1
|
Götz P, Azubuike-Osu SO, Braumandl A, Arnholdt C, Kübler M, Richter L, Lasch M, Bobrowski L, Preissner KT, Deindl E. Cobra Venom Factor Boosts Arteriogenesis in Mice. Int J Mol Sci 2022; 23:ijms23158454. [PMID: 35955584 PMCID: PMC9368946 DOI: 10.3390/ijms23158454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Arteriogenesis, the growth of natural bypass blood vessels, can compensate for the loss of arteries caused by vascular occlusive diseases. Accordingly, it is a major goal to identify the drugs promoting this innate immune system-driven process in patients aiming to save their tissues and life. Here, we studied the impact of the Cobra venom factor (CVF), which is a C3-like complement-activating protein that induces depletion of the complement in the circulation in a murine hind limb model of arteriogenesis. Arteriogenesis was induced in C57BL/6J mice by femoral artery ligation (FAL). The administration of a single dose of CVF (12.5 µg) 24 h prior to FAL significantly enhanced the perfusion recovery 7 days after FAL, as shown by Laser Doppler imaging. Immunofluorescence analyses demonstrated an elevated number of proliferating (BrdU+) vascular cells, along with an increased luminal diameter of the grown collateral vessels. Flow cytometric analyses of the blood samples isolated 3 h after FAL revealed an elevated number of neutrophils and platelet-neutrophil aggregates. Giemsa stains displayed augmented mast cell recruitment and activation in the perivascular space of the growing collaterals 8 h after FAL. Seven days after FAL, we found more CD68+/MRC-1+ M2-like polarized pro-arteriogenic macrophages around growing collaterals. These data indicate that a single dose of CVF boosts arteriogenesis by catalyzing the innate immune reactions, relevant for collateral vessel growth.
Collapse
Affiliation(s)
- Philipp Götz
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); or (S.O.A.-O.); (A.B.); (C.A.); (M.K.); (M.L.); (L.B.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Sharon O. Azubuike-Osu
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); or (S.O.A.-O.); (A.B.); (C.A.); (M.K.); (M.L.); (L.B.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University Ndufu Alike, Abakaliki 482131, Ebonyi, Nigeria
| | - Anna Braumandl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); or (S.O.A.-O.); (A.B.); (C.A.); (M.K.); (M.L.); (L.B.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Christoph Arnholdt
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); or (S.O.A.-O.); (A.B.); (C.A.); (M.K.); (M.L.); (L.B.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Matthias Kübler
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); or (S.O.A.-O.); (A.B.); (C.A.); (M.K.); (M.L.); (L.B.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Lisa Richter
- Flow Cytometry Core Facility, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany;
| | - Manuel Lasch
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); or (S.O.A.-O.); (A.B.); (C.A.); (M.K.); (M.L.); (L.B.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Lisa Bobrowski
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); or (S.O.A.-O.); (A.B.); (C.A.); (M.K.); (M.L.); (L.B.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Klaus T. Preissner
- Department of Cardiology, Kerckhoff-Heart Research Institute, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); or (S.O.A.-O.); (A.B.); (C.A.); (M.K.); (M.L.); (L.B.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Correspondence: ; Tel.: +49-(0)-89-2180-76504
| |
Collapse
|
2
|
Proteomic Investigations of Two Pakistani Naja Snake Venoms Species Unravel the Venom Complexity, Posttranslational Modifications, and Presence of Extracellular Vesicles. Toxins (Basel) 2020; 12:toxins12110669. [PMID: 33105837 PMCID: PMC7690644 DOI: 10.3390/toxins12110669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022] Open
Abstract
Latest advancement of omics technologies allows in-depth characterization of venom compositions. In the present work we present a proteomic study of two snake venoms of the genus Naja i.e., Naja naja (black cobra) and Naja oxiana (brown cobra) of Pakistani origin. The present study has shown that these snake venoms consist of a highly diversified proteome. Furthermore, the data also revealed variation among closely related species. High throughput mass spectrometric analysis of the venom proteome allowed to identify for the N. naja venom 34 protein families and for the N. oxiana 24 protein families. The comparative evaluation of the two venoms showed that N. naja consists of a more complex venom proteome than N. oxiana venom. Analysis also showed N-terminal acetylation (N-ace) of a few proteins in both venoms. To the best of our knowledge, this is the first study revealing this posttranslational modification in snake venom. N-ace can shed light on the mechanism of regulation of venom proteins inside the venom gland. Furthermore, our data showed the presence of other body proteins, e.g., ankyrin repeats, leucine repeats, zinc finger, cobra serum albumin, transferrin, insulin, deoxyribonuclease-2-alpha, and other regulatory proteins in these venoms. Interestingly, our data identified Ras-GTpase type of proteins, which indicate the presence of extracellular vesicles in the venom. The data can support the production of distinct and specific anti-venoms and also allow a better understanding of the envenomation and mechanism of distribution of toxins. Data are available via ProteomeXchange with identifier PXD018726.
Collapse
|
3
|
Hew BE, Pangburn MK, Vogel CW, Fritzinger DC. Identification of intermolecular bonds between human factor B and Cobra Venom Factor important for C3 convertase stability. Toxicon 2020; 184:68-77. [PMID: 32526239 DOI: 10.1016/j.toxicon.2020.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 10/24/2022]
Abstract
Cobra venom factor (CVF) is the complement-activating protein in cobra venom. CVF is a structural and functional analog of complement component C3. CVF, like C3b, forms a convertase with factor B. This bimolecular complex CVF, Bb is an enzyme that cleaves C3 and C5. However, CVF, Bb exhibits significantly different functional properties from C3b,Bb. Whereas both, CVF, Bb and C3b, Bb exhibit spontaneous decay-dissociation into the respective subunits, thereby eliminating the enzymatic activity, the CVF, Bb convertase is physico-chemically far more stable, decaying with a half-life that is more than two orders of magnitude slower than that of C3b,Bb. In addition, CVF, Bb is completely resistant to inactivation by Factors H and I. These two properties of CVF, Bb allow continuous activation of C3 and C5, and complement depletion in serum. In order to understand the structural basis for the physico-chemical stability of CVF,Bb, we have created recombinant hybrid proteins of CVF and human C3, based on structural differences between CVF and human C3b in the C-terminal C345C domain. Here we describe three human C3/CVF hybrid proteins which differ in only one, two, or five amino acid residues from earlier described hybrid proteins. In all three cases, the hybrid proteins containing CVF residues form more stable convertases, and exhibit stronger complement-depletion activity than hybrid proteins with human C3 residues. Three bonds between CVF residues and Factor Bb residues could be identified by crystallographic modeling that contribute to the greater stability of the convertases.
Collapse
Affiliation(s)
- Brian E Hew
- University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Michael K Pangburn
- Biomedical Research Department, University of Texas Health Science Center, Tyler, TX, 75708, USA
| | - Carl-Wilhelm Vogel
- University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI, 96813, USA; Department of Pathology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI, 96813, USA.
| | - David C Fritzinger
- University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI, 96813, USA
| |
Collapse
|
4
|
Hew BE, Fritzinger DC, Pangburn MK, Vogel CW. Identification of functionally important amino acid sequences in cobra venom factor using human C3/Cobra venom factor hybrid proteins. Toxicon 2019; 167:106-116. [DOI: 10.1016/j.toxicon.2019.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/18/2019] [Accepted: 06/13/2019] [Indexed: 11/28/2022]
|
5
|
Liu CC, Lin CC, Hsiao YC, Wang PJ, Yu JS. Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. J Proteomics 2018; 187:59-68. [PMID: 29929037 DOI: 10.1016/j.jprot.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 01/07/2023]
|
6
|
Depletion of Complement Enhances the Clearance of Brucella abortus in Mice. Infect Immun 2018; 86:IAI.00567-18. [PMID: 30082480 DOI: 10.1128/iai.00567-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
Brucellosis is a bacterial disease of animals and humans. Brucella abortus barely activates the innate immune system at the onset of infection, and this bacterium is resistant to the microbicidal action of complement. Since complement stands as the first line of defense during bacterial invasions, we explored the role of complement in B. abortus infections. Brucella abortus-infected mice depleted of complement with cobra venom factor (CVF) showed the same survival rate as mice in the control group. The complement-depleted mice readily eliminated B. abortus from the spleen and did so more efficiently than the infected controls after 7 days of infection. The levels of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-6 (IL-6) remained within background levels in complement-depleted B. abortus-infected mice. In contrast, the levels of the immune activator cytokine gamma interferon and the regulatory cytokine IL-10 were significantly increased. No significant histopathological changes in the liver and spleen were observed between the complement-depleted B. abortus-infected mice and the corresponding controls. The action exerted by Brucella on the immune system in the absence of complement may correspond to a broader phenomenon that involves several components of innate immunity.
Collapse
|
7
|
Abstract
Cobra venom factor (CVF) is the complement-activating protein in cobra venom. Humanized CVF (hCVF) is a human C3 derivative where the C-terminal 168 amino acid residues were replaced with the homologous sequence from CVF. hCVF has been shown in multiple models of disease with complement pathology to be a promising therapeutic agent, with no observed adverse effects. Here we describe the antibody response to hCVF in two different strains of mice. hCVF was able to repeatedly decomplement the mice after four injections in weekly intervals, demonstrating the absence of a neutralizing antibody response. In contrast, natural CVF caused decomplementation in all mice only after the first administration. After two additional administrations of natural CVF, decomplementation was inconsistent and varied tremendously from mouse to mouse. After the fourth administration, natural CVF was essentially unable to deplete complement, consistent with the known generation of a neutralizing antibody response. We also analyzed the IgG antibody response to hCVF. There was great variation, with approximately one quarter of the mice exhibiting non-detectable levels of anti-hCVF IgG, and another quarter very low levels. The levels of anti-hCVF IgG did not correlate with the levels of remaining C3. The anti-hCVF antibodies cross-reacted with natural CVF, recombinant CVF, and human C3. Whereas overall the level of anti-hCVF IgG cross-reacting with human C3 was lower compared to rCVF or nCVF, mice with higher levels of anti-hCVF IgG exhibited higher binding to CVF and human C3, excluding the possibility that higher antibody levels reflect preferential immunogenicity of CVF-specific or human C3-specific epitopes.
Collapse
|
8
|
Nicolau CA, Prorock A, Bao Y, Neves-Ferreira AGDC, Valente RH, Fox JW. Revisiting the Therapeutic Potential of Bothrops jararaca Venom: Screening for Novel Activities Using Connectivity Mapping. Toxins (Basel) 2018; 10:toxins10020069. [PMID: 29415440 PMCID: PMC5848170 DOI: 10.3390/toxins10020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022] Open
Abstract
Snake venoms are sources of molecules with proven and potential therapeutic applications. However, most activities assayed in venoms (or their components) are of hemorrhagic, hypotensive, edematogenic, neurotoxic or myotoxic natures. Thus, other relevant activities might remain unknown. Using functional genomics coupled to the connectivity map (C-map) approach, we undertook a wide range indirect search for biological activities within the venom of the South American pit viper Bothrops jararaca. For that effect, venom was incubated with human breast adenocarcinoma cell line (MCF7) followed by RNA extraction and gene expression analysis. A list of 90 differentially expressed genes was submitted to biosimilar drug discovery based on pattern recognition. Among the 100 highest-ranked positively correlated drugs, only the antihypertensive, antimicrobial (both antibiotic and antiparasitic), and antitumor classes had been previously reported for B. jararaca venom. The majority of drug classes identified were related to (1) antimicrobial activity; (2) treatment of neuropsychiatric illnesses (Parkinson’s disease, schizophrenia, depression, and epilepsy); (3) treatment of cardiovascular diseases, and (4) anti-inflammatory action. The C-map results also indicated that B. jararaca venom may have components that target G-protein-coupled receptors (muscarinic, serotonergic, histaminergic, dopaminergic, GABA, and adrenergic) and ion channels. Although validation experiments are still necessary, the C-map correlation to drugs with activities previously linked to snake venoms supports the efficacy of this strategy as a broad-spectrum approach for biological activity screening, and rekindles the snake venom-based search for new therapeutic agents.
Collapse
Affiliation(s)
- Carolina Alves Nicolau
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Alyson Prorock
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Yongde Bao
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ana Gisele da Costa Neves-Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
| | - Richard Hemmi Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
| | - Jay William Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
9
|
Boldrini-França J, Cologna CT, Pucca MB, Bordon KDCF, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro-Junior EL, Shibao PYT, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC. Minor snake venom proteins: Structure, function and potential applications. Biochim Biophys Acta Gen Subj 2017; 1861:824-838. [DOI: 10.1016/j.bbagen.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|
10
|
Chen D, Song MQ, Liu YJ, Xue YK, Cheng P, Zheng H, Chen LB. Inhibition of complement C3 might rescue vascular hyporeactivity in a conscious hemorrhagic shock rat model. Microvasc Res 2015; 105:23-9. [PMID: 26687560 DOI: 10.1016/j.mvr.2015.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vascular hyporeactivity in severe hemorrhagic shock could induce refractory hypotension and is an important cause of death. The global acute inflammatory response induced in shock triggers the over-expression of reactive oxygen species, NO, ET1 and TNF-α, which play essential roles in the pathology of vascular hyporeactivity. This leads to a hypothesis that inhibition of the complement system, the mediator of the inflammatory cascade, might be a promising therapeutic exploration for vascular hyporeactivity. METHODS We use cobra venom factor (CVF) and the soluble form of CR1 (sCR1) which deplete or inhibit complement C3 respectively to examine its role in vascular hyporeactivity in a conscious hemorrhagic shock rat model. RESULTS We first confirmed the over-activation of C3 during shock and the down-regulation effects of CVF and sCR1 on C3. Then, both CVF and sCR1 could significantly mitigate the over-expression of serum NO, ET-1, TNF-α and reactive oxygen species. Finally, the vascular reactivity of superior mesenteric arteries (SMA) was examined in vitro, which confirmed the massive reduction of vascular reactivity in shock, which was significantly rescued by both CVF and sCR1. CONCLUSIONS Inhibition of C3 might improve the reactivity of SMA to norepinephrine during hemorrhagic shock possibly through the downregulation of NO, ET1, TNF-α and reactive oxygen radicals.
Collapse
Affiliation(s)
- Ding Chen
- Department of Emergency, Wuhan Union Hospital affiliated with Tongji Medical College, Huazhong University of Science and Technology, PR China.
| | - Meng-Qi Song
- Department of Emergency, Wuhan Union Hospital affiliated with Tongji Medical College, Huazhong University of Science and Technology, PR China.
| | - Yan-Jun Liu
- Department of Emergency, Wuhan Union Hospital affiliated with Tongji Medical College, Huazhong University of Science and Technology, PR China.
| | - Yin-Kai Xue
- Department of Emergency, Wuhan Union Hospital affiliated with Tongji Medical College, Huazhong University of Science and Technology, PR China.
| | - Ping Cheng
- Department of Emergency, Wuhan Union Hospital affiliated with Tongji Medical College, Huazhong University of Science and Technology, PR China.
| | - Hai Zheng
- Department of Emergency, Wuhan Union Hospital affiliated with Tongji Medical College, Huazhong University of Science and Technology, PR China.
| | - Li-Bo Chen
- Department of Emergency, Wuhan Union Hospital affiliated with Tongji Medical College, Huazhong University of Science and Technology, PR China.
| |
Collapse
|
11
|
Vogel CW, Finnegan PW, Fritzinger DC. Humanized cobra venom factor: Structure, activity, and therapeutic efficacy in preclinical disease models. Mol Immunol 2014; 61:191-203. [DOI: 10.1016/j.molimm.2014.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
12
|
Tam JCH, Bidgood SR, McEwan WA, James LC. Intracellular sensing of complement C3 activates cell autonomous immunity. Science 2014; 345:1256070. [PMID: 25190799 DOI: 10.1126/science.1256070] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pathogens traverse multiple barriers during infection, including cell membranes. We found that during this transition, pathogens carried covalently attached complement C3 into the cell, triggering immediate signaling and effector responses. Sensing of C3 in the cytosol activated mitochondrial antiviral signaling (MAVS)-dependent signaling cascades and induced proinflammatory cytokine secretion. C3 also flagged viruses for rapid proteasomal degradation, preventing their replication. This system could detect both viral and bacterial pathogens but was antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral rupintrivir inhibited 3C protease and prevented C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol.
Collapse
Affiliation(s)
- Jerry C H Tam
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Susanna R Bidgood
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - William A McEwan
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Leo C James
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
13
|
McCleary RJR, Kini RM. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon 2012; 62:56-74. [PMID: 23058997 DOI: 10.1016/j.toxicon.2012.09.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Non-enzymatic proteins from snake venoms play important roles in the immobilization of prey, and include some large and well-recognized families of toxins. The study of such proteins has expanded not only our understanding of venom toxicity, but also the knowledge of normal and disease states in human physiology. In many cases their characterization has led to the development of powerful research tools, diagnostic techniques, and pharmaceutical drugs. They have further yielded basic understanding of protein structure-function relationships. Therefore a number of studies on these non-enzymatic proteins had major impact on several life science and medical fields. They have led to life-saving therapeutics, the Nobel prize, and development of molecular scalpels for elucidation of ion channel function, vasoconstriction, complement system activity, platelet aggregation, blood coagulation, signal transduction, and blood pressure regulation. Here, we identify research papers that have had significant impact on the life sciences. We discuss how these findings have changed the course of science, and have also included the personal recollections of the original authors of these studies. We expect that this review will provide impetus for even further exciting research on novel toxins yet to be discovered.
Collapse
Affiliation(s)
- Ryan J R McCleary
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | |
Collapse
|
14
|
Hew BE, Wehrhahn D, Fritzinger DC, Vogel CW. Hybrid proteins of Cobra Venom Factor and cobra C3: tools to identify functionally important regions in Cobra Venom Factor. Toxicon 2012; 60:632-47. [PMID: 22609532 DOI: 10.1016/j.toxicon.2012.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Cobra Venom Factor (CVF) is the complement-activating protein in cobra venom. CVF is structurally and functionally highly homologous to complement component C3. CVF, like C3b, the activated form of C3, forms a bimolecular complex with Factor B in serum, called C3/C5 convertase, an enzyme which activates complement components C3 and C5. Despite the high degree of homology, the two C3/C5 convertases exhibit significant functional differences. The most important difference is that the convertase formed with CVF (CVF,Bb) is physico-chemically far more stable than the convertase formed with C3b (C3b,Bb). In addition, the CVF,Bb convertase and CVF are completely resistant to inactivation by the complement regulatory proteins Factor H and Factor I. Furthermore, the CVF,Bb enzyme shows efficient C5-cleaving activity in fluid phase. In contrast, the C3b,Bb enzyme is essentially devoid of fluid-phase C5-cleaving activity. By taking advantage of the high degree of sequence identity at both the amino acid (85%) and DNA levels (93%) between CVF and cobra C3, we created hybrid proteins of CVF and cobra C3 where sections, or only a few amino acids, of the CVF sequence were replaced with the homologous amino acid sequence of cobra C3. In a first set of experiments, we created five hybrid proteins, termed H1 through H5, where the cobra C3 substitutions collectively spanned the entire length of the CVF protein. We also created three additional hybrid proteins where only four or five amino acid residues in CVF were exchanged with the corresponding amino acid residues from cobra C3. Collectively, these hybrid proteins, representing loss-of-function mutants of CVF, allowed the identification of regions and individual amino acid residues important for the CVF-specific functions. The results include the observation that the CVF β-chain is crucially important for forming a stable convertase, whereas the CVF α-chain appears to harbor no CVF-specific functions. Furthermore, the CVF γ-chain is additionally important for the fluid-phase C5-cleaving activity of CVF,Bb. Interestingly, the structural changes in the individual hybrid proteins differentially affected the molecular functions of the CVF,Bb enzyme such as convertase formation, C3 cleavage, and C5 cleavage.
Collapse
Affiliation(s)
- Brian E Hew
- University of Hawaii Cancer Center, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813, USA
| | | | | | | |
Collapse
|
15
|
Zeng L, Sun QY, Jin Y, Zhang Y, Lee WH, Zhang Y. Molecular cloning and characterization of a complement-depleting factor from king cobra, Ophiophagus hannah. Toxicon 2012; 60:290-301. [PMID: 22561424 DOI: 10.1016/j.toxicon.2012.04.344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/15/2012] [Accepted: 04/18/2012] [Indexed: 11/25/2022]
Abstract
Cobra venom factor (CVF) is an anti-complement factor existing in cobra venom. CVF proteins have been purified from the venoms of Naja haje, Naja siamensis, Naja atra, Naja kaouthia, Naja naja, Naja melanoleuca and Austrelaps superbus, but only three full-length cDNA sequences of CVF are available. In the present work, a cobra venom factor termed OVF was purified from the crude venom of Ophiophagus hannah by successive gel filtration, ion-exchange and heparin affinity chromatography steps. The purified OVF was homogenous on the SDS-PAGE gel with an apparent molecular weight of 140 kDa under non-reducing conditions. Under reducing conditions, OVF was divided into three bands with apparent molecular weight of 72 kDa (α chain), 45 kDa (β chain) and 32 kDa (γ chain), respectively. OVF consumed complement components with anti-complement activity of 154 units per mg. By using Reverse transcription-PCR and 5'-RACE assay, the open reading frame of OVF was obtained. MALDI-TOF and protein sequencing assays confirmed the cloned cDNA coding for OVF protein. The cDNA sequence of OVF is conservative when aligned with that of other CVFs. Phylogenetic analysis revealed OVF is closer to CVF from N. kaouthia than to AVF-1 and AVF-2 from A. superbus. Our results demonstrated that OVF has its unique features as following: 1) The N-terminal amino acid sequence of OVF γ chain is different from that of other known CVFs, suggesting that the OVF γ chain might be further processed; 2) Unlike N. kaouthia CVF and A. superbus AVF-1, which have potential N-linked glycosylation sites located in both α and β chain, OVF only has N-linked glycosylation site in its α chain as revealed by Schiff's reagent staining and protein sequence analysis; 3) In addition to the 27 well conserved cysteine residues in all known CVFs, OVF have an additional cysteine residue in its γ chain. Understanding the importance of above mentioned specific characteristics might provide useful information on structure-function relationship between CVF and complement system.
Collapse
Affiliation(s)
- Lin Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | | | | | | | | | | |
Collapse
|
16
|
Cohen ME, Xiao Y, Eisenberg RJ, Cohen GH, Isaacs SN. Antibody against extracellular vaccinia virus (EV) protects mice through complement and Fc receptors. PLoS One 2011; 6:e20597. [PMID: 21687676 PMCID: PMC3110783 DOI: 10.1371/journal.pone.0020597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
Protein-based subunit smallpox vaccines have shown their potential as effective alternatives to live virus vaccines in animal model challenge studies. We vaccinated mice with combinations of three different vaccinia virus (VACV) proteins (A33, B5, L1) and examined how the combined antibody responses to these proteins cooperate to effectively neutralize the extracellular virus (EV) infectious form of VACV. Antibodies against these targets were generated in the presence or absence of CpG adjuvant so that Th1-biased antibody responses could be compared to Th2-biased responses to the proteins with aluminum hydroxide alone, specifically with interest in looking at the ability of anti-B5 and anti-A33 polyclonal antibodies (pAb) to utilize complement-mediated neutralization in vitro. We found that neutralization of EV by anti-A33 or anti-B5 pAb can be enhanced in the presence of complement if Th1-biased antibody (IgG2a) is generated. Mechanistic differences found for complement-mediated neutralization showed that anti-A33 antibodies likely result in virolysis, while anti-B5 antibodies with complement can neutralize by opsonization (coating). In vivo studies found that mice lacking the C3 protein of complement were less protected than wild-type mice after passive transfer of anti-B5 pAb or vaccination with B5. Passive transfer of anti-B5 pAb or monoclonal antibody into mice lacking Fc receptors (FcRs) found that FcRs were also important in mediating protection. These results demonstrate that both complement and FcRs are important effector mechanisms for antibody-mediated protection from VACV challenge in mice.
Collapse
Affiliation(s)
- Matthew E. Cohen
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuhong Xiao
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roselyn J. Eisenberg
- Department of Microbiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Stuart N. Isaacs
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
17
|
Vogel CW, Fritzinger DC. Cobra venom factor: Structure, function, and humanization for therapeutic complement depletion. Toxicon 2010; 56:1198-222. [PMID: 20417224 DOI: 10.1016/j.toxicon.2010.04.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 11/29/2022]
Abstract
Cobra venom factor (CVF) is the complement-activating protein in cobra venom. This manuscript reviews the structure and function of CVF, how it interacts with the complement system, the structural and functional homology to complement component C3, and the use of CVF as an experimental tool to decomplement laboratory animals to study the functions of complement in host defense and immune response as well as in the pathogenesis of diseases. This manuscript also reviews the recent progress in using the homology between CVF and C3 to study C3 structure and function, and to develop human C3 derivatives with the complement-depleting function of CVF. These human C3 derivatives represent humanized CVF, and are a conceptually different concept for pharmacological intervention of the complement system, therapeutic complement depletion. The use of humanized CVF for therapeutic complement depletion in several pre-clinical models of human diseases is also reviewed.
Collapse
Affiliation(s)
- Carl-Wilhelm Vogel
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813, USA.
| | | |
Collapse
|
18
|
Miyagawa S, Yamamoto A, Matsunami K, Wang D, Takama Y, Ueno T, Okabe M, Nagashima H, Fukuzawa M. Complement regulation in the GalT KO era. Xenotransplantation 2010; 17:11-25. [DOI: 10.1111/j.1399-3089.2010.00569.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Depletion of the C3 component of complement enhances the ability of rituximab-coated target cells to activate human NK cells and improves the efficacy of monoclonal antibody therapy in an in vivo model. Blood 2009; 114:5322-30. [PMID: 19805620 DOI: 10.1182/blood-2009-01-200469] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Growing evidence indicates antibody-dependent cellular cytotoxicity (ADCC) contributes to the clinical response to monoclonal antibody (mAb) therapy of lymphoma. Recent in vitro analysis suggests C3b can inhibit mAb-induced natural killer (NK)-cell activation and ADCC. Further studies were conducted to assess the effect of C3 depletion on mAb-induced NK activation and therapy of lymphoma. Normal human serum inhibited the ability of rituximab-coated lymphoma cells to activate NK cells as previously reported. Serum did not inhibit NK-cell activation when it was preincubated with cobra venom factor (CVF) to deplete C3. Similar results were found when transudative pleural fluid or nonmalignant ascites was used as surrogates for extravascular fluid, suggesting the inhibitory effect of complement may be present in the extravascular compartment, in which many malignant lymphocytes reside. In vivo, C3 was depleted before mAb treatment in a syngeneic murine model of lymphoma. Survival of lymphoma-bearing mice after treatment with CVF plus mAb and with a human C3 derivative with CVF-like functions (HC3-1496) plus mAb was both superior to that of mAb alone. These studies show that complement depletion enhances NK-cell activation induced by rituximab-coated target cells and improves the efficacy of mAb therapy in a murine lymphoma model.
Collapse
|
20
|
Humanized cobra venom factor decreases myocardial ischemia-reperfusion injury. Mol Immunol 2009; 47:506-10. [PMID: 19747734 DOI: 10.1016/j.molimm.2009.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 11/23/2022]
Abstract
Cobra venom factor (CVF) is a complement activating protein in cobra venom, which functionally resembles C3b, and has been used for decades for decomplementation of serum to investigate the role of complement in many model systems of disease. The use of CVF for clinical practice is considered impractical because of immunogenicity issues. Humanization of CVF was recently demonstrated to yield a potent CVF-like molecule. In the present study, we demonstrate that mice treated with recombinant humanized CVF (HC3-1496) are protected from myocardial ischemia-reperfusion (MI/R) injuries with resultant preservation of cardiac function. Also, C3 deposition in the myocardium following MI/R was not observed following treatment with HC3-1496. HC3-1496 led to complement activation and depletion of C3, but preserved C5 titers. These data suggest, unlike CVF, HC3-1496 does not form a C5 convertase in the mouse, similar to recent studies in human sera/plasma. These results suggest that humanized CVF (HC3-1496) protects the ischemic myocardium from reperfusion injuries induced by complement activation and represents a novel anti-complement therapy for potential clinical use.
Collapse
|
21
|
Janssen BJC, Gomes L, Koning RI, Svergun DI, Koster AJ, Fritzinger DC, Vogel CW, Gros P. Insights into complement convertase formation based on the structure of the factor B-cobra venom factor complex. EMBO J 2009; 28:2469-78. [PMID: 19574954 DOI: 10.1038/emboj.2009.184] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/08/2009] [Indexed: 11/09/2022] Open
Abstract
Immune protection by the complement system critically depends on assembly of C3 convertases on the surface of pathogens and altered host cells. These short-lived protease complexes are formed through pro-convertases, which for the alternative pathway consist of the complement component C3b and the pro-enzyme factor B (FB). Here, we present the crystal structure at 2.2-A resolution, small-angle X-ray scattering and electron microscopy (EM) data of the pro-convertase formed by human FB and cobra venom factor (CVF), a potent homologue of C3b that generates more stable convertases. FB is loaded onto CVF through its pro-peptide Ba segment by specific contacts, which explain the specificity for the homologous C3b over the native C3 and inactive products iC3b and C3c. The protease segment Bb binds the carboxy terminus of CVF through the metal-ion dependent adhesion site of the Von Willebrand factor A-type domain. A possible dynamic equilibrium between a 'loading' and 'activation' state of the pro-convertase may explain the observed difference between the crystal structure of CVFB and the EM structure of C3bB. These insights into formation of convertases provide a basis for further development of complement therapeutics.
Collapse
Affiliation(s)
- Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Krishnan V, Ponnuraj K, Xu Y, Macon K, Volanakis JE, Narayana SVL. The crystal structure of cobra venom factor, a cofactor for C3- and C5-convertase CVFBb. Structure 2009; 17:611-9. [PMID: 19368894 DOI: 10.1016/j.str.2009.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/27/2009] [Accepted: 01/27/2009] [Indexed: 10/20/2022]
Abstract
Cobra venom factor (CVF) is a functional analog of human complement component C3b, the active fragment of C3. Similar to C3b, in human and mammalian serum, CVF binds factor B, which is then cleaved by factor D, giving rise to the CVFBb complex that targets the same scissile bond in C3 as the authentic complement convertases C4bC2a and C3bBb. Unlike the latter, CVFBb is a stable complex and an efficient C5 convertase. We solved the crystal structure of CVF, isolated from Naja naja kouthia venom, at 2.6 A resolution. The CVF crystal structure, an intermediate between C3b and C3c, lacks the TED domain and has the CUB domain in an identical position to that seen in C3b. The similarly positioned CUB and slightly displaced C345c domains of CVF could play a vital role in the formation of C3 convertases by providing important primary binding sites for factor B.
Collapse
|
23
|
Fritzinger DC, Hew BE, Thorne M, Pangburn MK, Janssen BJC, Gros P, Vogel CW. Functional characterization of human C3/cobra venom factor hybrid proteins for therapeutic complement depletion. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:105-116. [PMID: 18760301 DOI: 10.1016/j.dci.2008.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 05/26/2023]
Abstract
Cobra venom factor (CVF) is a structural and functional analog of complement C3 isolated from cobra venom. Both CVF and C3b can bind factor B and subsequently form the bimolecular C3/C5 convertases CVF,Bb or C3b,Bb, respectively. The two homologous enzymes exhibit several differences of which the difference in physico-chemical stability is most important, allowing continuous activation of C3 and C5 by CVF,Bb, leading to serum complement depletion. Here we describe the detailed functional properties of two hybrid proteins in which the 113 or 315 C-terminal residues of C3 were replaced with corresponding CVF sequences. Both hybrid proteins formed stable convertases that exhibited C3-cleaving activity, although at different rates. Neither convertase cleaved C5. Both convertases showed partial resistance to inactivation by factors H and I, allowing them to deplete complement in human serum. These data demonstrate that functionally important structural differences between CVF and C3 are located in the very C-terminal region of both homologous proteins, and that small substitutions in human C3 with homologous CVF sequence result in C3 derivatives with CVF-like functions. Such hybrid proteins are important tools to study the structure/function relationships in both C3 and CVF, and these "humanized CVF" proteins may become reagents for therapeutic complement depletion.
Collapse
Affiliation(s)
- David C Fritzinger
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Fritzinger DC, Hew BE, Lee JQ, Newhouse J, Alam M, Ciallella JR, Bowers M, Gorsuch WB, Guikema BJ, Stahl GL, Vogel CW. Derivatives of Human Complement Component C3 for Therapeutic Complement Depletion: A Novel Class of Therapeutic Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-78952-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Rehana S, Manjunatha Kini R. Molecular isoforms of cobra venom factor-like proteins in the venom of Austrelaps superbus. Toxicon 2007; 50:32-52. [PMID: 17412383 DOI: 10.1016/j.toxicon.2007.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 02/10/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Cobra venom factor (CVF) is characteristic of the elapid cobras and has not been reported from venoms of any other families of snakes. During our search for novel proteins, we isolated a polypeptide from the venom of the snake Austrelaps superbus (Lowland Copperhead) that showed structural similarity to C-terminal segment of the alpha-chain of CVF and hence named as AVFalphac (AVF-A. superbus venom factor). cDNA sequence of AVFalphac and its precursor indicated the presence of two isoforms of CVF-like proteins in A. superbus venom gland. This is the first report of molecular isoforms of CVF-like proteins in the venom of an Australian elapid snake. We have determined the complete cDNA sequence of both the isoforms (AVF-1 and AVF-2). They differ in their potential glycosylation sites and the characteristic thioester bond sequence. They display the overall domain structure of CVF and complement C3 proteins. By real-time quantitative analysis, we show that there is a 140-fold difference in the mRNA expression levels of the two isoforms in the venom gland of A. superbus. We also show the presence of AVF-1 and its variant (not AVF-2) in A. superbus venom by partial purification, dot blots, Western blots and peptide mapping using mass spectrometry. Partially purified proteins activate human Factor B in the presence of Factor D and Mg(2+), and deplete the complement activity in human and guinea pig serum. The bimolecular complex (AVFBb) formed activates complement C3 but not complement C5. Thus, AVF proteins may serve as potential candidates for therapeutic complement depletion without side effects. Thus, the discovery of CVF-like proteins in the venom of this Australian elapid snake provides an alternative source of research tools, and contributes to our understanding of the structure-function relationships and evolution of new members of CVF-like proteins.
Collapse
Affiliation(s)
- Syed Rehana
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | | |
Collapse
|
26
|
Usami M, Ohno Y. Preparation of complement fragments C3b and C3a from purified rat complement component C3 by activated cobra venom factor. J Pharmacol Toxicol Methods 2006; 52:260-3. [PMID: 16125624 DOI: 10.1016/j.vascn.2004.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Complement component C3 (C3) can be a target of pharmacological or toxicological agents. In the analysis of this, it is important to examine the involvement of fragments C3b and C3a since C3 function normally requires cleavage into these fragments. The present study describes a simple and efficient method for the preparation of rat complement C3b and C3a by using purified C3 and cobra venom factor (CVF) as a cleaving enzyme. METHODS CVF was purified from lyophilized cobra venom (Naja naja kausia) by two-step chromatography and was activated by incubation with human factors B and D. C3 was cleaved by incubation with activated CVF (CVF,Bb), and C3b and C3a were isolated by anion- and cation-exchange chromatography, respectively. RESULTS About 200 microg of CVF was purified from 100 mg of cobra venom. All the CVF was activated by incubation with factors B and D. The C3b and C3a obtained were pure as analyzed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and no digestive by-products such as C3f were found. DISCUSSION The advantage of the present method is that it is possible to prepare relatively large amounts of C3b by simple procedures without digestive by-products. C3a can be prepared from the flow through fraction of the C3b purification. C3b and C3a prepared by the present method would be useful for pharmacological or toxicological experiments involving receptor binding since their binding sites remain intact.
Collapse
Affiliation(s)
- Makoto Usami
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| | | |
Collapse
|
27
|
Tambourgi DV, Paixão-Cavalcante D, Gonçalves de Andrade RM, Fernandes-Pedrosa MDF, Magnoli FC, Paul Morgan B, van den Berg CW. Loxosceles sphingomyelinase induces complement-dependent dermonecrosis, neutrophil infiltration, and endogenous gelatinase expression. J Invest Dermatol 2005; 124:725-31. [PMID: 15816830 DOI: 10.1111/j.0022-202x.2005.23654.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Envenomation by the spider Loxosceles can result in dermonecrosis and severe ulceration. Our aim was to investigate the role of the complement system and of the endogenous metalloproteinases in the initiation of the pathology of dermonecrosis. Histological analysis of skin of rabbits injected with Loxosceles intermedia venom and purified or recombinant sphingomyelinases showed a large influx of neutrophils, concomitant with dissociation of the collagenous fibers in the dermis. Decomplementation, using cobra venom factor, largely prevented the influx of neutrophils, while influx of neutrophils was also reduced in genetically C6-deficient rabbits, suggesting roles for both C5a and the membrane attack complex in the induction of dermonecrosis. However, C-depletion and C6 deficiency did not prevent the haemorrhage and the collagen injury. Zymography analysis of skin extracts showed the induction of expression of the endogenous gelatinase MMP-9 in the skin of envenomated animals. Rabbit neutrophils contained high levels of MMP-9, expression of which was further increased after incubation with venom, suggesting that these cells may be a source of the MMP-9 found in the skin of envenomated animals. Furthermore, skin fibroblasts also secreted MMP-9 and MMP-2 upon incubation with venom, suggesting that locally produced MMPs can also contribute to proteolytic tissue destruction.
Collapse
|
28
|
Kölln J, Bredehorst R, Spillner E. Engineering of human complement component C3 for catalytic inhibition of complement. Immunol Lett 2004; 98:49-56. [PMID: 15790508 DOI: 10.1016/j.imlet.2004.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/10/2004] [Accepted: 10/18/2004] [Indexed: 11/30/2022]
Abstract
As a novel therapeutic approach in complement-mediated pathologies, we recently developed a human C3 derivative capable of obliterating functional complement by a catalytic, non-inhibitory mechanism. In this derivative, the C-terminal region of hC3 was substituted by a 275 amino acid sequence derived from the corresponding sequence of cobra venom factor (CVF), a complement-activating C3b homologue from snake venom. In this study, we replaced shorter C-terminal sequences of hC3 by corresponding CVF sequences to further reduce potential immunogenicity and to identify domains essential for the formation of functionally stable C3 convertases. In one of these derivatives that is still capable of obliterating functional complement in vitro, the non-human portion could be reduced to a small domain located in the C-terminus of different complement proteins. This conserved NTR/C345C motif is known to be involved in assembly of different convertases of the complement system. These results suggest a major role of the C345C domain in the regulation of the half-life of the C3 convertase. Moreover, its overall identity of 96% to human C3 renders this derivative a promising candidate for therapeutic intervention in complement-mediated pathologies.
Collapse
Affiliation(s)
- Johanna Kölln
- Institut für Biochemie und Lebensmittelchemie, Abteilung für Biochemie und Molekularbiologie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | |
Collapse
|
29
|
Kölln J, Spillner E, Andrä J, Klensang K, Bredehorst R. Complement Inactivation by Recombinant Human C3 Derivatives. THE JOURNAL OF IMMUNOLOGY 2004; 173:5540-5. [PMID: 15494503 DOI: 10.4049/jimmunol.173.9.5540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
From the implications of the complement system in a large number of diseases, an urgent need for therapeutics effecting reduced complement activity in vivo has emerged. In this study we report the design of a novel class of enzymes of human origin that obliterate functional complement by a noninhibitory, catalytic mechanism. Combining the framework of human C3 and the enzymatic mechanism of cobra venom factor, a nontoxic snake venom protein, we established molecules capable of forming stable C3 convertase complexes. Although the half-life of naturally occurring C3 convertase complexes ranges between 1 and 2 min, these complexes exhibit a half-life of up to several hours. Because the overall identity to human C3 could be extended to >90%, the novel C3 derivatives can be assumed to exhibit low immunogenicity and, therefore, represent promising candidates for therapeutic reduction of complement activity in vivo.
Collapse
Affiliation(s)
- Johanna Kölln
- Institut für Biochemie und Lebensmittelchemie, Abteilung für Biochemie, und Molekularbiologie, Universität Hamburg, Hamburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Jacobs T, Andrä J, Gaworski I, Graefe S, Mellenthin K, Krömer M, Halter R, Borlak J, Clos J. Complement C3 is required for the progression of cutaneous lesions and neutrophil attraction in Leishmania major infection. Med Microbiol Immunol 2004; 194:143-9. [PMID: 15378355 DOI: 10.1007/s00430-004-0229-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Indexed: 10/26/2022]
Abstract
To elucidate the role of complement-mediated uptake in Leishmania major infection in vivo, transgenic BALB/c mice that express the cobra venom factor (CVF) under control of the alpha1-antitrypsin promoter were infected. CVF expression in these mice leads to a continuous activation and subsequent consumption of complement C3 in the serum. In contrast to susceptible non-transgenic BALB/c mice, CVF-transgenic mice are highly resistant to L. major infection and show a significantly reduced parasite dissemination. Transient depletion of C3 in wild-type BALB/c mice delays progression of lesions for some days. Both CVF-transgenic and non-transgenic mice exhibit similar T cell responses upon infection. However, in CVF-transgenic mice, no infiltration of neutrophils, which were the prominent infiltrating cells at the site of infection in normal susceptible mice, could be detected. We conclude that C3 cleavage is required for the attraction of neutrophils that participate in parasite dissemination.
Collapse
Affiliation(s)
- Thomas Jacobs
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kock MA, Hew BE, Bammert H, Fritzinger DC, Vogel CW. Structure and function of recombinant cobra venom factor. J Biol Chem 2004; 279:30836-43. [PMID: 15131128 DOI: 10.1074/jbc.m403196200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cobra venom factor (CVF) is the complement-activating protein from cobra venom. It is a structural and functional analog of complement component C3. CVF functionally resembles C3b, the activated form of C3. Like C3b, CVF binds factor B, which is subsequently cleaved by factor D to form the bimolecular complex CVF,Bb. CVF,Bb is a C3/C5 convertase that cleaves both complement components C3 and C5. CVF is a three-chain protein that structurally resembles the C3b degradation product C3c, which is unable to form a C3/C5 convertase. Both C3 and CVF are synthesized as single-chain prepro-proteins. This study reports the recombinant expression of pro-CVF in two insect cell expression systems (baculovirus-infected Sf9 Spodoptera frugiperda cells and stably transfected S2 Drosophila melanogaster cells). In both expression systems pro-CVF is synthesized initially as a single-chain pro-CVF molecule that is subsequently proteolytically processed into a two-chain form of pro-CVF that structurally resembles C3. The C3-like form of pro-CVF can be further proteolytically processed into another two-chain form of pro-CVF that structurally resembles C3b. Unexpectedly, all three forms of pro-CVF exhibit functional activity of mature, natural CVF. Recombinant pro-CVF supports the activation of factor B in the presence of factor D and Mg2+ and depletes serum complement activity like natural CVF. The bimolecular convertase pro-CVF,Bb exhibits both C3 cleaving and C5 cleaving activity. The activity of pro-CVF and the resulting C3/C5 convertase is indistinguishable from CVF and the CVF,Bb convertase. The ability to produce active forms of pro-CVF recombinantly ensures the continued availability of an important research reagent for complement depletion because cobra venom as the source for natural CVF will be increasingly difficult to obtain as the Indian cobra is on the list of endangered species. Experimental systems to express pro-CVF recombinantly will also be invaluable for studies to delineate the structure and function relationship of CVF and its differences from C3 as well as to generate human C3 derivatives with CVF-like function for therapeutic complement depletion ("humanized CVF").
Collapse
Affiliation(s)
- Michael A Kock
- Department of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | | | | | | | | |
Collapse
|
32
|
Chen G, Sun QY, Wang XM, Shen SQ, Guo H, Wang H, Wu Y, Wang WY, Xiong YL, Chen S. Improved suppression of circulating complement does not block acute vascular rejection of pig-to-rhesus monkey cardiac transplants. Xenotransplantation 2004; 11:123-32. [PMID: 14962274 DOI: 10.1111/j.1399-3089.2004.00048.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
At present, acute vascular rejection (AVR) remains a primary obstacle inhibiting long-term graft survival in the pig-to-non-human primate transplant model. The present study was undertaken to determine whether repetitive injection of low dose Yunnan-cobra venom factor (Y-CVF), a potent complement inhibitor derived from the venom of Naja kaouthia can completely abrogate hemolytic complement activity and subsequently improve the results in a pig-to-rhesus monkey heterotopic heart transplant model. Nine adult rhesus monkeys received a heterotopic heart transplant from wild-type pigs and the recipients were allocated into two groups: group 1 (n = 4) received repetitive injection of low dose Y-CVF until the end of the study and group 2 (n = 5) did not receive Y-CVF. All recipients were treated with cyclosporine A (CsA), cyclophosphamide (CyP) and steroids. Repetitive Y-CVF treatment led to very dramatic fall in CH50 and serum C3 levels (CH50 < 3 units/C3 remained undetectable throughout the experiment) and successfully prevented hyperacute rejection (HAR), while three of five animals in group 2 underwent HAR. However, the continuous suppression of circulating complement did not prevent AVR and the grafts in group 1 survived from 8 to 13 days. Despite undetectable C3 in circulating blood, C3 deposition was present in these grafts. The venular thrombosis was the predominant histopathologic feature of AVR. We conclude that repetitive injection of low dose Y-CVF can be used to continuously suppress circulating complement in a very potent manner and successfully prevent HAR. However, this therapy did not inhibit complement deposition in the graft and failed to prevent AVR. These data suggest that using alternative pig donors [i.e. human decay accelerating factor (hDAF)-transgenic] in combination with the systemic use of complement inhibitors may be necessary to further control complement activation and improve survival in pig-to-non-human primate xenotransplant model.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sun QY, Chen G, Guo H, Chen S, Wang WY, Xiong YL. Prolonged cardiac xenograft survival in guinea pig-to-rat model by a highly active cobra venom factor. Toxicon 2003; 42:257-62. [PMID: 14559076 DOI: 10.1016/s0041-0101(03)00140-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A highly active cobra venom factor (CVF) was isolated from the venom of Naja kaouthia by sequential column chromatography. It displays strong anticomplementary activity, and has 1515 U of anticomplementary activity per mg protein. A single dose of 0.1 mg/kg CVF given i.v. to rats completely abrogated complement activity for nearly 5 days. Given 0.02 mg/kg of CVF, the complement activity of rats was reduced by more than 96.5% in 6 h. In guinea pig-to-rat heart transplant model, rats treated with a single dose of 0.05 mg/kg CVF had significantly prolonged xenograft survival (56.12+/-6.27 h in CVF-treated rats vs. 0.19+/-0.07 h in control rats, P<0.001).
Collapse
Affiliation(s)
- Qian-Yun Sun
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | | | | | | | | | | |
Collapse
|
34
|
Andrä J, Halter R, Kock MA, Niemann H, Vogel CW, Paul D. Generation and characterization of transgenic mice expressing cobra venom factor. Mol Immunol 2002; 39:357-65. [PMID: 12220893 DOI: 10.1016/s0161-5890(02)00107-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cobra venom factor (CVF), the anticomplementary protein in cobra venom, activates the alternative complement pathway, eventually leading to complement consumption. Here, we describe the development of a transgenic mouse model for CVF. We generated a DNA construct containing the full-length cDNA for single-chain pre-pro-CVF. Expression of CVF was controlled by the alpha(1)-antitrypsin promoter to achieve liver-specific expression. Linearized DNA was microinjected into murine ovary cells (strain CD(2)F(1) (BALB/cxDBA/2J)) and the newborn mice were analyzed for stable integration of CVF DNA. After establishing the transgene, mice were propagated in a BALB/c background. The CVF mRNA was detected in the liver and, in some animals, in the kidney. CVF protein was detected in small amounts in the serum. Serum complement hemolytic activity in CVF-transgenic mice was virtually absent. The concentration of plasma C3 was significantly reduced. The CVF-transgenic animals show no unusual phenotype. They provide an animal model to study the effect of long-term complement depletion by continued activation, as well as the role of complement in host immune response and pathogenesis of disease.
Collapse
Affiliation(s)
- Jörg Andrä
- Department of Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Hodgetts SI, Grounds MD. Complement and myoblast transfer therapy: donor myoblast survival is enhanced following depletion of host complement C3 using cobra venom factor, but not in the absence of C5. Immunol Cell Biol 2001; 79:231-9. [PMID: 11380675 DOI: 10.1046/j.1440-1711.2001.01006.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myoblast transfer therapy (MTT) is a potential cell therapy for myopathies such as Duchenne Muscular Dystrophy and involves the injection of cultured muscle precursor cells ('myoblasts') isolated from normal donor skeletal muscles into dystrophic host muscle. The failure of donor myoblast survival following MTT is widely accepted as being due to the immune response of the host. The role of complement as one possible mechanism for the initial, very rapid death of myoblasts following MTT was investigated. Donor male myoblasts were injected into the tibialis anterior (TA) muscles of female host mice that were: (i) untreated; (ii) depleted of C3 complement (24 h prior to MTT) using cobra venom factor (CVF); and/or (iii) deficient in C5 complement. Quantification of surviving male donor myoblast DNA was performed using the Y-chromosome specific (Y1) probe on slot blots for samples taken at 0 h, 1 h, 24 h, 1 week and 3 weeks after MTT. Peripheral depletion of C3 was confirmed using double immunodiffusion, and local depletion of C3 in host TA muscles was confirmed by immunostaining of muscle samples. Cobra venom factor treatment significantly increased the initial survival of donor myoblasts, but there was a marked decline in myoblast numbers after 1 h and little long-term benefit by 3 weeks. Strain specific variation in the immediate survival of donor male myoblasts following MTT in untreated C57BL/10Sn, DBA-1 and DBA-2 (C5-deficient) female hosts was observed. Cobra venom factor depletion of C3 increased initial donor male myoblast survival (approximately twofold at 0 h) in C57BL/10Sn and DBA-1 host mice and approximately threefold in DBA-2 hosts at 0 h and 1 h after MTT. The rapid and extensive number (approximately 90%) of donor male myoblasts in untreated DBA-2 mice (that lack C5) indicates that activation of the membrane attack complex (MAC) plays no role in this massive initial cell death. The observation that myoblast survival was increased in all mice treated with CVF suggests that CVF may indirectly enhance donor myoblast survival by a mechanism possibly involving activated C3 fragments.
Collapse
Affiliation(s)
- S I Hodgetts
- Department of Anatomy and Human Biology, University of Western Australia, Crawley, Western Australia, Australia.
| | | |
Collapse
|
36
|
Gowda DC, Glushka J, Thotakura RN, Bredehorst R, Vogel CW. N-linked oligosaccharides of cobra venom factor contain novel alpha(1-3)galactosylated Le(x) structures. Glycobiology 2001; 11:195-208. [PMID: 11320058 DOI: 10.1093/glycob/11.3.195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cobra venom factor (CVF), a nontoxic, complement-activating glycoprotein in cobra venom, is a functional analog of mammalian complement component C3b. The carbohydrate moiety of CVF consists exclusively of N-linked oligosaccharides with terminal alpha1-3-linked galactosyl residues, which are antigenic in human. CVF has potential for several medical applications, including targeted cell killing and complement depletion. Here, we report a detailed structural analysis of the oligosaccharides of CVF. The structures of the oligosaccharides were determined by lectin affinity chromatography, antibody affinity blotting, compositional and methylation analyses, and high-resolution (1)H-NMR spectroscopy. Approximately 80% of the oligosaccharides are diantennary complex-type, approximately 12% are tri- and tetra-antennary complex-type, and approximately 8% are oligomannose type structures. The majority of the complex-type oligosaccharides terminate in Galalpha1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1, a unique carbohydrate structural feature abundantly present in the glycoproteins of cobra venom.
Collapse
Affiliation(s)
- D C Gowda
- Department of Biochemistry and Molecular Biology, and Vincent T. Lombardi Cancer Center, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
37
|
Schmitz JE, Simon MA, Kuroda MJ, Lifton MA, Ollert MW, Vogel CW, Racz P, Tenner-Racz K, Scallon BJ, Dalesandro M, Ghrayeb J, Rieber EP, Sasseville VG, Reimann KA. A nonhuman primate model for the selective elimination of CD8+ lymphocytes using a mouse-human chimeric monoclonal antibody. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1923-32. [PMID: 10362819 PMCID: PMC1866630 DOI: 10.1016/s0002-9440(10)65450-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nonhuman primates provide valuable animal models for human diseases. However, studies assessing the role of cell-mediated immune responses have been difficult to perform in nonhuman primates. We have shown that CD8+ lymphocyte-mediated immunity in rhesus monkeys can be selectively eliminated using the mouse-human chimeric anti-CD8 monoclonal antibody cM-T807. In vitro, this antibody completely blocked antigen-specific expansion of cytotoxic T cells and decreased major histocompatibility complex class I-restricted, antigen-specific lysis of target cells but did not mediate complement-dependent cell lysis. In vivo administration of cM-T807 in rhesus monkeys resulted in near total depletion of CD8+ T cells from the blood and lymph nodes for up to 6 weeks. This depletion was not solely complement-dependent and persisted longer in adults than in juveniles. Preservation of B cell and CD4+ T cell function in monkeys depleted of CD8+ lymphocytes was demonstrated by their ability to develop humoral immune responses to the administered chimeric monoclonal antibody. Furthermore, during CD8+ lymphocyte depletion, monkeys developed delayed-type hypersensitivity reactions comprised only of CD4+ T cells but not CD8+ T cells. This CD8+ lymphocyte depletion model should prove useful in defining the role of cell-mediated immune responses in controlling infectious diseases in nonhuman primates.
Collapse
Affiliation(s)
- J E Schmitz
- Division of Viral Pathogenesis, Department of Medicine, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang XM, Huang SJ. The selective cytotoxicity of cobra venom factor immunoconjugate on cultured human nasopharyngeal carcinoma cell line. Hum Exp Toxicol 1999; 18:71-6. [PMID: 10100018 DOI: 10.1177/096032719901800202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The selective cytotoxicity of a CVF immunoconjugate on human nasopharyngeal carcinoma cell line was reported. Cobra venom factor (CVF), a C3b-like glycoprotein, was linked to BAC5, a murine monoclonal antibody directed against a human nasopharyngeal carcinoma-associated membrane antigen, by a disulfide bond. The high affinity to cultured human nasopharyngeal cells (CNE2) and the complement activating potency retained in CVF immunoconjugate. Although the equimolar concentration of BAC5 or CVF alone was harmless to CNE2 cells, the CVF immunoconjugate in the presence of fresh human serum exhibited selective cytotoxicity on CNE2 cells in a concentration- (IC50 3.07 x 10(-7) mol/L) and time-dependent manner. No cytotoxicity occurred on either CNE1 (another human nasopharyngeal carcinoma cell line) or MGC-803 (human gastric carcinoma cell line) cells. Furthermore, direct lytic factor (DLF, cardiotoxin) separated from cobra venom, augmented CVF immunoconjugate-induced cytotoxicity significantly. These results indicate that the CVF immunoconjugate has complement-mediated selective cytotoxicity on CNE2 cells, which can be potentiated by DLF.
Collapse
Affiliation(s)
- X M Wang
- Department of Pharmacology, Sun Yat-Sen University of Medical Sciences, Guangzhou, China
| | | |
Collapse
|
39
|
Schmitz JE, Lifton MA, Reimann KA, Montefiori DC, Shen L, Racz P, Tenner-Racz K, Ollert MW, Forman MA, Gelman RS, Vogel CW, Letvin NL. Effect of complement consumption by cobra venom factor on the course of primary infection with simian immunodeficiency virus in rhesus monkeys. AIDS Res Hum Retroviruses 1999; 15:195-202. [PMID: 10029251 DOI: 10.1089/088922299311619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cobra venom factor (CVF)-induced consumption of complement proteins was used to investigate the role of complement in vivo in the immunopathogenesis of simian immunodeficiency virus of macaques (SIVmac) infection in rhesus monkeys. Repeated administration of CVF was shown to deplete complement to <5% of baseline hemolytic activity of serum complement for 10 days in a normal monkey. Three groups of SIVmac-infected animals were then evaluated: monkeys treated with CVF resulting in complement depletion from days -1 to 10 postinfection, monkeys treated with CVF resulting in complement depletion from days 10 to 21 postinfection, and control monkeys that received no CVF. CD8+ SIVmac-specific cytotoxic T lymphocyte (CTL) generation and CD4+ T lymphocyte depletion during primary infection were not affected by CVF treatment. Viral load, assessed by measurements of plasma p27gag antigen and viral RNA, was transiently higher during the first 4 weeks following infection in the CVF-treated monkeys and the subsequent clinical course in these treated animals was accelerated. These results suggest that complement proteins may participate in immune defense mechanisms that decrease virus replication following the initial burst of intense viremia during primary SIVmac infection. However, we cannot rule out that the observed increased virus replication was induced by immune activation resulting from the administration of a foreign antigen to these monkeys.
Collapse
Affiliation(s)
- J E Schmitz
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gowda DC. Modification at C6 of the terminal galactosyl residues of cobra venom factor abolishes anti-alpha-Gal antibody immunoreactivity without affecting functional activity. Biochem Biophys Res Commun 1998; 245:28-32. [PMID: 9535777 DOI: 10.1006/bbrc.1998.8383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-linked oligosaccharides of cobra venom factor (CVF) contain unique terminal alpha-galactosylated Lewis X structures. We have previously shown that CVF immobilized on nylon membranes binds naturally occurring human anti-alpha-Gal antibody. The present study shows that soluble CVF can effectively inhibit the binding of anti-alpha-Gal antibody to CVF-coated microtiter plates, indicating that the terminal alpha-galactosyl residues of the functionally active CVF are accessible to anti-alpha-Gal antibody binding. Modification of the terminal galactosyl residues of CVF by treatment with galactose oxidase and in situ derivatization of the generated aldehyde groups with hydrazides abolished the human anti-alpha-Gal antibody immunoreactivity without affecting the complement-activating activity.
Collapse
Affiliation(s)
- D C Gowda
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC, 20007, USA
| |
Collapse
|
41
|
Mohr M, Höpken U, Oppermann M, Mathes C, Goldmann K, Siever S, Götze O, Burchardi H. Effects of anti-C5a monoclonal antibodies on oxygen use in a porcine model of severe sepsis. Eur J Clin Invest 1998; 28:227-34. [PMID: 9568469 DOI: 10.1046/j.1365-2362.1998.00260.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
METHODS We analysed the effects of complement depletion and of C5a inhibition on haemodynamic parameters, oxygen delivery (DO2), oxygen consumption (VO2), oxygen extraction ratio (OER) and blood lactate levels after live bacteria infusion in pigs. RESULTS In the first series of experiments, animals were decomplemented by cobra venom factor (CVF, 125 micrograms kg-1) and challenged with 1.3 x 10(9) Escherichia coli kg-1. In a second series, animals were treated with neutralizing anti-C5a monoclonal antibodies (mAb) T13/9 before infusion of an increased E. coli dosage (1 x 10(10) E. coli kg-1). Administration of Gram-negative bacteria resulted in hypotension, tachycardia, pulmonary hypertension and decreased cardiac output typical for severe sepsis. These alterations were more pronounced in animals challenged with a higher bacteria concentration (1 x 10(10) E. coli kg-1, n = 5) than with a lower dosage (1.3 x 10(9) E. coli kg-1, n = 4). Complement depletion by CVF injection 24 h before E. coli infusion (n = 4), or anti-C5a mAb T13/9 administration (n = 4) had no effect on the changes in haemodynamic parameters and in DO2 associated with E. coli challenge. Application of either 1.3 x 10(9) or 1 x 10(10) E. coli kg-1 resulted in a marked decrease in VO2 and an increase in blood lactate levels, whereas the OER did not change throughout the experiment. In contrast, pretreatment with CVF 24 h before low-dose E. coli (1.3 x 10(9) kg-1) administration resulted in a significant increase in VO2 (P < 0.05) and in OER (P < 0.05) compared with untreated septic animals (n = 4). No hyperlactaemia occurred in complement-depleted septic animals compared with complement-sufficient animals (P < 0.05). Animals challenged with a high E. coli dose (1 x 10(1) kg-1) and treated with anti-C5a mAbs showed a pronounced increase in VO2 and OER (P < 0.05) accompanied by an attenuated increase in lactate levels (P < 0.05) compared with untreated septic animals. CONCLUSION The results demonstrate an improved oxygen use after complement depletion in this model of severe Gram-negative sepsis. Furthermore, a similar effect was seen after specifically neutralizing C5a by mAbs, indicating a role of C5a in the underlying mechanism.
Collapse
Affiliation(s)
- M Mohr
- Department of Anaesthesiology, Critical Care and Emergency Medicine, University of Goettingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Juhl H, Petrella EC, Cheung NK, Bredehorst R, Vogel CW. Additive cytotoxicity of different monoclonal antibody-cobra venom factor conjugates for human neuroblastoma cells. Immunobiology 1997; 197:444-59. [PMID: 9413745 DOI: 10.1016/s0171-2985(97)80078-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insufficient numbers of antigen molecules and heterogeneity of antigen expression on tumor cells are major factors limiting the immunotherapeutic potential of the few clinically useful monoclonal antibodies capable of mediating complement cytotoxicity and antibody-dependent cellular cytotoxicity. To overcome this limitation, we converted two non-cytotoxic monoclonal anti-neuroblastoma antibodies, designated 3E7 (IgG2b) and 8H9 (IgG1), and the non-cytotoxic F(ab')2 fragment of the cytotoxic monoclonal anti-GD2 antibody 3F8 (IgG3) into cytotoxic antibody conjugates by covalent attachment of cobra venom factor (CVF), a structural and functional homologue of the activated third component of complement. Competitive binding experiments confirmed the different specificities of the three antibodies. In the presence of human complement, all three antibody-CVF conjugates mediated selective complement-dependent lysis of human neuroblastoma cells. Consistent with the kinetics of the alternative pathway of complement, approximately seven hours incubation were required to reach maximum cytotoxicity of up to 25% for the 3E7-CVF conjugate, up to 60% for the 8H9-CVF conjugate, and up to 95% for the 3F8 F(ab')2-CVF conjugate. The different extent of maximal cytotoxic activity of the three conjugates was reflected by corresponding differences in the extent of binding of both unconjugated antibodies and the respective conjugates. Any combination of the three antibody-CVF conjugates caused an additive effect in complement-mediated lysis. Using a cocktail of all three conjugates, the extent of complement-mediated killing could be increased up to 100%. These data demonstrate that by coupling of CVF the relative large number of non-cytotoxic monoclonal anti-tumor antibodies of interesting specificity can be used to design cocktails of cytotoxic conjugates and, thereby, to overcome the problem of insufficient and heterogeneous antigen expression on tumor cells for immunotherapy.
Collapse
Affiliation(s)
- H Juhl
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC, USA
| | | | | | | | | |
Collapse
|
43
|
Szebeni J, Spielberg H, Cliff RO, Wassef NM, Rudolph AS, Alving CR. Complement activation and thromboxane secretion by liposome-encapsulated hemoglobin in rats in vivo: inhibition by soluble complement receptor type 1. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 1997; 25:347-55. [PMID: 9242930 DOI: 10.3109/10731199709118925] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intravenous administration of liposome-encapsulated hemoglobin (LEH) in rats led to an early (within 15 min) decline of hemolytic complement (C) activity in the plasma along with a significant, parallel rise in thromboxane B2 (TXB2) levels. The TXB2 response was inhibited by co-administration of soluble C receptor type 1 (sCR1) with LEH, as well as by C depletion with cobra venom factor. These observations provide evidence for a causal relationship between LEH-induced C activation and TXB2 release, and suggest that sCR1 could be useful in attenuating the acute respiratory, hematological and hemodynamic side effects of LEH described earlier in the rat.
Collapse
Affiliation(s)
- J Szebeni
- Department of Membrane Biochemistry, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA
| | | | | | | | | | | |
Collapse
|
44
|
Schmid E, Warner RL, Crouch LD, Friedl HP, Till GO, Hugli TE, Ward PA. Neutrophil chemotactic activity and C5a following systemic activation of complement in rats. Inflammation 1997; 21:325-33. [PMID: 9246574 DOI: 10.1023/a:1027302017117] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using ELISA analysis, rat C5a was stimulated in serum from rats undergoing systemic activation of complement after intravenous infusion of purified cobra venom factor (CVF). Biological (neutrophil chemotactic) activity was also assessed. Serum levels of C5a were directly proportional to the amount of CVF infused. C5a and neutrophil chemotactic activity, peaked by 5 min, then plateaued. In vitro addition of anti-C5a to serum samples of CVF-infused rats totally abolished chemotactic activity, indicating that all biological activity could be ascribed to C5a. Blood neutrophils obtained from CVF-infused animals showed a significant upregulation of CD11b, the increase being reduced (38%) in animals pretreated with anti-C5a. These findings indicate that infusion of CVF into rats produces generation of C5a, all chemotactic activity in serum being related to C5a. The in vivo generation of C5a is, at least inpart, responsible for upregulation of CD11b on blood neutrophils.
Collapse
Affiliation(s)
- E Schmid
- Department of Pathology, University of Michigan Medical School Ann Arbor 48109, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Fu Q, Satyaswaroop PG, Gowda DC. Tissue targeting and plasma clearance of cobra venom factor in mice. Biochem Biophys Res Commun 1997; 231:316-20. [PMID: 9070270 DOI: 10.1006/bbrc.1997.6078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The tissue targeting and rate of clearance of cobra venom factor (CVF) from the circulation was studied in mice by intravenous or intraperitoneal injection of radioiodinated CVF. In both modes of administrations, CVF was targeted mainly to liver. CVF injected directly into the blood was cleared from the circulation with a plasma half life of about 10 h, whereas CVF injected into the peritoneal cavity was slowly absorbed into the blood stream reaching a maximum level at approximately 6 h, and it was then cleared from the circulation with a plasma half life of about 18 h. The rate of plasma clearance of CVF was markedly decreased upon removal of the terminal alpha-galactosyl residues of the oligosaccharide chains; the plasma half lives for intravenously and intraperitoneally administered de-alpha-galactosylated CVF were approximately 5 and approximately 10 h, respectively. However, the clearance rate was not affected by complete deglycosylation using N-glycanase or by chemical modification of the terminal galactosyl residues. Together, these data demonstrate that the terminal alpha-galactosyl residues of CVF mask the Lewis X-dependent uptake of CVF by liver.
Collapse
Affiliation(s)
- Q Fu
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
46
|
Prolongation of Xenograft Survival by Cobra Venom Factor. Xenotransplantation 1997. [DOI: 10.1007/978-3-642-60572-7_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
STANILOVA S, ZHELEV Z, MATEV I. PRELIMINARY INVESTIGATION ABOUT THE ANTI-COMPLEMENT PROPERTIES OF PARTIALLY SEPARATED Vipera ammodytes VENOM. ACTA ACUST UNITED AC 1997. [DOI: 10.1590/s0104-79301997000100005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - I. MATEV
- Thracian University of Stara Zagora
| |
Collapse
|
48
|
David K, Ollert MW, Juhl H, Vollmert C, Erttmann R, Vogel CW, Bredehorst R. Growth arrest of solid human neuroblastoma xenografts in nude rats by natural IgM from healthy humans. Nat Med 1996; 2:686-9. [PMID: 8640561 DOI: 10.1038/nm0696-686] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial solid neoplasm of infancy and is associated with very poor prognosis in patients with advanced disease. Current therapeutic regimens of advanced NB which combine surgical resection with radiation therapy and/or chemotherapy brought some improvements, but in a significant number of patients, a cure remains elusive. Normal human serum of healthy adults contains natural IgM antibodies that are cytotoxic for human NB cells. In this study, we evaluated the anti-NB activity of these natural IgM antibodies in nude rats bearing solid human NB tumors. A single intravenous (i.v.) injection of purified cytotoxic IgM led to uptake of IgM into the tumors with massive perivascular complement activation and accumulation of neutrophil granulocytes after 24 hours. Five consecutive i.v. injections of purified cytotoxic IgM into NB-bearing animals resulted in complete growth arrest of even large and established solid tumors which lasted for several weeks after discontinuation of the injections, whereas tumors of control animals continued to grow exponentially during the observation period. These studies suggest that natural anti-NB IgM may have a potential as a novel therapeutic modality in the treatment of human NB.
Collapse
Affiliation(s)
- K David
- Department of Biochemistry and Molecular Biology, University of Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Höpken U, Mohr M, Strüber A, Montz H, Burchardi H, Götze O, Oppermann M. Inhibition of interleukin-6 synthesis in an animal model of septic shock by anti-C5a monoclonal antibodies. Eur J Immunol 1996; 26:1103-9. [PMID: 8647174 DOI: 10.1002/eji.1830260522] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The complement activation fragment C5a was recently shown to induce interleukin (IL)-6 synthesis by peripheral blood mononuclear cells. To understand better the role of C5a in cytokine regulation in vivo, we investigated the effects of complement depletion by cobra venom factor (CVF) or of anti-C5a monoclonal antibodies (mAb) on IL-6 generation in an animal model of septic shock. Complement-depleted pigs which were subsequently challenged with Escherichia coli generated significantly (p < 0.05) less IL-6 during the 6-h observation period than complement-sufficient controls. To address specifically the role of C5a in IL-6 regulation, we produced a C5a(57-74) peptide-specific mAb (T13/9) which neutralizes the bioactivity of porcine C5a. The mAb T13/9 does not cross-react with the precursor protein C5. The pretreatment of pigs with anti-C5a mAb T13/9 prior to the induction of sepsis resulted in a decrease of over 75% in serum IL-6 bioactivity compared to control animals (p < 0.0001). These results indicate a role for C5a in the modulation of IL-6 synthesis in Gram-negative bacteremia.
Collapse
Affiliation(s)
- U Höpken
- Department of Immunology, University of Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Ollert MW, David K, Schmitt C, Hauenschild A, Bredehorst R, Erttmann R, Vogel CW. Normal human serum contains a natural IgM antibody cytotoxic for human neuroblastoma cells. Proc Natl Acad Sci U S A 1996; 93:4498-503. [PMID: 8633097 PMCID: PMC39567 DOI: 10.1073/pnas.93.9.4498] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Neuroblastoma (NB) is characterized by the second highest spontaneous regression of any human malignant disorder, a phenomenon that remains to be elucidated. In this study, a survey of 94 normal human adult sera revealed a considerable natural humoral cytotoxicity against human NB cell lines in approximately one-third of the tested sera of both genders. Specific cell killing by these sera was in the range of 40% to 95%. Serum cytotoxicity was dependent on an intact classical pathway of complement. By several lines of evidence, IgM antibodies were identified as the cytotoxic factor in the sera. Further analyses revealed that a 260-kDa protein was recognized by natural IgM of cytotoxic sera in Western blots of NB cell extracts. The antigen was expressed on the surface of seven human NB cell lines but not on human melanoma or other control tumor cell lines derived from kidney, pancreas, colon, bone, skeletal muscle, lymphatic system, and bone marrow. Furthermore, no reactivity was observed with normal human fibroblasts, melanocytes, and epidermal keratinocytes. The antigen was expressed in vivo as detected by immunohistochemistry in both the tumor of a NB patient and NB tumors established in nude rats from human NB cell lines. Most interestingly, the IgM anti-NB antibody was absent from the sera of 11 human NB patients with active disease. The anti-NB IgM also could not be detected in tumor tissue obtained from a NB patient. Collectively, our data suggest the existence of a natural humoral immunological tumor defense mechanism, which could account for the in vivo phenomenon of spontaneous NB tumor regression.
Collapse
Affiliation(s)
- M W Ollert
- Department of Biochemistry and Molecular Biology, University of Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|