1
|
Vidovszky MZ, Kaján GL, Böszörményi KP, Podgorski II, Doszpoly A, Ballmann MZ, Mitró G, Skoda G, Turk M, Groothuizen MK, Bidin M, Hendrickx R, Hemmi S, Egyed L, Benkő M, Harrach B. Comprehensive phylogenetic analysis of newly detected rodent adenoviruses sheds light on ancient host-switches. Mol Phylogenet Evol 2025; 204:108287. [PMID: 39826590 DOI: 10.1016/j.ympev.2025.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Here we provide a comprehensive update on the diversity and genetic relatedness of adenoviruses occurring in rodents. Extensive PCR screenings revealed the presence of adenoviral DNA in samples originating from representatives of 17 rodent species from four different suborders of Rodentia. Distinct sequences of 28 different adenoviruses were obtained from the positive samples. Out of these, 20 were from hitherto unknown, putative novel adenoviruses, whereas 6 were variants of previously published murine adenoviruses. Additionally, two known viruses, guinea pig adenovirus 1 and squirrel adenovirus 1 were also detected. By PCR and primer walking, we determined the sequence of a considerable part of the genomic DNA of squirrel adenovirus 1, detected in red squirrel (Sciurus vulgaris) samples from Germany previously. We annotated the almost complete genome sequence of a novel mastadenovirus found by data mining in the bulk data of the Ord's kangaroo rat (Dipodomys ordii) genome project. We revisited the sequence of the gene of E1B 19 K protein of mouse adenovirus 3. In contrast to the prototype strain, where a truncated version of this gene has been found, in our sample of mouse adenovirus 3, it seemed to be intact. Based on phylogeny reconstructions, all rodent adenoviruses clustered in the genus Mastadenovirus. Interestingly, however, there wasn't a common monophyletic clade encompassing every adenovirus of rodent origin. Instead, three major lineages were observed. Because two lineages contained viral sequences deduced from samples of three suborders, and one consisted almost exclusively of adenoviruses from the family Muridae, we hypothesize there has been a long-term coevolution with the rodent hosts, as a result of possible ancient host-switch events. Several putative viruses appeared in distinct branches further away from the three clades. Thus, the evolutionary past of the adenoviruses of rodents remains to be studied further.
Collapse
Affiliation(s)
- Márton Z Vidovszky
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
| | - Győző L Kaján
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | | | - Iva I Podgorski
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Andor Doszpoly
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Mónika Z Ballmann
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Gergő Mitró
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Gabriella Skoda
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Marije Turk
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | | | - Marina Bidin
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Rodinde Hendrickx
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Silvio Hemmi
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - László Egyed
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Mária Benkő
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Balázs Harrach
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| |
Collapse
|
2
|
Oliveira ERA, Li L, Bouvier M. Intracellular Sequestration of the NKG2D Ligand MIC B by Species F Adenovirus. Viruses 2021; 13:1289. [PMID: 34372495 PMCID: PMC8310058 DOI: 10.3390/v13071289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
The enteric human adenoviruses of species F (HAdVs-F), which comprise HAdV-F40 and HAdV-F41, are significant pathogens that cause acute gastroenteritis in children worldwide. The early transcription unit 3 (E3) of HAdVs-F is markedly different from that of all other HAdV species. To date, the E3 proteins unique to HAdVs-F have not been characterized and the mechanism by which HAdVs-F evade immune defenses in the gastrointestinal (GI) tract is poorly understood. Here, we show that HAdV-F41 infection of human intestinal HCT116 cells upregulated the expression of MHC class I-related chain A (MIC A) and MIC B relative to uninfected cells. Our results also showed that, for MIC B, this response did not however result in a significant increase of MIC B on the cell surface. Instead, MIC B was largely sequestered intracellularly. Thus, although HAdV-F41 infection of HCT116 cells upregulated MIC B expression, the ligand remained inside infected cells. A similar observation could not be made for MIC A in these cells. Our preliminary findings represent a novel function of HAdVs-F that may enable these viruses to evade immune surveillance by natural killer (NK) cells in the infected gut, thereby paving the way for the future investigation of their unique E3 proteins.
Collapse
Affiliation(s)
| | | | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois at Chicago, 909 S Wolcott Avenue, Chicago, IL 60612, USA; (E.R.A.O.); (L.L.)
| |
Collapse
|
3
|
Directed attenuation to enhance vaccine immunity. PLoS Comput Biol 2021; 17:e1008602. [PMID: 33524036 PMCID: PMC7877766 DOI: 10.1371/journal.pcbi.1008602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/11/2021] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
Many viral infections can be prevented by immunizing with live, attenuated vaccines. Early methods of attenuation were hit-and-miss, now much improved by genetic engineering. However, even current methods operate on the principle of genetic harm, reducing the virus’s ability to grow. Reduced viral growth has the undesired side-effect of reducing the host immune response below that of infection with wild-type. Might some methods of attenuation instead lead to an increased immune response? We use mathematical models of the dynamics of virus with innate and adaptive immunity to explore the tradeoff between attenuation of virus pathology and immunity. We find that modification of some virus immune-evasion pathways can indeed reduce pathology yet enhance immunity. Thus, attenuated vaccines can, in principle, be directed to be safe yet create better immunity than is elicited by the wild-type virus. Live attenuated virus vaccines are among the most effective interventions to combat viral infections. Historically, the mechanism of attenuation has involved genetically reducing the viral growth rate, often achieved by adapting the virus to grow in a novel condition. More recent attenuation methods use genetic engineering but also are thought to impair viral growth rate. These classical attenuations typically result in a tradeoff whereby attenuation depresses the within-host viral load and pathology (which is beneficial to vaccine design), but reduces immunity (which is not beneficial). We use models to explore ways of directing the attenuation of a virus to avoid this tradeoff. We show that directed attenuation by interfering with (some) viral immune-evasion pathways can yield a mild infection but elicit higher levels of immunity than of the wild-type virus.
Collapse
|
4
|
Georgi F, Andriasyan V, Witte R, Murer L, Hemmi S, Yu L, Grove M, Meili N, Kuttler F, Yakimovich A, Turcatti G, Greber UF. The FDA-Approved Drug Nelfinavir Inhibits Lytic Cell-Free but Not Cell-Associated Nonlytic Transmission of Human Adenovirus. Antimicrob Agents Chemother 2020; 64:e01002-20. [PMID: 32601166 PMCID: PMC7449217 DOI: 10.1128/aac.01002-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Adenoviruses (AdVs) are prevalent and give rise to chronic and recurrent disease. Human AdV (HAdV) species B and C, such as HAdV-C2, -C5, and -B14, cause respiratory disease and constitute a health threat for immunocompromised individuals. HAdV-Cs are well known for lysing cells owing to the E3 CR1-β-encoded adenovirus death protein (ADP). We previously reported a high-throughput image-based screening framework and identified an inhibitor of HAdV-C2 multiround infection, nelfinavir mesylate. Nelfinavir is the active ingredient of Viracept, an FDA-approved inhibitor of human immunodeficiency virus (HIV) aspartyl protease that is used to treat AIDS. It is not effective against single-round HAdV infections. Here, we show that nelfinavir inhibits lytic cell-free transmission of HAdV, indicated by the suppression of comet-shaped infection foci in cell culture. Comet-shaped foci occur upon convection-based transmission of cell-free viral particles from an infected cell to neighboring uninfected cells. HAdV lacking ADP was insensitive to nelfinavir but gave rise to comet-shaped foci, indicating that ADP enhances but is not required for cell lysis. This was supported by the notion that HAdV-B14 and -B14p1 lacking ADP were highly sensitive to nelfinavir, although HAdV-A31, -B3, -B7, -B11, -B16, -B21, -D8, -D30, and -D37 were less sensitive. Conspicuously, nelfinavir uncovered slow-growing round HAdV-C2 foci, independent of neutralizing antibodies in the medium, indicative of nonlytic cell-to-cell transmission. Our study demonstrates the repurposing potential of nelfinavir with postexposure efficacy against different HAdVs and describes an alternative nonlytic cell-to-cell transmission mode of HAdV.
Collapse
Affiliation(s)
- Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Luca Murer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lisa Yu
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Melanie Grove
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nicole Meili
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Artur Yakimovich
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Artificial Intelligence for Life Sciences CIC, London, United Kingdom
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Oliveira ERA, Bouvier M. Immune evasion by adenoviruses: a window into host-virus adaptation. FEBS Lett 2019; 593:3496-3503. [PMID: 31736048 DOI: 10.1002/1873-3468.13682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 11/09/2022]
Abstract
Human adenoviruses (HAdVs) are widespread pathogens that cause a number of partially overlapping, species-specific infections associated with respiratory, urinary, gastrointestinal, and ocular diseases. The early 3 (E3) region of adenoviruses is highly divergent between different species, and it encodes a multitude of proteins with immunomodulatory functions. The study of genetic diversity in the E3 region offers a unique opportunity to gain insight into how the various HAdVs have evolutionarily adapted in response to the selection pressures exerted by host immune defenses. The objective of this review was to discuss subversion of host antiviral immune responses by HAdVs, with a focus on suppression of MHC class I antigen presentation, as a window into host-HAdV adaptation.
Collapse
Affiliation(s)
- Edson R A Oliveira
- Department of Microbiology and Immunology, University of Illinois at Chicago, IL, USA
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois at Chicago, IL, USA
| |
Collapse
|
6
|
Adenoviral Vector Vaccines Antigen Transgene. ADENOVIRAL VECTORS FOR GENE THERAPY 2016. [PMCID: PMC7150117 DOI: 10.1016/b978-0-12-800276-6.00021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the past decade adenovirus-based vaccines have progressed from preclinical studies, which universally showed the vectors’ high immunogenicity, to testing in humans. Clinical trials showed that adenovirus vectors are well tolerated by humans. They induce robust immune responses that can be expanded by booster immunization. The effect of preexisting neutralizing antibodies on vectors’ immunogenicity appears to be less severe than was observed in experimental animals and can readily be circumvented by using vectors to which most humans lack neutralizing antibodies. Additional clinical studies are needed to firmly establish the efficacy of adenoviral vector vaccines.
Collapse
|
7
|
Kozak RA, Ackford JG, Slaine P, Li A, Carman S, Campbell D, Welch MK, Kropinski AM, Nagy É. Characterization of a novel adenovirus isolated from a skunk. Virology 2015; 485:16-24. [DOI: 10.1016/j.virol.2015.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/17/2015] [Accepted: 06/19/2015] [Indexed: 01/23/2023]
|
8
|
Weaver EA. Vaccines within vaccines: the use of adenovirus types 4 and 7 as influenza vaccine vectors. Hum Vaccin Immunother 2013; 10:544-56. [PMID: 24280656 DOI: 10.4161/hv.27238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenovirus Types 4 and 7 (Ad4 and Ad7) are associated with acute respiratory distress (ARD). In order to prevent widespread Ad-associated ARD (Ad-ARD) the United States military immunizes new recruits using a safe and effective lyophilized wildtype Ad4 and Ad7 delivered orally in an enteric-coated capsule. We cloned Ad4 and Ad7 and modified them to express either a GFP-Luciferase (GFPLuc) fusion gene or a centralized influenza H1 hemagglutinin (HA1-con). BALB/c mice were injected with GFPLuc expressing viruses intramuscularly (i.m.) and intranasally (i.n.). Ad4 induced significantly higher luciferase expression levels as compared with Ad7 by both routes. Ad7 transduction was restored using a human CD46+ transgenic mouse model. Mice immunized with serial dilutions of viruses expressing the HA1-con influenza vaccine gene were challenged with 100 MLD 50 of influenza virus. Ad4 protected BALB/c mice at a lower dose by i.m. immunization as compared with Ad7. Unexpectedly, there was no difference in protection by i.n. immunization. Although Ad7 i.m. transduction was restored in CD46+ transgenic mice, protection against influenza challenge required even higher doses as compared with the BALB/c mice. However, Ad7 i.n. immunized CD46+ transgenic mice were better protected as compared with Ad4. Interestingly, the restoration of Ad7 transduction in CD46+ mice did not increase vaccine efficacy and indicates that Ad7 may transduce a different subset of cells through alternative receptors in the absence of CD46. These data indicate that both Ad4 and Ad7 can effectively induce anti-H1N1 immunity against a heterologous challenge using a centralized H1 gene. Future studies in non-human primates or human clinical trials will determine the overall effectiveness of Ad4 and Ad7 as vaccines for influenza.
Collapse
Affiliation(s)
- Eric A Weaver
- Division of Infectious Diseases; Mayo Clinic; Rochester, MN USA
| |
Collapse
|
9
|
Robinson CM, Rajaiya J, Zhou X, Singh G, Dyer DW, Chodosh J. The E3 CR1-gamma gene in human adenoviruses associated with epidemic keratoconjunctivitis. Virus Res 2011; 160:120-7. [PMID: 21683743 DOI: 10.1016/j.virusres.2011.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 01/06/2023]
Abstract
Human adenovirus species D type 37 (HAdV-D37) is an important etiologic agent of epidemic keratoconjunctivitis. Annotation of the whole genome revealed an open reading frame (ORF) in the E3 transcription unit predicted to encode a 31.6kDa protein. This ORF, also known as CR1-γ, is predicted to be an integral membrane protein containing N-terminal signal sequence, luminal, transmembrane, and cytoplasmic domains. HAdV-D19 (C), another viral pathogen causing epidemic keratoconjunctivitis, contains an ORF 100% identical to its HAdV-D37 homologue but only 66% identical to other HAdV-D homologues. Kinetics of RNA expression and confirmation of splicing to the adenovirus tripartite leader sequence suggest a role for the protein product of CR1-γ in the late stages of the viral replication cycle. Confocal microscopy is consistent with expression in the cytoplasm. Sequence analysis reveals a hypervariable luminal domain and a conserved cytoplasmic domain. The luminal domain is predicted to contain multiple N-glycosylation sites. The cytoplasmic domain contains a putative protein kinase C phosphorylation site and potential YXXϕ and dileucine (LL) motifs suggesting a potential role in modification of host proteins.
Collapse
Affiliation(s)
- Christopher M Robinson
- Howe Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
10
|
Su X, Tian X, Zhang Q, Li H, Li X, Sheng H, Wang Y, Wu H, Zhou R. Complete genome analysis of a novel E3-partial-deleted human adenovirus type 7 strain isolated in Southern China. Virol J 2011; 8:91. [PMID: 21371333 PMCID: PMC3058094 DOI: 10.1186/1743-422x-8-91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/04/2011] [Indexed: 12/29/2022] Open
Abstract
Human adenovirus (HAdV) is a causative agent of acute respiratory disease, which is prevalent throughout the world. Recently there are some reports which found that the HAdV-3 and HAdV-5 genomes were very stable across 50 years of time and space. But more and more recombinant genomes have been identified in emergent HAdV pathogens and it is a pathway for the molecular evolution of types. In our paper, we found a HAdV-7 GZ07 strain isolated from a child with acute respiratory disease, whose genome was E3-partial deleted. The whole genome was 32442 bp with 2864 bp deleted in E3 region and was annotated in detail (GenBank: HQ659699). The growth character was the same as that of another HAdV-7 wild strain which had no gene deletion. By comparison with E3 regions of the other HAdV-B, we found that only left-end two proteins were remained: 12.1 kDa glycoprotein and 16.1 kDa protein. E3 MHC class I antigen-binding glycoprotein, hypothetical 20.6 kDa protein, 20.6 kDa protein, 7.7 kDa protein., 10.3 kDa protein, 14.9 kDa protein and E3 14.7 kDa protein were all missing. It is the first report about E3 deletion in human adenovirus, which suggests that E3 region is also a possible recombination region in adenovirus molecular evolution.
Collapse
Affiliation(s)
- Xiaobo Su
- Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Grgić H, Yang DH, Nagy E. Pathogenicity and complete genome sequence of a fowl adenovirus serotype 8 isolate. Virus Res 2011; 156:91-7. [PMID: 21237223 DOI: 10.1016/j.virusres.2011.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
In this study we determined and analyzed the complete nucleotide sequence of the genome of a fowl adenovirus serotype 8 (FAdV-8) isolate and examined its pathogenicity in chickens. The full genome of FAdV-8 was 44,055 nucleotides in length with a similar organization to that of FAdV-1 and FAdV-9 genomes. No regions homologous to early regions E1, E3 and E4 of mastadenoviruses were recognized. Along with FAdV-9, FAdV-8 has only one fiber gene and with regard to sequence composition and genome organization, FAdV-8 is closer to FAdV-9 than to FAdV-1. Moreover, our findings suggest that FAdV-1 of species Fowl adenovirus A as the current type species despite its historical priority is not representative of the genus Aviadenovirus, and that FAdV-8 or FAdV-9 in species Fowl adenovirus E and Fowl adenovirus D, respectively, would be more suitable for that designation. Additionally, pathogenicity of FAdV-8 was studied in specific pathogen free chickens following oral and intramuscular inoculations. Despite lack of clinical signs and pathological changes virus was found in tissues and cloacal swabs of all birds with the highest viral copy numbers present in the cecal tonsils. The highest virus titers in the feces for orally and intramuscularly inoculated chickens were recorded at days 10 and 3 post-infection, respectively.
Collapse
Affiliation(s)
- Helena Grgić
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
12
|
Nemunaitis J, Tong AW, Nemunaitis M, Senzer N, Phadke AP, Bedell C, Adams N, Zhang YA, Maples PB, Chen S, Pappen B, Burke J, Ichimaru D, Urata Y, Fujiwara T. A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther 2009; 18:429-34. [PMID: 19935775 DOI: 10.1038/mt.2009.262] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A phase I clinical trial was conducted to determine the clinical safety of Telomelysin, a human telomerase reverse transcriptase (hTERT) promoter driven modified oncolytic adenovirus, in patients with advanced solid tumors. A single intratumoral injection (IT) of Telomelysin was administered to three cohorts of patients (1 x 10(10), 1 x 10(11), 1 x 10(12) viral particles). Safety, response and pharmacodynamics were evaluated. Sixteen patients with a variety of solid tumors were enrolled. IT of Telomelysin was well tolerated at all dose levels. Common grade 1 and 2 toxicities included injection site reactions (pain, induration) and systemic reactions (fever, chills). hTERT expression was demonstrated at biopsy in 9 of 12 patients. Viral DNA was transiently detected in plasma in 13 of 16 patients. Viral DNA was detectable in four patients in plasma or sputum at day 7 and 14 post-treatment despite below detectable levels at 24 h, suggesting viral replication. One patient had a partial response of the injected malignant lesion. Seven patients fulfilled Response Evaluation Criteria in Solid Tumors (RECIST) definition for stable disease at day 56 after treatment. Telomelysin was well tolerated. Evidence of antitumor activity was suggested.
Collapse
|
13
|
Doherty PC, Tripp RA, Sixbey JW. Evasion of host immune responses by tumours and viruses. CIBA FOUNDATION SYMPOSIUM 2007; 187:245-56; discussion 256-60. [PMID: 7796674 DOI: 10.1002/9780470514672.ch16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Viruses and tumours use various mechanisms to avoid immune surveillance. Oncogenic viruses have achieved a balance with the immune system through evolutionary time to ensure long-term persistence. Mutations that promote escape mechanisms favouring tumour growth to the detriment of host survival through reproductive age offer no selective advantage and will not generally be maintained in the viral genome that persists in nature. Conventional (non-oncogenic) and tumour viruses interact with various immune mediators and T cells in different ways. Oncogenic viruses cannot operate solely in the context of a lytic cycle, though this may be characteristic of the initial phase of infection that is limited by the acute immune response. Some oncogenic viruses interact with normal cellular growth control and signalling mechanisms. Synthesis of key viral proteins may be tightly controlled in replicating cells that are subject to T cell surveillance, such as basal epithelia, while productive infection occurs in non-proliferating progeny that are lost under normal physiological conditions, such as desquamating epithelia. Tumorigenesis may be an aberrant consequence of the molecular mechanisms needed to maintain this pattern of viral growth regulation in the context of the cell cycle. Vaccines designed to limit the acute phase of infection with cell-free oncogenic viruses should be as effective as those for conventional viruses.
Collapse
Affiliation(s)
- P C Doherty
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38104, USA
| | | | | |
Collapse
|
14
|
Feuchtinger T, Lang P, Handgretinger R. Adenovirus infection after allogeneic stem cell transplantation. Leuk Lymphoma 2007; 48:244-55. [PMID: 17325884 DOI: 10.1080/10428190600881157] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Adenovirus infection after allogeneic hematopoietic stem cell transplantation (HSCT) is an emerging pathogen causing relevant morbidity and mortality, with preponderance in children. During the last years, basic research on the biology of the virus and host immune response ameliorated the diagnostic, surveillance, and therapeutic strategies. Risk factors for infection commonly have an impact on T-cell reconstitution, such as T-cell depleted graft, unrelated or HLA-mismatched donor transplantation, and GvHD. Weekly surveillance by PCR in stool and blood till day 100 or longer post-HSCT and pre-emptive therapy with cidofovir are the mainstay of the current approach to adenoviral infections post-HSCT. Since a sufficient host T-cell response is essential to clear the virus, diagnostic procedures for detection of virus-specific T-cells have recently been developed to assess the risk of the infection. Furthermore, adoptive immunotherapy is a new treatment option for patients with absent specific T-cell response and present systemic adenoviral infection.
Collapse
Affiliation(s)
- Tobias Feuchtinger
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Eberhard-Karls-University. Tuebingen, Germany.
| | | | | |
Collapse
|
15
|
Liu H, Fu J, Bouvier M. Allele- and Locus-Specific Recognition of Class I MHC Molecules by the Immunomodulatory E3-19K Protein from Adenovirus. THE JOURNAL OF IMMUNOLOGY 2007; 178:4567-75. [PMID: 17372015 DOI: 10.4049/jimmunol.178.7.4567] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The E3-19K protein from human adenoviruses (Ads) retains class I MHC molecules in the endoplasmic reticulum. As a consequence, the cell surface expression of class I molecules is suppressed, allowing Ads to evade immune surveillance. Using native gel electrophoresis, gel filtration chromatography, and surface plasmon resonance, we show that a soluble form of the Ad type 2 (Ad2) E3-19K protein associates with HLA-A and -B molecules; equilibrium dissociation constants were in the nanomolar range and approximately 2.5-fold higher affinity for HLA-A (-A*0201, -A*0301, -A*1101, -A*3301, and -Aw*6801) relative to HLA-B (-B*0702 and -B*0801) molecules. Among the alleles of the HLA-A locus examined, HLA-A*3101 associated approximately 15-fold less avidly with soluble E3-19K. Soluble E3-19K interacted only very weakly with HLA-Cw*0304, and no interaction with HLA-Cw*0401 could be detected under identical conditions. Site-directed mutagenesis and flow cytometry demonstrated that MHC residue 56 plays a critical role in the association and endoplasmic reticulum retention of HLA-A molecules by E3-19K. This delineates the spatial environment around residue 56 as a putative E3-19K interaction surface on class I molecules. Overall, our data imply that a link may exist between host genetic factors and the susceptibility of individuals to Ad infections.
Collapse
Affiliation(s)
- Hong Liu
- School of Pharmacy, University of Connecticut, 69 N. Eagleville Road, Storrs, CT 06269, USA
| | | | | |
Collapse
|
16
|
Leen AM, Bollard CM, Myers GD, Rooney CM. Adenoviral Infections in Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2006; 12:243-51. [PMID: 16503493 DOI: 10.1016/j.bbmt.2005.10.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 10/24/2005] [Indexed: 01/12/2023]
Abstract
Adenoviruses are lytic DNA viruses that are ubiquitous in human communities. In total, 51 different serotypes with varying tissue tropisms have been identified. Adenovirus infections, although frequent, are rarely fatal in immunocompetent individuals who have potent innate and adaptive immunity. But in immunosuppressed individuals, adenoviruses are a significant cause of morbidity and mortality, with limited treatment options. In particular, pediatric recipients of allogeneic hematopoietic stem cell transplantation frequently develop infections early in the posttransplantation period. Because the endogenous recovery of adenovirus-specific T cells has proven important in controlling infection, we explore the potential of adoptive T-cell immunotherapy as a therapeutic strategy. We discuss the advantages and limitations of T-cell therapy for the prophylaxis and treatment of adenovirus infection posttransplantation.
Collapse
Affiliation(s)
- Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, and the Methodist Hospital, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
17
|
Hu R, Zhang S, Fooks AR, Yuan H, Liu Y, Li H, Tu C, Xia X, Xiao Y. Prevention of rabies virus infection in dogs by a recombinant canine adenovirus type-2 encoding the rabies virus glycoprotein. Microbes Infect 2006; 8:1090-7. [PMID: 16524754 DOI: 10.1016/j.micinf.2005.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 11/16/2005] [Accepted: 11/18/2005] [Indexed: 11/30/2022]
Abstract
Safe and effective vaccination is important for rabies prevention in animals. Although several genetically engineered rabies vaccines have been developed, few have been licensed for use, principally due to biosafety concerns or due to poor efficacy in animal models. In this paper, we describe the construction and characterization of a replication-competent recombinant canine adenovirus type-2 expressing the rabies virus glycoprotein (SRV9 strain) by a different strategy from that reported previously, i.e., the recombinant genome carrying the glycoprotein cDNA was generated by a series of strictly gene cloning steps, infectious recombinant virus was obtained by transfecting the recombinant genome into a canine kidney cell line, MDCK. This recombinant virus, CAV-E3delta-CGS, was subcutaneously injected into dogs. All vaccinated dogs produced effective neutralizing antibodies after one inoculation and a stronger anamnestic immune response was produced after booster injection. The immunized dogs could survive the challenge of 60,000 mouse LD50 CVS-24, which is lethal to all unimmunized dogs and is comparable to the conventional vaccines. The immunity lasts for months with a protective level of neutralizing antibody. This recombinant virus would be an alternative to the attenuated and the inactivated rabies vaccines and be prospective in immunizing dogs against rabies.
Collapse
Affiliation(s)
- Rongliang Hu
- Laboratory of Epidemiology, Veterinary Institute, Academy of Military Medical Science, 1068 Qinglong Road, Changchun, Jilin 130062, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Leen AM, Myers GD, Bollard CM, Huls MH, Sili U, Gee AP, Heslop HE, Rooney CM. T-Cell Immunotherapy for Adenoviral Infections of Stem-Cell Transplant Recipients. Ann N Y Acad Sci 2005; 1062:104-15. [PMID: 16461793 DOI: 10.1196/annals.1358.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human adenoviruses are ubiquitous lytic DNA viruses that can be divided into 51 different serotypes, grouped from A to F on the basis of genome size, composition, homology, and organization. Adenovirus infections, although frequent, are rarely fatal in immunocompetent individuals, due to potent innate and adaptive immune responses. By contrast, adenoviruses are a significant cause of morbidity and mortality in immunosuppressed individuals, for whom there are limited treatment options. Since antiviral drugs have variable efficacy in the treatment of severe adenovirus disease, iatrogenic reconstitution with in vitro expanded virus-specific cytotoxic T lymphocytes (CTLs) is an attractive option for prophylaxis and treatment, particularly because the endogenous recovery of adenovirus-specific T cells has proved important in controlling infection in vivo. Thus, we have characterized human T-cell responses to adenovirus in vitro and explored the potential of adoptive T-cell immunotherapy as a prophylactic or therapeutic strategy for adenovirus infections posttransplant.
Collapse
Affiliation(s)
- A M Leen
- Center for Cell and Gene Therapy, Department of Pediatrics-Hem/Onc, Baylor College of Medicine, 6621 Fannin St., MC3-3320 Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Barzon L, Stefani AL, Pacenti M, Palù G. Versatility of gene therapy vectors through viruses. Expert Opin Biol Ther 2005; 5:639-62. [PMID: 15934840 DOI: 10.1517/14712598.5.5.639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several viruses have been engineered for gene therapy applications, and the specific properties of each viral vector have been exploited to target a variety of inherited and acquired diseases. Preclinical and clinical studies demonstrated that viral vectors are highly versatile tools capable of efficient transfer of foreign genetic information into almost all cell types and tissues. Gene therapy applications depend on vector characteristics, such as host range, cell- or tissue-specific targeting, genome integration, efficiency and duration of transgene expression, packaging capacity, and suitability for scale-up production. This review discusses the advances in the development of viral vectors, with particular emphasis on how knowledge of virus biology has been exploited to design a variety of vectors with improved safety characteristics and efficiency, potentially suitable for a large number of gene therapy applications.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Via Gabelli 63, I-35121 Padova, Italy.
| | | | | | | |
Collapse
|
20
|
Liu H, Stafford WF, Bouvier M. The endoplasmic reticulum lumenal domain of the adenovirus type 2 E3-19K protein binds to peptide-filled and peptide-deficient HLA-A*1101 molecules. J Virol 2005; 79:13317-25. [PMID: 16227254 PMCID: PMC1262599 DOI: 10.1128/jvi.79.21.13317-13325.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 07/27/2005] [Indexed: 01/08/2023] Open
Abstract
E3-19K is a type I membrane glycoprotein expressed by adenoviruses (Ads) to modulate host antiviral immune responses. We have developed an expression system for the endoplasmic reticulum lumenal domain (residues 1 to 100) of Ad type 2 E3-19K tagged with a C-terminal His6 sequence in baculovirus-infected insect cells. In this system, recombinant E3-19K is secreted into the culture medium. A characterization of soluble E3-19K by analytical ultracentrifugation and circular dichroism showed that the protein is monomeric and adopts a stable and correctly folded tertiary structure. Using a gel mobility shift assay and analytical ultracentrifugation, we showed that soluble E3-19K associates with soluble peptide-filled and peptide-deficient HLA-A*1101 molecules. This is the first example of a viral immunomodulatory protein that interacts with conformationally distinct forms of class I major histocompatibility complex molecules. The E3-19K/HLA-A*1101 complexes formed in a 1:1 stoichiometry with equilibrium dissociation constants (Kd) of 50 +/- 10 nM for peptide-filled molecules and of about 10 microM for peptide-deficient molecules. A temperature-dependent proteolysis study revealed that the association of E3-19K with peptide-deficient HLA-A*1101 molecules stabilizes the binding groove. Importantly, our studies showed that peptide-deficient HLA-A*1101 molecules sequestered by E3-19K are capable of binding antigenic peptides and maturing into peptide-filled molecules. This firmly establishes that E3-19K does not block binding of antigenic peptides. Together, our results suggest that Ads have evolved to exploit the late and early stages of the class I antigen presentation pathway.
Collapse
Affiliation(s)
- Hong Liu
- University of Connecticut, School of Pharmacy, 69 North Eagleville Rd., U-3092, Storrs, CT 06269, USA
| | | | | |
Collapse
|
21
|
Sirena D, Ruzsics Z, Schaffner W, Greber UF, Hemmi S. The nucleotide sequence and a first generation gene transfer vector of species B human adenovirus serotype 3. Virology 2005; 343:283-98. [PMID: 16169033 PMCID: PMC7172737 DOI: 10.1016/j.virol.2005.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/09/2005] [Accepted: 08/18/2005] [Indexed: 12/11/2022]
Abstract
Human adenovirus (Ad) serotype 3 causes respiratory infections. It is considered highly virulent, accounting for about 13% of all Ad isolates. We report here the complete Ad3 DNA sequence of 35,343 base pairs (GenBank accession DQ086466). Ad3 shares 96.43% nucleotide identity with Ad7, another virulent subspecies B1 serotype, and 82.56 and 62.75% identity with the less virulent species B2 Ad11 and species C Ad5, respectively. The genomic organization of Ad3 is similar to the other human Ads comprising five early transcription units, E1A, E1B, E2, E3, and E4, two delayed early units IX and IVa2, and the major late unit, in total 39 putative and 7 hypothetical open reading frames. A recombinant E1-deleted Ad3 was generated on a bacterial artificial chromosome. This prototypic virus efficiently transduced CD46-positive rodent and human cells. Our results will help in clarifying the biology and pathology of adenoviruses and enhance therapeutic applications of viral vectors in clinical settings.
Collapse
Affiliation(s)
- Dominique Sirena
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Zsolt Ruzsics
- Max von Pettenkofer Institute, Gene Centre of LMU Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Walter Schaffner
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Urs F. Greber
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Silvio Hemmi
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Corresponding author. Fax: +41 44 635 6811.
| |
Collapse
|
22
|
Purkayastha A, Su J, McGraw J, Ditty SE, Hadfield TL, Seto J, Russell KL, Tibbetts C, Seto D. Genomic and bioinformatics analyses of HAdV-4vac and HAdV-7vac, two human adenovirus (HAdV) strains that constituted original prophylaxis against HAdV-related acute respiratory disease, a reemerging epidemic disease. J Clin Microbiol 2005; 43:3083-94. [PMID: 16000418 PMCID: PMC1169186 DOI: 10.1128/jcm.43.7.3083-3094.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2004] [Revised: 03/21/2005] [Accepted: 04/06/2005] [Indexed: 11/20/2022] Open
Abstract
Vaccine strains of human adenovirus serotypes 4 and 7 (HAdV-4vac and HAdV-7vac) have been used successfully to prevent adenovirus-related acute respiratory disease outbreaks. The genomes of these two vaccine strains have been sequenced, annotated, and compared with their prototype equivalents with the goals of understanding their genomes for molecular diagnostics applications, vaccine redevelopment, and HAdV pathoepidemiology. These reference genomes are archived in GenBank as HAdV-4vac (35,994 bp; AY594254) and HAdV-7vac (35,240 bp; AY594256). Bioinformatics and comparative whole-genome analyses with their recently reported and archived prototype genomes reveal six mismatches and four insertions-deletions (indels) between the HAdV-4 prototype and vaccine strains, in contrast to the 611 mismatches and 130 indels between the HAdV-7 prototype and vaccine strains. Annotation reveals that the HAdV-4vac and HAdV-7vac genomes contain 51 and 50 coding units, respectively. Neither vaccine strain appears to be attenuated for virulence based on bioinformatics analyses. There is evidence of genome recombination, as the inverted terminal repeat of HAdV-4vac is initially identical to that of species C whereas the prototype is identical to species B1. These vaccine reference sequences yield unique genome signatures for molecular diagnostics. As a molecular forensics application, these references identify the circulating and problematic 1950s era field strains as the original HAdV-4 prototype and the Greider prototype, from which the vaccines are derived. Thus, they are useful for genomic comparisons to current epidemic and reemerging field strains, as well as leading to an understanding of pathoepidemiology among the human adenoviruses.
Collapse
Affiliation(s)
- Anjan Purkayastha
- Bioinformatics and Computational Biology Program, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, Virginia 20110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu M, Bristol JA, Xie Y, Mina M, Ji H, Forry-Schaudies S, Ennist DL. Linked tumor-selective virus replication and transgene expression from E3-containing oncolytic adenoviruses. J Virol 2005; 79:5455-65. [PMID: 15827160 PMCID: PMC1082742 DOI: 10.1128/jvi.79.9.5455-5465.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Historically, the adenoviral E3 region was found to be nonessential for viral replication in vitro. In addition, adenoviruses whose genome was more than approximately 105% the size of the native genome were inefficiently packaged. These profound observations were used experimentally to insert transgenes into the adenoviral backbone. More recently, however, the reintroduction of the E3 region into oncolytic adenoviruses has been found to positively influence antitumor efficacy in preclinical models and clinical trials. In the studies reported here, the granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA sequence has been substituted for the E3-gp19 gene in oncolytic adenoviruses that otherwise retained the E3 region. Five viruses that differed slightly in the method of transgene insertion were generated and compared to Ar6pAE2fGmF (E2F/GM/DeltaE3), a previously described E3-deleted oncolytic adenovirus encoding GM-CSF. In all of the viruses, the human E2F-1 promoter regulated E1A expression and GM-CSF expression was under the control of the adenoviral E3 promoter and the packaging signal was relocated immediately upstream from the right terminal repeat. The E3-gp19-deleted viruses had similar cytolytic properties, as measured in vitro by cytotoxicity assays, but differed markedly in their capacity to express and secrete GM-CSF. Ar15pAE2fGmF (E2F/GM/E3b), the virus that produced the highest levels of GM-CSF and retained the native GM-CSF leader sequence, was selected for further analysis. The E2F/GM/E3b and E2F/GM/DeltaE3 viruses exhibited similar cytotoxic activity and GM-CSF production in several tumor cell lines in vitro. However, when compared in vivo in nude mouse xenograft tumor models, E2F/GM/E3b spread through tumors to a greater extent, resulted in higher peak GM-CSF and total exposure levels in both tumor and serum, and was more efficacious than the E3-deleted virus. Using the matched WI-38 (parental) and WI-38-VA13 (simian virus 40 large T antigen transformed) cell pair, GM-CSF was shown to be selectively produced in cells expressing high levels of E2F, indicating that the tumor-selective E2F promoter controlled E1A and GM-CSF expression.
Collapse
Affiliation(s)
- Mingzhu Zhu
- Immunology Program, Oncology Unit, Genetic Therapy, Inc., Bethesda, MD 20817, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Purkayastha A, Su J, Carlisle S, Tibbetts C, Seto D. Genomic and bioinformatics analysis of HAdV-7, a human adenovirus of species B1 that causes acute respiratory disease: implications for vector development in human gene therapy. Virology 2005; 332:114-29. [PMID: 15661145 DOI: 10.1016/j.virol.2004.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 07/25/2004] [Accepted: 10/26/2004] [Indexed: 01/11/2023]
Abstract
Human adenovirus serotype 7 (HAdV-7) is a reemerging pathogen identified in acute respiratory disease (ARD), particularly in epidemics affecting basic military trainee populations of otherwise healthy young adults. The genome has been sequenced and annotated (GenBank accession no. ). Comparative genomics and bioinformatics analyses of the HAdV-7 genome sequence provide insight into its natural history and phylogenetic relationships. A putative origin of HAdV-7 from a chimpanzee host is observed. This has implications within the current biotechnological interest of using chimpanzee adenoviruses as vectors for human gene therapy and DNA vaccine delivery. Rapid genome sequencing and analyses of this species B1 member provide an example of exploiting accurate low-pass DNA sequencing technology in pathogen characterization and epidemic outbreak surveillance through the identification, validation, and application of unique pathogen genome signatures.
Collapse
Affiliation(s)
- Anjan Purkayastha
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
One of the prerequisites for the successful application of gene vaccination and therapy is the development of efficient gene delivery vectors. The rate-limiting nature of vectors was clearly manifested during the first wave of gene therapy testing, resulting in the demand for more effective and suitable vector systems. Adenoviral (Ad) vectors have recently played a central role in the development of gene-vector technology due to their practical advantages and potential applications. A large number of preclinical and clinical studies both have generated an overwhelming amount of data and literature on this vector system. It is the intention of this article to provide a systematic and broad spectrum review of this system, outlining the principle, potential, and limitations, and evaluating the rational development of this delivery approach. Recombinant adenoviruses (Ad), helper cell lines, and related technologies have been developed and applied to many indications owing to progress in virological research, molecular and cellular biology, eukaryotic protein expression, recombinant vaccines, and gene therapy. The technical depth this article covers should be useful to both the experienced researcher and to beginners in this field.
Collapse
Affiliation(s)
- W W Zhang
- Gene Therapy Unit, Baxter Healthcare Corporation, Route 120 & Wilson Road, WG2-3S, Round Lake, IL 60073-0490, USA
| |
Collapse
|
26
|
Purkayastha A, Ditty SE, Su J, McGraw J, Hadfield TL, Tibbetts C, Seto D. Genomic and bioinformatics analysis of HAdV-4, a human adenovirus causing acute respiratory disease: implications for gene therapy and vaccine vector development. J Virol 2005; 79:2559-72. [PMID: 15681456 PMCID: PMC546560 DOI: 10.1128/jvi.79.4.2559-2572.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 10/13/2004] [Indexed: 11/20/2022] Open
Abstract
Human adenovirus serotype 4 (HAdV-4) is a reemerging viral pathogenic agent implicated in epidemic outbreaks of acute respiratory disease (ARD). This report presents a genomic and bioinformatics analysis of the prototype 35,990-nucleotide genome (GenBank accession no. AY594253). Intriguingly, the genome analysis suggests a closer phylogenetic relationship with the chimpanzee adenoviruses (simian adenoviruses) rather than with other human adenoviruses, suggesting a recent origin of HAdV-4, and therefore species E, through a zoonotic event from chimpanzees to humans. Bioinformatics analysis also suggests a pre-zoonotic recombination event, as well, between species B-like and species C-like simian adenoviruses. These observations may have implications for the current interest in using chimpanzee adenoviruses in the development of vectors for human gene therapy and for DNA-based vaccines. Also, the reemergence, surveillance, and treatment of HAdV-4 as an ARD pathogen is an opportunity to demonstrate the use of genome determination as a tool for viral infectious disease characterization and epidemic outbreak surveillance: for example, rapid and accurate low-pass sequencing and analysis of the genome. In particular, this approach allows the rapid identification and development of unique probes for the differentiation of family, species, serotype, and strain (e.g., pathogen genome signatures) for monitoring epidemic outbreaks of ARD.
Collapse
MESH Headings
- Adenovirus Infections, Human/epidemiology
- Adenovirus Infections, Human/prevention & control
- Adenovirus Infections, Human/therapy
- Adenoviruses, Human/classification
- Adenoviruses, Human/genetics
- Adenoviruses, Human/pathogenicity
- Cell Line, Tumor
- Computational Biology
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Genetic Therapy
- Genome, Viral
- Humans
- Molecular Sequence Data
- Phylogeny
- Respiratory Tract Infections/epidemiology
- Respiratory Tract Infections/prevention & control
- Respiratory Tract Infections/transmission
- Respiratory Tract Infections/virology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
Collapse
Affiliation(s)
- Anjan Purkayastha
- School of Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Blvd., Manassas, VA 20110, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Lauer KP, Llorente I, Blair E, Seto J, Krasnov V, Purkayastha A, Ditty SE, Hadfield TL, Buck C, Tibbetts C, Seto D. Natural variation among human adenoviruses: genome sequence and annotation of human adenovirus serotype 1. J Gen Virol 2004; 85:2615-2625. [PMID: 15302955 DOI: 10.1099/vir.0.80118-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The 36,001 base pair DNA sequence of human adenovirus serotype 1 (HAdV-1) has been determined, using a 'leveraged primer sequencing strategy' to generate high quality sequences economically. This annotated genome (GenBank AF534906) confirms anticipated similarity to closely related species C (formerly subgroup), human adenoviruses HAdV-2 and -5, and near identity with earlier reports of sequences representing parts of the HAdV-1 genome. A first round of HAdV-1 sequence data acquisition used PCR amplification and sequencing primers from sequences common to the genomes of HAdV-2 and -5. The subsequent rounds of sequencing used primers derived from the newly generated data. Corroborative re-sequencing with primers selected from this HAdV-1 dataset generated sparsely tiled arrays of high quality sequencing ladders spanning both complementary strands of the HAdV-1 genome. These strategies allow for rapid and accurate low-pass sequencing of genomes. Such rapid genome determinations facilitate the development of specific probes for differentiation of family, serotype, subtype and strain (e.g. pathogen genome signatures). These will be used to monitor epidemic outbreaks of acute respiratory disease in a defined test bed by the Epidemic Outbreak Surveillance (EOS) project.
Collapse
Affiliation(s)
- Kim P Lauer
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Isabel Llorente
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Eric Blair
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Jason Seto
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Vladimir Krasnov
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Anjan Purkayastha
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- HQ USAF Surgeon General Office, Directorate of Modernization (SGR), 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Susan E Ditty
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Division of Microbiology, Department of Infectious and Parasitic Diseases Pathology, Armed Forces Institute of Pathology, 5300 Georgia Avenue NW, Washington, DC 20306, USA
| | - Ted L Hadfield
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Division of Microbiology, Department of Infectious and Parasitic Diseases Pathology, Armed Forces Institute of Pathology, 5300 Georgia Avenue NW, Washington, DC 20306, USA
| | - Charles Buck
- Department of Virology, American Type Culture Collection (ATCC), Manassas, VA 20108, USA
| | - Clark Tibbetts
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- HQ USAF Surgeon General Office, Directorate of Modernization (SGR), 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
| | - Donald Seto
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- HQ USAF Surgeon General Office, Directorate of Modernization (SGR), 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| |
Collapse
|
28
|
Flaherty DM, Hinde SL, Monick MM, Powers LS, Bradford MA, Yarovinsky T, Hunninghake GW. Adenovirus vectors activate survival pathways in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L393-401. [PMID: 15107295 DOI: 10.1152/ajplung.00359.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway epithelial cells are often the sites of targeted adenovirus vector delivery. Activation of the host inflammatory response and modulation of signal transduction pathways by adenovirus vectors have been previously documented, including activation of MAP kinases and phosphatidylinositol 3-kinase (PI3-kinase). The effect of activation of these pathways by adenovirus vectors on cell survival has not been examined. Both the PI3-kinase/Akt and ERK/MAP kinase signaling pathways have been linked to cell survival. Akt has been found to play a role in cell survival and apoptosis through its downstream effects on apoptosis-related proteins. Constitutive activation of either PI3-kinase or Akt blocks apoptosis induced by c-Myc, UV radiation, transforming growth factor-β, Fas, and respiratory syncytial virus infection. We examined the effect of adenovirus vector infection on activation of these prosurvival pathways and its downstream consequences. Airway epithelial cells were transduced with replication-deficient adenoviral vectors containing a nonspecific transgene, green fluorescent protein driven by the cytomegalovirus promoter, or an empty vector with no transgene. They were then exposed to the proapoptotic stimulus actinomycin D plus TNF-α, and evidence of apoptosis was evaluated. Compared with the cells treated with actinomycin/TNF alone, the adenovirus vector-infected cells had a 50% reduction in apoptosis. When we examined induction of the prosurvival pathways, ERK and AKT, in the viral vector-infected cells, we found that there was significant activation of both Akt and ERK.
Collapse
Affiliation(s)
- Dawn M Flaherty
- Department of Internal Medicine, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa 52242, USA. )
| | | | | | | | | | | | | |
Collapse
|
29
|
Ursu K, Harrach B, Matiz K, Benkő M. DNA sequencing and analysis of the right-hand part of the genome of the unique bovine adenovirus type 10. J Gen Virol 2004; 85:593-601. [PMID: 14993642 DOI: 10.1099/vir.0.19697-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prototype strain of bovine adenovirus (BAdV) type 10 and four additional isolates that were indistinguishable in serum-neutralization tests have been shown to have remarkable variation in their genome size and restriction maps. In the present study, more than 40 % of the DNA sequence of the BAdV-10 isolate with the longest genome was determined. A biased base composition resulting in low (<41 %) GC content was noticed. Analysis of the genes of the DNA-binding protein, 100K, 33K, pVIII and fibre proteins, as well as early regions E3 and E4, which are encoded by the genome fragment examined, confirmed that BAdV-10 is different from the other known BAdV types regarding its phylogenetic distance and the organization of its exceptionally short E3 region, apparently containing only two genes. A comparative analysis of the E3 and E4 regions of BAdV-10 with various animal adenoviruses revealed interesting features accounting for the very short genome of BAdV-10. In the examined BAdV-10 isolate, duplicated sequences were localized in and around the fibre gene. Since BAdV-10 appears to be pathogenic to cattle and is genetically distant from the other BAdVs, we suggest that BAdV-10 is not a genuine bovine virus, but has recently switched host and is now undergoing an adaptation process in its new host. In accordance with this hypothesis, the remarkable predominance of AT-rich codons along with the variable fibre gene might be signs of adaptation.
Collapse
Affiliation(s)
- Krisztina Ursu
- Central Veterinary Institute, PO Box 2, H-1581 Budapest, Hungary
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, PO Box 18, H-1581 Budapest, Hungary
| | - Balázs Harrach
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, PO Box 18, H-1581 Budapest, Hungary
| | - Katalin Matiz
- Veterinary Institute of Debrecen, PO Box 51, H-4002 Debrecen, Hungary
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, PO Box 18, H-1581 Budapest, Hungary
| | - Mária Benkő
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, PO Box 18, H-1581 Budapest, Hungary
| |
Collapse
|
30
|
Yamanouchi J, Verdaguer J, Han B, Amrani A, Serra P, Santamaria P. Cross-priming of diabetogenic T cells dissociated from CTL-induced shedding of beta cell autoantigens. THE JOURNAL OF IMMUNOLOGY 2004; 171:6900-9. [PMID: 14662897 DOI: 10.4049/jimmunol.171.12.6900] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cross-presentation of self Ags by APCs is key to the initiation of organ-specific autoimmunity. As MHC class I molecules are essential for the initiation of diabetes in nonobese diabetic (NOD) mice, we sought to determine whether the initial insult that allows cross-presentation of beta cell autoantigens in diabetes is caused by cognate interactions between naive CD8(+) T cells and beta cells. Naive splenic CD8(+) T cells from transgenic NOD mice expressing a diabetogenic TCR killed peptide-pulsed targets in the absence of APCs. To ascertain the role of CD8(+) T cell-induced beta cell lysis in the initiation of diabetes, we expressed a rat insulin promoter (RIP)-driven adenovirus E19 transgene in NOD mice. RIP-E19 expression inhibited MHC class I transport exclusively in beta cells and rendered these cells resistant to lysis by CD8(+) (but not CD4(+)) T cells, both in vitro and in vivo. Surprisingly, RIP-E19 expression impaired the accumulation of CD8(+) T cells in islets and delayed the onset of islet inflammation, without affecting the timing or magnitude of T cell cross-priming in the pancreatic lymph nodes, which is the earliest known event in diabetogenesis. These results suggest that access of beta cell autoantigens to the cross-presentation pathway in diabetes is T cell independent, and reveal a previously unrecognized function of MHC class I molecules on target cells in autoimmunity: local retention of disease-initiating clonotypes.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- Antigens, CD7/biosynthesis
- Autoantigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Communication/genetics
- Cell Communication/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Crosses, Genetic
- Cytotoxicity, Immunologic/genetics
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Disease Progression
- Fas Ligand Protein
- Female
- Interphase/genetics
- Interphase/immunology
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Ligands
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymphocyte Activation/genetics
- Male
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Protein Transport/genetics
- Protein Transport/immunology
- Receptors, Antigen, T-Cell/genetics
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Jun Yamanouchi
- Julia McFarlane Diabetes Research Centre and Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Bollard CM, Kuehnle I, Leen A, Rooney CM, Heslop HE. Adoptive immunotherapy for posttransplantation viral infections. Biol Blood Marrow Transplant 2004; 10:143-55. [PMID: 14993880 DOI: 10.1016/j.bbmt.2003.09.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Viral diseases are a major cause of morbidity and mortality after hemopoietic stem cell transplantation. Because viral complications in these patients are clearly associated with the lack of recovery of virus-specific cellular immune responses, reconstitution of the host with in vitro expanded cytotoxic T lymphocytes is a potential approach to prevent and treat these diseases. Initial clinical studies of cytomegalovirus and Epstein-Barr virus in human stem cell transplant patients have shown that adoptively transferred donor-derived virus-specific T cells may restore protective immunity and control established infections. Preclinical studies are evaluating this approach for other viruses while strategies for generating T cells specific for multiple viruses to provide broader protection are being evaluated in clinical trials. The use of genetically modified T cells or the use of newer suicide genes may result in improved safety and efficacy.
Collapse
Affiliation(s)
- Catherine M Bollard
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
32
|
Moise AR, Grant JR, Lippé R, Gabathuler R, Jefferies WA. The adenovirus E3-6.7K protein adopts diverse membrane topologies following posttranslational translocation. J Virol 2004; 78:454-63. [PMID: 14671125 PMCID: PMC303379 DOI: 10.1128/jvi.78.1.454-463.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The E3 region of adenovirus codes for several membrane proteins, most of which are involved in immune evasion and prevention of host cell apoptosis. We explored the topology and targeting mechanisms of E3-6.7K, the most recently described member of this group, by using an in vitro translation system supplemented with microsomes. Here, we present evidence that E3-6.7K, one of the smallest signal-anchor proteins known, translocates across the membrane of the endoplasmic reticulum in a posttranslational, ribosome-independent, yet ATP-dependent manner, reminiscent of the translocation of tail-anchored proteins. Our analysis also demonstrated that E3-6.7K could achieve several distinct topological fates. In addition to the previously postulated type III orientation (N-luminal/C-cytoplasmic, termed NtmE3-6.7K), we detected a tail-anchored form adopting the opposite orientation (N-cytoplasmic/C-luminal, termed CtmE3-6.7K) as well as the possibility of a fully translocated form (N and C termini are both translocated, termed NCE3-6.7K). Due to the translocation of a positively charged domain, both the CtmE3-6.7K and NCE3-6.7K topologies of E3-6.7K constitute exceptions to the "positive inside" rule. The NtmE3-6.7K and NCE3-6.7K are the first examples of posttranslationally translocated proteins in higher eukaryotes that are not tail anchored. Distinct topological forms were also found in transfected cells, as both N and C termini of E3-6.7K were detected on the extracellular surface of transfected cells. The demonstration of unexpected topological forms and translocation mechanisms for E3-6.7K defies conventional thinking about membrane protein topogenesis and advises that both the mode of targeting and topology of signal-anchor proteins should be determined experimentally.
Collapse
Affiliation(s)
- Alexander R Moise
- Departments of Medical Genetics, Microbiology and Immunology, and Zoology, Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
33
|
Abstract
Flaviviruses cause pleomorphic disease with significant morbidity and mortality worldwide. Interestingly, in contrast to most viruses, which subvert or avoid host immune systems, members of the neurotropic Japanese encephalitis serocomplex cause functional changes associated with increased efficacy of the immune response. These viruses induce increased cell surface expression of immune recognition molecules, including class I and II major histocompatibility complex (MHC) and various adhesion molecules. Increases are functional: infected cells are significantly more susceptible to both virus- and MHC-specific cytotoxic T cell lysis. Induced changes are modulated positively or negatively by Th1 and Th2 cytokines, as well as by cell cycle position and adherence status at infection. Infection also increases costimulatory molecule expression on Langerhans cells in the skin. Local interleukin-1 beta production causes accelerated migration of phenotypically altered Langerhans cells to local draining lymph nodes, where initiation of antiviral immune responses occur. The exact mechanism(s) of upregulation is unclear, but changes are associated with NF-kappa B activation and increased MHC and ICAM-1 gene transcription, independently of interferon (IFN) or other proinflammatory cytokines. Increased MHC and adhesion molecule expression may contribute to the pathogenesis of flavivirus encephalitis. Results from a murine model of flavivirus encephalitis developed in this laboratory suggest that fatal disease is immunopathological in nature, with IFN-gamma playing a crucial role. We hypothesize that these viruses may decoy the adaptive immune system into generating low-affinity T cells, which clear virus poorly, as part of their survival strategy. This may enable viral growth and immune escape in cycling cells, which do not significantly upregulate cell surface molecules.
Collapse
Affiliation(s)
- Nicholas J King
- Department of Pathology, Institute of Biomedical Research, School of Medical Sciences, University of Sydney 2006, New South Wales, Australia
| | | | | |
Collapse
|
34
|
Radosevich TJ, Seregina T, Link CJ. Effective Suppression of Class I Major Histocompatibility Complex Expression by the US11 or ICP47 Genes Can Be Limited by Cell Type or Interferon-γExposure. Hum Gene Ther 2003; 14:1765-75. [PMID: 14670127 DOI: 10.1089/104303403322611773] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An impediment encountered in many viral-based gene therapy clinical trials has been the rapid destruction of the transgene by the host's immune response. The processing and presentation of antigens through the class I major histocompatibility complex (MHC) pathway is the initial specific response to viral infection. Disruption of the class I MHC pathway by herpes simplex virus (HSV) or the human cytomegalovirus (HCMV) results in a decrease of the CD8(+) cytotoxic T lymphocyte (CTL) response and prolongs survival of infected cells in the host. Two viral immune suppression genes that interfere with the class I MHC presentation pathway, the HSV type I ICP47 gene and HCMV US11 gene, were cloned and each incorporated into a retroviral vector. HSV ICP47 and HCMV US11 transgenes were expressed in multiple cells lines and compared for their abilities to reduce antigen presentation on the cell surface by class I MHC. Retroviral supernatants were used to transduce human, canine, and rat cell lines. Fluorescence-activated cell sorter (FACS) analysis of US11- and ICP47-transduced cell lines demonstrated substantial reductions in class I MHC cell surface expression in most cell lines except in rodent cells where ICP47 is nonfunctional. The decrease in the level of class I MHC expression for ICP47 transduced cell lines ranged from 31-98% relative to negative controls. US11 decreased class I cell surface MHC by 67-96%. When both ICP47 and US11 are expressed in human cells, a further reduction of class I MHC was observed. Next, human A375 melanoma cells were tested to determine if the resulting reduction in cell surface class I MHC would reduce in vitro cytotoxicity by CTL. A375 cells expressing either ICP47 or US11 demonstrated a twofold to threefold reduction of specific lysis by primed CD8(+) CTL. These data clearly establish an ability to convey immune protection to human cells by viral genes. However, further analysis demonstrated that interferon (IFN)-gamma could reverse part or all of the downregulation of class I MHC induced by the ICP47 or US11 genes. The ICP47 and US11 genes, when expressed in target cells, decrease class I MHC presentation and as such might be used in strategies to create local immunosuppression against transgenes or allografts.
Collapse
|
35
|
Abstract
This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a 'leader-exon structure', which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Mária Benkő
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, Hungary
| | - Balázs Harrach
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, Hungary
| |
Collapse
|
36
|
Leen AM, Sili U, Savoldo B, Jewell AM, Piedra PA, Brenner MK, Rooney CM. Fiber-modified adenoviruses generate subgroup cross-reactive, adenovirus-specific cytotoxic T lymphocytes for therapeutic applications. Blood 2003; 103:1011-9. [PMID: 14525768 DOI: 10.1182/blood-2003-07-2449] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus (Ad) infections are responsible for considerable morbidity and mortality, particularly in pediatric hematopoietic stem cell transplant (HSCT) recipients. To date there is no therapy. The present study was motivated by the potential for using adoptive immunotherapy as either prophylaxis or treatment for Ad infections and associated diseases. The authors have developed a protocol to reactivate Ad-specific memory T cells from peripheral blood mononuclear cells (PBMCs) using a clinical-grade adenoviral vector. Such lines contain a specific CD4 and CD8 T-cell component and are capable of recognizing and lysing target cells infected with wild-type Ad serotypes from different Ad groups. Furthermore, the frequency of Ad-specific precursors can be determined in PBMCs ex vivo and used as a means to assess changes in Ad-specific T-cell memory responses after infusion. This is the first report of a simple and reproducible method to activate and expand Ad-specific cytotoxic T lymphocytes (CTLs), which should be protective against the range of different Ad subtypes that affect transplant recipients.
Collapse
Affiliation(s)
- Ann M Leen
- Center for Cell and Gene Therapy, Department of Pediatrics, 6621 Fannin S, MC 3-3320, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Dendritic cells (DCs) constitute a specialised system of antigen-presenting cells with a high capacity to induce and to modulate the immune response against microbial, tumour and self-antigens. New techniques to generate large amounts of DCs together with the molecular identification of human tumour-associated antigens (TAA) have opened new ways for antigen-specific cancer immunotherapies. DCs loaded either with TAA-derived MHC class I-specific synthetic peptides or with whole tumour cell preparations have been used in numerous clinical trials evaluating the efficacy of DCs in patients with cancer. However, the disadvantages of DCs pulsed with synthetic peptides from TAA include the uncertainty regarding the longevity of antigen presentation, the restriction by the patient's haplotype and the relatively low number of known MHC class I and in particular of MHC class II helper cell-related epitopes. Whole tumour cell preparations are difficult to standardise, and they depend on the availability of tumour cells. Thus the utilisation of viral vectors genetically modified to express TAA for the ex vivo transduction of DCs is an attractive alternative to achieve a MHC I- and MHC II-restricted presentation of tumoural antigens. To induce protective anti-tumoural immune response an increasing number of modified viral vectors have been used to transduce DCs. Although high transduction efficacies were reported for several viruses, analysis of the interaction of viral vectors with DCs has revealed several viral mechanisms that interfere with main functions of DCs, dampening somewhat the initial optimism in the field of DC transduction. However, promising results with different vectors have been achieved. In this review we summarise available data and discuss advantages and drawbacks of currently available vectors.
Collapse
Affiliation(s)
- J Humrich
- Department of Dermatology, University of Erlangen, Hartmannstrasse 14, 91052 Erlangen, Germany
| | | |
Collapse
|
38
|
Cao W, Bao C, Lowenstein CJ. Inducible nitric oxide synthase expression inhibition by adenovirus E1A. Proc Natl Acad Sci U S A 2003; 100:7773-8. [PMID: 12808130 PMCID: PMC164663 DOI: 10.1073/pnas.1337185100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) is an antiviral effector of the innate immune system. Viruses that can interfere with NO synthesis may be able to replicate more rapidly than viruses that cannot limit NO synthesis. We show that the adenovirus E1A protein inhibits NO production by decreasing expression of the inducible NO synthase (NOS2). The amino-terminal portion of E1A decreases transactivation of the NOS2 5'-flanking region, limiting the DNA binding activity of NF-kappaB and inhibiting NOS2 expression. E1A is thus able to deactivate a critical component of the host defense against viral infection. Viral inhibition of NO production is a mechanism that may enable certain viruses to evade the host innate immune system.
Collapse
Affiliation(s)
- Wangsen Cao
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
39
|
Hösel M, Webb D, Schröer J, Doerfler W. The abortive infection of Syrian hamster cells with human adenovirus type 12. Curr Top Microbiol Immunol 2003; 272:415-40. [PMID: 12747558 DOI: 10.1007/978-3-662-05597-7_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Human adenovirus type 12 (Ad12) induces undifferentiated tumors in newborn Syrian hamsters, and this tumor model has been investigated in detail in our laboratory. One of the characteristics of the Ad12-hamster cell system is a strictly abortive infection cycle. In this chapter, we summarize previous and more recent results of studies on the interaction of Ad12 with the nonpermissive BHK21 hamster cell line. The block of Ad12 replication lies before viral DNA replication and late gene transcription which cannot be detected with the most sensitive techniques. Ad12 adsorption, cellular uptake and transport of the viral DNA to the nucleus are less efficient in the nonpermissive hamster cells than in permissive human cells. However, most of the early functions of the Ad12 genome are expressed in BHK21 cells, though at a low level. In the downstream region, the first exon, of the major late promoter (MLP) of Ad12 DNA, a mitigator element of 33 nucleotide pairs in length has been identified which contributes to the inactivity of the MLP in hamster cells and its markedly decreased activity in human cells. The E1 functions of Ad2 or Ad5 are capable of partly complementing the Ad12 deficiencies in hamster cells in that Ad12 viral DNA replication and late gene transcription can proceed, e.g. in a BHK hamster cell line, BHK297-C131,which carries in an integrated form and constitutively expresses the E1 region of Ad5 DNA. Nevertheless, the late Ad12 mRNAs, which are synthesized in this system with the authentic nucleotide sequence, fail to be translated to structural viral proteins. Hence, infectious virions are not produced in the partly complementing system. Probably there is also a translational block for late Ad12 mRNAs in hamster cells. We have recently shown that the overexpression of the Ad12 preterminal protein (pTP) gene or of the E1A gene facilitates the synthesis of full-length, authentic Ad12 DNA in BHK21 cells infected with Ad12. Apparently the pTP has a hitherto unknown function in eliciting full cycles of Ad12 DNA replication even in nonpermissive BHK21 cells when sufficient levels of Ad12 pTP are produced. We pursue the possibility that the completely abortive infection cycle of Ad12 in hamster cells ensures the survival of Ad12-induced hamster tumor cells which all carry, integrated in their genomes, multiple copies of Ad12 DNA. In this way, the viral genomes are immortalized and expanded in a huge number of tumor cells.
Collapse
Affiliation(s)
- M Hösel
- Institut für Genetik, Universität zu Köln, 50931 Köln, Germany.
| | | | | | | |
Collapse
|
40
|
Bristol JA, Zhu M, Ji H, Mina M, Xie Y, Clarke L, Forry-Schaudies S, Ennist DL. In vitro and in vivo activities of an oncolytic adenoviral vector designed to express GM-CSF. Mol Ther 2003; 7:755-64. [PMID: 12788649 DOI: 10.1016/s1525-0016(03)00103-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oncolytic adenoviruses are being tested as biological cancer therapeutics. Ar6pAE2fF (E2F vector) contains the E2F-1 promoter to regulate the expression of the E1a gene in cells with a disregulated retinoblastoma pathway. Ar6pAE2fmGmF (E2F-GM vector) includes the murine granulocyte-macrophage colony-stimulating factor (GM-CSF) transgene to enhance anti-tumor activity. Both vectors selectively killed human tumor cells in vitro. The E2F-GM vector expressed biologically active murine GM-CSF in vitro and GM-CSF was detected for several days in serum and tumor extracts following injections of established human xenograft tumors. In vivo, both vectors showed significant dose-dependent anti-tumor responses. The E2F-GM vector elicited greater efficacy compared to the E2F vector, demonstrating that GM-CSF enhanced the anti-tumor activity, even in immunodeficient nude mice. Histological analysis showed that both vectors induced necrosis and mononuclear cell infiltration, but only the E2F-GM vector resulted in eosinophil infiltration. Vector replication in vivo was demonstrated. The data showed that intratumoral injection of a GM-CSF-armed oncolytic vector induced potent anti-tumor responses in xenograft tumor models, likely as the result of both oncolytic vector activity and the induction of GM-CSF-mediated inflammation and innate immunity.
Collapse
Affiliation(s)
- J Andrew Bristol
- Oncology Unit, Genetic Therapy, Inc., A Novartis Company, 9 West Watkins Mill Road, Gaithersburg, Maryland 20878, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pierce MA, Chapman HD, Post CM, Svetlanov A, Efrat S, Horwitz M, Serreze DV. Adenovirus early region 3 antiapoptotic 10.4K, 14.5K, and 14.7K genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 2003; 52:1119-27. [PMID: 12716741 DOI: 10.2337/diabetes.52.5.1119] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genes in the early region 3 (E3) of the adenovirus genome allow the virus to evade host immune responses by interfering with major histocompatibility (MHC) class I-mediated antigen presentation and tumor necrosis factor-alpha (TNF-alpha)- or Fas-induced apoptosis of infected cells. Autoimmune type 1 diabetes (T1D) is inhibited in NOD mice transgenically expressing all E3 genes under control of a rat insulin promoter (RIPE3/NOD). For dissecting the protective mechanisms afforded by various E3 genes, they were subdivided into RIP-driven transgene constructs. Strong T1D protection mediated at the beta-cell level characterized DL704/NOD mice lacking the E3 gp19K gene suppressing MHC class I expression but retaining the 10.4K, 14.5K, and 14.7K genes inhibiting Fas- or TNF-alpha-induced apoptosis and TNF-alpha-induced NF-kB activation. Much weaker protection characterized DL309/NOD mice expressing the gp19K but not the 10.4K, 14.5K, and 14.7K genes. While RIPE3/NOD splenocytes had an unexpected decrease in ability to adoptively transfer T1D, splenocytes from both the DL704 and DL309 stocks efficiently did so. These findings indicate that all E3 genes must be expressed to inhibit the diabetogenic potential of NOD immune cells. They also demonstrate that the antiapoptotic E3 genes most effectively protect pancreatic beta-cells from diabetogenic immune responses.
Collapse
Affiliation(s)
- Melissa A Pierce
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Stone D, Furthmann A, Sandig V, Lieber A. The complete nucleotide sequence, genome organization, and origin of human adenovirus type 11. Virology 2003; 309:152-65. [PMID: 12726735 DOI: 10.1016/s0042-6822(02)00085-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The complete DNA sequence and transcription map of human adenovirus type 11 are reported here. This is the first published sequence for a subgenera B human adenovirus and demonstrates a genome organization highly similar to those of other human adenoviruses. All of the genes from the early, intermediate, and late regions are present in the expected locations of the genome for a human adenovirus. The genome size is 34,794 bp in length and has a GC content of 48.9%. Sequence alignment with genomes of groups A (Ad12), C (Ad5), D (Ad17), E (Simian adenovirus 25), and F (Ad40) revealed homologies of 64, 54, 68, 75, and 52%, respectively. Detailed genomic analysis demonstrated that Ads 11 and 35 are highly conserved in all areas except the hexon hypervariable regions and fiber. Similarly, comparison of Ad11 with subgroup E SAV25 revealed poor homology between fibers but high homology in proteins encoded by all other areas of the genome. We propose an evolutionary model in which functional viruses can be reconstituted following fiber substitution from one serotype to another. According to this model either the Ad11 genome is a derivative of Ad35, from which the fiber was substituted with Ad7, or the Ad35 genome is the product of a fiber substitution from Ad21 into the Ad11 genome. This model also provides a possible explanation for the origin of group E Ads, which are evolutionarily derived from a group C fiber substitution into a group B genome.
Collapse
Affiliation(s)
- Daniel Stone
- Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
43
|
Fischer L, Tronel JP, Pardo-David C, Tanner P, Colombet G, Minke J, Audonnet JC. Vaccination of puppies born to immune dams with a canine adenovirus-based vaccine protects against a canine distemper virus challenge. Vaccine 2003; 20:3485-97. [PMID: 12297394 DOI: 10.1016/s0264-410x(02)00344-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
None of the currently available distemper vaccines provides a satisfactory solution for the immunization of very young carnivores in the face of maternal-derived immunity. Since mucosal immunization with replication-competent adenovirus-based vaccines has been proven effective in the face of passive immunity against the vector, it has the potential to provide a solution for the vaccination of young puppies born to canine distemper virus (CDV)-immune dams. We report the engineering and the characterization of two replication-competent canine adenovirus type 2 (CAV2)-based vaccines expressing, respectively, the CDV hemagglutinin (HA) and fusion (F) antigens. We first demonstrated that the intranasal vaccination with a mixture of both recombinant CAV2s provides an excellent level of protection in seronegative puppies, confirming the value of replication-competent adenovirus-based vectors for mucosal vaccination. In contrast, intranasal immunization with the same vaccine of puppies born to CDV- and CAV2-immune dams, failed to activate specific and protective immune responses. We hypothesized that an active CAV2 infection occurred while puppies were in close contact with the vaccinated dams in the breeding units and that the resulting active mucosal immunity interfered with the intranasal administration of CAV2-based CDV vaccine. However, when puppies born to CDV- and CAV2-immune dams were vaccinated subcutaneously with the CAV2-based CDV vaccine, significant seroconversion and solid protective immunity were triggered despite pre-existing systemic immunity to the vector. This latter result is surprising and suggests that subcutaneous vaccination with a replication-competent recombinant CAV2 may be an efficient strategy to overcome both passive and active adenovirus specific immunity in the dog. From a practical point of view, this could pave the way for an original strategy to vaccinate young puppies in the face of maternal-derived immunity.
Collapse
Affiliation(s)
- Laurent Fischer
- Merial SAS, Biological Discovery Research, 254 rue Marcel Mérieux, 69007, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Li X, Tikoo SK. Genetic organization and sequence analysis of pVIII, fiber and early region 4 of bovine adenovirus type 7. Virus Genes 2003; 25:59-65. [PMID: 12206309 DOI: 10.1023/a:1020122208784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The DNA sequence of 8,810 nucleotides at the right end of bovine adenovirus type 7 (BAV7) genome was determined and compared with similar regions of other adenoviruses. This genomic region of BAV7 consists of sequences encoding partial 33K, pVIII, fiber, putative early region 4 (E4) proteins and other unassigned proteins. However, BAV7 E3 region is not present in the expected location between pVIII and fiber as BAV7 intergenic region between pVIII and fiber genes is only 183 nucleotides. The predicted pVIII and fiber demonstrates highest homology to corresponding proteins of ovine adenovirus 287 (OAV287), bovine adenovirus-4 (BAV4) and egg drop syndrome virus (EDSV). The E4 region encodes three ORFs, which shows significant homology only to corresponding proteins encoded by E4 region of OAV287 and BAV4. Sequence comparisons, phylogenetic analysis and overall genome organization in this region of BAV7 provide further evidence for the inclusion of BAV7 together with OAV287, BAV4, and EDSV in the proposed genus 'Atadenovirus'.
Collapse
Affiliation(s)
- Xiaoxin Li
- Virology Group, Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
45
|
Efrat S. Preventing type 1 diabetes mellitus: the promise of gene therapy. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 2:129-34. [PMID: 12083947 DOI: 10.2165/00129785-200202020-00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type 1 (insulin-dependent) diabetes mellitus is an autoimmune disease that has no cure. Closed-loop insulin administration strategies and approaches for replacement of the insulin-producing beta cells may offer improved treatments, which could delay or prevent diabetes complications. In the long run, however, prevention of type 1 diabetes in susceptible individuals represents the best chance for reducing the toll of the disease. Prevention of type 1 diabetes will require reliable methods for early diagnosis of predisposition to the disease, using improved genetic and serological screening on a wide scale. Identification of the primary antigenic target(s) for autoimmunity will allow intervention in prediabetes stages aimed at the induction of antigen-specific tolerance. In addition to manipulation of the immune system, the susceptibility of beta cells to autoimmunity could be reduced. A number of genes have been shown to increase beta-cell resistance to immune effector molecules in animal models and cultured beta-cell lines. These genes could be used for preventive gene therapy of type 1 diabetes mellitus if expressed in beta cells prior to the onset of autoimmune destruction. This prospect depends on the development of safe and efficient vectors, and approaches for cell-specific targeting of these vectors to beta cells in vivo.
Collapse
Affiliation(s)
- Shimon Efrat
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
46
|
Patterson LJ, Prince GA, Richardson E, Alvord WG, Kalyan N, Robert-Guroff M. Insertion of HIV-1 genes into Ad4DeltaE3 vector abrogates increased pathogenesis in cotton rats due to E3 deletion. Virology 2002; 292:107-13. [PMID: 11878913 DOI: 10.1006/viro.2001.1248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenovirus type 5 (Ad5) E3 region proteins abrogate Ad pathogenicity in the lungs of cotton rats. Our use of Ad4-HIV E3-deleted (DeltaE3) recombinants as vaccines necessitates further examination of these viruses for enhanced pathogenesis. Equivalent infectious doses of Ad4 wild-type (Ad4WT), Ad4DeltaE3, and two recombinants: Ad4DeltaE3HIVenv and Ad4DeltaE3HIVgag, were inoculated intranasally into cotton rats. Ad4 viruses did not replicate in the lungs, but caused mild pathologic effects, including peribronchiolitis, bronchitis, alveolitis, and interstitial pneumonia. As found previously for Ad5, deletion of Ad4 E3 genes resulted in increased lung pathology. Surprisingly, insertion of HIV genes into this region significantly restored protection attributed to E3 gene products, diminishing overall pathologic effects to Ad4WT levels (P < 0.0001). Similarly, following administration of equivalent particle numbers of the four viruses, only Ad4DeltaE3 caused increased overall pathology, while the two HIV recombinant viruses showed effects comparable to Ad4WT (P < 0.01). Our observation that Ad4DeltaE3HIV recombinants are as safe in cotton rats as Ad4WT encourages their continued development as AIDS vaccines.
Collapse
Affiliation(s)
- L Jean Patterson
- Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
47
|
Noda M, Yoshida T, Sakaguchi T, Ikeda Y, Yamaoka K, Ogino T. Molecular and epidemiological analyses of human adenovirus type 7 strains isolated from the 1995 nationwide outbreak in Japan. J Clin Microbiol 2002; 40:140-5. [PMID: 11773107 PMCID: PMC120110 DOI: 10.1128/jcm.40.1.140-145.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus type 7 (Ad7) isolates from the 1995 nationwide outbreak in Japan were genetically and seroepidemiologically analyzed in comparison with Japanese Ad7 strains isolated before 1995 to determine their genome type and to speculate on their origin and causative factors of the outbreak. Twenty-six Ad7 isolates from the outbreak were identified by restriction enzyme analysis as the Ad7d2 genome type, while 22 Ad7 strains sporadically isolated in Japan before 1995 were identified as Ad7d. Partial nucleotide sequencing of the E3 region of Ad7d2 revealed a nucleotide substitution of G to A at position 265, resulting in the absence of the BstEII site and making Ad7d2 distinct from Ad7d. In Hiroshima City, Japan, no Ad7 was isolated from 1982 to 1994, but 43 and 50 Ad7 strains were isolated in 1995 and 1996, respectively. A seroepidemiological study of 251 serum samples collected in 1989 in Hiroshima City showed that only 2.8% of the samples were positive for Ad7. These results indicate that the 1995 outbreak of Ad7 in Japan was caused by the Ad7d2 genome type, which might have been introduced from outside Japan. The results also suggest that the low mass immunity in Japan was critical for the outbreak and that the mutation in the E3 region in Ad7d2 may have influenced transmission.
Collapse
Affiliation(s)
- Mamoru Noda
- Department of Bacteriology, Hiroshima University School of Medicine, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Cheng AC, Wang MS, Chen XY, Guo YF, Liu ZY, Fang PF. Pathogenic and pathological characteristic of new type gosling viral enteritis first observed in China. World J Gastroenterol 2001; 7:678-84. [PMID: 11819853 PMCID: PMC4695573 DOI: 10.3748/wjg.v7.i5.678] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the purifying method and characteristics of new gosling viral enteritis virus (NGVEV), the etiological agent of new gosling viral enteritis (NGVE) which was first recognized in China, as well as the pathomorphological development in goslings infected artificially with NGVEV.
METHODS: ① NGVEV virions were purified by the procedure of treatment with chloroform and ammonium sulfate precipitation, dialysis to remove the sulfate radical and ammonium ion and separation by gel filtration chromatography, and SDS-PAGE. ② Forty 2-day-old White Sichuan goslings were orally administered with NGVEV and 24 h later 2 birds were randomly selected and killed at 24 h intervals until death occurred. Specimens (duodenum, ileum, liver, heart, kidney, spleen, lung, proventriculus, pancreas, esophagus, and the intestinal embolus) were taken until all birds in this group died and were sectioned and stained with hemotoxylin and eosin and studied by light microscope.
RESULTS: NGVEV shared the typical characteristics of Adenovirus and which structural proteins consisted of 15 polypeptides. Necrosis and sloughing of the epithelial cells covering the villus tips of the duodenum were first observed in goslings 2 d postinfection artificially with NGVEV. With the progress of infection, this lesion rapidly occurred in the epithelium at the base of the villus and with infiltration of the inflammatory cells, the jejunum tended to be involved. With the intensification of mucosa necrosis and inflammatory exudation of the small intestine, fibrinonecrotic enteritis was further developed and embolus composed of either intestinal contents wrapped by pseudomembrane or of the mixture of fibrous exudate and necrotic intestinal mucosa were observed in the middle-lower part of the small intestine. This structure occluded the intestinal tract and made the intestine dilated in appearance. The intestinal glandular cells underwent degeneration, necrosis and might be found sloughed into the lumen. Hemorrhage and hyperemia could be observed on the lung and kidney. Epithelial cells of the renal tubular underwent degeneration. In some cases, granular degeneration and fatty degeneration could be found in the liver and in some cases at a later stage of this disease the epithelial cells of trachea and proventriculus might be found sloughed. In some cases at an early stage of this disease, cardiac hyperemia and hemorrhage could be observed. Esophagus, pancreas and brain were found normal. Analyses and comparisons between the pathologic lesions of NGVE and Gosling Plague (GP) were available in this paper as well.
CONCLUSION: ① NGVEV is adenovirus. ② Pathological characteristic could be as the data for NGVE diagnosis.
Collapse
Affiliation(s)
- A C Cheng
- College of Animal Science and Veterinary Medicine, Sichuan Agricultural University, Yaan 625014, Sichuan Province, China.
| | | | | | | | | | | |
Collapse
|
49
|
Efrat S, Serreze D, Svetlanov A, Post CM, Johnson EA, Herold K, Horwitz M. Adenovirus early region 3(E3) immunomodulatory genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 2001; 50:980-4. [PMID: 11334441 DOI: 10.2337/diabetes.50.5.980] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The early three (E3) region of the adenovirus (Ad) encodes a number of immunomodulatory proteins that interfere with class I major histocompatibility-mediated antigen presentation and confer resistance to cytokine-induced apoptosis in cells infected by the virus. Transgenic expression of Ad E3 genes under the rat insulin II promoter (RIP-E3) in beta-cells in nonobese diabetic (NOD) mice decreases the incidence and delays the onset of autoimmune diabetes. The immune effector cells of RIP-E3/NOD mice maintain the ability to infiltrate the islets and transfer diabetes into NOD-scid recipients, although at a significantly reduced rate compared with wild-type littermates. The islets of RIP-E3/ NOD mice can be destroyed by adoptive transfer of splenocytes from wild-type NOD mice; however, the time to onset of hyperglycemia is delayed significantly, and 40% of these recipients were not diabetic at the end of the experiment. These findings suggest that expression of E3 genes in beta-cells affects both the activation of immune effector cells and the intrinsic resistance of beta-cells to autoimmune destruction.
Collapse
Affiliation(s)
- S Efrat
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Nemunaitis J, Cunningham C, Buchanan A, Blackburn A, Edelman G, Maples P, Netto G, Tong A, Randlev B, Olson S, Kirn D. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther 2001; 8:746-59. [PMID: 11420638 DOI: 10.1038/sj.gt.3301424] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2000] [Accepted: 12/22/2000] [Indexed: 11/09/2022]
Abstract
Although genetically engineered adenoviruses hold promise for the treatment of cancer, clinical trial reports have utilized intratumoral injection to date. To determine the feasibility of intravenous delivery of ONYX-015, an E1B-55kD gene-deleted replication selective adenovirus with demonstrated clinical safety and antitumoral activity following intratumoral injection, we performed a clinical trial in patients with metastatic solid tumors. ONYX-015 was infused intravenously at escalating doses of 2 x 10(10) to 2 x 10(13) particles via weekly infusion within 21-day cycles in 10 patients with advanced carcinoma metastatic to the lung. No dose-limiting toxicity was identified. Mild to moderate fever, rigors and a dose-dependent transient transaminitis were the most common adverse events. Neutralizing antibody titers significantly increased within 3 weeks in all patients. IL-6, gamma-IFN, TNF-alpha and IL-10 increased within 24 h following treatment. Evidence of viral replication was detectable in three of four patients receiving ONYX-015 at doses > or = 2 x 10(12) particles and intratumoral replication was confirmed in one patient. In conclusion, intravenous infusion of ONYX-015 was well tolerated at doses up to 2 x 10(13) particles and infection of metastatic pulmonary sites with subsequent intratumoral viral replication was seen. The intravenous administration of genetically altered adenovirus is a feasible approach.
Collapse
|