1
|
Richter RP, Payne GA, Ambalavanan N, Gaggar A, Richter JR. The endothelial glycocalyx in critical illness: A pediatric perspective. Matrix Biol Plus 2022; 14:100106. [PMID: 35392182 PMCID: PMC8981764 DOI: 10.1016/j.mbplus.2022.100106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium is the interface between circulating blood and end organs and thus has a critical role in preserving organ function. The endothelium is lined by a glycan-rich glycocalyx that uniquely contributes to endothelial function through its regulation of leukocyte and platelet interactions with the vessel wall, vascular permeability, coagulation, and vasoreactivity. Degradation of the endothelial glycocalyx can thus promote vascular dysfunction, inflammation propagation, and organ injury. The endothelial glycocalyx and its role in vascular pathophysiology has gained increasing attention over the last decade. While studies characterizing vascular glycocalyx injury and its downstream consequences in a host of adult human diseases and in animal models has burgeoned, studies evaluating glycocalyx damage in pediatric diseases are relatively few. As children have unique physiology that differs from adults, significant knowledge gaps remain in our understanding of the causes and effects of endothelial glycocalyx disintegrity in pediatric critical illness. In this narrative literature overview, we offer a unique perspective on the role of the endothelial glycocalyx in pediatric critical illness, drawing from adult and preclinical data in addition to pediatric clinical experience to elucidate how marked derangement of the endothelial surface layer may contribute to aberrant vascular biology in children. By calling attention to this nascent field, we hope to increase research efforts to address important knowledge gaps in pediatric vascular biology that may inform the development of novel therapeutic strategies.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- CD, cell differentiation marker
- COVID-19, coronavirus disease 2019
- CPB, cardiopulmonary bypass
- CT, component therapy
- Children
- Critical illness
- DENV NS1, dengue virus nonstructural protein 1
- DM, diabetes mellitus
- ECLS, extracorporeal life support
- ECMO, extracorporeal membrane oxygenation
- EG, endothelial glycocalyx
- Endothelial glycocalyx
- FFP, fresh frozen plasma
- GAG, glycosaminoglycan
- GPC, glypican
- HPSE, heparanase
- HSV, herpes simplex virus
- IV, intravenous
- MIS-C, multisystem inflammatory syndrome in children
- MMP, matrix metalloproteinase
- Pragmatic, Randomized Optimal Platelet and Plasma Ratios
- RHAMM, receptor for hyaluronan-mediated motility
- S protein, spike protein
- SAFE, Saline versus Albumin Fluid Evaluation
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SDC, syndecan
- SDF, sidestream darkfield
- SIRT1, sirtuin 1
- TBI, traumatic brain injury
- TBSA, total body surface area
- TMPRSS2, transmembrane protease serine 2
- Th2, type 2 helper T cell
- VSMC, vascular smooth muscle cell
- Vascular biology
- WB+CT, whole blood and component therapy
- eNOS, endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Robert P. Richter
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A. Payne
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Translational Research in Normal and Disordered Development Program, University of Alabama, Birmingham, AL, USA
| | - Amit Gaggar
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jillian R. Richter
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Xu Z, Chen S, Feng D, Liu Y, Wang Q, Gao T, Liu Z, Zhang Y, Chen J, Qiu L. Biological role of heparan sulfate in osteogenesis: A review. Carbohydr Polym 2021; 272:118490. [PMID: 34420746 DOI: 10.1016/j.carbpol.2021.118490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
Heparan sulfate (HS) is extensively expressed in cells, for example, cell membrane and extracellular matrix of most mammalian cells and tissues, playing a key role in the growth and development of life by maintaining homeostasis and implicating in the etiology and diseases. Recent studies have revealed that HS is involved in osteogenesis via coordinating multiple signaling pathways. The potential effect of HS on osteogenesis is a complicated and delicate biological process, which involves the participation of osteocytes, chondrocytes, osteoblasts, osteoclasts and a variety of cytokines. In this review, we summarized the structural and functional characteristics of HS and highlighted the molecular mechanism of HS in bone metabolism to provide novel research perspectives for the further medical research.
Collapse
Affiliation(s)
- Zhujie Xu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Shayang Chen
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Dehong Feng
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yi Liu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China.
| | - Qiqi Wang
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Tianshu Gao
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Zhenwei Liu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yan Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Lipeng Qiu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
3
|
Hubka KM, Carson DD, Harrington DA, Farach-Carson MC. Perlecan domain I gradients establish stable biomimetic heparin binding growth factor gradients for cell migration in hydrogels. Acta Biomater 2019; 97:385-398. [PMID: 31351252 DOI: 10.1016/j.actbio.2019.07.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Growth factor gradients orchestrate many biological processes including organogenesis, wound healing, cancer invasion, and metastasis. Heparin-binding growth factor (HBGF) gradients are established in living systems by proteoglycans including the extracellular matrix heparan sulfate proteoglycan, perlecan/HSPG2. Three potential HBGF-binding glycosaminoglycan attachment sites occur in N-terminal domain I of perlecan's five domains. Our overarching goal was to form stable, biomimetic non-covalently bound HBGF gradients surrounding cells encapsulated in hyaluronate-based hydrogels by first establishing perlecan domain I (PlnD1) gradients. A versatile multichannel gradient maker device (MGMD) was designed and 3D printed, then used to create desired gradients of microparticles in hydrogels. Next, we used the device to covalently incorporate gradients of PEGylated PlnD1 in hydrogels with high-low-high or high-medium-low concentrations across the hydrogel width. Fluorescently-labeled fibroblast growth factor-2 was delivered to hydrogels in phosphate-buffered saline and allowed to electrostatically bind to the covalently pre-incorporated PlnD1, producing stable non-covalent HBGF gradients. To test cell viability after flow through the MGMD, delicate primary human salivary stem/progenitor cells were encapsulated in gradient hydrogels where they showed high viability and continued to grow. Next, to test migratory behavior in response to HBGF gradients, two cell types, preosteoblastic MC3T3-E1 cell line and breast cancer cell line MDA-MB-231 were encapsulated in or adjacent to PlnD1-modified hydrogels. Both cell lines migrated toward HBGFs bound to PlnD1. We conclude that establishing covalently-bound PlnD1 gradients in hydrogels provides a new means to establish physiologically-relevant gradients of HBGFs that are useful for a variety of applications in tissue engineering and cancer biology. STATEMENT OF SIGNIFICANCE: Gradients of heparin binding growth factors (HBGFs) direct cell behavior in living systems. HBGFs bind electrostatically to gradients of HS proteoglycans in the extracellular matrix creating HBGF gradients. We recreated HBGF gradients in physiological hyaluronate-based hydrogels using a 3D-printed multichannel gradient maker device (MGMD) that created gradients of HS proteoglycan-derived perlecan/HSPG2 domain I. We demonstrated the ability of a variety of cells, including primary salivary stem/progenitor cells, pre-osteoblastic cells and an invasive breast cancer cell line, to be co-encapsulated in gradient hydrogels by flowing them together through the MGMD. The versatile device and the ability to create HBGF gradients in hydrogels for a variety of applications is innovative and of broad utility in both cancer biology and tissue engineering applications.
Collapse
Affiliation(s)
- Kelsea M Hubka
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, TX 77005, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street Room 4401, Houston, TX 77054, USA.
| | - Daniel D Carson
- Department of Biosciences, Rice University, MS-140, P.O. Box 1892, Houston, TX 77251, USA; Department of Genetics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Daniel A Harrington
- Department of Biosciences, Rice University, MS-140, P.O. Box 1892, Houston, TX 77251, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street Room 4401, Houston, TX 77054, USA.
| | - Mary C Farach-Carson
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, MS-140, P.O. Box 1892, Houston, TX 77251, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street Room 4401, Houston, TX 77054, USA.
| |
Collapse
|
4
|
Post-Translational Modification-Dependent Activity of Matrix Metalloproteinases. Int J Mol Sci 2019; 20:ijms20123077. [PMID: 31238509 PMCID: PMC6627178 DOI: 10.3390/ijms20123077] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Due to their capacity to process different proteins of the extracellular matrix (ECM), matrix metalloproteinases (MMPs) were initially described as a family of secreted proteases, functioning as main ECM regulators. However, through proteolytic processing of various biomolecules, MMPs also modulate intra- and extracellular pathways and networks. Thereby, they are functionally implicated in the regulation of multiple physiological and pathological processes. Consequently, MMP activity is tightly regulated through a combination of epigenetic, transcriptional, and post-transcriptional control of gene expression, proteolytic activation, post-translational modifications (PTMs), and extracellular inhibition. In addition, MMPs, their substrates and ECM binding partners are frequently modified by PTMs, which suggests an important role of PTMs in modulating the pleiotropic activities of these proteases. This review summarizes the recent progress towards understanding the role of PTMs (glycosylation, phosphorylation, glycosaminoglycans) on the activity of several members of the MMP family.
Collapse
|
5
|
Abstract
During cartilage development chondrocytes undergo a multi-step process characterized by consecutive changes in cell morphology and gene expression. Cell proliferation, polarity, differentiation, and migration are influenced by chemical and mechanical signaling between the extracellular matrix (ECM) and the cell. Several structurally diverse transmembrane receptors such as integrins, discoidin domain receptor 2 (DDR 2), and CD44 mediate the crosstalk between cells and their ECM. However, the contribution of cell-matrix interactions during early chondrogenesis and further cartilage development through cell receptors and their signal transduction pathways is still not fully understood. Determination of receptor signaling pathways and the function of downstream targets will aid in a better understanding of musculoskeletal pathologies such as chondrodysplasia, and the development of new approaches for the treatment of cartilage disorders. We will summarize recent findings, linking cell receptors and their potential signaling pathways to the control of chondrocyte behavior during early chondrogenesis and endochondral ossification.
Collapse
Affiliation(s)
- Carina Prein
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, and Western University Bone and Joint Institute, University of Western Ontario, London, ON, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, and Western University Bone and Joint Institute, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
6
|
Abstract
Studies of pericytes have been retarded by the lack of appropriate markers for identification of these perivascular mural cells. Use of antibodies against the NG2 proteoglycan as a pericyte marker has greatly facilitated recent studies of pericytes, emphasizing the intimate spatial relationship between pericytes and endothelial cells, allowing more accurate quantification of pericyte/endothelial cell ratios in different vascular beds, and revealing the participation of pericytes throughout all stages of blood vessel formation. The functional importance of NG2 in pericyte biology has been established via NG2 knockdown (in vitro) and knockout (in vivo) strategies that reveal significant deficits in blood vessel formation when NG2 is absent from pericytes. NG2 influences pericyte proliferation and motility by acting as an auxiliary receptor that enhances signaling through integrins and receptor tyrosine kinase growth factor receptors. By acting in a trans orientation, NG2 also activates integrin signaling in closely apposed endothelial cells, leading to enhanced maturation and formation of endothelial cell junctions. NG2 null mice exhibit reduced growth of both mammary and brain tumors that can be traced to deficits in tumor vascularization. Use of Cre-Lox technology to produce pericyte-specific NG2 null mice has revealed specific deficits in tumor vessels that include decreased pericyte ensheathment of endothelial cells, diminished assembly of the vascular basement membrane, reduced vessel patency, and increased vessel leakiness. Interestingly, myeloid-specific NG2 null mice exhibit even larger deficits in tumor vascularization, leading to correspondingly slower tumor growth. Myeloid-specific NG2 null mice are deficient in their ability to recruit macrophages to tumors and other sites of inflammation. This absence of macrophages deprives pericytes of a signal that is crucial for their ability to interact with endothelial cells. The interplay between pericytes, endothelial cells, and macrophages promises to be an extremely fertile area of future study.
Collapse
Affiliation(s)
- William B Stallcup
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Yamada T, Kerever A, Yoshimura Y, Suzuki Y, Nonaka R, Higashi K, Toida T, Mercier F, Arikawa-Hirasawa E. Heparan sulfate alterations in extracellular matrix structures and fibroblast growth factor-2 signaling impairment in the aged neurogenic niche. J Neurochem 2017; 142:534-544. [PMID: 28547849 DOI: 10.1111/jnc.14081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 01/06/2023]
Abstract
Adult neurogenesis in the subventricular zone of the lateral ventricle decreases with age. In the subventricular zone, the specialized extracellular matrix structures, known as fractones, contact neural stem cells and regulate neurogenesis. Fractones are composed of extracellular matrix components, such as heparan sulfate proteoglycans. We previously found that fractones capture and store fibroblast growth factor 2 (FGF-2) via heparan sulfate binding, and may deliver FGF-2 to neural stem cells in a timely manner. The heparan sulfate (HS) chains in the fractones of the aged subventricular zone are modified based on immunohistochemistry. However, how aging affects fractone composition and subsequent FGF-2 signaling and neurogenesis remains unknown. The formation of the FGF-fibroblast growth factor receptor-HS complex is necessary to activate FGF-2 signaling and induce the phosphorylation of extracellular signal-regulated kinase (Erk1/2). In this study, we observed a reduction in HS 6-O-sulfation, which is critical for FGF-2 signal transduction, and failure of the FGF-2-induced phosphorylation of Erk1/2 in the aged subventricular zone. In addition, we observed increased HS 6-O-endo-sulfatase, an enzyme that may be responsible for the HS modifications in aged fractones. In conclusion, the data revealed that heparan sulfate 6-O-sulfation is reduced and FGF-2-dependent Erk1/2 signaling is impaired in the aged subventricular zone. HS modifications in fractones might play a role in the reduced neurogenic activity in aging brains.
Collapse
Affiliation(s)
- Taihei Yamada
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aurelien Kerever
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Yoshimura
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuji Suzuki
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Nonaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyohei Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Frederic Mercier
- Department of Tropical Medicine and Infectious Diseases, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Afratis NA, Nikitovic D, Multhaupt HAB, Theocharis AD, Couchman JR, Karamanos NK. Syndecans – key regulators of cell signaling and biological functions. FEBS J 2016; 284:27-41. [DOI: 10.1111/febs.13940] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Nikolaos A. Afratis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
- Biotech Research & Innovation Center University of Copenhagen Denmark
| | - Dragana Nikitovic
- Laboratory of Anatomy‐Histology‐Embryology School of Medicine University of Crete Heraklion Greece
| | | | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| | - John R. Couchman
- Biotech Research & Innovation Center University of Copenhagen Denmark
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| |
Collapse
|
9
|
Li JP, Kusche-Gullberg M. Heparan Sulfate: Biosynthesis, Structure, and Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:215-73. [PMID: 27241222 DOI: 10.1016/bs.ircmb.2016.02.009] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heparan sulfate (HS) proteoglycans (PGs) are ubiquitously expressed on cell surfaces and in the extracellular matrix of most animal tissues, having essential functions in development and homeostasis, as well as playing various roles in disease processes. The functions of HSPGs are mainly dependent on interactions between the HS-side chains with a variety of proteins including cytokines, growth factors, and their receptors. In a given HS polysaccharide, negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The mode of HS-protein interactions is assessed through binding experiments using saccharides of defined composition in vitro, signaling assays in cell models where HS structures are manipulated, and targeted disruption of genes for biosynthetic enzymes in animals (mouse, zebrafish, Drosophila, and Caenorhabditis elegans) followed by phenotype analysis. Whereas some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis and the potential for development of therapeutics targeting HS-protein interactions.
Collapse
Affiliation(s)
- J-P Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden; SciLifeLab, University of Uppsala, Uppsala, Sweden.
| | | |
Collapse
|
10
|
Kerever A, Mercier F, Nonaka R, de Vega S, Oda Y, Zalc B, Okada Y, Hattori N, Yamada Y, Arikawa-Hirasawa E. Perlecan is required for FGF-2 signaling in the neural stem cell niche. Stem Cell Res 2013; 12:492-505. [PMID: 24434631 DOI: 10.1016/j.scr.2013.12.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/26/2013] [Accepted: 12/21/2013] [Indexed: 01/21/2023] Open
Abstract
In the adult subventricular zone (neurogenic niche), neural stem cells double-positive for two markers of subsets of neural stem cells in the adult central nervous system, glial fibrillary acidic protein and CD133, lie in proximity to fractones and to blood vessel basement membranes, which contain the heparan sulfate proteoglycan perlecan. Here, we demonstrate that perlecan deficiency reduces the number of both GFAP/CD133-positive neural stem cells in the subventricular zone and new neurons integrating into the olfactory bulb. We also show that FGF-2 treatment induces the expression of cyclin D2 through the activation of the Akt and Erk1/2 pathways and promotes neurosphere formation in vitro. However, in the absence of perlecan, FGF-2 fails to promote neurosphere formation. These results suggest that perlecan is a component of the neurogenic niche that regulates FGF-2 signaling and acts by promoting neural stem cell self-renewal and neurogenesis.
Collapse
Affiliation(s)
- Aurelien Kerever
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Frederic Mercier
- Department of Tropical Medicine and Infectious Diseases, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Risa Nonaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susana de Vega
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Oda
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Bernard Zalc
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière (CRICM), UMRS 975, Paris, 75013 France; Inserm, U 975, Paris, 75013 France; CNRS, UMR 7225, Paris, 75013 France
| | - Yohei Okada
- Department of Physiology and Kanrinmaru project, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshihiko Yamada
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Heparan sulfate proteoglycans as multifunctional cell regulators: cell surface receptors. Methods Mol Biol 2012; 836:239-55. [PMID: 22252639 DOI: 10.1007/978-1-61779-498-8_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proteoglycans are macromolecules expressed on the cell surfaces and in the extracellular matrix of most animal tissues (Annu Rev Biochem 68:729-777, 1999; Int Rev Cell Mol Biol 276:105-159, 2009). Heparan sulfate proteoglycans (HSPGs) are essential for animal development and homeostasis, and are involved in various pathological processes. The functions of HSPGs are largely exerted through interaction of the heparan sulfate (HS) side chains with different types of ligands, including diverse molecules such as cytokines, enzymes, and pathogens. One of the important roles of cell surface HSPGs is to mediate cytokine-induced cell signaling through interaction with growth factors (GFs) and their cognate receptors. A selective dependence of GFs for different structural features of HS has been demonstrated by applying cell models that are mutated variously in HS structure due to deficiency in enzymes involved in the biosynthesis of HS chains.
Collapse
|
12
|
Choi Y, Chung H, Jung H, Couchman JR, Oh ES. Syndecans as cell surface receptors: Unique structure equates with functional diversity. Matrix Biol 2010; 30:93-9. [PMID: 21062643 DOI: 10.1016/j.matbio.2010.10.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/28/2022]
Abstract
An increasing number of functions for syndecan cell surface heparan sulfate proteoglycans have been proposed over the last decade. Moreover, aberrant syndecan regulation has been found to play a critical role in multiple pathologies, including cancers, as well as wound healing and inflammation. As receptors, they have much in common with other molecules on the cell surface. Syndecans are type I transmembrane molecules with cytoplasmic domains that link to the actin cytoskeleton and can interact with a number of regulators. However, they are also highly complex by virtue of their external glycosaminoglycan chains, especially heparan sulfate. This heterodisperse polysaccharide has the potential to interact with many ligands from diverse protein families. Here, we relate the structural features of syndecans to some of their known functions.
Collapse
Affiliation(s)
- Youngsil Choi
- Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
13
|
Iwamoto R, Mine N, Kawaguchi T, Minami S, Saeki K, Mekada E. HB-EGF function in cardiac valve development requires interaction with heparan sulfate proteoglycans. Development 2010; 137:2205-14. [DOI: 10.1242/dev.048926] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HB-EGF, a member of the EGF family of growth factors, plays an important role in cardiac valve development by suppressing mesenchymal cell proliferation. Here, we show that HB-EGF must interact with heparan sulfate proteoglycans (HSPGs) to properly function in this process. In developing valves, HB-EGF is synthesized in endocardial cells but accumulates in the mesenchyme by interacting with HSPGs. Disrupting the interaction between HB-EGF and HSPGs in an ex vivo model of endocardial cushion explants resulted in increased mesenchymal cell proliferation. Moreover, homozygous knock-in mice (HBΔhb/Δhb) expressing a mutant HB-EGF that cannot bind to HSPGs developed enlarged cardiac valves with hyperproliferation of mesenchymal cells; this resulted in a phenotype that resembled that of Hbegf-null mice. Interestingly, although Hbegf-null mice had abnormal heart chambers and lung alveoli, HBΔhb/Δhb mice did not exhibit these defects. These results indicate that interactions with HSPGs are essential for the function of HB-EGF, especially in cardiac valve development, in which HB-EGF suppresses mesenchymal cell proliferation.
Collapse
Affiliation(s)
- Ryo Iwamoto
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Naoki Mine
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Taichiro Kawaguchi
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Seigo Minami
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kazuko Saeki
- Department of Medical Biochemistry, Graduate School Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Eisuke Mekada
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Mailankot M, Howell S, Nagaraj RH. Kynurenine inhibits fibroblast growth factor 2-mediated expression of crystallins and MIP26 in lens epithelial cells. Biochim Biophys Acta Mol Basis Dis 2010; 1802:609-20. [PMID: 20478381 DOI: 10.1016/j.bbadis.2010.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/16/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
Fibroblast growth factor-2 (FGF2)-mediated signaling plays an important role in fiber cell differentiation in eye lens. We had previously shown that kynurenine (KYN) produced from the overexpression of indoleamine 2,3-dioxygenase (IDO) causes defects in the differentiation of fiber cells, induces fiber cell apoptosis and cataract formation in the mouse lens, and leads to cell cycle arrest in cultured mouse lens epithelial cells (mLEC). In this study, we demonstrate that exogenous KYN reduces FGF2-mediated expression of alpha-, beta-, and gamma-crystallin and MIP26 in mLEC. We show that endogenously produced KYN in mLEC of IDO transgenic animals causes similar defects in FGF2-induced protein expression and that a competitive inhibitor of IDO prevents such defects. Our data also show that KYN inhibits FGF2-induced Akt and ERK1/2 phosphorylation in mLEC, which are required for crystallin and MIP26 expression in the lens. KYN does not inhibit FGF2 binding to cells but inhibit phosphorylation of FGFR1in mLEC. Together our data suggest that KYN might inhibit FGF2-mediated fiber cell differentiation by preventing expression of crystallins and MIP26. Our studies provide a novel mechanism by which KYN can exert deleterious effects in cells.
Collapse
Affiliation(s)
- Maneesh Mailankot
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
15
|
Friedl A. Proteoglycans: master modulators of paracrine fibroblast-carcinoma cell interactions. Semin Cell Dev Biol 2009; 21:66-71. [PMID: 19931629 DOI: 10.1016/j.semcdb.2009.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/13/2009] [Indexed: 11/19/2022]
Abstract
Reciprocal interactions between tumor and stromal cells govern carcinoma growth and progression. Signaling functions between these cell types in the tumor microenvironment are largely carried out by secreted growth factors and cytokines. This review discusses how proteoglycans, which are abundantly present in normal and neoplastic tissues, modulate paracrine growth factor signaling events. General principles of proteoglycan involvement in paracrine signaling include stromal induction, core protein processing by proteases and growth factor binding via proteoglycan glycosaminoglycan chains or core protein domains.
Collapse
Affiliation(s)
- Andreas Friedl
- Department of Pathology and Laboratory Medicine, 6051 Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705-2275, United States.
| |
Collapse
|
16
|
Tayalia P, Mooney DJ. Controlled growth factor delivery for tissue engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3269-3285. [PMID: 20882497 DOI: 10.1002/adma.200900241] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Growth factors play a crucial role in information transfer between cells and their microenvironment in tissue engineering and regeneration. They initiate their action by binding to specific receptors on the surface of target cells and the chemical identity, concentration, duration, and context of these growth factors contain information that dictates cell fate. Hence, the importance of exogenous delivery of these molecules in tissue engineering is unsurprising, considering their importance for tissue regeneration. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and their potential toxicity at high systemic levels, suggest that conventional routes of administration are unlikely to be effective. In this review, we provide an overview of the design criteria for growth factor delivery vehicles with respect to the growth factor itself and the microenvironment for delivery. We discuss various methodologies that could be adopted to achieve this localized delivery, and strategies using polymers as delivery vehicles in particular.
Collapse
|
17
|
Sun X, Dobra K, Björnstedt M, Hjerpe A. Upregulation of 9 genes, including that for thioredoxin, during epithelial differentiation of mesothelioma cells. Differentiation 2008. [DOI: 10.1111/j.1432-0436.2000.660404.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Stallcup WB, Huang FJ. A role for the NG2 proteoglycan in glioma progression. Cell Adh Migr 2008; 2:192-201. [PMID: 19262111 PMCID: PMC2634088 DOI: 10.4161/cam.2.3.6279] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 05/13/2008] [Indexed: 01/18/2023] Open
Abstract
Many human gliomas carry markers characteristic of oligodendrocyte progenitor cells (such as Olig-2, PDGF alpha receptor and NG2 proteoglycan), suggesting these progenitors as the cells of origin for glioma initiation. This review considers the potential roles of the NG2 proteoglycan in glioma progression. NG2 is expressed not only by glioma cells and by oligodendrocyte progenitors, but also by pericytes associated with the tumor microvasculature. The proteoglycan may therefore promote tumor vascularization and recruitment of normal progenitors to the tumor mass, in addition to mediating expansion of the transformed cell population. Along with potentiating growth factor signaling and serving as a cell surface receptor for extracellular matrix components, NG2 also has the ability to mediate activation of beta-1 integrins. These molecular interactions allow the proteoglycan to contribute to critical processes such as cell proliferation, cell motility and cell survival.
Collapse
Affiliation(s)
- William B Stallcup
- Burnham Institute for Medical Research, Cancer Research Center, La Jolla, California 92037, USA.
| | | |
Collapse
|
19
|
Aikawa T, Whipple CA, Lopez ME, Gunn J, Young A, Lander AD, Korc M. Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J Clin Invest 2008; 118:89-99. [PMID: 18064304 DOI: 10.1172/jci32412] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 10/17/2007] [Indexed: 12/23/2022] Open
Abstract
Cells isolated from many types of human cancers express heparin-binding growth factors (HBGFs) that drive tumor growth, metastasis, and angiogenesis. The heparan sulfate proteoglycan glypican-1 (GPC1) is a coreceptor for HBGFs. Here we show that both cancer cell-derived and host-derived GPC1 are crucial for efficient growth, metastasis, and angiogenesis of human and mouse cancer cells. Thus downregulation of GPC1 in the human pancreatic cancer cell line PANC-1, using antisense approaches, resulted in prolonged doubling times and decreased anchorage-independent growth in vitro as well as attenuated tumor growth, angiogenesis, and metastasis when these cells were transplanted into athymic mice. Moreover, athymic mice that lacked GPC1 exhibited decreased tumor angiogenesis and metastasis following intrapancreatic implantation with either PANC-1 or T3M4 human pancreatic cancer cells and fewer pulmonary metastases following intravenous injection of murine B16-F10 melanoma cells. In addition, hepatic endothelial cells isolated from these mice exhibited an attenuated mitogenic response to VEGF-A. These data indicate that cancer cell- and host-derived GPC1 are crucial for full mitogenic, angiogenic, and metastatic potential of cancer cells. Thus targeting GPC1 might provide new avenues for cancer therapy and for the prevention of cancer metastasis.
Collapse
Affiliation(s)
- Takuma Aikawa
- Department of Medicine, Dartmouth Hitchcock Medical Center and Dartmouth Medical School, Hanover, New Hampshire 03756, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Muto T, Miyoshi K, Munesue S, Nakada H, Okayama M, Matsuo T, Noma T. Differential expression of syndecan isoforms during mouse incisor amelogenesis. THE JOURNAL OF MEDICAL INVESTIGATION 2007; 54:331-9. [PMID: 17878683 DOI: 10.2152/jmi.54.331] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Syndecans are transmembranous heparan sulfate proteoglycans (HSPGs) with covalently attached glycosaminoglycan side-chains located on the cell surface. The mammalian syndecan family is composed of four types of syndecans (syndecan-1 to -4). Syndecans interact with the intracellular cytoskeleton through the cytoplasmic domains of their core proteins and membrane proteins, extracellular enzymes, growth factors, and matrix components, through their heparan-sulfate chains, to regulate developmental processes.Here, as a first step to assess the possible roles of syndecan proteins in amelogenesis, we examined the expression patterns of all syndecan isoforms in continuously growing mouse incisors, in which we can overview major differentiation stages of amelogenesis at a glance. Understanding the expression domain of each syndecan isoform during specific developmental stages seems useful for investigating their physiological roles in amelogenesis. Immunohistochemical analysis of syndecan core proteins in the lower incisors from postnatal day 1 mice revealed spatially and temporally specific expression patterns, with syndecan-1 expressed in undifferentiated epithelial and mesenchymal cells, and syndecan-2, -3, and -4 in more differentiated cells. These findings suggest that each syndecan isoform functions distinctly during the amelogenesis of the incisors of mice.
Collapse
Affiliation(s)
- Taro Muto
- Department of Molecular Biology, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Navarro FP, Fares RP, Sanchez PE, Nadam J, Georges B, Moulin C, Morales A, Pequignot JM, Bezin L. Brain heparanase expression is up-regulated during postnatal development and hypoxia-induced neovascularization in adult rats. J Neurochem 2007; 105:34-45. [PMID: 17996027 DOI: 10.1111/j.1471-4159.2007.05116.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Heparanase is an endo-beta-d-glucuronidase which specifically cleaves extracellular and cell surface heparan sulphates at intra-chain sites. Its enzymatic activity is strongly implicated in cell dissemination associated with tumor metastasis and inflammation. Indeed, heparanase gene is expressed in various tumors and its over-expression is correlated with increased tumor vascularity and metastatic potential of tumor cells. However, heparanase expression in non-invasive and non-immune tissue, including brain, has received less attention. Using RT-qPCR, western blot and histological analysis, we demonstrate in the adult rat that heparanase transcript is differentially expressed according to brain area, and that heparanase protein is mainly detected in neurons. Furthermore, we provide evidence that heparanase transcript and protein reach their greatest levels at early postnatal stages, in particular within the neocortex characterized by intensive structural plasticity. Using the in vitro model of PC12-induced neuronal differentiation, we suggest that developmental regulation of heparanase may coincide with axonal and dendritic pathfinding. At adulthood, we demonstrate that the increased heparanase transcript level correlates in the hippocampus with enhanced angiogenesis following repeated hypoxia exposures. Taken together, our results emphasize the potential importance of heparanase in brain homeostasis, both during development and adaptative responses to severe environmental challenges.
Collapse
|
22
|
Andrade RP, Palmeirim I, Bajanca F. Molecular clocks underlying vertebrate embryo segmentation: A 10-year-old hairy-go-round. ACTA ACUST UNITED AC 2007; 81:65-83. [PMID: 17600780 DOI: 10.1002/bdrc.20094] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Segmentation of the vertebrate embryo body is a fundamental developmental process that occurs with strict temporal precision. Temporal control of this process is achieved through molecular segmentation clocks, evidenced by oscillations of gene expression in the unsegmented presomitic mesoderm (PSM, precursor tissue of the axial skeleton) and in the distal limb mesenchyme (limb chondrogenic precursor cells). The first segmentation clock gene, hairy1, was identified in the chick embryo PSM in 1997. Ten years later, chick hairy2 expression unveils a molecular clock operating during limb development. This review revisits vertebrate embryo segmentation with special emphasis on the current knowledge on somitogenesis and limb molecular clocks. A compilation of human congenital disorders that may arise from deregulated embryo clock mechanisms is presented here, in an attempt to reconcile different sources of information regarding vertebrate embryo development. Challenging open questions concerning the somitogenesis clock are presented and discussed, such as When?, Where?, How?, and What for? Hopefully the next decade will be equally rich in answers.
Collapse
Affiliation(s)
- Raquel P Andrade
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
| | | | | |
Collapse
|
23
|
Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa-Hirasawa E, Efird JT, Mercier F. Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 2007; 25:2146-57. [PMID: 17569787 DOI: 10.1634/stemcells.2007-0082] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The novel extracellular matrix structures called fractones are found in the lateral ventricle walls, the principal adult brain stem cell niche. By electron microscopy, fractones were shown to contact neural stem and progenitor cells (NSPC), suggesting a role in neurogenesis. Here, we investigated spatial relationships between proliferating NSPC and fractones and identified basic components and the first function of fractones. Using bromodeoxyuridine (BrdU) for birth-dating cells in the adult mouse lateral ventricle wall, we found most mitotic cells next to fractones, although some cells emerged next to capillaries. Like capillary basement membranes, fractones were immunoreactive for laminin beta1 and gamma1, collagen IV, nidogen, and perlecan, but not laminin-alpha1, in the adult rat, mouse, and human. Intriguingly, N-sulfate heparan sulfate proteoglycan (HSPG) immunoreactivity was restricted to fractone subpopulations and infrequent subependymal capillaries. Double immunolabel for BrdU and N-sulfate HSPG revealed preferential mitosis next to N-sulfate HSPG immunoreactive fractones. To determine whether N sulfate HSPG immunoreactivity within fractones reflects a potential for binding neurogenic growth factors, we identified biotinylated fibroblast growth factor 2 (FGF-2) binding sites in situ on frozen sections, and in vivo after intracerebroventricular injection of biotinylated FGF-2 in the adult rat or mouse. Both binding assays revealed biotinylated FGF-2 on fractone subpopulations and on infrequent subependymal capillaries. The binding of biotinylated FGF-2 was specific and dependent upon HSPG, as demonstrated in vitro and in vivo by inhibition with heparatinase and by the concomitant disappearance of N-sulfate HSPG immunoreactivity. These results strongly suggest that fractones promote growth factor activity in the neural stem cell niche.
Collapse
Affiliation(s)
- Aurelien Kerever
- John A. Burns School of Medicine, Department of Tropical Medicine and Infectious Diseases, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
D'Souza SS, Daikoku T, Farach-Carson MC, Carson DD. Heparanase expression and function during early pregnancy in mice. Biol Reprod 2007; 77:433-41. [PMID: 17507691 DOI: 10.1095/biolreprod.107.061317] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Embryo implantation is a complex process that involves interactions between cell-surface and extracellular components of the blastocyst and the uterus, including blastocyst adhesion to the uterine luminal epithelium, epithelial basement membrane penetration and stromal extracellular matrix remodeling, angiogenesis, and decidualization. These processes all involve interactions with heparan sulfate (HS) proteoglycans, which harbor various growth factors and cytokines and support cell adhesion. Heparanase (HPSE) is an endo-beta-glucuronidase that cleaves HS at specific sites. HPSE also can act as an adhesion molecule independent of its catalytic activity. Thus, HPSE is a multifunctional molecule contributing to and modulating HS-dependent processes. Exogenously added HPSE improves embryo implantation in mice; however, no information is available regarding the normal pattern of HPSE expression and activity during the implantation process in any system. Using several approaches, including real-time RT-PCR, in situ hybridization, and immunohistochemistry, we determined that uterine HPSE expression increases dramatically during early pregnancy in mice. Heparanase mRNA and protein were primarily expressed in decidua and were rapidly induced at the implantation site. Uterine HPSE activity was characterized and demonstrated to increase >40-fold during early pregnancy. Finally, we demonstrate that the HPSE inhibitor PI-88 severely inhibits embryo implantation in vivo. Collectively, these results indicate that HPSE plays a role in blastocyst implantation and complements previous studies showing a role for HS-dependent interactions in this process.
Collapse
Affiliation(s)
- Sonia S D'Souza
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
25
|
Song SJ, Cool SM, Nurcombe V. Regulated expression of syndecan-4 in rat calvaria osteoblasts induced by fibroblast growth factor-2. J Cell Biochem 2007; 100:402-11. [PMID: 16924669 DOI: 10.1002/jcb.21068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor-2 (FGF2) is a member of a prominent growth factor family that drives proliferation in a wide variety of cell types, including osteoblasts. The binding and signal transduction triggered by these mitogens is dependent on glycosaminoglycan (GAG) sugars, particularly of the heparan sulfate (HS) class. These are secreted in proteoglycan (PG) complexes, some of which become FGF co-receptors. The syndecans, the transmembrane forms of HSPG of which there are four members, act as multifunctional receptors for a variety of ligands involved in cell-extracellular matrix (ECM) adhesion as well as growth factor binding. To understand the role of syndecans in developing osteoblasts, the effects of exogenous FGF2 on syndecan expression were examined using primary rat calvarial osteoblasts. All four syndecan mRNAs were expressed in the osteoblasts, although only syndecan-4 was upregulated by FGF2 treatment in a dose-dependent manner. This upregulation could be abrogated by pretreatment with the protein synthesis inhibitor cycloheximide, suggesting that the upregulation of syndecan-4 by FGF2 is not a primary response. Osteoblast proliferation and mineralization were enhanced by exogenous FGF2 treatment, but could be specifically diminished by anti-syndecan-4 antibody pretreatment. This treatment also blocked FGF2-induced extracellular signal-regulated kinase activation, but not the expression of the bone-specific transcription factor Runx2. These results demonstrate that mitogen-triggered syndecan-4 expression is an intrinsic part of the pathways subtending osteoblast proliferation and mineralization.
Collapse
Affiliation(s)
- Shu Jun Song
- Stem Cell and Tissue Repair Laboratory, Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, Singapore 138673
| | | | | |
Collapse
|
26
|
Abstract
Currently there is an intense effort being made to elucidate the factors that control stem and progenitor cell fate. Developments in our understanding of the FGF/FGFR pathway and its role as an effector of stem cell pluripotency have heightened expectations that a therapeutic use for stem cells will move from a possibility to a probability. Mounting evidence is revealing the molecular mechanisms by which fibroblast growth factor (FGF) signaling, together with a large number of other growth and adhesive factors, is controlled by the extracellular sugar, heparan sulfate (HS). What has resulted is a novel means of augmenting and thus regulating the growth factor control of stem and progenitor cell fate. Here, we review the numerous bioactivities of HS, and the development of strategies to implement HS-induced control of cell fate decisions.
Collapse
Affiliation(s)
- Simon M Cool
- Laboratory of Stem Cells and Tissue Repair, Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673.
| | | |
Collapse
|
27
|
Reiland J, Kempf D, Roy M, Denkins Y, Marchetti D. FGF2 binding, signaling, and angiogenesis are modulated by heparanase in metastatic melanoma cells. Neoplasia 2006; 8:596-606. [PMID: 16867222 PMCID: PMC1601937 DOI: 10.1593/neo.06244] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heparanase (HPSE) and fibroblast growth factor-2 (FGF2) are critical regulators of melanoma angiogenesis and metastasis. Elevated HPSE expression contributes to melanoma progression; however, further augmentation of HPSE presence can inhibit tumorigenicity. HPSE enzymatically cleaves heparan sulfate glycosaminoglycan chains (HS) from proteoglycans. HS act as both low-affinity FGF2 receptors and coreceptors in the formation of high-affinity FGF2 receptors. We have investigated HPSE's ability to modulate FGF2 activity through HS remodeling. Extensive HPSE degradation of human metastatic melanoma cells (70W) inhibited FGF2 binding. Unexpectedly, treatment of 70W cells with low HPSE concentrations enhanced FGF2 binding. In addition, HPSE-unexposed cells did not phosphorylate extracellular signal-related kinase (ERK) or focal adhesion kinase (FAK) in response to FGF2. Conversely, in cells treated with HPSE, FGF2 stimulated ERK and FAK phosphorylation. Secondly, the presence of soluble HPSE-degraded HS enhanced FGF2 binding and ERK phosphorylation at low HS concentrations. Higher concentrations of soluble HS inhibited FGF2 binding, but FGF2 signaling through ERK remained enhanced. Soluble HS were unable to support FGF2-stimulated FAK phosphorylation irrespective of HPSE treatment. Finally, cell exposure to HPSE or to HPSE-degraded HS modulated FGF2-induced angiogenesis in melanoma. In conclusion, these effects suggest relevant mechanisms for the HPSE modulation of melanoma growth factor responsiveness and tumorigenicity.
Collapse
Affiliation(s)
- Jane Reiland
- Department of Comparative Biomedical Sciences-SVM, Louisiana State University-Baton Rouge, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
28
|
Ghiselli G, Agrawal A. The human D-glucuronyl C5-epimerase gene is transcriptionally activated through the beta-catenin-TCF4 pathway. Biochem J 2006; 390:493-9. [PMID: 15853773 PMCID: PMC1198929 DOI: 10.1042/bj20050152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heparan sulphate (HS) is a ubiquitous constituent of the extracellular matrix that is required for the biological activity of circulating soluble and insoluble extracellular ligands. GLCE (D-glucuronyl C5-epimerase), an enzyme responsible for the epimerization of D-glucuronic acid into L-iduronic acid of HS, endows the nascent polysaccharide chain with the ability to bind to growth factors and cytokines. In order to examine the mechanism of regulation of GLCE expression, the functional organization of the human GLCE gene promoter has been investigated. Studies utilizing stepwise deleted and site-directed mutagenized promoter constructs have shed light on the functional relevance of two cis-acting binding elements for the beta-catenin-TCF4 complex (where TCF4 stands for T-cell factor 4) that are located in the enhancer region of the promoter. The ability of the putative binding sequences to bind the beta-catenin-TCF4 complex has been confirmed through electrophoretic mobility-shift and supershift analyses. We have found that, in a set of human colon carcinoma cell lines, the expression of GLCE correlates with the degree of activation of the beta-catenin-TCF4 transactivation complex. Furthermore, the ectopic expression of beta-catenin-TCF4 in cells that constitutively express low levels of the transactivation complex produces a significant increase of GLCE transcript level and, at the same time, enhances the rate of D-glucuronic acid epimerization in HS. The data obtained are consistent with the idea that the beta-catenin-TCF4 transactivation pathway plays a major role in modulating GLCE expression, thus contributing to the regulation of HS biosynthesis and its structural organization.
Collapse
Affiliation(s)
- Giancarlo Ghiselli
- Department of Pathology and Cell Biology, Thomas Jefferson University, 1020 Locust Street, JAH 371, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
29
|
Murakami K, Namikawa K, Shimizu T, Shirasawa T, Yoshida S, Kiyama H. Nerve injury induces the expression of EXT2, a glycosyltransferase required for heparan sulfate synthesis. Neuroscience 2006; 141:1961-9. [PMID: 16784821 DOI: 10.1016/j.neuroscience.2006.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 11/25/2022]
Abstract
Heparan sulfate proteoglycans, which bear long chains of heparan sulfate glycosaminoglycan, play significant roles during embryogenesis, including the formation of the CNS. However, their involvement in nerve regeneration has not yet been clarified. Here, we found that the mRNA expression of EXT2, one of the crucial enzymes for heparan sulfate-glycosaminoglycan synthesis, was markedly up-regulated in injured hypoglossal motor neurons after axotomy. In addition, immunohistochemical staining with an antibody specific for heparan sulfate-glycosaminoglycan chains demonstrated increased expression of heparan sulfate-glycosaminoglycan chains in the injured nucleus. Furthermore, the mRNA expressions of glypican-1 and syndecan-1, which are both well-known heparan sulfate proteoglycans, were prominently up-regulated in injured motor neurons. These results suggest that the biosynthesis of heparan sulfate chains promoted by EXT2 is activated in injured motor neurons, and that glypican-1 and syndecan-1 are potent candidates for heparan sulfate proteoglycans involved in peripheral nerve regeneration.
Collapse
Affiliation(s)
- K Murakami
- Department of Anatomy and Neurobiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Takazaki R, Shishido Y, Iwamoto R, Mekada E. Suppression of the Biological Activities of the Epidermal Growth Factor (EGF)-like Domain by the Heparin-binding Domain of Heparin-binding EGF-like Growth Factor. J Biol Chem 2004; 279:47335-43. [PMID: 15331606 DOI: 10.1074/jbc.m408556200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that has a high affinity for heparin and heparan sulfate. While interactions with heparin are thought to modulate the biological activity of HB-EGF, the precise role of the heparin-binding domain has remained unclear. We analyzed the activity of wild-type HB-EGF and a mutant form lacking the heparin-binding domain (DeltaHB) in the presence or absence of heparin. The activity of the EGF-like domain of HB-EGF was determined by measuring binding to diphtheria toxin (DT) as well as the growth factor activity in EGF receptor-expressing cells. The binding affinity of DeltaHB for DT was much higher than that of wild-type HB-EGF in the absence of heparin. The binding affinity of HB-EGF for DT was increased by addition of exogenous heparin and reached the level close to the affinity of DeltaHB, whereas that of DeltaHB was not affected. Moreover, the growth factor activity of DeltaHB was much higher than that of wild-type HB-EGF in the absence of heparin but was not affected by addition of exogenous heparin, whereas HB-EGF had increased growth factor activity with added heparin. These results indicate that the heparin-binding domain suppresses the activity of the EGF-like domain of HB-EGF and that association of heparin with HB-EGF via this domain removes the suppressive effect. Thus, we conclude that the heparin-binding domain serves as a negative regulator of this growth factor.
Collapse
Affiliation(s)
- Risa Takazaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
31
|
Shimo T, Gentili C, Iwamoto M, Wu C, Koyama E, Pacifici M. Indian hedgehog and syndecans-3 coregulate chondrocyte proliferation and function during chick limb skeletogenesis. Dev Dyn 2004; 229:607-17. [PMID: 14991716 DOI: 10.1002/dvdy.20009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Hedgehog proteins exert critical roles in embryogenesis and require heparan sulfate proteoglycans (HS-PGs) for action. Indian hedgehog (Ihh) is produced by prehypertrophic chondrocytes in developing long bones and regulates chondrocyte proliferation and other events, but it is not known whether it requires HS-PGs for function. Because the HS-PG syndecan-3 is preferentially expressed by proliferating chondrocytes, we tested whether it mediates Ihh action. Primary chick chondrocyte cultures were treated with recombinant Ihh (rIhh-N) in absence or presence of heparinase I or syndecan-3 neutralizing antibodies. While rIhh-N stimulated proliferation in control cultures, it failed to do so in heparinase- or antibody-treated cultures. In reciprocal gain-of-function studies, chondrocytes were made to overexpress syndecan-3 by an RCAS viral vector. Cells became more responsive to rIhh-N, but even this response was counteracted by heparinase or antibody treatment. To complement the in vitro data, RCAS viral particles were microinjected in day 4-5 chick wing buds and effects of syndecan-3 misexpression were monitored over time. Syndecan-3 misexpression led to widespread chondrocyte proliferation and, interestingly, broader expression and distribution of Ihh. In addition, the syndecan-3 misexpressing skeletal elements were short, remained cartilaginous, lacked osteogenesis, and exhibited a markedly reduced expression of collagen X and osteopontin, products characteristic of hypertrophic chondrocytes and bone cells. The data are the first to indicate that Ihh action in chondrocyte proliferation involves syndecan-3 and to identify a specific member of the syndecan family as mediator of hedgehog function.
Collapse
Affiliation(s)
- Tsuyoshi Shimo
- Department of Orthopaedic Surgery, Thomas Jefferson University Medical School, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
32
|
Reiland J, Sanderson RD, Waguespack M, Barker SA, Long R, Carson DD, Marchetti D. Heparanase Degrades Syndecan-1 and Perlecan Heparan Sulfate. J Biol Chem 2004; 279:8047-55. [PMID: 14630925 DOI: 10.1074/jbc.m304872200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparanase (HPSE-1) is involved in the degradation of both cell-surface and extracellular matrix (ECM) heparan sulfate (HS) in normal and neoplastic tissues. Degradation of heparan sulfate proteoglycans (HSPG) in mammalian cells is dependent upon the enzymatic activity of HPSE-1, an endo-beta-d-glucuronidase, which cleaves HS using a specific endoglycosidic hydrolysis rather than an eliminase type of action. Elevated HPSE-1 levels are associated with metastatic cancers, directly implicating HPSE-1 in tumor progression. The mechanism of HPSE-1 action to promote tumor progression may involve multiple substrates because HS is present on both cell-surface and ECM proteoglycans. However, the specific targets of HPSE-1 action are not known. Of particular interest is the relationship between HPSE-1 and HSPG, known for their involvement in tumor progression. Syndecan-1, an HSPG, is ubiquitously expressed at the cell surface, and its role in cancer progression may depend upon its degradation. Conversely, another HSPG, perlecan, is an important component of basement membranes and ECM, which can promote invasive behavior. Down-regulation of perlecan expression suppresses the invasive behavior of neoplastic cells in vitro and inhibits tumor growth and angiogenesis in vivo. In this work we demonstrate the following. 1) HPSE-1 cleaves HS present on the cell surface of metastatic melanoma cells. 2) HPSE-1 specifically degrades HS chains of purified syndecan-1 or perlecan HS. 3) Syndecan-1 does not directly inhibit HPSE-1 enzymatic activity. 4) The presence of exogenous syndecan-1 inhibits HPSE-1-mediated invasive behavior of melanoma cells by in vitro chemoinvasion assays. 5) Inhibition of HPSE-1-induced invasion requires syndecan-1 HS chains. These results demonstrate that cell-surface syndecan-1 and ECM perlecan are degradative targets of HPSE-1, and syndecan-1 regulates HPSE-1 biological activity. This suggest that expression of syndecan-1 on the melanoma cell surface and its degradation by HPSE-1 are important determinants in the control of tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Jane Reiland
- Department of Comparative Biomedical Sciences-SVM, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ralph GS, Parham S, Lee SR, Beard GL, Craigon MH, Ward N, White JR, Barber RD, Rayner W, Kingsman SM, Mundy CR, Mazarakis ND, Krige D. Identification of potential stroke targets by lentiviral vector mediated overexpression of HIF-1 alpha and HIF-2 alpha in a primary neuronal model of hypoxia. J Cereb Blood Flow Metab 2004; 24:245-58. [PMID: 14747751 DOI: 10.1097/01.wcb.0000110532.48786.46] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The identification of genes differentially regulated by ischemia will lead to an improved understanding of cell death pathways such as those involved in the neuronal loss observed following a stroke. Furthermore, the characterization of such pathways could facilitate the identification of novel targets for stroke therapy. We have used a novel approach to amplify differential gene expression patterns in a primary neuronal model of stroke by employing a lentiviral vector system to specifically bias the transcriptional activation of hypoxically regulated genes. Overexpression of the hypoxia-induced transcription factor subunits HIF-1 alpha and HIF-2 alpha elevated hypoxia-mediated transcription of many known HIF-regulated genes well above control levels. Furthermore, many potentially novel HIF-regulated genes were discovered that were not previously identified as hypoxically regulated. Most of the novel genes identified were activated by a combination of HIF-2 alpha overexpression and hypoxic insult. These included several genes with particular importance in cell survival pathways and of potential therapeutic value. Hypoxic induction of HIF-2 alpha may therefore be a critical factor in mediating protective responses against ischemic injury. Further investigation of the genes identified in this study may provide increased understanding of the neuronal response to hypoxia and may uncover novel therapeutic targets for the treatment of cerebral ischemia.
Collapse
|
34
|
Reizes O, Benoit SC, Strader AD, Clegg DJ, Akunuru S, Seeley RJ. Syndecan-3 modulates food intake by interacting with the melanocortin/AgRP pathway. Ann N Y Acad Sci 2003; 994:66-73. [PMID: 12851299 DOI: 10.1111/j.1749-6632.2003.tb03163.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Syndecan-3, expressed in the developing nervous system and adult brain, alters feeding behavior through its interaction with the CNS melanocortin system, which provides critical tonic inhibition of both food intake and body adipose stores. A variety of both in vitro and transgenic data supports the hypothesis that syndecan-3 modulates melanocortin activity via syndecan-3 facilitation of agouti-related protein (AgRP), a competitive antagonist of alpha-melanocyte-stimulating hormone (alpha-MSH) at the melanocortin-3 and -4 receptors. Consistent with this hypothesis, mice lacking syndecan-3, which therefore would be predicted to have less effective AgRP, are more sensitive to inhibition of food intake by the melanocortin agonist MTII. Additionally, we took advantage of the fact that syndecan-3 facilitation of AgRP is limited to when it is bound to the cell membrane. Pharmacologic inhibition of the enzyme that cleaves syndecan-3 from the cell membrane leads to increased food intake in fasted rats, which have elevated levels of AgRP. Furthermore, the shedding process appears to be regulated under physiologic conditions, because a putative inhibitor of the shedding process, tissue inhibitor of metalloprotease-3 (TIMP-3), is increased by food deprivation. These observations contribute to the hypothesis that syndecan-3 regulation of melanocortin signaling contributes to the normal control of energy balance. Collectively, the data suggest that the modulation of melanocortin regulation of energy balance by syndecan-3 is modulated by the action of a TIMP-3-sensitive metalloprotease.
Collapse
Affiliation(s)
- Ofer Reizes
- Procter Gamble Pharmaceuticals, Inc, Health Care Research Center, Mason, Ohio 45040, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Kirsch T, Koyama E, Liu M, Golub EE, Pacifici M. Syndecan-3 is a selective regulator of chondrocyte proliferation. J Biol Chem 2002; 277:42171-7. [PMID: 12194984 DOI: 10.1074/jbc.m207209200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondrocyte proliferation is important for skeletal development and growth, but the mechanisms regulating it are not completely clear. Previously, we showed that syndecan-3, a cell surface heparan sulfate proteoglycan, is expressed by proliferating chondrocytes in vivo and that proliferation of cultured chondrocytes in vitro is sensitive to heparitinase treatment. To further establish the link between syndecan-3 and chondrocyte proliferation, additional studies were carried out in vivo and in vitro. We found that the topographical location of proliferating chondrocytes in developing chick long bones changes with increasing embryonic age and that syndecan-3 gene expression changes in a comparable manner. For in vitro analysis, mitotically quiescent chondrocytes were exposed to increasing amounts of fibroblast growth factor-2 (FGF-2). Proliferation was stimulated by as much as 8-10-fold within 24 h; strikingly, this stimulation was significantly prevented when the cells were treated with both fibroblast growth factor-2 (FGF-2) and antibodies against syndecan-3 core protein. This neutralizing effect was dose-dependent and elicited a maximum of 50-60% inhibition. To establish specificity of neutralizing effect, cultured chondrocytes were exposed to FGF-2, insulin-like growth factor-1, or parathyroid hormone, all known mitogens for chondrocytes. The syndecan-3 antibodies interfered only with FGF-2 mitogenic action, but not that of insulin-like growth factor-1 or parathyroid hormone. Protein cross-linking experiments indicated that syndecan-3 is present in monomeric, dimeric, and oligomeric forms on the chondrocyte surface. In addition, molecular modeling indicated that contiguous syndecan-3 molecules might form stable complexes by parallel pairing of beta-sheet segments within the ectodomain of the core protein. In conclusion, the results suggest that syndecan-3 is a direct and selective regulator of the mitotic behavior of chondrocytes and its role may involve formation of dimeric/oligomeric structures on their cell surface.
Collapse
Affiliation(s)
- Thorsten Kirsch
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore 21201, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
The sulfonation of endogenous molecules is a pervasive biological phenomenon that is not always easily understood, and although it is increasingly recognized as a function of fundamental importance, there remain areas in which significant cognizance is still lacking or at most minimal. This is particularly true in the field of endocrinology, in which the sulfoconjugation of hormones is a widespread occurrence that is only partially, if at all, appreciated. In the realm of steroid/sterol sulfoconjugation, the discovery of a novel gene that utilizes an alternative exon 1 to encode for two sulfotransferase isoforms, one of which sulfonates cholesterol and the other pregnenolone, has been an important advance. This is significant because cholesterol sulfate plays a crucial role in physiological systems such as keratinocyte differentiation and development of the skin barrier, and pregnenolone sulfate is now acknowledged as an important neurosteroid. The sulfonation of thyroglobulin and thyroid hormones has been extensively investigated and, although this transformation is better understood, there remain areas of incomplete comprehension. The sulfonation of catecholamines is a prevalent modification that has been extensively studied but, unfortunately, remains poorly understood. The sulfonation of pituitary glycoprotein hormones, especially LH and TSH, does not affect binding to their cognate receptors; however, sulfonation does play an important role in their plasma clearance, which indirectly has a significant effect on biological activity. On the other hand, the sulfonation of distinct neuroendocrine peptides does have a profound influence on receptor binding and, thus, a direct effect on biological activity. The sulfonation of specific extracellular structures plays an essential role in the binding and signaling of a large family of extracellular growth factors. In summary, sulfonation is a ubiquitous posttranslational modification of hormones and extracellular components that can lead to dramatic structural changes in affected molecules, the biological significance of which is now beginning to be appreciated.
Collapse
Affiliation(s)
- Charles A Strott
- Section on Steroid Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA.
| |
Collapse
|
37
|
Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 2002; 16:1446-65. [PMID: 12080084 DOI: 10.1101/gad.990702] [Citation(s) in RCA: 617] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- David M Ornitz
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
38
|
Blair SS. Wnts, Signaling and Sulfates. Sci Signal 2001. [DOI: 10.1126/scisignal.1012001pe32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
39
|
Blair SS. Wnts, signaling and sulfates. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:pe32. [PMID: 11579233 DOI: 10.1126/stke.2001.101.pe32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Questions remain about the signaling pathways that control pattern formation during development. Blair describes how sulfated glycosaminoglycans affect several developmentally important signaling pathways, including Wnt-Wingless, Fibroblast growth factor, Hedgehog, and Bone morphogenetic protein-4 signaling. A new secreted sulfatase, Qsulf1, regulates the sensitivity of vertebrate cells to Wnts, possibly by modifying the sulfation of glycosaminoglycans.
Collapse
Affiliation(s)
- S S Blair
- Department of Zoology, University of Wisconsin, 250 N. Mills St., Madison, WI 53706, USA.
| |
Collapse
|
40
|
Abstract
The syndecans, cell surface heparan sulfate proteoglycans (HSPGs), bind numerous ligands via their HS glycosaminoglycan chains. The response to this binding is flavored by the identity of the core protein that bears the HS chains. Each of the syndecan core proteins has a short cytoplasmic domain that binds cytosolic regulatory factors. The syndecans also contain highly conserved transmembrane domain and extracellular domains for which important activities are slowly emerging. These protein domains, which will be the focus of this review, localize the syndecan to sites at the cell surface during development where they collaborate with other receptors to regulate signaling and cytoskeletal organization.
Collapse
Affiliation(s)
- A C Rapraeger
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
41
|
Grisaru S, Cano-Gauci D, Tee J, Filmus J, Rosenblum ND. Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev Biol 2001; 231:31-46. [PMID: 11180950 DOI: 10.1006/dbio.2000.0127] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The kidney of the Gpc3-/ mouse, a novel model of human renal dysplasia, is characterized by selective degeneration of medullary collecting ducts preceded by enhanced cell proliferation and overgrowth during branching morphogenesis. Here, we identify cellular and molecular mechanisms underlying this renal dysplasia. Glypican-3 (GPC3) deficiency was associated with abnormal and contrasting rates of proliferation and apoptosis in cortical (CCD) and medullary collecting duct (MCD) cells. In CCD, cell proliferation was increased threefold. In MCD, apoptosis was increased 16-fold. Expression of Gpc3 mRNA in ureteric bud and collecting duct cells suggested that GPC3 can exert direct effects in these cells. Indeed, GPC3 deficiency abrogated the inhibitory activity of BMP2 on branch formation in embryonic kidney explants, converted BMP7-dependent inhibition to stimulation, and enhanced the stimulatory effects of KGF. Similar comparative differences were found in collecting duct cell lines derived from GPC3-deficient and wild type mice and induced to form tubular progenitors in vitro, suggesting that GPC3 directly controls collecting duct cell responses. We propose that GPC3 modulates the actions of stimulatory and inhibitory growth factors during branching morphogenesis.
Collapse
Affiliation(s)
- S Grisaru
- Division of Nephrology, Program in Developmental Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
42
|
Park PW, Reizes O, Bernfield M. Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 2000; 275:29923-6. [PMID: 10931855 DOI: 10.1074/jbc.r000008200] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- P W Park
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
43
|
Nurcombe V, Smart CE, Chipperfield H, Cool SM, Boilly B, Hondermarck H. The proliferative and migratory activities of breast cancer cells can be differentially regulated by heparan sulfates. J Biol Chem 2000; 275:30009-18. [PMID: 10862617 DOI: 10.1074/jbc.m003038200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To explore how heparan sulfate (HS) controls the responsiveness of the breast cancer cell lines MCF-7 and MDA-MB-231 to fibroblast growth factors (FGFs), we have exposed them to HS preparations known to have specificity for FGF-1 (HS glycosaminoglycan (HSGAG A)) or FGF-2 (HSGAGB). Proliferation assays confirmed that MCF-7 cells were highly responsive to FGF-2 complexed with GAGB, whereas migration assays indicated that FGF-1/HSGAGA combinations were stimulatory for the highly invasive MDA-MB-231 cells. Quantitative polymerase chain reaction for the levels of FGF receptor (FGFR) isoforms revealed that MCF-7 cells have greater levels of FGFR1 and that MDA-MB-231 cells have greater relative levels of FGFR2. Cross-linking demonstrated that FGF-2/HSGAGB primarily activated FGFR1, which in turn up-regulated the activity of mitogen-activated protein kinase; in contrast, FGF-1/HSGAGA led to the phosphorylation of equal proportions of both FGFR1 and FGFR2, which in turn led to the up-regulation of Src and p125(FAK). MDA-MB-231 cells were particularly responsive to vitronectin substrates in the presence of FGF-1/HSGAGA, and blocking antibodies established that they used the alpha(v)beta(3) integrin to bind to it. These results suggest that the clustering of particular FGFR configurations on breast cancer cells induced by different HS chains leads to distinct phenotypic behaviors.
Collapse
Affiliation(s)
- V Nurcombe
- Department of Anatomical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia.
| | | | | | | | | | | |
Collapse
|
44
|
Lebakken CS, McQuade KJ, Rapraeger AC. Syndecan-1 signals independently of beta1 integrins during Raji cell spreading. Exp Cell Res 2000; 259:315-25. [PMID: 10964499 DOI: 10.1006/excr.2000.4981] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Syndecan-1-expressing Raji lymphoid cells (Raji-S1 cells) bind and spread rapidly when attaching to matrix ligands that contain heparan sulfate-binding domains. However, these ligands also contain binding sites for integrins, which are widely known to signal, raising the question of whether the proteoglycan core protein participates in generation of the signal for spreading. To address this question, the spreading of the Raji-S1 cells is examined on ligands specific for either beta1 integrins, known to be present on the Raji cells, or the syndecan-1 core protein. The cells adhere and spread on invasin, a ligand that activates beta1 integrins, the IIICS fragment of fibronectin, which is a specific ligand for the alpha4beta1 integrin, or mAb281.2, an antibody specific for the syndecan-1 core protein. The signaling resulting from adhesion to the syndecan-specific antibody appears integrin independent as (i) the morphology of the cells spreading on the antibody is distinct from spreading initiated by the integrins alone; (ii) spreading on the syndecan or integrin ligands is affected differently by the kinase inhibitors tyrphostin 25, genistein, and staurosporine; and (iii) spreading on the syndecan-specific antibody is not disrupted by blocking beta1 integrin activation with mAb13, a beta1 inhibitory antibody. These data demonstrate that ligation of syndecan-1 initiates intracellular signaling and suggest that this signaling occurs when cells expressing syndecan-1 adhere to matrix ligands containing heparan sulfate-binding domains.
Collapse
Affiliation(s)
- C S Lebakken
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| | | | | |
Collapse
|
45
|
Kirikoshi H, Sagara N, Saitoh T, Tanaka K, Sekihara H, Shiokawa K, Katoh M. Molecular cloning and characterization of human FGF-20 on chromosome 8p21.3-p22. Biochem Biophys Res Commun 2000; 274:337-43. [PMID: 10913340 DOI: 10.1006/bbrc.2000.3142] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fibroblast growth factors (FGFs) play important roles in morphogenesis, angiogenesis, tissue remodeling, and carcinogenesis. Human FGF-20 has been cloned and characterized in this study. FGF-20 encodes a 211-amino-acid polypeptide with the FGF-core domain. A strong hydrophobic region was found in the FGF-core domain of FGF-20; however, no typical N-terminal signal sequence was found in FGF-20, just as in FGF-9 and FGF-16. Total amino acid identities are as follows: FGF-20 vs FGF-9, 71.6%; FGF-20 vs FGF-16, 66.2%; FGF-9 vs FGF-16, 72.4%. Phylogenic analysis indicated that FGF-20, FGF-9, and FGF-16 constitute a subfamily among the FGF family. FGF-20 mRNA of 2.4 kb in size was detected in colon cancer cell line SW480 by Northern blot analysis. Lower levels of FGF-20 mRNA were detected in human fetal tissues and primary cancers by cDNA-PCR. The nucleotide sequence of FGF-20 cDNA is split into three parts in the human genome sequence of the chromosome 8p21.3-p22 region (Accession No. AB020858). These results indicate that the FGF-20 gene, located on human chromosome 8p21.3-p22, consists of three exons. Compared with the nucleotide sequence of FGF-20 cDNA determined in this study, one nucleotide deletion and one nucleotide substitution in the putative coding region were identified in human genome sequence AB020858.
Collapse
Affiliation(s)
- H Kirikoshi
- Genetics and Cell Biology Section, Genetics Division, National Cancer Center Research Institute, Tsukiji 5-chome, Chuo-ku, Tokyo, 104-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 2000; 68:729-77. [PMID: 10872465 DOI: 10.1146/annurev.biochem.68.1.729] [Citation(s) in RCA: 2113] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The heparan sulfate on the surface of all adherent cells modulates the actions of a large number of extracellular ligands. Members of both cell surface heparan sulfate proteoglycan families, the transmembrane syndecans and the glycosylphosphoinositide-linked glypicans, bind these ligands and enhance formation of their receptor-signaling complexes. These heparan sulfate proteoglycans also immobilize and regulate the turnover of ligands that act at the cell surface. The extracellular domains of these proteoglycans can be shed from the cell surface, generating soluble heparan sulfate proteoglycans that can inhibit interactions at the cell surface. Recent analyses of genetic defects in Drosophila melanogaster, mice, and humans confirm most of these activities in vivo and identify additional processes that involve cell surface heparan sulfate proteoglycans. This chapter focuses on the mechanisms underlying these activities and on the cellular functions that they regulate.
Collapse
Affiliation(s)
- M Bernfield
- Division of Developmental and Newborn Biology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Alexander CM, Reichsman F, Hinkes MT, Lincecum J, Becker KA, Cumberledge S, Bernfield M. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet 2000; 25:329-32. [PMID: 10888884 DOI: 10.1038/77108] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Syndecan-1 is a cell-surface, heparan-sulphate proteoglycan (HSPG) predominantly expressed by epithelial cells. It binds specifically to many proteins, including oncoproteins. For example, it induces the assembly of a signalling complex between FGF ligands and their cognate receptors. But so far there has been no direct evidence that this proteoglycan contributes to tumorigenesis. Here we have examined the role of syndecan-1 (encoded by Sdc1) during mammary tumour formation in response to the ectopic expression of the proto-oncogene Wnt1. We crossed syndecan-1-deficient mice with transgenic mice that express Wnt1 in mammary gland (TgN(Wnt-1)1Hev; ref. 2). Ectopic Wnt-1 expression induces generalized mammary hyperplasia, followed by the development of solitary tumours (median time 22 weeks). We show that in Sdc1-/- mice, Wnt-1-induced hyperplasia in virgin mammary gland was reduced by 70%, indicating that the Wnt-1 signalling pathway was inhibited. Of the 39 tumours that developed in a test cohort of mice, only 1 evolved in the Sdc1-/- background. In addition, we show that soluble syndecan-1 ectodomain purified from mouse mammary epithelial cells stimulates the activity of a Wnt-1 homologue in a tissue culture assay. Our results provide both genetic and biochemical evidence that syndecan-1 can modulate Wnt signalling, and is critical for Wnt-1-induced tumorigenesis of the mouse mammary gland.
Collapse
Affiliation(s)
- C M Alexander
- Division of Newborn Medicine, Childrens Hospital, Enders 950, Boston, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The proteoglycans are multifunctional macromolecules composed of a core polypeptide and a variable number of glycosaminoglycan chains. The structural diversity and complexities of proteoglycan expression in the developing and adult Nervous System underlies the variety of biological functions that these molecules fulfill. Thus, in the Nervous System, proteoglycans regulate the structural organisation of the extracellular matrix, modulate growth factor activities and cellular adhesive and motility events, such as cell migration and axon outgrowth. This review summarises the evidences indicating that proteoglycans have an important role as modulators of neurite outgrowth and neuronal polarity. Special emphasis will be placed on those studies that have shown that proteoglycans of certain subtypes inhibit neurite extension either during the development and/or the regeneration of the vertebrate Central Nervous System.
Collapse
Affiliation(s)
- P Bovolenta
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Dr. Arce 37, 28002, Madrid, Spain.
| | | |
Collapse
|
49
|
Affiliation(s)
- Alan C. Rapraeger
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
50
|
Abstract
Fibroblast growth factors (FGFs) comprise a large family of developmental and physiological signaling molecules. All FGFs have a high affinity for the glycosaminoglycan heparin and for cell surface heparan sulfate proteoglycans. A large body of biochemical and cellular evidence points to a direct role for heparin/heparan sulfate in the formation of an active FGF/FGF receptor signaling complex. However, until recently there has been no direct demonstration that heparan is required for the biological activity of FGF in a developmental system in vivo. A recent paper by Lin et al.(1) has broken through this barrier to demonstrate that heparan sulfate is essential for FGF function during Drosophila development. The establishment of a role for heparan sulfate in FGFR activation in vivo suggests that tissue-specific differences in the structure of heparan may modulate the activity of FGF. BioEssays 22:108-112, 2000.
Collapse
Affiliation(s)
- D M Ornitz
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|