1
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
2
|
Lu G, Ou K, Jing Y, Zhang H, Feng S, Yang Z, Shen G, Liu J, Wu C, Wei S. The Structural Basis of African Swine Fever Virus pS273R Protease Binding to E64 through Molecular Dynamics Simulations. Molecules 2023; 28:1435. [PMID: 36771101 PMCID: PMC9920524 DOI: 10.3390/molecules28031435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Identification of novel drugs for anti-African swine fever (ASF) applications is of utmost urgency, as it negatively affects pig farming and no effective vaccine or treatment is currently available. African swine fever virus (ASFV) encoded pS273R is a cysteine protease that plays an important role in virus replication. E64, acting as an inhibitor of cysteine protease, has been established as exerting an inhibitory effect on pS273R. In order to obtain a better understanding of the interaction between E64 and pS273R, common docking, restriction docking, and covalent docking were employed to analyze the optimal bonding position between pS273R-E64 and its bonding strength. Additionally, three sets of 100 ns molecular dynamics simulations were conducted to examine the conformational dynamics of pS273R and the dynamic interaction of pS273R-E64, based on a variety of analytical methods including root mean square deviation (RMSD), root mean square fluctuation (RMSF), free energy of ligand (FEL), principal component analysis (PCA), and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) analysis. The results show that E64 and pS273R exhibited close binding degrees at the activity center of ASFV pS273R protease. The data of these simulations indicate that binding of E64 to pS273R results in a reduction in flexibility, particularly in the ARM region, and a change in the conformational space of pS273R. Additionally, the ability of E64 to interact with polar amino acids such as ASN158, SER192, and GLN229, as well as charged amino acids such as LYS167 and HIS168, seems to be an important factor in its inhibitory effect. Finally, Octet biostratigraphy confirmed the binding of E64 and pS273R with a KD value of 903 uM. Overall, these findings could potentially be utilized in the development of novel inhibitors of pS273R to address the challenges posed by ASFV.
Collapse
Affiliation(s)
- Gen Lu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Kang Ou
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Yiwen Jing
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Shouhua Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Zuofeng Yang
- The Preventive and Control Center of Animal Disease of Liaoning Province, Liaoning Agricultural Development Service Center, No. 95, Renhe Road, Shenbei District, Shenyang 110164, China
| | - Guoshun Shen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Changde Wu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Shu Wei
- The Preventive and Control Center of Animal Disease of Liaoning Province, Liaoning Agricultural Development Service Center, No. 95, Renhe Road, Shenbei District, Shenyang 110164, China
| |
Collapse
|
3
|
Kunišek L, Matušan Ilijaš K, Medved I, Ferenčić A, Erdeljac D, Arbanas S, Kunišek J. Cardiomyocytes calpain 2 expression: Diagnostic forensic marker for sudden cardiac death caused by early myocardial ischemia and an indicator of the duration of myocardial agonal period? Med Hypotheses 2021; 158:110738. [PMID: 34863067 DOI: 10.1016/j.mehy.2021.110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Sudden cardiac death (SCD) is an unexpected natural death of cardiac etiology and occurs within one hour of the onset of cardiac symptoms in an apparently healthy subject or within 24 h if death is not witnessed. The diagnosis of early myocardial ischemia (EMI) or acute myocardial infarction (AMI) after death is a challenge for forensic pathologists especially when death occurs in a short period of time after the onset of myocardial ischemia. Disorder of cardiomyocytes Ca2+ homeostasis caused by myocardial ischemia during SCD can lead to the activation of calcium-activated non-lysosomal cysteine protease, including calpains. They serve as a proteolytic unit for cell balance and also participate in the processes of apoptosis and necrosis. Agony is a period that precedes somatic death that differs from cellular agony which may evolve for hours after somatic death lasting differently depending on the cell type and mechanism of death. We hypothesize that the expression of calpain 2 in cardiomyocytes could be a specific and sensitive diagnostic forensic marker for SCD caused by EMI and an indicator of the duration of myocardial agonal period. We will conduct a retrospective study that will prove this hypothesis on the respondents who died of SCD by EMI and AMI, instant death by head gunshot and hanging. There is no data on such an analysis in the available literature. The standard hematoxylin-eosin staining will be used to detect cardiac tissue damage. The expression of calpain 2 in cardiomyocytes will be analyzed immunohistochemically. In SCD caused by EMI we expect lower level of calpain 2 expressionin comparison to AMI due to shorter duration of dying. Similar, we predict in the remote region lower calpain 2 expression than in the region of ischemia for both EMI and AMI. In instant death caused by perforating traumatic brain injury we expect mild or no calpain 2 expression throughout the whole myocardium because of very short (immediate) duration of dying. In death caused by hanging calpain 2 expression throughout the whole myocardium should be strong because of longer cellular agonal period. We expect that our results would indicate the immediate activation of calpain 2 in different causes of cardiomyocytes death. From the degree of expression of calpain 2 we could conclude about the duration of cardiomyocytes agony so calpain 2 could be used as a marker for the assessment the duration of somatic and cellular agony.
Collapse
Affiliation(s)
- Leon Kunišek
- University Hospital Center Rijeka, Department of Cardiothoracic Surgery, Division of Cardiac Surgery, Rijeka, Krešimirova 42, Croatia.
| | - Koviljka Matušan Ilijaš
- University Hospital Center Rijeka, Department of Pathology and Cytology, Rijeka, Krešimirova 42, Croatia
| | - Igor Medved
- University Hospital Center Rijeka, Department of Cardiothoracic Surgery, Division of Cardiac Surgery, Rijeka, Krešimirova 42, Croatia
| | - Antun Ferenčić
- University of Rijeka, Faculty of Medicine, Department of Forensic Medicine and Criminalistics, Rijeka, Croatia
| | - Danijela Erdeljac
- University Hospital Center Rijeka, Department of Cardiothoracic Surgery, Division of Cardiac Surgery, Rijeka, Krešimirova 42, Croatia
| | - Silvia Arbanas
- University of Rijeka, Faculty of Medicine, Department of Forensic Medicine and Criminalistics, Rijeka, Croatia
| | - Juraj Kunišek
- Thalassotherapia Crikvenica, Special Hospital for Medical Rehabilitation Crikvenica, Gajevo šetalište 21, Croatia
| |
Collapse
|
4
|
Pan L, Zhang P, Hu F, Yan R, He M, Li W, Xu J, Xu K. Hypotonic Stress Induces Fast, Reversible Degradation of the Vimentin Cytoskeleton via Intracellular Calcium Release. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900865. [PMID: 31559132 PMCID: PMC6755523 DOI: 10.1002/advs.201900865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/16/2019] [Indexed: 06/01/2023]
Abstract
The dynamic response of the cell to osmotic changes is critical to its physiology and is widely exploited for cell manipulation. Here, using three-dimensional stochastic optical reconstruction microscopy (3D-STORM), a super-resolution technique, the hypotonic stress-induced ultrastructural changes of the cytoskeleton of a common fibroblast cell type are examined. Unexpectedly, these efforts lead to the discovery of a fast, yet reversible dissolution of the vimentin intermediate filament system that precedes ultrastructural changes of the supposedly more dynamic actin and tubulin cytoskeletal systems as well as changes in cell morphology. In combination with calcium imaging and biochemical analysis, it is shown that the vimentin-specific fast cytoskeletal degradation under hypotonic stress is due to proteolysis by the calcium-dependent protease calpain. The process is found to be activated by the hypotonic stress-induced calcium release from intracellular stores, and is therefore efficiently suppressed by inhibiting any part of the IP3-Ca2+-calpain pathway established in this study. Together, these findings highlight an unexpected, fast degradation mechanism for the vimentin cytoskeleton in response to external stimuli, and point to the significant, yet previously overlooked physiological impacts of hypotonic stress-induced intracellular calcium release on cell ultrastructure and function.
Collapse
Affiliation(s)
- Leiting Pan
- The Key Laboratory of Weak‐Light Nonlinear PhotonicsMinistry of EducationSchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
- Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
| | - Ping Zhang
- The Key Laboratory of Weak‐Light Nonlinear PhotonicsMinistry of EducationSchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Fen Hu
- The Key Laboratory of Weak‐Light Nonlinear PhotonicsMinistry of EducationSchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Rui Yan
- Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
| | - Manni He
- Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
| | - Wan Li
- Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
| | - Jingjun Xu
- The Key Laboratory of Weak‐Light Nonlinear PhotonicsMinistry of EducationSchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Ke Xu
- Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
- Chan Zuckerberg BiohubSan FranciscoCA94158USA
| |
Collapse
|
5
|
Hanchate V, Muniraj N, Prabhu KR. Rh(III)-Catalyzed Oxidative Annulation of Sulfoximines with Arylalkynyl Silanes via Desilylation. J Org Chem 2019; 84:8248-8255. [DOI: 10.1021/acs.joc.9b00743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vinayak Hanchate
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Nachimuthu Muniraj
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| |
Collapse
|
6
|
Romo-Mancillas A, Lemus R, Pérez-Estrada R, Kuribreña-Romero de Terreros F, Domínguez-Ramírez L. Molecular dynamic simulations of the catalytic subunit of calpains 1, 2, 5, and 10: Structural analysis with an aim toward drug design. Chem Biol Drug Des 2018; 93:38-49. [PMID: 30107087 DOI: 10.1111/cbdd.13376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/21/2018] [Accepted: 07/07/2018] [Indexed: 12/14/2022]
Abstract
Calpains are cysteine proteases involved in the development of several human chronic illnesses such as neurodegenerative diseases, cardiovascular ailments, diabetes, and obesity which constitutes them into possible therapeutic targets. Here, using molecular dynamic simulations and docking, we studied the binding of known inhibitors to representative members of classical and nonclassical calpains. Our aim is to gain better understanding on the inhibition mechanism of calpains and to develop better and more specific inhibitors. Our atomistic models confirmed the importance of calcium ions for the structure of calpains and, as a consequence, their functionality. With these models and their subsequent use in molecular docking, essential structural requirements were identified for the binding of ligands to the calpain catalytic site that provide useful information for the design of new selective calpain inhibitors.
Collapse
Affiliation(s)
- Antonio Romo-Mancillas
- División de Estudios de Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, México.,Dirección de Nuevos Desarrollos, Landsteiner Scientific, Parque Industrial, Toluca, Mexico
| | - Roselyn Lemus
- Dirección de Nuevos Desarrollos, Landsteiner Scientific, Parque Industrial, Toluca, Mexico
| | - Raúl Pérez-Estrada
- Dirección de Nuevos Desarrollos, Landsteiner Scientific, Parque Industrial, Toluca, Mexico
| | | | - Lenin Domínguez-Ramírez
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Santa Catarina Mártir Cholula, Puebla, Mexico
| |
Collapse
|
7
|
Tang Y, Fu R, Ling ZM, Liu LL, Yu GY, Li W, Fang XY, Zhu Z, Wu WT, Zhou LH. MiR-137–3p rescue motoneuron death by targeting calpain-2. Nitric Oxide 2018; 74:74-85. [DOI: 10.1016/j.niox.2018.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023]
|
8
|
Romine H, Rentschler KM, Smith K, Edwards A, Colvin C, Farizatto K, Pait MC, Butler D, Bahr BA. Potential Alzheimer's Disease Therapeutics Among Weak Cysteine Protease Inhibitors Exhibit Mechanistic Differences Regarding Extent of Cathepsin B Up-Regulation and Ability to Block Calpain. ACTA ACUST UNITED AC 2017; 13:38-59. [PMID: 29805718 DOI: 10.19044/esj.2017.c1p5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cysteine protease inhibitors have long been part of drug discovery programs for Alzheimer's disease (AD), traumatic brain injury (TBI), and other disorders. Select inhibitors reduce accumulating proteins and AD pathology in mouse models. One such compound, Z-Phe-Aladiazomethylketone (PADK), exhibits a very weak IC50 (9-11 μM) towards cathepsin B (CatB), but curiously PADK causes marked up-regulation of the Aβ-degrading CatB and improves spatial memory. Potential therapeutic and weak inhibitor E64d (14 μM IC50) also up-regulates CatB. PADK and E64d were compared regarding the blockage of calcium-induced cytoskeletal deterioration in brain samples, monitoring the 150-kDa spectrin breakdown product (SBDP) known to be produced by calpain. PADK had little to no effect on SBDP production at 10-100 μM. In contrast, E64d caused a dose-dependent decline in SBDP levels with an IC50 of 3-6 μM, closely matching its reported potency for inhibiting μ-calpain. Calpain also cleaves the cytoskeletal organizing protein gephyrin, producing 49-kDa (GnBDP49) and 18-kDa (GnBDP18) breakdown products. PADK had no apparent effect on calcium-induced gephyrin fragments whereas E64d blocked their production. E64d also protected the parent gephyrin in correspondence with reduced BDP levels. The findings of this study indicate that PADK's positive and selective effects on CatB are consistent with human studies showing exercise elevates CatB and such elevation correlates with improved memory. On the other hand, E64d exhibits both marginal CatB enhancement and potent calpain inhibition. This dual effect may be beneficial for treating AD. Alternatively, the potent action on calpain-related pathology may explain E64d's protection in AD and TBI models.
Collapse
Affiliation(s)
- Heather Romine
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | | | - Kaitlan Smith
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Ayanna Edwards
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Camille Colvin
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Karen Farizatto
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Morgan C Pait
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - David Butler
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Ben A Bahr
- William C. Friday Laboratory, University of North Carolina - Pembroke, North Carolina, USA
| |
Collapse
|
9
|
Kessel D. Subcellular Targeting as a Determinant of the Efficacy of Photodynamic Therapy. Photochem Photobiol 2017; 93:609-612. [PMID: 27935055 PMCID: PMC5352468 DOI: 10.1111/php.12692] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/11/2016] [Indexed: 01/22/2023]
Abstract
In prior studies, we have identified the ability of low-level lysosomal photodamage to potentiate the phototoxic effect of subsequent photodamage to mitochondria. The mechanism involves calpain-mediated cleavage of the autophagy-associated protein ATG5 to form a proapoptotic fragment (tATG5). In this report, we explore the permissible time lag between the two targeting procedures along with the effect of simultaneously targeting both lysosomes and mitochondria. This was found to be as effective as the sequential protocol with no gap between the irradiation steps. Inhibition of calpain reversed the enhanced efficacy of the "simultaneous" protocol. It appears that even a minor level of lysosomal photodamage can have a significant effect on the efficacy of subsequent mitochondrial photodamage. We propose that these results may explain the efficacy of Photofrin, a photosensitizing product that also targets both lysosomes and mitochondria for photodamage.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit MI 48201
| |
Collapse
|
10
|
Zhang T, Pereyra AS, Wang Z, Birbrair A, Reisz JA, Files DC, Purcell L, Feng X, Messi ML, Feng H, Chalovich J, Jin J, Furdui C, Delbono O. Calpain inhibition rescues troponin T3 fragmentation, increases Cav1.1, and enhances skeletal muscle force in aging sedentary mice. Aging Cell 2016; 15:488-98. [PMID: 26892246 PMCID: PMC4854922 DOI: 10.1111/acel.12453] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 01/19/2023] Open
Abstract
Loss of strength in human and animal models of aging can be partially attributed to a well-recognized decrease in muscle mass; however, starting at middle-age, the normalized force (force/muscle cross-sectional area) in the knee extensors and single muscle fibers declines in a curvilinear manner. Strength is lost faster than muscle mass and is a more consistent risk factor for disability and death. Reduced expression of the voltage sensor Ca(2+) channel α1 subunit (Cav1.1) with aging leads to excitation-contraction uncoupling, which accounts for a significant fraction of the decrease in skeletal muscle function. We recently reported that in addition to its classical cytoplasmic location, fast skeletal muscle troponin T3 (TnT3) is fragmented in aging mice, and both full-length TnT3 (FL-TnT3) and its carboxyl-terminal (CT-TnT3) fragment shuttle to the nucleus. Here, we demonstrate that it regulates transcription of Cacna1s, the gene encoding Cav1.1. Knocking down TnT3 in vivo downregulated Cav1.1. TnT3 downregulation or overexpression decreased or increased, respectively, Cacna1s promoter activity, and the effect was ablated by truncating the TnT3 nuclear localization sequence. Further, we mapped the Cacna1s promoter region and established the consensus sequence for TnT3 binding to Cacna1s promoter. Systemic administration of BDA-410, a specific calpain inhibitor, prevented TnT3 fragmentation, and Cacna1s and Cav1.1 downregulation and improved muscle force generation in sedentary old mice.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Biomechanical Phenomena/drug effects
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calpain/antagonists & inhibitors
- Calpain/metabolism
- Cell Line
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Electrophoretic Mobility Shift Assay
- Female
- Gene Knockdown Techniques
- Isometric Contraction/drug effects
- Mice, Inbred C57BL
- Muscle Fatigue/drug effects
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/physiology
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- Protein Stability/drug effects
- Sulfonamides/pharmacology
- Transcription, Genetic/drug effects
- Troponin T/metabolism
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
- Molecular Medicine and Translational ScienceWake Forest School of MedicineWinston‐SalemNCUSA
| | - Andrea S. Pereyra
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
- Present address: Biochemistry Research Institute of La Plata (INIBIOLP)/CONICETSchool of MedicineNational University of La Plata1900La PlataBAArgentina
| | - Zhong‐Min Wang
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
| | - Alexander Birbrair
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
- Present address: Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of MedicineNY10461USA
| | - Julie A. Reisz
- Molecular Medicine and Translational ScienceWake Forest School of MedicineWinston‐SalemNCUSA
- Present address: Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO80045New YorkUSA
| | - Daniel Clark Files
- Pulmonary, Critical Care, Allergy and Immunologic DiseasesWake Forest School of MedicineWinston‐SalemNCUSA
| | - Lina Purcell
- Pulmonary, Critical Care, Allergy and Immunologic DiseasesWake Forest School of MedicineWinston‐SalemNCUSA
| | - Xin Feng
- Department of OtolaryngologyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Maria L. Messi
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
| | - Hanzhong Feng
- Wayne State University School of MedicineDetroitMIUSA
| | - Joseph Chalovich
- Department of Biochemistry and Molecular BiologyBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
| | - Jian‐Ping Jin
- Wayne State University School of MedicineDetroitMIUSA
| | - Cristina Furdui
- Molecular Medicine and Translational ScienceWake Forest School of MedicineWinston‐SalemNCUSA
| | - Osvaldo Delbono
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
- J Paul Sticht Center on AgingWake Forest School of MedicineWinston‐SalemNCUSA
| |
Collapse
|
11
|
Kim JH, Kwon SJ, Stankewich MC, Huh GY, Glantz SB, Morrow JS. Reactive protoplasmic and fibrous astrocytes contain high levels of calpain-cleaved alpha 2 spectrin. Exp Mol Pathol 2015; 100:1-7. [PMID: 26551084 DOI: 10.1016/j.yexmp.2015.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022]
Abstract
Calpain, a family of calcium-dependent neutral proteases, plays important roles in neurophysiology and pathology through the proteolytic modification of cytoskeletal proteins, receptors and kinases. Alpha 2 spectrin (αII spectrin) is a major substrate for this protease family, and the presence of the αII spectrin breakdown product (αΙΙ spectrin BDP) in a cell is evidence of calpain activity triggered by enhanced intracytoplasmic Ca(2+) concentrations. Astrocytes, the most dynamic CNS cells, respond to micro-environmental changes or noxious stimuli by elevating intracytoplasmic Ca(2+) concentration to become activated. As one measure of whether calpains are involved with reactive glial transformation, we examined paraffin sections of the human cerebral cortex and white matter by immunohistochemistry with an antibody specific for the calpain-mediated αΙΙ spectrin BDP. We also performed conventional double immunohistochemistry as well as immunofluorescent studies utilizing antibodies against αΙΙ spectrin BDP as well as glial fibrillary acidic protein (GFAP). We found strong immunopositivity in selected protoplasmic and fibrous astrocytes, and in transitional forms that raise the possibility of some of fibrous astrocytes emerging from protoplasmic astrocytes. Immunoreactive astrocytes were numerous in brain sections from cases with severe cardiac and/or respiratory diseases in the current study as opposed to our previous study of cases without significant clinical conditions that failed to reveal such remarkable immunohistochemical alterations. Our study suggests that astrocytes become αΙΙ spectrin BDP immunopositive in various stages of activation, and that spectrin cleavage product persists even in fully reactive astrocytes. Immunohistochemistry for αΙΙ spectrin BDP thus marks reactive astrocytes, and highlights the likelihood that calpains and their proteolytic processing of spectrin participate in the morphologic and physiologic transition from resting protoplasmic astrocytes to reactive fibrous astrocytes.
Collapse
Affiliation(s)
- Jung H Kim
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA.
| | - Soojung J Kwon
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Michael C Stankewich
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Gi-Yeong Huh
- Department of Forensic Medicine, School of Medicine, Pusan National University, Pusan, Korea
| | - Susan B Glantz
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Jon S Morrow
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| |
Collapse
|
12
|
Wang KKW, Yang Z, Chiu A, Lin F, Rubenstein R. Examining the Neural and Astroglial Protective Effects of Cellular Prion Protein Expression and Cell Death Protease Inhibition in Mouse Cerebrocortical Mixed Cultures. Mol Neurobiol 2015; 53:4821-32. [PMID: 26337296 DOI: 10.1007/s12035-015-9407-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 08/20/2015] [Indexed: 12/14/2022]
Abstract
Overexpression of cellular prion protein, PrP(C), has cytoprotective effects against neuronal injuries. Inhibition of cell death-associated proteases such as necrosis-linked calpain and apoptosis-linked caspase are also neuroprotective. Here, we systematically studied how PrP(C) expression levels and cell death protease inhibition affect cytotoxic challenges to both neuronal and glial cells in mouse cerebrocortical mixed cultures (CCM). Primary CCM derived from three mouse lines expressing no (PrP(C) knockout mice (PrPKO)), normal (wild-type (wt)), or high (tga20) levels of PrP(C) were subjected to necrotic challenge (calcium ionophore A23187) and apoptotic challenge (staurosporine (STS)). CCM which originated from tga20 mice provided the most robust neuron-astroglia protective effects against necrotic and early apoptotic cell death (lactate dehydrogenase (LDH) release) at 6 h but subsequently lost its cytoprotective effects. In contrast, PrPKO-derived cultures displayed elevated A23187- and STS-induced cell death at 24 h. Calpain inhibitor SNJ-1945 protected against A23187 challenge at 6 h in CCM from all three mouse lines but protected only against A23187 and STS treatments by 24 h in the PrPKO line. In parallel, caspase inhibitor Z-D-DCB protected against pro-apoptotic STS challenge at 6 and 24 h. Furthermore, we also examined αII-spectrin breakdown products (primarily from neurons) and glial fibrillary acidic protein (GFAP) breakdown products (from astroglia) as cytoskeletal proteolytic biomarkers. Overall, it appeared that both neurons and astroglial cells were less vulnerable to proteolytic attack during A23187 and STS challenges in tga20-derived cultures but more vulnerable in PrPKO-derived cultures. In addition, calpain and caspase inhibitors provide further protection against respective protease attacks on these neuronal and glial cytoskeletal proteins in CCM regardless of mouse-line origin. Lastly, some synergistic cytoprotective effects between PrP(C) expression and addition of cell death-linked protease inhibitors were also observed.
Collapse
Affiliation(s)
- Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Psychiatry, Neuroscience and Physiological Science, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA.
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Psychiatry, Neuroscience and Physiological Science, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Allen Chiu
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, NY, 11203-2098, USA
| | - Fan Lin
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Psychiatry, Neuroscience and Physiological Science, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Richard Rubenstein
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, NY, 11203-2098, USA.
| |
Collapse
|
13
|
Yildiz-Unal A, Korulu S, Karabay A. Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatr Dis Treat 2015; 11:297-310. [PMID: 25709452 PMCID: PMC4327398 DOI: 10.2147/ndt.s78226] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Calpains are calcium-dependent proteolytic enzymes that have deleterious effects on neurons upon their pathological over-activation. According to the results of numerous studies to date, there is no doubt that abnormal calpain activation triggers activation and progression of apoptotic processes in neurodegeneration, leading to neuronal death. Thus, it is very crucial to unravel all the aspects of calpain-mediated neurodegeneration in order to protect neurons through eliminating or at least minimizing its lethal effects. Protecting neurons against calpain-activated apoptosis basically requires developing effective, reliable, and most importantly, therapeutically applicable approaches to succeed. From this aspect, the most significant studies focusing on preventing calpain-mediated neurodegeneration include blocking the N-methyl-d-aspartate (NMDA)-type glutamate receptor activities, which are closely related to calpain activation; directly inhibiting calpain itself via intrinsic or synthetic calpain inhibitors, or inhibiting its downstream processes; and utilizing the neuroprotectant steroid hormone estrogen and its receptors. In this review, the most remarkable neuroprotective strategies for calpain-mediated neurodegeneration are categorized and summarized with respect to their advantages and disadvantages over one another, in terms of their efficiency and applicability as a therapeutic regimen in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysegul Yildiz-Unal
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey
| | - Sirin Korulu
- Department of Molecular Biology and Genetics, Istanbul Arel University, Istanbul Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
14
|
Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes. Sci Rep 2014; 4:5847. [PMID: 25080854 PMCID: PMC4118420 DOI: 10.1038/srep05847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/07/2014] [Indexed: 12/18/2022] Open
Abstract
Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho-/- (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl-/- mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl-/- mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis.
Collapse
|
15
|
Fouz N, Amid A, Hashim YZHY. Gene Expression Analysis in MCF-7 Breast Cancer Cells Treated with Recombinant Bromelain. Appl Biochem Biotechnol 2014; 173:1618-39. [PMID: 24928548 DOI: 10.1007/s12010-014-0947-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
|
16
|
Neuroprotection by μ-calpain and matrix metalloproteinases inhibition by Piroxicam in cerebral ischemia: an in silico study. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0514-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Branquinha MH, Marinho FA, Sangenito LS, Oliveira SSC, Goncalves KC, Ennes-Vidal V, d'Avila-Levy CM, Santos ALS. Calpains: potential targets for alternative chemotherapeutic intervention against human pathogenic trypanosomatids. Curr Med Chem 2013; 20:3174-85. [PMID: 23899207 PMCID: PMC4181241 DOI: 10.2174/0929867311320250010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 12/03/2022]
Abstract
The treatment for both leishmaniasis and trypanosomiasis, which are severe human infections caused by trypanosomatids belonging to Leishmania and Trypanosoma genera, respectively, is extremely limited because of concerns of toxicity and efficacy with the available anti-protozoan drugs, as well as the emergence of drug resistance. Consequently, the urgency for the discovery of new trypanosomatid targets and novel bioactive compounds is particularly necessary. In this context, the investigation of changes in parasite gene expression between drug resistant/sensitive strains and in the up-regulation of virulence-related genes in infective forms has brought to the fore the involvement of calpain-like proteins in several crucial pathophysiological processes performed by trypanosomatids. These studies were encouraged by the publication of the complete genome sequences of three human pathogenic trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, which allowed in silico analyses that in turn directed the identification of numerous genes with interesting chemotherapeutic characteristics, including a large family of calpain-related proteins, in which to date 23 genes were assigned as calpains in T. brucei, 40 in T. cruzi and 33 in L. braziliensis. In the present review, we intend to add to these biochemical/biological reports the investigations performed upon the inhibitory capability of calpain inhibitors against human pathogenic trypanosomatids.
Collapse
Affiliation(s)
- M H Branquinha
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes-IMPG, Centro de Ciências da Saúde-CCS, Bloco Esubsolo, Sala 05, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol 2012; 3:60. [PMID: 22518104 PMCID: PMC3324969 DOI: 10.3389/fphar.2012.00060] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 03/24/2012] [Indexed: 01/10/2023] Open
Abstract
Cell death and dysfunction after traumatic brain injury (TBI) is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.
Collapse
Affiliation(s)
- John T. Weber
- School of Pharmacy and Division of BioMedical Sciences, Faculty of Medicine, Memorial University of NewfoundlandSt. John’s, NL, Canada
| |
Collapse
|
19
|
Hook G, Hook V, Kindy M. The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer's disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity. J Alzheimers Dis 2012; 26:387-408. [PMID: 21613740 DOI: 10.3233/jad-2011-110101] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β (Aβ) and improving memory in Alzheimer's disease (AD), as reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ, and cathepsin B inhibitors administered to animal models expressing AβPP containing the wild-type β-secretase site sequence reduce brain Aβ in a manner consistent with β-secretase inhibition. But such inhibitors could act either by direct inhibition of cathepsin B β-secretase activity or by off-target inhibition of the other β-secretase, the aspartyl protease BACE1. To evaluate that issue, we orally administered a cysteine protease inhibitor, E64d, to normal guinea pigs or transgenic mice expressing human AβPP, both of which express the human wild-type β-secretase site sequence. In guinea pigs, oral E64d administration caused a dose-dependent reduction of up to 92% in brain, CSF, and plasma of Aβ40 and Aβ42, a reduction of up to 50% in the C-terminal β-secretase fragment (CTFβ), and a 91% reduction in brain cathepsin B activity, but increased brain BACE1 activity by 20%. In transgenic AD mice, oral E64d administration improved memory deficits and reduced brain Aβ40 and Aβ42, amyloid plaque, brain CTFβ, and brain cathepsin B activity, but increased brain BACE1 activity. We conclude that E64d likely reduces brain Aβ by inhibiting cathepsin B and not BACE1 β-secretase activity and that E64d therefore may have potential for treating AD patients.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, San Diego, CA 92109, USA.
| | | | | |
Collapse
|
20
|
Zhu J, Li W, Mao Z. Cdk5: mediator of neuronal development, death and the response to DNA damage. Mech Ageing Dev 2011; 132:389-94. [PMID: 21600237 DOI: 10.1016/j.mad.2011.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/20/2011] [Accepted: 04/29/2011] [Indexed: 10/25/2022]
Abstract
In the central nervous system, cyclin-dependent kinase 5 (Cdk5), an unusual member of the Cdk family, is implicated in the regulation of various physiological processes ranging from neuronal survival, migration and differentiation, to synaptogenesis, synaptic plasticity and neurotransmission. Dysregulation of this kinase has been demonstrated to play a critical role in the pathogenic process of neurodegenerative disorders. DNA damage is emerging as an important pathological component in various neurodegenerative conditions. In this review, we discuss the recent progress regarding the regulation and roles of Cdk5 under physiological conditions, and its dysregulation under pathological conditions, especially in neuronal death mediated by DNA damage.
Collapse
Affiliation(s)
- Jinqiu Zhu
- Department of Pharmacology, Emory University School of Medicine, Whitehead Bldg., Rm505L 615 Michael St., Atlanta, GA 30322, USA
| | | | | |
Collapse
|
21
|
Mustafa AG, Wang JA, Carrico KM, Hall ED. Pharmacological inhibition of lipid peroxidation attenuates calpain-mediated cytoskeletal degradation after traumatic brain injury. J Neurochem 2011; 117:579-88. [PMID: 21361959 DOI: 10.1111/j.1471-4159.2011.07228.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Free radical-induced lipid peroxidation (LP) is critical in the evolution of secondary injury following traumatic brain injury (TBI). Previous studies in our laboratory demonstrated that U-83836E, a potent LP inhibitor, can reduce post-TBI LP along with an improved maintenance of mouse cortical mitochondrial bioenergetics and calcium (Ca(2+)) buffering following severe (1.0 mm; 3.5 m/s) controlled cortical impact TBI (CCI-TBI). Based upon this preservation of a major Ca(2+) homeostatic mechanism, we have now performed dose-response and therapeutic window analyses of the ability of U-83836E to reduce post-traumatic calpain-mediated cytoskeletal (α-spectrin) proteolysis in ipsilateral cortical homogenates at its 24 h post-TBI peak. In the dose-response analysis, mice were treated with a single i.v. dose of vehicle or U-83836E (0.1, 0.3, 1.3, 3.0, 10.0 or 30.0 mg/kg) at 15 min after injury. U-83836E produced a dose-related attenuation of α-spectrin degradation with the maximal decrease being achieved at 3.0 mg/kg. Next, the therapeutic window was tested by delaying the single 3 mg/kg i.v. dose from 15 min post-injury out to 1, 3, 6 or 12 h. No reduction in α-spectrin degradation was observed when the treatment delay was 1 h or longer. However, in a third experiment, we re-examined the window with repeated U-83836E dosing (3.0 mg/kg i.v. followed by 10 mg/kg i.p. maintenance doses at 1 and 3 h after the initial i.v. dose) which significantly reduced 24 h α-α-spectrin degradation even when treatment initiation was withheld until 12 h post-TBI. These results demonstrate the relationship between post-TBI LP, disruptions in neuronal Ca(2+) homeostasis and calpain-mediated cytoskeletal damage.
Collapse
Affiliation(s)
- Ayman G Mustafa
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA
| | | | | | | |
Collapse
|
22
|
Montero Domínguez M, González B, Zimmer J. Neuroprotective effects of the anti-inflammatory compound triflusal on ischemia-like neurodegeneration in mouse hippocampal slice cultures occur independent of microglia. Exp Neurol 2009; 218:11-23. [DOI: 10.1016/j.expneurol.2009.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 01/04/2023]
|
23
|
Lee HYY, Morton JD, Robertson LJG, McDermott JD, Bickerstaffe R, Abell AD, Jones MA, Mehrtens JM, Coxon JM. Evaluation of a novel calpain inhibitor as a treatment for cataract. Clin Exp Ophthalmol 2009; 36:852-60. [PMID: 19278481 DOI: 10.1111/j.1442-9071.2009.01925.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this study is to evaluate the therapeutic potential of a newly synthesized calpain inhibitor, CAT0059, using a naturally occurring in vivo sheep cataract model. METHODS The selectivity of CAT0059 was investigated by an in vitro protease assay. The efficacy of CAT0059 in preventing proteolysis of lens cytoskeletal proteins by calpain 2 was investigated using a lens-based cell-free method. The cytotoxicity and stability of CAT0059 in physiological conditions were examined using cultured sheep lenses. Protein binding of CAT0059 by ocular proteins was assessed and quantified by a modified high-performance liquid chromatography assay. CAT0059 was formulated in an eye drop solution and as an eye ointment. These were applied in vivo daily to one eye of the cataract lambs, over a 67- and 97-day trial period, respectively. The progression of cataracts in the treated and untreated eyes was assessed by an independent veterinary ophthalmologist using a slit-lamp microscope. RESULTS In vitro assays revealed that CAT0059 was selective for cysteine proteases and also protected lens cytoskeletal proteins from degradation. CAT0059 was stable in physiological conditions and non-toxic to the lens. Only 15% of CAT0059 is bound to proteins in the aqueous humour but >90% bound to lens homogenate. The 67-day CAT0059 eye drop treatment was not effective in slowing the rate of cataract development. However, application of CAT0059 in an eye ointment initially slowed cataract development compared with the untreated eye. This effect was temporary. CONCLUSIONS In vitro assays confirmed CAT0059 to be a potent calpain inhibitor. The two in vivo trials addressed the ability of CAT0059 to reach the lens and established its limitations as a therapeutic molecule for cataract treatment.
Collapse
Affiliation(s)
- Hannah Y Y Lee
- Department of Wine, Food and Molecular Biosciences, Lincoln University, 7647 Canterbury, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ravulapalli R, Campbell RL, Gauthier SY, Dhe-Paganon S, Davies PL. Distinguishing between calpain heterodimerization and homodimerization. FEBS J 2009; 276:973-82. [DOI: 10.1111/j.1742-4658.2008.06833.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Hsieh YY, Chang CC, Hsu KH, Tsai FJ, Chen CP, Tsai HD. Effect of exercise training on calpain systems in lean and obese Zucker rats. Int J Biol Sci 2008; 4:300-8. [PMID: 18802475 PMCID: PMC2536707 DOI: 10.7150/ijbs.4.300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/05/2008] [Indexed: 02/05/2023] Open
Abstract
Exercise training plays a major role in the improving physiology of diabetes. Herein we aimed to investigate the influence of exercise upon the calcium-dependent calpain-isoform expressions of lean or obese Zucker rats, a model of obesity and type II diabetes (NIDDM). Five-month-old rats were divided: (1) obese sedentary (OS, n=7); (2) obese exercise (OE, n=7); (3) lean sedentary (LS, n=7); (4) lean exercise (LE, n=7). After 2-month exercise (treadmill running), the body weight (BW) and expression of calpain 10, mu-calpain, and m-calpain in skeletal muscles were determined by RT-PCR, using beta-actin as internal standard. We found exercise is useful for BW lossing, especially in the obese rats. The BW difference between OS and OE rats (69 g vs. 18.2 g) was more significantly than that between LS and LE rats (41.8 g vs. 28.7 g). The calpain 10 expression of LS rats (0.965) was lower than that of LE rats (1.006), whereas those of OS and OE were comparable. The mu- or m-calpain expressions of sedentary groups (OS, LS) was significantly higher than those of exercise groups (OE, LE). The mu-calpain expression (1.13/0.92) and m-calpain expression (1.01/0.99) of OS/LS rats was significantly higher than those of OE/LE rats [1.07/0.9 (micro-calpain); 0.97/0.95 (m-calpain)]. We concluded that the micro- or m-calpains in skeletal muscle are regulated by exercise in both lean and obese Zucker rats. Exercise and BW controlling might improve the physiopathology of obesity and diabetes. Both micro- or m-calpains might become useful markers for prognoses of diabetes.
Collapse
Affiliation(s)
- Yao-Yuan Hsieh
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Donkor IO, Korukonda R. Synthesis and calpain inhibitory activity of peptidomimetic compounds with constrained amino acids at the P2 position. Bioorg Med Chem Lett 2008; 18:4806-8. [PMID: 18694642 PMCID: PMC2575414 DOI: 10.1016/j.bmcl.2008.07.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
The effect of incorporating alpha,alpha'-diethylglycine and alpha-aminocyclopentane carboxylic acid at the P(2) position of inhibitors on mu-calpain inhibition was studied. Compound 3 with alpha,alpha'-diethylglycine was over 20-fold more potent than 2 with alpha-aminocyclopentane carboxylic acid. Additionally, 3 was over 35-fold selective for mu-calpain compared to cathepsin B, while 2 was 3-fold selective for cathepsin B compared to mu-calpain. Thus, the conformation induced by the P(2) residue influenced the activities of the compounds versus the closely related cysteine proteases, and suggests an approach to the discovery of selective mu-calpain inhibitors.
Collapse
Affiliation(s)
- Isaac O Donkor
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
27
|
Khoutorsky A, Spira ME. Calpain inhibitors alter the excitable membrane properties of cultured aplysia neurons. J Neurophysiol 2008; 100:2784-93. [PMID: 18684908 DOI: 10.1152/jn.90487.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The calpain superfamily of calcium-dependent papain-like cysteine proteases constitutes highly conserved proteases that function to posttranslationally modify substrates by partial proteolysis. Calpains are known to proteolyze >100 substrates that lack strong sequence homology. Consequently, the calpain superfamily has been implicated in playing a central role in diverse physiological and pathological processes. Investigation of the physiological functions of calpains, on the one hand, and the need to develop pharmacological reagents to inhibit calpain-mediated pathological processes, on the other hand, led to the development of numerous calpain inhibitors. Using cultured Aplysia neurons and voltage-clamp analysis, we report here that the calpain inhibitors calpeptin, MG132, and the calpain inhibitor XII inhibit voltage-gated potassium conductance and moderately reduce the sodium conductance. These consequently lead to spike broadening and increased calcium influx. Such alterations of the excitable membrane properties may alter the normal patterns of neuronal and muscle electrical activities and thus should be taken into account when evaluating the effects of calpain inhibitors as protective/therapeutic drugs and as research tools.
Collapse
Affiliation(s)
- Arkady Khoutorsky
- Department of Neurobiology, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
28
|
Effects of Yam and Diosgenin on Calpain Systems in Skeletal Muscle of Ovariectomized Rats. Taiwan J Obstet Gynecol 2008; 47:180-6. [DOI: 10.1016/s1028-4559(08)60077-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
29
|
Giguere CJ, Schnellmann RG. Limitations of SLLVY-AMC in calpain and proteasome measurements. Biochem Biophys Res Commun 2008; 371:578-81. [PMID: 18457661 DOI: 10.1016/j.bbrc.2008.04.133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 04/23/2008] [Indexed: 12/22/2022]
Abstract
Succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin (SLLVY-AMC) is a fluorogenic substrate used to measure calpain activity and the "chymotrypsin-like" activity of the 20s proteasome. The goal of this study was to determine the relative role of calpains and the proteasome on SLLVY-AMC cleavage in attached and suspended renal epithelial cells (NRK-52E). The proteasome inhibitor epoxomicin did not inhibit purified calpain 1 or calpain 10 cleavage of SLLVY-AMC. Epoxomicin inhibited 11% of total SLLVY-AMC cleavage in attached cells and increasing concentrations of the calpain inhibitor calpeptin were additive. In contrast, cell suspensions had a 3.5-fold higher rate of SLLVY-AMC cleavage, epoxomicin inhibited cleavage 65% and calpeptin inhibited cleavage an additional 26%. Calpeptin alone also inhibited proteasomal activity. In conclusion, (1) SLLVY-AMC is cleaved in cells by calpain and the proteasome, (2) proteasome activity can be measured with epoxomicin, and (3) calpeptin can inhibit proteasome activity in some cases; thus limiting the use of SLLVY-AMC and calpeptin.
Collapse
Affiliation(s)
- Christopher J Giguere
- Center for Cell Death, Injury, and Regeneration, Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425-1400, USA
| | | |
Collapse
|
30
|
Moshal KS, Camel CK, Kartha GK, Steed MM, Tyagi N, Sen U, Kang YJ, Lominadze D, Maldonado C, Tyagi SC. Cardiac dys-synchronization and arrhythmia in hyperhomocysteinemia. Curr Neurovasc Res 2008; 4:289-94. [PMID: 18045155 DOI: 10.2174/156720207782446324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although cardiac synchronization is important in maintaining myocardial performance, the mechanism of dys-synchronization in ailing to failing myocardium is unclear. It is known that the cardiac myocyte contracts and relaxes individually; however, it synchronizes only when connected to one another by low resistance communications called gap junction protein (connexins) and extra cellular matrix (ECM). Therefore, the remodeling of connexins and ECM in heart failure plays an important role in cardiac conduction, synchronization and arrhythmias. This review for the first time addresses the role of systemic accumulation of homocysteine (Hcy) in vasospasm, pressure and volume overload heart failure, hypertension and cardiac arrhythmias. The attenuation of calcium-dependent mitochondrial (mt), endothelial and neuronal nitric oxide synthase (mtNOS, eNOS and nNOS) by Hcy plays a significant role in cardiac arrhythmias. The signal transduction mechanisms in Hcy-induced matrix metalloproteinase (MMP) activation in cardiac connexin remodeling are discussed.
Collapse
Affiliation(s)
- Karni S Moshal
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Kentucky 40202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Qu D, Rashidian J, Mount MP, Aleyasin H, Parsanejad M, Lira A, Haque E, Zhang Y, Callaghan S, Daigle M, Rousseaux MWC, Slack RS, Albert PR, Vincent I, Woulfe JM, Park DS. Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease. Neuron 2007; 55:37-52. [PMID: 17610816 DOI: 10.1016/j.neuron.2007.05.033] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 02/08/2007] [Accepted: 05/24/2007] [Indexed: 12/30/2022]
Abstract
We reported previously that calpain-mediated Cdk5 activation is critical for mitochondrial toxin-induced dopaminergic death. Here, we report a target that mediates this loss. Prx2, an antioxidant enzyme, binds Cdk5/p35. Prx2 is phosphorylated at T89 in neurons treated with MPP+ and/or MPTP in animals in a calpain/Cdk5/p35-dependent manner. This phosphorylation reduces Prx2 peroxidase activity. Consistent with this, p35-/- neurons show reduced oxidative stress upon MPP+ treatment. Expression of Prx2 and Prx2T89A, but not the phosphorylation mimic Prx2T89E, protects cultured and adult neurons following mitochondrial insult. Finally, downregulation of Prx2 increases oxidative stress and sensitivity to MPP+. We propose a mechanistic model by which mitochondrial toxin leads to calpain-mediated Cdk5 activation, reduced Prx2 activity, and decreased capacity to eliminate ROS. Importantly, increased Prx2 phosphorylation also occurs in nigral neurons from postmortem tissue from Parkinson's disease patients when compared to control, suggesting the relevance of this pathway in the human condition.
Collapse
Affiliation(s)
- Dianbo Qu
- Ottawa Health Research Institute, Neuroscience Group, University of Ottawa, Ottawa, K1H 8M5 ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ai J, Liu E, Wang J, Chen Y, Yu J, Baker AJ. Calpain Inhibitor MDL-28170 Reduces the Functional and Structural Deterioration of Corpus Callosum following Fluid Percussion Injury. J Neurotrauma 2007; 24:960-78. [PMID: 17600513 DOI: 10.1089/neu.2006.0224] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is known that calpain activation is involved in human traumatic brain injury (TBI) and that calpain inhibition can have neuroprotective effects on both gray matter and white matter injury of TBI models. However, the role of calpain activation in the corpus callosum remains unclear and requires elucidation given its potential clinical relevance. We evaluated the neuroprotective effects of calpain inhibitor MDL-28170 on corpus callosum function and structural destruction using a fluid percussion injury (FPI) model. The therapeutic time window for a single administration of MDL-28170 was up to 4 h post injury in protecting the corpus callosum structural integrity, and up to 30 min in protecting the axonal function evaluated 1 day following injury. When given 30 min prior injury, MDL-28170 showed neuroprotective effects that lasted up to 7 days. However, 30 min post injury administration of the drug afforded neuroprotection only up to 3 days. In contrast, two additional reinforcement injections at 24 and 48 h in addition to 30 min post FPI significantly protected both axonal function and structural integrity that lasted 14 days following FPI. Our data indicated that calpain inhibitor MDL-28170 is an effective neuroprotectant for axonal injury in corpus callosum following FPI with a therapeutic time window up to 4 hours. Although delayed treatment (2 or 4 h post FPI) was effective in protecting the axonal structure, the axons saved may not be as functional as normal fibers. Multiple drug administrations may be necessary for achieving a persisting effectiveness of this compound.
Collapse
Affiliation(s)
- Jinglu Ai
- Traumatic Brain Injury Laboratory, Cara Phelan Centre for Trauma Research, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Yamashima T, Tonchev AB, Borlongan CV. Differential response to ischemia in adjacent hippocampalsectors: neuronal death in CA1versus neurogenesis in dentate gyrus. Biotechnol J 2007; 2:596-607. [PMID: 17345578 DOI: 10.1002/biot.200600219] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two hippocampal sectors show distinct responses to transient ischemia: the cornu Ammonis (CA)1 sector undergoes a delayed neuronal death followed by a lack of neuronal generation, while the dentate gyrus (DG) shows slight postischemic damage followed by an increased neurogenesis. Using the monkey experimental paradigm of transient whole brain global ischemia, the 'calpain-cathepsin hypothesis' was formulated in 1998. This hypothesis proposes that following ischemia calpain compromises the integrity of lysosomal membrane, causing a leakage of degrading hydrolytic enzymes--cathepsins--into the cytoplasm. Ischemia induces Ca(2+) mobilization, calpain activation, lysosomal membrane disruption, and cathepsin release, which all occur specifically in the CA1 sector and cause neuronal death. In the postischemic DG, a vascular niche has been implicated in adult neurogenesis, in that adventitial cells of the DG microvascular environment provoke postischemic up-reguation of neurogenesis with the aid of brain-derived neurotrophic factor and polysialylated form of the neural cell adhesion molecule. In parallel, Down's syndrome cell adhesion molecule has recently been shown to be expressed specifically in the neural progenitor cells of DG. In this review, we focus on the monkey experimental paradigm to reveal the remarkable contrasts between CA1 and DG in response to the ischemic insult.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| | | | | |
Collapse
|
34
|
Gélis C, Mavon A, Vicendo P. The Contribution of Calpains in the Down-regulation of Mdm2 and p53 Proteolysis in Reconstructed Human Epidermis in Response to Solar Irradiation¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01472.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Montero M, Poulsen FR, Noraberg J, Kirkeby A, van Beek J, Leist M, Zimmer J. Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures. Exp Neurol 2006; 204:106-17. [PMID: 17157835 DOI: 10.1016/j.expneurol.2006.09.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/25/2006] [Accepted: 09/30/2006] [Indexed: 11/18/2022]
Abstract
In addition to its well-known hematopoietic effects, erythropoietin (EPO) also has neuroprotective properties. However, hematopoietic side effects are unwanted for neuroprotection, underlining the need for EPO-like compounds with selective neuroprotective actions. One such compound, devoid of hematopoietic bioactivity, is the chemically modified, EPO-derivative carbamylerythropoietin (CEPO). For comparison of the neuroprotective effects of CEPO and EPO, we subjected organotypic hippocampal slice cultures to oxygen-glucose deprivation (OGD) or N-methyl-d-aspartate (NMDA) excitotoxicity. Hippocampal slice cultures were pretreated for 24 h with 100 IU/ml EPO (=26 nM) or 26 nM CEPO before OGD or NMDA lesioning. Exposure to EPO and CEPO continued during OGD and for the next 24 h until histology, as well as during the 24 h exposure to NMDA. Neuronal cell death was quantified by cellular uptake of propidium iodide (PI), recorded before the start of OGD and NMDA exposure and 24 h after. In cultures exposed to OGD or NMDA, CEPO reduced PI uptake by 49+/-3 or 35+/-8%, respectively, compared to lesion-only controls. EPO reduced PI uptake by 33+/-5 and 15+/-8%, respectively, in the OGD and NMDA exposed cultures. To elucidate a possible mechanism involved in EPO and CEPO neuroprotection against OGD, the integrity of alpha-II-spectrin cytoskeletal protein was studied. Both EPO and CEPO significantly reduced formation of spectrin cleavage products in the OGD model. We conclude that CEPO is at least as efficient neuroprotectant as EPO when excitotoxicity is modeled in mouse hippocampal slice cultures.
Collapse
Affiliation(s)
- Maria Montero
- Department of Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winsløwparken 21 st, DK-5000 Odense C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
36
|
Shirasaki Y, Yamaguchi M, Miyashita H. Retinal Penetration of Calpain Inhibitors in Rats After Oral Administration. J Ocul Pharmacol Ther 2006; 22:417-24. [PMID: 17238807 DOI: 10.1089/jop.2006.22.417] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Calpain-mediated proteolysis has been involved in neuronal cell death of retinal neurological degeneration. An aldehyde-based calpain inhibitor, SJA6017 (1), was effective following oral administration in a rat retinal ischemia model but had low oral bioavailability. The aim of this study was to identify calpain inhibitors with good retinal penetration after oral dosing. The orally bioavailable inhibitors, hemiacetal 3 (SNJ-1715), amphipathic ketoamide 5 (SNJ-1945), and pyridine ketoamide 6 (SNJ-2008), were evaluated for their retinal pharmacokinetic (PK) profiles. The retinal drug exposure of these inhibitors was more than tenfold higher than 1. Among these compounds, 5 exhibited the most favorable retinal PK properties, such as good penetration and long half-life. Comparisons of 5 and the structurally related ketoamide 6 suggested that the presence of a methoxy diethylene glycol moiety resulted in the inhibitor with high penetration into the retina and the sustained high retinal levels. Ketoamide 5 was selected as the development candidate for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Yoshihisa Shirasaki
- Pharmacokinetic group, Laboratory for Preclinical Research, Senju Pharmaceutical Co., Ltd., Hyogo, Japan.
| | | | | |
Collapse
|
37
|
Aikman J, O'Steen B, Silver X, Torres R, Boslaugh S, Blackband S, Padgett K, Wang KKW, Hayes R, Pineda J. Alpha-II-spectrin after controlled cortical impact in the immature rat brain. Dev Neurosci 2006; 28:457-65. [PMID: 16943668 DOI: 10.1159/000094171] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/10/2006] [Indexed: 01/12/2023] Open
Abstract
Proteolytic processing plays an important role in regulating a wide range of important cellular functions, including processing of cytoskeletal proteins. Loss of cytoskeletal proteins such as spectrin is an important characteristic in a variety of acute central nervous system injuries including ischemia, spinal cord injury and traumatic brain injury (TBI). The literature contains extensive information on the proteolytic degradation of alpha-II-spectrin after TBI in the adult brain. By contrast, there is limited knowledge on the characteristics and relevance of these important processes in the immature brain. The present experiments examine TBI-induced proteolytic processing of alpha-II-spectrin after TBI in the immature rat brain. Distinct proteolytic products resulting from the degradation of the cytoskeletal protein alpha-II-spectrin by calpain and caspase 3 were readily detectable in cortical brain parenchyma and cerebrospinal fluid after TBI in immature rats.
Collapse
Affiliation(s)
- J Aikman
- Center for Traumatic Brain Injury Studies, Evelyn F. & William L. McKnight Brain Institute of the University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Huh JW, Franklin MA, Widing AG, Raghupathi R. Regionally distinct patterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats. Dev Neurosci 2006; 28:466-76. [PMID: 16943669 DOI: 10.1159/000094172] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 04/13/2006] [Indexed: 11/19/2022] Open
Abstract
Impact-induced head injury in infants results in acute focal contusions and traumatic axonal injury (TAI) that are associated with chronic holohemispheric cortical and white matter atrophy and may contribute to poor outcome in brain-injured children less than 4 years of age. Contusive brain trauma in postnatal day (PND) 11 or PND 17 rat pups, ages neurologically equivalent to a human infant and toddler, respectively, leads to cortical tissue loss and white matter atrophy which are associated with cognitive deficits. In adult models of brain trauma and in brain-injured humans, acute and sustained activation of the calpain family of calcium-activated neutral proteases has been implicated in neuronal death and TAI. PND 11 or PND 17 rat pups were subjected to closed head injury over the left hemisphere using the controlled cortical impact device and sacrificed at 6 h, 24 h or 3 days. Hemorrhagic contusions and tissue tears in the cortex and white matter were visible at 6 h, and neuronal loss was evident by 3 days. Calpain activation was observed in cell soma and dendrites of injured neurons at 6 h, and in degenerating dendrites and atrophic neurons at 24 h after injury at both ages. Axonal accumulation of amyloid precursor protein, indicative of TAI, was observed in the corpus callosum and lateral aspects of the white matter below the site of impact, and in the thalamus in PND 11 rats only. Intra-axonal calpain activation was observed to a limited extent in the corpus callosum and subcortical white matter tracts in both brain-injured PND 11 and PND 17 rats. Collectively, these results provide evidence that calpain activation may participate in neuronal loss in the injured cortex, but may not contribute to the pathogenesis of TAI following contusive brain trauma in the immature rat.
Collapse
Affiliation(s)
- Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, and Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
39
|
Bartoli M, Bourg N, Stockholm D, Raynaud F, Delevacque A, Han Y, Borel P, Seddik K, Armande N, Richard I. A mouse model for monitoring calpain activity under physiological and pathological conditions. J Biol Chem 2006; 281:39672-80. [PMID: 17056592 DOI: 10.1074/jbc.m608803200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calpains are Ca(2+)-dependent cysteine proteases known to be important for the regulation of cell functions and which aberrant activation causes cell death in a number of degenerative disorders. To provide a tool for monitoring the status of calpain activity in vivo under physiological and pathological conditions, we created a mouse model that expresses ubiquitously a fluorescent reporter consisting of eCFP and eYFP separated by a linker cleavable by the ubiquitous calpains. We named this mouse CAFI for calpain activity monitored by FRET imaging. Our validation studies demonstrated that the level of calpain activity correlates with a decrease in FRET (fluorescence resonance energy transfer) between the two fluorescent proteins. Using this model, we observed a small level of activity after denervation and fasting, a high level of activity during muscle regeneration and ischemia, and local activity in damaged myofibers after exercise. Finally, we crossed the CAFI mouse with the alpha-sarcoglycan-deficient model, demonstrating an increase of calpain activity at the steady state. Altogether, our results present evidence that CAFI mice could be a valuable tool in which to follow calpain activity at physiological levels and in disease states.
Collapse
Affiliation(s)
- Marc Bartoli
- Généthon/CNRS-UMR8115, 1 rue de l'Internationale 91000 Evry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pignol B, Auvin S, Carré D, Marin JG, Chabrier PE. Calpain inhibitors and antioxidants act synergistically to prevent cell necrosis: effects of the novel dual inhibitors (cysteine protease inhibitor and antioxidant) BN 82204 and its pro-drug BN 82270. J Neurochem 2006; 98:1217-28. [PMID: 16895584 DOI: 10.1111/j.1471-4159.2006.03952.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell death is a common feature observed in neurodegenerative disorders, and is often associated with calpain activation and overproduction of reactive oxygen species (ROS). This study investigated the use of calpain inhibitors and antioxidants in combination to protect cells against necrosis. Maitotoxin (MTX), which induces a massive influx of calcium, was used to provoke neuronal cell death. This toxin increased, in a concentration-dependent manner, both calpain activity and ROS formation. Calpain inhibitors or antioxidants inhibited MTX-induced necrosis only marginally (below 20%), whereas their association protected against cell death by 40-66% in a synergistic manner. BN 82204, which possesses both calpain-cathepsin L inhibitory and antioxidant properties, and its acetylated pro-drug BN 82270, totally protected cells at 100 microm. The pro-drug BN 82270, which had better cell penetration, was twice as effective as the active principle BN 82204 in protecting glioma C6 or neuroblastoma SHSY5Y cells against death. These results suggest the potential therapeutic relevance of using a single molecule with multiple activities (cysteine protease inhibitor/antioxidant), and warrant further in vivo investigations in models of neuronal disorders.
Collapse
Affiliation(s)
- Bernadette Pignol
- Department of Neurobiology, Ipsen Research Laboratories, Les Ulis, France.
| | | | | | | | | |
Collapse
|
41
|
Wu M, Yu Z, Fan J, Caron A, Whiteway M, Shen SH. Functional dissection of human protease μ-calpain in cell migration using RNAi. FEBS Lett 2006; 580:3246-56. [PMID: 16697376 DOI: 10.1016/j.febslet.2006.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 11/20/2022]
Abstract
Calpains are a family of calcium-dependent cysteine proteases involved in a variety of cellular functions. Two isoforms, m-calpain and mu-calpain, have been implicated in cell migration. However, since conventional inhibitors used for the studies of the functions of these enzymes lack specificity, the individual physiological function and biochemical mechanism of these two isoforms, especially mu-calpain, are not clear. In contrast, RNA interference has the potential to allow a sequence-specific destruction of target RNA for functional assay of gene of interest. In the present study, we found that small interfering RNAs-mediated knockdown of mu-calpain expression in MCF-7 cells that do not express m-Calpain led to a reduction of cell migration. This isoform-specific function of mu-calpain was further confirmed by the rescue experiment as overexpression of mu-calpain but not m-calpain could restore the cell migration rate. Knockdown of mu-calpain also altered cell morphology with increased filopodial projections and a highly elongated tail that seemed to prevent cell spreading and migration with reduced rear detachment ability. Furthermore, knockdown of mu-calpain decreased the proteolytic products of filamin and talin, which were specifically rescued by overexpression of mu-calpain but not m-calpain, suggesting that their proteolysis could be one of the key mechanisms by which mu-calpain regulates cell migration.
Collapse
Affiliation(s)
- Meiqun Wu
- Mammalian Cell Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Que., Canada H4P 2R2
| | | | | | | | | | | |
Collapse
|
42
|
Shirasaki Y, Miyashita H, Yamaguchi M. Exploration of orally available calpain inhibitors. Part 3: Dipeptidyl alpha-ketoamide derivatives containing pyridine moiety. Bioorg Med Chem 2006; 14:5691-8. [PMID: 16651001 DOI: 10.1016/j.bmc.2006.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/06/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
Calpain-mediated proteolysis has been implicated as a major process in neuronal cell death including retinal neurological degeneration. The previously reported calpain inhibitor SJA6017 (1) showed oral efficacy in a retinal pharmacological model, but its oral bioavailability was low due to the metabolic lability and low water-solubility. The purpose of present study was to identify good orally bioavailable calpain inhibitors. A series of water-soluble dipeptidyl alpha-ketoamides containing a pyridine moiety at P3 were designed, synthesized, and evaluated for their oral bioavailability and retinal penetration. Introduction of a pyridineethanol moiety provided the potent alpha-ketoamide inhibitor 8 with good oral bioavailability. Compound 8 showed about 12-fold higher retinal AUC than 1.
Collapse
Affiliation(s)
- Yoshihisa Shirasaki
- Research Laboratory of Ocular Science, Senju Pharmaceutical Co. Ltd, Nishi-ku, Kobe, Hyogo, Japan.
| | | | | |
Collapse
|
43
|
Liu M, Akle V, Zheng W, Dave J, Tortella F, Hayes R, Wang K. Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. Biochem J 2006; 394:715-25. [PMID: 16351572 PMCID: PMC1383722 DOI: 10.1042/bj20050905] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 12/13/2005] [Accepted: 12/14/2005] [Indexed: 12/26/2022]
Abstract
A major theme of TBI (traumatic brain injury) pathology is the over-activation of multiple proteases. We have previously shown that calpain-1 and -2, and caspase-3 simultaneously produced alphaII-spectrin BDPs (breakdown products) following TBI. In the present study, we attempted to identify a comprehensive set of protease substrates (degradome) for calpains and caspase-3. We further hypothesized that the TBI differential proteome is likely to overlap significantly with the calpain- and caspase-3-degradomes. Using a novel HTPI (high throughput immunoblotting) approach and 1000 monoclonal antibodies (PowerBlottrade mark), we compared rat hippocampal lysates from 4 treatment groups: (i) naïve, (ii) TBI (48 h after controlled cortical impact), (iii) in vitro calpain-2 digestion and (iv) in vitro caspase-3 digestion. In total, we identified 54 and 38 proteins that were vulnerable to calpain-2 and caspase-3 proteolysis respectively. In addition, the expression of 48 proteins was down-regulated following TBI, whereas that of only 9 was up-regulated. Among the proteins down-regulated in TBI, 42 of them overlapped with the calpain-2 and/or caspase-3 degradomes, suggesting that they might be proteolytic targets after TBI. We further confirmed several novel TBI-linked proteolytic substrates, including betaII-spectrin, striatin, synaptotagmin-1, synaptojanin-1 and NSF (N-ethylmaleimide-sensitive fusion protein) by traditional immunoblotting. In summary, we demonstrated that HTPI is a novel and powerful method for studying proteolytic pathways in vivo and in vitro.
Collapse
Key Words
- calpain
- caspase
- degradome
- high throughput immunoblotting (htpi)
- proteomics
- traumatic brain injury (tbi)
- bdp, breakdown product
- campk, calcium/calmodulin-dependent protein kinase
- cask, calcium/calmodulin-dependent serine protein kinase
- cci, controlled cortical impact
- cdc, cell division cycle
- dtt, dithiothreitol
- gst, glutathione s-transferase
- htpi, high throughput immunoblotting
- mm, molecular mass
- nsf, n-ethylmaleimide sensitive fusion protein
- psme3, proteasome activator subunit 3
- sbdp, αii-spectrin bdp
- snare, soluble nsf attachment protein receptor
- snap, synaptosome-associated protein (numerical values 23 and 25 are kda)
- tbi, traumatic brain injury
- where the annotation a3 etc is given, a is template a etc, 3 is lane 3 etc, on htpi gels
Collapse
Affiliation(s)
- Ming Cheng Liu
- *Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, P.O. Box 100256, Gainesville, FL 32610, U.S.A
- †Center for Traumatic Brain Injury Studies, Department of Neuroscience, McKnight Brain Institute, University of Florida, P.O. Box 100256, Gainesville, FL 32610, U.S.A
| | - Veronica Akle
- *Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, P.O. Box 100256, Gainesville, FL 32610, U.S.A
- †Center for Traumatic Brain Injury Studies, Department of Neuroscience, McKnight Brain Institute, University of Florida, P.O. Box 100256, Gainesville, FL 32610, U.S.A
| | - Wenrong Zheng
- *Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, P.O. Box 100256, Gainesville, FL 32610, U.S.A
- †Center for Traumatic Brain Injury Studies, Department of Neuroscience, McKnight Brain Institute, University of Florida, P.O. Box 100256, Gainesville, FL 32610, U.S.A
| | - Jitendra R. Dave
- ‡Department of Neuropharmacology and Molecular Biology, Division of Neurosciences, Walter Reed Army Institute of Research, Silver Spring, MD, U.S.A
| | - Frank C. Tortella
- ‡Department of Neuropharmacology and Molecular Biology, Division of Neurosciences, Walter Reed Army Institute of Research, Silver Spring, MD, U.S.A
| | - Ronald L. Hayes
- *Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, P.O. Box 100256, Gainesville, FL 32610, U.S.A
- †Center for Traumatic Brain Injury Studies, Department of Neuroscience, McKnight Brain Institute, University of Florida, P.O. Box 100256, Gainesville, FL 32610, U.S.A
- §Banyan Biomarkers, Inc. 12085 Research Drive, Suite 180, Alachua, FL 32615, U.S.A
| | - Kevin K. W. Wang
- *Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, P.O. Box 100256, Gainesville, FL 32610, U.S.A
- †Center for Traumatic Brain Injury Studies, Department of Neuroscience, McKnight Brain Institute, University of Florida, P.O. Box 100256, Gainesville, FL 32610, U.S.A
- §Banyan Biomarkers, Inc. 12085 Research Drive, Suite 180, Alachua, FL 32615, U.S.A
| |
Collapse
|
44
|
Khalil PN, Neuhof C, Huss R, Pollhammer M, Khalil MN, Neuhof H, Fritz H, Siebeck M. Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model. Eur J Pharmacol 2005; 528:124-31. [PMID: 16324693 DOI: 10.1016/j.ejphar.2005.10.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 09/27/2005] [Accepted: 10/07/2005] [Indexed: 12/13/2022]
Abstract
Calpains, a family of Ca2+-dependent cysteine proteases, are activated during myocardial ischemia and reperfusion. This study investigates the cardioprotective effects of calpain inhibition on infarct size and global hemodynamics in an ischemia/reperfusion model in pigs, using the calpain inhibitor A-705253. The left anterior descending coronary artery was occluded for 45 min and reperfused for 6 h. A bolus of 1.0 mg/kg A-705253 or distilled water was given intravenously 15 min prior to induction of ischemia and a constant plasma level of A-705253 was maintained by continuous infusion of 1.0 mg/kg A-705253 during reperfusion. Infarct size was assessed histochemically using triphenyltetrazolium chloride staining. Macromorphometric findings were verified by light microscopy on hematoxylin-eosin- and Tunel-stained serial sections. Global hemodynamics, including the first derivate of the left ventricular pressure (dP / dtmax), were measured continuously throughout the experiment. A-705253 reduced the infarct size by 35% compared to controls (P < 0.05). Hemodynamic alterations, including heart rate, aortic blood pressure, central venous pressure and left atrial pressure, were attenuated mainly during ischemia and the first 2 h during reperfusion by A-705253. Cardiac function improved, as determined by dP / dtmax, after 6 h of reperfusion (P < 0.003). Our results demonstrate that myocardial protection can be achieved by calpain inhibition, which decreases infarct size and improves left ventricular contractility and global hemodynamic function. Hence, the calpain-calpastatin system might play an important pathophysiological role in porcine myocardial ischemia and reperfusion damage and A-705253 could be a promising cardioprotective agent.
Collapse
Affiliation(s)
- Philipe N Khalil
- Department of Surgery, Downtown Medical Centre, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Weber H, Hühns S, Lüthen F, Jonas L, Schuff-Werner P. Calpain activation contributes to oxidative stress-induced pancreatic acinar cell injury. Biochem Pharmacol 2005; 70:1241-52. [PMID: 16154113 DOI: 10.1016/j.bcp.2005.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/17/2005] [Accepted: 06/20/2005] [Indexed: 01/25/2023]
Abstract
Oxygen radicals have been implicated as mediators in the pathogenesis of pancreatic acinar cell necrosis. However, the sequence of events between the oxidative insult and cell damage remains unclear. In the current study, we investigated whether the Ca(2+)-regulated cytosolic cysteine protease calpain is activated by oxidative stress and contributes to oxidant-induced acinar cell damage. Isolated rat pancreatic acinar cells were exposed to hydrogen peroxide (H(2)O(2))-generated oxidative stress in the presence or absence of the Ca(2+) chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (BAPTA-AM) and different calpain inhibitors including benzyloxycarbonyl-valyl-phenylalanine methyl ester. Calpain activation was studied by fluorescence spectrophotometry and immunoblotting. Cell injury was assessed by lactate dehydrogenase (LDH) release and characterization of the cellular ultrastructure including fluorescence-labeled actin filaments. Exposure of acinar cells to H(2)O(2) provoked a time- and dose-dependent increase in calpain proteolytic activity involving the ubiquitous isoforms mu- and m-calpain. The activation of calpain reflected the time course of developing cytotoxicity as demonstrated by increased LDH release. Inhibition of oxidant-induced calpain activity by BAPTA-AM and various calpain inhibitors provoked a decline in oxidant-induced cell injury. In particular, changes in the actin filament organization characterized by an increase in the basolateral actin and by a detachment of actin from the cell membrane in the region of membrane blebs were clearly reduced. In summary, our findings suggest that acinar cell damage through oxidative stress requires activation of calpain and that the actin cytoskeleton belongs to the cellular targets of the protease. The results support the hypothesis that calpain activation may play a role in the development of acute pancreatitis.
Collapse
Affiliation(s)
- H Weber
- Institute of Clinical Chemistry and Laboratory Medicine, University of Rostock, Germany.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Proteolytic processing of paramyxovirus fusion (F) proteins is essential for the generation of a mature and fusogenic form of the F protein. Although many paramyxovirus F proteins are proteolytically processed by the cellular protease furin at a multibasic cleavage motif, cleavage of the newly emerged Hendra virus F protein occurs by a previously unidentified cellular protease following a single lysine at residue 109. We demonstrate here that the cellular protease cathepsin L is involved in converting the Hendra virus precursor F protein (F(0)) to the active F(1) + F(2) disulfide-linked heterodimer. To initially identify the class of protease involved in Hendra virus F protein cleavage, Vero cells transfected with pCAGGS-Hendra F or pCAGGS-SV5 F (known to be proteolytically processed by furin) were metabolically labeled and chased in the absence or presence of serine, cysteine, aspartyl, and metalloprotease inhibitors. Nonspecific and specific protease inhibitors known to decrease cathepsin activity inhibited proteolytic processing of Hendra virus F but had no effect on simian virus 5 F processing. We next designed shRNA oligonucleotides to cathepsin L which dramatically reduced cathepsin L protein expression and enzyme activity. Cathepsin L shRNA-expressing Vero cells transfected with pCAGGS-Hendra F demonstrated a nondetectable amount of cleavage of the Hendra virus F protein and significantly decreased membrane fusion activity. Additionally, we found that purified human cathepsin L processed immunopurified Hendra virus F(0) into F(1) and F(2) fragments. These studies introduce a novel mechanism for primary proteolytic processing of viral glycoproteins and also suggest a previously unreported biological role for cathepsin L.
Collapse
Affiliation(s)
- Cara Theresia Pager
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, 40536-0509, USA
| | | |
Collapse
|
47
|
Shirasaki Y, Miyashita H, Yamaguchi M, Inoue J, Nakamura M. Exploration of orally available calpain inhibitors: peptidyl alpha-ketoamides containing an amphiphile at P3 site. Bioorg Med Chem 2005; 13:4473-84. [PMID: 15921914 DOI: 10.1016/j.bmc.2005.04.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/15/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
A novel series of dipeptidyl alpha-ketoamide derivatives with amphiphile was designed and synthesized as water-soluble calpain inhibitors. The introduction of amphiphiles at the P3 site increased water solubility without loss of membrane permeability and provided the oral available inhibitors. Extension of the ethylene glycol chain at the P3 site led to an improvement in persistence of plasma levels. In particular, introduction of a combination of a diethylene glycol methyl ether moiety at the P3 site, a phenylalanine residue at the P1 site and a cyclopropyl moiety at the P' site was the most effective modification for an increase in plasma drug exposure.
Collapse
Affiliation(s)
- Yoshihisa Shirasaki
- Research Laboratory of Ocular Science, Senju Pharmaceutical Co., Ltd, 1-5-4 Murotani Nishi-ku Kobe, Hyogo 651-2241, Japan.
| | | | | | | | | |
Collapse
|
48
|
Chiu K, Lam TT, Ying Li WW, Caprioli J, Kwong Kwong JM. Calpain and N-methyl-d-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res 2005; 1046:207-15. [PMID: 15878434 DOI: 10.1016/j.brainres.2005.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Revised: 03/29/2005] [Accepted: 04/01/2005] [Indexed: 11/21/2022]
Abstract
Calpain-mediated proteolysis has been implicated as a major process in neuronal cell death in both acute insults and the chronic neurodegenerative disorders in the central nerves system. However, activation of calpain also plays a protective function in the early phase of excitotoxic neuronal death. The exact role of calpains in neuronal death and recovery after exposure to N-methyl-D-aspartate (NMDA) is not clearly known. The purpose of present study was to examine the involvement of mu- and m-calpain in NMDA-induced excitotoxicity in the adult rat retina. Increased immunoreactivity of mu-calpain was noted in RGC layer cells and in the inner nuclear layer with maximal expression at 12 h after NMDA injection. This was further confirmed with Western blotting. TdT-mediated biotin-dUTP nick end labeling (TUNEL) positive cells in the inner retina co-localized with moderate or intense mu-calpain immunoreactivity. In contrast, there was no remarkable change in m-calpain immunoreactivity at any time point after NMDA injection. Simultaneous injection of 2 nmol of a calpain inhibitor (calpain inhibitor II) significantly reduced the number of TUNEL-positive cells in the inner retina at 18 h after NMDA injection and preserved RGC-like cells counted at 7 days after injection. The results of this study showed that mu-calpain may be involved in mediating NMDA-induced excitotoxicity in the rat retina and calpain inhibitors may play a therapeutic role in NMDA related disease.
Collapse
Affiliation(s)
- Kin Chiu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong
| | | | | | | | | |
Collapse
|
49
|
Pal K, Kaetzel CS, Brundage K, Cunningham CA, Cuff CF. Regulation of polymeric immunoglobulin receptor expression by reovirus. J Gen Virol 2005; 86:2347-2357. [PMID: 16033983 DOI: 10.1099/vir.0.80690-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polymeric immunoglobulin receptor (pIgR) transcytoses dimeric IgA and IgA-coated immune complexes from the lamina propria across epithelia and into secretions. The effect of reovirus infection on regulation of pIgR expression in the human intestinal epithelial cell line HT-29 was characterized in this report. Both replication-competent and UV-inactivated reovirus at m.o.i. equivalents of 1-100 p.f.u. per cell upregulated pIgR mRNA by 24 h post-infection and intracellular pIgR protein was increased at 48 h following exposure to UV-inactivated virus. Binding of virus to HT-29 cells was required, as pre-incubating virus with specific antiserum, but not non-immune serum, inhibited reovirus-mediated pIgR upregulation. Endosomal acidification leading to uncoating of virus is a required step for pIgR upregulation, as ammonium chloride or bafilomycin A1 pre-treatment inhibited virus-induced pIgR upregulation. Inhibition experiments using the calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal suggested that calpains are involved in reovirus-mediated pIgR upregulation. Upregulation of pIgR following virus infection appears to be an innate immune response against invading pathogens that could help the host clear infection effectively. Signalling induced by microbes and their products may serve to augment pIgR-mediated transcytosis of IgA, linking the innate and acquired immune responses to viruses.
Collapse
Affiliation(s)
- Kasturi Pal
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Charlotte S Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Kathleen Brundage
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Cynthia A Cunningham
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Christopher F Cuff
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| |
Collapse
|
50
|
Guttmann RP, Day GA, Wang X, Bottiggi KA. Identification of a novel calpain inhibitor using phage display. Biochem Biophys Res Commun 2005; 333:1087-92. [PMID: 15979564 DOI: 10.1016/j.bbrc.2005.06.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 06/07/2005] [Indexed: 12/31/2022]
Abstract
Calpains are calcium- and thiol-dependent proteases that cleave a variety of intracellular substrates. Overactivation of the calpains has been implicated in a number of diseases and conditions such as ischemic stroke indicating a need for the development of calpain inhibitors. A major problem with current calpain inhibitors has been specific targeting to calpain. To identify highly specific calpain interacting peptides, we developed a peptide-phage library screening method based on the calcium-dependent conformation change associated with calpain activation. A phage-peptide library representing greater than 2 billion expressed 12-mers was incubated with calpain I in the presence of calcium. The calcium-dependent bound phage was then eluted by addition of EGTA. After four rounds of selection we found a conserved 5-mer sequence represented by LSEAL. Synthetic LSEAL inhibited tau-calpain interaction and in vitro proteolysis of tau- and alpha-synuclein by calpains. Deletion of the portion of the tau protein containing a homologous sequence to LSEAL resulted in decreased calpain-mediated tau degradation. These data suggest that these peptides may represent novel calpastatin mimetics.
Collapse
Affiliation(s)
- Rodney P Guttmann
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|