1
|
Madrid LI, Hafey K, Bandhavkar S, Bodea GO, Jimenez-Martin J, Milne M, Walker TL, Faulkner GJ, Coulson EJ, Jhaveri DJ. Stimulation of the muscarinic receptor M4 regulates neural precursor cell proliferation and promotes adult hippocampal neurogenesis. Development 2024; 151:dev201835. [PMID: 38063486 PMCID: PMC10820734 DOI: 10.1242/dev.201835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Cholinergic signaling plays a crucial role in the regulation of adult hippocampal neurogenesis; however, the mechanisms by which acetylcholine mediates neurogenic effects are not completely understood. Here, we report the expression of muscarinic acetylcholine receptor subtype M4 (M4 mAChR) on a subpopulation of neural precursor cells (NPCs) in the adult mouse hippocampus, and demonstrate that its pharmacological stimulation promotes their proliferation, thereby enhancing the production of new neurons in vivo. Using a targeted ablation approach, we also show that medial septum (MS) and the diagonal band of Broca (DBB) cholinergic neurons support both the survival and morphological maturation of adult-born neurons in the mouse hippocampus. Although the systemic administration of an M4-selective allosteric potentiator fails to fully rescue the MS/DBB cholinergic lesion-induced decrease in hippocampal neurogenesis, it further exacerbates the impairment in the morphological maturation of adult-born neurons. Collectively, these findings reveal stage-specific roles of M4 mAChRs in regulating adult hippocampal neurogenesis, uncoupling their positive role in enhancing the production of new neurons from the M4-induced inhibition of their morphological maturation, at least in the context of cholinergic signaling dysfunction.
Collapse
Affiliation(s)
- Lidia I. Madrid
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
| | - Katelyn Hafey
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane QLD 4102, Queensland, Australia
| | - Saurabh Bandhavkar
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane QLD 4102, Queensland, Australia
| | - Gabriela O. Bodea
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane QLD 4102, Queensland, Australia
| | - Javier Jimenez-Martin
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
| | - Michael Milne
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
| | - Tara L. Walker
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
| | - Geoffrey J. Faulkner
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane QLD 4102, Queensland, Australia
| | - Elizabeth J. Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
| | - Dhanisha J. Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane QLD 4102, Queensland, Australia
| |
Collapse
|
2
|
Madrid LI, Jimenez-Martin J, Coulson EJ, Jhaveri DJ. Cholinergic regulation of adult hippocampal neurogenesis and hippocampus-dependent functions. Int J Biochem Cell Biol 2021; 134:105969. [PMID: 33727042 DOI: 10.1016/j.biocel.2021.105969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
The production and circuit integration of new neurons is one of the defining features of the adult mammalian hippocampus. A wealth of evidence has established that adult hippocampal neurogenesis is exquisitely sensitive to neuronal activity-mediated regulation. How these signals are interpreted and contribute to neurogenesis and hippocampal functions has been a subject of immense interest. In particular, neurotransmitters, in addition to their synaptic roles, have been shown to offer important trophic support. Amongst these, acetylcholine, which has a prominent role in cognition, has been implicated in regulating neurogenesis. In this review, we appraise the evidence linking the contribution of cholinergic signalling to the regulation of adult hippocampal neurogenesis and hippocampus-dependent functions. We discuss open questions that need to be addressed to gain a deeper mechanistic understanding of the role and translational potential of acetylcholine and its receptors in regulating this form of cellular neuroplasticity.
Collapse
Affiliation(s)
- Lidia I Madrid
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Javier Jimenez-Martin
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Ma S, Zang T, Liu ML, Zhang CL. Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease. Mol Neurodegener 2020; 15:61. [PMID: 33087140 PMCID: PMC7579825 DOI: 10.1186/s13024-020-00411-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer’s disease (AD) is an adult-onset mental disorder with aging as a major risk factor. Early and progressive degeneration of basal forebrain cholinergic neurons (BFCNs) contributes substantially to cognitive impairments of AD. An aging-relevant cell model of BFCNs will critically help understand AD and identify potential therapeutics. Recent studies demonstrate that induced neurons directly reprogrammed from adult human skin fibroblasts retain aging-associated features. However, human induced BFCNs (hiBFCNs) have yet to be achieved. Methods We examined a reprogramming procedure for the generation of aging-relevant hiBFCNs through virus-mediated expression of fate-determining transcription factors. Skin fibroblasts were obtained from healthy young persons, healthy adults and sporadic AD patients. Properties of the induced neurons were examined by immunocytochemistry, qRT-PCR, western blotting, and electrophysiology. Results We established a protocol for efficient generation of hiBFCNs from adult human skin fibroblasts. They show electrophysiological properties of mature neurons and express BFCN-specific markers, such as CHAT, p75NTR, ISL1, and VACHT. As a proof-of-concept, our preliminary results further reveal that hiBFCNs from sporadic AD patients exhibit time-dependent TAU hyperphosphorylation in the soma and dysfunctional nucleocytoplasmic transport activities. Conclusions Aging-relevant BFCNs can be directly reprogrammed from human skin fibroblasts of healthy adults and sporadic AD patients. They show promises as an aging-relevant cell model for understanding AD pathology and may be employed for therapeutics identification for AD.
Collapse
Affiliation(s)
- Shuaipeng Ma
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Tong Zang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Meng-Lu Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA. .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Pereira PA, Gonçalves E, Silva A, Millner T, Madeira MD. Effects of chronic alcohol consumption and withdrawal on the cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei of the rat: An unbiased stereological study. Neurotoxicology 2019; 76:58-66. [PMID: 31634498 DOI: 10.1016/j.neuro.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
The brain cholinergic system comprises two main recognized subdivisions, the basal forebrain and the brainstem cholinergic systems. The effects of chronic alcohol consumption on the basal forebrain cholinergic nuclei have been investigated extensively, but there is only one study that has examined those effects on the brainstem cholinergic nuclei. The last one comprises the pedunculopontine tegmental (PPT) and the laterodorsal tegmental (LDT) nuclei, which are known to give origin to the main cholinergic projection to the ventral tegmental area, a key brain region of the neural circuit, the mesocorticolimbic system, that mediates several behavioral and physiological processes, including reward. In the present study, we have examined, using stereological methods, the effects of chronic alcohol consumption (6 months) and subsequent withdrawal (2 months) on the total number and size of PPT and LDT choline acetyltransferase (ChAT)-immunoreactive neurons. The total number of PPT and LDT ChAT-immunoreactive neurons was unchanged in ethanol-treated and withdrawn rats. However, ChAT-immunoreactive neurons were significantly hypertrophied in ethanol-treated rats, an alteration that did not revert 2 months after ethanol withdrawal. These results show that prolonged exposure to ethanol leads to long-lasting, and potentially irreversible, cytoarchitectonic and neurochemical alterations in the brainstem cholinergic nuclei. These alterations suggest that the alcohol-induced changes in the brainstem cholinergic nuclei might play a role in the mechanisms underlying the development of addictive behavior to alcohol.
Collapse
Affiliation(s)
- Pedro A Pereira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| | - Eugénio Gonçalves
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Ana Silva
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| | - Tiago Millner
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - M Dulce Madeira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
5
|
Impaired hippocampal and thalamic acetylcholine release in P301L tau-transgenic mice. Brain Res Bull 2019; 152:134-142. [DOI: 10.1016/j.brainresbull.2019.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/21/2019] [Accepted: 07/12/2019] [Indexed: 11/23/2022]
|
6
|
Vitale F, Capozzo A, Mazzone P, Scarnati E. Neurophysiology of the pedunculopontine tegmental nucleus. Neurobiol Dis 2019. [DOI: 10.1016/j.nbd.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Mesulam MM, Lalehzari N, Rahmani F, Ohm D, Shahidehpour R, Kim G, Gefen T, Weintraub S, Bigio E, Geula C. Cortical cholinergic denervation in primary progressive aphasia with Alzheimer pathology. Neurology 2019; 92:e1580-e1588. [PMID: 30842294 DOI: 10.1212/wnl.0000000000007247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/28/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the status of the basal forebrain cholinergic system in primary progressive aphasia (PPA) as justification for cholinergic therapy. METHODS A cohort of 36 brains from PPA participants with the neuropathology of Alzheimer disease (PPA-AD, n = 14) or frontotemporal lobar degeneration (PPA-tau, n = 12; PPA-TDP, n = 10) were used for semiquantitative rating of degeneration and gliosis of basal forebrain cholinergic neurons (BFCN). A subpopulation of 5 PPA-AD and 7 control brains underwent detailed analysis of BFCN pathology and cortical cholinergic axonal loss employing immunohistochemical and histochemical methods and stereologic analysis. RESULTS Semiquantitatively, 11 (∼80%) PPA-AD participants were rated as having moderate/severe BFCN loss and gliosis, whereas none of the PPA-tau and only 1 (10%) PPA-TDP participant received such a rating. Detailed analysis in the subpopulation of PPA-AD participants revealed substantial tangle formation, loss of BFCN, and degeneration of cortical cholinergic axons. Compared to controls, loss of p75 low affinity neurotrophin receptor-positive BFCN was detected in the PPA-AD participants (p < 0.01). Acetylcholinesterase-positive cholinergic axons in all cortical areas studied displayed loss in PPA-AD (p < 0.005-0.0001). The loss was more severe in the language-dominant left hemisphere and, within the left hemisphere, in language-affiliated cortical areas. CONCLUSIONS Our results demonstrate prominent depletion of BFCN and cortical cholinergic axons in PPA-AD when compared with normal control or other neuropathologic variants of PPA. The demonstration of cholinergic denervation with an anatomy that fits the clinical picture suggests that cholinergic treatment is justified in patients with PPA who have positive AD biomarkers.
Collapse
Affiliation(s)
- M-Marsel Mesulam
- From the Mesulam Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Nava Lalehzari
- From the Mesulam Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Farzan Rahmani
- From the Mesulam Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Daniel Ohm
- From the Mesulam Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ryan Shahidehpour
- From the Mesulam Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Garam Kim
- From the Mesulam Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tamar Gefen
- From the Mesulam Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sandra Weintraub
- From the Mesulam Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Eileen Bigio
- From the Mesulam Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Changiz Geula
- From the Mesulam Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| |
Collapse
|
8
|
Pepeu G, Grazia Giovannini M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 2017; 1670:173-184. [PMID: 28652219 DOI: 10.1016/j.brainres.2017.06.023] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/03/2023]
Abstract
The aims of this review are: 1) to describe which cholinergic neurons are affected in brain neurodegenerative diseases leading to dementia; 2) to discuss the possible causes of the degeneration of the cholinergic neurons, 3) to summarize the functional consequences of the cholinergic deficit. The brain cholinergic system is basically constituted by three populations of phenotypically similar neurons forming a series of basal forebrain nuclei, the midpontine nuclei and a large population of striatal interneurons. In Alzheimer's disease there is an extensive loss of forebrain cholinergic neurons accompanied by a reduction of the cholinergic fiber network of the cortical mantel and hippocampus. The midpontine cholinergic nuclei are spared. The same situation occurs in the corticobasal syndrome and dementia following alcohol abuse and traumatic brain injury. Conversely, in Parkinson's disease, the midpontine nuclei degenerate, together with the dopaminergic nuclei, reducing the cholinergic input to thalamus and forebrain whereas the forebrain cholinergic neurons are spared. In Parkinson's disease with dementia, Lewis Body Dementia and Parkinsonian syndromes both groups of forebrain and midpontine cholinergic nuclei degenerate. In Huntington's disease a dysfunction of the striatal cholinergic interneurons without cell loss takes place. The formation and accumulation of misfolded proteins such as β-amyloid oligomers and plaques, tau protein tangles and α-synuclein clumps, and aggregated mutated huntingtin play a crucial role in the neuronal degeneration by direct cellular toxicity of the misfolded proteins and through the toxic compounds resulting from an extensive inflammatory reaction. Evidences indicate that β-amyloid disrupts NGF metabolism causing the degeneration of the cholinergic neurons which depend on NGF for their survival, namely the forebrain cholinergic neurons, sparing the midpontine and striatal neurons which express no specific NGF receptors. It is feasible that the latter cholinergic neurons may be damaged by direct toxicity of tau, α-synuclein and inflammations products through mechanisms not fully understood. Attention and learning and memory impairment are the functional consequences of the forebrain cholinergic neuron dysfunction, whereas the loss of midpontine cholinergic neurons results primarily in motor and sleep disturbances.
Collapse
Affiliation(s)
- Giancarlo Pepeu
- Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| | - Maria Grazia Giovannini
- Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
9
|
Smith LM, Strittmatter SM. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024075. [PMID: 27940601 DOI: 10.1101/cshperspect.a024075] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Alzheimer's disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis.
Collapse
Affiliation(s)
- Levi M Smith
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06536
| |
Collapse
|
10
|
The Binding Receptors of Aβ: an Alternative Therapeutic Target for Alzheimer's Disease. Mol Neurobiol 2014; 53:455-471. [PMID: 25465238 DOI: 10.1007/s12035-014-8994-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/06/2014] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which causes the deterioration of memory and other cognitive abilities of the elderly. Previous lines of research have shown that Aβ is an essential factor in AD pathology and the soluble oligomeric species of Aβ peptide is presumed to be the drivers of synaptic impairment in AD. However, the exact mechanisms underlying Aβ-induced synapse dysfunction are still not fully understood. Recently, increasing evidence suggests that some potential receptors which bind specifically with Aβ may play important roles in inducing the toxicity of the neurons in AD pathology. These receptors include the cellular prion protein (PrPc), the α7 nicotinic acetylcholine receptor (α7nAChR), the p75 neurotrophin receptor (p75(NTR)), the beta-adrenergic receptors (β-ARs), the Eph receptors, the paired immunoglobulin-like receptor B (PirB), the PirB's human ortholog receptor (LilrB2), and the Fcγ receptor II-b (FcγRIIb). This review summarizes the characters of these prominent receptors and how the bindings of them with Aβ inhibit the LTP, decrease the number of dendritic spine, damage the neurons, and so on in AD pathogenesis. Blocking or rescuing these receptors may have significant importance for AD treatments.
Collapse
|
11
|
BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2013; 110:19567-72. [PMID: 24218590 DOI: 10.1073/pnas.1319297110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer's disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aβ42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aβ42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD.
Collapse
|
12
|
Cheng HC, Sun Y, Lai LC, Chen SY, Lee WC, Chen JH, Chen TF, Chen HH, Wen LL, Yip PK, Chu YM, Chen WJ, Chen YC. Genetic polymorphisms of nerve growth factor receptor (NGFR) and the risk of Alzheimer's disease. J Negat Results Biomed 2012; 11:5. [PMID: 22236693 PMCID: PMC3362783 DOI: 10.1186/1477-5751-11-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/12/2012] [Indexed: 12/13/2022] Open
Abstract
Background Loss of basal forebrain cholinergic neurons is attributable to the proapoptotic signaling induced by nerve growth factor receptor (NGFR) and may link to Alzheimer's disease (AD) risk. Only one study has investigated the association between NGFR polymorphisms and the risk of AD in an Italian population. Type 2 diabetes mellitus (DM) may modify this association based on previous animal and epidemiologic studies. Methods This was a case-control study in a Chinese population. A total of 264 AD patients were recruited from three teaching hospitals between 2007 to 2010; 389 controls were recruited from elderly health checkup and volunteers of the hospital during the same period of time. Five common (frequency≥5%) haplotype-tagging single nucleotide polymorphisms (htSNPs) were selected from NGFR to test the association between NGFR htSNPs and the risk of AD. Results Variant NGFR rs734194 was significantly associated with a decreased risk of AD [GG vs. TT copies: adjusted odds ratio (OR) = 0.43, 95% confidence interval (CI) = 0.20-0.95]. Seven common haplotypes were identified. Minor haplotype GCGCG was significantly associated with a decreased risk of AD (2 vs. 0 copies: adjusted OR = 0.39, 95% CI = 0.17-0.91). Type 2 DM significantly modified the association between rs2072446, rs741072, and haplotype GCTTG and GTTCG on the risk of AD among ApoE ε4 non-carriers (Pinteraction < 0.05). Conclusion Inherited polymorphisms of NGFR were associated with the risk of AD; results were not significant after correction for multiple tests. This association was further modified by the status of type 2 DM.
Collapse
Affiliation(s)
- Hui-Chi Cheng
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Holmstrand EC, Asafu-Adjei J, Sampson AR, Blakely RD, Sesack SR. Ultrastructural localization of high-affinity choline transporter in the rat anteroventral thalamus and ventral tegmental area: differences in axon morphology and transporter distribution. J Comp Neurol 2010; 518:1908-24. [PMID: 20394050 DOI: 10.1002/cne.22310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The high-affinity choline transporter (CHT) is a protein integral to the function of cholinergic neurons in the central nervous system (CNS). We examined the ultrastructural distribution of CHT in axonal arborizations of the mesopontine tegmental cholinergic neurons, a cell group in which CHT expression has yet to be characterized at the electron microscopic level. By using silver-enhanced immunogold detection, we compared the morphological characteristics of CHT-immunoreactive axon varicosities specifically within the anteroventral thalamus (AVN) and the ventral tegmental area (VTA). We found that CHT-immunoreactive axon varicosities in the AVN displayed a smaller cross-sectional area and a lower frequency of synapse formation and dense-cored vesicle content than CHT-labeled profiles in the VTA. We further examined the subcellular distribution of CHT and observed that immunoreactivity for this protein was predominantly localized to synaptic vesicles and minimally to the plasma membrane of axons in both regions. This pattern is consistent with the subcellular distribution of CHT displayed in other cholinergic systems. Axons in the AVN showed significantly higher levels of CHT immunoreactivity than those in the VTA and correspondingly displayed a higher level of membrane CHT labeling. These novel findings have important implications for elucidating regional differences in cholinergic signaling within the thalamic and brainstem targets of the mesopontine cholinergic system.
Collapse
Affiliation(s)
- Ericka C Holmstrand
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
14
|
Fombonne J, Rabizadeh S, Banwait S, Mehlen P, Bredesen DE. Selective vulnerability in Alzheimer's disease: amyloid precursor protein and p75(NTR) interaction. Ann Neurol 2009; 65:294-303. [PMID: 19334058 DOI: 10.1002/ana.21578] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Selective neuronal vulnerability in neurodegenerative diseases is poorly understood. In Alzheimer's disease, the basal forebrain cholinergic neurons are selectively vulnerable, putatively because of their expression of the cell death mediator p75(NTR) (the common neurotrophin receptor), and its interaction with proapoptotic ligands pro-nerve growth factor and amyloid-beta peptide. However, the relation between amyloid precursor protein (APP) and p75(NTR) has not been described previously. METHODS APP and p75(NTR) were assayed for interaction by coimmunoprecipitation in vitro and in vivo, yeast two-hybrid assay, bioluminescence resonance energy transfer, and confocal microscopy. Effects on APP processing and signaling were studied using immunoblotting, enzyme-linked immunosorbent assays, and luciferase reporter assays. RESULTS The results of this study are as follows: (1) p75(NTR) and APP interact directly; (2) this interaction is modified by ligands nerve growth factor and beta-amyloid; (3) APP and p75(NTR) colocalization in vivo is modified in Alzheimer's model transgenic mice; (4) APP processing is altered by p75(NTR), and to a lesser extent, p75(NTR) processing is altered by the presence of APP; (5) APP-dependent transcription mediated by Fe65 is blocked by p75(NTR); and (6) coexpression of APP and p75(NTR) triggers cell death. INTERPRETATION These results provide new insight into the emerging signaling network that mediates the Alzheimer's phenotype and into the mechanism of basal forebrain cholinergic neuronal selective vulnerability. In addition, the results argue that the interaction between APP and p75(NTR) may represent a therapeutic target in Alzheimer's disease.
Collapse
|
15
|
Purification and culture of nerve growth factor receptor (p75)-expressing basal forebrain cholinergic neurons. Nat Protoc 2008; 3:34-40. [PMID: 18193019 DOI: 10.1038/nprot.2007.477] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The activity of the basal forebrain cholinergic neurons (BFCNs) that innervate the cerebral cortex and hippocampus is essential for normal learning and memory. Here, we present a method to isolate and culture BFCNs from the embryonic murine septum that takes advantage of their restricted expression of the nerve growth factor receptor (p75) in conjunction with fluorescence-activated cell sorting. The septal region dissection, cell dissociation and staining process, and cell sorting parameters are described in detail. Sufficient cell yield and optimized cell culture conditions make this protocol suitable for multiple assays including immunocytochemistry, reverse transcriptase PCR, microarray profiling, acetylcholine measurements and electrophysiological assessment. The study of these neurons as a purified population will greatly advance our understanding of factors that influence their development and maintenance.
Collapse
|
16
|
Blanco-Centurion C, Gerashchenko D, Shiromani PJ. Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci 2007; 27:14041-8. [PMID: 18094243 PMCID: PMC2975593 DOI: 10.1523/jneurosci.3217-07.2007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 11/06/2007] [Accepted: 11/06/2007] [Indexed: 11/21/2022] Open
Abstract
The hypocretin (HCRT) neurons are located only in the perifornical area of the lateral hypothalamus and heavily innervate the cholinergic neurons in the basal forebrain (BF), histamine neurons in the tuberomammillary nucleus (TMN), and the noradrenergic locus ceruleus (LC) neurons, three neuronal populations that have traditionally been implicated in regulating arousal. Based on the innervation, HCRT neurons may regulate arousal by driving these downstream arousal neurons. Here, we directly test this hypothesis by a simultaneous triple lesion of these neurons using three saporin-conjugated neurotoxins. Three weeks after lesion, the daily levels of wake were not changed in rats with double or triple lesions, although rats with triple lesions were asleep more during the light-to-dark transition period. The double- and triple-lesioned rats also had more stable sleep architecture compared with nonlesioned saline rats. These results suggest that the cholinergic BF, TMN, and LC neurons jointly modulate arousal at a specific circadian time, but they are not essential links in the circuitry responsible for daily levels of wake, as traditionally hypothesized.
Collapse
Affiliation(s)
- Carlos Blanco-Centurion
- West Roxbury Veterans Affairs Medical Center and Harvard Medical School, West Roxbury, Massachusetts 02132
| | - Dmitry Gerashchenko
- West Roxbury Veterans Affairs Medical Center and Harvard Medical School, West Roxbury, Massachusetts 02132
| | - Priyattam J. Shiromani
- West Roxbury Veterans Affairs Medical Center and Harvard Medical School, West Roxbury, Massachusetts 02132
| |
Collapse
|
17
|
Loesch A, Cowen T. On the presence of neurotrophin p75 receptor on rat sympathetic cerebrovascular nerves. J Mol Histol 2007; 39:57-68. [PMID: 17671845 DOI: 10.1007/s10735-007-9126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Although the presence of neurotrophin p75 receptor on sympathetic nerves is a well-recognised feature, there is still a scarcity of details of the distribution of the receptor on cerebrovascular nerves. This study examined the distribution of p75 receptor on perivascular sympathetic nerves of the middle cerebral artery and the basilar artery of healthy young rats using immunohistochemical methods at the laser confocal microscope and transmission electron microscope levels. Immunofluorescence methods of detection of tyrosine hydroxylase (TH) in sympathetic nerves, p75 receptor associated with the nerves, and also S-100 protein in Schwann cells were applied in conjunction with confocal microscopy, while the pre-embedding single and double immunolabelling methods (ExtrAvidin and immuno-gold-silver) were applied for the electron microscopic examination. Immunofluorescence studies revealed "punctuate" distribution of the p75 receptor on sympathetic nerves including accompanying Schwann cells. Image analysis of the nerves showed that the level of co-localization of p75 receptor and TH was low. Immunolabelling applied at the electron microscope level also showed scarce co-localization of TH (which was intra-axonal) and p75. Immunoreactivity for p75 receptor was present on the cell membrane of perivascular axons and to a greater extent on the processes of accompanying Schwann cells. Some Schwann cell processes were adjacent to each other displaying strong immunoreactivity for p75 receptor; immunoreactivity was located on the extracellular sites of the adjacent cell membranes suggesting that the receptor was involved in cross talk between these. It is likely that variability of locations of p75 receptor detected in the study reflects diverse interactions of p75 receptor with axons and Schwann cells. It might also imply a diverse role for the receptor and/or the plasticity of sympathetic cerebrovascular nerves to neurotrophin signalling.
Collapse
Affiliation(s)
- Andrzej Loesch
- Department of Anatomy and Developmental Biology (Hampstead Campus), Royal Free and University College Medical School, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | | |
Collapse
|
18
|
Schulte-Herbrüggen O, Hamker U, Meske V, Danker-Hopfe H, Ohm TG, Hellweg R. Beta/A4-Amyloid increases nerve growth factor production in rat primary hippocampal astrocyte cultures. Int J Dev Neurosci 2007; 25:387-90. [PMID: 17646078 DOI: 10.1016/j.ijdevneu.2007.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 05/29/2007] [Indexed: 11/30/2022] Open
Abstract
Nerve growth factor (NGF), a member of the neurotrophin family, is an essential mediator of neuronal activity and synaptic plasticity of basal forebrain cholinergic neurons (BFCN). In processes of chronic degeneration of BFCN like in Alzheimer's disease (AD), characterized among others by amyloid containing plaques, NGF has been shown to improve cognitive decline and rescue BFCN but also to reduce survival of hippocampal neurons via p75 neurotrophin receptor (p75). Little is known about the mechanisms of NGF regulation in glial cells under pathological conditions in AD. This study investigates the influence of amyloid administration on the NGF protein secretion in rat primary hippocampal astrocytes. Astrocytes were stimulated with "aged" beta/A4-Amyloid (1-40), and NGF was measured in different fractions, such as supernatant, vesicles, and cytosol fraction. Treatment with amyloid at a final concentration of 10 microM for 72 h led to increased NGF protein levels up to 30-fold increase compared to unstimulated controls. This observation may be an endogenous neuroprotective mechanism possibly contributing to a delay of amyloid-dependent loss of cholinergic neurons or contribute to accelerated neuronal death by activation of p75 within Alzheimer pathology.
Collapse
Affiliation(s)
- O Schulte-Herbrüggen
- Department of Psychiatry and Psychotherapy, Charité-University Medicine Berlin, Campus Benjamin Franklin, Humboldt-University and Free University of Berlin, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Scattoni ML, Adriani W, Calamandrei G, Laviola G, Ricceri L. Long-term effects of neonatal basal forebrain cholinergic lesions on radial maze learning and impulsivity in rats. Behav Pharmacol 2007; 17:517-24. [PMID: 16940773 DOI: 10.1097/00008877-200609000-00018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined long-term behavioural effects of neonatal lesions of the cholinergic basal forebrain obtained by intracerebroventricular injections of 192 IgG saporin (192 IgG-Sap). Five-month-old Wistar male rats (injected with 192 IgG-Sap or phosphate-buffered saline on postnatal day 7) were tested using operant chambers with two nose-poking holes, delivering one food pellet immediately or five pellets after a delay. The length of delay progressively increased over days (from 0 to 100 s). When compared with controls, 192 IgG-Sap rats showed a slight preference for smaller immediate over larger delayed rewards, thus indicating elevated intolerance to delay (i.e. more impulsivity). Sibling animals were tested in a computerized radial maze (baited vs. nonbaited arm procedure). 192 IgG-Sap rats appeared slower than controls in accomplishing the task. The neonatal 192 IgG-Sap lesion did not alter cortical levels of serotonin and/or its metabolites, but induced a marked cortical cholinergic loss. Our data suggest that a prolonged basal forebrain cholinergic hypofunction produces (i) an impairment in cognitive performances that is detectable only when highly complex tasks are used; (ii) a slight enhancement of the impulsive behavioural profile. This animal model may thus be useful to investigate some cognitive deficits and other secondary symptoms seen in Alzheimer's disease.
Collapse
Affiliation(s)
- Maria L Scattoni
- Section of Behavioural Neuroscience, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
20
|
Blanco-Centurion CA, Shiromani A, Winston E, Shiromani PJ. Effects of hypocretin-1 in 192-IgG-saporin-lesioned rats. Eur J Neurosci 2006; 24:2084-8. [PMID: 17067305 DOI: 10.1111/j.1460-9568.2006.05074.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hypocretin, also known as orexin, is a neuropeptide located in the perifornical region of the lateral hypothalamus; this region projects to all the major arousal centres including the basal forebrain. The basal forebrain contains a mixed population of neurons, some of which are cholinergic. To identify the relative contribution of the noncholinergic neurons to arousal, here we utilized 192-IgG-saporin to lesion the basal forebrain cholinergic neurons and determine whether microinjection of hypocretin-1 to the basal forebrain is still effective in inducing arousal. In Sprague-Dawley rats given 192-IgG-saporin (intraventricular, 6 microg; n=7) 92% of the basal forebrain cholinergic neurons were destroyed compared to nonlesioned rats (n=5). In the lesioned rats microinjection of hypocretin-1 (0.0625, 0.125 or 0.25 nmol in 250 nL) to the basal forebrain increased waking and suppressed sleep (both non-REM and REM) in a concentration-dependent manner and to the same extent as in nonlesioned rats. These results suggest that, in the absence of the basal forebrain cholinergic neurons, the basal forebrain noncholinergic neurons are able to convey hypocretin's arousal signal unabated.
Collapse
Affiliation(s)
- Carlos A Blanco-Centurion
- Department of Neurology, West Roxbury VA Medical Center and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA 02132, USA
| | | | | | | |
Collapse
|
21
|
Yamamoto N, Matsubara E, Maeda S, Minagawa H, Takashima A, Maruyama W, Michikawa M, Yanagisawa K. A ganglioside-induced toxic soluble Abeta assembly. Its enhanced formation from Abeta bearing the Arctic mutation. J Biol Chem 2006; 282:2646-55. [PMID: 17135262 DOI: 10.1074/jbc.m606202200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mechanism underlying plaque-independent neuronal death in Alzheimer disease (AD), which is probably responsible for early cognitive decline in AD patients, remains unclarified. Here, we show that a toxic soluble Abeta assembly (TAbeta) is formed in the presence of liposomes containing GM1 ganglioside more rapidly and to a greater extent from a hereditary variant-type ("Arctic") Abeta than from wild-type Abeta. TAbeta is also formed from soluble Abeta through incubation with natural neuronal membranes prepared from aged mouse brains in a GM1 ganglioside-dependent manner. An oligomer-specific antibody (anti-Oligo) significantly suppresses TAbeta toxicity. Biophysical and structural analyses by atomic force microscopy and size exclusion chromatography revealed that TAbeta is spherical with diameters of 10-20 nm and molecular masses of 200-300 kDa. TAbeta induces neuronal death, which is abrogated by the small interfering RNA-mediated knockdown of nerve growth factor receptors, including TrkA and p75 neurotrophin receptor. Our results suggest that soluble Abeta assemblies, such as TAbeta, can cause plaque-independent neuronal death that favorably occurs in nerve growth factor-dependent neurons in the cholinergic basal forebrain in AD.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu 474-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci 2006; 26:8092-100. [PMID: 16885223 PMCID: PMC6673779 DOI: 10.1523/jneurosci.2181-06.2006] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is currently hypothesized that the drive to sleep is determined by the activity of the basal forebrain (BF) cholinergic neurons, which release adenosine (AD), perhaps because of increased metabolic activity associated with the neuronal discharge during waking, and the accumulating AD begins to inhibit these neurons so that sleep-active neurons can become active. This hypothesis grew from the observation that AD induces sleep and AD levels increase with wake in the basal forebrain, but surprisingly it still remains untested. Here we directly test whether the basal forebrain cholinergic neurons are central to the AD regulation of sleep drive by administering 192-IgG-saporin to lesion the BF cholinergic neurons and then measuring AD levels in the BF. In rats with 95% lesion of the BF cholinergic neurons, AD levels in the BF did not increase with 6 h of prolonged waking. However, the lesioned rats had intact sleep drive after 6 and 12 h of prolonged waking, indicating that the AD accumulation in the BF is not necessary for sleep drive. Next we determined that, in the absence of the BF cholinergic neurons, the selective adenosine A1 receptor agonist N6-cyclohexyladenosine, administered to the BF, continued to be effective in inducing sleep, indicating that the BF cholinergic neurons are not essential to sleep induction. Thus, neither the activity of the BF cholinergic neurons nor the accumulation of AD in the BF during wake is necessary for sleep drive.
Collapse
|
23
|
Nickerson Poulin A, Guerci A, El Mestikawy S, Semba K. Vesicular glutamate transporter 3 immunoreactivity is present in cholinergic basal forebrain neurons projecting to the basolateral amygdala in rat. J Comp Neurol 2006; 498:690-711. [PMID: 16917846 DOI: 10.1002/cne.21081] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The basal forebrain (BF) plays a role in behavioral and cortical arousal, attention, learning, and memory. It has been suggested that cholinergic BF neurons co-release glutamate, and some cholinergic BF neurons have been reported to contain vesicular glutamate transporter 3 (VGLUT3). We examined the distribution and projections of BF cholinergic neurons containing VGLUT3, by using dual-label immunofluorescence for choline acetyltransferase (ChAT) and VGLUT3, in situ hybridization, and retrograde tracing. Neurons immunoreactive (+) or containing mRNAs for both ChAT and VGLUT3 were mainly localized to the ventral pallidum and more caudal BF regions; the co-immunoreactive neurons represented 31% of cholinergic neurons in the ventral pallidum and 5-9% more caudally. Examination of cholinergic axon terminals in known target areas of BF projections indicated that the basolateral amygdaloid nucleus contained numerous terminals co-immunoreactive for ChAT and VGLUT3, whereas sampled areas of the olfactory bulb, neocortex, hippocampus, reticular thalamic nucleus, and interpeduncular nucleus were devoid of double-labeled terminals. The basolateral amygdala is innervated by cholinergic BF neurons lacking low-affinity p75 nerve growth factor receptors; many ChAT+VGLUT3+ BF neurons were immunonegative to this receptor. Twenty-five to 79% of ChAT+VGLUT3+ neurons in different BF regions were retrogradely labeled from the basolateral amygdala, up to 52% (ventral pallidum) of the retrogradely labeled ChAT+ neurons were VGLUT3+, and the largest number of amygdala-projecting ChAT+VGluT3+ neurons was found in the ventral pallidum. These findings indicate that BF cholinergic neurons containing VGLUT3 project to the basolateral amygdala and suggest that these neurons might have the capacity to release both acetylcholine and glutamate.
Collapse
Affiliation(s)
- Amanda Nickerson Poulin
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
24
|
Scattoni ML, Puopolo M, Calamandrei G, Ricceri L. Basal forebrain cholinergic lesions in 7-day-old rats alter ultrasound vocalisations and homing behaviour. Behav Brain Res 2005; 161:169-72. [PMID: 15904724 DOI: 10.1016/j.bbr.2005.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/17/2005] [Accepted: 01/21/2005] [Indexed: 11/26/2022]
Abstract
We analysed the effects of 192 IgG-saporin lesions on pnd 7 upon neonatal behavioural responses. Number of ultrasonic vocalisations (USVs) were recorded on pnds 9, 11 and 13. On pnd 13 rats underwent a homing test to measure olfactory orientation towards nest material. 192 IgG-saporin reduced the number of USVs at all ages considered while increasing number of entrancies into the nest area. These data suggest that early damage to the basal forebrain cholinergic nuclei induces significant changes in the rat behavioural repertoire as early as the second-postnatal week.
Collapse
Affiliation(s)
- Maria Luisa Scattoni
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| | | | | | | |
Collapse
|
25
|
Lopez-Coviella I, Follettie MT, Mellott TJ, Kovacheva VP, Slack BE, Diesl V, Berse B, Thies RS, Blusztajn JK. Bone morphogenetic protein 9 induces the transcriptome of basal forebrain cholinergic neurons. Proc Natl Acad Sci U S A 2005; 102:6984-9. [PMID: 15870197 PMCID: PMC1088172 DOI: 10.1073/pnas.0502097102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Indexed: 01/19/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCN) participate in processes of learning, memory, and attention. Little is known about the genes expressed by BFCN and the extracellular signals that control their expression. Previous studies showed that bone morphogenetic protein (BMP) 9 induces and maintains the cholinergic phenotype of embryonic BFCN. We measured gene expression patterns in septal cultures of embryonic day 14 mice and rats grown in the presence or absence of BMP9 by using species-specific microarrays and validated the RNA expression data of selected genes by immunoblot and immunocytochemistry analysis of their protein products. BMP9 enhanced the expression of multiple genes in a time-dependent and, in most cases, reversible manner. The set of BMP9-responsive genes was concordant between mouse and rat and included genes encoding cell-cycle/growth control proteins, transcription factors, signal transduction molecules, extracellular matrix, and adhesion molecules, enzymes, transporters, and chaperonins. BMP9 induced the p75 neurotrophin receptor (NGFR), a marker of BFCN, and Cntf and Serpinf1, two trophic factors for cholinergic neurons, suggesting that BMP9 creates a trophic environment for BFCN. To determine whether the genes induced by BMP9 in culture were constituents of the BFCN transcriptome, we purified BFCN from embryonic day 18 mouse septum by using fluorescence-activated cell sorting of NGFR(+) cells and profiled mRNA expression of these and NGFR(-) cells. Approximately 30% of genes induced by BMP9 in vitro were overexpressed in purified BFCN, indicating that they belong to the BFCN transcriptome in situ and suggesting that BMP signaling contributes to maturation of BFCN in vivo.
Collapse
Affiliation(s)
- Ignacio Lopez-Coviella
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sherren N, Pappas BA. Selective acetylcholine and dopamine lesions in neonatal rats produce distinct patterns of cortical dendritic atrophy in adulthood. Neuroscience 2005; 136:445-56. [PMID: 16226382 DOI: 10.1016/j.neuroscience.2005.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/23/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
Acetylcholine and dopamine afferents reach their cortical targets during periods of synaptogenesis, and are in position to influence the cytoarchitectural development of cortical neurons. To determine the effect of removing these afferents on dendritic development, we lesioned rat pups at 7 days of age with the selective immunotoxins 192 IgG-saporin, or 6-hydroxydopamine, or both. One group of rats was killed in adulthood for neurochemistry and another was prepared for morphology using Golgi-Cox staining. Changes in morphology were compared in layer V pyramidal cells from medial prefrontal cortex, which sustained the greatest dopamine depletion, and in layer II/III pyramidal cells from retrosplenial cortex, which sustained the greatest choline acetyltransferase depletion. In rats with acetylcholine lesions, layer V medial prefrontal cells had smaller apical tufts and fewer basilar dendritic branches. Both apical and basilar spine density was substantially reduced. Layer II/III retrosplenial cells also had smaller apical tufts and substantially smaller basilar dendritic trees. Apical and basilar spine density did not change. In rats with dopamine lesions, layer V medial prefrontal cells had fewer oblique apical dendrites and atrophied basilar trees. Layer II/III retrosplenial cells had fewer apical dendritic branches. In neither area were spine densities significantly different from control. Neurons from rats with combined lesions were always smaller and less complex than those from singly lesioned rats. However, these cells were simple, additive composites of the morphology produced by single lesions. These data demonstrate that ascending acetylcholine and dopamine afferents play a vital role in the development of cortical cytoarchitecture.
Collapse
Affiliation(s)
- N Sherren
- Institute of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| | | |
Collapse
|
27
|
Barrett GL, Greferath U, Barker PA, Trieu J, Bennie A. Co-expression of the P75 neurotrophin receptor and neurotrophin receptor-interacting melanoma antigen homolog in the mature rat brain. Neuroscience 2005; 133:381-92. [PMID: 15878242 DOI: 10.1016/j.neuroscience.2005.01.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 11/02/2004] [Accepted: 01/19/2005] [Indexed: 12/26/2022]
Abstract
The p75 neurotrophin receptor (p75(NTR)) is involved in the regulation of neuronal survival and phenotype, but its signal transduction mechanisms are poorly understood. Recent evidence has implicated the cytoplasmic protein NRAGE (neurotrophin receptor-interacting MAGE (from Melanoma AntiGEn) homolog) in p75(NTR) signaling. To gain further insight into the role of NRAGE, we investigated the co-expression of NRAGE and p75(NTR) in mature rat brain. In all areas examined, NRAGE appeared to be confined to neurons. In the basal forebrain cholinergic complex, NRAGE immunoreactivity was evident in all p75(NTR)-positive neurons. There were many more NRAGE-positive than p75(NTR)-positive neurons in these regions, however. NRAGE was also expressed in areas of the basal forebrain that did not express p75(NTR), including the lateral septal nucleus and the nucleus accumbens. A finding in marked contrast to previous studies was the presence of p75(NTR) immunoreactivity in neuronal cell bodies in the hippocampus. Hippocampal p75(NTR) immunoreactivity was apparent in rats 6 months and older, and was localized to the dentate gyrus and stratum oriens. All p75(NTR)-positive neurons in the dentate gyrus and hippocampal formation were positive for NRAGE. The majority of granular cells of the dentate gyrus and pyramidal cells in the hippocampal formation were positive for NRAGE and negative for p75(NTR). NRAGE was also present in some neuronal populations that express p75(NTR) after injury, including striatal cholinergic interneurons, and motor neurons. A region of marked disparity was the cerebral cortex, in which NRAGE immunoreactivity was widespread whereas p75(NTR) was absent. The results are consistent with an important role for NRAGE in p75(NTR) signaling, as all cells that expressed p75(NTR) also expressed NRAGE. The wider distribution of NRAGE expression suggests that NRAGE may also participate in other signaling processes.
Collapse
Affiliation(s)
- G L Barrett
- Department of Physiology, University of Melbourne, Parkville 3010, Australia.
| | | | | | | | | |
Collapse
|
28
|
Ricceri L, Minghetti L, Moles A, Popoli P, Confaloni A, De Simone R, Piscopo P, Scattoni ML, di Luca M, Calamandrei G. Cognitive and neurological deficits induced by early and prolonged basal forebrain cholinergic hypofunction in rats. Exp Neurol 2004; 189:162-72. [PMID: 15296846 DOI: 10.1016/j.expneurol.2004.05.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 05/17/2004] [Accepted: 05/17/2004] [Indexed: 11/29/2022]
Abstract
In the present study we examined the long-term effects of neonatal lesion of basal forebrain cholinergic neurons induced by intracerebroventricular injections of the immunotoxin 192 IgG saporin. Animals were then characterised behaviourally, electrophysiologically and molecularly. Cognitive effects were evaluated in the social transmission of food preferences, a non-spatial associative memory task. Electrophysiological effects were assessed by recording of cortical electroencephalographic (EEG) patterns. In addition, we measured the levels of proteins whose abnormal expression has been associated with neurodegeneration such as amyloid precursor protein (APP), presenilin 1 and 2 (PS-1, PS-2), and cyclooxygenases (COX-1 and COX-2). In animals lesioned on postnatal day 7 and tested 6 months thereafter, memory impairment in the social transmission of food preferences was evident, as well as a significant reduction of choline acetyltransferase activity in hippocampus and neocortex. Furthermore, similar to what observed in Alzheimer-like dementia, EEG cortical patterns in lesioned rats presented changes in alpha, beta and delta activities. Levels of APP protein and mRNA were not affected by the treatment. Levels of hippocampal COX-2 protein and mRNA were significantly decreased whereas COX-1 remained unaltered. PS-1 and PS-2 transcripts were reduced in hippocampus and neocortex. These findings indicate that neonatal and permanent basal forebrain cholinergic hypofunction is sufficient to induce behavioural and neuropathological abnormalities. This animal model could represent a valid tool to evaluate the role played by abnormal cholinergic maturation in later vulnerability to neuropathological processes associated with cognitive decline and, possibly, to Alzheimer-like dementia.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Animals, Newborn
- Antibodies, Monoclonal/toxicity
- Behavior, Animal
- Blotting, Western/methods
- Brain Chemistry/drug effects
- Choline O-Acetyltransferase/metabolism
- Cognition Disorders/etiology
- Cognition Disorders/metabolism
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Cues
- Cyclooxygenase 2
- Electroencephalography/drug effects
- Female
- Gene Expression Regulation, Developmental/drug effects
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/physiopathology
- Immunotoxins/toxicity
- Isoenzymes/metabolism
- Male
- Membrane Proteins/metabolism
- N-Glycosyl Hydrolases
- Nervous System Diseases/etiology
- Nervous System Diseases/metabolism
- Phobic Disorders/metabolism
- Phobic Disorders/physiopathology
- Presenilin-1
- Presenilin-2
- Prosencephalon/metabolism
- Prosencephalon/physiopathology
- Prostaglandin-Endoperoxide Synthases/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Ribosome Inactivating Proteins, Type 1
- Saporins
- Social Behavior
- Time Factors
Collapse
Affiliation(s)
- Laura Ricceri
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wenk GL, McGann-Gramling K, Hauss-Wegrzyniak B. The presence of the APP(swe) mutation in mice does not increase the vulnerability of cholinergic basal forebrain neurons to neuroinflammation. Neuroscience 2004; 125:769-76. [PMID: 15099690 DOI: 10.1016/j.neuroscience.2004.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2004] [Indexed: 10/26/2022]
Abstract
Neuroinflammation, and elevated levels of inflammatory proteins, such as tumor necrosis factor-alpha, and the deposition of beta-amyloid may interact to contribute to the pathogenesis of Alzheimer's disease. We reproduced a component of the neuroinflammatory state within the basal forebrain cholinergic system, a region that is vulnerable to degeneration in Alzheimer's disease, of transgenic Tg2576 mice that express the Swedish double mutation of the human amyloid precursor protein (APPswe). We have previously shown that basal forebrain cholinergic neurons are selectively vulnerable to the consequences of neuroinflammation. In the current study, tumor necrosis factor-alpha was infused into the basal forebrain region of APPswe and nontransgenic control mice for 20 days with the expectation that the presence of the transgene would enhance the loss of cholinergic neurons. Chronic infusion of tumor necrosis factor-alpha significantly decreased cortical choline acetyltransferase activity, reduced the number of choline acetyltransferase-immunoreactive cells and increased the number of activated astrocytes and microglia within the basal forebrain. The presence of the APPswe gene did not enhance the vulnerability of forebrain cholinergic neurons to the chronic neuroinflammation. Furthermore, combined treatment of these mice with memantine demonstrated that the neurotoxic effects of tumor necrosis factor-alpha upon cholinergic cells did not require the activation of the N-methyl-d-aspartate receptors. In contrast, we have previously shown that memantine was able to provide neuroprotection to cholinergic forebrain neurons from the consequences of exposure to the inflammogen lipopolysaccharide. These results provide insight into the mechanism by which neuroinflammation may selectively target specific neural systems during the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- G L Wenk
- Division of Neural Systems, Memory and Aging, University of Arizona, 350 Life Sciences North Building, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
30
|
Henderson Z, Fiddler G, Saha S, Boros A, Halasy K. A parvalbumin-containing, axosomatic synaptic network in the rat medial septum: relevance to rhythmogenesis*. Eur J Neurosci 2004; 19:2753-68. [PMID: 15147309 DOI: 10.1111/j.0953-816x.2004.03399.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The medial septal diagonal band complex (MS/DB), made up of cholinergic and GABAergic neurons, plays an important role in the generation of the hippocampal theta rhythm. A GABAergic neuron type in the MS/DB that has fast spiking properties was shown previously to contain parvalbumin immunoreactivity and to form axosomatic connections with unidentified somata. The aim in the current study was to determine the neurochemical identities of these target neurons. In slices and in perfused-fixed brain, staining for parvalbumin immunoreactivity first of all revealed the presence of two types of parvalbumin-positive somata in the MS/DB: medially located neurons with parvalbumin-positive basket-like terminals on them, and more laterally located neurons with fewer parvalbumin-positive contacts on them. In MS/DB slices, the terminals of fast spiking neurons filled with biocytin correspondingly made either numerous contacts that surrounded the parvalbumin-positive cell body in basket-like formation, or 1-5 contacts on a localized patch of the soma. These contacts were shown by electron microscopy to form synaptic junctions. No terminals of biocytin-filled fast spiking neurons were observed on cholinergic neurons, and dual staining in perfused-fixed brain did not reveal the presence of parvalbumin-containing terminals on cholinergic somata. Our results suggest therefore that there are two subtypes of parvalbumin-containing neuron in the MS/DB, and that these are interconnected via axosomatic synapses. The contrasting topographical organization of the two types of parvalbumin-containing neuron suggests that they may receive different types of afferent input, but this will require substantiation in future studies. We propose that generation of rhythmic activity in the MS/DB is controlled by contrasting contributions from two types of parvalbumin-positive neuron, and that the role of the cholinergic neuron is modulatory.
Collapse
Affiliation(s)
- Z Henderson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
31
|
Smith JE, Co C, Yin X, Sizemore GM, Liguori A, Johnson WE, Martin TJ. Involvement of cholinergic neuronal systems in intravenous cocaine self-administration. Neurosci Biobehav Rev 2004; 27:841-50. [PMID: 15019433 DOI: 10.1016/j.neubiorev.2003.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies suggest the participation of cholinergic neurons in the brain processes underlying reinforcement. The involvement of cholinergic neurons in cocaine self-administration has been recently demonstrated in studies using muscarinic and nicotinic agonists and antagonists, microdialysis, assessment of choline acetyltransferase activity and acetylcholine (ACh) turnover rates. The present experiment was initiated to identify subsets of cholinergic neurons involved in the brain processes that underlie cocaine self-administration by lesioning discrete populations with a selective neurotoxin. Rats were trained to self-administer cocaine and the cholinergic neurotoxin 192-IgG-saporin or vehicle was then bilaterally administered into the posterior nucleus accumbens (NAcc)-ventral pallidum (VP). The 192-IgG-saporin induced lesions resulted in a pattern of drug-intake consistent with either a shift in the dose intake relationship to the left or downward compared to sham-treated controls. A second experiment used a self-administration threshold procedure that demonstrated this lesion shifted the dose intake relationship to the left compared to the sham-vehicle treated rats. The magnitude and extent of the lesion was assessed by measuring the expression of p75 (the target for 192-IgG-saporin) and choline acetyltransferase (ChAT) in the NAcc, VP, caudate nucleus-putamen (CP) and vertical limb of the medial septal nucleus-diagonal band (MS-DB) of these rats using real time reverse transcriptase-polymerase chain reaction. Significant reductions in gene expression for p75 (a selective marker for basal forebrain cholinergic neurons) and ChAT were seen in the MS-DB and VP while only small decreases were seen in the NAcc and CP of the 192-IgG-saporin treated rats. These data indicate that the overall influence of cholinergic neurons in the MS-DB and VP are inhibitory to the processes underlying cocaine self-administration and suggest that agonists directed toward subclasses of cholinergic receptors may have efficacy as pharmacotherapeutic adjuncts for the treatment of cocaine abuse.
Collapse
Affiliation(s)
- James E Smith
- Department of Physiology and Pharmacology, Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1083, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Tinkler GP, Tobin JR, Voytko ML. Effects of two years of estrogen loss or replacement on nucleus basalis cholinergic neurons and cholinergic fibers to the dorsolateral prefrontal and inferior parietal cortex of monkeys. J Comp Neurol 2004; 469:507-21. [PMID: 14755532 DOI: 10.1002/cne.11028] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study examined the long-term (2 years) effects of estrogen loss or estrogen replacement therapy (ERT) on cholinergic neurons in the nucleus basalis of Meynert and on cholinergic fibers in the prefrontal and parietal cortex of adult female cynomolgus monkeys. Cholinergic fiber density in layer II of the prefrontal cortex was decreased in monkeys who were ovariectomized and treated with placebo for 2 years. In contrast, ovariectomized monkeys receiving ERT for 2 years had fiber densities that were comparable to those of intact controls. No differences in parietal cholinergic fiber density or nucleus basalis cholinergic neuron number or volume were found among intact, ovariectomized, or ERT monkeys. Our results suggest that ERT is effective in preventing region-specific changes in cortical cholinergic fibers that result from the loss of circulating ovarian hormones. These modest but appreciable effects on cholinergic neurobiology following long-term estrogen loss and ERT may contribute to changes in visuospatial attention function that is mediated by the prefrontal cortex.
Collapse
Affiliation(s)
- Gregory Paul Tinkler
- Interdisciplinary Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
33
|
Wenk GL, McGann K, Hauss-Wegrzyniak B, Rosi S. The toxicity of tumor necrosis factor-alpha upon cholinergic neurons within the nucleus basalis and the role of norepinephrine in the regulation of inflammation: implications for Alzheimer's disease. Neuroscience 2004; 121:719-29. [PMID: 14568031 DOI: 10.1016/s0306-4522(03)00545-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inflammation and reduced forebrain norepinephrine are features of Alzheimer's disease that may interact to contribute to the degeneration of specific neural systems. We reproduced these conditions within the basal forebrain cholinergic system, a region that is vulnerable to degeneration in Alzheimer's disease. Tumor necrosis factor-alpha was infused into the basal forebrain of young mice pretreated with a norepinephrine neuronal toxin, N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine (DSP4), with the expectation that the loss of noradrenergic input would enhance the loss of cholinergic neurons. The results indicate that chronic infusion of tumor necrosis factor-alpha alone significantly decreased cortical choline acetyltransferase activity and increased the number of activated microglia and astrocytes within the basal forebrain. The loss of forebrain norepinephrine following systemic treatment with DSP4 did not alter the level of cortical choline acetyltransferase activity or activate microglia but significantly activated astrocytes within the basal forebrain. Infusion of tumor necrosis factor-alpha into DSP4-pretreated mice also reduced cortical choline acetyltransferase activity on the side of the infusion; however, the decline was not significantly greater than that produced by the infusion of tumor necrosis factor-alpha alone. The neurodegeneration seen may be indirect since a double-immunofluorescence investigation did not find evidence for the co-existence of tumor necrosis factor-alpha type I receptors on choline acetyltransferase-positive cells in the basal forebrain. The results suggest that noradrenergic cell loss in Alzheimer's disease does not augment the consequences of the chronic neuroinflammation and does not enhance neurodegeneration of forebrain cholinergic neurons.
Collapse
Affiliation(s)
- G L Wenk
- Arizona Research Laboratories, Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | |
Collapse
|
34
|
Towart LA, Alves SE, Znamensky V, Hayashi S, McEwen BS, Milner TA. Subcellular relationships between cholinergic terminals and estrogen receptor-alpha in the dorsal hippocampus. J Comp Neurol 2003; 463:390-401. [PMID: 12836175 DOI: 10.1002/cne.10753] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cholinergic septohippocampal neurons are affected by circulating estrogens. Previously, we found that extranuclear estrogen receptor-alpha (ERalpha) immunoreactivity in presynaptic profiles had an overlapping distribution with cholinergic afferents in the rat hippocampal formation. To determine the subcellular relationships between cholinergic presynaptic profiles and ERalpha, hippocampal sections were dually immunolabeled for vesicular acetylcholine transporter (VAChT) and ERalpha and examined by electron microscopy. Within the hippocampal formation, immunoreactivities for VAChT and ERalpha both were presynaptic, although their subcellular targeting was distinct. VAChT immunoreactivity was found exclusively within presynaptic profiles and was associated with small synaptic vesicles, which usually filled axon terminals. VAChT-labeled presynaptic profiles were most concentrated in stratum oriens of the hippocampal CA1 region and dentate inner molecular layer and hilus. In contrast, ERalpha immunoreactivity was found in clusters affiliated either with select vesicles or with the plasmalemma within preterminal axons and axon terminals. ERalpha-immunoreactive (IR) presynaptic profiles were more evenly distributed between hippocampal lamina than VAChT-IR profiles. Quantitative ultrastructural analysis revealed that VAChT-IR presynaptic profiles contained ERalpha immunoreactivity (ranging from 3% to 17%, depending on the lamina). Additionally, VAChT-IR presynaptic profiles apposed ERalpha-IR dendritic spines, presynaptic profiles, and glial profiles; many of the latter two types of profiles abutted unlabeled dendritic spines that received asymmetric (excitatory-type) synapses from unlabeled terminals. The presence of ERalpha immunoreactivity in cholinergic terminals suggests that estrogen could rapidly and directly affect the local release and/or uptake of acetylcholine. The affiliation of cholinergic terminals with excitatory terminals near ERalpha-labeled dendritic spines or glial profiles suggests that alterations in acetylcholine release could indirectly affect estrogen-modulated structural plasticity.
Collapse
Affiliation(s)
- Laura A Towart
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
35
|
Ricceri L. Behavioral patterns under cholinergic control during development: lessons learned from the selective immunotoxin 192 IgG saporin. Neurosci Biobehav Rev 2003; 27:377-84. [PMID: 12946690 DOI: 10.1016/s0149-7634(03)00068-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immunotoxin 192 IgG saporin (192 IgG-sap) offers a valuable tool to investigate the role of the developing basal forebrain cholinergic system in modulating behavioral functions in developing, as well as adult rats. After neonatal 192 IgG-sap lesions, rats display reduced ultrasonic vocalizations as neonates, deficits in passive avoidance learning as juveniles, and altered reactions to spatial novelty as adults. These data suggest that neonatal cholinergic depletion affects cognitive performance in juvenile and adult rats. Additionally, neonatal cholinergic depletion alters ultrasonic vocalizations, which could then alter establishing normal mother-infant relationships, and thus compound the pup's cognitive deficits. These findings underscore the importance of assessing behavior during ontogeny, as well as in adulthood.
Collapse
Affiliation(s)
- Laura Ricceri
- Section of Comparative Psychology, Laboratory Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanità, V. le Regina Elena 299 Rome I-00161, Italy.
| |
Collapse
|
36
|
Cadacio CL, Milner TA, Gallagher M, Pierce JP, Cadiacio CL. Hilar neuropeptide Y interneuron loss in the aged rat hippocampal formation. Exp Neurol 2003; 183:147-58. [PMID: 12957498 DOI: 10.1016/s0014-4886(03)00126-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y-immunoreactive (NPY-I) interneurons in the dentate gyrus are vulnerable to various insults, including septohippocampal cholinergic deafferentation. The present study examined whether a loss of NPY-I neurons occurs during aging, when the functional integrity of the septohippocampal pathway is thought to be compromised. Sets of male Long Evans rats (consisting of young and aged rats, with and without spatial learning impairments assessed by the Morris water maze) were examined. Light microscopic analysis revealed that hilar NPY-I neuronal number in matched dorsal sections was significantly decreased in aged compared to young rats. Ultrastructural analysis disclosed that the microenvironment (the types of processes apposed to the plasmalemmal surface) of NPY-I neurons also differed significantly between young and aged rats. In particular, a subgroup of NPY-I neurons, distinguished by a higher percentage of unmyelinated axon coverage of the plasmalemmal surface, was present in young, but not aged, rats. Neither the number nor the microenvironment of NPY-I neurons significantly differed between aged animals that were impaired versus unimpaired in spatial learning performance. To our knowledge these findings represent the first report of an age-associated decline in the number of a specific, neurochemically identified neuronal subpopulation within the hippocampal formation. Additionally, they closely parallel observations in 192 IgG-saporin-lesioned animals, suggesting that a distinct subgroup of NPY-I interneurons is particularly dependent on the viability of septohippocampal cholinergic innervation for its survival. Since neuronal loss was not correlated with performance, this alteration by itself does not appear to be sufficient to produce learning impairment.
Collapse
Affiliation(s)
- C L Cadacio
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
37
|
Ang ET, Wong PTH, Moochhala S, Ng YK. Neuroprotection associated with running: is it a result of increased endogenous neurotrophic factors? Neuroscience 2003; 118:335-45. [PMID: 12699770 DOI: 10.1016/s0306-4522(02)00989-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The possible neuroprotective effect of physical exercise was investigated in rats after middle cerebral artery occlusion (MCAO), a focal stroke model. It was found that physical exercise in the form of a 12-week treadmill running programme reduced the volume of infarction caused by MCAO. At the molecular level, reverse transcription polymerase chain reaction revealed that the runner had increased gene expression for nerve growth factor (NGF) over the nonrunner with or without MCAO. Expression of the NGF receptors, p75, was increased only in the absence of MCAO. In addition, runners showed a significantly higher number of cholinergic neurons, which constitutively expressed p75, in the horizontal diagonal band of Broca. The present findings suggest that neuroprotection after physical exercise may be a result of an increase in an endogenous neurotrophic factor nerve growth factor and the proliferation of its receptive cholinergic neurons.
Collapse
Affiliation(s)
- E T Ang
- Department of Anatomy, Faculty of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore 117597
| | | | | | | |
Collapse
|
38
|
Gibbs RB. Effects of ageing and long-term hormone replacement on cholinergic neurones in the medial septum and nucleus basalis magnocellularis of ovariectomized rats. J Neuroendocrinol 2003; 15:477-85. [PMID: 12694373 DOI: 10.1046/j.1365-2826.2003.01012.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ovariectomized aged rats, some of which received long-term hormone replacement with oestrogen or oestrogen plus progesterone, were evaluated for the number and size of basal forebrain cholinergic neurones, as well as relative levels of choline acetyltransferase (ChAT) and trkA mRNA, in order to determine whether effects on basal forebrain cholinergic cell survival and function correspond with differences in cognitive performance previously described. The results show that ageing combined with long-term loss of ovarian function produced substantial reductions in the levels of ChAT and trkA mRNA in the medial septum and nucleus basalis magnocellularis, relative to much younger ovariectomized controls. In contrast, no significant effects on the number or size of the cholinergic cells were detected, indicating that loss of ovarian function does not cause a loss of cholinergic neurones with age. Long-term hormone replacement had no apparent effect on the number of ChAT-positive neurones detected, and did not prevent the reductions in ChAT and trkA mRNA associated with ovariectomy and ageing. Collectively, the data suggest that ageing combined with long-term loss of ovarian function has a severe negative impact on basal forebrain cholinergic function, but not on cholinergic cell survival per se.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA. gibbsr+@pitt.edu
| |
Collapse
|
39
|
Ricceri L, Hohmann C, Berger-Sweeney J. Early neonatal 192 IgG saporin induces learning impairments and disrupts cortical morphogenesis in rats. Brain Res 2002; 954:160-72. [PMID: 12414099 DOI: 10.1016/s0006-8993(02)03172-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have shown previously that neonatal intraventricular injections of the selective cholinergic immunotoxin 192 IgG saporin on postnatal day 7 (pnd 7) induce marked cholinergic loss in hippocampus and neocortex and a learning impairment on pnd 15. In the present study, we analysed the behavioural, morphological and neurochemical effects of earlier intraventricular injection of the immunotoxin 192 IgG saporin (pnd 1 and 3). We hypothesised that these earlier lesions would interrupt a critical stage in neocortical maturation, and impair behavior more profoundly than the later lesions. Passive avoidance (PA) learning and locomotor activity during the PA test were assessed on pnd 15. Retention of the PA task was assessed on pnd 16. Reactivity to spatial and object novelty was assessed on pnd 180 in a spatial open field test with five objects. Choline acetyltransferase (ChAT) activity was measured in basal forebrain targets on pnd 20 and pnd 180. Neonatal administration of 192 IgG saporin resulted in a slower acquisition of the PA task in females; retention and locomotor activity were not affected. On pnd 180, reaction to spatial novelty was mildly impaired in lesioned rats of both sexes. There was a marked reduction of ChAT in the hippocampus and neocortex of lesioned rats of both sexes, at both ages. Morphological analysis of the somatosensory cortex of lesioned rats revealed alterations in cortical development with sex specific variations in total cortical thickness. These results suggest that interrupting cholinergic basal forebrain innervation of neocortex and hippocampus during the first postnatal days affects the development of cognitive behaviour, neurochemistry and cortical organisation in a sex specific manner. Furthermore, the alterations in cortical organization are more profound than those noted after a lesion later in postnatal development. These behavioural and morphological abnormalities could be considered a model for several neurodevelopmental disorders associated with mental retardation.
Collapse
Affiliation(s)
- Laura Ricceri
- Section of Comparative Psychology, Laboratory Fisiopatologia OS, Istituto Superiore di Sanità, Vle Regina Elena 299, I-00161 Rome, Italy.
| | | | | |
Collapse
|
40
|
Fusco M, Bentivoglio M, Vantini G, Guidolin D, Polato P, Leon A. Nerve Growth Factor Receptor-immunoreactive Fibres Innervate the Reticular Thalamic Nucleus: Modulation by Nerve Growth Factor Treatment in Neonate, Adult and Aged Rats. Eur J Neurosci 2002; 3:1008-1015. [PMID: 12106259 DOI: 10.1111/j.1460-9568.1991.tb00037.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Terminal arborizations expressing nerve growth factor receptor (NGF-R) have been detected with immunohistochemistry in the reticular thalamic nucleus of neonate, adult and aged rats. Intracerebroventricular administration of nerve growth factor (NGF) resulted in a dramatic increase in NGF-R immunoreactivity throughout the lifespan. This effect was paralleled by a concomitant increase in NGF-R immunopositivity in the neurons of the basal forebrain, which was here demonstrated also in aged animals, thus indicating that the NGF-R immunoreactivity within the reticular thalamic nucleus derives in all likelihood from cholinergic neuronal cell bodies of the basal forebrain. Our results demonstrate a prominent ability of NGF to up-regulate its receptors within fibres innervating the reticular thalamic nucleus, and show that this up-regulation of NGF-R is maintained throughout the lifetime. Altogether this indicates that the reticular thalamic nucleus may represent a new, important site of action of endogenous NGF or NGF-like molecules within the brain. In view of the crucial role played by the reticular thalamic nucleus in gating thalamocortical information, the autoregulation of NGF-R in this structure may have important concomitants in both physiological and pathological conditions.
Collapse
Affiliation(s)
- M. Fusco
- Fidia Research Laboratories, Via Ponte della Fabbrica 3/A, 35031 Abano Terme, Padova, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Ping SE, Greferath U, Barrett GL. Estrogen treatment suppresses forebrain p75 neurotrophin receptor expression in aged, noncycling female rats. J Neurosci Res 2002; 69:51-60. [PMID: 12111815 DOI: 10.1002/jnr.10273] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is increasing evidence that estrogen has beneficial effects on cognition, both in humans and in rodents, and may delay Alzheimer's disease onset in postmenopausal women. Several rodent studies have utilised the ovariectomy model to show estrogen regulation of the p75 neurotrophin receptor, TrkA, and markers of acetylcholine synthesis in the cholinergic basal forebrain. We studied estrogenic effects in aged (16-17-month-old), noncycling rats. Estrogen treatment for 10 days drastically reduced p75(NTR) immunoreactivity in the rostral parts of the basal forebrain. The number of p75(NTR)-immunoreactive neurons was decreased, and those neurons remaining positive for p75(NTR) showed reduced p75(NTR) staining intensity. In vehicle-treated rats, almost all choline acetyltransferase-immunoreactive neurons were p75(NTR) positive (and vice versa), but, in estrogen treated rats, large numbers of choline acetyltransferase-immunoreactive cells were negative for p75(NTR). Similar levels of p75(NTR) down-regulation in the rostral basal forebrain were found when estrogen treatment was extended to 6 weeks. There was no reduction in the number of p75(NTR)-immunoreactive neurons in the caudal basal forebrain after 10 days of treatment. After 6 weeks of treatment, however, there was evidence of p75(NTR) down-regulation in the caudal basal forebrain. There was no evidence of hypertrophy or atrophy of cholinergic neurons even after 6 weeks of estrogen treatment. Considering the evidence for the role of p75(NTR) in regulating survival, growth and nerve growth factor responsiveness of cholinergic basal forebrain neurons, the results indicate an important aspect of estrogen's effects on the nervous system.
Collapse
Affiliation(s)
- Sophie E Ping
- Department of Physiology, University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
42
|
Zhu XO, de Permentier PJ, Waite PME. Cholinergic depletion by IgG192-saporin retards development of rat barrel cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 136:1-16. [PMID: 12036512 DOI: 10.1016/s0165-3806(02)00301-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study examines the role of cholinergic projections from the basal forebrain on development of the rodent barrel cortex. Pups were administered the immunotoxin IgG192-saporin (0.1 microg) intraventricularly at postnatal day (P) 0 and sacrificed at P1-P7. One ventricle was injected with saporin while the other side received saline, allowing comparison between the two sides of the same animal, as well as with controls receiving saline only. Compared to control animals, neuronal loss in the basal forebrain was present on both sides of saporin-treated pups but was significantly greater on the toxin-treated side, in all age groups and regions sampled. Depletion of acetylcholine did not prevent the formation of the barrel pattern, however it delayed its emergence by approximately 1 day. At P4, the thickness of layer IV barrel cortex was also significantly reduced; this reduction was undetectable by P7. From P3 to P5, the ratios of intensity of staining for acetylcholinesterase between the barrel centres and septa on the toxin-treated side were significantly lower than those on the saline side, although normal densities were present by P7. Thus, the depletion of cholinergic innervation at birth causes a transient delay in the development of the barrel pattern during the first postnatal week.
Collapse
Affiliation(s)
- X O Zhu
- Department of Anatomy, University of New South Wales, NSW 2052, Sydney, Australia.
| | | | | |
Collapse
|
43
|
Perini G, Della-Bianca V, Politi V, Della Valle G, Dal-Pra I, Rossi F, Armato U. Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. J Exp Med 2002; 195:907-18. [PMID: 11927634 PMCID: PMC2193732 DOI: 10.1084/jem.20011797] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The neurodegenerative changes in Alzheimer's disease (AD) are elicited by the accumulation of beta-amyloid peptides (Abeta), which damage neurons either directly by interacting with components of the cell surface to trigger cell death signaling or indirectly by activating astrocytes and microglia to produce inflammatory mediators. It has been recently proposed that the p75 neurotrophin receptor (p75(NTR)) is responsible for neuronal damage by interacting with Abeta. By using neuroblastoma cell clones lacking the expression of all neurotrophin receptors or engineered to express full-length or various truncated forms of p75(NTR), we could show that p75(NTR) is involved in the direct signaling of cell death by Abeta via the function of its death domain. This signaling leads to the activation of caspases-8 and -3, the production of reactive oxygen intermediates and the induction of an oxidative stress. We also found that the direct and indirect (inflammatory) mechanisms of neuronal damage by Abeta could act synergistically. In fact, TNF-alpha and IL-1beta, cytokines produced by Abeta-activated microglia, could potentiate the neurotoxic action of Abeta mediated by p75(NTR) signaling. Together, our results indicate that neurons expressing p75(NTR), mostly if expressing also proinflammatory cytokine receptors, might be preferential targets of the cytotoxic action of Abeta in AD.
Collapse
Affiliation(s)
- Giovanni Perini
- Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Labombarda F, Gonzalez SL, Gonzalez DMC, Guennoun R, Schumacher M, de Nicola AF. Cellular basis for progesterone neuroprotection in the injured spinal cord. J Neurotrauma 2002; 19:343-55. [PMID: 11939502 DOI: 10.1089/089771502753594918] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Progesterone (PROG) exerts beneficial and neuroprotective effects in the injured central and peripheral nervous system. In the present work, we examine PROG effects on three measures of neuronal function under negative regulation (choline acetyltransferase [ChAT] and Na,K-ATPase) or stimulated (growth-associated protein [GAP-43]) after acute spinal cord transection injury in rats. As expected, spinal cord injury reduced ChAT immunostaining intensity of ventral horn neurons. A 3-day course of intensive PROG treatment of transected rats restored ChAT immunoreactivity, as assessed by frequency histograms that recorded shifts from predominantly light neuronal staining to medium, dark or intense staining typical of control rats. Transection also reduced the expression of the mRNA for the alpha3 catalytic and beta1 regulatory subunits of neuronal Na,K-ATPase, whereas PROG treatment restored both subunit mRNA to normal levels. Additionally, the upregulation observed for GAP-43 mRNA in ventral horn neurons in spinal cord-transected rats, was further enhanced by PROG administration. In no case did PROG modify ChAT immunoreactivity, Na,K-ATPase subunit mRNA or GAP-43 mRNA in control, sham-operated rats. Further, the PROG-mediated effects on these three markers were observed in large, presumably Lamina IX motoneurons, as well as in smaller neurons measuring approximately <500 micro2. Overall, the stimulatory effects of PROG on ChAT appears to replenish acetylcholine, with its stimulatory effects on Na,K-ATPase seems capable of restoring membrane potential, ion transport and nutrient uptake. PROG effects on GAP-43 also appear to accelerate reparative responses to injury. As the cellular basis for PROG neuroprotection becomes better understood it may prove of therapeutic benefit to spinal cord injury patients.
Collapse
Affiliation(s)
- Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, and Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
45
|
Ferreira G, Meurisse M, Tillet Y, Lévy F. Distribution and co-localization of choline acetyltransferase and p75 neurotrophin receptors in the sheep basal forebrain: implications for the use of a specific cholinergic immunotoxin. Neuroscience 2001; 104:419-39. [PMID: 11377845 DOI: 10.1016/s0306-4522(01)00075-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The basal forebrain cholinergic system is involved in different forms of memory. To study its role in social memory in sheep, an immunotoxin, ME20.4 immunoglobulin G (IgG)-saporin, was developed that is specific to basal forebrain cholinergic neurons bearing the p75 neurotrophin receptor. The distribution of sheep cholinergic neurons was mapped with an antibody against choline acetyltransferase. To assess the localization of the p75 receptor on basal forebrain cholinergic neurons, the distribution of p75 receptor-immunoreactive neurons with ME20.4 IgG was examined, and a double-labeling study with antibodies against choline acetyltransferase and p75 receptor was undertaken. The loss of basal forebrain cholinergic neurons and acetylcholinesterase fibers in basal forebrain projection areas was assessed in ewes that had received intracerebroventricular injections of the immunotoxin (50, 100 or 150 microg) alone, as well as, in some of the ewes treated with the highest dose, with bilateral immunotoxin injections in the nucleus basalis (11 microg/side). Results indicated that choline acetyltransferase- and p75 receptor-immunoreactive cells had similar distributions in the medial septum, the vertical and horizontal limbs of the band of Broca, and the nucleus basalis. The double-labeling procedure revealed that 100% of the cholinergic neurons are also p75 receptor positive in the medial septum and in the vertical and horizontal limbs of the band of Broca, and 82% in the nucleus basalis. Moreover, 100% of the p75 receptor-immunoreactive cells of these four nuclei were cholinergic. Combined immunotoxin injections into ventricles and the nucleus basalis produced a near complete loss (80-95%) of basal forebrain cholinergic neurons and acetylcholinesterase-positive fibers in the hippocampus, olfactory bulb and entorhinal cortex. This study provides the first anatomical data concerning the basal forebrain cholinergic system in ungulates. The availability of a selective cholinergic immunotoxin effective in sheep provides a new tool to probe the involvement of basal forebrain cholinergic neurons in cognitive processes in this species.
Collapse
Affiliation(s)
- G Ferreira
- Laboratoire de Comportement Animal, Station PRC, UMR 6073 INRA, CNRS, Université de Tours, 37380, Nouzilly, France
| | | | | | | |
Collapse
|
46
|
A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons. J Neurosci 2001. [PMID: 11438587 DOI: 10.1523/jneurosci.21-14-05121.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Subplate neurons of mammalian neocortex undergo pronounced cell death postnatally, long after they have matured and become incorporated into functional cortical circuits. They express the p75 neurotrophin receptor (p75NTR), which is known to signal cell death in some types of neurons via the activation of sphingomyelinase and the concomitant increase in the sphingolipid ceramide. To evaluate the role of p75NTR in subplate neurons, they were immunopurified and cultured in vitro. Contrary to its known function as a death receptor, ligand binding to p75NTR promotes subplate neuron survival. Moreover, p75NTR-dependent survival is blocked by inhibition of ceramide synthesis and rescued by addition of its precursor sphingomyelin. Inhibition of Trk signaling does not block survival, nor is Trk signaling alone sufficient to promote survival. Thus, ligand-dependent p75NTR regulation of the ceramide pathway mediates survival in certain neurons and may represent an important target for neuroprotective drugs in degenerative diseases involving p75NTR-expressing neurons, such as Alzheimer's disease.
Collapse
|
47
|
Van Lieshout EM, Van der Heijden I, Hendriks WJ, Van der Zee CE. A decrease in size and number of basal forebrain cholinergic neurons is paralleled by diminished hippocampal cholinergic innervation in mice lacking leukocyte common antigen-related protein tyrosine phosphatase activity. Neuroscience 2001; 102:833-41. [PMID: 11182246 DOI: 10.1016/s0306-4522(00)00526-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The leukocyte common antigen-related (LAR) receptor, composed of an extracellular region with three immunoglobulin-like and eight fibronectin type III-like domains, and a cytoplasmic region containing two protein tyrosine phosphatase domains, is thought to play a role in axonal outgrowth and guidance during neural development. LAR mutant mice were generated completely lacking the two cytoplasmic protein tyrosine phosphatase domains, resulting in the loss of ability to bind intracellular associating proteins, but (may be) still containing the ability to perform extracellular functions. A reduction in size of basal forebrain cholinergic neurons and diminished hippocampal innervation reported for knockout mice that contain a leaky gene trap inserted into the 5' part of the LAR gene [Yeo T. T. et al. (1997) J. Neurosci. Res. 47, 348-360] warranted a computer-assisted quantitative image analysis throughout the basal forebrain and hippocampus of our LAR mutant mice. The total number, longest diameter and cell body area were calculated for the choline acetyltransferase-positive neurons in the medial septum and vertical diagonal band, and optical density measurements were performed to determine the extent of acetyl cholinesterase-positive fibre innervation of the different layers in the dentate gyrus. In LAR mutant mice, the number of cholinergic cells was significantly reduced (approximately 25%) in the vertical diagonal band. Also, the cross-sectional area of the cholinergic neurons in the medial septum and vertical diagonal band was reduced (5%). These findings were paralleled by a diminished cholinergic innervation of the supragranular (18%) and molecular (4%) layers of the dentate gyrus. Thus, LAR protein tyrosine phosphatase activity appears crucial for size, number and target projection of basal forebrain cholinergic neurons, further strengthening a role for LAR in CNS development.
Collapse
Affiliation(s)
- E M Van Lieshout
- Department of Cell Biology, Institute of Cellular Signalling, University Medical Centre St. Radboud, Adelbertusplein 1, 6525 EK, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
48
|
Greferath U, Bennie A, Kourakis A, Barrett GL. Impaired spatial learning in aged rats is associated with loss of p75-positive neurons in the basal forebrain. Neuroscience 2001; 100:363-73. [PMID: 11008174 DOI: 10.1016/s0306-4522(00)00260-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated age-related changes in the number and size of neurons positive for the p75 neurotrophin receptor in the cholinergic basal forebrain of female Dark Agouti rats. Since the integrity of these neurons is known to be closely associated with performance in tests of spatial learning ability, we also investigated the incidence of age-related spatial learning impairments, using the Barnes maze. Spatial learning impairments occurred with increasing frequency with age. No rats showed impairment at six months, but 50% were impaired at 14 months and 71% at 26 months. There was no correlation between age and decreased number of p75-positive neurons in the rostral basal forebrain, which consists of the medial septum and vertical limb of the diagonal band of Broca. In the caudal basal forebrain, which consists of the horizontal limb and the nucleus of Meynert, there was a 13% reduction in the number of p75-positive neurons at 17 months compared to six months, and a 30% reduction at 26 months. There was a strong correlation between the presence of spatial learning impairment and a reduction in the number of p75-positive neurons. This correlation was most evident in the rostral basal forebrain, but was also present in the caudal basal forebrain. In the rostral basal forebrain, all learning impaired rats had fewer p75-positive neurons than the average number in unimpaired rats. A close correspondence between the presence of p75 and choline acetyltransferase was evident in basal forebrain neurons of learning-impaired and unimpaired rats. Gross pathological changes to the morphology of p75-positive neurons were relatively frequent in learning-impaired rats. These changes consisted of hypertrophy, appearance of vacuoles, and marginalisation of the cytoplasm. The results indicate the susceptibility of p75-positive neurons to degenerative changes with aging, and show that the loss of these neurons in the basal forebrain was strongly correlated with impairment in spatial learning.
Collapse
Affiliation(s)
- U Greferath
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | | | | |
Collapse
|
49
|
Barker-Gibb AL, Dougherty KD, Einheber S, Drake CT, Milner TA. Hippocampal tyrosine kinase A receptors are restricted primarily to presynaptic vesicle clusters. J Comp Neurol 2001; 430:182-99. [PMID: 11135255 DOI: 10.1002/1096-9861(20010205)430:2<182::aid-cne1024>3.0.co;2-q] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adult septohippocampal cholinergic neurons are dependent on trophic support for normal functioning and survival; these effects are largely mediated by the tyrosine kinase A receptor (TrkA), which binds its ligand, nerve growth factor (NGF), with high affinity. To determine the subcellular localization of TrkA within septohippocampal terminal fields, two rabbit polyclonal antisera to the extracellular domain of TrkA were localized immunocytochemically in rat dentate gyrus by light and electron microscopy. By light microscopy, TrkA immunoreactivity was found mostly in fine, varicose fibers primarily in the hilus and, to a lesser extent, in the granule cell and molecular layers. By electron microscopy, the central and infragranular regions of the hilus contained the highest densities of TrkA-immunoreactive profiles. Most TrkA-labeled profiles were axons (31% of 3,473), axon terminals (20%), and glia (38%); fewer were dendrites (6%), dendritic spines (5%), and granule cell and interneuron somata (<1%). TrkA immunolabeling in axons and axon terminals was discrete, often concentrated in patches of small synaptic vesicles that were adjacent to somatic and dendritic profiles. TrkA-labeled terminals formed both asymmetric and symmetric synapses, primarily with dendritic shafts and spines. TrkA-immunoreactive glial profiles frequently apposed terminals contacting dendritic spines. The findings that presynaptic profiles contain TrkA immunolabeling in sites of vesicle accumulation suggest that NGF binding to TrkA may influence transmitter release. The presence of TrkA immunoreactivity in somata, dendrites, and glia further suggests that cells within the dentate gyrus may take up NGF.
Collapse
Affiliation(s)
- A L Barker-Gibb
- Department of Psychiatry and Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
50
|
Ehrenstein G, Galdzicki Z, Lange GD. A positive-feedback model for the loss of acetylcholine in Alzheimer's disease. Ann N Y Acad Sci 2000; 899:283-91. [PMID: 10863547 DOI: 10.1111/j.1749-6632.2000.tb06194.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a two-component positive-feedback system that could account for the large reduction of acetylcholine that is characteristic of patients with Alzheimer's disease (AD). One component is beta-amyloid-induced apoptosis of cholinergic cells, leading to a decrease in acetylcholine. The other component is an increase in the concentration of beta-amyloid in response to a decrease in acetylcholine. We describe each mechanism with a differential equation, and then solve the two equations numerically. The solution provides a description of the time course of the reduction of acetylcholine in AD patients that is consistent with epidemiological data. This model may also provide an explanation for the significant, but lesser, decrease of other neurotransmitters that is characteristic of AD.
Collapse
Affiliation(s)
- G Ehrenstein
- Biophysics Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|