- Gynecology Oncology, Medical University of South Carolina, Charleston, SC, United States
| | - Lars E French
- Dermatology, Zurich University Hospital, Zurich, Switzerland
| | - Christopher S Lange
- Radiation Oncology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.
| |
Collapse
|
44
|
Perciani CT, Jaoko W, Walmsley S, Farah B, Mahmud SM, Ostrowski M, Anzala O, Team KI, MacDonald KS. Protocol of a randomised controlled trial characterising the immune responses induced by varicella-zoster virus (VZV) vaccination in healthy Kenyan women: setting the stage for a potential VZV-based HIV vaccine. BMJ Open 2017; 7:e017391. [PMID: 28939581 PMCID: PMC5623463 DOI: 10.1136/bmjopen-2017-017391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION A protective HIV vaccine would be expected to induce durable effector immune responses at the mucosa, restricting HIV infection at its portal of entry. We hypothesise that use of varicella-zoster virus (VZV) as an HIV delivery vector could generate sustained and robust tissue-based immunity against HIV antigens to provide long-term protection against HIV. Given that HIV uniquely targets immune-activated T cells, the development of human vaccines against HIV must also involve a specific examination of the safety of the vector. Thus, we aim to evaluate the effects of VZV vaccination on the recipients' immune activation state, and on VZV-specific circulating humoral and cellular responses in addition to those at the cervical and rectal mucosa. METHODS AND ANALYSIS This open-label, randomised, longitudinal crossover study includes healthy Kenyan VZV-seropositive women at low risk for HIV infection. Participants receive a single dose of a commercial live-attenuated VZVOka vaccine at either week 0 (n=22) or at week 12 (n=22) of the study and are followed for 48 and 36 weeks postvaccination, respectively. The primary outcome is the change on cervical CD4+ T-cell immune activation measured by the coexpression of CD38 and HLA-DR 12 weeks postvaccination compared with the baseline (prevaccination). Secondary analyses include postvaccination changes in VZV-specific mucosal and systemic humoral and cellular immune responses, changes in cytokine and chemokine measures, study acceptability and feasibility of mucosal sampling and a longitudinal assessment of the bacterial community composition of the mucosa. ETHICS AND DISSEMINATION The study has ethical approval from Kenyatta National Hospital/University of Nairobi Ethics and Research Committee, the University of Toronto Research Ethics Board and by Kenyan Pharmacy and Poisons Board. Results will be presented at conferences, disseminated to participants and stakeholders as well as published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT02514018. Pre-results.
Collapse
Affiliation(s)
- Catia T Perciani
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Walter Jaoko
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research (KAVI-ICR), Nairobi, Kenya
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Sharon Walmsley
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Bashir Farah
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research (KAVI-ICR), Nairobi, Kenya
| | - Salaheddin M Mahmud
- Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Omu Anzala
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research (KAVI-ICR), Nairobi, Kenya
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Kavi-Icr Team
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research (KAVI-ICR), Nairobi, Kenya
| | - Kelly S MacDonald
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Section of Infectious Diseases, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
45
|
Carod-Artal FJ. Infectious diseases causing autonomic dysfunction. Clin Auton Res 2017; 28:67-81. [PMID: 28730326 DOI: 10.1007/s10286-017-0452-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To review infectious diseases that may cause autonomic dysfunction. METHODS Review of published papers indexed in medline/embase. RESULTS Autonomic dysfunction has been reported in retrovirus (human immunodeficiency virus (HIV), human T-lymphotropic virus), herpes viruses, flavivirus, enterovirus 71 and lyssavirus infections. Autonomic dysfunction is relatively common in HIV-infected patients and heart rate variability is reduced even in early stages of infection. Orthostatic hypotension, urinary dysfunction and hypohidrosis have been described in tropical spastic paraparesis patients. Varicella zoster reactivation from autonomic ganglia may be involved in visceral disease and chronic intestinal pseudo-obstruction. Autonomic and peripheral nervous system dysfunction may happen in acute tick-borne encephalitis virus infections. Hydrophobia, hypersalivation, dyspnea, photophobia, and piloerection are frequently observed in human rabies. Autonomic dysfunction and vagal denervation is common in Chagas disease. Neuronal depopulation occurs mainly in chagasic heart disease and myenteric plexus, and megacolon, megaesophagus and cardiomyopathy are common complications in the chronic stage of Chagas disease. Parasympathetic autonomic dysfunction precedes left ventricle systolic dysfunction in Chagas disease. A high prevalence of subclinical autonomic neuropathy in leprosy patients has been reported, and autonomic nerve dysfunction may be an early manifestation of the disease. Autonomic dysfunction features in leprosy include anhidrosis, impaired sweating function, localised alopecia ,and reduced heart rate variability. Urinary retention and intestinal pseudo-obstruction have been described in Lyme disease. Diphtheritic polyneuropathy, tetanus and botulism are examples of bacterial infections releasing toxins that affect the autonomic nervous system. CONCLUSIONS Autonomic dysfunction may be responsible for additional morbidity in some infectious diseases.
Collapse
Affiliation(s)
- Francisco Javier Carod-Artal
- Neurology Department, Raigmore Hospital, Inverness, UK. .,Health Sciences Faculty, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
| |
Collapse
|
46
|
Stinson C, Deng M, Yee MB, Bellinger LL, Kinchington PR, Kramer PR. Sex differences underlying orofacial varicella zoster associated pain in rats. BMC Neurol 2017; 17:95. [PMID: 28514943 PMCID: PMC5436469 DOI: 10.1186/s12883-017-0882-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/09/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Most people are initially infected with varicella zoster virus (VZV) at a young age and this infection results in chickenpox. VZV then becomes latent and reactivates later in life resulting in herpes zoster (HZ) or "shingles". Often VZV infects neurons of the trigeminal ganglia to cause ocular problems, orofacial disease and occasionally a chronic pain condition termed post-herpetic neuralgia (PHN). To date, no model has been developed to study orofacial pain related to varicella zoster. Importantly, the incidence of zoster associated pain and PHN is known to be higher in women, although reasons for this sex difference remain unclear. Prior to this work, no animal model was available to study these sex-differences. Our goal was to develop an orofacial animal model for zoster associated pain which could be utilized to study the mechanisms contributing to this sex difference. METHODS To develop this model VZV was injected into the whisker pad of rats resulting in IE62 protein expression in the trigeminal ganglia; IE62 is an immediate early gene in the VZV replication program. RESULTS Similar to PHN patients, rats showed retraction of neurites after VZV infection. Treatment of rats with gabapentin, an agent often used to combat PHN, ameliorated the pain response after whisker pad injection. Aversive behavior was significantly greater for up to 7 weeks in VZV injected rats over control inoculated rats. Sex differences were also seen such that ovariectomized and intact female rats given the lower dose of VZV showed a longer affective response than male rats. The phase of the estrous cycle also affected the aversive response suggesting a role for sex steroids in modulating VZV pain. CONCLUSIONS These results suggest that this rat model can be utilized to study the mechanisms of 1) orofacial zoster associated pain and 2) the sex differences underlying zoster associated pain.
Collapse
Affiliation(s)
- Crystal Stinson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246 USA
| | - Mohong Deng
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Michael B Yee
- Dept Ophthalmology and of Molecular Microbiology and Genetics, 203 Lothrop St., Pittsburgh, PA 15213 USA
| | - Larry L. Bellinger
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246 USA
| | - Paul R. Kinchington
- Dept Ophthalmology and of Molecular Microbiology and Genetics, 203 Lothrop St., Pittsburgh, PA 15213 USA
| | - Phillip R. Kramer
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246 USA
| |
Collapse
|
47
|
Carod-Artal FJ. The enteric nervous system: another forgotten autonomic target in viral infections? Clin Auton Res 2017; 27:137-138. [PMID: 28447187 DOI: 10.1007/s10286-017-0422-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Francisco Javier Carod-Artal
- Neurology Department, Raigmore Hospital, Inverness, UK. .,International Master in Tropical Neurology and Neuro-infection, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
48
|
PainVision® Apparatus for Assessment of Efficacy of Pulsed Radiofrequency Combined with Pharmacological Therapy in the Treatment of Postherpetic Neuralgia and Correlations with Measurements. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5670219. [PMID: 28357404 PMCID: PMC5357555 DOI: 10.1155/2017/5670219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Objective. PainVision device was a developed application for the evaluation of pain intensity. The objective was to assess the efficacy and safety of pulsed radiofrequency (PRF) combined with pharmacological therapy in the treatment of postherpetic neuralgia (PHN). We also discussed the correlation of the measurements. Method. Forty patients with PHN were randomized for treatment with PRF combined with pharmacological therapy (PRF group, n = 20) or pharmacological therapy (control group, n = 20) at postoperative 48 hours. The efficacy measure was pain degree (PD) that was assessed by PainVision and visual analog scale (VAS), short form Mcgill pain questionnaire (SF-Mcgill), and numeric rate scale sleep interference score (NRSSIS). Correlations between PD, VAS, SF-Mcgill, and NRSSIS were determined. Results. The PD for persistent pain (PP) and breakthrough pain (BTP) at postoperative 48 hours assessed by PainVision were significantly lower in PRF group than in control group (PD-PP, P < 0.01; PD-BTP, P < 0.01). PD and VAS were highly correlated for both persistent pain (r = 0.453, ρ = 0.008) and breakthrough pain (r = 0.64, ρ = 0.001). Conclusion. PRF was well tolerated and superior to isolated pharmacological therapy in the treatment of PHN. PainVision device showed great value in the evaluation of pain intensity and PD had an excellent correlation with VAS and SF-Mcgill.
Collapse
|
49
|
Bougnères P, Le Fur S, Isis-Diab collaborative group, Valtat S, Kamatani Y, Lathrop M, Valleron AJ. Using spatio-temporal surveillance data to test the infectious environment of children before type 1 diabetes diagnosis. PLoS One 2017; 12:e0170658. [PMID: 28152013 PMCID: PMC5289461 DOI: 10.1371/journal.pone.0170658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022] Open
Abstract
The "hygiene hypothesis" postulates that reduced exposure to infections favours the development of autoimmunity and childhood type 1 diabetes (T1D). But on the other side, viruses, notably enteroviruses, are suspected to trigger T1D. The assessment of the possible relationships between infections and T1D still defies the classical tools of epidemiology. We report the methods and results of a geographical approach that maps the addresses of patients to a communicable diseases surveillance database. We mapped the addresses of patients at birth, infancy and T1D diagnosis to the weekly estimates of the regional incidences of 5 frequent communicable diseases routinely collected since 1984 by the French Sentinel network. The pre-diagnostic infectious environment of 3548 patients with T1D diagnosed between 0.5 and 15 years was compared to those of 100 series of age-matched "virtual controls" drawn randomly on the map. Associations were classified as "suggestive" (summer diarrhea, SD, and varicella, V) when p< 0.05, or "significant" (influenza-like infections, ILI) when they passed the Bonferroni correction for FDR. Exposure to ILI and SD were associated with T1D risk, while V seemed protective. In the subset of 2521 patients for which we had genome wide data, we used a case-only approach to search for interactions between SNPs and the infectious environment as defined by the Sentinel database. Two SNPs, rs116624278 and rs77232854, showed significant interaction with exposure to V between 1 and 3 years of life. The infectious associations found should be taken as possible markers of patients' environment, not as direct causative factors of T1D. They require replication in other populations. The increasing public availability of geographical environmental databases will expand the present approach to map thousands of environmental factors to the lifeline of patients affected by various diseases.
Collapse
Affiliation(s)
- Pierre Bougnères
- Department of Pediatric Endocrinology, Bicêtre Hospital, Paris Sud University, AP-HP, Le Kremlin Bicêtre, France
- Inserm U1169, Paris Sud University, Le Kremlin Bicêtre, France
- * E-mail:
| | - Sophie Le Fur
- Department of Pediatric Endocrinology, Bicêtre Hospital, Paris Sud University, AP-HP, Le Kremlin Bicêtre, France
- Inserm U1169, Paris Sud University, Le Kremlin Bicêtre, France
| | | | - Sophie Valtat
- Department of Pediatric Endocrinology, Bicêtre Hospital, Paris Sud University, AP-HP, Le Kremlin Bicêtre, France
| | - Yoichiro Kamatani
- Center for Integrative Medical Sciences, RIKEN, Laboratory for Statistical Analysis, Kanagawa, Japan
| | - Mark Lathrop
- Centre National de Génotypage, Evry, France, and Génome Québec Innovation Centre, McGill University, Montréal (Québec), Canada
| | | |
Collapse
|
50
|
Gabutti G, Bonanni P, Conversano M, Fanelli G, Franco E, Greco D, Icardi G, Lazzari M, Rossi A, Scotti S, Volpi A. Prevention of Herpes Zoster and its complications: From clinical evidence to real life experience. Hum Vaccin Immunother 2017; 13:391-398. [PMID: 27925894 PMCID: PMC5328234 DOI: 10.1080/21645515.2017.1264831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Herpes zoster (HZ) is an acute viral illness characterized by a vesicular rash with unilateral distribution, which can also result in severe complications such as post-herpetic neuralgia (PHN), ophthalmic zoster, stroke or other neurological complications. The estimate incidence in Europe ranges between 2.0 and 4.6 cases per 1,000 person-years, with a sharp increase in >50 year-old subjects. Currently, treatment options for HZ are only partially effective in limiting the acute phase, while the management of complications is complex and often unsatisfactory. The total burden of the disease and the high costs related to its diagnostic and therapeutic management led researchers to develop a new preventive approach through a live attenuated virus vaccine. The currently available vaccine, with a high antigen content, is safe, well tolerated and reduces the incidence of HZ, PHN and the burden of illness. Several countries have introduced this vaccination, albeit with different recommendations and methods of financing. Taking into account the barriers to this immunization registered in some areas (difficulty of vaccine distribution, lack of physician recommendations, the cost of vaccine for patients, etc.), this group of Italian experts advocate that a common strategy able to guarantee a good compliance with this vaccination should be implemented. The same group addresses some practical questions concerning the use of zoster vaccine.
Collapse
|