1
|
Precise measurement of gene expression changes in mouse brain areas denervated by injury. Sci Rep 2022; 12:22530. [PMID: 36581670 PMCID: PMC9800364 DOI: 10.1038/s41598-022-26228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
Quantitative PCR (qPCR) is a widely used method to study gene expression changes following brain injury. The accuracy of this method depends on the tissue harvested, the time course analyzed and, in particular on the choice of appropriate internal controls, i.e., reference genes (RGs). In the present study we have developed and validated an algorithm for the accurate normalization of qPCR data using laser microdissected tissue from the mouse dentate gyrus after entorhinal denervation at 0, 1, 3, 7, 14 and 28 days postlesion. The expression stabilities of ten candidate RGs were evaluated in the denervated granule cell layer (gcl) and outer molecular layer (oml) of the dentate gyrus. Advanced software algorithms demonstrated differences in stability for single RGs in the two layers at several time points postlesion. In comparison, a normalization index of several stable RGs covered the entire post-lesional time course and showed high stability. Using these RGs, we validated our findings and quantified glial fibrillary acidic protein (Gfap) mRNA and allograft inflammatory factor 1 (Aif1/Iba1) mRNA in the denervated oml. We compared the use of single RGs for normalization with the normalization index and found that single RGs yield variable results. In contrast, the normalization index gave stable results. In sum, our study shows that qPCR can yield precise, reliable, and reproducible datasets even under such complex conditions as brain injury or denervation, provided appropriate RGs for the model are used. The algorithm reported here can easily be adapted and transferred to any other brain injury model.
Collapse
|
2
|
Jurić M, Balog M, Ivić V, Bošković M, Benzon B, Racetin A, Vukojević K, Bočina I, Kević N, Restović I, Szűcs KF, Gáspár R, Heffer M, Vari SG, Filipović N. Increased expression of dendrin in the dorsal horn of the spinal cord during stress is regulated by sex hormones. Neuropeptides 2021; 86:102126. [PMID: 33524899 DOI: 10.1016/j.npep.2021.102126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 11/28/2022]
Abstract
Chronic stress has various effects on organisms and is sex-specific. The aim of the study was to describe the expression of synapse strengthening protein, dendrin, in the spinal cord (SC) and the dependence of its expression on chronic stress and sex hormones. Thirteen-month-old female and male rats were castrated (ovariectomy [F-OVX] or orchidectomy [M-ORX]) or sham-operated (F-SH or M-SH), respectively. At age 15 months, three 10-day-sessions of sham stress (control, C) or chronic stress (S) were conducted. Dendrin expression was present in the thoracic SC segments and the dorsal root ganglia (DRG). In the SC, dendrin expression was prominent in superficial laminae of the dorsal horn and lamina X (central canal). The M-ORX-S group had the highest dendrin expression in the dorsal horn, being significantly higher than the M-ORX-C or M-SH-S groups (P < 0.05). Dendrin expression was significantly higher in the F-SH-S group than the F-SH-C group (P < 0.05), as well as in the F-SH-S than the M-SH-S (P < 0.05). Co-localization with the α-d-galactosyl-specific isolectin B4 (IB4) in central projections of the DRG neurons in the dorsal horn of the SC was 7.43 ± 3.36%, while with the calcitonin gene-related peptide (CGRP) was 8.47 ± 4.45%. Localization of dendrin was observed in soma and nuclei of neurons in the dorsal horn. Dendrin expression in pain-processing areas of the SC, the DRG neurons and their peripheral projections suggest possible roles in pain perception and modulation. Stress-induced increase in dendrin expression and its dependence on sex hormones may partially explain sex-specific pain hypersensitivity induced by stress.
Collapse
Affiliation(s)
- Marija Jurić
- University of Split School of Medicine, Šoltanska 2, Split 21000, Croatia
| | - Marta Balog
- Faculty of Medicine, Osijek Josip Juraj Strossmayer University of Osijek, Huttlerova 4, Osijek 31000, Croatia
| | - Vedrana Ivić
- Faculty of Medicine, Osijek Josip Juraj Strossmayer University of Osijek, Huttlerova 4, Osijek 31000, Croatia
| | - Maria Bošković
- University of Split School of Medicine, Šoltanska 2, Split 21000, Croatia
| | - Benjamin Benzon
- University of Split School of Medicine, Šoltanska 2, Split 21000, Croatia
| | - Anita Racetin
- University of Split School of Medicine, Šoltanska 2, Split 21000, Croatia
| | - Katarina Vukojević
- University of Split School of Medicine, Šoltanska 2, Split 21000, Croatia
| | - Ivana Bočina
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Nives Kević
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Ivana Restović
- Department of Teacher Education, University of Split Faculty of Humanities and Social Sciences, Poljička cesta 35, 21000 Split, Croatia
| | - Kálmán F Szűcs
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér. 12., H-6720 Szeged, Hungary
| | - Róbert Gáspár
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér. 12., H-6720 Szeged, Hungary
| | - Marija Heffer
- Faculty of Medicine, Osijek Josip Juraj Strossmayer University of Osijek, Huttlerova 4, Osijek 31000, Croatia
| | - Sandor G Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Natalija Filipović
- University of Split School of Medicine, Šoltanska 2, Split 21000, Croatia.
| |
Collapse
|
3
|
Figge DA, Rahman I, Dougherty PJ, Rademacher DJ. Retrieval of contextual memories increases activity-regulated cytoskeleton-associated protein in the amygdala and hippocampus. Brain Struct Funct 2012; 218:1177-96. [PMID: 22945419 DOI: 10.1007/s00429-012-0453-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/17/2012] [Indexed: 01/16/2023]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) integrates information from multiple intracellular signaling cascades and, in turn, regulates cytoskeletal proteins involved in structural synaptic modifications. The purposes of the present study were: (1) to determine if the retrieval of contextual memories would induce Arc in hippocampal and amygdalar neurons; (2) use unbiased stereology at the ultrastructural level to quantify synapses contacting Arc-labeled (Arc+) and unlabeled (Arc-) postsynaptic structures in brain regions in which the amount of Arc integrated density (ID) correlated strongly with the degree of amphetamine conditioned place preference (AMPH CPP). The retrieval of contextual memories increased the Arc ID in the dentate gyrus, cornu ammonis (CA)1, and CA3 fields of the hippocampus and the basolateral, lateral, and central nuclei of the amygdala but not the primary auditory cortex, a control region. Stereological quantification of Arc+ and Arc- synapses in the basolateral nucleus of the amygdala (BLA) was undertaken because the strongest relationship between the amount of Arc ID and AMPH CPP was observed in the BLA. The retrieval of contextual memories increased the number and density of asymmetric (presumed excitatory) synapses contacting Arc+ spines and dendrites of BLA neurons, symmetric (presumed inhibitory or modulatory) synapses contacting Arc+ dendrites of BLA neurons, and multisynaptic boutons contacting Arc+ postsynaptic structures. Thus, the retrieval of contextual memories increases Arc in the amygdala and hippocampus, an effect that could be important for approach behavior to a drug-associated context.
Collapse
Affiliation(s)
- David A Figge
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | |
Collapse
|
4
|
Chang YF, Chou HJ, Yen YC, Chang HW, Hong YR, Huang HW, Tseng CN. Agrin induces association of Chrna1 mRNA and nicotinic acetylcholine receptor in C2C12 myotubes. FEBS Lett 2012; 586:3111-6. [PMID: 22884571 DOI: 10.1016/j.febslet.2012.07.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/05/2012] [Accepted: 07/20/2012] [Indexed: 11/30/2022]
Abstract
In the mammalian central nervous system transcripts of certain synaptic components are localized near the synapse, allowing for rapid regulation of protein levels. Here we test whether an mRNA localization mechanism also exists in the postsynaptic specialization induced by agrin in C2C12 myotubes. RT-PCR showed that Chrna1 was co-purified with nicotinic acetylcholine receptor (AChR) isolated by affinity column or by ultracentrifugation. In addition, Stau1 was found to interact with Chrna1 mRNA, and knocking down of Stau1 by RNAi resulted in defective AChR clustering. These results suggest that mRNA localization also participates in the formation of mammalian neuromuscular junction (NMJ).
Collapse
Affiliation(s)
- Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
5
|
Projections of low spontaneous rate, high threshold auditory nerve fibers to the small cell cap of the cochlear nucleus in cats. Neuroscience 2007; 154:114-26. [PMID: 18155852 DOI: 10.1016/j.neuroscience.2007.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/29/2007] [Accepted: 10/29/2007] [Indexed: 11/21/2022]
Abstract
The marginal shell of the anteroventral cochlear nucleus houses small cells that are distinct from the overlying microneurons of the granule cell domain and the underlying projection neurons of the magnocellular core. This thin shell of small cells and associated neuropil receives auditory nerve input from only the low (<18 spikes/s) spontaneous rate (SR), high threshold auditory nerve fibers; high SR, low threshold fibers do not project there. It should be noted, that most of these auditory nerve terminations reside in the neuropil and intermix with dendrites that originate outside the shell. Consequently, electron microscopy is necessary to determine the synaptic targets. For this report, the terminations of intracellularly labeled low SR auditory nerve fibers in the small cell of cats cap were mapped through serial sections using a light microscope. The terminals were then examined with an electron microscope and found to form synapses with the somata and dendrites of small cells. Moreover, the small cell dendrites were identifiable by an abundance of microtubules and the presence of polyribosomes that were free or associated with membranous cisterns. These data contribute to the concept of a high threshold feedback circuit to the inner ear, and reveal translational machinery for local control of activity-dependent synaptic modification.
Collapse
|
6
|
Aridor M, Guzik AK, Bielli A, Fish KN. Endoplasmic reticulum export site formation and function in dendrites. J Neurosci 2004; 24:3770-6. [PMID: 15084657 PMCID: PMC6729346 DOI: 10.1523/jneurosci.4775-03.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The elongated and polarized characteristics of neurons render targeting of receptors to the plasma membrane of distal axonal projections and dendritic branches a major sorting task. Although the majority of biosynthetic cargo synthesis, transport, and sorting are believed to occur in the soma, local membrane protein translation and sorting has been reported recently to take place in dendrites and axons. We investigated where endoplasmic reticulum (ER) export occurs in dendrites using an in vitro permeabilized neuron system that enables us to specifically control the assembly of ER export sites. We show that ER export sites are assembled regularly throughout the entire dendritic tree by the regulated sequential recruitment of Sar1 and COPII (coat protein complex II). Moreover, activation of metabotropic glutamate receptors leads to the recruitment of the NMDA receptor subunit NR1 to remodeled ER export sites. We propose that regulation of receptor assembly and export from the ER in dendrites plays an important role in modulating receptor surface expression and neuronal function.
Collapse
Affiliation(s)
- Meir Aridor
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
7
|
Ekström P, Johansson K. Differentiation of ganglion cells and amacrine cells in the rat retina: correlation with expression of HuC/D and GAP-43 proteins. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:1-8. [PMID: 14519488 DOI: 10.1016/s0165-3806(03)00170-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to understand the development of retinal cells, we have studied the temporal expression of HuC/D protein in embryonic, postnatal and adult rat retina. During development and in the adult retina, practically all cell somata in the ganglion cell layer and the vast majority of conventional amacrine cells in the inner nuclear layer displayed HuC/D immunoreactivity. Most but not all ganglion cells expressed HuC/D at embryonic day 15, suggesting a delay between final mitosis and the initiation of HuC/D expression. Immunoreactivity for HuC/D was also evident in developing but not mature horizontal cells. Combined immunohistochemical visualization of HuC/D protein and the growth-associated protein (GAP-43) showed a distinct localization of GAP-43 in a specific compartment close to the somato-dendritic region of developing HuC/D-positive cell somata. The localization of GAP-43 immunoreactivity to a specific soma compartment became less evident during maturation. Immunoreactivity for HuC/D and GAP-43 was also discernible in horizontal cells at postnatal day 14. In the adult retina, most GAP-43 immunoreactivity was seen in the inner plexiform layer. Detailed analysis showed that HuC/D and GAP-43 expression is restricted to subsets of retinal neurons during development and in the mature retina. Thus, GAP-43 appears to be correlated with initial steps of differentiation and outgrowth of dendritic processes in HuC/D-positive ganglion and amacrine cells.
Collapse
Affiliation(s)
- Peter Ekström
- Department of Zoology, Lund University SE-223 64 Lund, Sweden
| | | |
Collapse
|
8
|
Abstract
Calmodulin (CaM), a multifunctional intracellular calcium receptor, is a key element in signaling mechanisms. It is encoded in vertebrates by multiple apparently redundant genes (CaM I, II, III). To investigate whether differential expression takes place in the developing rat brain, a quantitative in situ hybridization analysis was carried out involving 15 brain areas at six ages between embryonic day 19 and postnatal day 20 (PD20) with gene-specific [(35)S]cRNA probes. A widespread, developmental stage-specific and differential expression of the three CaM genes was observed. The characteristic changes in the CaM mRNA levels in the examined time frame allowed the brain regions to be classified into three categories. For the majority of the areas (e.g. the piriform cortex for CaM III), the signal intensities peaked at around PD10 and the expression profile was symmetric (type 1). Other regions (e.g. the cerebral cortex, layer 1 for CaM II) displayed their highest signal intensities at the earliest age measured, followed by a gradual decrease (type 2). The signal intensities in the regions in the third group (e.g. the hypothalamus for CaM III) fluctuated from age to age (type 3). Marked CaM mRNA levels were measured for each transcript corresponding to the three CaM genes in the molecular layers of the cerebral and cerebellar cortici and hippocampus, suggesting their dendritic translocation. The highest signal intensity was measured for CaM II mRNA, followed by those for CaM III and CaM I mRNAs on PD1. However, the CaM II and CaM III mRNAs subsequently decreased steeply, while the CaM I mRNAs were readily detected even on PD20. Our results suggest that during development (1) the transcription of the CaM genes is under differential, area-specific control, and (2) a large population of CaM mRNAs is targeted to the dendritic compartment in a gene-specific manner.
Collapse
Affiliation(s)
- E Kortvely
- Department of Zoology and Cell Biology, University of Szeged, 2 Egyetem Street, P.O. Box 659, H-6722 Szeged, Hungary
| | | | | | | |
Collapse
|
9
|
Marcinkiewicz M. BetaAPP and furin mRNA concentrates in immature senile plaques in the brain of Alzheimer patients. J Neuropathol Exp Neurol 2002; 61:815-29. [PMID: 12230328 DOI: 10.1093/jnen/61.9.915] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study examined the possibility that in Alzheimer disease (AD) beta-amyloid precursor protein (betaAPP) mRNA is delivered to senile plaques (SPs) via dendritic processes. BetaAPP mRNA was detected in SPs by in situ hybridization, using a 1.4-kb cRNA in which both [35S]-UTP and [35S]-CTP were incorporated together. The betaAPP mRNA was compared with that of furin, a proteolytic enzyme putatively involved in betaAPP processing, and its orthologue proprotein convertase PCI served as a control. Human presenile AD cases with mostly immature SPs and AD cases generally with mature SPs were analyzed. To decrypt SPs after hybridization, brain sections were stained with thioflavin S. To establish relationships between the density of dystrophic fibers, the degree of plaque maturation, and the concentration of mRNA in SPs, the plaque maturity markers Abeta(1-42) and Abeta(1-40) peptides were co-localized with neurofilament protein 200 and compared with microtubule-associated protein 2 (MAP 2). The results suggest that immature, Abeta(1-42)- and dystrophic dendrite-containing SPs (but not mature SPs containing Abeta(1-40) and missing dystrophic dendrites) are capable of concentrating specific mRNAs. Dystrophic dendrites may thus serve as a route for the transport of specific mRNAs from the cell bodies to SPs.
Collapse
Affiliation(s)
- Mieczyslaw Marcinkiewicz
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Quebec, Canada
| |
Collapse
|
10
|
Palfi A, Kortvely E, Fekete E, Kovacs B, Varszegi S, Gulya K. Differential calmodulin gene expression in the rodent brain. Life Sci 2002; 70:2829-55. [PMID: 12269397 DOI: 10.1016/s0024-3205(02)01544-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apparently redundant members of the calmodulin (CaM) gene family encode for the same amino acid sequence. CaM, a ubiquitous cytoplasmic calcium ion receptor, regulates the function of a variety of target molecules even in a single cell. Maintenance of the fidelity of the active CaM-target interactions in different compartments of the cell requires a rather complex control of the total cellular CaM pool comprising multiple levels of regulatory circuits. Among these mechanisms, it has long been proposed that a multigene family maximizes the regulatory potentials at the level of the gene expression. CaM genes are expressed at a particularly profound level in the mammalian central nervous system (CNS), especially in the highly polarized neurons. Thus, in the search for clear evidence of the suggested differential expression of the CaM genes, much of the research has been focused on the elements of the CNS. This review aims to give a comprehensive survey on the current understanding of this field at the level of the regulation of CaM mRNA transcription and distribution in the rodent brain. The results indicate that the CaM genes are indeed expressed in a gene-specific manner in the developing and adult brain under physiological conditions. To establish local CaM pools in distant intracellular compartments (dendrites and glial processes), local protein synthesis from differentially targeted mRNAs is also employed. Moreover, the CaM genes are controlled in a unique, gene-specific fashion when responding to certain external stimuli. Additionally, putative regulatory elements have been identified on the CaM genes and mRNAs.
Collapse
Affiliation(s)
- Arpad Palfi
- Department of Zoology and Cell Biology, University of Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
11
|
Ma D, Morris JF. Protein synthetic machinery in the dendrites of the magnocellular neurosecretory neurons of wild-type Long-Evans and homozygous Brattleboro rats. J Chem Neuroanat 2002; 23:171-86. [PMID: 11861124 DOI: 10.1016/s0891-0618(01)00158-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is growing evidence of local protein synthesis in neuronal dendrites, especially in relation to synaptic activity. The hypothalamic magnocellular system is a robust model for peptidergic neurons, especially for the study of dendrites. Quantitative electron microscopy, immunocytochemistry and non-radioactive in situ hybridization (with tyramide signal amplification) were used to compare dendrites of magnocellular neurons in the supraoptic nucleus of wild-type rats and of homozygous Brattleboro (BB) rats which are subject to long-term hyper-osmotic stimulation because they cannot secrete vasopressin. The dendrites contained free polyribosomes, cisterns of rough endoplasmic reticulum (ER) and small Golgi-like elements. These were clustered in the dendrites, mostly near the plasma membrane. All were increased in amount in the enlarged dendrites of the BB rats. The presence of polyribosomes and cisterns of rER implies that both cytosolic and membrane-inserting proteins are synthesized in the dendrites. The ER marker protein disulfide isomerase extended far into dendrites, but Golgi element markers (mid-Golgi and trans-Golgi network) were distributed mainly in their proximal parts. In BB rats, all the labeling was stronger. 28S rRNA, initiator tRNA(Met), and poly(A) mRNA were revealed extending into proximal and middle parts of dendrites where intensely reactive punctate structures were common. 28S rRNA could be detected in the distal parts of the dendrites. The length of positively stained dendrites was increased significantly for all these RNAs in BB rats. The results provide morphological evidence that magnocellular dendrites have the capacity for local protein syntheses and that this is increased in chronic hyperosmotic stress.
Collapse
Affiliation(s)
- Dan Ma
- Department of Human Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | | |
Collapse
|
12
|
A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J Neurosci 2002. [PMID: 11717363 DOI: 10.1523/jneurosci.21-23-09291.2001] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although intradendritic protein synthesis has been documented in adult neurons, the question of whether axons actively synthesize proteins remains controversial. Adult sensory neurons that are conditioned by axonal crush can rapidly extend processes in vitro by regulating the translation of existing mRNAs (Twiss et al., 2000). These regenerating processes contain axonal but not dendritic proteins. Here we show that these axonal processes of adult sensory neurons cultured after conditioning injury contain ribosomal proteins, translational initiation factors, and rRNA. Pure preparations of regenerating axons separated from the DRG cell bodies can actively synthesize proteins in vitro and contain ribosome-bound beta-actin and neurofilament mRNAs. Blocking protein synthesis in these regenerating sensory axons causes a rapid retraction of their growth cones when communication with the cell body is blocked by axotomy or colchicine treatment. These findings indicate that axons of adult mammalian neurons can synthesize proteins and suggest that, under some circumstances, intra-axonal translation contributes to structural integrity of the growth cone in regenerating axons. By immunofluorescence, translation factors, ribosomal proteins, and rRNA were also detected in motor axons of ventral spinal roots analyzed after 7 d in vivo after a peripheral axonal crush injury. Thus, adult motor neurons are also likely capable of intra-axonal protein synthesis in vivo after axonal injury.
Collapse
|
13
|
De Juan J, García M. Spinules and nematosomes in retinal horizontal cells: a "thorny" issue. PROGRESS IN BRAIN RESEARCH 2001; 131:519-37. [PMID: 11420967 DOI: 10.1016/s0079-6123(01)31041-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J De Juan
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Apdo. Correos 99, Alicante 03080, Spain.
| | | |
Collapse
|
14
|
Karachot L, Shirai Y, Vigot R, Yamamori T, Ito M. Induction of long-term depression in cerebellar Purkinje cells requires a rapidly turned over protein. J Neurophysiol 2001; 86:280-9. [PMID: 11431509 DOI: 10.1152/jn.2001.86.1.280] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence is presented indicating that the induction of long-term depression (LTD) in Purkinje cells (PCs) requires a rapidly turned over protein(s) during a critical time period within 15 min after the onset of LTD-inducing stimulation and that synthesis of this protein is maintained by mRNAs supplied via transcription. LTD was induced in granule cell axon (GA)-to-PC synapses by stimulation of these synapses at 1 Hz for 5 min in conjunction with the climbing fibers (CFs) forming synapses on the same PCs and represented by a persistent reduction in the GA-induced excitatory postsynaptic potentials (EPSPs). Not only a prolonged but also a brief (5 min) pulse application of translational inhibitors (anisomycin, puromycin, or cycloheximide) effectively blocked the LTD induction. Pulses applied during the period from 30 min before to 10 min after the onset of conjunctive stimulation blocked the LTD induction, but those applied 15 min after were ineffective. The three translational inhibitors blocked the LTD induction similarly, suggesting that the effect is due to their common action of inhibiting protein synthesis. Infusion of a mRNA cap analogue (7-methyl GTP) into PCs also blocked LTD induction, ensuring that the postsynaptic protein synthesis within PCs is required for LTD induction. Transcriptional inhibitors, actinomycin D and 5,6-dichloro-l-beta-D-ribofuranosyl-benzimidazole, also blocked the LTD induction, but this effect was apparent when 5-min pulses of the transcriptional inhibitors preceded the conjunctive stimulation by 30 min or more. This time lag of 30 min is presumed to be required for depletion of the protein(s) required for LTD induction. The presently observed effects of translational and transcriptional inhibitors on the LTD induction are of temporal characteristics corresponding to their depressant effects on the type-1 metabotropic glutamate-receptor (mGluR1)-mediated slow EPSPs in PCs as we have reported recently. An antagonist of mGluR1s [(RS)-1-aminoindan-1,5-dicarboxylic acid], however, did not block LTD induction when it was applied during the 10-min period following conjunctive stimulation, where translational inhibitors effectively blocked LTD induction. This discrepancy in time course suggests that the rapidly turned over protein(s) required for LTD induction is involved in a process occurring downstream of the activation of mGluR1s.
Collapse
Affiliation(s)
- L Karachot
- Laboratory for Memory and Learning, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
15
|
Craig AM, Boudin H. Molecular heterogeneity of central synapses: afferent and target regulation. Nat Neurosci 2001; 4:569-78. [PMID: 11369937 DOI: 10.1038/88388] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrophysiological recordings show a functional spectrum even within a single class of synapse, with individual synapses ranging widely in fundamental properties, including release probability, unitary response and effects of previous stimulation on subsequent response. Molecular and cellular biological approaches have shown a corresponding diversity in the complement of ion channels, receptors, scaffolds and signal transducing proteins that make up individual synapses. Indeed, we believe that each individual synapse is unique, a function of presynaptic cell type, postsynaptic cell type, environment, developmental stage and history of activity. We review here the molecular diversity of glutamatergic and GABAergic synapses in the mammalian brain in the context of potential cell biological mechanisms that may explain how individual cells develop and maintain such a mosaic of synaptic connections.
Collapse
Affiliation(s)
- A M Craig
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid, Campus Box 8108, 958 McDonnell Sciences Building, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
16
|
Pires-daSilva A, Nayernia K, Engel W, Torres M, Stoykova A, Chowdhury K, Gruss P. Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities. Dev Biol 2001; 233:319-28. [PMID: 11336498 DOI: 10.1006/dbio.2001.0169] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spermatid perinuclear RNA-binding protein (SPNR) is a microtubule-associated RNA-binding protein that localizes to the manchette in developing spermatids. The Spnr mRNA is expressed at high levels in testis, ovary, and brain and is present in these tissues in multiple forms. We have generated a gene trap allele of the murine Spnr, named Spnr(+/GT). Spnr(GT/GT) mutants show a high rate of mortality, reduced weight, and an abnormal clutching reflex. In addition to minor anatomical abnormalities in the brain, males exhibit defects in spermatogenesis that include a thin seminiferous epithelium and disorganization of spermatogenesis. Most of the sperm from mutant males display defects in the flagellum and consequently show decreased motility and transport within the oviducts. Furthermore, sperm from mutant males achieve in vitro fertilization less frequently. Our findings suggest that SPNR plays an important role in normal spermatogenesis and sperm function. Thus, the Spnr(GT/GT) mutant male mouse provides a unique model for some human male infertility cases.
Collapse
Affiliation(s)
- A Pires-daSilva
- Department of Molecular Cell Biology, Max-Planck for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Kobayashi S, Agui K, Kamo S, Li Y, Anzai K. Neural BC1 RNA associates with pur alpha, a single-stranded DNA and RNA binding protein, which is involved in the transcription of the BC1 RNA gene. Biochem Biophys Res Commun 2000; 277:341-7. [PMID: 11032728 DOI: 10.1006/bbrc.2000.3683] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BC1 RNA is preferentially expressed in neural cells by RNA polymerase III (Pol III) and forms ribonucleoprotein particles (RNP) in the somatodendritic domain of neurons. Our previous studies have suggested that, in the nucleus, BC1 RNA forms an RNP containing a nuclear protein(s) that participates in the transcription of the BC1 RNA gene. In this study, we have shown that newly synthesized BC1 RNA in purified brain nuclear extracts is immunoprecipitated by an antibody against Pur alpha. Pur alpha is a protein that binds single-stranded DNA and RNA and is known to regulate transcription of Pol II system. Although BC1 RNA is transcribed by Pol III, the BC1 RNA gene has two putative Pur alpha binding sites, which Pur alpha specifically recognizes. Point mutations within these sites reduced transcriptional activity in vitro. Furthermore, transcription was inhibited by depletion of Pur alpha from the nuclear extracts, either by the coexistence of its binding region of BC1 RNA or by the antibody that was able to precipitate the nuclear BC1 RNP. These observations suggest that BC1 RNA associates with Pur alpha which is involved in the transcription of the BC1 RNA gene.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Brain/metabolism
- Cell Nucleus/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation
- Models, Genetic
- Molecular Sequence Data
- Neurons/metabolism
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- RNA/metabolism
- RNA, Long Noncoding
- RNA, Untranslated
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Wistar
- Ribonucleoproteins, Small Cytoplasmic/genetics
- Ribonucleoproteins, Small Cytoplasmic/metabolism
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- S Kobayashi
- Department of Biochemistry, College of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | | | | | | | | |
Collapse
|
18
|
Cottrell JR, Dubé GR, Egles C, Liu G. Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J Neurophysiol 2000; 84:1573-87. [PMID: 10980028 DOI: 10.1152/jn.2000.84.3.1573] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postsynaptic differentiation during glutamatergic synapse formation is poorly understood. Using a novel biophysical approach, we have investigated the distribution and density of functional glutamate receptors and characterized their clustering during synaptogenesis in cultured hippocampal neurons. We found that functional alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors are evenly distributed in the dendritic membrane before synaptogenesis with an estimated density of 3 receptors/microm(2). Following synaptogenesis, functional AMPA and NMDA receptors are clustered at synapses with a density estimated to be on the order of 10(4) receptors/microm(2), which corresponds to approximately 400 receptors/synapse. Meanwhile there is no reduction in the extrasynaptic receptor density, which indicates that the aggregation of the existing pool of receptors is not the primary mechanism of glutamate receptor clustering. Furthermore our data suggest that the ratio of AMPA to NMDA receptor density may be regulated to be close to one in all dendritic locations. We also demonstrate that synaptic AMPA and NMDA receptor clusters form with a similar time course during synaptogenesis and that functional AMPA receptors cluster independently of activity and glutamate receptor activation, including following the deletion of the NMDA receptor NR1 subunit. Thus glutamate receptor activation is not necessary for the insertion, clustering, and activation of functional AMPA receptors during synapse formation, and this process is likely controlled by an activity-independent signal.
Collapse
Affiliation(s)
- J R Cottrell
- RIKEN-MIT Neuroscience Research Center, Center for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
19
|
Toutenhoofd SL, Strehler EE. The calmodulin multigene family as a unique case of genetic redundancy: multiple levels of regulation to provide spatial and temporal control of calmodulin pools? Cell Calcium 2000; 28:83-96. [PMID: 10970765 DOI: 10.1054/ceca.2000.0136] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calmodulin (CaM) is a ubiquitous, highly conserved calcium sensor protein involved in the regulation of a wide variety of cellular events. In vertebrates, an identical CaM protein is encoded by a family of non-allelic genes, raising questions concerning the evolutionary pressure responsible for the maintenance of this apparently redundant family. Here we review the evidence that the control of the spatial and temporal availability of CaM may require multiple regulatory levels to ensure the proper localization, maintenance and size of intracellular CaM pools. Differential transcription of the CaM genes provides one level of regulation to meet tissue-specific, developmental and cell-specific needs for altered CaM levels. Post-transcriptional regulation occurs at the level of mRNA stability, perhaps dependent on alternative polyadenylation and differences in the untranslated sequences of the multiple gene transcripts. Recent evidence indicates that trafficking of specific CaM mRNAs may occur to specialized cellular locales such as the dendrites of neurons. This could allow local CaM synthesis and thereby help generate local pools of CaM. Local CaM activity may be further regulated by post-translational mechanisms such as phosphorylation or storage of CaM in a 'masked' form. The spatial resolution of CaM activity is enhanced by the limited free diffusion of CaM combined with differential affinity for and availability of target proteins. Preserving multiple CaM genes with divergent noncoding sequences may be necessary in complex organisms to ensure that the many CaM-dependent processes occur with the requisite spatial and temporal resolution. Transgenic mouse models and studies on mice carrying single and double gene 'knockouts' promise to shed further light on the role of specificity versus redundancy in the evolutionary maintenance of the vertebrate CaM multigene family.
Collapse
Affiliation(s)
- S L Toutenhoofd
- Program in Molecular Neuroscience, Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic/Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
20
|
Morris EJ, Evason K, Wiand C, L'Ecuyer TJ, Fulton AB. Misdirected vimentin messenger RNA alters cell morphology and motility. J Cell Sci 2000; 113 ( Pt 13):2433-43. [PMID: 10852822 DOI: 10.1242/jcs.113.13.2433] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Localized messenger RNAs were first observed as embryonic determinants that altered development when mislocalized. In recent years localized mRNAs have been found for several cytoskeletal proteins, including actin, vimentin and several microtubule associated proteins. We sought to determine whether redirecting mRNA for a cytoskeletal protein to an inappropriate address would alter cellular phenotypes. To do so we generated vimentin mRNAs with a myc epitope tag and the (beta)-actin 3′ untranslated region (3′ UTR) as a localization signal. When misdirected vimentin mRNAs are expressed in either fibroblasts or SW13 cells, cells develop numerous, extremely long processes; these cells also move more slowly to enter a wound of the monolayer. In situ hybridization revealed that the misdirected mRNA was often localized in the processes, in contrast to endogenous vimentin mRNA. The processes usually contained actin distal to the transgenic vimentin and microtubules proximal to it. SW13 cells lacking vimentin produced fewer and shorter processes, suggesting a dominant negative effect that involves recruitment of endogenous vimentin. Control experiments that transfected in constructs expressing tagged, correctly localized vimentin, or (beta)-galactosidase that localized through the (beta)-actin 3′ UTR, indicate that neither the shape nor the motility changes are solely due to the level of vimentin expression in the cell. This is direct evidence that the site of expression for at least one cytoskeletal mRNA alters the phenotype of the cell in which it is expressed. Messenger RNA localization is proving to be as essential for the normal maintenance of somatic cell phenotypes as embryonic determinants are for embryogenesis.
Collapse
Affiliation(s)
- E J Morris
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | | | | | |
Collapse
|
21
|
Mothe AJ, Brown IR. Selective transport of SC1 mRNA, encoding a putative extracellular matrix glycoprotein, during postnatal development of the rat cerebellum and retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:73-84. [PMID: 10719217 DOI: 10.1016/s0169-328x(99)00336-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The selective transport of mRNA species into peripheral processes of cells is an important aspect of gene expression in the nervous system. In this study, we report the transport of SC1 mRNA into the distal processes of Bergmann glial (BG) cells at particular stages of development. SC1 is a putative anti-adhesive extracellular matrix (ECM) glycoprotein that is expressed not only in the developing central nervous system (CNS) but also in the adult brain. The intracellular distribution of SC1 mRNA was examined in two highly laminated neural structures, the cerebellum and retina, during postnatal development and in the adult rat. Our results indicate that SC1 mRNA expression is both spatially and temporally regulated. SC1 message was localized to BG cell bodies at postnatal day 5 (P5) and P10. However, by P15 through to the adult, SC1 mRNA was transported to distal processes of BG cells in the synapse-rich molecular layer (ML) of the cerebellum. In the developing rat retina, SC1 mRNA was expressed in specific neuronal populations by P10, however, transport of SC1 message to the dendrites of these retinal neurons was not detected during development or in the adult. These results indicate neural mechanisms which control the timing and cell type in which selective transport of SC1 mRNA is observed. The localization of SC1 mRNA to the distal processes of BG cells in the synapse-rich ML of the cerebellum could facilitate local control of SC1 protein synthesis which may play roles in synapse formation during development and in synaptic plasticity in the adult.
Collapse
Affiliation(s)
- A J Mothe
- Department of Zoology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Wu XQ, Hecht NB. Mouse testis brain ribonucleic acid-binding protein/translin colocalizes with microtubules and is immunoprecipitated with messenger ribonucleic acids encoding myelin basic protein, alpha calmodulin kinase II, and protamines 1 and 2. Biol Reprod 2000; 62:720-5. [PMID: 10684815 DOI: 10.1095/biolreprod62.3.720] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Testis brain RNA-binding protein (TB-RBP) is a sequence-dependent RNA-binding protein that binds to conserved Y and H sequence elements present in many brain and testis mRNAs. Using recombinant TB-RBP and a highly enriched tubulin fraction, we demonstrate here that recombinant TB-RBP binds to microtubules assembled in vitro. The interaction between recombinant TB-RBP and microtubules was inhibited by high salt and by the microtubule disassembling agents colcemid and calcium, but not by the microfilament-disassembling agent cytochalasin D. Confocal microscopy confirmed colocalization of TB-RBP and tubulin in the cytoplasm of male germ cells. An affinity-purified antibody prepared against recombinant TB-RBP specifically precipitated mRNAs encoding myelin basic protein and alpha calmodulin-dependent kinase II-two transported mRNAs, and protamines 1 and 2-two translationally regulated testicular mRNAs. These data indicate an intracellular association between TB-RBP and specific target mRNAs and suggest an involvement of TB-RBP in microtubule-dependent mRNA transport in the cytoplasm of cells.
Collapse
Affiliation(s)
- X Q Wu
- Center for Research on Reproduction and Women's Health and Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA. HD 28832
| | | |
Collapse
|
23
|
Morris JF, Christian H, Ma D, Wang H. Dendritic secretion of peptides from hypothalamic magnocellular neurosecretory neurones: a local dynamic control system and its functions. Exp Physiol 2000; 85 Spec No:131S-138S. [PMID: 10795915 DOI: 10.1111/j.1469-445x.2000.tb00016.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of the dendrites of magnocellular neurones in the release of neurosecretory peptides and the synthesis of many proteins locally is reviewed. Oxytocin and vasopressin contained in dense-cored neurosecretory vesicles are released from magnocellular dendrites not only by excitatory transmitters such as glutamate acting through well-established receptors, but also by a rapid action of oestradiol acting by a mechanism which appears to involve NMDA receptors. Magnocellular dendrites also contain substantial amounts of the synthetic machinery which could synthesise proteins for local use. The presence in dendrites of polysomes and of mRNAs encoding microtubule-associated protein 2, calcium calmodulin kinase II, alpha-synapsin-associated protein, and components of the GABA(A) and NMDA receptors strongly suggests that these proteins can be translated in the dendrites, close to the sites at which they function. Mechanism(s) which control the translation of these dendritic mRNAs and the insertion into the dendritic membranes of proteins translated by dendritic ribosomes remain to be determined. However, an overall picture emerges of magnocellular dendrites as active secretory and synthetic components of the neurosecretory neurones.
Collapse
Affiliation(s)
- J F Morris
- Department of Human Anatomy & Genetics, University of Oxford, UK.
| | | | | | | |
Collapse
|
24
|
Valentine G, Chakravarty S, Sarvey J, Bramham C, Herkenham M. Fragile X (fmr1) mRNA expression is differentially regulated in two adult models of activity-dependent gene expression. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:337-41. [PMID: 10686356 DOI: 10.1016/s0169-328x(99)00310-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We sought to determine whether the fragile X mental retardation gene fmr1 is regulated in long-term potentiation (LTP) and electroconvulsive shock (ECS). In situ hybridization of fmr1 mRNA in hippocampus of rats given LTP in vivo showed no change in fmr1 mRNA levels relative to control. However, ECS induced a selective increase in fmr1 mRNA expression in the dentate gyrus (DG) granule cell layer at 6 h post-ECS. The ECS paradigm may unmask relevant activity-dependent regulatory mechanisms that modulate fmr1 gene transcription in vivo.
Collapse
Affiliation(s)
- G Valentine
- Section on Functional Neuroanatomy, Bldg. 36, Rm. 2D15, National Institute of Mental Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
25
|
Fages C, Nolo R, Huttunen HJ, Eskelinen E, Rauvala H. Regulation of cell migration by amphoterin. J Cell Sci 2000; 113 ( Pt 4):611-20. [PMID: 10652254 DOI: 10.1242/jcs.113.4.611] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amphoterin, a major form of HMG (high mobility group) 1 proteins, is highly expressed in immature and malignant cells. A role in cell motility is suggested by the ability of amphoterin to promote neurite extension through RAGE (receptor of advanced glycation end products), an immunoglobulin superfamily member that communicates with the GTPases Cdc42 and Rac. We show here that cell contact with the laminin matrix induces accumulation of both amphoterin mRNA and protein close to the plasma membrane, which is accompanied by extracellular export of amphoterin. A role for amphoterin in extracellular matrix-dependent cell regulation is further suggested by the finding that specific decrease of amphoterin mRNA and protein, using antisense oligonucleotides transfected into cells, inhibits cell migration to laminin in a transfilter assay whereas the oligonucleotides in the culture medium have no effect. Moreover, affinity-purified anti-amphoterin antibodies inhibit cell migration to laminin, supporting an extracellular role for the endogenous amphoterin in cell motility. The finding that amphoterin expression is more pronounced in cells with a motile phenotype as compared to cells of dense cultures, is consistent with the results of the cell migration assays. Our results strongly suggest that amphoterin is a key player in the migration of immature and transformed cells.
Collapse
Affiliation(s)
- C Fages
- Laboratory of Molecular Neurobiology, Institute of Biotechnology, Division of Biochemistry, Department of Biosciences, Viikinkaari 5, FIN-00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
26
|
Munro TP, Magee RJ, Kidd GJ, Carson JH, Barbarese E, Smith LM, Smith R. Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking. J Biol Chem 1999; 274:34389-95. [PMID: 10567417 DOI: 10.1074/jbc.274.48.34389] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic transport and localization of mRNA has been reported for a range of oocytes and somatic cells. The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 response element (A2RE) is a 21-nucleotide segment of the myelin basic protein mRNA that is necessary and sufficient for cytoplasmic transport of this message in oligodendrocytes. The predominant A2RE-binding protein in rat brain has previously been identified as hnRNP A2. Here we report that an 11-nucleotide subsegment of the A2RE (A2RE11) was as effective as the full-length A2RE in binding hnRNP A2 and mediating transport of heterologous RNA in oligodendrocytes. Point mutations of the A2RE11 that eliminated binding to hnRNP A2 also markedly reduced the ability of these oligoribonucleotides to support RNA transport. Oligodendrocytes treated with antisense oligonucleotides directed against the translation start site of hnRNP A2 had reduced levels of this protein and disrupted transport of microinjected myelin basic protein RNA. Several A2RE-like sequences from localized neuronal RNAs also bound hnRNP A2 and promoted RNA transport in oligodendrocytes. These data demonstrate the specificity of A2RE recognition by hnRNP A2, provide direct evidence for the involvement of hnRNP A2 in cytoplasmic RNA transport, and suggest that this protein may interact with a wide variety of localized messages that possess A2RE-like sequences.
Collapse
Affiliation(s)
- T P Munro
- Biochemistry Department, The University of Queensland, Qld 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Satake H, Takuwa K, Minakata H. Characterization of cDNA and expression of mRNA encoding an Achatina cardioexcitatory RFamide peptide. Peptides 1999; 20:1295-302. [PMID: 10612443 DOI: 10.1016/s0196-9781(99)00134-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Achatina cardioexcitatory peptide-1 (ACEP-1) is an RFamide family peptide isolated from the atria of the African giant snail, Achatina fulica. In this report, we describe an identification of the ACEP-1 cDNA sequence and localizations of the ACEP-1 mRNA. Southern blot analysis revealed that the ACEP-1 mRNA was present in the atrium as well as in the central nervous system. Furthermore, in situ hybridization revealed the localizations of the ACEP-1 mRNA in small neurons of the cerebral and pedal ganglia and a few large neurons of the right parietal and visceral ganglia.
Collapse
Affiliation(s)
- H Satake
- Suntory Institute for Bioorganic Research, Mishima-gun, Osaka, Japan
| | | | | |
Collapse
|
28
|
Tian QB, Nakayama K, Okano A, Suzuki T. Identification of mRNAs localizing in the postsynaptic region. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:147-57. [PMID: 10529473 DOI: 10.1016/s0169-328x(99)00214-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Local protein synthesis using mRNAs readily distributed in the dendrites is believed to play an important role in maintaining the already expressed synaptic plasticity. To find proteins translated in the postsynaptic region, such as neuronal dendrites, we tried to identify the mRNAs associated with the postsynaptic density (PSD) fraction prepared from a rat's forebrain. The PSD-associated mRNAs were amplified by reverse transcriptase-based polymerase chain reaction (RT-PCR), separated by polyacrylamide gel electrophoresis, and sequenced. The database search revealed, among 130 mRNAs sequenced, 17 known and 108 unknown sequences, while five mRNAs were too short for the search. Of the mRNAs with unknown sequences, we selected 33 genes with a length longer than 150 bases, performed in situ hybridization, and found that at least 12 mRNA types were localized in the dendrites. These results suggest that a large number of mRNAs localize around the postsynaptic area of the neuronal cells in the central nervous system. In addition, our method proved efficient in identifying collectively the mRNAs localizing in the dendrites.
Collapse
Affiliation(s)
- Q B Tian
- Department of Neuroplasticity, Research Center on Aging and Adaptation, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | | | | | | |
Collapse
|
29
|
Palfi A, Vizi S, Gulya K. Differential distribution and intracellular targeting of mRNAs corresponding to the three calmodulin genes in rat brain. A quantitative in situ hybridization study. J Histochem Cytochem 1999; 47:583-600. [PMID: 10219052 DOI: 10.1177/002215549904700502] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To investigate the pattern of expression of the three calmodulin (CaM) genes by in situ hybridization, gene-specific [35S]-cRNA probes complementary to the multiple CaM mRNAs were hybridized in rat brain sections and subsequently detected by quantitative film or high-resolution nuclear emulsion autoradiography. A widespread and differential area-specific distribution of the CaM mRNAs was detected. The expression patterns corresponding to the three CaM genes differed most considerably in the olfactory bulb, the cerebral and cerebellar cortices, the diagonal band, the suprachiasmatic and medial habenular nuclei, and the hippocampus. Moreover, the significantly higher CaM I and CaM III mRNA copy numbers than that of CaM II in the molecular layers of certain brain areas revealed a differential dendritic targeting of these mRNAs. The results indicate a differential pattern of distribution of the multiple CaM mRNAs at two levels of cellular organization in the brain: (a) region-specific expression and (b) specific intracellular targeting. A precise and gene-specific regulation of synthesis and distribution of CaM mRNAs therefore exists under physiological conditions in the rat brain.
Collapse
Affiliation(s)
- A Palfi
- Department of Zoology and Cell Biology, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
30
|
Weiler IJ, Greenough WT. Synaptic synthesis of the Fragile X protein: possible involvement in synapse maturation and elimination. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 83:248-52. [PMID: 10208156 DOI: 10.1002/(sici)1096-8628(19990402)83:4<248::aid-ajmg3>3.0.co;2-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fragile X mental retardation syndrome results from the absence of or a defect in the protein (FMRP) encoded by the FMR1 gene. FMRP is found in dendrites and synapses as well as in the neuronal cell soma and nucleus, and although it is known to bind to RNA, the function of the protein in neurons is not known. We have studied activity-dependent changes in postsynaptically localized protein translation in central nervous system neurons. We find that FMRP is one of the proteins produced at synapses following stimulation of metabotropic glutamate receptors. We have also observed that Fragile X knockout mice, like human Fragile X patients, have excess numbers of long, thin, immature-appearing dendritic processes. Together, these findings suggest that FMRP plays a role in the process whereby synaptic activity during development results in structural and functional maturation of the synapse. We hypothesize that synaptic synthesis of FMRP may be essential for activity-based synapse maturation and elimination, a key process in normal brain development.
Collapse
Affiliation(s)
- I J Weiler
- Department of Psychology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | |
Collapse
|
31
|
Satake H, Yasuda-Kamatani Y, Takuwa K, Nomoto K, Minakata H, Nagahama T, Nakabayashi K, Matsushima O. Characterization of a cDNA encoding a precursor polypeptide of a D-amino acid-containing peptide, achatin-I and localized expression of the achatin-I and fulicin genes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:130-6. [PMID: 10103043 DOI: 10.1046/j.1432-1327.1999.00252.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Achatin-I and fulicin, isolated from the ganglia and atria of the giant land snail Achatina fulica, are a tetrapeptide and pentapeptide containing a d-Phe and d-Asn at position 2, respectively. We succeeded in cloning a cDNA encoding a precursor of achatin-I from the Achatina ganglia, revealing that the d-Phe present in achatin-I is coded by a common l-Phe codon, TTT or TTC. The deduced polypeptide was found to comprise seven repeats of the achatin sequence GFAD and one analog GFGD flanked on both sides by the typical endoproteolytic site KR. Northern blot analysis of transcripts and Southern blot analysis of reverse transcription (RT)-PCR products demonstrated that achatin-I mRNA was localized in the subesophageal ganglia, whereas expression of fulicin mRNA was detected in the atrium as well as in the subesophageal ganglia. Furthermore, localization of the achatin gene transcript in the right and left pedal ganglia compartments was shown by in situ hybridization on sections of subesophageal ganglia, whereas the fulicin transcript was observed in the right and left parietal ganglia. These data suggested that achatin-I plays an essential role in the regulation of the heart as a neurotransmitter or neurohormone through production in the pedal ganglia and transport to the atrium, whereas fulicin serves not only as a neurotransmitter or neurohormone but also as a novel atrial hormone.
Collapse
Affiliation(s)
- H Satake
- Suntory Institute for Bioorganic Research, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- W E Kaufmann
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
33
|
Béchade C, Rostaing P, Cisterni C, Kalisch R, La Bella V, Pettmann B, Triller A. Subcellular distribution of survival motor neuron (SMN) protein: possible involvement in nucleocytoplasmic and dendritic transport. Eur J Neurosci 1999; 11:293-304. [PMID: 9987032 DOI: 10.1046/j.1460-9568.1999.00428.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spinal muscular atrophy (SMA) is among the most common recessive autosomal diseases and is characterized by the loss of spinal motor neurons. A gene termed 'Survival of Motor Neurons' (SMN) has been identified as the SMA-determining gene. Recent work indicates the involvement of the SMN protein and its associated protein SIP1 in spliceosomal snRNP biogenesis. However, the function of SMN remains unknown. Here, we have studied the subcellular localization of SMN in the rat spinal cord and more generally in the central nervous system (CNS), by light fluorescence and electron microscopy. SMN immunoreactivity (IR) was found in the different regions of the spinal cord but also in various regions of the CNS such as the brainstem, cerebellum, thalamus, cortex and hippocampus. In most neurons, we observed a speckled labelling of the cytoplasm and a discontinuous staining of the nuclear envelope. For some neurons (e.g. brainstem nuclei, dentate gyrus, cortex: layer V) and, in particular in motoneurons, SMN-IR was also present as prominent nuclear dot-like-structures. In these nuclear dots, SMN colocalized with SIP1 and with fibrillarin, a marker of coiled bodies. Ultrastructural studies in the anterior horn of the spinal cord confirmed the presence of SMN in the coiled bodies and also revealed the protein at the external side of nuclear pores complexes, in association with polyribosomes, and in dendrites, associated with microtubules. These localizations suggest that, in addition to its involvement in the spliceosome biogenesis, the SMN protein could also play a part in nucleocytoplasmic and dendritic transport.
Collapse
Affiliation(s)
- C Béchade
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique (INSERM U497), Paris, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Martone ME, Pollock JA, Ellisman MH. Subcellular localization of mRNA in neuronal cells. Contributions of high-resolution in situ hybridization techniques. Mol Neurobiol 1998; 18:227-46. [PMID: 10206470 DOI: 10.1007/bf02741301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The development of technologies for high-resolution nucleic acid localization in cells and tissues has contributed significantly to our understanding of transcriptional and translational regulation in eukaryotic cells. These methods include nonisotopic in situ hybridization methods for light and electron microscopy, and fluorescent tagging for the study of nucleic acid behavior in living cells. In situ hybridization to detect messenger RNA has led to the discovery that individual transcripts may be selectively targeted to particular subcellular domains. In the nervous system, certain species of mRNA have been localized in distal processes in nerve cells and glia. Direct visualization of mRNA and its interactions with subcellular features, such as synaptic specializations, cytoskeletal elements, and nuclear pores, have been achieved. Of particular interest is the presence of mRNA and ribosomes in dendrites, beneath synaptic contacts, suggesting the possibility of synaptic regulation of protein synthesis. The following article will describe the application of high-resolution in situ hybridization and live imaging techniques to the study of mRNA targeting in neurons.
Collapse
Affiliation(s)
- M E Martone
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California, San Diego, La Jolla 92093-0608, USA
| | | | | |
Collapse
|
35
|
McIlhinney RA, Le Bourdellès B, Molnár E, Tricaud N, Streit P, Whiting PJ. Assembly intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 1998; 37:1355-67. [PMID: 9849671 DOI: 10.1016/s0028-3908(98)00121-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The intracellular trafficking, assembly, and cell surface targeting of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A has been studied using both transiently and permanently transfected mammalian cell lines. The expression of either NR1a or NR2A alone does not result in significant cell surface expression of either subunit as determined by cell surface biotinylation and immunofluorescence staining. When NR1a is expressed alone large intracellular accumulations of the subunit are formed which do not co-localize with the golgi apparatus markers protein p58 and wheat germ agglutinin, but do co-localize with the endoplasmic reticulum marker calreticulin. Co-expression of NR1a and NR2A results in a reduction of these intracellular accumulations and the appearance of both subunits on the cell surface. Immunoprecipitation of NR1a from in vitro translated subunit proteins showed that NR2A could only be immunoprecipitated with NR1a when both subunits were co-synthesized in the presence of microsomes. When cells expressing NR1a and NR2A were incubated with [35S]methionine in the presence of Brefeldin-A, a drug which prevents protein transport from the endoplasmic reticulum, NR2A could be immunoprecipitated by an antiserum specific for NR1a. Together these results suggest that the NMDA receptor subunits are assembled in the endoplasmic reticulum and that co-synthesis of the subunits is necessary for their association and their successful cell surface targeting.
Collapse
Affiliation(s)
- R A McIlhinney
- Medical Research Council, Anatomical Neuropharmacology Unit, Oxford, UK
| | | | | | | | | | | |
Collapse
|
36
|
Kremerskothen J, Nettermann M, op de Bekke A, Bachmann M, Brosius J. Identification of human autoantigen La/SS-B as BC1/BC200 RNA-binding protein. DNA Cell Biol 1998; 17:751-9. [PMID: 9778034 DOI: 10.1089/dna.1998.17.751] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rodent BC1 RNA and primate BC200 RNA are small cytoplasmic non-messenger RNAs that are phylogenetically unrelated. Nevertheless, the two RNAs exhibit a large degree of parallelism. In addition to some sequence similarities in their 3' domains, they are prevalently expressed in a similar subset of neurons and belong to a small group of transcripts with a somatodendritic location. Both RNAs are complexed with proteins as ribonucleoprotein particles (RNPs). Their similarities may even extend to analogous functional roles, for example, in the regulation of decentralized dendritic translation. To shed further light on the physiological role(s) of the BC1/BC200 RNPs, we began to analyze protein components that specifically bind to these RNAs. Ultraviolet-crosslinking experiments and affinity purification techniques revealed that the human autoantigen La/SS-B is associated with BC1/BC200 RNA in vitro and in vivo. As with other RNA polymerase III transcripts, La protein binds with high affinity to the 3' end of BC200 RNA. Our results suggest that an additional function of La may be control of dendritic translation by providing a link between the 5' Alu domain of BC200 RNP and the ribosome via the La protein dimer. The fact that La binds both BC1 and BC200 RNAs further supports the notion that the RNAs are functional analogs despite the fact that they arose from two separate retroposition events in two different mammalian lineages.
Collapse
Affiliation(s)
- J Kremerskothen
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Germany
| | | | | | | | | |
Collapse
|
37
|
Nusser Z, Lujan R, Laube G, Roberts JD, Molnar E, Somogyi P. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 1998; 21:545-59. [PMID: 9768841 DOI: 10.1016/s0896-6273(00)80565-6] [Citation(s) in RCA: 622] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been suggested that some glutamatergic synapses lack functional AMPA receptors. We used quantitative immunogold localization to determine the number and variability of synaptic AMPA receptors in the rat hippocampus. Three classes of synapses show distinct patterns of AMPA receptor content. Mossy fiber synapses on CA3 pyramidal spines and synapses on GABAergic interneurons are all immunopositive, have less variability, and contain 4 times as many AMPA receptors as synapses made by Schaffer collaterals on CA1 pyramidal spines and by commissural/ associational (C/A) terminals on CA3 pyramidal spines. Up to 17% of synapses in the latter two connections are immunonegative. After calibrating the immunosignal (1 gold = 2.3 functional receptors) at mossy synapses of a 17-day-old rat, we estimate that the AMPA receptor content of C/A synapses on CA3 pyramidal spines ranges from <3 to 140. A similar range is found in adult Schaffer collateral and C/A synapses.
Collapse
Affiliation(s)
- Z Nusser
- Medical Research Council, Department of Pharmacology, University of Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Scaturro M, Nastasi T, Raimondi L, Bellafiore M, Cestelli A, Di Liegro I. H1(0) RNA-binding proteins specifically expressed in the rat brain. J Biol Chem 1998; 273:22788-91. [PMID: 9712912 DOI: 10.1074/jbc.273.35.22788] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During brain maturation, histone H1(0) accumulates in both nerve and glial cells. The expression of this "linker" histone, the role of which still remains unclear, is a complex process, having both transcriptional and post-transcriptional regulatory components. In particular, the expression of H1(0) in rat cortical neurons is regulated mainly at the post-transcriptional level, and unknown cellular proteins are likely to affect H1(0) mRNA stability and/or translation. In looking for such factors, we tested the ability of rat brain extracts to protect H1(0) RNA probe from degradation by T1 RNase. The results reported here demonstrate that rat brain contains at least one major (p40) and two minor (p110 and p70) binding factors, specific for H1(0) RNA, all of which are much more or exclusively expressed in adult rat brain, when compared with other tissues. The binding of the factors is confined to a portion of the 3'-untranslated region (3'-UTR), which is highly conserved among murine and human H1(0) mRNAs. These findings suggest that the proteins identified play a critical role in regulating the expression of H1(0) histone in the brain of mammals.
Collapse
Affiliation(s)
- M Scaturro
- Dipartimento di Biologia Cellulare e dello Sviluppo "Alberto Monroy, " viale delle Scienze, Parco d'Orleans, 90128 Palermo, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Hannan AJ, Gunning P, Jeffrey PL, Weinberger RP. Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein. Mol Cell Neurosci 1998; 11:289-304. [PMID: 9698395 DOI: 10.1006/mcne.1998.0693] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The microfilament system is thought to be a crucial cytoskeletal component regulating development and mature function of neurons. The intracellular distribution of the microfilament isoform components, actin and tropomyosin (Tm), in neurons primarily in vivo, has been investigated at both the mRNA and the protein level using isoform specific riboprobes and antibodies. Our in vivo and in vitro studies have identified at least six neuronal compartments based on microfilament isoform mRNA localization: the developing soma, the mature soma, growth cone, developing axon hillock/proximal axon, mature somatodendritic and mature axonal pole soma. Protein localization patterns revealed that the isoforms were frequently distributed over a wider area than their respective mRNAs, suggesting that isoform specific patterns of mRNA targeting may influence, but do not absolutely determine, microfilament isoform location. Tm4 and Tm5 showed identical mRNA targeting in the developing neuron but distinct protein localization patterns. We suggest that in this instance mRNA location may best be viewed as a regulated site of synthesis and assembly, rather than a regulator of protein localization per se. In addition, Tm5 and beta-actin mRNA and protein locations were developmentally regulated, suggesting the possibility that environmental signals modulate targeting of specific mRNAs and their proteins. Thus, developmentally regulated mRNA localization and positional translation may act in concert with protein transport to regulate neuronal microfilament composition and consequently neuronal structure.
Collapse
Affiliation(s)
- A J Hannan
- Developmental Neurobiology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | | | | | | |
Collapse
|
40
|
Abstract
Classical studies have demonstrated a role for protein synthesis in long-term memory. The focus of our research is to identify the proteins that are essential for memory and to discover how they contribute to activity-dependent neuronal plasticity. We have developed whole-animal models that maximize the induction of activity-dependent genes and have used differential cloning techniques to identify a set of novel, neuronal immediate-early genes (IEGs). Neuronal IEGs encode transcription factors, cytoskeletal proteins, growth factors, metabolic enzymes, and proteins involved in signal transduction. The biochemical and cell biological properties of these molecules provide important insights into mechanisms that contribute to neuronal plasticity. Recently, we identified a subset of IEGs that appear to function at the synapse. These molecules extend the functional repertoire of IEGs and may provide insight into how IEGs can contribute to synapse-specific plasticity.
Collapse
Affiliation(s)
- A Lanahan
- Department of Neuroscience, The Johns Hopkins School of Medicine, 905 Hunterian Building, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
41
|
Muslimov IA, Banker G, Brosius J, Tiedge H. Activity-dependent regulation of dendritic BC1 RNA in hippocampal neurons in culture. J Cell Biol 1998; 141:1601-11. [PMID: 9647652 PMCID: PMC1828539 DOI: 10.1083/jcb.141.7.1601] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Several neuronal RNAs have been identified in dendrites, and it has been suggested that the dendritic location of these RNAs may be relevant to the spatiotemporal regulation of mosaic postsynaptic protein repertoires through transsynaptic activity. Such regulation would require that dendritic RNAs themselves, or at least some of them, be subject to physiological control. We have therefore examined the functional regulation of somatodendritic expression levels of dendritic BC1 RNA in hippocampal neurons in culture. BC1 RNA, an RNA polymerase III transcript that is a component of a ribonucleoprotein particle, became first detectable in somatodendritic domains of developing hippocampal neurons at times of initial synapse formation. BC1 RNA was identified only in such neurons that had established synapses on cell bodies and/or developing dendritic arbors. When synaptic contact formation was initiated later in low-density cultures, BC1 expression was coordinately delayed. Inhibition of neuronal activity in hippocampal neurons resulted in a substantial but reversible reduction of somatodendritic BC1 expression. We conclude that expression of BC1 RNA in somatic and dendritic domains of hippocampal neurons is regulated in development, and is dependent upon neuronal activity. These results establish (for the first time to our knowledge) that an RNA polymerase III transcript can be subject to control through physiological activity in nerve cells.
Collapse
Affiliation(s)
- I A Muslimov
- Department of Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, New York 11203, USA
| | | | | | | |
Collapse
|
42
|
Landry M, Hökfelt T. Subcellular localization of preprogalanin messenger RNA in perikarya and axons of hypothalamo-posthypophyseal magnocellular neurons: an in situ hybridization study. Neuroscience 1998; 84:897-912. [PMID: 9579792 DOI: 10.1016/s0306-4522(97)00567-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subcellular compartmentalization and axonal transport of oxytocin and vasopressin messenger RNAs have recently been reported in the rat hypothalamo-posthypophyseal system using in situ hybridization. So far, no data are available concerning the intracellular distribution of co-localized peptide transcripts, for example of galanin, which is synthesized in the vasopressinergic magnocellular neurons of the rat and which is up-regulated in these neurons under different conditions, including salt loading and colchicine injection. In the present study, using non-radioactive in situ hybridization and immunohistochemistry at the light and electron microscope levels, preprogalanin messenger RNA and galanin-like immunoreactivity were localized in the hypothalamo-posthypophyseal system. After salt loading, preprogalanin transcripts were found throughout the perikaryal cytoplasm, especially in the peripheral cytoplasm and in the perinuclear area. Since immunohistochemistry also showed galanin-like immunoreactivity preferentially in the perinuclear area of control rats, galanin synthesis may occur mainly in this cytoplasmic domain. Preprogalanin messenger RNA was also clustered in dendrites containing rough endoplasmic reticulum. The use of a new in situ hybridization method involving tyramide signal amplification, based on catalysed reporter deposition, allowed visualization of preprogalanin messenger RNA in axonal projections running through the internal layer of the median eminence after salt loading, but not in control or in colchicine-injected animals. The negative results obtained after colchicine injection indicate that the mechanism of messenger RNA transport may require an intact cytoskeleton. The labelling was found in non-dilated axon segments as well as in a subset of axonal swellings in the rostral aspect of the median eminence, but was restricted to a few swellings in its caudal part, with no labelling in the posterior pituitary. Thus, preprogalanin messenger RNA was segregated in the axons. The functional significance of messenger RNAs' exportation into axons is not known, but our results suggest that this phenomenon may not be limited to the two principal magnocellular hormone messenger RNAs, but may also involve co-existing peptide messenger RNAs.
Collapse
Affiliation(s)
- M Landry
- Department of Neuroscience/Histology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
43
|
Racca C, Gardiol A, Triller A. Cell-specific dendritic localization of glycine receptor alpha subunit messenger RNAs. Neuroscience 1998; 84:997-1012. [PMID: 9578391 DOI: 10.1016/s0306-4522(97)00585-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The regional and subcellular localizations of glycine receptor complex messenger RNAs were determined in the adult rat central nervous system using non-radioactive in situ hybridization. The present investigation focused on glycine receptors alpha1 and alpha2 subunit messenger RNAs. Within the central nervous system we observed that the glycine receptor alpha1 and alpha2 subunit messenger RNAs are widely expressed. At the subcellular level, these messenger RNAs are present either in neuronal somata and dendrites or somata only. Furthermore, among different regions as well as within the same region the subcellular localizations of both alpha subunit messenger RNAs are cell type-dependent. In contrast, the regional distributions of beta subunit and gephyrin messenger RNAs are essentially as previously described [Fujita M. (1991) Brain Res. 560, 23-37; Malosio M.-L. et al. (1991) Eur. molec. Biol. Org. J. 9, 2401-2409; Kirsch J. et al. (1993) Eur. J. Neurosci. 5, 1109-1117] and their messenger RNAs are confined predominantly within the somata of neurons [Kirsch J. et al. (1993); Racca et al. (1997) J. Neurosci. 17, 1691-1700]. These results demonstrate that the glycine receptor complex messenger RNAs are broadly expressed in the central nervous system and that the glycine receptor alpha1 and alpha2 subunit messenger RNAs differ in their subcellular localization depending on the neuronal population. The latter finding suggests that different mechanisms for the localization of glycine receptor alpha1 and alpha2 subunit messenger RNAs are used by distinct populations of neurons.
Collapse
Affiliation(s)
- C Racca
- Laboratoire de Biologie Cellulaire de la Synapse, I.N.S.E.R.M. U497, Ecole Normale Supérieure, Paris, France
| | | | | |
Collapse
|
44
|
Marcel D, Raison S, Bezin L, Pujol JF, Weissmann D. Plasticity of tyrosine hydroxylase gene expression within BALB/C and C57Black/6 mouse locus coeruleus. Neurosci Lett 1998; 242:77-80. [PMID: 9533398 DOI: 10.1016/s0304-3940(98)00028-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The plasticity of tyrosine hydroxylase (TH) phenotype in the locus coeruleus (LC) of two pure inbred strains of mice, Balb/C (C) and C57Black/6 (B6), was investigated at the molecular level by radioactive in situ hybridization. The results demonstrated that in basal conditions, C mouse LC contains less TH-mRNA-expressing cells than B6. After RU 24722-treatment, which induces long lasting TH gene expression in the LC, we previously reported an increase in TH-expressing cell number in C mouse LC only, equalizing TH phenotype between the two strains. Here, we demonstrate that strain specific plasticity of TH phenotype detected in spatially organized cells is associated with the regulation of TH-mRNA expression above a detectable level. These results suggest that interstrain differences and pharmacologically-induced phenotypic plasticity in TH phenotype may occur at the transcriptional level.
Collapse
Affiliation(s)
- D Marcel
- Laboratoire de Neuropharmacologie Moléculaire, CNRS-UCB UMR 5542, Faculté de Médecine Laënnec, Lyon, France.
| | | | | | | | | |
Collapse
|
45
|
Abstract
In the mammalian central nervous system (CNS), each neuron receives signals from other neurons through numerous synapses located on its cell body and dendrites. Molecules involved in the postsynaptic signaling pathways need to be targeted to the appropriate subcellular domains at the right time during both synaptogenesis and the maintenance of synaptic functions. The presence of messenger RNAs (mRNAs) in dendrites offers a mechanism for synthesizing the appropriate molecules at the right place in response to local extracellular stimuli. Several dendritic mRNAs have been identified, and the mechanisms controlling their localization are beginning to be understood. In many cell types, controls on mRNA stability play an important role in the regulation of gene expression, but it is unclear to what extent this type of control operates in dendrites. The regulation of protein synthesis and the control of mRNA stability in dendrites could have important implications for neuronal function.
Collapse
Affiliation(s)
- F B Gao
- Medical Research Council Developmental Neurobiology Programme, University College London, United Kingdom
| |
Collapse
|
46
|
Scheetz AJ, Nairn AC, Constantine-Paton M. N-methyl-D-aspartate receptor activation and visual activity induce elongation factor-2 phosphorylation in amphibian tecta: a role for N-methyl-D-aspartate receptors in controlling protein synthesis. Proc Natl Acad Sci U S A 1997; 94:14770-5. [PMID: 9405688 PMCID: PMC25112 DOI: 10.1073/pnas.94.26.14770] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/1997] [Indexed: 02/05/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) activation has been implicated in forms of synaptic plasticity involving long-term changes in neuronal structure, function, or protein expression. Transcriptional alterations have been correlated with NMDAR-mediated synaptic plasticity, but the problem of rapidly targeting new proteins to particular synapses is unsolved. One potential solution is synapse-specific protein translation, which is suggested by dendritic localization of numerous transcripts and subsynaptic polyribosomes. We report here a mechanism by which NMDAR activation at synapses may control this protein synthetic machinery. In intact tadpole tecta, NMDAR activation leads to phosphorylation of a subset of proteins, one of which we now identify as the eukaryotic translation elongation factor 2 (eEF2). Phosphorylation of eEF2 halts protein synthesis and may prepare cells to translate a new set of mRNAs. We show that NMDAR activation-induced eEF2 phosphorylation is widespread in tadpole tecta. In contrast, in adult tecta, where synaptic plasticity is reduced, this phosphorylation is restricted to short dendritic regions that process binocular information. Biochemical and anatomical evidence shows that this NMDAR activation-induced eEF2 phosphorylation is localized to subsynaptic sites. Moreover, eEF2 phosphorylation is induced by visual stimulation, and NMDAR blockade before stimulation eliminates this effect. Thus, NMDAR activation, which is known to mediate synaptic changes in the developing frog, could produce local postsynaptic alterations in protein synthesis by inducing eEF2 phosphorylation.
Collapse
Affiliation(s)
- A J Scheetz
- Yale University, Department of Biology, Kline Biology Tower, P.O. Box 208103, New Haven, CT 06520-8103, USA.
| | | | | |
Collapse
|
47
|
Abstract
The translocation of specific mRNAs to dendrites and their potential for locally regulated translation are likely to serve as an effector in neuronal plasticity. Whether translation in dendrites is regulated by delivery of the RNA to sites of plasticity or a stationary pool of localized RNA undergoes enhanced translational efficiency is not clear. We show that RNA can translocate into dendrites in response to NT-3. RNA granules were visualized in cultured rat cortical neurons using the dye SYTO 14, which labels poly-ribosome complexes. Long before the morphological effects of NT-3 appeared, there was increased distal translocation of labeled complexes. This effect was blocked by K252a, a potent inhibitor of tyrosine kinase receptors. Therefore, neurons can utilize extracellular signals to alter the distribution of protein synthetic machinery via the active transport of RNA granules.
Collapse
Affiliation(s)
- R B Knowles
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Deller T, Frotscher M. Lesion-induced plasticity of central neurons: sprouting of single fibres in the rat hippocampus after unilateral entorhinal cortex lesion. Prog Neurobiol 1997; 53:687-727. [PMID: 9447617 DOI: 10.1016/s0301-0082(97)00044-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In response to a central nervous system trauma surviving neurons reorganize their connections and form new synapses that replace those lost by the lesion. A well established in vivo system for the analysis of this lesion-induced plasticity is the reorganization of the fascia dentata following unilateral entorhinal cortex lesions in rats. After general considerations of neuronal reorganization following a central nervous system trauma, this review focuses on the sprouting of single fibres in the rat hippocampus after entorhinal lesion and the molecular factors which may regulate this process. First, the connectivity of the fascia dentata in control animals is reviewed and previously unknown commissural fibers to the outer molecular layer and entorhinal fibres to the inner molecular layer are characterized. Second, sprouting of commissural and crossed entorhinal fibres after entorhinal cortex lesion is described. Single fibres sprout by forming additional collaterals, axonal extensions, boutons, and tangle-like axon formations. It is pointed out that the sprouting after entorhinal lesion mainly involves unlesioned fibre systems terminating within the layer of fibre degeneration and is therefore layer-specific. Third, molecular changes associated with axonal growth and synapse formation are considered. In this context, the role of adhesion molecules, glial cells, and neurotrophic factors for the sprouting process are discussed. Finally, an involvement of sprouting processes in the formation of neuritic plaques in Alzheimer's disease is reviewed and discussed with regard to the axonal tangle-like formations observed after entorhinal cortex lesion.
Collapse
Affiliation(s)
- T Deller
- Institute of Anatomy, University of Freiburg, Germany.
| | | |
Collapse
|
49
|
Abstract
Mice lacking the serine protease tissue plasminogen activator (tPA) are resistant to excitotoxin-mediated hippocampal neuronal degeneration. We have used genetic and cellular analyses to study the role of tPA in neuronal cell death. Mice deficient for the zymogen plasminogen, a known substrate for tPA, are also resistant to excitotoxins, implicating an extracellular proteolytic cascade in degeneration. The two known components of this cascade, tPA and plasminogen, are both synthesized in the mouse hippocampus. tPA mRNA and protein are present in neurons and microglia, whereas plasminogen mRNA and protein are found exclusively in neurons. tPA-deficient mice exhibit attenuated microglial activation as a reaction to neuronal injury. In contrast, the microglial response of plasminogen-deficient mice was comparable to that of wild-type mice, suggesting a tPA-mediated, plasminogen-independent pathway for activation of microglia. Infusion of inhibitors of the extracellular tPA/plasmin proteolytic cascade into the hippocampus protects neurons against excitotoxic injury, suggesting a novel strategy for intervening in neuronal degeneration.
Collapse
|
50
|
Wu K, Aoki C, Elste A, Rogalski-Wilk AA, Siekevitz P. The synthesis of ATP by glycolytic enzymes in the postsynaptic density and the effect of endogenously generated nitric oxide. Proc Natl Acad Sci U S A 1997; 94:13273-8. [PMID: 9371836 PMCID: PMC24299 DOI: 10.1073/pnas.94.24.13273] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/1997] [Indexed: 02/05/2023] Open
Abstract
The major contribution of this paper is the finding of a glycolytic source of ATP in the isolated postsynaptic density (PSD). The enzymes involved in the generation of ATP are glyceraldehyde-3-phosphate dehydrogenase (G3PD) and phosphoglycerate kinase (PGK). Lactate dehydrogenase (LDH) is available for the regeneration of NAD+, as well as aldolase for the regeneration of glyceraldehyde-3-phosphate (G3P). The ATP was shown to be used by the PSD Ca2+/calmodulin-dependent protein kinase and can probably be used by two other PSD kinases, protein kinase A and protein kinase C. We confirmed by immunocytochemistry the presence of G3PD in the PSD and its binding to actin. Also present in the PSD is NO synthase, the source of NO. NO increases the binding of NAD, a G3PD cofactor, to G3PD and inhibits its activity as also found by others. The increased NAD binding resulted in an increase in G3PD binding to actin. We confirmed the autophosphorylation of G3PD by ATP, and further found that this procedure also increased the binding of G3PD to actin. ATP and NO are connected in that the formation of NO from NOS at the PSD resulted, in the presence of NAD, in a decrease of ATP formation in the PSD. In the discussion, we raise the possible roles of G3PD and of ATP in protein synthesis at the PSD, the regulation by NO, as well as the overall regulatory role of the PSD complex in synaptic transmission.
Collapse
Affiliation(s)
- K Wu
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | | | | | |
Collapse
|