1
|
Serrano-Bueno G, Madroñal JM, Manzano-López J, Muñiz M, Pérez-Castiñeira JR, Hernández A, Serrano A. Nuclear proteasomal degradation of Saccharomyces cerevisiae inorganic pyrophosphatase Ipp1p, a nucleocytoplasmic protein whose stability depends on its subcellular localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1019-1033. [DOI: 10.1016/j.bbamcr.2019.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/29/2022]
|
2
|
Yamaguchi M. Role of regucalcin in cell nuclear regulation: involvement as a transcription factor. Cell Tissue Res 2013; 354:331-41. [PMID: 23793546 DOI: 10.1007/s00441-013-1665-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/10/2013] [Indexed: 01/19/2023]
Abstract
Regucalcin (RGN/SMP30) was discovered in 1978 as a calcium (Ca(2+))-binding protein that contains no EF-hand motif of the Ca(2+)-binding domain. The name of regucalcin was proposed for this Ca(2+)-binding protein, which can regulate various Ca(2+)-dependent enzyme activations in liver cells. The regucalcin gene is localized on the X chromosome. Regucalcin plays a multifunctional role in cell regulation through maintaining intracellular Ca(2+) homeostasis and suppressing signal transduction in various cell types. The cytoplasmic regucalcin is translocated into the nucleus and inhibits nuclear Ca(2+)-dependent and -independent protein kinases and protein phosphatases, Ca(2+)-activated deoxyribonucleic acid (DNA) fragmentation and DNA and ribonucleic acid (RNA) synthesis. Moreover, overexpression of endogenous regucalcin regulates the gene expression of various proteins that are related to cell proliferation and apoptosis. This review will discuss the role of regucalcin in the regulation of cell nuclear function and an involvement in gene expression as a novel transcription factor.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Hematology and Biomedical Oncology, Emory University School of Medicine, 1365 C Clifton Road, NE, Atlanta, GA, 30322, USA,
| |
Collapse
|
3
|
Regucalcin and cell regulation: role as a suppressor protein in signal transduction. Mol Cell Biochem 2011; 353:101-37. [DOI: 10.1007/s11010-011-0779-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/07/2011] [Indexed: 12/23/2022]
|
4
|
Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2008; 33:341-65. [PMID: 11101008 PMCID: PMC6496586 DOI: 10.1046/j.1365-2184.2000.00189.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chaperones/heat shock proteins (HSPs) of the HSP90 and HSP70 families show elevated levels in proliferating mammalian cells and a cell cycle-dependent expression. They transiently associate with key molecules of the cell cycle control system such as Cdk4, Wee-1, pRb, p53, p27/Kip1 and are involved in the nuclear localization of regulatory proteins. They also associate with viral oncoproteins such as SV40 super T, large T and small t antigen, polyoma large and middle S antigen and EpsteinBarr virus nuclear antigen. This association is based on a J-domain in the viral proteins and may assist their targeting to the pRb/E2F complex. Small HSPs and their state of phosphorylation and oligomerization also seem to be involved in proliferation and differentiation. Chaperones/HSPs thus play important roles within cell cycle processes. Their exact functioning, however, is still a matter of discussion. HSP90 in particular, but also HSP70 and other chaperones associate with proteins of the mitogen-activated signal cascade, particularly with the Src kinase, with tyrosine receptor kinases, with Raf and the MAP-kinase activating kinase (MEK). This apparently serves the folding and translocation of these proteins, but possibly also the formation of large immobilized complexes of signal transducing molecules (scaffolding function).
Collapse
Affiliation(s)
- K Helmbrecht
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany
| | | | | |
Collapse
|
5
|
Richard MN, Deniset JF, Kneesh AL, Blackwood D, Pierce GN. Mechanical Stretching Stimulates Smooth Muscle Cell Growth, Nuclear Protein Import, and Nuclear Pore Expression through Mitogen-activated Protein Kinase Activation. J Biol Chem 2007; 282:23081-8. [PMID: 17525165 DOI: 10.1074/jbc.m703602200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although it is known that mechanical stretching of cells can induce significant increases in cell growth and shape, the intracellular signaling pathways that induce this response at the level of the cell nucleus is unknown. The transport of molecules from the cell cytoplasm to the nucleoplasm through the nuclear pore is a key pathway through which gene expression can be controlled in some conditions. It is presently unknown if mechanical stimuli can induce changes in nuclear pore expression and/or function. The purpose of the present investigation was to determine if mechanical stretching of a cell will alter nuclear protein import and the mechanisms that may be responsible. Vascular smooth muscle cells that were mechanically stretched exhibited an increase in proliferating cell nuclear antigen expression, cell number, and cell size within 24-48 h. Cells were microinjected with marker proteins for nuclear import. Nuclear protein import was significantly stimulated in stretched cells when compared with control. This was associated with an increase in the expression of nuclear pore proteins as detected by Western blots. Inhibition of the MAPK pathway blocked the stretch-induced stimulation of both cell proliferation and nuclear protein import. We conclude that nuclear protein import and nuclear pore density can adapt to mechanical stimuli during the process of cell growth through a MAPK-mediated mechanism.
Collapse
Affiliation(s)
- Melanie N Richard
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | | | | | | | | |
Collapse
|
6
|
Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101:227-57. [PMID: 15031001 DOI: 10.1016/j.pharmthera.2003.11.004] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (Hsp) form the most ancient defense system in all living organisms on earth. These proteins act as molecular chaperones by helping in the refolding of misfolded proteins and assisting in their elimination if they become irreversibly damaged. Hsp interact with a number of cellular systems and form efficient cytoprotective mechanisms. However, in some cases, wherein it is better if the cell dies, there is no reason for any further defense. Programmed cell death is a widely conserved general phenomenon helping in many processes involving the reconstruction of multicellular organisms, as well as in the elimination of old or damaged cells. Here, we review some novel elements of the apoptotic process, such as its interrelationship with cellular senescence and necrosis, as well as bacterial apoptosis. We also give a survey of the most important elements of the apoptotic machinery and show the various modes of how Hsp interact with the apoptotic events in detail. We review caspase-independent apoptotic pathways and anoikis as well. Finally, we show the emerging variety of pharmacological interventions inhibiting or, just conversely, inducing Hsp and review the emergence of Hsp as novel therapeutic targets in anticancer protocols.
Collapse
Affiliation(s)
- Amere Subbarao Sreedhar
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary
| | | |
Collapse
|
7
|
Bolander FF. Posttranscriptional Control. Mol Endocrinol 2004. [DOI: 10.1016/b978-012111232-5/50015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
Boyle DL, Takemoto L, Brady JP, Wawrousek EF. Morphological characterization of the Alpha A- and Alpha B-crystallin double knockout mouse lens. BMC Ophthalmol 2003; 3:3. [PMID: 12546709 PMCID: PMC149350 DOI: 10.1186/1471-2415-3-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 01/24/2003] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND One approach to resolving some of the in vivo functions of alpha-crystallin is to generate animal models where one or both of the alpha-crystallin gene products have been eliminated. In the single alpha-crystallin knockout mice, the remaining alpha-crystallin may fully or partially compensate for some of the functions of the missing protein, especially in the lens, where both alpha A and alpha B are normally expressed at high levels. The purpose of this study was to characterize gross lenticular morphology in normal mice and mice with the targeted disruption of alpha A- and alpha B-crystallin genes (alpha A/BKO). METHODS Lenses from 129SvEvTac mice and alpha A/BKO mice were examined by standard scanning electron microscopy and confocal microscopy methodologies. RESULTS Equatorial and axial (sagittal) dimensions of lenses for alpha A/BKO mice were significantly smaller than age-matched wild type lenses. No posterior sutures or fiber cells extending to the posterior capsule of the lens were found in alpha A/BKO lenses. Ectopical nucleic acid staining was observed in the posterior subcapsular region of 5 wk and anterior subcapsular cortex of 54 wk alpha A/BKO lenses. Gross morphological differences were also observed in the equatorial/bow, posterior and anterior regions of lenses from alpha A/BKO mice as compared to wild mice. CONCLUSION These results indicated that both alpha A- and alpha B-crystallin are necessary for proper fiber cell formation, and that the absence of alpha-crystallin can lead to cataract formation.
Collapse
Affiliation(s)
- Daniel L Boyle
- Kansas State University, Division of Biology, Ackert Hall, Manhattan, KS, USA
| | - Larry Takemoto
- Kansas State University, Division of Biology, Ackert Hall, Manhattan, KS, USA
| | - James P Brady
- Ocular Gene Therapy, Genetic Therapy, Inc., 9 W Watikins Mill Rd, Gaithersburg, MD, USA
| | - Eric F Wawrousek
- Lab of Molecular & Dev Biology, National Eye Institute, NIH, 6 Center Drive MSC 2730, Bethesda, MD, USA
| |
Collapse
|
9
|
Tsurusaki Y, Yamaguchi M. Suppressive role of endogenous regucalcin in the enhancement of deoxyribonucleic acid synthesis activity in the nucleus of regenerating rat liver. J Cell Biochem 2002; 85:516-22. [PMID: 11967991 DOI: 10.1002/jcb.10153] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of endogenous regucalcin in the regulation of deoxyribonucleic acid (DNA) synthesis activity in the nuclei of regenerating rat liver after partial hepatectomy was investigated. The addition of regucalcin (0.25 and 0.5 microM) in the reaction mixture caused a significant decrease in the nuclear DNA synthesis activity of normal rat liver. This decrease was also seen in the presence of Ca2+-chelator EGTA (0.4 mM), indicating that the effect of regucalcin is not related to nuclear Ca2+. Nuclear DNA activity was significantly increased in the presence of anti-regucalcin monoclonal antibody (10-50 ng/ml) in the reaction mixture. The effect was completely abolished by the addition of regucalcin (0.5 microM). Nuclear DNA synthesis activity was significantly increased at 24, 48, and 72 h after partial heptectomy. The effect of anti-regucalcin monoclonal antibody (25 ng/ml) in increasing nuclear DNA synthesis activity was significantly enhanced at 24 and 48 h after partial hepatectomy. The presence of staurospone (10(-6) M), trifluoperazine (2 x 10(-5) M), or PD98059 (10(-5) M) in the reaction mixture caused a significant decrease in DNA synthesis activity in the nuclei obtained at 24 after partial hepateactomy. The effect of these inhibitors in the presence of anti-regucalcin monoclonal antibody (25 ng/ml) was greater than that in the absence of the antibody. The present study suggests that endogenous regucalcin plays a suppressive role in the enhancement of nuclear DNA synthesis activity in regenerating liver with cell proliferation after partial hepatectomy in rats.
Collapse
Affiliation(s)
- Yoshinori Tsurusaki
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | | |
Collapse
|
10
|
Byrnes CK, Nass PH, Duncan MD, Harmon JW. A nuclear targeting peptide, M9, improves transfection efficiency in fibroblasts. J Surg Res 2002; 108:85-90. [PMID: 12443719 DOI: 10.1006/jsre.2002.6517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nonviral transfection of eukaryotic cells remains inefficient. Liposomes can transport DNA plasmid into the cytoplasm, but the nuclear membrane remains a barrier to efficient plasmid DNA transfection. But normal cells have mechanisms to transport nucleic acids across the nuclear membrane. Cells routinely utilize a transporter to carry mRNA from nucleus to cytoplasm. MATERIALS AND METHODS We used a modified mRNA transporter, the M9 component of heterogeneous nuclear ribonucleoprotein-A1, complexed to a DNA carrier to facilitate DNA transfer into the nucleus. We examined the effect of M9 on transfection in 3T3 fibroblasts. Our hypothesis was that the M9 shuttle would increase transfection efficiency by delivering plasmid to the nucleus, after cytoplasmic entry was facilitated by Lipofectamine. Transfection was assessed using plasmids expressing beta-galactosidase and green fluorescent protein (GFP). Intracellular location of rhodamine-labeled plasmid was determined by fluoroscopic microscopy. RESULTS In the fluorescent microscopy experiments, we found that rhodamine-labeled DNA plasmid was sequestered in the cytoplasm in the Lipofectamine-treated cells, but gained access to the nucleus with the addition of M9. At concentrations where neither M9 nor Lipofectamine individually increased plasmid mediated transfection, as evidenced by beta-galactosidase activity; their combination increased transfection dramatically by approximately 20-fold, from 2 +/- 1 to 32 +/- 5. CONCLUSIONS As expected, based on their presumed actions, Lipofectamine and the M9 shuttle synergistically promote efficient cellular transfection. Efficient cellular transfection will be required in clinical applications of gene therapy.
Collapse
Affiliation(s)
- Colman K Byrnes
- Johns Hopkins Medical Institutions, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
11
|
Klopfenstein DR, Klumperman J, Lustig A, Kammerer RA, Oorschot V, Hauri HP. Subdomain-specific localization of CLIMP-63 (p63) in the endoplasmic reticulum is mediated by its luminal alpha-helical segment. J Cell Biol 2001; 153:1287-300. [PMID: 11402071 PMCID: PMC2192027 DOI: 10.1083/jcb.153.6.1287] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The microtubule-binding integral 63 kD cytoskeleton-linking membrane protein (CLIMP-63; former name, p63) of the rough endoplasmic reticulum (ER) is excluded from the nuclear envelope. We studied the mechanism underlying this ER subdomain-specific localization by mutagenesis and structural analysis. Deleting the luminal but not cytosolic segment of CLIMP-63 abrogated subdomain-specific localization, as visualized by confocal microscopy in living cells and by immunoelectron microscopy using ultrathin cryosections. Photobleaching/recovery analysis revealed that the luminal segment determines restricted diffusion and immobility of the protein. The recombinant full-length luminal segment of CLIMP-63 formed alpha-helical 91-nm long rod-like structures as evident by circular dichroism spectroscopy and electron microscopy. In the analytical ultracentrifuge, the luminal segment sedimented at 25.7 S, indicating large complexes. The complexes most likely arose by electrostatic interactions of individual highly charged coiled coils. The findings indicate that the luminal segment of CLIMP-63 is necessary and sufficient for oligomerization into alpha-helical complexes that prevent nuclear envelope localization. Concentration of CLIMP-63 into patches may enhance microtubule binding on the cytosolic side and contribute to ER morphology by the formation of a protein scaffold in the lumen of the ER.
Collapse
Affiliation(s)
- Dieter R. Klopfenstein
- Department of Pharmacology and Neurobiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Judith Klumperman
- Department of Cell Biology, Institute of Biomembranes, Center for Biomedical Genetics, University Medical Center, 3584 CX Utrecht, Netherlands
| | - Ariel Lustig
- Department of Biophysical Chemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Richard A. Kammerer
- Department of Biophysical Chemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Viola Oorschot
- Department of Cell Biology, Institute of Biomembranes, Center for Biomedical Genetics, University Medical Center, 3584 CX Utrecht, Netherlands
| | - Hans-Peter Hauri
- Department of Pharmacology and Neurobiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
12
|
Pedroso de Lima MC, Simões S, Pires P, Faneca H, Düzgüneş N. Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 2001; 47:277-94. [PMID: 11311996 DOI: 10.1016/s0169-409x(01)00110-7] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Great expectations from the application of gene therapy approaches to human disease have been impaired by the unsatisfactory clinical progress observed. Among others, the use of an efficient carrier for nucleic acid-based medicines is considered to be a determinant factor for the successful application of this promising therapeutic strategy. The drawbacks associated with the use of viral vectors, namely those related with safety problems, have prompted investigators to develop alternative methods for gene delivery, cationic lipid-based systems being the most representative. This review focuses on the various parameters that are considered to be crucial to optimize the use of cationic lipid-DNA complexes for gene therapy purposes. Particular emphasis is devoted to the analysis of the different stages involved in the transfection process, from the biophysical aspects underlying the formation of the complexes to the different biological barriers that need to be surpassed for gene expression to occur.
Collapse
Affiliation(s)
- M C Pedroso de Lima
- Department of Biochemistry, University of Coimbra, 3000 codex, Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
13
|
Maraldi NM, Zini N, Santi S, Riccio M, Falconi M, Capitani S, Manzoli FA. Nuclear domains involved in inositol lipid signal transductionmaltese cross. ADVANCES IN ENZYME REGULATION 2000; 40:219-53. [PMID: 10828353 DOI: 10.1016/s0065-2571(99)00032-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N M Maraldi
- Institute of Cytomorphology, CNR Chieti and Bologna, c/o IOR, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The role of endogenous regucalcin in the regulation of Ca(2+)-ATPase, a Ca(2+) sequestrating enzyme, in rat liver nuclei was investigated. Nuclear Ca(2+)-ATPase activity was significantly reduced by the addition of regucalcin (0.1-0.5 microM) into the enzyme reaction mixture. The presence of anti-regucalcin monoclonal antibody (25 or 50 ng/ml) caused a significant elevation of Ca(2+)-ATPase activity; this effect was completely abolished by the addition of regucalcin (0.1 microM). The effect of anti-regucalcin antibody (50 ng/ml) in increasing Ca(2+)-ATPase activity was completely prevented by the presence of thapsigargin (10(-6) M), an inhibitor of Ca(2+) sequestrating enzyme, N-ethylmaleimide (1 mM), a modifying reagent of thiol groups, or vanadate (10(-5) M), an inhibitor of phosphorylation of the enzyme by ATP, which revealed an inhibitory effect on nuclear Ca(2+)-ATPase activity. Meanwhile, the effect of anti-regucalcin antibody (50 ng/ml) was significantly enhanced by the addition of calmodulin (5 microg/ml), which could increase nuclear Ca(2+)-ATPase activity. In addition, the effect of antibody (50 ng/ml) was significantly reduced by the presence of trifluoperazine (20 microM), an antagonist of calmodulin. These results suggest that the endogenous regucalcin in liver nuclei has a suppressive effect on nuclear Ca(2+)-ATPase activity, and that regucalcin can inhibit an activating effect of calmodulin on the enzyme.
Collapse
Affiliation(s)
- Y Tsurusaki
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | |
Collapse
|
15
|
Abstract
The heat shock proteins (hsp) are ubiquitous molecules induced in cells exposed to sublethal heat shock, present in all living cells, and highly conserved during evolution. Their function is to protect cells from environmental stress damage by binding to partially denatured proteins, dissociating protein aggregates, to regulate the correct folding, and to cooperate in transporting newly synthesized polypeptides to the target organelles. The molecular chaperones are involved in numerous diseases, including cancer, revealing changes of expression. In this review, we mainly describe the relationship of hsp expression with human cancer, and discuss what is known about their post-translational modifications according to malignancies.
Collapse
Affiliation(s)
- C Sarto
- University Department of Clinical Pathology, Desio Hospital, Desio-Milan, Italy.
| | | | | |
Collapse
|
16
|
Czubryt MP, Austria JA, Pierce GN. Hydrogen peroxide inhibition of nuclear protein import is mediated by the mitogen-activated protein kinase, ERK2. J Cell Biol 2000; 148:7-16. [PMID: 10629214 PMCID: PMC2156210 DOI: 10.1083/jcb.148.1.7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
H(2)O(2) alters gene expression in many cell types. Alterations in nuclear import of transcription factors or similar key proteins may be responsible for these changes. To investigate this possibility, a cytosolic nuclear import cocktail was treated with varying ¿H(2)O(2) and used in import assays. H(2)O(2) caused a dose- and time-dependent inhibition of import at concentrations as low as 100 microM. Catalase reversed this effect. H(2)O(2) treatment of permeablized cells did not affect import, suggesting that H(2)O(2) was acting on a cytosolic factor. Treatment of import cocktail with two different free radical generating systems had no effect, but treatment of permeablized cells inhibited import, suggesting H(2)O(2) works via a distinct process from hydroxyl or superoxide radicals. Pretreatment of import cocktail with genistein reversed the effect of H(2)O(2) on import. Western blotting revealed that H(2)O(2) activated ERK2. The specific MEK1/2 inhibitor, PD98059, completely blocked the effects of H(2)O(2) on import. Activated ERK2 mimicked H(2)O(2)'s effect on import. Immunocytochemistry revealed that H(2)O(2) treatment of whole cells increased cytosolic Ran/TC4 levels, an effect reversible by catalase or PD98059. These data demonstrate that H(2)O(2) inhibits nuclear protein import and that this effect is mediated by mitogen-activated protein (MAP) kinase activation, possibly by altering Ran/TC4 function.
Collapse
Affiliation(s)
- Michael P. Czubryt
- Cell Biology Laboratory, Division of Stroke and Vascular Disease, St. Boniface General Hospital Research Centre and the Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | - J. Alejandro Austria
- Cell Biology Laboratory, Division of Stroke and Vascular Disease, St. Boniface General Hospital Research Centre and the Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | - Grant N. Pierce
- Cell Biology Laboratory, Division of Stroke and Vascular Disease, St. Boniface General Hospital Research Centre and the Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| |
Collapse
|
17
|
Schnaider T, Oikarinen J, Ishiwatari-Hayasaka H, Yahara I, Csermely P. Interactions of Hsp90 with histones and related peptides. Life Sci 1999; 65:2417-26. [PMID: 10597896 DOI: 10.1016/s0024-3205(99)00508-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 90 kDa heat shock protein (Hsp90) induces the condensation of the chromatin structure [Csermely, P., Kajtár, J., Hollósi, M., Oikarinen, J., and Somogyi, J. (1994) Biochem. Biophys. Res. Commun. 202, 1657-1663]. In our present studies we used surface plasmon resonance measurements to demonstrate that Hsp90 binds histones H1, H2A, H2B, H3 and H4 with high affinity having dissociation constants in the submicromolar range. Strong binding of the C-terminal peptide of histone H1 containing the SPKK-motif and a pentaeicosa-peptide including the Hsp90 bipartite nuclear localization signal sequence was also observed. However, a lysine/arginine-rich peptide of casein, and the lysine-rich platelet factor 4 did not display a significant interaction with Hsp90. Histones and positively charged peptides modulated the Hsp90-associated kinase activity. Interactions between Hsp90, histones, and high mobility group (HMG) protein-derived peptides raise the possibility of the involvement of Hsp90 in chromatin reorganization during steroid action, mitosis, or after cellular stress.
Collapse
Affiliation(s)
- T Schnaider
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Lugnier C, Keravis T, Le Bec A, Pauvert O, Proteau S, Rousseau E. Characterization of cyclic nucleotide phosphodiesterase isoforms associated to isolated cardiac nuclei. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:431-46. [PMID: 10564757 DOI: 10.1016/s0304-4165(99)00145-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identity and location of nuclear cyclic nucleotide phosphodiesterases (PDE) has yet to be ascertained. Intact cardiac nuclei and subnuclear fractions from ovine hearts were isolated to determine cAMP-specific PDE activity which was 3-fold greater than that of cGMP PDE, the latter being insensitive to Ca-calmodulin and zaprinast. Specific hydrolytic activities of the cardiac nuclear envelopes (NE) were similar to those measured in the corresponding intact nuclei, thus suggesting that most PDE activity is associated with the nuclear membrane. Moreover, the main hydrolytic activities in cardiac nuclei were attributed to PDE4 (56%) and PDE3 (44%). The pharmacological sensitivity of each isoform in terms of IC(50), K(m) and K(i) values was typical of previously characterized cardiac PDE 3 and 4 isoforms. PDE2 (cGMP-stimulated PDE) represented a minor component (8-9%) of total hydrolytic activity. Solubilization of nuclear envelopes and HPLC separation also yielded rolipram-sensitive PDE activities. Upon 1% Triton X-100 extractions, the presence of PDE3 and PDE4 was revealed in a low speed, nucleopore complex-enriched, P1 pellet. In addition, Western blot analysis demonstrated the presence of PDE4B and PDE4D subtypes in the nuclei as well as enrichment in NE. However, in the same preparations, the presence of PDE4A could not be ascertained. Altogether, these results suggest an intrinsic and predominant association of these nuclear PDEs with the NE and much likely with nucleopore complexes.
Collapse
Affiliation(s)
- C Lugnier
- Laboratoire de Pharmacologie et de Physico-chimie des Interactions Cellulaires et Moléculaires, CNRS-UMR, Université Louis Pasteur de Strasbourg, 67401, Illkirch, France
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
An increasing body of evidence shows that many of the key inositol lipids and enzymes responsible for their metabolism reside in nuclei. Moreover, the association of the nuclear phosphoinositide cycle with progression through the cell cycle and commitment toward differentiation has built a wider picture of the implications of phosphoinositides in the control of nuclear functions. This article reviews a central aspect of inositide nuclear signaling, i.e., the spatial organization of the signaling system within the nucleus in relationship to the nuclear organization in functional domains. Most of the evidence obtained with a variety of confocal and electron microscopy immunocytochemical techniques indicates that the phosphoinositides, the enzymes required for their synthesis and hydrolysis, and the targets of the lipid second messengers are localized at ribonucleoprotein structures involved in the transcript processing in the interchromatin domains. These findings demonstrate that nuclear inositol lipids exist in a nonmembranous form, linked to structural nuclear proteins of the inner nuclear matrix. They also suggest that the inositol signaling in the nucleus is completely independent of that at the cell surface and that it probably preceded in evolution the systems that are present at the cytoskeletal and cell membrane level.
Collapse
Affiliation(s)
- N M Maraldi
- Institute of Normal and Pathological Cytomorphology, C.N.R., Laboratory of Cell Biology, IOR, Bologna, Italy.
| | | | | | | |
Collapse
|
21
|
Omura M, Katsumata T, Misawa H, Yamaguchi M. Decrease in protein kinase and phosphatase activities in the liver nuclei of rats exposed to carbon tetrachloride. Toxicol Appl Pharmacol 1999; 160:192-7. [PMID: 10527918 DOI: 10.1006/taap.1999.8760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The alteration in protein kinase and phosphatase activities in the liver nuclei of rats administered carbon tetrachloride (CCl(4)) was investigated. Rats received a single oral administration of CCl(4) (1 ml/100 g body wt of 5, 10, and 25% CCl(4) in corn oil), and 5, 24, and 48 h later they were euthanized by bleeding. The administration of CCl(4) (10 and 25%) caused a significant decrease in protein kinase activity in the liver nuclei. The enzyme activity in the liver nuclei from normal and CCl(4)-administered rats was significantly increased by the addition of Ca(2+) (0.5 mM) and calmodulin (10 microg/ml) in the reaction mixture, suggesting that Ca(2+)/calmodulin-dependent protein kinase activation is not suppressed by CCl(4) treatment. Liver nuclear phosphatase activity toward phosphotyrosine, but not phosphoserine and phosphothreonine, was markedly decreased by CCl(4) (5, 10, and 25%) administration. This decrease was seen 5 h after CCl(4) administration. The presence of vanadate (10(-4) M) in the reaction mixture caused a significant decrease in phosphotyrosine phosphatase activity in the liver nuclei from normal and CCl(4)-administered rats, whereas the enzyme activity was not decreased by okadaic acid (10(-5) M) or sodium fluoride (10(-3) M). The effect of anti-regucalcin antibody (100 ng/ml) in increasing phosphotyrosine phosphatase activity was seen in the liver nuclei of CCl(4)-administered rats, suggesting that regucalcin-sensitive phosphatase activity is decreased by CCl(4) administration. The present study demonstrates that CCl(4) administration induces a decrease in protein kinase and tyrosine phosphatase activities, which are involved in signaling factors in the liver nuclei of rats.
Collapse
Affiliation(s)
- M Omura
- Graduate School of Nutritional Sciences, University of Shizuoka, 52-1 Yada, Shizuoka City, 422-8526, Japan
| | | | | | | |
Collapse
|
22
|
Tonini R, Grohovaz F, Laporta CA, Mazzanti M. Gating mechanism of the nuclear pore complex channel in isolated neonatal and adult mouse liver nuclei. FASEB J 1999; 13:1395-403. [PMID: 10428763 DOI: 10.1096/fasebj.13.11.1395] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several types of ionic channels on the outer membrane of the nuclear envelope communicate with the nuclear cisternae. These are distinct from nucleocytoplasmic pathways, the nuclear pores that span the double membrane of the envelope and are the route for RNA and protein traffic in the nucleus. Recent data indicate that the nuclear pores may also function as ion channels. The most probable candidate for nucleocytoplasmic ion flux is a 300-400 pS pathway observed in many nuclear preparations. Morphological and functional studies of nuclear envelope suggest a tight relationship between the large conductance channel and the pore complex. However, there is no direct evidence for gating of the nuclear pore or its ability to open and close as a conventional channel. This study shows that in liver nuclei isolated from newborn mouse, there is a substantial correspondence between the number of pores and the number of channels recorded during patch-clamp. This is not the case for adult nuclei. Although pore density is comparable, some nuclear cytoskeletal components, such as actin and nonmuscle myosin, show a significant increase in the adult preparation. Previous studies demonstrate the presence of these two proteins in association with the pore complex. Here we show that by using actin filament disrupter, we were able to increase the number of active channels in adult isolated nuclei. We suggest that a functional interaction between actin filaments and the nuclear pore complex could regulate nucleocytoplasmic permeability.
Collapse
Affiliation(s)
- R Tonini
- Dipartimento di Fisiologia e Biochimica Generali, IUniversità di Milano, Italy
| | | | | | | |
Collapse
|
23
|
Abstract
Cellular responses to external signals often reflect alterations in gene expression. The activation of cell surface hormone or growth factor receptors upon the binding of appropriate ligands mobilizes signal transduction cascades that can ultimately impact the activity of defined sets of transcription factors. The interpretation of hormonal signals can also be initiated intracellularly, as is the case for steroid hormone receptors. In addition to recognizing specific hormones, steroid hormone receptors also function as transcription factors and directly transduce hormonal signals to activation or repression of unique target genes. The delivery of activated steroid receptors to high-affinity genomic sites must be efficient to account for the rapidity and selectivity of many transcriptional responses to steroid hormones. Thus, the signal transduction capacity of steroid hormone receptors will be affected by the efficiency of receptor trafficking both between different subcellular compartments (i.e., the cytoplasm and nucleus) and within a specific compartment (i.e., the nucleus). This article will highlight the recent advances in our understanding of subcellular and subnuclear trafficking of steroid receptors.
Collapse
Affiliation(s)
- D B DeFranco
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
24
|
Misra UK, Pizzo SV. Upregulation of macrophage plasma membrane and nuclear phospholipase D activity on ligation of the alpha2-macroglobulin signaling receptor: involvement of heterotrimeric and monomeric G proteins. Arch Biochem Biophys 1999; 363:68-80. [PMID: 10049500 DOI: 10.1006/abbi.1998.1074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of ligating the alpha2-macroglobulin signaling receptor (alpha2MSR) with receptor-recognized forms of alpha2M (alpha2M*) was studied with respect to phospholipase D (PLD) activity in murine macrophages, their plasma membranes, and nuclei. PLD activity in plasma membranes and nuclei increased linearly up to a ligand concentration of about 100 pM of either alpha2M* or a cloned and expressed receptor binding fragment (RBF). The RBF binding site mutant K1370A, which binds with high affinity to alpha2MSR, also increased nuclear PLD activity comparable to RBF and alpha2M*. Phorbol dibutyrate caused a two- to threefold stimulation of membrane and nuclear PLD activity, whereas PLD activity was nearly abolished by downregulation of protein kinase C; prior treatment with staurosporin, genestein, cyclosporin A, actinomycin D; or chelation of intracellular Ca2+. In permeabilized macrophages, isolated plasma membranes, and nuclei, GTP-gamma-S increased alpha2M*-stimulated PLD activity via a pertussis toxin-insensitive G protein and this effect was abolished on preincubation with GDP-beta-S. Incubation of plasma membranes with polyclonal antibody against sARFII, or the addition of cytosol which was immunoprecipitated with antibody against sARFII, greatly reduced alpha2M*-stimulated PLD activity in the presence of GTP-gamma-S. Preincubation of plasma membranes with GDP-beta-S prior to the addition of GTP-gamma-S and recombinant ARF1 significantly inhibited alpha2M*-stimulation of PLD activity. Nuclear PLD activity was maximally stimulated in the presence of both GTP-gamma-S and rARF1, whereas plasma membrane PLD activity was maximally stimulated in the presence of rARF1, GTP-gamma-S, RhoA, and ATP. In contrast, nuclear PLD activity was not affected by RhoA either alone or in combination with GTP-gamma-S or ATP.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
25
|
Hayes JH, Soroka CJ, Rios-Velez L, Boyer JL. Hepatic sequestration and modulation of the canalicular transport of the organic cation, daunorubicin, in the Rat. Hepatology 1999; 29:483-93. [PMID: 9918926 DOI: 10.1002/hep.510290216] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
In contrast to organic anions, substrates for the canalicular mdr1a and b are usually organic cations and are often sequestered in high concentrations in intracellular acidic compartments. Because many of these compounds are therapeutic agents, we investigated if their sequestration could be regulated. We used isolated perfused rat liver (IPRL), isolated rat hepatocyte couplets (IRHC), and WIF-B cells to study the cellular localization and biliary excretion of the fluorescent cation, daunorubicin (DNR). Despite rapid (within 15 minutes) and efficient (>90%) cellular uptake in the IPRL, only approximately 10% of the dose administered (0.2-20 micromol) was excreted in bile after 85 minutes. Confocal microscopy revealed fluorescence predominantly in vesicles in the pericanalicular region in IPRL, IRHC, and WIF-B cells. Treatment of these cells with chloroquine and bafilomycin A, agents that disrupt the pH gradient across the vesicular membrane, resulted in a loss of vesicular fluorescence, reversible in the case of bafilomycin A. Taurocholate (TC) and dibutyryl cAMP (DBcAMP), stimulators of transcytotic vesicular transport, increased the biliary recovery of DNR significantly above controls, by 70% and 35%, respectively. The microtubule destabilizer, nocodazole, decreased biliary excretion of DNR. No effect on secretion was noted in TR- mutant rats deficient in mrp2. Coadministration of verapamil, an inhibitor of mdr1, also decreased DNR excretion. While TC and DBcAMP did not affect the fluorescent intensity or pattern of distribution in IRHC, nocodazole resulted in redistribution of DNR to peripheral punctuate structures. These findings suggest that the organic cation, DNR, is largely sequestered in cells such as hepatocytes, yet its excretion can still be modulated.
Collapse
Affiliation(s)
- J H Hayes
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|
26
|
Bhat SP, Hale IL, Matsumoto B, Elghanayan D. Ectopic expression of alpha B-crystallin in Chinese hamster ovary cells suggests a nuclear role for this protein. Eur J Cell Biol 1999; 78:143-50. [PMID: 10099937 DOI: 10.1016/s0171-9335(99)80016-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
alpha B-crystallin (alpha B) is known to be a cytosolic, small heat shock-like multimeric protein that has anti-aggregation, chaperone-like properties. The expression of the alpha B-crystallin gene is developmentally regulated and is induced by a variety of stress stimuli. Importantly, alpha B-crystallin expression is enhanced during oncogenic transformation of cells, in a number of tumors, and most notably, in many neurodegenerative disorders, including Alzheimer's disease and multiple sclerosis. Other than its perceived role as a structural protein in the ocular lens, the actual function of alpha B-crystallin in cellular physiology remains unknown. We have stably transfected CHO cells with an inducible alpha B-cDNA-MMTV-promoter construct that allows the synthesis of recombinant alpha B-crystallin only upon exposure of these cells to dexamethasone. Using immunostaining and conventional and confocal microscopy, we have examined the subcellular distribution of the ectopically expressed alpha B-crystallin. We find that in addition to being in the cytoplasm, the protein resides in the nuclear interior in the interphase nucleus. Double labeling with anti alpha B-crystallin and anti-tubulin, concanavallin, and wheat germ agglutinin, respectively, revealed that during cell division alpha B-crystallin is excluded from condensed chromatin and the nascent nuclei. However, the protein again appears in the newly formed nuclei after the completion of cytokinesis suggesting a conditional, regulatory role for alpha B-crystallin in the nucleus.
Collapse
Affiliation(s)
- S P Bhat
- Jules Stein Eye Institute, UCLA School of Medicine 90095-7000, USA.
| | | | | | | |
Collapse
|
27
|
Katsumata T, Yamaguchi M. Inhibitory effect of calcium-binding protein regucalcin on protein kinase activity in the nuclei of regenerating rat liver. J Cell Biochem 1998; 71:569-76. [PMID: 9827702 DOI: 10.1002/(sici)1097-4644(19981215)71:4<569::aid-jcb11>3.0.co;2-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effect of Ca2+-binding protein regucalcin on protein kinase activity in the nuclei of normal and regenerating rat livers was investigated. Protein kinase activity in the nuclei isolated from normal rat liver was significantly increased by addition of Ca2+ (500 microM) and calmodulin (10 microg/ml) in the enzyme reaction mixture. Nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), trifluoperazine (TFP; 20 microM), dibucaine (10(-4) M), or staurosporine (10(-7) M), indicating that Ca2+-dependent protein kinases are present in the nuclei. Protein kinase activity was significantly elevated in the liver nuclei obtained at 6 to 48 h after a partial hepatectomy. Hepatectomy-increased nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), TFP (20 microM), or staurosporine (10(-7) M) in the enzyme reaction mixture. The presence of regucalcin (0.1-0.5 microM) caused a significant decrease in protein kinase activity in the nuclei obtained from normal and regenerating rat livers. Meanwhile, the nuclear protein kinase activity from normal and regenerating livers was significantly elevated in the presence of anti-regucalcin monoclonal antibody (50-200 ng/ml). The present study suggests that regucalcin plays a role in the regulation of protein kinase activity in the nuclei of proliferative liver cells.
Collapse
Affiliation(s)
- T Katsumata
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka, Shizuoka City, Japan
| | | |
Collapse
|
28
|
Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998; 79:129-68. [PMID: 9749880 DOI: 10.1016/s0163-7258(98)00013-8] [Citation(s) in RCA: 743] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 90-kDa molecular chaperone family (which comprises, among other proteins, the 90-kDa heat-shock protein, hsp90 and the 94-kDa glucose-regulated protein, grp94, major molecular chaperones of the cytosol and of the endoplasmic reticulum, respectively) has become an increasingly active subject of research in the past couple of years. These ubiquitous, well-conserved proteins account for 1-2% of all cellular proteins in most cells. However, their precise function is still far from being elucidated. Their involvement in the aetiology of several autoimmune diseases, in various infections, in recognition of malignant cells, and in antigen-presentation already demonstrates the essential role they likely will play in clinical practice of the next decade. The present review summarizes our current knowledge about the cellular functions, expression, and clinical implications of the 90-kDa molecular chaperone family and some approaches for future research.
Collapse
Affiliation(s)
- P Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
29
|
DeFranco DB, Ramakrishnan C, Tang Y. Molecular chaperones and subcellular trafficking of steroid receptors. J Steroid Biochem Mol Biol 1998; 65:51-8. [PMID: 9699857 DOI: 10.1016/s0960-0760(97)00177-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unliganded steroid receptors exist as heteromeric complexes comprised of heat shock and immunophilin proteins that associate either directly or indirectly with receptor carboxyl-terminal ligand-binding domains. Molecular chaperons, and other proteins associated with steroid receptors, play an important role in the maturation of receptors to a hormone-binding competent state. Steroid receptor-associated 90 and 70 kDa heat shock proteins, hsp90 and hsp70, respectively, have well established roles in protein folding in addition to participating in numerous subcellular trafficking pathways. In this review, we discuss the possible roles that molecular chaperons, such as hsp90, hsp70 and DnaJ proteins, have in steroid receptor trafficking within two distinct subcellular compartments, i.e. the cytoplasm and nucleus.
Collapse
Affiliation(s)
- D B DeFranco
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
30
|
Mazzanti M. Ion Permeability of the Nuclear Envelope. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 1998; 13:44-50. [PMID: 11390758 DOI: 10.1152/physiologyonline.1998.13.1.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nuclear envelope mediates nucleocytoplasmic communication. Nuclear pores transport proteins and RNA into and out of the nucleus. The pore is believed to allow free ion diffusion. Using an electrophysiological approach, we show the possible semipermeable properties of the envelope. To accomplish these functions we hypothesize a mechanism in which the pore complex acts as a molecular diaphragm.
Collapse
Affiliation(s)
- Michele Mazzanti
- Dipartimento di Fisiologia e Biochimica Generali, Laboratorio di Elettrofisiologia, Universita degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
31
|
Perez-Terzic C, Jaconi M, Clapham DE. Nuclear calcium and the regulation of the nuclear pore complex. Bioessays 1997; 19:787-92. [PMID: 9297969 DOI: 10.1002/bies.950190908] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In eukaryotic cells the nucleus and its contents are separated from the cytoplasm by the nuclear envelope. Macromolecules, as well as smaller molecules and ions, can cross the nuclear envelope through the nuclear pore complex. Molecules greater than approx. 60 kDa and containing a nuclear localization signal are actively transported across the nuclear membranes, but there has been little evidence for regulatory mechanisms for smaller molecules and ions. Recently, diffusion across the nuclear envelope has been observed to be regulated by nuclear cisternal Ca2+ concentrations. Following depletion of Ca2+ from the nuclear store by inositol 1,4,5-trisphosphate or Ca2+ chelators, a fluorescent 10 kDa marker molecule was no longer able to enter the nucleus. Distinct conformational states of the nuclear pore complexes depended on the Ca2+ filling state of the nuclear envelope, supporting the assumption that a switch in the conformation of the nuclear pore complex may control the transport of intermediate-sized molecules across the nuclear envelope. Thus nuclear Ca2+ stores may regulate the conformational state of the nuclear pore complex, and thereby passive diffusion of molecules between the cytosol and the nucleoplasm. The physiological significance of this finding is currently unknown.
Collapse
Affiliation(s)
- C Perez-Terzic
- Department of Pharmacology, Mayo Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
32
|
Bucki R, Zendzian-Piotrowska M, Nawrocki A, Górski J. Effect of increased uptake of plasma fatty acids by the liver on lipid metabolism in the hepatocellular nuclei. Prostaglandins Leukot Essent Fatty Acids 1997; 57:27-31. [PMID: 9250605 DOI: 10.1016/s0952-3278(97)90489-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nucleus contains different lipids. The aim of the present study was to examine whether increased uptake of free fatty acids by the liver affects lipid metabolism in the hepatocellular nuclei. The experiments were carried out on three groups of Wistar rats: I - male, control; II - male, heparin-treated, and III - female. [14C]-palmitic acid suspended in rat donor serum was administered intravenously 5 and 30 min before tissue samples were taken. Lipids were extracted from isolated liver nuclei and separated into different fractions (phospholipids - PH, monoacylglycerols - MG, diacylglycerols - DG, cholesterol - CH, free fatty acids - FFA, triacylglycerols - TG and cholesterol esters - CHE). It was found that 5 min after administration of the label all isolated nuclear lipid fractions were radioactive. Most of the radioactivity was located in the fraction of PH, TG and FFA. Elevation in the plasma FFA concentration (heparin-treated group) resulted in increased incorporation of [14C]-palmitic acid into the nuclear lipids and changes in its distribution. In the female rats the radioactivity of nuclear lipids was higher than in the male-controls. There were also differences in the percentage distribution of the radioactivity in different lipid fractions between the two groups. The concentration of PH and TG in the nuclei increased only in the heparin-treated but not in the female rats. However, specific activity of the nuclear PH and TG increased in with both groups compared to the male-control group. It is concluded that (a) the blood-borne FFA rapidly enter the nuclear lipid pool and (b) increased uptake of the plasma-borne FFA by the liver affects the nuclear lipid metabolism.
Collapse
Affiliation(s)
- R Bucki
- Department of Physiology, Medical Academy of Biatystok, Poland
| | | | | | | |
Collapse
|
33
|
Danen-Van Oorschot AA, Fischer DF, Grimbergen JM, Klein B, Zhuang S, Falkenburg JH, Backendorf C, Quax PH, Van der Eb AJ, Noteborn MH. Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc Natl Acad Sci U S A 1997; 94:5843-7. [PMID: 9159162 PMCID: PMC20868 DOI: 10.1073/pnas.94.11.5843] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The chicken anemia virus protein apoptin induces a p53-independent, Bcl-2-insensitive type of apoptosis in various human tumor cells. Here, we show that, in vitro, apoptin fails to induce programmed cell death in normal lymphoid, dermal, epidermal, endothelial, and smooth-muscle cells. However, when normal cells are transformed they become susceptible to apoptosis by apoptin. Long-term expression of apoptin in normal human fibroblasts revealed that apoptin has no toxic or transforming activity in these cells. In normal cells, apoptin was found predominantly in the cytoplasm, whereas in transformed and malignant cells it was located in the nucleus, suggesting that the localization of apoptin is related to its activity. These properties make apoptin a potential agent for the treatment of a large number of tumors, also those lacking p53 and/or overexpressing Bcl-2.
Collapse
Affiliation(s)
- A A Danen-Van Oorschot
- Laboratory for Molecular Carcinogenesis, Sylvius Laboratory, Leiden University, P.O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang J, Liu J, DeFranco DB. Subnuclear trafficking of glucocorticoid receptors in vitro: chromatin recycling and nuclear export. J Cell Biol 1997; 137:523-38. [PMID: 9151662 PMCID: PMC2139874 DOI: 10.1083/jcb.137.3.523] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1996] [Revised: 03/04/1997] [Indexed: 02/04/2023] Open
Abstract
We have used digitonin-permeabilized cells to examine in vitro nuclear export of glucocorticoid receptors (GRs). In situ biochemical extractions in this system revealed a distinct subnuclear compartment, which collects GRs that have been released from chromatin and serves as a nuclear export staging area. Unliganded nuclear GRs within this compartment are not restricted in their subnuclear trafficking as they have the capacity to recycle to chromatin upon rebinding hormone. Thus, GRs that release from chromatin do not require transit through the cytoplasm to regain functionality. In addition, chromatin-released receptors export from nuclei of permeabilized cells in an ATP- and cytosol-independent process that is stimulated by sodium molybdate, other group VI-A transition metal oxyanions, and some tyrosine phosphatase inhibitors. The stimulation of in vitro nuclear export by these compounds is not unique to GR, but is restricted to other proteins such as the 70- and 90-kD heat shock proteins, hsp70 and hsp90, respectively, and heterogeneous nuclear RNP (hnRNP) A1. Under analogous conditions, the 56-kD heat shock protein, hsp56, and hnRNP C do not export from nuclei of permeabilized cells. If tyrosine kinase inhibitors genistein and tyrphostin AG126 are included to prevent increased tyrosine phosphorylation, in vitro nuclear export of GR is inhibited. Thus, our results are consistent with the involvement of a phosphotyrosine system in the general regulation of nuclear protein export, even for proteins such as GR and hnRNP A1 that use distinct nuclear export pathways.
Collapse
Affiliation(s)
- J Yang
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
35
|
Hepatobiliary elimination of cationic drugs: the role of P-glycoproteins and other ATP-dependent transporters. Adv Drug Deliv Rev 1997. [DOI: 10.1016/s0169-409x(97)00498-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Baker RR, Chang HY. Neuronal nuclear acetyltransferases involved in the synthesis of platelet-activating factor are located in the nuclear envelope and show differential losses in activity. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1345:197-206. [PMID: 9106499 DOI: 10.1016/s0005-2760(96)00178-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuronal nuclear fraction N1 was isolated from cerebral cortices of 15-day-old rabbits, and nuclear subfractions prepared, in order to study the location of nuclear lyso platelet-activating factor (lyso-PAF) acetyltransferase and alkylglycerophosphate (AGP) acetyltransferase, and factors that affect the loss of these two nuclear activities. Subfractionation of prelabelled N1 indicated that the nuclear envelope had the highest percentage of the radioactive acetylated products alkylacetylglycerophosphate (AAGP) and PAF, and the distribution of these phospholipids reflected phospholipid distributions in the nuclear subfractions. The majority (95%) of radioactive AAGP and PAF was also recovered in Triton X-100 extracts of prelabelled nuclei, suggesting that these acetylated lipids are located in nuclear membranes rather than in the nuclear matrix/chromatin. Of the nuclear subfractions, the envelope had the highest AGP and lyso-PAF acetyltransferase specific activities which were close to corresponding values seen in the parent N1 fraction. Thus the nuclear AGP and lyso-PAF acetyltransferases were principally localized to the nuclear membranes. Differentials in activity loss were seen for the two acetyltransferase activities. In the nuclear envelope fractions, the lyso-PAF acetyltransferase was the more susceptible to oxidation reactions which could be reversed or blocked by the use of reducing agents. In preincubations, N1 showed greater losses in lyso-PAF acetyltransferase activity than in AGP acetyltransferase activity, losses which were not attributable to oxidation. Addition of cytosolic fraction S3 to preincubations promoted losses for each acetyltransferase in N1, and gave evidence for cytosolic and endogenous nuclear contributions to the activity loss. Addition of okadaic acid to the preincubations did not prevent the decline of either acetyltransferase in intact nuclei, but did diminish the loss of nuclear lyso-PAF acetyltransferase activity promoted by S3 addition, and also blocked the loss of this acetyltransferase seen in preincubations of isolated nuclear envelopes. This suggests that nuclear lyso-PAF acetyltransferase is susceptible to okadaic acid-sensitive nuclear and cytosolic protein phosphatase activities, while AGP acetyltransferase may lose activity by the action of other phosphatases or by other mechanisms within the nucleus.
Collapse
Affiliation(s)
- R R Baker
- Department of Medicine, University of Toronto, ON, Canada
| | | |
Collapse
|
37
|
Planas AM, Soriano MA, Estrada A, Sanz O, Martin F, Ferrer I. The heat shock stress response after brain lesions: induction of 72 kDa heat shock protein (cell types involved, axonal transport, transcriptional regulation) and protein synthesis inhibition. Prog Neurobiol 1997; 51:607-36. [PMID: 9175159 DOI: 10.1016/s0301-0082(97)00004-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cerebral stress response is examined following a variety of pathological conditions such as focal and global ischemia, administration of excitotoxins, and hyperthermia. Expression of 72 kDa heat shock protein (Hsp70) and hsp70 mRNA, the mechanism underlying induction of hsp70 mRNA involving activation of heat shock factor 1, and inhibition of cerebral protein synthesis are different aspects of the stress response considered here. The results are compared with those in the literature on induction, transcriptional regulation, expression, and cellular location of Hsp70, with a view to getting more insight into the function of the stress response in the injured brain. The present results illustrate that Hsp70 can be expressed in cells affected at various degrees following an insult that will either survive or dic as the brain lesion develops, depending on the severity of cell injury. This indicates that, under certain circumstances, synthesized Hsp70 might be necessary but not sufficient to ensure cell survival. Other situations involve uncoupling between synthesis of hsp70 mRNA and protein, probably due to very strict protein synthesis blockade, and often result in cell loss. Cells eventually will die if protein synthesis rates do not go back to normal after a period of protein synthesis inhibition. The stress response is a dynamic event that is switched on in neural cells sensitive to a brain insult. The stress response is, however, tricky, as affected cells seem to need it, have to deal transiently with it, but eventually be able to get rid of it, in order to survive. Putative therapeutic treatments can act either selectively, potentiating the synthesis of Hsp70 protein and recovery of protein synthesis, or preventing the stress response by deadening the insult severity.
Collapse
Affiliation(s)
- A M Planas
- Department of Farmacologia i Toxicologia, Institut d Investigacions Biomèdiques de Barcelona, CSIC, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Banno Y, Tamiya-Koizumi K, Oshima H, Morikawa A, Yoshida S, Nozawa Y. Nuclear ADP-ribosylation factor (ARF)- and oleate-dependent phospholipase D (PLD) in rat liver cells. Increases of ARF-dependent PLD activity in regenerating liver cells. J Biol Chem 1997; 272:5208-13. [PMID: 9030590 DOI: 10.1074/jbc.272.8.5208] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two forms of phospholipase D (PLD) have been found to be present in nuclei isolated from rat hepatocytes by measuring phosphatidylbutanol produced from exogenous radiolabeled phosphatidylcholine in the presence of butanol. In nuclear lysates from either rat liver or ascites hepatoma AH 7974 cells, the PLD activity was markedly stimulated by a recombinant ADP-ribosylation factor (rARF) in the presence of the guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) and phosphatidylinositol 4, 5-bisphosphate. ATP and phorbol-12-myristate 13-acetate had no synergistic effect on this PLD activity. On the other hand, the nuclear PLD was stimulated by unsaturated fatty acids, especially by oleic acid. The ARF-dependent nuclear PLD activity was increased in the S-phase of the regenerating rat liver after partial hepatectomy and also was much higher in AH 7974 cells than in the resting rat liver. In contrast, the levels of the oleate-dependent PLD activity remained constant throughout the cell cycle in liver regeneration. The intranuclear levels of the stimulating proteins of the nuclear PLD activity, e.g. ARF, RhoA, and protein kinase Cdelta increased in the S-phase of the regenerating liver. These results suggested that the nuclear ARF-dependent PLD activity may be associated with cell proliferation.
Collapse
Affiliation(s)
- Y Banno
- Department of Biochemistry, Gifu University School of Medicine, Tsukasamachi-40, Gifu 500, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Nadler SG, Tritschler D, Haffar OK, Blake J, Bruce AG, Cleaveland JS. Differential expression and sequence-specific interaction of karyopherin alpha with nuclear localization sequences. J Biol Chem 1997; 272:4310-5. [PMID: 9020149 DOI: 10.1074/jbc.272.7.4310] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The process of nuclear protein transport requires the interaction of several different proteins, either directly or indirectly with nuclear localization or targeting sequences (NLS). Recently, a number of karyopherins alpha, or NLS-binding proteins, have been identified. We have found that the karyopherins hSRP1 and hSRP1alpha are differentially expressed in various leukocyte cell lines and could be induced in normal human peripheral blood lymphocytes. We show that the two karyopherins bind with varied specificities in a sequence specific manner to different NLSs and that the sequence specificity is modulated by other cytosolic proteins. There was a correlation between binding of karyopherins alpha to different NLSs and their ability to be imported into the nucleus. Taken together, these data provide evidence for multiple levels of control of the nuclear import process.
Collapse
Affiliation(s)
- S G Nadler
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121, USA
| | | | | | | | | | | |
Collapse
|
40
|
|