1
|
Neil C, Newman J, Stonehouse NJ, Rowlands DJ, Belsham GJ, Tuthill TJ. The pseudoknot region and poly-(C) tract comprise an essential RNA packaging signal for assembly of foot-and-mouth disease virus. PLoS Pathog 2024; 20:e1012283. [PMID: 39715215 PMCID: PMC11734982 DOI: 10.1371/journal.ppat.1012283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/15/2025] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Virus assembly is a crucial step for the completion of the viral replication cycle. In addition to ensuring efficient incorporation of viral genomes into nascent virions, high specificity is required to prevent incorporation of host nucleic acids. For picornaviruses, including FMDV, the mechanisms required to fulfil these requirements are not well understood. However, recent evidence has suggested that specific RNA sequences dispersed throughout picornavirus genomes are involved in packaging. Here, we have shown that such sequences are essential for FMDV RNA packaging and have demonstrated roles for both the pseudoknot (PK) region and the poly-(C) tract in this process, where the length of the poly-(C) tract was found to influence the efficiency of RNA encapsidation. Sub-genomic replicons containing longer poly-(C) tracts were packaged with greater efficiency in trans, and viruses recovered from transcripts containing short poly-(C) tracts were found to have greatly extended poly-(C) tracts after only a single passage in cells, suggesting that maintaining a long poly-(C) tract provides a selective advantage. We also demonstrated a critical role for a packaging signal (PS) located in the pseudoknot (PK) region, adjacent to the poly-(C) tract, as well as several other non-essential but beneficial PSs elsewhere in the genome. Collectively, these PSs greatly enhanced encapsidation efficiency, with the poly-(C) tract possibly facilitating nearby PSs to adopt the correct conformation. Using these data, we have proposed a model where interactions with capsid precursors control a transition between two RNA conformations, directing the fate of nascent genomes to either be packaged or alternatively to act as templates for replication and/or for protein translation.
Collapse
Affiliation(s)
- Chris Neil
- The Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | - Joseph Newman
- The Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | | | - David J. Rowlands
- The Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark
| | - Tobias J. Tuthill
- The Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| |
Collapse
|
2
|
Devaux CA, Pontarotti P, Levasseur A, Colson P, Raoult D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front Public Health 2024; 11:1284337. [PMID: 38259741 PMCID: PMC10801389 DOI: 10.3389/fpubh.2023.1284337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Pierre Pontarotti
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Anthony Levasseur
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
3
|
Das NK, Hollmann NM, Vogt J, Sevdalis SE, Banna HA, Ojha M, Koirala D. Crystal structure of a highly conserved enteroviral 5' cloverleaf RNA replication element. Nat Commun 2023; 14:1955. [PMID: 37029118 PMCID: PMC10082201 DOI: 10.1038/s41467-023-37658-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The extreme 5'-end of the enterovirus RNA genome contains a conserved cloverleaf-like domain that recruits 3CD and PCBP proteins required for initiating genome replication. Here, we report the crystal structure at 1.9 Å resolution of this domain from the CVB3 genome in complex with an antibody chaperone. The RNA folds into an antiparallel H-type four-way junction comprising four subdomains with co-axially stacked sA-sD and sB-sC helices. Long-range interactions between a conserved A40 in the sC-loop and Py-Py helix within the sD subdomain organize near-parallel orientations of the sA-sB and sC-sD helices. Our NMR studies confirm that these long-range interactions occur in solution and without the chaperone. The phylogenetic analyses indicate that our crystal structure represents a conserved architecture of enteroviral cloverleaf-like domains, including the A40 and Py-Py interactions. The protein binding studies further suggest that the H-shape architecture provides a ready-made platform to recruit 3CD and PCBP2 for viral replication.
Collapse
Affiliation(s)
- Naba K Das
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Nele M Hollmann
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Howard Hughes Medical Institute, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Jeff Vogt
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Spiridon E Sevdalis
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hasan A Banna
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Manju Ojha
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
4
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
5
|
Muslin C, Joffret ML, Pelletier I, Blondel B, Delpeyroux F. Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5' Untranslated Region. PLoS Pathog 2015; 11:e1005266. [PMID: 26562151 PMCID: PMC4643034 DOI: 10.1371/journal.ppat.1005266] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species’ C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5’ untranslated region (5’ UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5’ UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5’ UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5’ UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5’ UTR. By contrast to the recombination of the cVDPV with the 5’ UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5’ UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages. Recombination shapes viral genomes, including those of the pathogenic circulating vaccine-derived polioviruses (cVDPVs), responsible for poliomyelitis outbreaks. The genomes of cVDPVs consist of sequences from vaccine poliovirus (PV) and other enteroviruses (EVs). We investigated the plasticity of cVDPV genomes and the effects of recombination in the 5’ untranslated region (5’ UTR), which is involved in replication, translation and virulence. We rescued a 5’ UTR-defective recombinant cVDPV genome by cotransfecting cells with 5’ UTR RNAs from human EV species EV-A to -D. Hundreds of recombinants were isolated, revealing striking plasticity in this region, with homologous and nonhomologous recombination sites mostly clustered in three hotspots. Recombination with EV-A and -B affected replication and virulence, whereas recombination with EV-C and -D was either neutral or improved viral fitness. This study illustrates how RNA viruses can acquire mosaic genomes through intra- or inter-species recombination, favoring the emergence of new recombinant strains.
Collapse
Affiliation(s)
- Claire Muslin
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Isabelle Pelletier
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- * E-mail:
| |
Collapse
|
6
|
Abstract
The Picornaviridae represent a large family of small plus-strand RNA viruses that cause a bewildering array of important human and animal diseases. Morphogenesis is the least-understood step in the life cycle of these viruses, and this process is difficult to study because encapsidation is tightly coupled to genome translation and RNA replication. Although the basic steps of assembly have been known for some time, very few details are available about the mechanism and factors that regulate this process. Most of the information available has been derived from studies of enteroviruses, in particular poliovirus, where recent evidence has shown that, surprisingly, the specificity of encapsidation is governed by a viral protein-protein interaction that does not involve an RNA packaging signal. In this review, we make an attempt to summarize what is currently known about the following topics: (i) encapsidation intermediates, (ii) the specificity of encapsidation (iii), viral and cellular factors that are required for encapsidation, (iv) inhibitors of encapsidation, and (v) a model of enterovirus encapsidation. Finally, we compare some features of picornavirus morphogenesis with those of other plus-strand RNA viruses.
Collapse
|
7
|
Jonsson N, Sävneby A, Gullberg M, Evertsson K, Klingel K, Lindberg AM. Efficient replication of recombinant Enterovirus B types, carrying different P1 genes in the coxsackievirus B5 replicative backbone. Virus Genes 2015; 50:351-7. [PMID: 25663145 DOI: 10.1007/s11262-015-1177-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022]
Abstract
Recombination is an important feature in the evolution of the Enterovirus genus. Phylogenetic studies of enteroviruses have revealed that the capsid genomic region (P1) is type specific, while the parts of the genome coding for the non-structural proteins (P2-P3) are species specific. Hence, the genome may be regarded as consisting of two modules that evolve independently. In this study, it was investigated whether the non-structural coding part of the genome in one type could support replication of a virus with a P1 region from another type of the same species. A cassette vector (pCas) containing a full-length cDNA copy of coxsackievirus B5 (CVB5) was used as a replicative backbone. The P1 region of pCas was replaced with the corresponding part from coxsackievirus B3 Nancy (CVB3N), coxsackievirus B6 Schmitt (CVB6S), and echovirus 7 Wallace (E7W), all members of the Enterovirus B species. The replication efficiency after transfection with clone-derived in vitro transcribed RNA was studied and compared with that of pCas. All the recombinant viruses replicated with similar efficiencies and showed threshold cycle (Ct) values, tissue culture infectivity dose 50 %, and plaque-forming unit titers comparable to viruses generated from the pCas construct. In addition to this, a clone without the P1 region was also constructed, and Western Blot and immunofluorescence staining analysis showed that the viral genome could be translated and replicated despite the lack of the structural protein-coding region. To conclude, the replicative backbone of the CVB5 cassette vector supports replication of intraspecies constructs with P1 regions derived from other members of the Enterovirus B species. In addition to this, the replicative backbone can be both translated and replicated without the presence of a P1 region.
Collapse
Affiliation(s)
- Nina Jonsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
Jahan N, Wimmer E, Mueller S. Polypyrimidine tract binding protein-1 (PTB1) is a determinant of the tissue and host tropism of a human rhinovirus/poliovirus chimera PV1(RIPO). PLoS One 2013; 8:e60791. [PMID: 23593313 PMCID: PMC3617181 DOI: 10.1371/journal.pone.0060791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/03/2013] [Indexed: 01/08/2023] Open
Abstract
The internal ribosomal entry site (IRES) of picornavirus genomes serves as the nucleation site of a highly structured ribonucleoprotein complex essential to the binding of the 40S ribosomal subunit and initiation of viral protein translation. The transition from naked RNA to a functional "IRESome" complex are poorly understood, involving the folding of secondary and tertiary RNA structure, facilitated by a tightly concerted binding of various host cell proteins that are commonly referred to as IRES trans-acting factors (ITAFs). Here we have investigated the influence of one ITAF, the polypyrimidine tract-binding protein 1 (PTB1), on the tropism of PV1(RIPO), a chimeric poliovirus in which translation of the poliovirus polyprotein is under the control of a human rhinovirus type 2 (HRV2) IRES element. We show that PV1(RIPO)'s growth defect in restrictive mouse cells is partly due to the inability of its IRES to interact with endogenous murine PTB. Over-expression of human PTB1 stimulated the HRV2 IRES-mediated translation, resulting in increased growth of PV1(RIPO) in murine cells and human neuronal SK-N-MC cells. Mutations within the PV1(RIPO) IRES, selected to grow in restrictive mouse cells, eliminated the human PTB1 supplementation requirement, by restoring the ability of the IRES to interact with endogenous murine PTB. In combination with our previous findings these results give a compelling insight into the thermodynamic behavior of IRES structures. We have uncovered three distinct thermodynamic aspects of IRES formation which may independently contribute to overcome the observed PV1(RIPO) IRES block by lowering the free energy δG of the IRESome formation, and stabilizing the correct and functional structure: 1) lowering the growth temperature, 2) modifying the complement of ITAFs in restricted cells, or 3) selection of adaptive mutations. All three mechanisms can conceivably modulate the thermodynamics of RNA folding, and thus facilitate and stabilize the functional IRES structure.
Collapse
Affiliation(s)
- Nusrat Jahan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, New York, United States of America
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, New York, United States of America
| | - Steffen Mueller
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, New York, United States of America
| |
Collapse
|
9
|
Quan FS, Kim Y, Lee S, Yi H, Kang SM, Bozja J, Moore ML, Compans RW. Viruslike particle vaccine induces protection against respiratory syncytial virus infection in mice. J Infect Dis 2011; 204:987-95. [PMID: 21881112 DOI: 10.1093/infdis/jir474] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral death in infants. Despite decades of research with traditional or subunit vaccine approaches, there are no approved RSV vaccines. New approaches are therefore urgently needed to develop effective RSV vaccines. METHODS We developed viruslike particles (VLPs) consisting of an influenza virus matrix (M1) protein core and RSV-F or -G on the surface. We tested the immunogenicity and vaccine efficacy of these VLPs (RSV-F, RSV-G) in a mouse model. RESULTS Intramuscular vaccination with RSV-F or RSV-G VLPs elicited IgG2a dominant RSV-specific immunoglobulin G (IgG) antibody responses against RSV-A2 viruses in both serum and lung extract. Mice immunized with VLPs (RSV-F or RSV-G) showed higher viral neutralizing antibodies in vitro and significantly decreased lung virus loads in vivo after live RSV-A2 challenge. RSV-G VLPs showed better protective efficacy than RSV-F VLPs as determined by the levels of lung virus loads and morbidity postchallenge. CONCLUSIONS This study demonstrates that VLP vaccination provides effective protection against RSV infection. VLPs containing RSV-F and/or RSV-G are potential vaccine candidates against RSV.
Collapse
|
10
|
Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis. PLoS Pathog 2010; 6:e1001066. [PMID: 20865167 PMCID: PMC2928791 DOI: 10.1371/journal.ppat.1001066] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 07/26/2010] [Indexed: 12/27/2022] Open
Abstract
In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV), is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2C(ATPase) in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel "reporter virus", we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20) and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2C(ATPase) of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2C(ATPase) and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20) were blocked in encapsidation (no virus after blind passages) but could be rescued if the capsid and 2C(ATPase) coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i) genome replication is known to be stringently linked to translation, (ii) morphogenesis is known to be stringently linked to genome replication, (iii) newly synthesized 2C(ATPase) is an essential component of the replication complex, and (iv) 2C(ATPase) has specific affinity to capsid protein(s). These conditions lead to morphogenesis at the site where newly synthesized genomes emerge from the replication complex.
Collapse
|
11
|
Human enterovirus 109: a novel interspecies recombinant enterovirus isolated from a case of acute pediatric respiratory illness in Nicaragua. J Virol 2010; 84:9047-58. [PMID: 20592079 DOI: 10.1128/jvi.00698-10] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Enteroviruses (Picornaviridae family) are a common cause of human illness worldwide and are associated with diverse clinical syndromes, including asymptomatic infection, respiratory illness, gastroenteritis, and meningitis. In this study, we report the identification and complete genome sequence of a novel enterovirus isolated from a case of acute respiratory illness in a Nicaraguan child. Unbiased deep sequencing of nucleic acids from a nose and throat swab sample enabled rapid recovery of the full-genome sequence. Phylogenetic analysis revealed that human enterovirus 109 (EV109) is most closely related to serotypes of human enterovirus species C (HEV-C) in all genomic regions except the 5' untranslated region (5' UTR). Bootstrap analysis indicates that the 5' UTR of EV109 is likely the product of an interspecies recombination event between ancestral members of the HEV-A and HEV-C groups. Overall, the EV109 coding region shares 67 to 72% nucleotide sequence identity with its nearest relatives. EV109 isolates were detected in 5/310 (1.6%) of nose and throat swab samples collected from children in a pediatric cohort study of influenza-like illness in Managua, Nicaragua, between June 2007 and June 2008. Further experimentation is required to more fully characterize the pathogenic role, disease associations, and global distribution of EV109.
Collapse
|
12
|
Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:495-517. [PMID: 19781674 PMCID: PMC2783963 DOI: 10.1016/j.bbagrm.2009.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/09/2009] [Accepted: 09/13/2009] [Indexed: 02/08/2023]
Abstract
The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5'- and 3'-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.
Collapse
Affiliation(s)
- Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
13
|
Altered interactions between stem-loop IV within the 5' noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: effects on IRES-mediated translation and viral infectivity. Virology 2009; 389:45-58. [PMID: 19446305 DOI: 10.1016/j.virol.2009.03.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 01/30/2009] [Accepted: 03/05/2009] [Indexed: 11/24/2022]
Abstract
Coxsackievirus B3 (CVB3) is a causative agent of viral myocarditis, meningitis, pancreatitis, and encephalitis. Much of what is known about the coxsackievirus intracellular replication cycle is based on the information already known from a well-studied and closely related virus, poliovirus. Like that of poliovirus, the 5' noncoding region (5' NCR) of CVB3 genomic RNA contains secondary structures that function in both viral RNA replication and cap-independent translation initiation. For poliovirus IRES-mediated translation, the interaction of the cellular protein PCBP2 with a major secondary structure element (stem-loop IV) is required for gene expression. Previously, the complete secondary structure of the coxsackievirus 5' NCR was determined by chemical structure probing and overall, many of the RNA secondary structures bear significant similarity to those of poliovirus; however, the functions of the coxsackievirus IRES stem-loop structures have not been determined. Here we report that a CVB3 RNA secondary structure, stem-loop IV, folds similarly to poliovirus stem-loop IV and like its enterovirus counterpart, coxsackievirus stem-loop IV interacts with PCBP2. We used RNase foot-printing to identify RNA sequences protected following PCBP2 binding to coxsackievirus stem-loop IV. When nucleotide substitutions were separately engineered at two sites in coxsackievirus stem-loop IV to reduce PCBP2 binding, inhibition of IRES-mediated translation was observed. Both of these nucleotide substitutions were engineered into full-length CVB3 RNA and upon transfection into HeLa cells, the specific infectivities of both constructs were reduced and the recovered viruses displayed small-plaque phenotypes and slower growth kinetics compared to wild type virus.
Collapse
|
14
|
Savolainen-Kopra C, Samoilovich E, Kahelin H, Hiekka AK, Hovi T, Roivainen M. Comparison of poliovirus recombinants: accumulation of point mutations provides further advantages. J Gen Virol 2009; 90:1859-1868. [PMID: 19403755 DOI: 10.1099/vir.0.010942-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The roles of recombination and accumulation of point mutations in the origin of new poliovirus (PV) characteristics have been hypothesized, but it is not known which are essential to evolution. We studied phenotypic differences between recombinant PV strains isolated from successive stool specimens of an oral PV vaccine recipient. The studied strains included three PV2/PV1 recombinants with increasing numbers of mutations in the VP1 gene, two of the three with an amino acid change I-->T in the DE-loop of VP1, their putative PV1 parent and strains Sabin 1 and 2. Growth of these viruses was examined in three cell lines: colorectal adenocarcinoma, neuroblastoma and HeLa. The main observation was a higher growth rate between 4 and 6 h post-infection of the two recombinants with the I-->T substitution. All recombinants grew at a higher rate than parental strains in the exponential phase of the replication cycle. In a temperature sensitivity test, the I-->T-substituted recombinants replicated equally well at an elevated temperature. Complete genome sequencing of the three recombinants revealed 12 (3), 19 (3) and 27 (3) nucleotide (amino acid) differences from Sabin. Mutations were located in regions defining attenuation, temperature sensitivity, antigenicity and the cis-acting replicating element. The recombination site was in the 5' end of 3D. In a competition assay, the most mutated recombinant beat parental Sabin in all three cell lines, strongly suggesting that this virus has an advantage. Two independent intertypic recombinants, PV3/PV1 and PV3/PV2, also showed similar growth advantages, but they also contained several point mutations. Thus, our data defend the hypothesis that accumulation of certain advantageous mutations plays a key role in gaining increased fitness.
Collapse
Affiliation(s)
| | - Elena Samoilovich
- Immunoprofylaxis Laboratory, Research Institute of Epidemiology and Microbiology, Minsk, Belarus
| | - Heidi Kahelin
- National Institute for Health and Welfare, Helsinki, Finland
| | | | - Tapani Hovi
- National Institute for Health and Welfare, Helsinki, Finland
| | - Merja Roivainen
- National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
15
|
De Jesus NH. Epidemics to eradication: the modern history of poliomyelitis. Virol J 2007; 4:70. [PMID: 17623069 PMCID: PMC1947962 DOI: 10.1186/1743-422x-4-70] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 07/10/2007] [Indexed: 11/13/2022] Open
Abstract
Poliomyelitis has afflicted humankind since antiquity, and for nearly a century now, we have known the causative agent, poliovirus. This pathogen is an enterovirus that in recent history has been the source of a great deal of human suffering. Although comparatively small, its genome is packed with sufficient information to make it a formidable pathogen. In the last 20 years the Global Polio Eradication Initiative has proven successful in greatly diminishing the number of cases worldwide but has encountered obstacles in its path which have made halting the transmission of wild polioviruses a practical impossibility. As we begin to realize that a change in strategy may be crucial in achieving success in this venture, it is imperative that we critically evaluate what is known about the molecular biology of this pathogen and the intricacies of its interaction with its host so that in future attempts we may better equipped to more effectively combat this important human pathogen.
Collapse
Affiliation(s)
- Nidia H De Jesus
- Department of Molecular Genetics & Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, USA.
| |
Collapse
|
16
|
Headey SJ, Huang H, Claridge JK, Soares GA, Dutta K, Schwalbe M, Yang D, Pascal SM. NMR structure of stem-loop D from human rhinovirus-14. RNA (NEW YORK, N.Y.) 2007; 13:351-60. [PMID: 17194719 PMCID: PMC1800519 DOI: 10.1261/rna.313707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 10/31/2006] [Indexed: 05/13/2023]
Abstract
The 5'-cloverleaf of the picornavirus RNA genome is essential for the assembly of a ribonucleoprotein replication complex. Stem-loop D (SLD) of the cloverleaf is the recognition site for the multifunctional viral protein 3Cpro. This protein is the principal viral protease, and its interaction with SLD also helps to position the viral RNA-dependent RNA polymerase (3Dpol) for replication. Human rhinovirus-14 (HRV-14) is distinct from the majority of picornaviruses in that its SLD forms a cUAUg triloop instead of the more common uYACGg tetraloop. This difference appears to be functionally significant, as 3Cpro from tetraloop-containing viruses cannot bind the HRV-14 SLD. We have determined the solution structure of the HRV-14 SLD using NMR spectroscopy. The structure is predominantly an A-form helix, but with a central pyrimidine-pyrimidine base-paired region and a significantly widened major groove. The stabilizing hydrogen bonding present in the uYACGg tetraloop was not found in the cUAUg triloop. However, the triloop uses different structural elements to present a largely similar surface: sequence and underlying architecture are not conserved, but key aspects of the surface structure are. Important structural differences do exist, though, and may account for the observed cross-isotype binding specificities between 3Cpro and SLD.
Collapse
Affiliation(s)
- Stephen J Headey
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hunziker IP, Cornell CT, Whitton JL. Deletions within the 5'UTR of coxsackievirus B3: consequences for virus translation and replication. Virology 2006; 360:120-8. [PMID: 17084431 PMCID: PMC2190293 DOI: 10.1016/j.virol.2006.09.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/12/2006] [Accepted: 09/22/2006] [Indexed: 10/23/2022]
Abstract
Key features of an ideal RNA-based vaccine against coxsackievirus B3 (CVB3) are (i) limited genome replication/virus production (to minimize vaccine-related pathology) and (ii) abundant virus protein synthesis (to maximize immunogenicity). These attributes may apply to CVB3 RNAs lacking up to 250 nucleotides (nt) from their 5' terminus; these RNAs do not give rise to infectious progeny, but they have been reported to retain the entire CVB3 IRES (mapped to nt approximately 432-639) and to produce large quantities of viral protein in transfected cells. Here, we constructed five 5' RNA deletion variants that, to our surprise, failed to protect against CVB3 challenge. We investigated the reasons for this failure and conclude that (i) a 5' terminal deletion as short as 32 nt abolishes CVB3 RNA replication in transfected cells; (ii) this deleted RNA, and others with longer deletions, do not direct abundant protein synthesis in transfected cells, probably as a consequence of their replicative incapacity; and (iii) the CVB3 IRES is substantially larger than previously thought, and its 5' boundary lies between residues 76 and 125, very closely approximating that of the poliovirus IRES.
Collapse
Affiliation(s)
| | | | - J. Lindsay Whitton
- Corresponding author: Molecular and Integrative Neurosciences Department, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA, Tel: 858-784-7090, FAX: 858-784-7380,
| |
Collapse
|
18
|
Abstract
Replication of poliovirus RNA is accomplished by the error-prone viral RNA-dependent RNA polymerase and hence is accompanied by numerous mutations. In addition, genetic errors may be introduced by nonreplicative mechanisms. Resulting variability is manifested by point mutations and genomic rearrangements (e.g., deletions, insertions and recombination). After description of basic mechanisms underlying this variability, the review focuses on regularities of poliovirus evolution (mutation fixation) in tissue cultures, human organisms and populations.
Collapse
Affiliation(s)
- V I Agol
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, 142782, Russia.
| |
Collapse
|
19
|
Teterina NL, Gorbalenya AE, Egger D, Bienz K, Rinaudo MS, Ehrenfeld E. Testing the modularity of the N-terminal amphipathic helix conserved in picornavirus 2C proteins and hepatitis C NS5A protein. Virology 2005; 344:453-67. [PMID: 16226781 PMCID: PMC7111807 DOI: 10.1016/j.virol.2005.08.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/04/2005] [Accepted: 08/24/2005] [Indexed: 01/06/2023]
Abstract
The N-terminal region of the picornaviral 2C protein is predicted to fold into an amphipathic α-helix that is responsible for the protein's association with membranes in the viral RNA replication complex. We have identified a similar sequence in the N-terminal region of NS5A of hepaciviruses that was recently shown to form an amphipathic α-helix. The conservation of the N-terminal region in two apparently unrelated proteins of two different RNA virus families suggested that this helix might represent an independent module. To test this hypothesis, we constructed chimeric poliovirus (PV) genomes in which the sequence encoding the N-terminal 2C amphipathic helix was replaced by orthologous sequences from other picornaviral genomes or a similar sequence from NS5A of HCV. Effects of the mutations were assessed by measuring the accumulation of viable virus and viral RNA in HeLa cells after transfection, examining membrane morphology in cells expressing chimeric proteins and by in vitro analysis of RNA translation, protein processing and negative strand RNA synthesis in HeLa cell extracts. The chimeras manifested a wide range of growth and RNA synthesis phenotypes. The results are compatible with our hypothesis, although they demonstrate that helix exchangeability may be restricted due to requirements for interactions with other viral components involved in virus replication.
Collapse
Affiliation(s)
- Natalya L Teterina
- Laboratory of Infectious Diseases, LID, NIAID, NIH, Bldg. 50, Room 6122, 50 South Drive, Bethesda, MD 20892-8011, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Ihle Y, Ohlenschläger O, Häfner S, Duchardt E, Zacharias M, Seitz S, Zell R, Ramachandran R, Görlach M. A novel cGUUAg tetraloop structure with a conserved yYNMGg-type backbone conformation from cloverleaf 1 of bovine enterovirus 1 RNA. Nucleic Acids Res 2005; 33:2003-11. [PMID: 15814817 PMCID: PMC1074726 DOI: 10.1093/nar/gki501] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 03/07/2005] [Accepted: 03/21/2005] [Indexed: 11/24/2022] Open
Abstract
The 5'-terminal cloverleaf (CL)-like RNA structures are essential for the initiation of positive- and negative-strand RNA synthesis of entero- and rhinoviruses. SLD is the cognate RNA ligand of the viral proteinase 3C (3C(pro)), which is an indispensable component of the viral replication initiation complex. The structure of an 18mer RNA representing the apical stem and the cGUUAg D-loop of SLD from the first 5'-CL of BEV1 was determined in solution to a root-mean-square deviation (r.m.s.d.) (all heavy atoms) of 0.59 A (PDB 1Z30). The first (antiG) and last (synA) nucleotide of the D-loop forms a novel 'pseudo base pair' without direct hydrogen bonds. The backbone conformation and the base-stacking pattern of the cGUUAg-loop, however, are highly similar to that of the coxsackieviral uCACGg D-loop (PDB 1RFR) and of the stable cUUCGg tetraloop (PDB 1F7Y) but surprisingly dissimilar to the structure of a cGUAAg stable tetraloop (PDB 1MSY), even though the cGUUAg BEV D-loop and the cGUAAg tetraloop differ by 1 nt only. Together with the presented binding data, these findings provide independent experimental evidence for our model [O. Ohlenschlager, J. Wohnert, E. Bucci, S. Seitz, S. Hafner, R. Ramachandran, R. Zell and M. Gorlach (2004) Structure, 12, 237-248] that the proteinase 3C(pro) recognizes structure rather than sequence.
Collapse
Affiliation(s)
- Yvonne Ihle
- Molekulare Biophysik/NMR-Spektroskopie, Institut für Molekulare Biotechnologie e.V.Beutenbergstraße 11, D-07745 Jena, Germany
- Institut für Organische Chemie, Johann-Wolfgang-Goethe-UniversitätMarie-Curie-Straße 11, D-60439 Frankfurt/M., Germany
- International University Bremen, School of Engineering and ScienceCampus Ring 1, D-28759 Bremen, Germany
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Oliver Ohlenschläger
- Molekulare Biophysik/NMR-Spektroskopie, Institut für Molekulare Biotechnologie e.V.Beutenbergstraße 11, D-07745 Jena, Germany
- Institut für Organische Chemie, Johann-Wolfgang-Goethe-UniversitätMarie-Curie-Straße 11, D-60439 Frankfurt/M., Germany
- International University Bremen, School of Engineering and ScienceCampus Ring 1, D-28759 Bremen, Germany
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Sabine Häfner
- Molekulare Biophysik/NMR-Spektroskopie, Institut für Molekulare Biotechnologie e.V.Beutenbergstraße 11, D-07745 Jena, Germany
- Institut für Organische Chemie, Johann-Wolfgang-Goethe-UniversitätMarie-Curie-Straße 11, D-60439 Frankfurt/M., Germany
- International University Bremen, School of Engineering and ScienceCampus Ring 1, D-28759 Bremen, Germany
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Elke Duchardt
- Institut für Organische Chemie, Johann-Wolfgang-Goethe-UniversitätMarie-Curie-Straße 11, D-60439 Frankfurt/M., Germany
| | - Martin Zacharias
- International University Bremen, School of Engineering and ScienceCampus Ring 1, D-28759 Bremen, Germany
| | - Simone Seitz
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Roland Zell
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Ramadurai Ramachandran
- Molekulare Biophysik/NMR-Spektroskopie, Institut für Molekulare Biotechnologie e.V.Beutenbergstraße 11, D-07745 Jena, Germany
- Institut für Organische Chemie, Johann-Wolfgang-Goethe-UniversitätMarie-Curie-Straße 11, D-60439 Frankfurt/M., Germany
- International University Bremen, School of Engineering and ScienceCampus Ring 1, D-28759 Bremen, Germany
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Matthias Görlach
- To whom correspondence should be addressed. Tel: +49 3641 656220; Fax: +49 3641 656225;
| |
Collapse
|
21
|
Ohlenschläger O, Wöhnert J, Bucci E, Seitz S, Häfner S, Ramachandran R, Zell R, Görlach M. The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure 2004; 12:237-48. [PMID: 14962384 DOI: 10.1016/j.str.2004.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 10/24/2003] [Accepted: 10/24/2003] [Indexed: 11/25/2022]
Abstract
Stemloop D (SLD) of the 5' cloverleaf RNA is the cognate ligand of the coxsackievirus B3 (CVB3) 3C proteinase (3Cpro). Both are indispensable components of the viral replication initiation complex. SLD is a structurally autonomous subunit of the 5' cloverleaf. The SLD structure was solved by NMR spectroscopy to an rms deviation of 0.66 A (all heavy atoms). SLD contains a novel triple pyrimidine mismatch motif with a central Watson-Crick type C:U pair. SLD is capped by an apical uCACGg tetraloop adopting a structure highly similar to stable cUNCGg tetraloops. Binding of CVB3 3Cpro induces changes in NMR spectra for nucleotides adjacent to the triple pyrimidine mismatch and of the tetraloop implying them as sites of specific SLD:3Cpro interaction. The binding of 3Cpro to SLD requires the integrity of those structural elements, strongly suggesting that 3Cpro recognizes a structural motif instead of a specific sequence.
Collapse
Affiliation(s)
- Oliver Ohlenschläger
- Institut für Molekulare Biotechnologie eV, Bentenbergstr 100813, D-07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rieder E, Xiang W, Paul A, Wimmer E. Analysis of the cloverleaf element in a human rhinovirus type 14/poliovirus chimera: correlation of subdomain D structure, ternary protein complex formation and virus replication. J Gen Virol 2003; 84:2203-2216. [PMID: 12867653 DOI: 10.1099/vir.0.19013-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA genomes of enteroviruses and rhinoviruses contain a 5'-terminal structure, the cloverleaf (CL), which serves as signal in RNA synthesis. Substitution of the poliovirus [PV1(M)] CL with that of human rhinovirus type 2 (HRV2) was shown previously to produce a viable chimeric PV, whereas substitution with the HRV14 CL produced a null phenotype. Fittingly, the HRV14 CL failed to form a complex with PV-specific proteins 3CD(pro)-3AB or 3CD(pro)-PCBP2, considered essential for RNA synthesis. It was reported previously (Rohll et al., J Virol 68, 4384-4391, 1994) that the major determinant for the null phenotype of a PV/HRV14 chimera resides in subdomain Id of the HRV14 CL. Using a chimeric PV/HRV14 CL in the context of the PV genome, stem-loop Id of HRV14 CL was genetically dissected. It contains the sequence C(57)UAU(60)-G, the underlined nucleotides forming the loop that is shorter by 1 nt when compared to the corresponding PV structure (UUGC(60)GG). Insertion of a G nucleotide to form a tetra loop (C(57)UAU(60)GG(61)) did not rescue replication of the chimera. However, an additional mutation at position 60 (C(57)UAC(60)GG(61)) yielded a replicating genome. Only the mutant PV/HRV14 CL with the UAC(60)G tetra loop formed ternary complexes efficiently with either PV proteins 3CD(pro)-3AB or 3CD(pro)-PCBP2. Thus, in the context of PV RNA synthesis, the presence of a tetra loop in subdomain D of the CL per se is not sufficient for function. The sequence and, consequently, the structure of the tetra loop plays an essential role. Biochemical assays demonstrated that the function of the CL element and the function of the cis-acting replication element in the 3D(pol)-3CD(pro)-dependent uridylylation of VPg are not linked.
Collapse
Affiliation(s)
- Elizabeth Rieder
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Wenkai Xiang
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Aniko Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| |
Collapse
|
23
|
Cornell CT, Semler BL. Subdomain specific functions of the RNA polymerase region of poliovirus 3CD polypeptide. Virology 2002; 298:200-13. [PMID: 12127783 DOI: 10.1006/viro.2002.1481] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 3D polymerase domain of the poliovirus 3CD polypeptide plays a role in modulating its RNA binding and protein processing activities, even though the proteinase catalytic site and RNA binding determinants appear to reside within the 3C(pro) portion of the molecule. In this study, we have generated recombinant 3CD polypeptides that contain chimeric 3D polymerase domains representing suballelic sequence exchanges between poliovirus type 1 (PV1) and coxsackievirus B3 (CVB3) to determine which portions of the 3D domain are responsible for influencing these activities. By utilizing these recombinant protein chimeras in protein processing and RNA binding studies in vitro, we have generated data suggesting the presence of separate subdomains within the polymerase domain of 3CD that may independently modulate its RNA binding and protein processing activities. In predicting where our sequence exchanges map by utilizing the previously published three-dimensional structure of the PV1 3D polymerase, we present evidence that sequences contained within the RNA recognition motif of the polymerase are critical for 3CD function in recognizing the 5' RNA cloverleaf. Furthermore, our protein processing data indicate that at least some of the substrate recognition and processing determinants within the 3D domain of 3CD are separate and distinct from the RNA binding determinants in this domain.
Collapse
Affiliation(s)
- Christopher T Cornell
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
24
|
Siafakas N, Markoulatos P, Stanway G, Tzanakaki G, Kourea-Kremastinou J. A reliable RT-PCR/RFLP assay for the molecular classification of enterovirus reference and wild type strains to either of the two genetic clusters on the basis of 5'-UTR. Mol Cell Probes 2002; 16:209-16. [PMID: 12144772 DOI: 10.1006/mcpr.2002.0414] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The available sequence data from a large segment of the 5'-UTR of all enterovirus reference and wild type strains were analysed in an attempt to discover possible restriction sites for reliable, serotypic identification of wild type isolates. No combination of restriction endonucleases, though, was found to produce serotype-, or group-specific haplotypes. Thirteen restriction enzymes were predicted to differentiate between representatives of the two enterovirus genetic clusters on the basis of 5'-UTR. One of these enzymes, BstOI, was tested in practice for the differentiation of 61 enterovirus reference strains from 56 different serotypes and 82 wild type strains which belong to the two genetic clusters on the basis of 5'-UTR. All the representatives of the two clusters were successfully differentiated with the specific restriction enzyme. Consequently, the simple RFLP-based assay presented here could be used as a very rapid and reliable means for the initial determination of whether a clinical isolate of unknown identity belongs to either of the 'poliovirus-like', or the 'CBV-like' genetic cluster on the basis of 5'-UTR classification of human enteroviruses.
Collapse
Affiliation(s)
- N Siafakas
- Virology Laboratory, Hellenic Pasteur Institute, 127, Vasilissis Sofias Avenue, Athens 115 21, Greece
| | | | | | | | | |
Collapse
|
25
|
Chua BH, McMinn PC, Lam SK, Chua KB. Comparison of the complete nucleotide sequences of echovirus 7 strain UMMC and the prototype (Wallace) strain demonstrates significant genetic drift over time. J Gen Virol 2001; 82:2629-2639. [PMID: 11602774 DOI: 10.1099/0022-1317-82-11-2629] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete nucleotide sequences are reported of two strains of echovirus 7, the prototype Wallace strain (Eo7-Wallace) and a recent Malaysian strain isolated from the cerebrospinal fluid of a child with fatal encephalomyelitis (Eo7-UMMC strain). The molecular findings corroborate the serological placement of the UMMC strain as echovirus 7. Both Eo7-Wallace and Eo7-UMMC belong to the species human enterovirus B and are most closely related to echovirus 11. Eo7-UMMC has undergone significant genetic drift from the prototype strain in the 47 years that separate the isolation of the two viruses. Phylogenetic analysis revealed that Eo7-UMMC did not arise from recombination with another enterovirus serotype. The molecular basis for the severely neurovirulent phenotype of Eo7-UMMC remains unknown. However, it is shown that mutations in the nucleotide sequence of the 5' untranslated region (UTR) of Eo7-UMMC result in changes to the putative structure of the 5' UTR. It is possible that these changes contribute to the neurovirulence of Eo7-UMMC.
Collapse
Affiliation(s)
- B H Chua
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia1
| | - P C McMinn
- Division of Virology, TVW Telethon Institute for Child Health Research, Perth, WA, Australia2
| | - S K Lam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia1
| | - K B Chua
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia1
| |
Collapse
|
26
|
Chapman NM, Ragland A, Leser JS, Höfling K, Willian S, Semler BL, Tracy S. A group B coxsackievirus/poliovirus 5' nontranslated region chimera can act as an attenuated vaccine strain in mice. J Virol 2000; 74:4047-56. [PMID: 10756016 PMCID: PMC111918 DOI: 10.1128/jvi.74.9.4047-4056.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The linear, single-stranded enterovirus RNA genome is flanked at either end with a nontranslated region (NTR). By replacing the entire 5' NTR of coxsackievirus B3 (CVB3) with that from type 1 poliovirus, a progeny virus was obtained following transfection of HeLa cells. The chimeric virus, CPV/49, replicates like the parental CVB3 strain in HeLa cells but is attenuated for replication and yield in primary human coronary artery endothelial cell cultures, in a human pancreas tumor cell line, and in primary murine heart fibroblast cultures. Western blotting analyses of CPV/49 replication in murine heart fibroblast cultures demonstrate that synthesis of CPV/49 proteins is significantly slower than that of the parental CVB3 strain. CPV/49 replicates in murine hearts and pancreata, causing no disease in hearts and a minor pancreatic inflammation in some mice that resolves by 28 days postinoculation. A single inoculation with CPV/49 induces protective anti-CVB3 neutralizing antibody titers that completely protect mice from both heart and pancreatic disease when mice are challenged 28 days p.i. with genetically diverse virulent strains of CVB3. That a chimeric CVB3 strain, created from sequences of two virulent viruses, is sufficiently attenuated to act as an avirulent, protective vaccine strain in mice suggests that chimeric genome technology merits further evaluation for the development of new nonpoliovirus enteroviral vectors.
Collapse
MESH Headings
- 5' Untranslated Regions
- Animals
- Blotting, Western
- COS Cells
- Capsid/biosynthesis
- Cells, Cultured
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/prevention & control
- Enterovirus B, Human/genetics
- Enterovirus B, Human/growth & development
- Enterovirus B, Human/immunology
- Enterovirus B, Human/physiology
- HeLa Cells
- Humans
- Male
- Mice
- Mice, Inbred C3H
- Poliovirus/genetics
- Protein Biosynthesis
- Tumor Cells, Cultured
- Vaccines, Attenuated
- Vaccines, Synthetic/immunology
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- N M Chapman
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Bell YC, Semler BL, Ehrenfeld E. Requirements for RNA replication of a poliovirus replicon by coxsackievirus B3 RNA polymerase. J Virol 1999; 73:9413-21. [PMID: 10516050 PMCID: PMC112976 DOI: 10.1128/jvi.73.11.9413-9421.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chimeric poliovirus type 1 (PV1) genome was constructed in which the 3D RNA polymerase (3D(pol)) coding sequences were replaced with those from coxsackievirus B3 (CVB3). No infectious virus was produced from HeLa cells transfected with the chimeric RNA. Processing of the PV1 capsid protein precursor was incomplete, presumably due to inefficient recognition of the P1 protein substrate by the chimeric 3CD proteinase containing CVB3 3D sequences. The ability of the chimeric RNA to replicate in the absence of capsid formation was measured after replacement of the P1 region with a luciferase reporter gene. No RNA synthesis was detected, despite efficient production of enzymatically active 3D(pol) from the 3D portion of the chimeric 3CD. The chimeric 3CD protein was unable to efficiently bind to the cloverleaf-like structure (CL) at the 5' end of PV1 RNA, which has been demonstrated previously to be required for viral RNA synthesis. The CVB3 3CD protein bound the PV1 CL as well as PV1 3CD. An additional chimeric PV1 RNA that contained CVB3 3CD sequences also failed to produce virus after transfection. Since processing of PV1 capsid protein precursors by the CVB3 3CD was again incomplete, a luciferase-containing replicon was also analyzed for RNA replication. The 3CD chimera replicated at 33 degrees C, but not at 37 degrees C. Replacement of the PV1 5'-terminal CL with that of CVB3 did not rescue the temperature-sensitive phenotype. Thus, there is an essential interaction(s) between 3CD and other viral P2 or P3 protein products required for efficient RNA replication which is not fully achieved between proteins from the two different members of the same virus genus.
Collapse
Affiliation(s)
- Y C Bell
- Department of Molecular Biology, College of Medicine, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
28
|
Santti J, Hyypiä T, Kinnunen L, Salminen M. Evidence of recombination among enteroviruses. J Virol 1999; 73:8741-9. [PMID: 10482628 PMCID: PMC112895 DOI: 10.1128/jvi.73.10.8741-8749.1999] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/1999] [Accepted: 07/06/1999] [Indexed: 11/20/2022] Open
Abstract
Human enteroviruses consist of more than 60 serotypes, reflecting a wide range of evolutionary divergence. They have been genetically classified into four clusters on the basis of sequence homology in the coding region of the single-stranded RNA genome. To explore further the genetic relationships between human enteroviruses and to characterize the evolutionary mechanisms responsible for variation, previously sequenced genomes were subjected to detailed comparison. Bootstrap and genetic similarity analyses were used to systematically scan the alignments of complete genomic sequences. Bootstrap analysis provided evidence from an early recombination event at the junction of the 5' noncoding and coding regions of the progenitors of the current clusters. Analysis within the genetic clusters indicated that enterovirus prototype strains include intraspecies recombinants. Recombination breakpoints were detected in all genomic regions except the capsid protein coding region. Our results suggest that recombination is a significant and relatively frequent mechanism in the evolution of enterovirus genomes.
Collapse
Affiliation(s)
- J Santti
- MediCity Research Laboratory and Department of Virology, University of Turku, FIN-20520 Turku, National Public Health Institute, FIN-00300 Helsinki, Finland.
| | | | | | | |
Collapse
|
29
|
Zell R, Sidigi K, Henke A, Schmidt-Brauns J, Hoey E, Martin S, Stelzner A. Functional features of the bovine enterovirus 5'-non-translated region. J Gen Virol 1999; 80 ( Pt 9):2299-2309. [PMID: 10501480 DOI: 10.1099/0022-1317-80-9-2299] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bovine enterovirus (BEV) serotypes exhibit unique features of the non-translated regions (NTRs) which separate them from the other enteroviruses. Their most remarkable property is an additional genome region of 110 nt located between the 5'-cloverleaf and the internal ribosome entry site (IRES). This genome region has the potential to form an additional cloverleaf structure (domain I*) separated from the 5'-cloverleaf (domain I) by a small stem-loop (domain I**). Other characteristics involve the putative IRES domains III and VI. In order to investigate the features of the 5'-NTR, several full-length coxsackievirus B3 (CVB3) cDNA plasmids with hybrid 5'-NTRs were engineered. After exchange of the CVB3 cloverleaf with the BEV1 genome region representing both cloverleafs, a viable virus chimera was generated. Deletion of domain I** within the exchanged region also yielded viable virus albeit with reduced growth capacity. Deletion of sequences encoding either the first or the second BEV cloverleaf resulted in non-infectious constructs. Hybrid plasmids with exchanges of the IRES-encoding sequence or the complete 5'-NTR were non-infectious. Transfection experiments with SP6 transcripts containing 5'-NTRs fused to the luciferase message indicated that IRES-driven translation is enhanced by the presence of the CVB3 cloverleaf and both BEV1 cloverleaf structures, respectively. Deletion of either the first or the second BEV cloverleaf domain reduced but did not abolish enhanced luciferase expression. These results suggest that the substitution of two putative BEV cloverleaf structures for the putative coxsackieviral cloverleaf yields viable virus, while BEV sequences encoding the IRES fail to functionally replace CVB3 IRES-encoding sequences.
Collapse
Affiliation(s)
- Roland Zell
- Institut für Virologie, Klinikum der Friedrich-Schiller-Universität, Winzerlaer Str. 10, D-07745 Jena, Germany1
| | - Karim Sidigi
- Institut für Virologie, Klinikum der Friedrich-Schiller-Universität, Winzerlaer Str. 10, D-07745 Jena, Germany1
| | - Andreas Henke
- Institut für Virologie, Klinikum der Friedrich-Schiller-Universität, Winzerlaer Str. 10, D-07745 Jena, Germany1
| | | | - Elizabeth Hoey
- School of Biology and Biochemistry, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK3
| | - Sam Martin
- School of Biology and Biochemistry, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK3
| | - Axel Stelzner
- Institut für Virologie, Klinikum der Friedrich-Schiller-Universität, Winzerlaer Str. 10, D-07745 Jena, Germany1
| |
Collapse
|
30
|
Graff J, Ehrenfeld E. Coding sequences enhance internal initiation of translation by hepatitis A virus RNA in vitro. J Virol 1998; 72:3571-7. [PMID: 9557637 PMCID: PMC109577 DOI: 10.1128/jvi.72.5.3571-3577.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis A virus (HAV), unlike other picornaviruses, has a slow-growth phenotype in permissive cell lines and in general does not induce host cell cytopathology. Although there are no published reports of productive infection of HeLa cells by HAV, HAV RNA appears to be readily translated in HeLa cells when transcribed by T7 RNA polymerase provided by a recombinant vaccinia virus. The 5' noncoding region of HAV was fused to poliovirus (PV) coding sequences to determine the effect on translation efficiency in HeLa cell extracts in vitro. Conditions were optimized for utilization of the HAV internal ribosome entry segment (IRES). Transcripts from chimeric constructs fused precisely at the initiation codon were translated very poorly. However, chimeric RNAs which included 114 or more nucleotides from the HAV capsid coding sequences downstream of the initiation codon were translated much more efficiently than those lacking these sequences, making HAV-directed translation efficiency similar to that directed by the PV IRES. Sixty-six nucleotides were insufficient to confer increased translation efficiency. The most 5'-terminal HAV 138 nucleotides, previously determined to be upstream of the IRES, had an inhibitory effect on translation efficiency. Constructs lacking these terminal sequences, or those in which the PV 5'-terminal sequences replaced those from HAV, translated three- to fourfold better than those with the intact HAV 5'-terminal end.
Collapse
Affiliation(s)
- J Graff
- Department of Molecular Biology and Biochemistry, University of California-Irvine, 92697, USA.
| | | |
Collapse
|
31
|
Affiliation(s)
- N M Chapman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68198-6495, USA
| | | | | |
Collapse
|
32
|
Currey KM, Shapiro BA. Higher order structures of coxsackievirus B 5' nontranslated region RNA. Curr Top Microbiol Immunol 1997; 223:169-90. [PMID: 9294929 DOI: 10.1007/978-3-642-60687-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- K M Currey
- Department of Pediatrics, University of Maryland Medical System, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
33
|
|
34
|
Abstract
The enteroviruses constitute one of the genera of the picornavirus family. The genus includes the polioviruses, the coxsackieviruses, and the echoviruses of humans, plus a number of enteroviruses of lower animals (e.g. monkeys, cattle, pigs, mice). Over 100 serotypes are recognized, of which the first to be discovered were the polioviruses. It was my good fortune to have been a scientist during the golden age of virology, when new techniques were being introduced into the field. These often led to the discovery of new viruses. This article details the isolation of the enteroviruses, their recognition as a separate genus of Picornaviridae, and my role in the process. Poliovirus, the most hazardous of the group, is almost gone from the world, but the other enteroviruses will be with us for some time. Several members of the Committee dealing with these agents--Enders,Sabin, Dalldorf, Syverton--have passed on, but the work of this Committee to which I was privileged to contribute will live long.
Collapse
Affiliation(s)
- J L Melnick
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
35
|
Das S, Kenan DJ, Bocskai D, Keene JD, Dasgupta A. Sequences within a small yeast RNA required for inhibition of internal initiation of translation: interaction with La and other cellular proteins influences its inhibitory activity. J Virol 1996; 70:1624-32. [PMID: 8627683 PMCID: PMC189986 DOI: 10.1128/jvi.70.3.1624-1632.1996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We recently reported purification, determination of the nucleotide sequence, and cloning of a 60-nucleotide RNA (I-RNA) from the yeast Saccharomyces cerevisiae which preferentially blocked cap-independent, internal ribosome entry site (IRES)-mediated translation programmed by the poliovirus (PV) 5' untranslated region (UTR). The I-RNA appeared to inhibit IRES-mediated translation by virtue of its ability to bind a 52-kDa polypeptide which interacts with the 5' UTR of viral RNA. We demonstrate here that the HeLa 52-kDa I-RNA-binding protein is immunologically identical to human La autoantigen. Moreover, I-RNA-mediated purified La protein. By using I-RNAs with defined deletions, we have identified sequences of I-RNA required for inhibition of internal initiation of translation. Two smaller fragments of I-RNA (16 and 25 nucleotides) inhibited PV UTR-mediated translation from both monocistronic and bicistronic RNAs. When transfected into HeLa cells, these derivatives of I-RNA inhibited translation of PV RNA. A comparison of protein binding by active and inactive I-RNA mutants demonstrates that in addition to the La protein, three other polypeptides with apparent molecular masses of 80, 70, and 37 kDa may influence the translation-inhibitory activity of I-RNA.
Collapse
Affiliation(s)
- S Das
- Department of Microbiology and Immunology, UCLA School of Medicine 90024-1747, USA
| | | | | | | | | |
Collapse
|
36
|
Zell R, Klingel K, Sauter M, Fortmüller U, Kandolf R. Coxsackieviral proteins functionally recognize the polioviral cloverleaf structure of the 5'-NTR of a chimeric enterovirus RNA: influence of species-specific host cell factors on virus growth. Virus Res 1995; 39:87-103. [PMID: 8837877 DOI: 10.1016/0168-1702(95)00075-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 5'-non-translated region (NTR) of enteroviruses contains secondary structures which do not only serve in the initiation of translation but also in the initiation of plus-strand RNA synthesis by binding of viral and cellular proteins. To investigate a very early step of enteroviral replication by cis- and trans-complementation, 220 nucleotides of the 5'-region of coxsackievirus B3 (CVB3) were exchanged with the corresponding region of poliovirus type 1 (PV1) to yield the chimeric virus CVB3[PV5']. The viability of this chimera demonstrates that the polioviral cloverleaf structure of the 5'-NTR is functional in the replication of a chimeric CVB3 RNA. The HeLa-generated chimera reveals a 4-nucleotide deletion (nt 232-235) within a short direct repeat. Besides clearly reduced growth characteristics in all permissive cell lines, the chimera exhibits a small-plaque phenotype. The host range is changed since the virus grows well in human HeLa cells, but does not replicate in murine YAC-1 and Ltk cells, although these cell lines are permissive for the replication of both parental viruses. Moreover, in simian Vero, COS-1, or FRhK-4 cells the HeLa-generated chimera CVB3[PV5'] exhibits a strict temperature sensitivity at 39 degrees C. After infection of simian cells with high m.o.i. in situ hybridization data reveal that the chimera replicates in single cells at almost normal rates indicating that only a small fraction of HeLa-generated virus is able to multiplicate in simian cell lines. After passaging the virus chimera in Vero cells two further mutations occur at nucleotide positions 185 and 227. Since this genome region is known to interact with viral proteins and several host cell factors during the initiation of replication and translation, interactions of such factors with either viral RNA or viral proteins may be disturbed but still functional at permissive temperatures in HeLa cells and simian cell lines, whereas murine cell lines are not permissive. These experiments suggest that phenomena like host range, tissue tropism and cell-type specificity may be explained as a complex interplay of cellular surface receptors and intracellular host factors. Such intracellular factors could be part of the enteroviral initiation complex during the plus-strand RNA synthesis or during translation initiation and could be expressed in a tissue-, organ- or species-specific way or might be regulated developmentally.
Collapse
Affiliation(s)
- R Zell
- Institut für Pathologie, Molekulare Pathologie, Eberhard-Karls-Universität Tübingen, Germany
| | | | | | | | | |
Collapse
|
37
|
Blyn LB, Chen R, Semler BL, Ehrenfeld E. Host cell proteins binding to domain IV of the 5' noncoding region of poliovirus RNA. J Virol 1995; 69:4381-9. [PMID: 7769700 PMCID: PMC189179 DOI: 10.1128/jvi.69.7.4381-4389.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Translation of poliovirus RNA occurs by the binding of ribosomes to an internal segment of RNA sequence within the 5' untranslated region of the viral RNA. This region is predicted to consist of six domains (I to VI) that possess complex secondary and tertiary structures. Domain IV is a large region in which alterations in the sequence or structure markedly reduce translational efficiency. In this study, we employed RNA mobility shift assays to demonstrate that a protein(s) from uninfected HeLa cell extracts, as well as from neuroblastoma extracts, interacts with the domain IV structure. A mutation in domain IV caused reduced binding of HeLa cell proteins and reduced translation both in vitro and in vivo, suggesting that the binding of at least one of these proteins plays a role in the mechanism of viral translation. UV cross-linking indicated that a protein(s) with a size of approximately 40 kDa interacted directly with the RNA. Using streptavidin beads to capture biotinylated RNA bound to proteins, we were able to visualize a number of HeLa and neuroblastoma cell proteins that interact with domain IV. These proteins have molecular masses of approximately 39, approximately 40, and approximately 42 kDa.
Collapse
Affiliation(s)
- L B Blyn
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine 92717, USA
| | | | | | | |
Collapse
|
38
|
Teterina NL, Zhou WD, Cho MW, Ehrenfeld E. Inefficient complementation activity of poliovirus 2C and 3D proteins for rescue of lethal mutations. J Virol 1995; 69:4245-54. [PMID: 7769684 PMCID: PMC189162 DOI: 10.1128/jvi.69.7.4245-4254.1995] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Poliovirus (PV) 2C protein is a nonstructural polypeptide involved in viral RNA replication, whose biochemical activity(ies) in this process has not been defined. By using site-directed mutagenesis, it was shown previously that disruption of nucleotide-binding motifs present in this protein abolished viral RNA synthesis (C. Mirzayan and E. Wimmer, Virology 189:547-555, 1992; N. L. Teterina, K. M. Kean, E. Gorbalenya, V. I. Agol, and M. Girard, J. Gen. Virol. 73:1977-1986, 1992). We have tested whether PV 2C or 2BC protein provided in trans could rescue the replication of these mutated genomes. Rescuing proteins were provided either by cotransfection with helper chimeric PV-coxsackievirus genomes or by expression in cells with a vaccinia virus-T7 RNA polymerase transient-expression system. We report here that replication of mutated RNAs genomes was poorly supported in trans both by helper genomes and by expressed 2C or 2BC proteins. Similarly, very inefficient complementation was observed for two mutated genomes with lethal lesions in 3D polymerase coding sequence. Our results indicate that poliovirus RNA replication shows marked preference for proteins contributed in cis.
Collapse
Affiliation(s)
- N L Teterina
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine 92717, USA
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- E Ehrenfeld
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine 92717, USA
| | | |
Collapse
|
40
|
Rohll JB, Percy N, Ley R, Evans DJ, Almond JW, Barclay WS. The 5'-untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation. J Virol 1994; 68:4384-91. [PMID: 8207812 PMCID: PMC236362 DOI: 10.1128/jvi.68.7.4384-4391.1994] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The role of the 5'-untranslated region (5'UTR) in the replication of enteroviruses has been studied by using a series of poliovirus type 3 (PV3) replicons containing the chloramphenicol acetyltransferase reporter gene in which the 5'UTR was replaced by the 5'UTR of either coxsackievirus B4 or human rhinovirus 14 or composite 5'UTRs derived from sequences of PV3, human rhinovirus 14, coxsackievirus B4, or encephalomyocarditis virus. The results indicate that efficient replication of an enterovirus genome requires a compatible interaction between the 5'-terminal cloverleaf structure and the coding and/or 3'-noncoding regions of the genome. A crucial determinant of this interaction is the stem-loop formed by nucleotides 46 to 81 (stem-loop d). The independence of the cloverleaf structure formed by the 5'-terminal 88 nucleotides and the ribosome landing pad or internal ribosome entry site (IRES) was investigated by constructing a 5'UTR composed of the PV3 cloverleaf and the IRES from encephalomyocarditis virus. Chloramphenicol acetyltransferase gene-containing replicons and viruses containing this recombinant 5'UTR showed levels of replication similar to those of the corresponding genomes containing the complete PV3 5'UTR, indicating that the cloverleaf and the IRES may be regarded as functionally independent and nonoverlapping elements.
Collapse
Affiliation(s)
- J B Rohll
- Department of Microbiology, School of Animal and Microbial Sciences, University of Reading, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Alexander L, Lu HH, Wimmer E. Polioviruses containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc Natl Acad Sci U S A 1994; 91:1406-10. [PMID: 7509072 PMCID: PMC43167 DOI: 10.1073/pnas.91.4.1406] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A picornavirus hybrid genome was constructed in which the internal ribosomal entry site (IRES) of encephalomyocarditis virus was inserted between the 5' non-translated region and the open reading frame of poliovirus (PV), type 1 (Mahoney). Upon transfection into HeLa cells, the hybrid RNA replicated and yielded a derivative of PV (W1-PNENPO). The PV IRES could be removed from pPNENPO, which resulted in a hybrid picornavirus (W1-P108ENPO) in which the translation of the PV open reading frame normally promoted by the type 1 IRES of PV was promoted by the type 2 IRES of encephalomyocarditis virus. This result indicates that these elements are not likely to contain cis-acting elements necessary for PV replication or encapsidation. A foreign gene (bacterial chloramphenicol acetyltransferase, CAT) was inserted into pPNENPO cDNA between the PV and encephalomyocarditis virus IRES elements. The dicistronic RNA replicated in HeLa cells and yielded a derivative of PV (W1-DICAT) with a genome 17% longer than that of wild-type PV. CAT assays and immunoblot analyses showed that the viral RNA efficiently expressed the foreign gene in cell culture. The CAT activity diminished somewhat with each passage of the dicistronic virus, an observation which suggested that the inserted gene had a deleterious effect on viral replication. However, even after five virus passages, a significant quantity of the foreign gene was still expressed. Insertion of the open reading frame of luciferase (67 kDa) resulted in an RNA species that replicated and expressed luciferase for up to 20 hr after transfection. However, this elongated RNA was not encapsidated.
Collapse
Affiliation(s)
- L Alexander
- Department of Microbiology, School of Medicine, State University of New York at Stony Brook 11794
| | | | | |
Collapse
|
42
|
Giachetti C, Hwang SS, Semler BL. cis-acting lesions targeted to the hydrophobic domain of a poliovirus membrane protein involved in RNA replication. J Virol 1992; 66:6045-57. [PMID: 1326655 PMCID: PMC241482 DOI: 10.1128/jvi.66.10.6045-6057.1992] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The structural requirements of the hydrophobic domain contained in poliovirus polypeptide 3AB were studied by using a molecular genetic approach in combination with an in vitro biochemical analysis. We report here the generation and analysis of deletion, insertion, and amino acid replacement mutations aimed at decreasing the hydrophobic character of the domain. Our results indicated that the hydrophobicity of this region of 3AB is necessary to maintain normal viral RNA synthesis. However, in vitro membrane association assays of the mutated proteins did not establish a direct correlation between 3AB membrane association and viral RNA synthesis. Some of the lethal mutations we engineered produced polyproteins with abnormal P2- and P3-processing capabilities due to an alteration in the normal cleavage order of the polyprotein. A detailed analysis of these mutants suggests that P2 is not the major precursor for polypeptides 2A and 2BC and that P2 protein products are derived from P2-P3-containing precursors (most likely P2-P3 or P2-3AB). Such precursors are likely to result from primary polyprotein cleavage events that initiate a proteolytic cascade not previously documented. Our results also indicated that the function provided by the hydrophobic domain of 3AB cannot be provided in trans. We discuss the implications of these results on the formation of limited-diffusion replication complexes as a means of sequestering P2- and P3-region polypeptides required for RNA synthesis and protein processing.
Collapse
Affiliation(s)
- C Giachetti
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717
| | | | | |
Collapse
|
43
|
Abstract
Picornavirus genomes encode unique 5' noncoding regions (5' NCRs) which are approximately 600 to 1,300 nucleotides in length, contain multiple upstream AUG codons, and display the ability to form extensive secondary structures. A number of recent reports have shown that picornavirus 5' NCRs are able to facilitate cap-independent internal initiation of translation. This mechanism of translation occurs in the absence of viral gene products, suggesting that the host cell contains the necessary components for the cap-independent internal initiation of translation of picornavirus RNAs as well as cellular mRNAs. In an attempt to identify some of the perhaps novel cellular proteins involved in this newly discovered mechanism of translation, we utilized RNA mobility shifts assays to identify and characterize interactions that occur between the 5'NCR of poliovirus type 1 (PV1) and cellular proteins. In this report, we describe two separate interactions between RNA structures from the 5' NCR of PV1 and proteins present in extracts from HeLa cells as well as other cell types. We describe the interaction between nucleotides 186 to 220 (stem-loop D) and a cellular protein(s) present in HeLa cell extracts. Mutational analysis of this stem-loop structure suggests that maintenance of a base-paired structure in the lower stem is necessary to present the sequences which directly interact with the protein(s). We also describe the interaction between nucleotides 220 to 460 (stem-loop E) and a cellular protein present in HeLa cell extracts. This RNA binding activity fractionates to a specific ammonium sulfate fraction (A cut) of a ribosomal salt wash. Mutational analysis of the stem-loop E structure suggests that the preservation of an extensive RNA structure is necessary for a strong interaction with the cellular protein(s), although smaller RNAs derived from this region of the 5' NCR can interact to lesser extents. Finally, we show that both of these RNA-protein interactions are conserved among the closely related enteroviruses PV1 and coxsackievirus type B3, human rhinovirus type 14, and the more distantly related cardiovirus Theiler's murine encephalomyelitis virus, suggesting that such RNA-protein interactions serve basic functions which are conserved and utilized by each of these picornaviruses.
Collapse
Affiliation(s)
- S L Dildine
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717
| | | |
Collapse
|
44
|
Clements ML, Subbarao EK, Fries LF, Karron RA, London WT, Murphy BR. Use of single-gene reassortant viruses to study the role of avian influenza A virus genes in attenuation of wild-type human influenza A virus for squirrel monkeys and adult human volunteers. J Clin Microbiol 1992; 30:655-62. [PMID: 1551982 PMCID: PMC265127 DOI: 10.1128/jcm.30.3.655-662.1992] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The transfer of six internal RNA segments from the avian influenza A/Mallard/New York/6750/78 (H2N2) virus reproducibly attenuates human influenza A viruses for squirrel monkeys and adult humans. To identify the avian influenza A virus genes that specify the attenuation and host range restriction of avian-human (ah) influenza A reassortant viruses (referred to as ah reassortants), we isolated six single-gene reassortant viruses (SGRs), each having a single internal RNA segment of the influenza A/Mallard/New York/6750/78 virus and seven RNA segments from the human influenza A/Los Angeles/2/87 (H3N2) wild-type virus. To assess the level of attenuation, we compared each SGR with the A/Los Angeles/2/87 wild-type virus and a 6-2 gene ah reassortant (having six internal RNA segments from the avian influenza A virus parent and two genes encoding the hemagglutinin and neuraminidase glycoproteins from the wild-type human influenza A virus) for the ability to replicate in seronegative squirrel monkeys and adult human volunteers. In monkeys and humans, replication of the 6-2 gene ah reassortant was highly restricted. In humans, the NS, M, PB2, and PB1 SGRs each replicated significantly less efficiently (P less than 0.05) than the wild-type human influenza A virus parent, suggesting that each of these genes contributes to the attenuation phenotype. In monkeys, only the NP, PB2, and possibly the M genes contributed to the attenuation phenotype. These discordant observations, particularly with regard to the NP SGR, indicate that not all genetic determinants of attenuation of influenza A viruses for humans can be identified during studies of SGRs conducted with monkeys. The PB2 and M SGRs that were attenuated in humans each exhibited a new phenotype that was not observed for either parental virus. Thus, it was not possible to determine whether avian influenza virus PB2 or M gene itself or a specific constellation of avian and human influenza A virus specified restriction of virus replication in humans.
Collapse
Affiliation(s)
- M L Clements
- Department of International Health, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
A complete cDNA copy of the echovirus 6 genome was constructed. Complementary DNA was reversed transcribed from viral RNA. Subgenomic cDNAs were obtained by direct cloning and polymerase chain reactions. Full length cDNA was constructed into the Bluescript II vector (pBSII) using unique, overlapping, restriction sites of four clones. The cDNA was infectious and produced echovirus 6 particles that behaved in the same manner as the parental virus.
Collapse
Affiliation(s)
- R V Blackburn
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201
| | | | | |
Collapse
|
46
|
|
47
|
Iizuka N, Yonekawa H, Nomoto A. Nucleotide sequences important for translation initiation of enterovirus RNA. J Virol 1991; 65:4867-73. [PMID: 1651409 PMCID: PMC248946 DOI: 10.1128/jvi.65.9.4867-4873.1991] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An infectious cDNA clone was constructed from the genome of coxsackievirus B1 strain. A number of RNA transcripts that have mutations in the 5' noncoding region were synthesized in vitro from the modified cDNA clones and examined for their abilities to act as mRNAs in a cell-free translation system prepared from HeLa S3 cells. RNAs that lack nucleotide sequences at positions 568 to 726 and 565 to 726 were found to be less efficient and inactive mRNAs, respectively. To understand the biological significance of this region of RNA, small deletions and point mutations were introduced in the nucleotide sequence between positions 538 and 601. Except for a nucleotide substitution at 592 (U----C) within the 7-base conserved sequence, mutations introduced in the sequence downstream of position 568 did not affect much, if any, of the ability of RNA to act as mRNA. Except for a point mutation at 558 (C----U), mutations upstream of position 567 appeared to inactivate the mRNA. In the upstream region, a sequence consisting of 21 nucleotides at positions 546 to 566 is perfectly conserved in the 5' noncoding regions of enterovirus and rhinovirus genomes. These results suggest that the 7-base conserved sequence functions to maintain the efficiency of translation initiation and that the nucleotide sequence upstream of position 567, including the 21-base conserved sequence, plays essential roles in translation initiation. A deletion mutant whose genome lacks the nucleotide sequence at positions 568 to 726 showed a small-plaque phenotype and less virulence against suckling mice than the wild-type virus. Thus, reduction of the efficiency of translation initiation may result in the construction of enteroviruses with the lower-virulence phenotype.
Collapse
Affiliation(s)
- N Iizuka
- Department of Microbiology, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | |
Collapse
|
48
|
Muster T, Subbarao EK, Enami M, Murphy BR, Palese P. An influenza A virus containing influenza B virus 5' and 3' noncoding regions on the neuraminidase gene is attenuated in mice. Proc Natl Acad Sci U S A 1991; 88:5177-81. [PMID: 2052599 PMCID: PMC51835 DOI: 10.1073/pnas.88.12.5177] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Influenza A and B viruses have not been shown to form reassortants. It had been assumed that the lack of genotypic mixing between influenza virus types reflected differences in polymerase and packaging specificity. In this study, we show that an influenza A virus polymerase transcribes and replicates a chloramphenicol acetyltransferase (CAT) gene flanked by the nontranslated sequences of an influenza B virus gene. Although the transcription level of this CAT gene was several times lower than that of a CAT gene flanked by the homologous nontranslated sequences of an influenza A virus, we proceeded to construct a chimeric type A/B influenza virus. Using recombinant DNA techniques, a chimeric neuraminidase gene was introduced into the genome of influenza A/WSN/33 virus. The hybrid influenza A/B virus gene contained the coding region of the A/WSN neuraminidase and the 3' and 5' nontranslated sequences of the nonstructural gene of influenza B/Lee virus. The resulting chimeric virus formed plaques in Madin-Darby bovine kidney cells but replicated more slowly and achieved lower titers than wild-type influenza A/WSN/33 virus. The chimeric virus was attenuated for mice as indicated by a 400-fold increase in its LD50. Interestingly, the virus was greatly restricted in replication in the upper respiratory tract and partially restricted in the lungs. Animals infected with the transfectant virus were highly resistant to influenza virus challenge. It appears that this chimeric virus has many of the properties desirable for a live attenuated virus vaccine.
Collapse
Affiliation(s)
- T Muster
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029
| | | | | | | | | |
Collapse
|
49
|
Dildine SL, Stark KR, Haller AA, Semler BL. Poliovirus translation initiation: differential effects of directed and selected mutations in the 5' noncoding region of viral RNAs. Virology 1991; 182:742-52. [PMID: 1850926 DOI: 10.1016/0042-6822(91)90615-i] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have analyzed the translational defects of a number of mutations in the 5' noncoding region of poliovirus type 1 RNA. These mutations fall into three categories: (1) two mutations which resulted in temperature sensitive (ts) viruses, (2) the second-site mutations responsible for the reversion of the two ts viruses, and (3) mutations which were lethal to virus production. RNAs containing either of the ts mutations translated in vitro at levels significantly lower than wild-type levels. RNAs containing the respective second-site reversions had corrected these translational defects to levels corresponding to their viral growth potentials. Unlike in vitro translation of wild-type poliovirus RNA, translation of the RNAs which gave rise to ts mutant viruses was not stimulated by the addition of an S10 fraction from an uninfected HeLa cell extract to a rabbit reticulocyte lysate (RRL). In vitro translation of the mutant RNAs (corresponding to the ts viruses) in a RRL was stimulated by factors present in a ribosomal salt wash (RSW) from a HeLa extract, although the levels of stimulation were only half those seen for wild-type. These results suggest that the stimulatory factors present in the RSW have a decreased affinity for the mutant RNA templates but can, to some extent interact, with such RNAs if provided in high enough concentration. The in vitro translation of RNAs containing either of the lethal mutations was not stimulated by factors present in the S10 or the RSW. Taken together, our data suggest a correlation between the ability of a genetically altered RNA to respond to translation stimulatory factors in vitro and the ability of that mutation to be recovered in infectious virus. In addition, we have identified the in vivo-selected reversion of translational defects for two different ts viruses.
Collapse
Affiliation(s)
- S L Dildine
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717
| | | | | | | |
Collapse
|
50
|
Kuhn RJ, Niesters HG, Hong Z, Strauss JH. Infectious RNA transcripts from Ross River virus cDNA clones and the construction and characterization of defined chimeras with Sindbis virus. Virology 1991; 182:430-41. [PMID: 1673812 DOI: 10.1016/0042-6822(91)90584-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have constructed a full-length cDNA clone of the virulent T48 strain of Ross River virus, a member of the alphavirus genus. Infectious RNA can be transcribed from this clone using SP6 or T7 RNA polymerase. The rescued virus has properties indistinguishable from those of the T48 strain of Ross River virus. We have used this clone, together with a full-length cDNA clone of Sindbis virus, to construct chimeric plasmids in which the 5' and the 3' nontranslated regions of the Sindbis and Ross River genomes were exchanged. The nontranslated regions of the two viral genomes differ in both size and sequence although they maintain specific conserved sequence elements. Virus was recovered from all four chimeras. Chimeras containing heterologous 3' nontranslated regions had replicative efficiencies equal to those of the parents. In contrast, the chimeras containing heterologous 5' nontranslated regions were defective in RNA synthesis and virus production, and the severity of the defect was dependent upon the host. Replication of a virus containing a heterologous 5' nontranslated region may be inefficient due to the formation of defective protein-RNA complexes, whereas, the presumptive complexes formed between host or virus proteins and the 3' nontranslated region to promote RNA synthesis appear to function normally in the chimeras.
Collapse
Affiliation(s)
- R J Kuhn
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | | | |
Collapse
|