1
|
Hanson MA, Bibi N, Safa A, Nagarajan D, Marshall AH, Johantges AC, Wester JC. Development of Differential Sublaminar Feedforward Inhibitory Circuits in CA1 Hippocampus Requires Satb2. J Neurosci 2025; 45:e0737242024. [PMID: 39753301 PMCID: PMC11841754 DOI: 10.1523/jneurosci.0737-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif. We found that the transcriptional regulator SATB2, which is necessary for pyramidal cell differentiation in the neocortex, is selectively expressed in superficial PCs during early postnatal development. To investigate its role in CA1, we conditionally knocked out Satb2 from pyramidal cells during embryonic development using both male and female Emx1IRES-Cre; Satb2flox/flox mice. Loss of Satb2 resulted in increased feedforward inhibition of CA3 Schaffer collateral input to superficial PCs, which matched that observed to deep PCs in control mice. Using paired whole-cell recordings between PCs and PV+ interneurons, we found this was due to an increase in the strength of unitary inhibitory synaptic connections from PV+ interneurons to mutant superficial PCs. Regulation of synapse strength was restricted to inhibitory synapses; excitatory synaptic connections from CA3 to CA1 PCs and CA1 PCs to PV+ interneurons were not affected by loss of Satb2 Finally, we show that SATB2 expression in superficial PCs is necessary to suppress the formation of synapses from PV+ interneurons during synaptogenesis. Thus, early postnatal expression of SATB2 in superficial PCs is necessary for the development of biased feedforward inhibition in CA1.
Collapse
Affiliation(s)
- Meretta A Hanson
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Noor Bibi
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Alireza Safa
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Devipriyanka Nagarajan
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Alec H Marshall
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Aidan C Johantges
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Jason C Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
2
|
Ivlev AP, Naumova AA. Postnatal development of the hippocampal GABAergic system in rats genetically prone to audiogenic seizures. Int J Dev Neurosci 2023; 83:703-714. [PMID: 37655366 DOI: 10.1002/jdn.10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
Epileptogenesis can be associated with altered genetic control of the GABAergic system. Here we analyzed Krushinsky-Molodkina (KM) rats genetically prone to audiogenic epilepsy. KM rats express fully formed audiogenic seizures (AGSs) not early, then they reach 3 months. At the age of 1-2 months, KM rats either do not express AGS or demonstrate an incomplete pattern of seizure. Such long-term development of AGS susceptibility makes KM rats an especially convenient model to investigate the mechanisms and dynamics of the development of inherited epilepsy. The analysis of the GABAergic system of the hippocampus of KM rats was done during postnatal development at the 15th, 60th, and 120th postnatal days. Wistar rats of corresponding ages were used as a control. In the hippocampus of KM pups, we observed a decrease in the expression of glutamic acid decarboxylase 67 (GAD67) and parvalbumin (PV), which points to a decrease in the activity of GABAergic neurons. Analysis of the 2-month-old KM rats showed an increase in GAD67 and PV expression while synapsin I and vesicular GABA transporter (VGAT) were decreased. In adult KM rats, the expression of GAD67, PV, and synapsin I was upregulated. Altogether, the obtained data indicate significant alterations in GABAergic transmission in the hippocampus of audiogenic KM rats during the first postnatal months.
Collapse
Affiliation(s)
- Andrey P Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
3
|
Ohta KI, Suzuki S, Warita K, Kaji T, Kusaka T, Miki T. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development. J Neurochem 2017; 141:179-194. [PMID: 28178750 DOI: 10.1111/jnc.13977] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 12/18/2022]
Abstract
Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood.
Collapse
Affiliation(s)
- Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tomohiro Kaji
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
4
|
Excitotoxic neonatal damage induced by monosodium glutamate reduces several GABAergic markers in the cerebral cortex and hippocampus in adulthood. Int J Dev Neurosci 2009; 27:845-55. [DOI: 10.1016/j.ijdevneu.2009.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/07/2009] [Accepted: 07/29/2009] [Indexed: 11/23/2022] Open
|
5
|
Brewer GJ, Boehler MD, Ide AN, Wheeler BC. Chronic electrical stimulation of cultured hippocampal networks increases spontaneous spike rates. J Neurosci Methods 2009; 184:104-9. [PMID: 19666055 DOI: 10.1016/j.jneumeth.2009.07.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 11/26/2022]
Abstract
We chronically stimulated hippocampal networks in culture for either 0, 1 or 3h/day between 7 and 22 days in culture in an effort to increase spontaneous spike rates and to give these networks some portion of external stimuli that brain networks receive during their formation. Chronic electrical stimulation of hippocampal networks on multi-electrode arrays (MEAs) increased spike rates 2-fold after 3 weeks of culture compared to cultures that received no external stimulation prior to recording. More than 90% of the spikes for all experimental conditions occurred within bursts. The frequency of spikes within a burst increased with time of stimulation during culture up to 2-fold higher (90Hz) compared to networks without chronic stimulation. However, spontaneous overall spike rates did not correlate well with the amount of stimulation either as h/day or proximity to the limited number of stimulation sites due to shorter burst duration with 3h/day stimulation. The results suggest that chronic stimulation applied during network development recruits activity at 50% more electrodes and enables higher rates of spontaneous activity within bursts in cultured hippocampal networks.
Collapse
Affiliation(s)
- Gregory J Brewer
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL 62794-9626, USA.
| | | | | | | |
Collapse
|
6
|
Abstract
AbstractAs modern neuroscience seeks to understand the neural bases for mental illness, it is becoming increasingly important to define how and when complex neural circuits may be altered in individuals who carry the genetic vulnerability for psychopathology. One factor that could potentially play a contributory role in mental illness is the stress response. A variety of studies suggest that stress can alter the activity of several key cortical neurotransmitters, including glutamate, γ-aminobutyric acid, dopamine, and serotonin. Specifically, exposure to neurotoxic levels of adrenal steroid hormone, particularly if this occurs early in life, could potentially induce permanent changes of these transmitter systems in corticolimbic regions, such as the hippocampal formation and cingulate gyrus, that have a high density of glucocorticoid receptors. Overall, exposure to severe stress during the perinatal period could potentially induce alterations in the circuitry of the anterior cingulate cortex and hippocampal formation and interfere with the normal mechanisms underlying attention and learning.
Collapse
|
7
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 910] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
8
|
Inverardi F, Beolchi MS, Ortino B, Moroni RF, Regondi MC, Amadeo A, Frassoni C. GABA immunoreactivity in the developing rat thalamus and Otx2 homeoprotein expression in migrating neurons. Brain Res Bull 2007; 73:64-74. [PMID: 17499638 DOI: 10.1016/j.brainresbull.2007.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 02/05/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
We investigated the expression of gamma-aminobutyric acid (GABA) in the developing rat thalamus by immunohistochemistry, using light, confocal and electron microscopy. We also examined the relationship between the expression of the homeoprotein Otx2, a transcription factor implicated in brain regionalization, and the radial and non-radial migration of early generated thalamic neurons, identified by the neuronal markers calretinin (CR) and GABA. The earliest thalamic neurons generated between embryonic days (E) 13 and 15 include those of the reticular nucleus, entirely composed by GABAergic neurons. GABA immunoreactivity appeared at E14 in immature neurons and processes laterally to the neuroepithelium of the diencephalic vesicle. The embryonic and perinatal periods were characterized by the presence of abundant GABA-immunoreactive fibers, mostly tangentially oriented, and of growth cones. At E15 and E16, GABA was expressed in radially and non-radially oriented neurons in the region of the reticular thalamic migration, between the dorsal and ventral thalamic primordia, and within the dorsal thalamus. At these embryonic stages, some CR- and GABA-immunoreactive migrating-like neurons, located in the migratory stream and in the dorsal thalamus, expressed the homeoprotein Otx2. In the perinatal period, the preponderance of GABAergic neurons was restricted to the reticular nucleus and several GABAergic fibers were still detectable throughout the thalamus. The immunolabeling of fibers progressively decreased and was no longer visible by postnatal day 10, when the adult configuration of GABA immunostaining was achieved. These results reveal the spatio-temporal features of GABA expression in the developing thalamus and suggest a novel role of Otx2 in thalamic cell migration.
Collapse
Affiliation(s)
- F Inverardi
- Dipartimento di Epilettologia Clinica e Neurofisiologia Sperimentale, Fondazione I.R.C.C.S. Istituto Nazionale Neurologico C. Besta, via Celoria 11, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Interneurons are GABAergic neurons responsible for inhibitory activity in the adult hippocampus, thereby controlling the activity of principal excitatory cells through the activation of postsynaptic GABAA receptors. Subgroups of GABAergic neurons innervate specific parts of excitatory neurons. This specificity indicates that particular interneuron subgroups are able to recognize molecules segregated on the membrane of the pyramidal neuron. Once these specific connections are established, a quantitative regulation of their strength must be performed to achieve the proper balance of excitation and inhibition. We will review when and where interneurons are generated. We will then detail their migration toward and within the hippocampus, and the maturation of their morphological and neurochemical characteristics. We will finally review potential mechanisms underlying the development of GABAergic interneurons.
Collapse
Affiliation(s)
- Lydia Danglot
- Laboratoire de Biologie de la Synapse Normale et Pathologique, Unité Inserm U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
| | | | | |
Collapse
|
10
|
Seress L. Comparative anatomy of the hippocampal dentate gyrus in adult and developing rodents, non-human primates and humans. PROGRESS IN BRAIN RESEARCH 2007; 163:23-41. [PMID: 17765710 DOI: 10.1016/s0079-6123(07)63002-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been substantial progress in our understanding of the hippocampus in the past 70 years. During this time, it has become clear that the hippocampus is not an olfactory-related structure alone, but plays critical roles in other functions that do not necessarily depend on olfaction, such as learning and memory. In addition, it has become clear how important the hippocampus is to a wide variety of neurological disorders and psychiatric illness. Animal models have provided a great resource in such studies, but a frequent question is whether the data from laboratory animals is relevant to man.
Collapse
Affiliation(s)
- László Seress
- Central Electron Microscopic Laboratory, Faculty of Medicine, University of Pécs, Szigeti str. 12, 7624 Pécs, Hungary.
| |
Collapse
|
11
|
Allain AE, Baïri A, Meyrand P, Branchereau P. Expression of the glycinergic system during the course of embryonic development in the mouse spinal cord and its co-localization with GABA immunoreactivity. J Comp Neurol 2006; 496:832-46. [PMID: 16628621 DOI: 10.1002/cne.20967] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To understand better the role of glycine and gamma-aminobutyric acid (GABA) in the mouse spinal cord during development, we previously described the ontogeny of GABA. Now, we present the ontogeny of glycine-immunoreactive (Gly-ir) somata and fibers, at brachial and lumbar levels, from embryonic day 11.5 (E11.5) to postnatal day 0 (P0). Spinal Gly-ir somata appeared at E12.5 in the ventral horn, with a higher density at the brachial level. They were intermingled with numerous Gly-ir fibers reaching the border of the marginal zone. By E13.5, at the brachial level, the number of Gly-ir perikarya sharply increased throughout the whole ventral horn, whereas the density of fibers declined in the marginal zone. In the dorsal horn, the first Gly-ir somata were then detected. From E13.5 to E16.5, at the brachial level, the density of Gly-ir cells remained stable in the ventral horn, and after E16.5 it decreased to reach a plateau. In the dorsal horn, the density of Gly-ir cells increased, and after E16.5 it remained stable. At the lumbar level, maximum expression was reached at E16.5 in both the ventral and dorsal horn. Finally, the co-localization of glycine and GABA was analyzed, in the ventral motor area, at E13.5, E15.5, and E17.5. The results showed that, regardless of developmental stage studied, one-third of the stained somata co-expressed GABA and glycine. Our data show that the glycinergic system matures 1 day later than the GABAergic system and follows a parallel spatiotemporal evolution, leading to a larger population of glycine cells in the ventral horn.
Collapse
Affiliation(s)
- Anne-Emilie Allain
- Laboratoire de Neurobiologie des Réseaux, Université Bordeaux 1 et Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5816, Talence, France
| | | | | | | |
Collapse
|
12
|
Abstract
Despite a rather long migratory journey, interneurons are functional before vertically migrating pyramidal neurons and they constitute the source and target of the first functional synapses in the developing hippocampus. Interneuron-driven network patterns are already present in utero while principal cells are mostly quiescent. At that early stage, GABAergic synapses--which are formed before glutamatergic ones--are excitatory, suggesting that GABA is a pioneer, much like the neurons from which it is released. This review discusses this sequence of events, its functional significance and the role that interneurons might play in the construction of cortical networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Institut de Neurobiologie de la Méditerranée (INMED), Parc Scientifique de Luminy, BP13, 13009 Marseille, France.
| | | | | | | |
Collapse
|
13
|
Allain AE, Baïri A, Meyrand P, Branchereau P. Ontogenic changes of the GABAergic system in the embryonic mouse spinal cord. Brain Res 2004; 1000:134-47. [PMID: 15053961 DOI: 10.1016/j.brainres.2003.11.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2003] [Indexed: 11/28/2022]
Abstract
Numerous studies have demonstrated an excitatory action of GABA early in development, which is likely to play a neurotrophic role. In order to better understand the role of GABA in the mouse spinal cord, we followed the evolution of GABAergic neurons over the course of development. We investigated, in the present study, the ontogeny of GABA immunoreactive (GABA-ir) cell bodies and fibers in the embryonic mouse spinal cord at brachial and lumbar levels. GABA-ir somata were first detected at embryonic day 11.5 (E11.5) exclusively at brachial level in the marginal zone. By E13.5, the number of GABAergic neurons sharply increased throughout the extent of the ventral horn both at brachial and lumbar level. Stained perikarya first appeared in the future dorsal horn at E15.5 and progressively invaded this area while they decreased in number in the presumed ventral gray matter. At E12.5, E13.5 and E15.5, we checked the possibility that ventral GABA-ir cells could belong to the motoneuronal population. Using a GABA/Islet-1/2 double labeling, we did not detect any double-stained neurons indicating that spinal motoneurons do not synthesize GABA during the course of development. GABA-ir fibers also appeared at the E11.5 stage in the presumptive lateral white matter at brachial level. At E12.5 and E13.5, GABA-ir fibers progressively invaded the ventral marginal zone and by E15.5 reached the dorsal marginal zone. At E17.5 and postnatal day 0 (P0), the number of GABA-ir fibers declined in the white matter. Finally, by P0, GABA immunoreactivity that delineated somata was mainly restricted to the dorsal gray matter and declined in intensity and extent. The ventral gray matter exhibited very few GABA-ir cell bodies at this neonatal stage of development. The significance of the migration of somatic GABA immunoreactivity from ventral to the dorsal gray matter is discussed.
Collapse
Affiliation(s)
- Anne-Emilie Allain
- Laboratoire de Neurobiologie des Réseaux, Université Bordeaux 1 et Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5816, Avenue des Facultés, 33405 Talence, France
| | | | | | | |
Collapse
|
14
|
Dong H, Csernansky CA, Chu Y, Csernansky JG. Intracerebroventricular kainic acid administration to neonatal rats alters interneuron development in the hippocampus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:81-92. [PMID: 14519496 DOI: 10.1016/s0165-3806(03)00216-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of neonatal exposure to excitotoxins on the development of interneurons have not been well characterized, but may be relevant to the pathogenesis of neuropsychiatric disorders. In this study, the excitotoxin, kainic acid (KA) was administered to rats at postnatal day 7 (P7) by intracerebroventricular (i.c.v.) infusion. At P14, P25, P40 and P60, Nissl staining and immunohistochemical studies with the interneuron markers, glutamic acid decarboxylase (GAD-67), calbindin-D28k (CB) and parvalbumin (PV) were performed in the hippocampus. In control animals, the total number of interneurons, as well as the number of interneurons stained with GAD-67, CB and PV, was nearly constant from P14 through P60. In KA-treated rats, Nissl staining, GAD-67 staining, and CB staining revealed a progressive decline in the overall number of interneurons in the CA1 and CA3 subfields from P14 to P60. In contrast, PV staining in KA-treated rats showed initial decreases in the number of interneurons in the CA1 and CA3 subfields at P14 followed by increases that approached control levels by P60. These results suggest that, in general, early exposure to the excitotoxin KA decreases the number of hippocampal interneurons, but has a more variable effect on the specific population of interneurons labeled by PV. The functional impact of these changes may be relevant to the pathogenesis of neuropsychiatric disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Hongxin Dong
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
15
|
Demarque M, Represa A, Becq H, Khalilov I, Ben-Ari Y, Aniksztejn L. Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron 2002; 36:1051-61. [PMID: 12495621 DOI: 10.1016/s0896-6273(02)01053-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
GABA and glutamate receptors are expressed in immature "silent" CA1 pyramidal neurons prior to synapse formation, but their function is unknown. We now report the presence of tonic, spontaneous, and evoked currents in embryonic and neonatal CA1 neurons mediated primarily by the activation of GABA(A) receptors. These currents are mediated by a nonconventional release of transmitters, as they persist in the presence of calcium channel blockers or botulinium toxin and are observed in Munc18-1-deficient mice in which vesicular release is abolished. This paracrine communication is modulated by glutamate but not GABA transporters, which do not operate during this period of life. Thus, a Ca(2+)- and SNARE-independent release of transmitters underlies a paracrine mode of communication before synapse formation.
Collapse
Affiliation(s)
- Michael Demarque
- Institut de Neurobiologie de la Méditérranée, INMED, Institut de la Santé et de la Recherche Médicale, INSERM U29, Parc Scientifique de Luminy, BP13, 13273 09, Marseille cedex, France
| | | | | | | | | | | |
Collapse
|
16
|
Adams CE, Broide RS, Chen Y, Winzer-Serhan UH, Henderson TA, Leslie FM, Freedman R. Development of the alpha7 nicotinic cholinergic receptor in rat hippocampal formation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:175-87. [PMID: 12480132 DOI: 10.1016/s0165-3806(02)00547-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The alpha7 nicotinic receptor has been implicated in the regulation of a variety of developmental processes. The goal of the present study was to assess whether the alpha7 receptor might participate in the regulation of hippocampal ontogeny by describing the spatiotemporal development of alpha7 mRNA and alpha-bungarotoxin binding in rat hippocampal formation. Message for the alpha7 receptor was initially observed in the hippocampal neuroepithelium at embryonic day 13 and in the anlage of the hippocampal formation on embryonic day 14. Binding of alpha-bungarotoxin was initially seen on embryonic day 15 in the dorsal portion of the anlage of stratum oriens and stratum radiatum-lacunosum moleculare, but was never observed in the neuroepithelium. Dramatic elevations in both alpha7 mRNA and alpha-bungarotoxin binding were observed in most regions of the hippocampal formation neonatally. The levels of both alpha7 message and protein gradually decreased during the first three postnatal weeks to adult levels in most regions. The lack of alpha-bungarotoxin binding in the neuroepithelium suggests that the alpha7 receptor does not influence neurogenesis. The early appearance and complex, prolonged pattern of development of the alpha7 receptor suggest that it may influence processes as diverse as cell migration, dendritic elaboration and apoptosis during hippocampal maturation.
Collapse
Affiliation(s)
- Catherine E Adams
- VAMC Department of Psychiatry, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Box C268-71, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
In the immature brain, GABA (gamma-aminobutyric acid) is excitatory, and GABA-releasing synapses are formed before glutamatergic contacts in a wide range of species and structures. GABA becomes inhibitory by the delayed expression of a chloride exporter, leading to a negative shift in the reversal potential for choride ions. I propose that this mechanism provides a solution to the problem of how to excite developing neurons to promote growth and synapse formation while avoiding the potentially toxic effects of a mismatch between GABA-mediated inhibition and glutamatergic excitation. As key elements of this cascade are activity dependent, the formation of inhibition adds an element of nurture to the construction of cortical networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM Unit 29, Parc Scientifique de Luminy, 13273 Marseille Cedex 09, France.
| |
Collapse
|
18
|
Ferguson SCD, McFarlane S. GABA and development of the Xenopus optic projection. JOURNAL OF NEUROBIOLOGY 2002; 51:272-84. [PMID: 12150503 DOI: 10.1002/neu.10061] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the developing visual system of Xenopus laevis retinal ganglion cell (RGC) axons extend through the brain towards their major target in the midbrain, the optic tectum. Enroute, the axons are guided along their pathway by cues in the environment. In vitro, neurotransmitters have been shown to act chemotropically to influence the trajectory of extending axons and regulate the outgrowth of developing neurites, suggesting that they may act to guide or modulate the growth of axons in vivo. Previous work by Roberts and colleagues (1987) showed that populations of cells within the developing Xenopus diencephalon and mid-brain express the neurotransmitter gamma amino butyric acid (GABA). Here we show that Xenopus RGC axons in the midoptic tract grow alongside the GABAergic cells and cross their GABA immunopositive nerve processes. Moreover, RGC axons and growth cones express GABA-A and GABA-B receptors, and GABA and the GABA-B receptor agonist baclofen both stimulate RGC neurite outgrowth in culture. Finally, the GABA-B receptor antagonist CGP54626 applied to the developing optic projection in vivo causes a dose-dependent shortening of the optic projection. These data indicate that GABA may act in vivo to stimulate the outgrowth of Xenopus RGC axons along the optic tract.
Collapse
|
19
|
Abstract
Morphological studies suggest that the primate hippocampus develops extensively before birth, but little is known about its functional development. Patch-clamp recordings of hippocampal neurons and reconstruction of biocytin-filled pyramidal cells were performed in slices of macaque cynomolgus fetuses delivered by cesarean section. We found that during the second half of gestation, axons and dendrites of pyramidal cells grow intensively by hundreds of micrometers per day to attain a high level of maturity near term. Synaptic currents appear around midgestation and are correlated with the level of morphological differentiation of pyramidal cells: the first synapses are GABAergic, and their emergence correlates with the growth of apical dendrite into stratum radiatum. A later occurrence of glutamatergic synaptic currents correlates with a further differentiation of the axodendritic tree and the appearance of spines. Relying on the number of dendritic spines, we estimated that hundreds of new glutamatergic synapses are established every day on a pyramidal neuron during the last third of gestation. Most of the synaptic activity is synchronized in spontaneous slow ( approximately 0.1 Hz) network oscillations reminiscent of the giant depolarizing potentials in neonatal rodents. Epileptiform discharges can be evoked by the GABA(A) receptor antagonist bicuculline by the last third of gestation, and postsynaptic GABA(B) receptors contribute to the termination of epileptiform discharges. Comparing the results obtained in primates and rodents, we conclude that the template of early hippocampal network development is conserved across the mammalian evolution but that it is shifted toward fetal life in primate.
Collapse
|
20
|
Marty S, Wehrlé R, Alvarez-Leefmans FJ, Gasnier B, Sotelo C. Postnatal maturation of Na+, K+, 2Cl- cotransporter expression and inhibitory synaptogenesis in the rat hippocampus: an immunocytochemical analysis. Eur J Neurosci 2002; 15:233-45. [PMID: 11849291 DOI: 10.1046/j.0953-816x.2001.01854.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GABA, a major inhibitory neurotransmitter, depolarizes hippocampal pyramidal neurons during the first postnatal week. These depolarizations result from an efflux of Cl- through GABAA-gated anion channels. The outward Cl- gradient that provides the driving force for Cl- efflux might be generated and maintained by the Na+, K+, 2Cl- cotransporter (NKCC) that keeps intracellular Cl- concentration above electrochemical equilibrium. The developmental pattern of expression of the cotransporter in the hippocampus is not known. We studied the postnatal distribution pattern of NKCC in the hippocampus using a monoclonal antibody (T4) against a conserved epitope in the C-terminus of the cotransporter molecule. We also examined the temporal relationships between the developmental pattern of NKCC expression and the formation of perisomatic GABAergic synapses. This study was aimed at determining, with antivesicular inhibitory amino acid transporter (VIAAT) antibodies, whether perisomatic GABAergic synapses are formed preferentially at the time when GABA is depolarizing. During the first postnatal week, NKCC immunolabelling was restricted to cell bodies in the pyramidal cell layer and in the strata oriens and radiatum. In contrast, at postnatal day 21 (P21) and in adult animals little or no labelling occurred in cell bodies; instead, a prominent dendritic labelling appeared in both pyramidal and nonpyramidal neurons. The ultrastructural immunogold study in P21 rat hippocampi corroborated the light-microscopy results. In addition, this study revealed that a portion of the silver-intensified colloidal gold particles were located on neuronal plasmalemma, as expected for a functional cotransporter. The formation of inhibitory synapses on perikarya of the pyramidal cell layer was a late process. The density of VIAAT-immunoreactive puncta in the stratum pyramidale at P21 reached four times the P7 value in CA3, and six times the P7 value in CA1. Electron microscopy revealed that the number of synapses per neuronal perikaryal profile in the stratum pyramidale of the CA3 area at P21 was three times higher than at P7, even if a concomitant 20% increase in the area of these neuronal perikaryal profiles occurred. It is concluded that, in hippocampal pyramidal cells, there is a developmental shift in the NKCC localization from a predominantly somatic to a predominantly dendritic location. The presence of NKCC during the first postnatal week is consistent with the hypothesis that this transporter might be involved in the depolarizing effects of GABA. The depolarizing effects of GABA may not be required for the establishment of the majority of GABAergic synapses in the stratum pyramidale, because their number increases after the first postnatal week, when GABA action becomes hyperpolarizing.
Collapse
Affiliation(s)
- Serge Marty
- INSERM U106, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France.
| | | | | | | | | |
Collapse
|
21
|
Frahm C, Draguhn A. GAD and GABA transporter (GAT-1) mRNA expression in the developing rat hippocampus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 132:1-13. [PMID: 11744102 DOI: 10.1016/s0165-3806(01)00288-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Synaptic inhibition in the mammalian central nervous system is mostly mediated by GABA (gamma-aminobutyric acid). Inhibitory interneurons can be identified by staining for glutamate decarboxylase (GAD), the key enzyme which produces the transmitter. After release, GABA is removed from the extracellular space by specific transporters which are localized at the presynaptic endings of interneurons, in adjacent glial processes and, possibly, also in the postsynaptic target cell membranes. The GABAergic system undergoes profound functional and structural changes during the first 2 weeks of postnatal development, including migration of interneurons and changes in the level of expression and subcellular distribution of GABA transporters. We therefore analyzed the distribution of mRNA coding for GAD and GAT-1 (the main neuronal GABA transporter) in the developing rat hippocampus. Our data show that both transcripts are present in putative interneurons from the first postnatal day and exhibit a largely similar distribution throughout postnatal ontogenesis, with some specific differences in certain hippocampal subfields. Quantification of stained somata confirmed the postnatal redistribution of putative interneurons in the area dentata from dendritic layers towards the hilus. We also found a general staining of principal cell layers for both probes, which differs with postnatal age and between GAD and GAT-1 mRNA. Together, our data reveal a profound reorganization of the GABAergic system in the rat hippocampus during the first weeks of postnatal development.
Collapse
Affiliation(s)
- C Frahm
- Johannes-Müller-Institut für Physiologie der Charité, Humboldt-Universität, Tucholskystr. 2, 10117 Berlin, Germany.
| | | |
Collapse
|
22
|
Abstract
The gamma-aminobutyric acid (GABA) system plays an important role in the early development of the hippocampal formation. The immunohistochemical expression of gamma-aminobutyric acid transporter-1, GAT-1, in the human developing temporal cortex was examined, and the distribution of GAT-1 was compared with that of the 67-kDa isoform of glutamic acid decarboxylase as a marker of GABAergic neurons. Four postmortem tissue specimens from young patients with hippocampal sclerosis were also examined. GAT-1 immunoreactivity was present, with a few puncta, in the neuropil of the stratum oriens and in the molecular layer of the dentate gyrus from 21-22 weeks of gestation, and in the stratum lacunosum-moleculare from 26 weeks of gestation. The peak expression of GAT-1 was seen in early infancy and that of glutamic acid decarboxylase in the perinatal period. These findings may reflect the development of GABAergic inhibitory systems, and may be related to the seizure susceptibility in infancy and early childhood. In the temporal lobes with hippocampal sclerosis, GAT-1 immunoreactivity of the neuropil was preserved in the vicinity of the neuronal loss of the hippocampus. This finding may result from the neurotrophic function of GAT-1 and may be related to its ability of neuronal repair and plasticity in childhood.
Collapse
Affiliation(s)
- Y Hachiya
- First Department of Pediatrics, Toho University School of Medicine, Tokyo 143-8541, Japan
| | | |
Collapse
|
23
|
Jiang M, Oliva AA, Lam T, Swann JW. GABAergic neurons that pioneer hippocampal area CA1 of the mouse: morphologic features and multiple fates. J Comp Neurol 2001; 439:176-92. [PMID: 11596047 DOI: 10.1002/cne.1341] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dramatic changes occur in the expression of glutamic acid decarboxylase (GAD67) immunoreactivity in mouse hippocampus during postnatal development. Most striking is the presence of a dense population of immunopositive cells in stratum radiatum and stratum oriens in area CA1 during the first postnatal week. Between days 5 and 10, these cells disappear and the GAD67 immunoreactivity begins to resemble that of adulthood. These neurons are considered pioneer cells, and studies were undertaken to determine their fate. Between days 5 and 50, area CA1 doubles in size; however, the loss of cells expressing GAD67 mRNA cannot be explained solely by dilution resulting from hippocampal growth. In stratum radiatum, cell loss is particularly dramatic. Although between days 5 and 15, many cells seem to migrate from stratum radiatum to its border with stratum lacunosum-moleculare, both fate maps of pioneer cells labeled with bromodeoxyuridine (BrdU) on embryonic day 13 (E13) and in situ DNA end-labeling studies suggest that some cells die by means of programmed cell death. However, not all pioneer cells die, because many cells labeled with BrdU on E13 are present in adulthood and express markers for and have anatomic features of hippocampal interneurons. In conclusion, events that underlie the age-dependent disappearance of gamma-aminobutyric acid (GABA) -ergic pioneer cells are complex and cannot be completely explained by dilution in an expanding neuropile. Although some GABAergic pioneer cells likely undergo programmed cell death during the first postnatal weeks, others relocate within hippocampal laminae and terminally differentiate into the interneurons of adulthood.
Collapse
Affiliation(s)
- M Jiang
- The Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
24
|
Gaïarsa JL, Khalilov I, Gozlan H, Ben-Ari Y. Morphology of CA3 non-pyramidal cells in the developing rat hippocampus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 127:157-64. [PMID: 11335002 DOI: 10.1016/s0165-3806(01)00130-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although several investigations have shown that the local GABAergic circuit in the rat hippocampus is functional very early in development, this result has not been yet completed by the investigation of the full dendritic and axonal arborization of the neonatal interneurones. In the present study, intracellular injection of biocytin was used to assess the branching pattern of interneurones in the hippocampal CA3 region of rat between 2 and 6 days of age. Based on their dendritic morphology, the biocytin-filled interneurones were divided into four classes: bipolar, stellate, pyramidal-like and fusiform interneurones. About half of the biocytin-filled neonatal interneurones exhibited dendritic or somatic filopodial processes. The axonal arbors of the filled-interneurones were widely spread into the CA3 region, and in four out of nine cases extended beyond the CA3 region to branch into the CA1 region. These results show that, despite immature features, the filopodial processes, the hippocampal interneurones are well developed early in development at a time when their target cells, the pyramidal neurones, are still developing. These observations are consistent with a trophic role that GABA may play early in development.
Collapse
Affiliation(s)
- J L Gaïarsa
- IINSERM U29, Avenue de Luminy, B.P. 13, 13273 09, Marseille Cedex, France.
| | | | | | | |
Collapse
|
25
|
Marty S. Differences in the regulation of neuropeptide Y, somatostatin and parvalbumin levels in hippocampal interneurons by neuronal activity and BDNF. PROGRESS IN BRAIN RESEARCH 2001; 128:193-202. [PMID: 11105679 DOI: 10.1016/s0079-6123(00)28017-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- S Marty
- INSERM Unité 421, Faculté de Médecine, Créteil, France.
| |
Collapse
|
26
|
Klioueva IA, van Luijtelaar EL, Chepurnova NE, Chepurnov SA. PTZ-induced seizures in rats: effects of age and strain. Physiol Behav 2001; 72:421-6. [PMID: 11274687 DOI: 10.1016/s0031-9384(00)00425-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The susceptibility to pentylenetetrazol (PTZ)-induced seizures during postnatal ontogeny [postnatal day (PN) 10-220] was investigated in two rat strains. The WAG/Rij strain, genetically prone for developing generalized absence epilepsy, and Wistar rats were tested and compared at PN 10, 26, 30, 70, 90, 125, and 220 on the PTZ-convulsive threshold. A subconvulsive dose of 25-mg/kg PTZ was administered every 15 min, and the occurrence of clonic and tonic-clonic seizures was scored. The 10-day-old pups were quite sensitive to PTZ and showed mainly clonic seizures. The highest threshold and latency of PTZ-induced clonic and tonic-clonic convulsions were observed at PN 26 in both strains. From that age onwards, the seizure threshold significantly decreased and reached a minimum at PN 220. Between strain comparisons showed that WAG/Rij rats have a lower tonic-clonic seizure threshold than Wistar rats. The data indicate that changes in susceptibility first quickly decreases until PN 26-30 and then tend to monotonically increase with age, and that genetically prone nonconvulsive WAG/Rij rats are more vulnerable to convulsive seizures induced by PTZ than Wistar rats.
Collapse
Affiliation(s)
- I A Klioueva
- Department of Human and Animal Physiology, Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
27
|
Verney C, Zecevic N, Puelles L. Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos, as revealed by cytoarchitecture and tyrosine hydroxylase, calretinin, calbindin, and GABA immunoreactions. J Comp Neurol 2001; 429:22-44. [PMID: 11086287 DOI: 10.1002/1096-9861(20000101)429:1<22::aid-cne3>3.0.co;2-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In a previous work, mapping early tyrosine hydroxylase (TH) expressing primordia in human embryos, the tegmental origin of the substantia nigra (SN) and ventral tegmental area (VTA) was located across several neuromeric domains: prosomeres 1-3, midbrain, and isthmus (Puelles and Verney, [1998] J. Comp. Neurol. 394:283-308). The present study examines in detail the architecture of the neural wall along this tegmental continuum in 6-7 week human embryos, to better define the development of the SN and VTA. TH-immunoreactive (TH-IR) structures were mapped relative to longitudinal subdivisions (floor plate, basal plate, alar plate), as well as to radially superposed strata of the neural wall (periventricular, intermediate, and superficial strata). These morphologic entities were delineated at each relevant segmental level by using Nissl-stained sections and immunocytochemical mapping of calbindin, calretinin, and GABA in adjacent sagittal or frontal sections. A numerous and varied neuronal population originates in the floor plate area, and some of its derivatives become related through lateral tangential migration with other neuronal populations born in distinct medial and lateral portions of the basal plate and in a transition zone at the border with the alar plate. Some structural differences characterize each segmental domain within this common schema. The TH-IR neuroblasts arise predominantly within the ventricular zone of the floor plate and, more sparsely, within the adjacent medial part of the basal plate. They first migrate radially from the ventricular zone to the pia and then apparently move laterally and slightly rostralward, crossing the superficial stratum of the basal plate. Several GABA-IR cell populations are present in this region. One of them, which might represent the anlage of the SN pars reticulata, is generated in the lateral part of the basal plate.
Collapse
Affiliation(s)
- C Verney
- INSERM U.106, Hôpital Salpêtrière, 75651 Paris Cedex 13, France.
| | | | | |
Collapse
|
28
|
Cohen AS, Lin DD, Coulter DA. Protracted postnatal development of inhibitory synaptic transmission in rat hippocampal area CA1 neurons. J Neurophysiol 2000; 84:2465-76. [PMID: 11067989 DOI: 10.1152/jn.2000.84.5.2465] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the CNS, inhibitory synaptic function undergoes profound transformation during early postnatal development. This is due to variations in the subunit composition of subsynaptic GABA(A) receptors (GABA(A)Rs) at differing developmental stages as well as other factors. These include changes in the driving force for chloride-mediated conductances as well as the quantity and/or cleft lifetime of released neurotransmitter. The present study was undertaken to investigate the nature and time course of developmental maturation of GABAergic synaptic function in hippocampal CA1 pyramidal neurons. In neonatal [postnatal day (P) 1-7] and immature (P8-14) CA1 neurons, miniature inhibitory postsynaptic currents (mIPSCs) were significantly larger, were less frequent, and had slower kinetics compared with mIPSCs recorded in more mature neurons. Adult mIPSC kinetics were achieved by the third postnatal week in CA1 neurons. However, despite this apparent maturation of mIPSC kinetics, significant differences in modulation of mIPSCs by allosteric agonists in adolescent (P15-21) neurons were still evident. Diazepam (1-300 nM) and zolpidem (200 nM) increased the amplitude of mIPSCs in adolescent but not adult neurons. Both drugs increased mIPSC decay times equally at both ages. These differential agonist effects on mIPSC amplitude suggest that in adolescent CA1 neurons, inhibitory synapses operate differently than adult synapses and function as if subsynaptic receptors are not fully occupied by quantal release of GABA. Rapid agonist application experiments on perisomatic patches pulled from adolescent neurons provided additional support for this hypothesis. In GABA(A)R currents recorded in these patches, benzodiazepine amplitude augmentation effects were evident only when nonsaturating GABA concentrations were applied. Furthermore nonstationary noise analysis of mIPSCs in P15-21 neurons revealed that zolpidem-induced mIPSC augmentation was not due to an increase in single-channel conductance of subsynaptic GABA(A)Rs but rather to an increase in the number of open channels responding to a single GABA quantum, further supporting the hypothesis that synaptic receptors may not be saturated during synaptic function in adolescent neurons. These data demonstrate that inhibitory synaptic transmission undergoes a markedly protracted postnatal maturation in rat CA1 pyramidal neurons. In the first two postnatal weeks, mIPSCs are large in amplitude, are slow, and occur infrequently. By the third postnatal week, mIPSCs have matured kinetically but retain distinct responses to modulatory drugs, possibly reflecting continued immaturity in synaptic structure and function persisting through adolescence.
Collapse
Affiliation(s)
- A S Cohen
- Pediatric Regional Epilepsy Program and Joseph Stokes Research Institute of the Children's Hospital of Philadelphia, Division of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
29
|
The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J Neurosci 1999. [PMID: 10575034 DOI: 10.1523/jneurosci.19-23-10372.1999] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have performed a morphofunctional analysis of CA1 pyramidal neurons at birth to examine the sequence of formation of GABAergic and glutamatergic postsynaptic currents (PSCs) and to determine their relation to the dendritic arborization of pyramidal neurons. We report that at birth pyramidal neurons are heterogeneous. Three stages of development can be identified: (1) the majority of the neurons (80%) have small somata, an anlage of apical dendrite, and neither spontaneous nor evoked PSCs; (2) 10% of the neurons have a small apical dendrite restricted to the stratum radiatum and PSCs mediated only by GABA(A) receptors; and (3) 10% of the neurons have an apical dendrite that reaches the stratum lacunosum moleculare and PSCs mediated both by GABA(A) and glutamate receptors. These three groups of pyramidal neurons can be differentiated by their capacitance (C(m) = 17.9 +/- 0.8; 30.2 +/- 1.6; 43.2 +/- 3.0 pF, respectively). At birth, the synaptic markers synapsin-1 and synaptophysin labeling are present in dendritic layers but not in the stratum pyramidale, suggesting that GABAergic peridendritic synapses are established before perisomatic ones. The present observations demonstrate that GABAergic and glutamatergic synapses are established sequentially with GABAergic synapses being established first most likely on the apical dendrites of the principal neurons. We propose that different sets of conditions are required for the establishment of functional GABA and glutamate synapses, the latter necessitating more developed neurons that have apical dendrites that reach the lacunosum moleculare region.
Collapse
|
30
|
Diabira D, Hennou S, Chevassus-Au-Louis N, Ben-Ari Y, Gozlan H. Late embryonic expression of AMPA receptor function in the CA1 region of the intact hippocampus in vitro. Eur J Neurosci 1999; 11:4015-23. [PMID: 10583490 DOI: 10.1046/j.1460-9568.1999.00831.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies in slices suggest that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated synaptic currents are not present in CA1 (Cornu ammonis) pyramidal neurons at birth (P0). We have re-examined this issue in the rat intact hippocampal formation (IHF) in vitro. Injections of biocytin or carbocyanine show that the temporo-ammonic, commissural and Schaffer collateral pathways are present at birth in the marginal zone of CA1. Electrical stimulation of these pathways evoked field excitatory postsynaptic potentials (fEPSPs) in the marginal zone of CA1 from embryonic day 19 (E19) to postnatal day 9 (P9). These fEPSPs are mediated by synaptic AMPA receptors as they are reduced or completely blocked by: (i) tetrodotoxin; (ii) high divalent cation concentrations; (iii) the adenosine A1 receptor agonist CPA; (iv) anoxic episodes; (v) the selective AMPA receptor antagonist 1-(4-aminophenyl)-3-methylcarbamyl-4-methyl-7, 8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine (GYKI-53655) or the mixed AMPA-kainate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX). The amplitude of the fEPSPs is also reduced by D(-)-2-amino-5-phosphonopentanoic acid (D-APV) and its duration is increased by bicuculline suggesting the participation of N-methyl-D-aspartate (NMDA) and GABAA (gamma-aminobutyric acid) receptors. Finally, AMPA receptor-mediated fEPSPs are also recorded in P0 slices, but they are smaller and more labile than in the IHF. Our results suggest that in embryonic CA1 neurons, glutamate acting on AMPA receptors already provides a substantial part of the excitatory drive and may play an important role in the activity-dependent development of the hippocampus. Furthermore, the IHF may be a convenient preparation to investigate the properties of the developing hippocampus.
Collapse
Affiliation(s)
- D Diabira
- INSERM U-29, INMED, Parc d'Activités Scientifiques e Luminy, Route de Luminy-B.P. no. 13, 13273 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
31
|
Abstract
Recent postmortem studies have demonstrated subtle alterations in the hippocampal formation (HIPP) of patients with schizophrenia (SZ). These changes include a decreased density of nonpyramidal neurons (NPs), an increase of the GABAA, but not benzodiazepine receptors and a neuroleptic-dose-related increase of GAD65-IR terminals, particularly in sectors CA3 and CA2. High resolution studies of the GABAA receptor have further suggested that a decrease of disinhibitory GABAergic activity (i.e., GABA-to-GABA) in stratum pyramidale of CA3 may coexist with reduced inhibitory modulation (i.e., GABA-to-excitatory pyramidal neuron) in the stratum oriens of this same sector. These changes could potentially involve excitotoxic damage to interneurons in CA2; but, the precise time frame for the induction of such an injury during pre- versus postnatal life cannot as yet be inferred from the available data. These findings are consistent with reports of abnormal oscillatory rhythms and increased basal metabolic activity in the HIPP of patients with SZ. The fact that patients with manic depression also show a decrease of NPs in CA2 suggests that changes in the GABA system may not be related to a susceptibility gene for SZ. Rather, these alterations could be associated with a nonspecific factor, such as stress, experienced either early in life or much later during adolescence or adulthood. Presumably, there are also changes associated in other transmitter systems that may play a more specific role in establishing the SZ phenotype.
Collapse
Affiliation(s)
- F M Benes
- Laboratory for The Program in Structural Neuroscience, McLean Hospital, Belmont, Massachusetts 02178, USA
| |
Collapse
|
32
|
Abstract
In recent studies, we demonstrated a distinct change in the distribution of glutamate decarboxylase 67 (GAD67) mRNA-containing neurons within the rat dentate gyrus from embryonic day 20 (E20) to postnatal day 15 (PN15) (Dupuy and Houser, J Comp Neurol 1997;389:402-418). We also observed a similar changing pattern for cells with birthdates of many of the mature GAD-containing neurons in the dentate gyrus (Dupuy and Houser, J Comp Neurol 1997;389:402-418). These observations suggested that some early-appearing GABA neurons within the developing molecular layer of the dentate gyrus may gradually alter their positions to become the mature GABAergic cells along the inner border of the granule cell layer. The goal of the present study was to provide additional evidence for our hypothesis by demonstrating the spatial relationships between GAD-containing neurons and granule cells at progressively older ages during development. In this study, immunohistochemical or in situ hybridization methods for the localization of GAD67 or its mRNA were combined with bromodeoxyuridine birthdating techniques that labeled early-generated granule cells with birthdates on E17. At E20, GAD67-containing neurons were located above the granule cell layer that contained E17 birthdated granule cells. During the first two postnatal weeks, both GAD67 mRNA-containing neurons and early-born granule cells were primarily concentrated within the granule cell layer. Double-labeled neurons were rarely observed, and this suggests that these two groups are separate populations. By PN15-PN30, most GAD67 mRNA-containing neurons were distributed along the base of the granule cell layer, significantly below the E17 birthdated granule cells. These findings support our new hypothesis that mature GABA neurons along the inner border of the granule cell layer reach their positions by migrating or translocating through the developing granule cell layer.
Collapse
Affiliation(s)
- S Dupuy-Davies
- Department of Neurobiology, UCLA School of Medicine 90095-1763, USA
| | | |
Collapse
|
33
|
Dupuy ST, Houser CR. Developmental changes in GABA neurons of the rat dentate gyrus: An in situ hybridization and birthdating study. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19971222)389:3<402::aid-cne4>3.0.co;2-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Khalilov I, Esclapez M, Medina I, Aggoun D, Lamsa K, Leinekugel X, Khazipov R, Ben-Ari Y. A novel in vitro preparation: the intact hippocampal formation. Neuron 1997; 19:743-9. [PMID: 9354321 DOI: 10.1016/s0896-6273(00)80956-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The intact hippocampal formation (IHF) of neonatal or young rats can be kept alive for an extended period in a fully submerged chamber with excellent morphological preservation. Field or patch-clamp recordings, intracellular Ca2+ measurements, and 3-D reconstruction of biocytin-filled neurons can be performed routinely. The generation and propagation of network-driven activities can be studied within the IHF or between connected intact structures such as the septum and the hippocampus or two hippocampi, and the use of a dual chamber enables the application of drugs separately to each structure. This preparation will be useful to study intact neuronal networks in the developing hippocampus in vitro.
Collapse
Affiliation(s)
- I Khalilov
- INSERM U 29 Hôpital de Port Royal, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Marty S, Onténiente B. The expression pattern of somatostatin and calretinin by postnatal hippocampal interneurons is regulated by activity-dependent and -independent determinants. Neuroscience 1997; 80:79-88. [PMID: 9252222 DOI: 10.1016/s0306-4522(97)00134-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hippocampal interneurons form distinct populations identified on the basis of their projection pattern and neurochemical characteristics, which includes the expression of specific neuropeptides and/or calcium-binding proteins. The neurochemical maturation of hippocampal interneurons is largely a postnatal event, and factors which govern this maturation are presently unknown. Using slice cultures, we have investigated the role of neuronal activity in regulating the expression of somatostatin and calretinin during the postnatal maturation of hippocampal interneurons. Blocking inhibitory activity with bicuculline, or excitatory activity with 6,7-dinitroquinoxaline-2,3-dione, for 14 days in slice cultures from seven-day-old rat increased and decreased, respectively, the number of somatostatin-immunoreactive neurons. Withdrawal of the blocking agents resulted in a reversal of the effects on somatostatin immunoreactivity. In addition, bicuculline slightly increased the number of calretinin-positive neurons, while 6,7-dinitroquinoxaline-2,3-dione exerted no effect. However, bicuculline and 6,7-dinitroquinoxaline-2,3-dione markedly increased and decreased, respectively, the number of calretinin-labelled axons. Despite activity-linked modifications of immunoreactivity levels, no change in the organotypic location of somatostatin-labelled neurons was observed, whatever the treatment. Double labelling studies demonstrated that somatostatin and calretinin were expressed by different neurons, even when the number of labelled cells was highly increased. These results show that the levels of expression of somatostatin and calretinin in maturing hippocampal interneurons are tuned to the endogenous balance of excitatory and inhibitory activity. In contrast, the neurochemical specificity of each subtype of interneurons does not depend upon variations in neuronal activity.
Collapse
Affiliation(s)
- S Marty
- INSERM Unité 421, Faculté de Médecine, Créteil, France
| | | |
Collapse
|
36
|
Saransaari P, Oja SS. Enhanced GABA release in cell-damaging conditions in the adult and developing mouse hippocampus. Int J Dev Neurosci 1997; 15:163-74. [PMID: 9178035 DOI: 10.1016/s0736-5748(97)80001-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The release of [3H]GABA from hippocampal slices from adult (3-month-old) and developing (7-day-old) mice was studied in cell-damaging conditions in vitro using a superfusion system. Cell damage was induced by modified superfusion media, including hypoxia, hypoglycemia, ischemia, the presence of Free radicals and oxidative stress. The basal release of GABA from the immature and mature hippocampus was generally markedly increased in all cell-damaging conditions. In 7-day-old mice the release was enhanced most in the presence of free radicals. 1.0 mM NaCN and ischemia, whereas in the adults 1.0 mM NaCN provoked the largest release of GABA, followed by ischemia and free radical-containing media. Potassium stimulation (50 mM K+) was still able to potentiate the release in all cell-damaging conditions in both age groups. It was shown by superfusing the slices in Ca- and Na-free media that ischemia-induced GABA release was Ca-independent, occurring by a reversed operation of Na-dependent cell membrane carriers in both adult and developing hippocampus. Glutamate and its receptor agonists, N-methyl-D-aspartate (NMDA), kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), potentiated GABA release only in the immature hippocampus by a receptor-mediated mechanism. The enhancement by kainate and AMPA receptors also operated under ischemic conditions. The massive amount of GABA released simultaneously with excitatory amino acids in the mature and immature hippocampus may be an important protective mechanism against excitotoxicity, counteracting harmful effects that lead to neuronal death. The GABA release induced by activation of presynaptic glutamate receptors may contribute particularly to the maintenance of homeostasis in the hippocampus upon impending hyperexcitation.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, University of Tampere Medical School, Finland
| | | |
Collapse
|
37
|
Abstract
Children with epilepsy present unique challenges to the clinician. In addition to having differences in clinical and EEG phenomena, children differ from adults in regard to etiological factors, response to antiepileptic drugs (AEDs), and outcome. It is now recognized that the immature brain also differs from the mature brain in the basic mechanisms of epileptogenesis and propagation of seizures. The immature brain is more prone to seizures due to an imbalance between excitation and inhibition. gamma-Aminobutyric acid (GABA), the major CNS inhibitory neurotransmitter in the mature brain, can lead to depolarization in the hippocampal CA3 region in very young rats. There are also age-related differences in response to GABA agonists and antagonists in the substantia nigra, a structure important in the propagation of seizures. These age-related differences in response to GABAergic agents provide further evidence that the pathophysiology of seizures in the immature brain differs from that in the mature brain. Although prolonged seizures can cause brain damage at any age, the extent of brain damage after prolonged seizures is highly age dependent. Far less histological damage and fewer disturbances in cognition result from prolonged seizures in the immature brain than from seizures of similar duration and intensity in mature animals. However, detrimental effects of AEDs may be greater in the immature brain, than in the mature brain. These lessons from the animal laboratory raise questions about the appropriateness of current therapeutic approaches to childhood seizure disorders.
Collapse
Affiliation(s)
- G L Holmes
- Department of Neurology, Harvard Medical School, Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Prominent expression of two forms of glutamate decarboxylase in the embryonic and early postnatal rat hippocampal formation. J Neurosci 1996. [PMID: 8824330 DOI: 10.1523/jneurosci.16-21-06919.1996] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immunohistochemical methods were used to determine the earliest times of detection for two forms of glutamate decarboxylase (GAD67 and GAD65) in the embryonic and early postnatal rat hippocampal formation and to determine whether their distribution patterns differed from each other and from those of the adult. Both GAD67- and GAD65-containing neurons were observed as early as embryonic day 17 (E17)-E18 in the hippocampus and E19 in the dentate gyrus, and this was substantially earlier than GAD had been detected previously in the hippocampal formation. The two GAD isoforms displayed very similar distribution patterns, but these patterns were distinctly different from those of the adult. From E17 to E20, GAD67 and GAD65 were expressed in neuronal cell bodies throughout the hippocampal and dentate marginal zones (future dendritic layers), and relatively few existed within the principal cell body layers, where GAD-positive neurons are frequently concentrated in the adult. At E21 to postnatal day 1 (P1), there was a sudden shift from a predominance of GAD-containing cell bodies within the developing dendritic regions to a meshwork of GAD-positive processes with terminal-like varicosities in these same regions. This pattern also contrasted with that of the adult, in which GAD-labeled terminals are highly concentrated in the principal cell layers. Electron microscopic observations of the GAD-labeled processes at P1 confirmed their axon-like appearance and demonstrated that the immunoreactivity was consistently localized in vesicle-filled regions that were often closely apposed to and, in some instances, established synaptic contacts with dendritic profiles. The present identification of an early abundance of GAD-containing structures in the hippocampal formation and the marked change in their distribution during development complement recent observations of developmental changes in the functioning of the GABA system and provide additional support for the early involvement of this neurotransmitter system in hippocampal development.
Collapse
|
39
|
Benes FM, Khan Y, Vincent SL, Wickramasinghe R. Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 1996; 22:338-49. [PMID: 8867028 DOI: 10.1002/(sici)1098-2396(199604)22:4<338::aid-syn5>3.0.co;2-c] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent postmortem studies have reported a marked upregulation of GABAA receptor binding activity in the anterior cingulate and prefrontal cortices of schizophrenic subjects. Because the hippocampal formation is a key corticolimbic region that has also been implicated by both postmortem and brain imaging studies in the pathophysiology of this disorder, the current report has sought to determine whether alterations of GABAA receptor binding might also be detected in this region from 15 normal controls and 8 schizophrenic subjects. Using a low resolution autoradiographic approach, the results show a significant increase of specific GABAA receptor binding activity in the area dentata (granule cell layer), CA4, CA3 (str. oriens, str. pyramidale), subiculum, and presubiculum of the schizophrenic group. The magnitude of the increase was greatest in CA3 and lowest in the CA1 sector. When high resolution analyses were performed on emulsion-coverslip preparations, a modest increase of binding (43%, P = 0.05) was observed on pyramidal, but not non-pyramidal neurons in sector CA1. Rather unexpectedly, GABAA binding in sector CA3 was not significantly different on pyramidal cells, but was almost three-fold higher (P = 0.015) on non-pyramidal neurons of the schizophrenic group. There was no relationship of age or the postmortem interval to the parameters showing significant changes in the schizophrenic group. Moreover, patients both with and without neuroleptic exposure showed upregulation of GABAA receptor binding activity. Taking together the rather modest increase of binding activity in CA1 and the more marked upregulation in CA3, as well as the differential changes on pyramidal neurons of CA1 vs. non-pyramidal neurons in CA3, the findings reported here are consistent with the possibility that a disturbance of brain development could have occurred either perinatally or perhaps even well into the postnatal period, and have given rise to discreet subregional and cellular alterations of disinhibitory GABAergic modulation in sector CA3 of schizophrenics. Overall, the data reported here provide further evidence that alterations of GABAergic activity may occur in the hippocampal formation of schizophrenic patients.
Collapse
Affiliation(s)
- F M Benes
- Laboratory for Structural Neuroscience, McLean Hospital, Belmont, Massachusetts, USA
| | | | | | | |
Collapse
|
40
|
Kerr DS, Abraham WC. Cooperative interactions among afferents govern the induction of homosynaptic long-term depression in the hippocampus. Proc Natl Acad Sci U S A 1995; 92:11637-41. [PMID: 8524819 PMCID: PMC40457 DOI: 10.1073/pnas.92.25.11637] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prolonged periods of low-frequency stimulation have been shown to produce a robust, long-term synaptic depression (LTD) in both hippocampus and visual cortex. In the present study we have examined the extent to which interactions among afferents govern the induction of homosynaptic LTD in young-adult rats in hippocampal region CA1 in vitro. Field excitatory postsynaptic potentials were assessed before and after conditioning stimulation consisting of two 10-min trains of low-frequency stimulation (LFS; 1 Hz) of the Schaffer collateral/commissural pathway. LFS at an intensity producing a 0.5-mV response did not produce significant synaptic depression. However, LFS administered at a higher intensity resulted in significant input-specific LTD of a 0.5-mV test response. Picrotoxin, which also facilitates depolarization of CA1 neurons, significantly enhanced the magnitude of LTD after LFS at 0.5 mV. In addition, LFS at 0.5 mV in normal perfusion medium (no picrotoxin) produced only small changes in synaptic efficacy when either of two converging pathways was conditioned separately but produced a robust LTD when both pathways were conditioned simultaneously. This cooperative LTD was reversibly blocked by prior administration of 100 microM DL-aminophosphonovaleric acid but not by 20 microM nimodipine. Taken together, these results suggest that cooperative interactions among afferents contribute to voltage-dependent processes underlying the induction of homosynaptic LTD.
Collapse
Affiliation(s)
- D S Kerr
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
41
|
Leinekugel X, Tseeb V, Ben-Ari Y, Bregestovski P. Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices. J Physiol 1995; 487 ( Pt 2):319-29. [PMID: 8558466 PMCID: PMC1156575 DOI: 10.1113/jphysiol.1995.sp020882] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Changes in intracellular Ca2+ concentration ([Ca2+]i) induced by activation of GABAA receptors (synaptic stimulation or application of the GABAA agonist isoguvacine) were studied on pyramidal cells and interneurons from hippocampal slices of rats from two age groups (postnatal days (P) 2-5 and P12-13) using the fluorescent dye fluo-3 and a confocal laser scanning microscope. Cells were loaded with the dye either intracellularly, using patch pipettes containing fluo-3 in the internal solution, or extracellularly, using pressure pulses applied to an extracellular pipette containing the permeant dye fluo-3 AM. 2. Interneurons and pyramidal cells from P2-5 slices loaded with fluo-3 AM responded by an increase in [Ca2+]i to isoguvacine and to glutamate, in contrast to cells from P12-13 slices which responded to glutamate but not to isoguvacine. 3. The isoguvacine-induced rise in [Ca2+]i was reversibly blocked by bath application of the GABAA receptor antagonist bicuculline (20 microM), suggesting the specific involvement of GABAA receptors. The sodium channel blocker tetrodotoxin (TTX, 1 microM in the bath) did not prevent the isoguvacine-induced rise in [Ca2+]i. 4. The isoguvacine-induced rise in [Ca2+]i was reversibly blocked by bath application of the calcium channel blocker D600 (50 microM) suggesting the involvement of voltage-dependent Ca2+ channels. 5. Electrical stimulation of afferent fibres induced a transient increase in [Ca2+]i in neonatal pyramidal cells and interneurons (P5) loaded non-invasively with fluo-3 AM. This elevation of [Ca2+]i was reversibly blocked by bicuculline (20 microM) but not by APV (50 microM) and CNQX (10 microM). 6. During simultaneous electrophysiological recording in the current-clamp mode and [Ca2+]i monitoring from P5 pyramidal cells, electrical stimulation of afferent fibres, in the presence of APV (50 microM) and CNQX (10 microM), caused synaptic depolarization accompanied by a few action potentials and a transient increase in [Ca2+]i. In voltage clamp (-70 mV) however, there was no increase in [Ca2+]i following synaptic stimulation, showing that it is depolarization dependent. 7. Using a non-invasive method of [Ca2+]i monitoring, we demonstrate here that in neonatal (P2-5) hippocampus, GABA is an excitatory neurotransmitter which can cause an elevation of [Ca2+]i in interneurons and pyramidal cells via activation of voltage-dependent Ca2+ channels. This action may underlie the trophic role of GABA in hippocampal development.
Collapse
Affiliation(s)
- X Leinekugel
- INSERM, Unité 29, Hôpital de Port-Royal, Paris, France
| | | | | | | |
Collapse
|
42
|
Gaiarsa JL, McLean H, Congar P, Leinekugel X, Khazipov R, Tseeb V, Ben-Ari Y. Postnatal maturation of gamma-aminobutyric acidA and B-mediated inhibition in the CA3 hippocampal region of the rat. JOURNAL OF NEUROBIOLOGY 1995; 26:339-49. [PMID: 7775967 DOI: 10.1002/neu.480260306] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the adult central nervous system, GABAergic synaptic inhibition is known to play a crucial role in preventing the spread of excitatory glutamatergic activity. This inhibition is achieved by a membrane hyperpolarization through the activation of postsynaptic gamma-aminobutyric acidA (GABAA) and GABAB receptors. In addition, GABA also depress transmitter release acting through presynaptic GABAB receptors. Despite the wealth of data regarding the role of GABA in regulating the degree of synchronous activity in the adult, little is known about GABA transmission during early stages of development. In the following we report that GABA mediates most of the excitatory drive at early stages of development in the hippocampal CA3 region. Activation of GABAA receptors induces a depolarization and excitation of immature CA3 pyramidal neurons and increases intracellular Ca2+ ([Ca2+]i)] during the first postnatal week of life. During the same developmental period, the postsynaptic GABAB-mediated inhibition is poorly developed. In contrast, the presynaptic GABAB-mediated inhibition is well developed at birth and plays a crucial role in modulating the postsynaptic activity by depressing transmitter release at early postnatal stages. We have also shown that GABA plays a trophic role in the neuritic outgrowth of cultured hippocampal neurons.
Collapse
Affiliation(s)
- J L Gaiarsa
- Institut National de la Santé et de la Recherche Médicale, U29, Hôpital de Port-Royal, Paris, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
We analyzed the development of the hippocamposeptal projection and the morphology of the neurons giving rise to this projection. The fluorescent tracer Dil was injected into the septal region or the hippocampus in fixed brains of embryonic and early postnatal rats. Anterogradely labeled hippocampal axons first reached the septal region at E16. They ran along the midline of the brain, thereby approaching the medial septum. Axons to the lateral septum were first observed around E18/19. The lateral septum is partly innervated by collaterals of axons that travel to the medial septum. The projection to the lateral septal nuclei becomes more massive during early postnatal stages, whereas that to the medial septum becomes smaller. Cells in the medial septum retrogradely labeled by injection into the hippocampus were first observed at E18. Thus, the hippocamposeptal projection is established earlier than the septohippocampal projection. The first hippocampal projection neurons are nonpyramidal neurons that appear to pioneer the pathway to the septum. Pyramidal cell axons follow this first cohort of axons into the medial septum. Pyramidal cells could be retrogradely labeled from the medial septum during the perinatal period but then diminished in number. At P10, only nonpyramidal cells were labeled by medial septal injections. This indicates that the pyramidal component of this projection is transient and is removed shortly after birth. However, as is known from other studies, hippocampal pyramidal cells give rise to a powerful projection to the lateral septum in adult animals. Our results show that there is a considerable remodeling of the projection from the hippocampus to the septum during ontogenetic development.
Collapse
Affiliation(s)
- R Linke
- Institute of Anatomy, University of Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
44
|
Erichsen JT, Ciocchetti A, Fontanesi G, Bagnoli P. Neuroactive substances in the developing dorsomedial telencephalon of the pigeon (Columba livia): differential distribution and time course of maturation. J Comp Neurol 1994; 345:537-61. [PMID: 7525663 DOI: 10.1002/cne.903450406] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The avian hippocampal formation has previously been shown to contain many of the same neurotransmitters and related enzymes that are found in mammals. In order to determine whether the relatively delayed development of the mammalian hippocampus is typical of other vertebrates, we investigated the maturation of a variety of neuroactive substances in the hippocampal formation of the homing pigeon. The distribution of two transmitter-related enzymes, choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH), the neurotransmitter GABA, and four neuropeptides (substance P, enkephalin, neuropeptide Y, and somatostatin) was studied by immunohistochemistry in the developing hippocampal complex. The pattern and/or the time course of changes in the distribution of immunoreactivity varied among the different neuroactive substances examined. Immunoreactivity to ChAT and TH was found exclusively in fibers and terminal-like processes, whereas GABA and peptide immunoreactivity was seen in cells and neuropil. Quantitative differences in the density, number, and size of stained cells were assessed by a computer-assisted image analyzer. For the majority of the substances, developmental patterns in the distribution of immunoreactivity differ between the hippocampus proper and the area parahippocampalis, the two major areas that together make up the avian hippocampal complex. The adult pattern of immunoreactivity was generally attained by 3 weeks after hatching. For many of the neuroactive substances found in cell bodies, there was a gradual decrease in the density of immunoreactive cells with a concomitant increase in the density of immunoreactive neuropil. The actual number of stained cells usually increased to a peak at 9 days posthatching and then declined until 3 weeks posthatching, when the adult value was reached. These results are discussed in relation to the advantages that the pigeon hippocampal complex may provide in the study of developmental processes. Parallels with the distribution of the same neuroactive substances in the mammalian hippocampus are used to suggest possible functional similarities between the avian and mammalian hippocampal regions.
Collapse
Affiliation(s)
- J T Erichsen
- Department of Neurobiology and Behavior, SUNY at Stony Brook 11794
| | | | | | | |
Collapse
|
45
|
Supèr H, Soriano E. The organization of the embryonic and early postnatal murine hippocampus. II. Development of entorhinal, commissural, and septal connections studied with the lipophilic tracer DiI. J Comp Neurol 1994; 344:101-20. [PMID: 8063952 DOI: 10.1002/cne.903440108] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have analyzed the early development of the main hippocampal afferents in the mouse. Following injections of the lipophilic tracer 1-1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) in the entorhinal cortex, entorhinal axons were observed for the first time in the hippocampus at E15, in the white matter. At E17, entorhinal fibers arborized within the stratum lacunosum-moleculare. At subsequent stages entorhinal axons formed dense networks that were restricted to their appropriate termination zone in the lacunosum-moleculare. The first axons invading the fascia dentata were noticed at E19, their density increasing at later stages. These axons were mainly present in the outer molecular layer. This onset of entorhinohippocampal projections was corroborated by retrograde labeling data after injections in the hippocampus. Commissural fibers first entered the contralateral hippocampus at E18, their number increasing at the following stages. Commissural axons arborized within the stratum oriens and radiatum in the hippocampus proper. In the fascia dentata, the earliest commissural fibers were seen at P2, terminating in the inner zone of the molecular layer and in the hilus. We conclude that developing entorhinal and commissural axons show a high degree of laminar specificity from the earliest stages of formation, which is compatible with the notion that distinct subsets of early maturing neurons populating the hippocampal plexiform layers may attract particular fiber systems. Hippocamposeptal fibers develop at E15, before the first septal fibers can be detected in the hippocampus. These early hippocamposeptal fibers originated from nonpyramidal neurons and terminated in the medial septal area, which is the main source of septal afferents to the hippocampus. In contrast, septohippocampal fibers were not seen in the hippocampus until E17. At perinatal stages, the hippocamposeptal connection reshapes, sending axons to the dorsolateral septal area as the innervation of the medial septum becomes less conspicuous. This sequence suggests that hippocampal neurons pioneer the formation of septohippocampal connections.
Collapse
Affiliation(s)
- H Supèr
- Unit of Cell Biology, Faculty of Biology, University of Barcelona, Spain
| | | |
Collapse
|
46
|
Hosokawa Y, Sciancalepore M, Stratta F, Martina M, Cherubini E. Developmental changes in spontaneous GABAA-mediated synaptic events in rat hippocampal CA3 neurons. Eur J Neurosci 1994; 6:805-13. [PMID: 8075822 DOI: 10.1111/j.1460-9568.1994.tb00991.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ongoing spontaneous postsynaptic potentials (SPSPs) were intracellularly recorded at 34-36 degrees C from hippocampal CA3 neurons in slices obtained from postnatal days (P) 0-6 and 7-31. SPSPs occurred randomly, and their frequency distribution was fitted by a single exponential function. They were little affected by kynurenic acid, but were reversibly blocked by bicuculline, implying that they were mediated by GABAA receptors. The mean amplitude was 4.53 +/- 0.89 mV in control conditions and 4.07 +/- 0.79 mV in kynurenic acid. In kynurenic acid (with CsCl-filled microelectrodes), SPSPs reversed polarity at 2.4 +/- 2 mV. When tetrodotoxin (1 microM) was added to kynurenic acid solution, GABAA-mediated miniature postsynaptic potentials (MPSPs) were recorded. Under these conditions large events disappeared. The mean amplitude of MPSPs was 2.51 +/- 0.43 mV. The mean frequency decreased from 2.96 +/- 1.04 Hz in kynurenic acid to 0.4 +/- 0.15 Hz in kynurenic acid plus tetrodotoxin. In contrast with P0-P6, at P7-P31 SPSPs were significantly affected by kynurenic acid. The mean amplitude of SPSPs shifted from 4.71 +/- 0.82 mV in control conditions to 3.79 +/- 0.76 mV in kynurenic acid. At this developmental stage, the reversal potential of GABAA-mediated SPSPs shifted towards more negative values (-23.7 +/- 1.3 mV). Addition of tetrodotoxin to kynurenic acid solution abolished larger events and revealed GABAergic MPSPs. The mean amplitude of MPSPs was 2.72 +/- 0.5 mV, a value very close to that observed at P0-P6. Synaptic currents were recorded at 22-24 degrees C from voltage-clamped CA3 pyramidal neurons (at P6) using the tight-seal whole-cell recording technique.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Hosokawa
- Biophysics Laboratory, International School for Advanced Studies, Trieste, Italy
| | | | | | | | | |
Collapse
|
47
|
Soriano E, Del Río JA, Martínez A, Supèr H. Organization of the embryonic and early postnatal murine hippocampus. I. Immunocytochemical characterization of neuronal populations in the subplate and marginal zone. J Comp Neurol 1994; 342:571-95. [PMID: 7913715 DOI: 10.1002/cne.903420406] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunocytochemical techniques were used to characterize the neuronal populations in the hippocampal subplate and marginal zone from embryonic day 13 (E13) to postnatal day 5 (P5). Sections were processed for the visualization of microtubule-associated protein 2 (MAP2) and other antigens such as neurotransmitters, neuropeptides, calcium-binding proteins and a synaptic antigen (Mab SMI81). At E13-E14, only the ventricular zone and the primitive plexiform layer were recognized. Some cells in the later stratum displayed MAP2-, gamma-aminobutyric acid (GABA)- and calretinin immunoreactivities. From E15 onwards, the hippocampal and dentate plates became visible. Neurons in the plexiform layers were immunoreactive at E15-E16, whereas the hippocampal and dentate plates showed immunostaining two or three days later. Between E15 and E19 the following populations were distinguished in the plexiform layers: the subventricular zone displayed small neurons that reacted with MAP2 and GABA antibodies; the subplate (prospective stratum oriens) was poorly populated by MAP2- and GABA-positive cells; the inner marginal zone (future stratum radiatum) was heavily populated by multipolar GABAergic cells; the outer marginal zone (stratum lacunosum-moleculare) displayed horizontal neurons that showed glutamate- and calretinin immunoreactivities, their morphology being reminiscent of neocortical Cajal-Retzius cells. Thus, each plexiform layer was populated by a characteristic neuronal population whose distribution did not overlap. Similar segregated neuronal populations were also found in the developing dentate gyrus. At perinatal stages, small numbers of neurons in the plexiform layers began to express calbindin D-28K and neuropeptides. During early postnatal stages, neurons in the subplate and inner marginal zones were transformed into resident cells of the stratum oriens and radiatum, respectively. In contrast, calretinin-positive neurons in the stratum lacunosum-moleculare disappeared at postnatal stages. At E15-E19, SMI81-immunoreactive fibers were observed in the developing white matter, subplate and outer marginal zone, which suggests that these layers are sites of early synaptogenesis. At P0-P5, SMI81 immunoreactivity became homogeneously distributed within the hippocampal layers. The present results show that neurons in the hippocampal subplate and marginal zones have a more precocious morphological and neurochemical differentiation than the neurons residing in the principal cell layers. It is suggested that these early maturing neurons may have a role in the targeting of hippocampal afferents, as subplate cells do in the developing neocortex.
Collapse
Affiliation(s)
- E Soriano
- Unit of Cell Biology, Faculty of Biology, University of Barcelona, Spain
| | | | | | | |
Collapse
|
48
|
Ben-Ari Y, Tseeb V, Raggozzino D, Khazipov R, Gaiarsa JL. gamma-Aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life. PROGRESS IN BRAIN RESEARCH 1994; 102:261-73. [PMID: 7800817 DOI: 10.1016/s0079-6123(08)60545-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The properties of neonatal GABAergic synapses were investigated in neurones of the hippocampal CA3 region. GABA, acting on GABAA receptors, provides most of the excitatory drive on immature CA3 pyramidal neurones at an early stage of development, whereas glutamatergic synapses (in particular, those mediated by AMPA receptors) are mostly quiescent. Thus, during the first postnatal week of life, bicuculline fully blocked spontaneous and evoked depolarising potentials, and GABAA receptor agonists depolarised CA3 pyramidal neurones. GABAA mediated currents also had a reduced sensitivity to benzodiazepines. In the presence of bicuculline, between P0 and P4, increasing the stimulus strength reveals an excitatory postsynaptic potential which is mostly mediated by NMDA receptors. During the same developmental period, pre- (but not post) synaptic GABAB inhibition is present. Intracellular injections of biocytin showed that the axonal network of the GABAergic interneurones is well developed at birth, whereas the pyramidal recurrent collaterals are only beginning to develop. Finally, chronic bicuculline treatment of hippocampal neurones in culture reduced the extent of neuritic arborisation, suggesting that GABA acts as a trophic factor in that period. In conclusion, it is suggested that during the first postnatal week of life, when excitatory inputs are still poorly developed, GABAA receptors provide the excitatory drive necessary for pyramidal cell outgrowth. Starting from the end of the first postnatal week of life, when excitatory inputs are well developed, GABA (acting on both GABAA and GABAB receptors) will hyperpolarise the CA3 pyramidal neurones and, as in the adult, will prevent excessive neuronal discharges. Our electrophysiological and morphological studies have shown that hippocampal GABAergic interneurones are in a unique position to modulate the development of CA3 pyramidal neurones. Developing neurones require a certain degree of membrane depolarisation, and a consequent rise in intracellular calcium, for stimulating neurite outgrowth; the GABAergic network, which develops prior to the glutamatergic one, appears to provide this depolarisation. Starting from the end of the first postnatal week of life, at a time when excitatory pathways are developing, GABA (acting on both GABAA and GABAB receptors) would reverse its action, and start to play its well-known role as an inhibitory neurotransmitter.
Collapse
|
49
|
Kerr DS, Abraham WC. Comparison of associative and non-associative conditioning procedures in the induction of LTD in CA1 of the hippocampus. Synapse 1993; 14:305-13. [PMID: 7902616 DOI: 10.1002/syn.890140408] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent reports have indicated that weak activity in a test input, negatively correlated (out-of-phase) with tetanization of a separate, converging input, produces an NMDA-independent, associative long-term depression (LTD) of the test input synapses, in hippocampal field CA1 (Stanton and Sejnowski, 1989; Stanton et al., 1991). Associative LTD has also been observed in the dentate gyrus, in vivo, but only following "priming" of the test path with 5 Hz stimulation prior to associative conditioning (Christie and Abraham, 1992b). We have used these stimulus protocols, in vitro, in order to compare the induction of non-associative and associative LTD in field CA1 of the adult rat hippocampus. Stimulation in normal solution evoked a small non-associative LTD, but no associative LTD. Addition of picrotoxin to the medium facilitated the induction of NMDA-dependent non-associative LTD, but not associative LTD. Previously potentiated pathways were not different from naive pathways in expression of LTD of either kind. Finally, 'priming' stimulation (5 Hz) of the test pathway produced a weak, selective enhancement of associative LTD that was, however, not significantly greater than non-associative LTD. These results indicate that, for our experimental conditions, negatively correlated co-activity during afferent tetanization does not induce a substantial associative LTD in area CA1.
Collapse
Affiliation(s)
- D S Kerr
- Department of Psychology and Neuroscience Research Centre, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
50
|
Valeyev AY, Cruciani RA, Lange GD, Smallwood VS, Barker JL. Cl- channels are randomly activated by continuous GABA secretion in cultured embryonic rat hippocampal neurons. Neurosci Lett 1993; 155:199-203. [PMID: 8397353 DOI: 10.1016/0304-3940(93)90707-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Throughout the adult vertebrate central nervous system (CNS) gamma-aminobutyric acid (GABA) mediates transient Cl- conductances commonly identified as fast, Cl(-)-dependent inhibitory synaptic signals [Prog. Neurobiol., 36 (1991) 35-92]. In the rat hippocampus Cl(-)-dependent excitatory transients mediated by GABA emerge during the first postnatal week superimposed on a steady-state baseline that is also Cl(-)- and GABA-dependent [Int. J. Dev. Neurosci., 8 (1990) 481-490]. Here we report that many embryonic rat hippocampal neurons cultured for hours to days exhibit random fluctuations in Cl- channel activity that are mediated by continuous secretion of GABA in the absence of transients. Thus, GABA is broadcast tonically before it is released transiently.
Collapse
Affiliation(s)
- A Y Valeyev
- Laboratory of Neurophysiology, NINDS, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|