1
|
Li B, Wang H, Wang M, Liang H, Hu T, Yang J, Li S, You X, Xia B, Yuan Y, Zou Y, Miao Y, Sun Y. Genome analysis of Bifidobacterium adolescentis and investigation of its effects on inflammation and intestinal barrier function. Front Microbiol 2025; 15:1496280. [PMID: 39911710 PMCID: PMC11794259 DOI: 10.3389/fmicb.2024.1496280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025] Open
Abstract
Numerous studies have confirmed that gut microbiota is a key driver in the occurrence and progression of inflammatory bowel disease (IBD). Based on the bacterial collection constructed in our previous studies, we founded that Bifidobacterium adolescentis AF91-08b2A has the potential beneficial function. We designed cohort studies, genomic studies and animal experiments to further explore the probiotic function of Bifidobacterium adolescentis AF91-08b2A and its therapeutic effect on IBD. The depletion of B. adolescentis in individuals with IBD suggested its significance for intestinal health. Genomic analysis highlighted the probiotic attributes of B. adolescentis AF91-08b2A, including resistance to antibiotics and stress, and metabolic pathways related to energy and carbohydrate metabolism, which are likely to enhance its therapeutic efficacy. In DSS-induced mice colitis model, the strain significantly enhanced the disease activity index (DAI), curbed weight loss, and attenuated colonic damage. It effectively modulated the immune response by reducing the levels of pro-inflammatory cytokines such as IL-6, IL-1β, IL-17A, IFN-γ, and TNF-α, while promoting the secretion of anti-inflammatory cytokines like IL-4, IL-10, and TGF-β1. The restoration of tight junction proteins ZO-1, occludin, and claudin-2 by B. adolescentis AF91-08b2A demonstrated its capacity to safeguard the intestinal epithelial barrier. Collectively, our findings indicate B. adolescentis AF91-08b2A as a valuable therapeutic option for UC, with its multifaceted approach to reducing inflammation and fortifying the intestinal barrier.
Collapse
Affiliation(s)
- Bo Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Haoyu Wang
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Mengmeng Wang
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hewei Liang
- BGI Research, Shenzhen, China
- BGI Research, Wuhan, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, China
| | - Tongyuan Hu
- BGI Research, Shenzhen, China
- BGI Research, Wuhan, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, China
| | - Jinlong Yang
- BGI Research, Shenzhen, China
- BGI Research, Kunming, China
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xinbi You
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
- Yunnan Geriatric Medical Center, Kunming, China
| | - Binbin Xia
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
- Yunnan Geriatric Medical Center, Kunming, China
| | - Yue Yuan
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yuanqiang Zou
- BGI Research, Shenzhen, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
- Yunnan Geriatric Medical Center, Kunming, China
| |
Collapse
|
2
|
Song HJ, Seol A, Park J, Kim JE, Kim TR, Park KH, Park ES, Lim SJ, Wang SH, Sung JE, Choi Y, Lee H, Hwang DY. Antioxidant and Laxative Effects of Methanol Extracts of Green Pine Cones ( Pinus densiflora) in Sprague-Dawley Rats with Loperamide-Induced Constipation. Antioxidants (Basel) 2024; 14:37. [PMID: 39857371 PMCID: PMC11762744 DOI: 10.3390/antiox14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is the key cause of the etiopathogenesis of several diseases associated with constipation. This study examined whether the green pine cone can improve the symptoms of constipation based on the antioxidant activities. The changes in the key parameters for the antioxidant activity and laxative effects were examined in the loperamide (Lop)-induced constipation of Sprague-Dawley (SD) rats after being treated with the methanol extracts of green pine cone (MPC, unripe fruits of Pinus densiflora). MPC contained several bioactive compounds, including diterpenoid compounds such as dehydroabietic acid, taxodone, and ferruginol. In addition, it exhibited high scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals. These effects of MPC successfully reflected the improvement in nicotinamide adenine dinucleotide phosphate oxidase (NADP) H oxidase transcription, superoxide dismutase (SOD) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation levels in the mid colon of Lop+MPC-treated SD rats. Furthermore, significant improvements in the stool parameters, gastrointestinal (GI) transit, intestine length, and histopathological structure of the mid colon were detected in the Lop-induced constipation rats after MPC treatment. The other parameters, including the regulators for the adherens junction (AJ) and tight junction (TJ), and GI hormone secretion for laxative effects, were improved significantly in Lop+MPC-treated SD rats. These effects were also verified in Lop+MPC-treated primary rat intestine smooth muscle cells (pRISMCs) through analyses for antioxidant defense mechanisms. Overall, the finding of this study offers novel scientific evidence that MPC could be considered as a significant laxative for chronic constipation based on its antioxidant activity.
Collapse
Affiliation(s)
- Hee-Jin Song
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Ayun Seol
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Jumin Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea; (J.P.); (H.L.)
| | - Ji-Eun Kim
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Tae-Ryeol Kim
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Ki-Ho Park
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Eun-Seo Park
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Su-Jeong Lim
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Su-Ha Wang
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Ji-Eun Sung
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Youngwoo Choi
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Heeseob Lee
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea; (J.P.); (H.L.)
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| |
Collapse
|
3
|
Sahu S, Mishra M. Alteration of Cytoskeletal Proteins Leads to Retinal Degeneration in Drosophila. Cytoskeleton (Hoboken) 2024. [PMID: 39508206 DOI: 10.1002/cm.21955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The eye holds a special fascination for many neuroscientists because of its meticulously organized structure. Vertebrates typically possess a simple camera-type eye, whereas the compound eye structure is predominantly observed in arthropods including model organism Drosophila melanogaster. Cell shape, cell polarization, and tissue integrity are the cell biological processes crucial for shaping the eye, which directly or indirectly depends on the cytoskeleton. Henceforth the cytoskeleton, specifically actin microfilaments, essentially has a dynamic role in the normal development and growth of eye structure. This review provides insight into the roles played by the actin cytoskeleton during the development and maintenance of the Drosophila eye.
Collapse
Affiliation(s)
- Surajita Sahu
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, India
| |
Collapse
|
4
|
Culkins C, Adomanis R, Phan N, Robinson B, Slaton E, Lothrop E, Chen Y, Kimmel BR. Unlocking the Gates: Therapeutic Agents for Noninvasive Drug Delivery Across the Blood-Brain Barrier. Mol Pharm 2024; 21:5430-5454. [PMID: 39324552 DOI: 10.1021/acs.molpharmaceut.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The blood-brain barrier (BBB) is a highly selective network of various cell types that acts as a filter between the blood and the brain parenchyma. Because of this, the BBB remains a major obstacle for drug delivery to the central nervous system (CNS). In recent years, there has been a focus on developing various modifiable platforms, such as monoclonal antibodies (mAbs), nanobodies (Nbs), peptides, and nanoparticles, as both therapeutic agents and carriers for targeted drug delivery to treat brain cancers and diseases. Methods for bypassing the BBB can be invasive or noninvasive. Invasive techniques, such as transient disruption of the BBB using low pulse electrical fields and intracerebroventricular infusion, lack specificity and have numerous safety concerns. In this review, we will focus on noninvasive transport mechanisms that offer high levels of biocompatibility, personalization, specificity and are regarded as generally safer than their invasive counterparts. Modifiable platforms can be designed to noninvasively traverse the BBB through one or more of the following pathways: passive diffusion through a physio-pathologically disrupted BBB, adsorptive-mediated transcytosis, receptor-mediated transcytosis, shuttle-mediated transcytosis, and somatic gene transfer. Through understanding the noninvasive pathways, new applications, including Chimeric Antigen Receptors T-cell (CAR-T) therapy, and approaches for drug delivery across the BBB are emerging.
Collapse
Affiliation(s)
- Courtney Culkins
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Roman Adomanis
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan Phan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise Robinson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ethan Slaton
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elijah Lothrop
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yinuo Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise R Kimmel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Engineering, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Liu Y, Chen X, Ma Y, Song C, Ma J, Chen C, Su J, Ma L, Saiyin H. Endogenous mutant Huntingtin alters the corticogenesis via lowering Golgi recruiting ARF1 in cortical organoid. Mol Psychiatry 2024; 29:3024-3039. [PMID: 38654124 PMCID: PMC11449793 DOI: 10.1038/s41380-024-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Pathogenic mutant huntingtin (mHTT) infiltrates the adult Huntington's disease (HD) brain and impairs fetal corticogenesis. However, most HD animal models rarely recapitulate neuroanatomical alterations in adult HD and developing brains. Thus, the human cortical organoid (hCO) is an alternative approach to decode mHTT pathogenesis precisely during human corticogenesis. Here, we replicated the altered corticogenesis in the HD fetal brain using HD patient-derived hCOs. Our HD-hCOs had pathological phenotypes, including deficient junctional complexes in the neural tubes, delayed postmitotic neuronal maturation, dysregulated fate specification of cortical neuron subtypes, and abnormalities in early HD subcortical projections during corticogenesis, revealing a causal link between impaired progenitor cells and chaotic cortical neuronal layering in the HD brain. We identified novel long, oriented, and enriched polyQ assemblies of HTTs that hold large flat Golgi stacks and scaffold clathrin+ vesicles in the neural tubes of hCOs. Flat Golgi stacks conjugated polyQ assemblies by ADP-ribosylation factor 1 (ARF1). Inhibiting ARF1 activation with Brefeldin A (BFA) disassociated polyQ assemblies from Golgi. PolyQ assembles with mHTT scaffolded fewer ARF1 and formed shorter polyQ assembles with fewer and shorter Golgi and clathrin vesicles in neural tubes of HD-hCOs compared with those in hCOs. Inhibiting the activation of ARF1 by BFA in healthy hCOs replicated impaired junctional complexes in the neural tubes. Together, endogenous polyQ assemblies with mHTT reduced the Golgi recruiting ARF1 in the neuroepithelium, impaired the Golgi structure and activities, and altered the corticogenesis in HD-hCO.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyu Chen
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunlong Ma
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Chenyun Song
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jixin Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cheng Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jianzhong Su
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Broering MF, Tocci S, Sout NT, Reutelingsperger C, Farsky SHP, Das S, Sayed IM. Development of an Inflamed High Throughput Stem-cell-based Gut Epithelium Model to Assess the Impact of Annexin A1. Stem Cell Rev Rep 2024; 20:1299-1310. [PMID: 38498294 DOI: 10.1007/s12015-024-10708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE AND DESIGN Annexin A1 (ANXA1) plays a role in maintaining intestinal hemostasis, especially following mucosal inflammation. The published data about ANXA1 was derived from experimental animal models where there is an overlapping between epithelial and immune cells. There is no in vitro gut epithelial model that can assess the direct effect of ANXA1 on the gut epithelium. METHODS We developed high-throughput stem-cell-based murine epithelial cells and bacterial lipopolysaccharides (LPS) were used to induce inflammation. The impact of ANXA1 and its functional part (Ac2-26) was evaluated in the inflamed model. Intestinal integrity was assessed by the transepithelial electrical resistance (TEER), and FITC-Dextran permeability. Epithelial junction proteins were assessed using confocal microscopy and RT-qPCR. Inflammatory cytokines were evaluated by RT-qPCR and ELISA. RESULTS LPS challenge mediated a damage in the epithelial cells as shown by a drop in the TEER and an increase in FITC-dextran permeability; reduced the expression of epithelial junctional proteins (Occludin, ZO-1, and Cadherin) and increased the expression of the gut leaky protein, Claudin - 2. ANXA1 and Ac2-26 treatment reduced the previous damaging effects. In addition, ANXA1 and Ac2-26 inhibited the inflammatory responses mediated by the LPS and increased the transcription of the anti-inflammatory cytokine, IL-10. CONCLUSION ANXA1 and Ac2-26 directly protect the epithelial integrity by affecting the expression of epithelial junction and inflammatory markers. The inflamed gut model is a reliable tool to study intestinal inflammatory diseases, and to evaluate the efficacy of potential anti-inflammatory drugs and the screening of new drugs that could be candidates for inflammatory bowel disease.
Collapse
Affiliation(s)
- Milena Fronza Broering
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Stefania Tocci
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Noah T Sout
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Chris Reutelingsperger
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht University, Maastricht, 6211 LK, The Netherlands
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Soumita Das
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA.
| | - Ibrahim M Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
7
|
Stepanova M, Aherne CM. Adenosine in Intestinal Epithelial Barrier Function. Cells 2024; 13:381. [PMID: 38474346 PMCID: PMC10930693 DOI: 10.3390/cells13050381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
At the intestinal front, several lines of defense are in place to resist infection and injury, the mucus layer, gut microbiome and strong epithelial junctions, to name a few. Their collaboration creates a resilient barrier. In intestinal disorders, such as inflammatory bowel disease (IBD), barrier function is compromised, which results in rampant inflammation and tissue injury. In response to the destruction, the intestinal epithelium releases adenosine, a small but powerful nucleoside that functions as an alarm signal. Amidst the chaos of inflammation, adenosine aims to restore order. Within the scope of its effects is the ability to regulate intestinal epithelial barrier integrity. This review aims to define the contributions of adenosine to mucus production, microbiome-dependent barrier protection, tight junction dynamics, chloride secretion and acid-base balance to reinforce its importance in the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Mariya Stepanova
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland;
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carol M. Aherne
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland;
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Le Guillou S, Ciobotaru C, Laubier J, Castille J, Aujean E, Hue-Beauvais C, Cherbuy C, Liuu S, Henry C, David A, Jaffrezic F, Laloë D, Charlier M, Alexandre-Gouabau MC, Le Provost F. Specific Milk Composition of miR-30b Transgenic Mice Associated with Early Duodenum Maturation in Offspring with Lasting Consequences for Growth. J Nutr 2023; 153:2808-2826. [PMID: 37543213 DOI: 10.1016/j.tjnut.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Milk composition is complex and includes numerous components essential for offspring growth and development. In addition to the high abundance of miR-30b microRNA, milk produced by the transgenic mouse model of miR-30b-mammary deregulation displays a significantly altered fatty acid profile. Moreover, wild-type adopted pups fed miR-30b milk present an early growth defect. OBJECTIVE This study aimed to investigate the consequences of miR-30b milk feeding on the duodenal development of wild-type neonates, a prime target of suckled milk, along with comprehensive milk phenotyping. METHODS The duodenums of wild-type pups fed miR-30b milk were extensively characterized at postnatal day (PND)-5, PND-6, and PND-15 using histological, transcriptomic, proteomic, and duodenal permeability analyses and compared with those of pups fed wild-type milk. Milk of miR-30b foster dams collected at mid-lactation was extensively analyzed using proteomic, metabolomic, and lipidomic approaches and hormonal immunoassays. RESULTS At PND-5, wild-type pups fed miR-30b milk showed maturation of their duodenum with 1.5-fold (P < 0.05) and 1.3-fold (P < 0.10) increased expression of Claudin-3 and Claudin-4, respectively, and changes in 8 duodenal proteins (P < 0.10), with an earlier reduction in paracellular and transcellular permeability (183 ng/mL fluorescein sulfonic acid [FSA] and 12 ng/mL horseradish peroxidase [HRP], respectively, compared with 5700 ng/mL FSA and 90 ng/mL HRP in wild-type; P < 0.001). Compared with wild-type milk, miR-30b milk displayed an increase in total lipid (219 g/L compared with 151 g/L; P < 0.05), ceramide (17.6 μM compared with 6.9 μM; P < 0.05), and sphingomyelin concentrations (163.7 μM compared with 76.3 μM; P < 0.05); overexpression of 9 proteins involved in the gut barrier (P < 0.1); and higher insulin and leptin concentrations (1.88 ng/mL and 2.04 ng/mL, respectively, compared with 0.79 ng/mL and 1.06 ng/mL; P < 0.01). CONCLUSIONS miR-30b milk displays significant changes in bioactive components associated with neonatal duodenal integrity and maturation, which could be involved in the earlier intestinal closure phenotype of the wild-type pups associated with a lower growth rate.
Collapse
Affiliation(s)
| | - Céline Ciobotaru
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Johann Laubier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Etienne Aujean
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Cathy Hue-Beauvais
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Claire Cherbuy
- Université Paris-Saclay, INRAE, MICALIS Institute, Jouy-en-Josas, France
| | - Sophie Liuu
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, PAPPSO, Jouy-en-Josas, France
| | - Céline Henry
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, PAPPSO, Jouy-en-Josas, France
| | - Agnès David
- Nantes Université, CRNH-OUEST, INRAE, UMR 1280, PhAN, Nantes, France
| | - Florence Jaffrezic
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Denis Laloë
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Madia Charlier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | |
Collapse
|
9
|
Sène MA, Xia Y, Kamen AA. Comparative Transcriptomic Analyses of a Vero Cell Line in Suspension versus Adherent Culture Conditions. Int J Cell Biol 2023; 2023:9364689. [PMID: 37680537 PMCID: PMC10482560 DOI: 10.1155/2023/9364689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
The Vero cell line is the most used continuous cell line for viral vaccine manufacturing. Its anchorage-dependent use renders scaling up challenging and operations very labor-intensive which affects cost effectiveness. Thus, efforts to adapt Vero cells to suspension cultures have been invested, but hurdles such as the long doubling time and low cell viability remain to be addressed. In this study, building on the recently published Vero cell line annotated genome, a functional genomics analysis of the Vero cells adapted to suspension is performed to better understand the genetic and phenotypic switches at play during the adaptation of Vero cells from anchorage-dependent to suspension cultures. Results show downregulation of the epithelial-to-mesenchymal transition (EMT) pathway, highlighting the dissociation between the adaptation to suspension process and EMT. Surprisingly, an upregulation of cell adhesion components is observed, notably the CDH18 gene, the cytoskeleton pathway, and the extracellular pathway. Moreover, a downregulation of the glycolytic pathway is balanced by an upregulation of the asparagine metabolism pathway, promoting cell adaptation to nutrient deprivation. A downregulation of the adherens junctions and the folate pathways alongside with the FYN gene are possible explanations behind the currently observed low-cell viability and long doubling time.
Collapse
Affiliation(s)
| | - Yu Xia
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Lechuga S, Braga-Neto MB, Naydenov NG, Rieder F, Ivanov AI. Understanding disruption of the gut barrier during inflammation: Should we abandon traditional epithelial cell lines and switch to intestinal organoids? Front Immunol 2023; 14:1108289. [PMID: 36875103 PMCID: PMC9983034 DOI: 10.3389/fimmu.2023.1108289] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Disruption of the intestinal epithelial barrier is a hallmark of mucosal inflammation. It increases exposure of the immune system to luminal microbes, triggering a perpetuating inflammatory response. For several decades, the inflammatory stimuli-induced breakdown of the human gut barrier was studied in vitro by using colon cancer derived epithelial cell lines. While providing a wealth of important data, these cell lines do not completely mimic the morphology and function of normal human intestinal epithelial cells (IEC) due to cancer-related chromosomal abnormalities and oncogenic mutations. The development of human intestinal organoids provided a physiologically-relevant experimental platform to study homeostatic regulation and disease-dependent dysfunctions of the intestinal epithelial barrier. There is need to align and integrate the emerging data obtained with intestinal organoids and classical studies that utilized colon cancer cell lines. This review discusses the utilization of human intestinal organoids to dissect the roles and mechanisms of gut barrier disruption during mucosal inflammation. We summarize available data generated with two major types of organoids derived from either intestinal crypts or induced pluripotent stem cells and compare them to the results of earlier studies with conventional cell lines. We identify research areas where the complementary use of colon cancer-derived cell lines and organoids advance our understanding of epithelial barrier dysfunctions in the inflamed gut and identify unique questions that could be addressed only by using the intestinal organoid platforms.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Manuel B. Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
11
|
Ogulur I, Pat Y, Aydin T, Yazici D, Rückert B, Peng Y, Kim J, Radzikowska U, Westermann P, Sokolowska M, Dhir R, Akdis M, Nadeau K, Akdis CA. Gut epithelial barrier damage caused by dishwasher detergents and rinse aids. J Allergy Clin Immunol 2023; 151:469-484. [PMID: 36464527 DOI: 10.1016/j.jaci.2022.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND The increased prevalence of many chronic inflammatory diseases linked to gut epithelial barrier leakiness has prompted us to investigate the role of extensive use of dishwasher detergents, among other factors. OBJECTIVE We sought to investigate the effects of professional and household dishwashers, and rinse agents, on cytotoxicity, barrier function, transcriptome, and protein expression in gastrointestinal epithelial cells. METHODS Enterocytic liquid-liquid interfaces were established on permeable supports, and direct cellular cytotoxicity, transepithelial electrical resistance, paracellular flux, immunofluorescence staining, RNA-sequencing transcriptome, and targeted proteomics were performed. RESULTS The observed detergent toxicity was attributed to exposure to rinse aid in a dose-dependent manner up to 1:20,000 v/v dilution. A disrupted epithelial barrier, particularly by rinse aid, was observed in liquid-liquid interface cultures, organoids, and gut-on-a-chip, demonstrating decreased transepithelial electrical resistance, increased paracellular flux, and irregular and heterogeneous tight junction immunostaining. When individual components of the rinse aid were investigated separately, alcohol ethoxylates elicited a strong toxic and barrier-damaging effect. RNA-sequencing transcriptome and proteomics data revealed upregulation in cell death, signaling and communication, development, metabolism, proliferation, and immune and inflammatory responses of epithelial cells. Interestingly, detergent residue from professional dishwashers demonstrated the remnant of a significant amount of cytotoxic and epithelial barrier-damaging rinse aid remaining on washed and ready-to-use dishware. CONCLUSIONS The expression of genes involved in cell survival, epithelial barrier, cytokine signaling, and metabolism was altered by rinse aid in concentrations used in professional dishwashers. The alcohol ethoxylates present in the rinse aid were identified as the culprit component causing the epithelial inflammation and barrier damage.
Collapse
Affiliation(s)
- Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Department of Medical Microbiology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin
| | - Tamer Aydin
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yaqi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Juno Kim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Patrick Westermann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | | | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
12
|
Kim JE, Song HJ, Choi YJ, Jin YJ, Roh YJ, Seol A, Park SH, Park JM, Kang HG, Hwang DY. Improvement of the intestinal epithelial barrier during laxative effects of phlorotannin in loperamide-induced constipation of SD rats. Lab Anim Res 2023; 39:1. [PMID: 36597137 PMCID: PMC9808941 DOI: 10.1186/s42826-022-00152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Disruptions of the intestinal epithelial barrier (IEB) are frequently observed in various digestive diseases, including irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). This study assessed the improvement in the IEB during the laxative activity of phlorotannin (Pt) harvested from Ecklonia cava in constipation by examining the changes in the expression of the regulatory proteins for the tight junction (TJ) and adherens junction (AJ), and inflammatory cytokines in Sprague Dawley (SD) rats with loperamide (Lm)-induced constipation after a Pt treatment. RESULTS The Pt treatment induced laxative activity, including the improvement of feces-related parameters, gastrointestinal transit rate, and histological structure of the mid colon in Lm-treated SD rats. In addition, significant recovery effects were detected in the histology of IEB, including the mucus layer, epithelial cells, and lamina propria in the mid colon of Lm + Pt treated SD rats. The expression levels of E-cadherin and p120-catenin for AJ and the ZO-1, occludin, and Claudin-1 genes for TJ in epithelial cells were improved remarkably after the Pt treatment, but the rate of increase was different. Furthermore, the Pt treatment increased the expression level of several inflammatory cytokines, such as TNF-α, IL-6, IL-1β, IL-13, and IL-4 in Lm + Pt treated SD rats. CONCLUSIONS These results provide the first evidence that the laxative activity of Pt in SD rats with Lm-induced constipation phenotypes involve improvements in the IEB.
Collapse
Affiliation(s)
- Ji Eun Kim
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - Hee Jin Song
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - Yun Ju Choi
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - You Jeong Jin
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - Yu Jeong Roh
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - Ayun Seol
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - So Hae Park
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| | - Ju Min Park
- grid.262229.f0000 0001 0719 8572Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan, 46241 Korea
| | - Hyun Gu Kang
- grid.254229.a0000 0000 9611 0917Veterinary Medical Center, Department of Veterinary Theriogenology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644 Korea
| | - Dae Youn Hwang
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, 50463 Korea
| |
Collapse
|
13
|
Zhang ZH, Liu MD, Yao K, Xu S, Yu DX, Xie DD, Xu DX. Vitamin D deficiency aggravates growth and metastasis of prostate cancer through promoting EMT in two β-catenin-related mechanisms. J Nutr Biochem 2023; 111:109177. [PMID: 36223833 DOI: 10.1016/j.jnutbio.2022.109177] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/06/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
Increasing evidence has demonstrated that vitamin D deficiency is associated with prostate cancer progression, but its mechanism remains unclear. This study investigated effects of vitamin D deficiency on growth and metastasis of prostate cancer. Nude mice and Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed with vitamin D-deficient (VDD) diets. Prostate cancer growth was aggravated in VDD diet-fed nude mice and TRAMP mice. Invasion and metastasis of prostate cancer were exacerbated in VDD diet-fed TRAMP mice. In vitro experiments showed that calcitriol, an active vitamin D3, inhibited migration and invasion in transforming growth factor (TGF)-β1 -stimulated and -unstimulated PC-3 and DU145 cells. Mechanistically, calcitriol inhibited epithelial-mesenchymal transition (EMT) in TGF-β1 -stimulated and -unstimulated DU145 cells. Unexpectedly, calcitriol did not inhibit Smad2/3 phosphorylation in TGF-β1-stimulated DU145 cells. Instead, calcitriol downregulated expression of proliferation-, metastasis- and EMT-related genes, includes Cyclin D1, MMP7, and Zeb1, by inhibiting interaction between TCF4 and β-catenin. In addition, calcitriol promoted interaction between cytoplasmic VDR and β-catenin, reduced β-catenin phosphorylation and elevated β-catenin/E-cadherin adherens junction complex formation. We provide novel evidence that vitamin D deficiency aggravates growth and metastasis of prostate cancer possibly through promoting EMT in two β-catenin-related mechanisms.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ming-Dong Liu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Kai Yao
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Shen Xu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - De-Xin Yu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Dong-Dong Xie
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Urology, Fuyang Hospital of Anhui Medical University, Fuyang, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China.
| |
Collapse
|
14
|
Ballegaard ASR, Bøgh KL. Intestinal protein uptake and IgE-mediated food allergy. Food Res Int 2023; 163:112150. [PMID: 36596102 DOI: 10.1016/j.foodres.2022.112150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Food allergy is affecting 5-8% of young children and 2-4% of adults and seems to be increasing in prevalence. The cause of the increase in food allergy is largely unknown but proposed to be influenced by both environmental and lifestyle factors. Changes in intestinal barrier functions and increased uptake of dietary proteins have been suggested to have a great impact on food allergy. In this review, we aim to give an overview of the gastrointestinal digestion and intestinal barrier function and provide a more detailed description of intestinal protein uptake, including the various routes of epithelial transport, how it may be affected by both intrinsic and extrinsic factors, and the relation to food allergy. Further, we give an overview of in vitro, ex vivo and in vivo techniques available for evaluation of intestinal protein uptake and gut permeability in general. Proteins are digested by gastric, pancreatic and integral brush border enzymes in order to allow for sufficient nutritional uptake. Absorption and transport of dietary proteins across the epithelial layer is known to be dependent on the physicochemical properties of the proteins and their digestion fragments themselves, such as size, solubility and aggregation status. It is believed, that the greater an amount of intact protein or larger peptide fragments that is transported through the epithelial layer, and thus encountered by the mucosal immune system in the gut, the greater is the risk of inducing an adverse allergic response. Proteins may be absorbed across the epithelial barrier by means of various mechanisms, and studies have shown that a transcellular facilitated transport route unique for food allergic individuals are at play for transport of allergens, and that upon mediator release from mast cells an enhanced allergen transport via the paracellular route occurs. This is in contrast to healthy individuals where transcytosis through the enterocytes is the main route of protein uptake. Thus, knowledge on factors affecting intestinal barrier functions and methods for the determination of their impact on protein uptake may be useful in future allergenicity assessments and for development of future preventive and treatment strategies.
Collapse
Affiliation(s)
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
15
|
Bifidobacterium breve Alleviates DSS-Induced Colitis in Mice by Maintaining the Mucosal and Epithelial Barriers and Modulating Gut Microbes. Nutrients 2022; 14:nu14183671. [PMID: 36145047 PMCID: PMC9503522 DOI: 10.3390/nu14183671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
This study was designed to explore the different intestinal barrier repair mechanisms of Bifidobacterium breve (B. breve) H4-2 and H9-3 with different exopolysaccharide (EPS) production in mice with colitis. The lipopolysaccharide (LPS)-induced IEC-6 cell inflammation model and dextran sulphate sodium (DSS)-induced mice colitis model were used. Histopathological changes, epithelial barrier integrity, short-chain fatty acid (SCFA) content, cytokine levels, NF-κB expression level, and intestinal flora were analyzed to evaluate the role of B. breve in alleviating colitis. Cell experiments indicated that both B. breve strains could regulate cytokine levels. In vivo experiments confirmed that oral administration of B. breve H4-2 and B. breve H9-3 significantly increased the expression of mucin, occludin, claudin-1, ZO-1, decreased the levels of IL-6, TNF-α, IL-1β and increased IL-10. Both strains of B. breve also inhibited the expression of the NF-κB signaling pathway. Moreover, B. breve H4-2 and H9-3 intervention significantly increased the levels of SCFAs, reduced the abundance of Proteobacteria and Bacteroidea, and increased the abundance of Muribaculaceae. These results demonstrate that EPS-producing B. breve strains H4-2 and H9-3 can regulate the physical, immune, and microbial barrier to repair the intestinal damage caused by DSS in mice. Of the two strains, H4-2 had a higher EPS output and was more effective at repair than H9-3. These results will provide insights useful for clinical applications and the development of probiotic products for the treatment of colitis.
Collapse
|
16
|
Puerta-Guardo H, Biering SB, de Sousa FTG, Shu J, Glasner DR, Li J, Blanc SF, Beatty PR, Harris E. Flavivirus NS1 Triggers Tissue-Specific Disassembly of Intercellular Junctions Leading to Barrier Dysfunction and Vascular Leak in a GSK-3β-Dependent Manner. Pathogens 2022; 11:615. [PMID: 35745469 PMCID: PMC9228372 DOI: 10.3390/pathogens11060615] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
The flavivirus nonstructural protein 1 (NS1) is secreted from infected cells and contributes to endothelial barrier dysfunction and vascular leak in a tissue-dependent manner. This phenomenon occurs in part via disruption of the endothelial glycocalyx layer (EGL) lining the endothelium. Additionally, we and others have shown that soluble DENV NS1 induces disassembly of intercellular junctions (IJCs), a group of cellular proteins critical for maintaining endothelial homeostasis and regulating vascular permeability; however, the specific mechanisms by which NS1 mediates IJC disruption remain unclear. Here, we investigated the relative contribution of five flavivirus NS1 proteins, from dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), and yellow fever (YFV) viruses, to the expression and localization of the intercellular junction proteins β-catenin and VE-cadherin in endothelial cells from human umbilical vein and brain tissues. We found that flavivirus NS1 induced the mislocalization of β-catenin and VE-cadherin in a tissue-dependent manner, reflecting flavivirus disease tropism. Mechanistically, we observed that NS1 treatment of cells triggered internalization of VE-cadherin, likely via clathrin-mediated endocytosis, and phosphorylation of β-catenin, part of a canonical IJC remodeling pathway during breakdown of endothelial barriers that activates glycogen synthase kinase-3β (GSK-3β). Supporting this model, we found that a chemical inhibitor of GSK-3β reduced both NS1-induced permeability of human umbilical vein and brain microvascular endothelial cell monolayers in vitro and vascular leakage in a mouse dorsal intradermal model. These findings provide insight into the molecular mechanisms regulating NS1-mediated endothelial dysfunction and identify GSK-3β as a potential therapeutic target for treatment of vascular leakage during severe dengue disease.
Collapse
Affiliation(s)
- Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
- Laboratorio de Virologia, CIR-Biomedicas y Unidad Colaborativa de Bioensayos Entomologicos (UCBE), Universidad Autonoma de Yucatan, Merida 97000, Mexico
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Francielle Tramontini Gomes de Sousa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Jeffrey Shu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Dustin R. Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Jeffrey Li
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Sophie F. Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - P. Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370, USA; (S.B.B.); (F.T.G.d.S.); (J.S.); (D.R.G.); (J.L.); (S.F.B.); (P.R.B.)
| |
Collapse
|
17
|
P-Cadherin Regulates Intestinal Epithelial Cell Migration and Mucosal Repair, but Is Dispensable for Colitis Associated Colon Cancer. Cells 2022; 11:cells11091467. [PMID: 35563773 PMCID: PMC9100778 DOI: 10.3390/cells11091467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 12/16/2022] Open
Abstract
Recurrent chronic mucosal inflammation, a characteristic of inflammatory bowel diseases (IBD), perturbs the intestinal epithelial homeostasis resulting in formation of mucosal wounds and, in most severe cases, leads to colitis-associated colon cancer (CAC). The altered structure of epithelial cell-cell adhesions is a hallmark of intestinal inflammation contributing to epithelial injury, repair, and tumorigenesis. P-cadherin is an important adhesion protein, poorly expressed in normal intestinal epithelial cells (IEC) but upregulated in inflamed and injured mucosa. The goal of this study was to investigate the roles of P-cadherin in regulating intestinal inflammation and CAC. P-cadherin expression was markedly induced in the colonic epithelium of human IBD patients and CAC tissues. The roles of P-cadherin were investigated in P-cadherin null mice using dextran sulfate sodium (DSS)-induced colitis and an azoxymethane (AOM)/DSS induced CAC. Although P-cadherin knockout did not affect the severity of acute DSS colitis, P-cadherin null mice exhibited faster recovery after colitis. No significant differences in the number of colonic tumors were observed in P-cadherin null and control mice. Consistently, the CRISPR/Cas9-mediated knockout of P-cadherin in human IEC accelerated epithelial wound healing without affecting cell proliferation. The accelerated migration of P-cadherin depleted IEC was driven by activation of Src kinases, Rac1 GTPase and myosin II motors and was accompanied by transcriptional reprogramming of the cells. Our findings highlight P-cadherin as a negative regulator of IEC motility in vitro and mucosal repair in vivo. In contrast, this protein is dispensable for IEC proliferation and CAC development.
Collapse
|
18
|
Epithelial NELF guards intestinal barrier function to ameliorate colitis by maintaining junctional integrity. Mucosal Immunol 2022; 15:279-288. [PMID: 34697434 PMCID: PMC8881342 DOI: 10.1038/s41385-021-00465-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 02/04/2023]
Abstract
Well-orchestrated transcriptional programs in intestinal epithelial cells (IECs) are essential for maintenance of optimal mucosal barrier functions, whereas the contribution of elongation-related mechanisms to barrier function remains unknown. Here, a combination of genetic and genomic approaches defined a critical role of IEC-intrinsic negative elongation factor (NELF) complex in maintenance of epithelial homeostasis. By direct occupancy at endogenous gene loci, NELF sustained expression of a subset of genes related to junctional integrity. As a result, epithelial NELF deficiency results in subdued levels of these junction-related genes and excessive IEC necroptosis in vivo secondary to commensal microbial invasion. In a colitis model, NELF-deficient mice exhibited severely impaired barrier integrity characterized by increased intestinal permeability and significantly exacerbated intestinal inflammation with lethal consequences. Our findings reveal the protective function of the NELF complex against intestinal damage and inflammation and suggest that elongation represents a biologically important step in defining IEC transcriptome.
Collapse
|
19
|
The Autophagic Route of E-Cadherin and Cell Adhesion Molecules in Cancer Progression. Cancers (Basel) 2021; 13:cancers13246328. [PMID: 34944948 PMCID: PMC8699259 DOI: 10.3390/cancers13246328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary A hallmark of carcinoma progression is the loss of epithelial integrity. In this context, the deregulation of adhesion molecules, such as E-cadherin, affects epithelial structures and associates with epithelial to mesenchymal transition (EMT). This, in turn, fosters cancer progression. Autophagy endows cancer cells with the ability to overcome intracellular and environmental stress stimuli, such as anoikis, nutrient deprivation, hypoxia, and drugs. Furthermore, it plays an important role in the degradation of cell adhesion proteins and in EMT. This review focuses on the interplay between the turnover of adhesion molecules, primarily E-cadherin, and autophagy in cancer progression. Abstract Cell-to-cell adhesion is a key element in epithelial tissue integrity and homeostasis during embryogenesis, response to damage, and differentiation. Loss of cell adhesion and gain of mesenchymal features, a phenomenon known as epithelial to mesenchymal transition (EMT), are essential steps in cancer progression. Interestingly, downregulation or degradation by endocytosis of epithelial adhesion molecules (e.g., E-cadherin) associates with EMT and promotes cell migration. Autophagy is a physiological intracellular degradation and recycling process. In cancer, it is thought to exert a tumor suppressive role in the early phases of cell transformation but, once cells have gained a fully transformed phenotype, autophagy may fuel malignant progression by promoting EMT and conferring drug resistance. In this review, we discuss the crosstalk between autophagy, EMT, and turnover of epithelial cell adhesion molecules, with particular attention to E-cadherin.
Collapse
|
20
|
Rojo Salvador C, Galicia Guerrero MDL, Sánchez Maldonado B, González-Gil A, Picazo González RA. Morphological and ultrastructural characterization of neurospheres spontaneously generated in the culture from sheep ovarian cortical cells. Anat Rec (Hoboken) 2021; 305:2265-2280. [PMID: 34873872 DOI: 10.1002/ar.24850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022]
Abstract
Neurospheres (NS) derived from adult stem cells of non-neural tissues represent a promising source of neural stem cells (NSCs) and neural progenitor cells (NPCs) for autologous cell therapy. Knowing the fine structure of NS cells is essential for characterizing them during differentiation or oncogenic transformation. NS are generated by culturing ovarian cortical cells (OCCs) under specific conditions. To establish whether these OCCs exhibited a similar morphophenotype as those from the central nervous system (CNS) reported in the literature, sheep OCCs were cultured for 21 days to generate NS. Expression levels of pluripotency (Nanog, octamer-binding transcription factor 4 [Oct4], and SRY-box transcription factor 2 [Sox2]) and NSCs/NPCs (nestin, paired box 6 [Pax6], and p75 neurotrophin receptor [P75NTR]) transcripts were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), the NSC/NPC antigens were immunolocalized, and structural and ultrastructural analyses were performed in OCC-NS on Days 10, 15, and 21 in culture. Spheroids expressed transcripts and antigens of pluripotency as well as NSCs/NPCs. Cells were arranged into an inner core, with frequent apoptotic and degenerative events, and a peripheral epithelial-like cover with abundant cytoplasmic organelles, apical microvilli, and filament bundles of cytoskeleton elements. Adherens junctions and apical tight and lateral loose interdigitations were found in peripheral cells that eventually lost apical-basal polarization, which might indicate their disengaging/aggregating from/to the NS. We can conclude that OCC-NS shares the most structural and ultrastructural characteristics with CNS-NS.
Collapse
Affiliation(s)
- Concepción Rojo Salvador
- Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Belén Sánchez Maldonado
- Departamento de Medicina y Cirugía, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Alfredo González-Gil
- Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa Ana Picazo González
- Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Yang K, Tang Y, Ma Y, Liu Q, Huang Y, Zhang Y, Shi X, Zhang L, Zhang Y, Wang J, Zhu Y, Liu W, Tan Y, Lin J, Wu W. Hair Growth Promoting Effects of 650 nm Red Light Stimulation on Human Hair Follicles and Study of Its Mechanisms via RNA Sequencing Transcriptome Analysis. Ann Dermatol 2021; 33:553-561. [PMID: 34858007 PMCID: PMC8577899 DOI: 10.5021/ad.2021.33.6.553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Background Androgenetic alopecia (AGA) leads to thinning of scalp hair and affects 60%~70% of the adult population worldwide. Developing more effective treatments and studying its mechanism are of great significance. Previous clinical studies have revealed that hair growth is stimulated by 650-nm red light. Objective This study aimed to explore the effect and mechanism of 650-nm red light on the treatment of AGA by using ex vivo hair follicle culture. Methods Human hair follicles were obtained from hair transplant patients with AGA. Hair follicles were cultured in Williams E medium and treated with or without 650-nm red light. Real-time RT-PCR and immunofluorescence staining were used to detect the expression level of genes and proteins in hair follicles, respectively. RNA-sequencing analysis was carried out to reveal the distinct gene signatures upon 650 nm treatment. Results Low-level 650 nm red light promoted the proliferation of human hair follicles in the experimental cultured-tissue model. Consistently, 650 nm red light significantly delayed the transition of hair cycle from anagen to catagen in vitro. RNA-seq analysis and gene clustering for the differentially expressed genes suggests that leukocyte transendothelial migration, metabolism, adherens junction and other biological process maybe involved in stimulation of hair follicles by 650-nm red light treatment. Conclusion The effect of 650-nm red light on ex vivo hair follicles and the transcriptome set which implicates the role of red light in promoting hair growth and reversing of miniaturization process of AGA were identified.
Collapse
Affiliation(s)
- Kai Yang
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Yulong Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Six-Sector Industrial Research Institute, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuting Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Yue Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji'an Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifei Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Dermatology, the General Hospital of Air Force, Beijing, China
| | - Yimei Tan
- Department of Skin and Cosmetic Research, Shanghai Skin Disease Hospital, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Felix K, Tobias S, Jan H, Nicolas S, Michael M. Measurements of transepithelial electrical resistance (TEER) are affected by junctional length in immature epithelial monolayers. Histochem Cell Biol 2021; 156:609-616. [PMID: 34459960 PMCID: PMC8695537 DOI: 10.1007/s00418-021-02026-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/26/2022]
Abstract
The measurement of transepithelial electrical resistance (TEER) is a common technique to determine the barrier integrity of epithelial cell monolayers. However, it is remarkable that absolute TEER values of similar cell types cultured under comparable conditions show an immense heterogeneity. Based on previous observations, we hypothesized that the heterogeneity of absolute TEER measurements can not only be explained by maturation of junctional proteins but rather by dynamics in the absolute length of cell junctions within monolayers. Therefore, we analyzed TEER in epithelial cell monolayers of Caco2 cells during their differentiation, with special emphasis on both changes in the junctional complex and overall cell morphology within monolayers. We found that in epithelial Caco2 monolayers TEER increased until confluency, then decreased for some time, which was then followed by an additional increase during junctional differentiation. In contrast, permeability of macromolecules measured at different time points as 4 kDA fluorescein isothiocyanate (FITC)-dextran flux across monolayers steadily decreased during this time. Detailed analysis suggested that this observation could be explained by alterations of junctional length along the cell borders within monolayers during differentiation. In conclusion, these observations confirmed that changes in cell numbers and consecutive increase of junctional length have a critical impact on TEER values, especially at stages of early confluency when junctions are immature.
Collapse
Affiliation(s)
- Kannapin Felix
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080, Würzburg, Germany
| | - Schmitz Tobias
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Roentgenring 11, 97070, Würzburg, Germany
| | - Hansmann Jan
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Roentgenring 11, 97070, Würzburg, Germany.,Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Schlegel Nicolas
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080, Würzburg, Germany
| | - Meir Michael
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Oberduerrbacherstrasse 6, 97080, Würzburg, Germany.
| |
Collapse
|
25
|
Nectins and Nectin-like molecules in synapse formation and involvement in neurological diseases. Mol Cell Neurosci 2021; 115:103653. [PMID: 34242750 DOI: 10.1016/j.mcn.2021.103653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/11/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Synapses are interneuronal junctions which form neuronal networks and play roles in a variety of functions, including learning and memory. Two types of junctions, synaptic junctions (SJs) and puncta adherentia junctions (PAJs), have been identified. SJs are found at all excitatory and inhibitory synapses whereas PAJs are found at excitatory synapses, but not inhibitory synapses, and particularly well developed at hippocampal mossy fiber giant excitatory synapses. Both SJs and PAJs are mediated by cell adhesion molecules (CAMs). Major CAMs at SJs are neuroligins-neurexins and Nectin-like molecules (Necls)/CADMs/SynCAMs whereas those at PAJs are nectins and cadherins. In addition to synaptic PAJs, extrasynaptic PAJs have been identified at contact sites between neighboring dendrites near synapses and regulate synapse formation. In addition to SJs and PAJs, a new type of cell adhesion apparatus different from these junctional apparatuses has been identified and named nectin/Necl spots. One nectin spot at contact sites between neighboring dendrites at extrasynaptic regions near synapses regulates synapse formation. Several members of nectins and Necls had been identified as viral receptors before finding their physiological functions as CAMs and evidence is accumulating that many nectins and Necls are related to onset and progression of neurological diseases. We review here nectin and Necls in synapse formation and involvement in neurological diseases.
Collapse
|
26
|
What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression. Biochem J 2021; 478:1809-1825. [PMID: 33988704 DOI: 10.1042/bcj20210083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.
Collapse
|
27
|
Chen Y, Yang B, Stanton C, Ross RP, Zhao J, Zhang H, Chen W. Bifidobacterium pseudocatenulatum Ameliorates DSS-Induced Colitis by Maintaining Intestinal Mechanical Barrier, Blocking Proinflammatory Cytokines, Inhibiting TLR4/NF-κB Signaling, and Altering Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1496-1512. [PMID: 33512996 DOI: 10.1021/acs.jafc.0c06329] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study was designed to explore the effects and discrepancy of different CLA-producing Bifidobacterium pseudocatenulatum on relieving colitis and to investigate the potential mechanisms. B. pseudocatenulatum MY40C and CCFM680 were administered to mice with DSS-induced colitis. The content of tight junction proteins and mucin2 was significantly upregulated. TNF-α and IL-6 were downregulated, while IL-10 and PPAR-γ were upregulated. TLR4/NF-κB pathway activation was significantly inhibited. Moreover, each treated strain increased Allobaculum and decreased Sutterella, Bacteroides, and Oscillospira. The colonic conjugated linoleic acid (CLA) concentrations were significantly and positively correlated with the effectiveness of strain in relieving colitis. In conclusion, MY40C and CCFM680 supplementation alleviated DSS-induced colitis by protecting intestinal mechanical barrier, modulating gut microbiota, blocking proinflammatory cytokines, and inhibiting TLR4/NF-κB pathway. These results are conducive to promote clinical trials and product development of probiotics for colitis.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
28
|
Chen Y, Jin Y, Stanton C, Paul Ross R, Zhao J, Zhang H, Yang B, Chen W. Alleviation effects of Bifidobacterium breve on DSS-induced colitis depends on intestinal tract barrier maintenance and gut microbiota modulation. Eur J Nutr 2021; 60:369-387. [PMID: 32350653 DOI: 10.1007/s00394-020-02252-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE The study aimed to investigate the discrepancy and potential mechanisms of different CLA-producing B. breve on dextran sulphate sodium (DSS)-induced colitis. METHODS Colitis was induced in C57BL/6 J mice using DSS. Disease activity index (DAI), histopathological changes, epithelial barrier integrity and epithelial apoptosis were determined. Gut microbiota were gauged to evaluate the systemic effects of CLA-producing B. breve. RESULTS Oral administration of different B. breve showed different effects, in which B. breve M1 and B. breve M2 alleviated the inflammation induced by DSS as well as significantly increased the concentration of mucin2 (MUC2) and goblet cells, but neither B. breve M3 nor B. breve M4 had those protective effects. Meanwhile, B. breve M1 and B. breve M2 treatments significantly up-regulated the tight junction (TJ) proteins and ameliorated the epithelial apoptosis lead by DSS challenge. Moreover, inflammatory cytokines (TNF-α, IL-6) were modulated by B. breve M1 and B. breve M2, neither B. breve M3 nor B. breve M4. Furthermore, B. breve M1 and B. breve M2 reduced the abundance of Bacteroides and increased the abundance of Odoribacter, then rebalanced the damaged gut microbiota. Colonic CLA concentrations in mice fed with B. breve M1, B. breve M2, B. breve M3 and B. breve M4 decreased successively, which showed significant positive correlation with the effectiveness of relieving colitis. CONCLUSIONS Bifidobacterium breve M1 and B. breve M2 alleviated DSS-induced colitis by producing CLA, inhibiting the inflammatory cytokines, maintaining of the intestinal epithelial barrier and regulating the gut microbiota.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Yan Jin
- Department of Gastroenterology, The Affiliated Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
29
|
Chen Y, Jin Y, Stanton C, Ross RP, Wang Z, Zhao J, Zhang H, Yang B, Chen W. Dose-response efficacy and mechanisms of orally administered CLA-producing Bifidobacterium breve CCFM683 on DSS-induced colitis in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Ren W, Bin P, Yin Y, Wu G. Impacts of Amino Acids on the Intestinal Defensive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:133-151. [PMID: 32761574 DOI: 10.1007/978-3-030-45328-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestine interacts with a diverse community of antigens and bacteria. To keep its homeostasis, the gut has evolved with a complex defense system, including intestinal microbiota, epithelial layer and lamina propria. Various factors (e.g., nutrients) affect the intestinal defensive system and progression of intestinal diseases. This review highlights the current understanding about the role of amino acids (AAs) in protecting the intestine from harm. Amino acids (e.g., arginine, glutamine and tryptophan) are essential for the function of intestinal microbiota, epithelial cells, tight junction, goblet cells, Paneth cells and immune cells (e.g., macrophages, B cells and T cells). Through the modulation of the intestinal defensive system, AAs maintain the integrity and function of the intestinal mucosa and inhibit the progression of various intestinal diseases (e.g., intestinal infection and intestinal colitis). Thus, adequate intake of functional AAs is crucial for intestinal and whole-body health in humans and other animals.
Collapse
Affiliation(s)
- Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peng Bin
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product, Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
31
|
Cao X, Sun L, Lechuga S, Naydenov NG, Feygin A, Ivanov AI. A Novel Pharmacological Approach to Enhance the Integrity and Accelerate Restitution of the Intestinal Epithelial Barrier. Inflamm Bowel Dis 2020; 26:1340-1352. [PMID: 32266946 PMCID: PMC7441106 DOI: 10.1093/ibd/izaa063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disruption of the gut barrier is an essential mechanism of inflammatory bowel diseases (IBDs) contributing to the development of mucosal inflammation. A hallmark of barrier disruption is the disassembly of epithelial adherens junctions (AJs) driven by decreased expression of a major AJ protein, E-cadherin. A group of isoxazole compounds, such as E-cadherin-upregulator (ECU) and ML327, were previously shown to stimulate E-cadherin expression in poorly differentiated human cancer cells. This study was designed to examine whether these isoxazole compounds can enhance and protect model intestinal epithelial barriers in vitro. METHODS The study was conducted using T84, SK-CO15, and HT-29 human colonic epithelial cell monolayers. Disruption of the epithelial barrier was induced by pro-inflammatory cytokines, tumor necrosis factor-α, and interferon-γ. Barrier integrity and epithelial junction assembly was examined using different permeability assays, immunofluorescence labeling, and confocal microscopy. Epithelial restitution was analyzed using a scratch wound healing assay. RESULTS E-cadherin-upregulator and ML327 treatment of intestinal epithelial cell monolayers resulted in several barrier-protective effects, including reduced steady-state epithelial permeability, inhibition of cytokine-induced barrier disruption and junction disassembly, and acceleration of epithelial wound healing. Surprisingly, these effects were not due to upregulation of E-cadherin expression but were mediated by multiple mechanisms including inhibition of junction protein endocytosis, attenuation of cytokine-induced apoptosis, and activation of promigratory Src and AKT signaling. CONCLUSIONS Our data highlight ECU and ML327 as promising compounds for developing new therapeutic strategies to protect the integrity and accelerate the restitution of the intestinal epithelial barrier in IBD and other inflammatory disorders.
Collapse
Affiliation(s)
- Xuelei Cao
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Lei Sun
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Nayden G Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University, Richmond, VA
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH,Address correspondence to: Andrei I. Ivanov, PhD, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC22, Cleveland, OH 44195, USA. E-mail:
| |
Collapse
|
32
|
Cannes do Nascimento N, dos Santos AP, Sivasankar MP, Cox A. Unraveling the molecular pathobiology of vocal fold systemic dehydration using an in vivo rabbit model. PLoS One 2020; 15:e0236348. [PMID: 32735560 PMCID: PMC7394397 DOI: 10.1371/journal.pone.0236348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/03/2020] [Indexed: 01/03/2023] Open
Abstract
Vocal folds are a viscoelastic multilayered structure responsible for voice production. Vocal fold epithelial damage may weaken the protection of deeper layers of lamina propria and thyroarytenoid muscle and impair voice production. Systemic dehydration can adversely affect vocal function by creating suboptimal biomechanical conditions for vocal fold vibration. However, the molecular pathobiology of systemically dehydrated vocal folds is poorly understood. We used an in vivo rabbit model to investigate the complete gene expression profile of systemically dehydrated vocal folds. The RNA-Seq based transcriptome revealed 203 differentially expressed (DE) vocal fold genes due to systemic dehydration. Interestingly, function enrichment analysis showed downregulation of genes involved in cell adhesion, cell junction, inflammation, and upregulation of genes involved in cell proliferation. RT-qPCR validation was performed for a subset of DE genes and confirmed the downregulation of DSG1, CDH3, NECTIN1, SDC1, S100A9, SPINK5, ECM1, IL1A, and IL36A genes. In addition, the upregulation of the transcription factor NR4A3 gene involved in epithelial cell proliferation was validated. Taken together, these results suggest an alteration of the vocal fold epithelial barrier independent of inflammation, which could indicate a disruption and remodeling of the epithelial barrier integrity. This transcriptome provides a first global picture of the molecular changes in vocal fold tissue in response to systemic dehydration. The alterations observed at the transcriptional level help to understand the pathobiology of dehydration in voice function and highlight the benefits of hydration in voice therapy.
Collapse
Affiliation(s)
- Naila Cannes do Nascimento
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (NCN); (AC)
| | - Andrea P. dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
| | - M. Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (NCN); (AC)
| |
Collapse
|
33
|
Terayama M, Yamada K, Hagiwara T, Inazuka F, Sezaki T, Igari T, Yokoi C, Nohara K, Soma D, Dohi T, Kawamura YI. Glutathione S-transferase omega 2 regulates cell growth and the expression of E-cadherin via post-transcriptional down-regulation of β-catenin in human esophageal squamous cells. Carcinogenesis 2020; 41:875-886. [PMID: 31738399 DOI: 10.1093/carcin/bgz189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/05/2019] [Accepted: 11/15/2019] [Indexed: 01/10/2023] Open
Abstract
Glutathione S-transferase omega 2 (GSTO2), which belongs to the superfamily of GST omega class, lacks any appreciable GST activity. Although GSTO2 exhibits thioltransferase and glutathione dehydrogenase activities, its precise expression and physiological functions are still unclear. In the present study, we found that GSTO2 is exclusively expressed in the basal cell layer in Ki67-negative non-proliferative cells in the human esophageal mucosa. GSTO2 overexpression in esophageal squamous cell carcinoma (ESCC) cell lines inhibited cell growth and colony formation, and GSTO2-transfected cells formed smaller tumors in nude mice compared with mock-transfected cells. Interestingly, GSTO2 induction suppressed the expressions of E-cadherin and β-catenin at the cell-cell contact site. We quantified the phosphorylation levels of key proteins of MAPK signaling pathway and identified phosphorylation of p38. Additionally, HSP27, a downstream molecule of p38, was accelerated in GSTO2-transfected cells, unlike in mock-transfected cells. When GSTO2-transfected cells were treated with a p38 inhibitor, the expression of β-catenin and the membrane localization of E-cadherin was recovered. We next examined GSTO2 expression in 61 ESCC tissues using quantitative reverse transcription polymerase chain reaction and immunostaining. The results showed that GSTO2 mRNA and protein were significantly reduced in ESCC compared with normal tissues. When human ESCC cell lines were treated with 5-aza-2'-deoxycytidine, a DNA-methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant hypermethylation is the cause of the down-regulated expression. Our results indicate that GSTO2 expression inhibits the membrane localization of E-cadherin, probably by modulation of the p38 signaling pathway. Down-regulation of GSTO2 by DNA hypermethylation contributes to the growth and progression of ESCC.
Collapse
Affiliation(s)
- Masayoshi Terayama
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan.,Course of Advanced and Specialized Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiko Yamada
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan.,Course of Advanced and Specialized Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Teruki Hagiwara
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Fumika Inazuka
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Takuhito Sezaki
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Toru Igari
- Pathology Division of Clinical Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
| | - Chizu Yokoi
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kyoko Nohara
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Daisuke Soma
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Taeko Dohi
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Yuki I Kawamura
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
34
|
McClintock SD, Attili D, Dame MK, Richter A, Silvestri SS, Berner MM, Bohm MS, Karpoff K, McCarthy CL, Spence JR, Varani J, Aslam MN. Differentiation of human colon tissue in culture: Effects of calcium on trans-epithelial electrical resistance and tissue cohesive properties. PLoS One 2020; 15:e0222058. [PMID: 32134920 PMCID: PMC7058309 DOI: 10.1371/journal.pone.0222058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background and aims Human colonoid cultures maintained under low-calcium (0.25 mM) conditions undergo differentiation spontaneously and, concomitantly, express a high level of tight junction proteins, but not desmosomal proteins. When calcium is included to a final concentration of 1.5–3.0 mM (provided either as a single agent or as a combination of calcium and additional minerals), there is little change in tight junction protein expression but a strong up-regulation of desmosomal proteins and an increase in desmosome formation. The aim of this study was to assess the functional consequences of calcium-mediated differences in barrier protein expression. Methods Human colonoid-derived epithelial cells were interrogated in transwell culture under low- or high-calcium conditions for monolayer integrity and ion permeability by measuring trans-epithelial electrical resistance (TEER) across the confluent monolayer. Colonoid cohesiveness was assessed in parallel. Results TEER values were high in the low-calcium environment but increased in response to calcium. In addition, colonoid cohesiveness increased substantially with calcium supplementation. In both assays, the response to multi-mineral intervention was greater than the response to calcium alone. Consistent with these findings, several components of tight junctions were expressed at 0.25 mM calcium but these did not increase substantially with supplementation. Cadherin-17 and desmoglein-2, in contrast, were weakly-expressed under low calcium conditions but increased with intervention. Conclusions These findings indicate that low ambient calcium levels are sufficient to support the formation of a permeability barrier in the colonic epithelium. Higher calcium levels promote tissue cohesion and enhance barrier function. These findings may help explain how an adequate calcium intake contributes to colonic health by improving barrier function, even though there is little change in colonic histological features over a wide range of calcium intake levels.
Collapse
Affiliation(s)
- Shannon D. McClintock
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Durga Attili
- Department of Cell & Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Michael K. Dame
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Aliah Richter
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sabrina S. Silvestri
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Maliha M. Berner
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Margaret S. Bohm
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kateryna Karpoff
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Caroline L. McCarthy
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jason R. Spence
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - James Varani
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Muhammad N. Aslam
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
Epithelial cells form highly organized polarized sheets with characteristic cell morphologies and tissue architecture. Cell–cell adhesion and intercellular communication are prerequisites of such cohesive sheets of cells, and cell connectivity is mediated through several junctional assemblies, namely desmosomes, adherens, tight and gap junctions. These cell–cell junctions form signalling hubs that not only mediate cell–cell adhesion but impact on multiple aspects of cell behaviour, helping to coordinate epithelial cell shape, polarity and function. This review will focus on the tight and adherens junctions, constituents of the apical junctional complex, and aims to provide a comprehensive overview of the complex signalling that underlies junction assembly, integrity and plasticity.
Collapse
Affiliation(s)
- Alexandra D Rusu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marios Georgiou
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
36
|
Pan L, Wang H, Luo J, Zeng J, Pi J, Liu H, Liu C, Ba X, Qu X, Xiang Y, Boldogh I, Qin X. Epigenetic regulation of TIMP1 expression by 8-oxoguanine DNA glycosylase-1 binding to DNA:RNA hybrid. FASEB J 2019; 33:14159-14170. [PMID: 31652414 DOI: 10.1096/fj.201900993rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
8-Oxoguanine DNA glycosylase-1 (OGG1)-initiated base excision repair pathway is primarily responsible for 7, 8-dihydro-8-oxoguanine (8-oxoG) removal from DNA. Recent studies, however, have shown that 8-oxoG in gene regulatory elements may serve as an epigenetic mark, and OGG1 has distinct functions in modulating gene expression. Genome-wide mapping of oxidative stress-induced OGG1 enrichment within introns was documented, but its significance has not yet been fully characterized. Here, we explored whether OGG1 recruited to intron 1 of tissue inhibitor of metalloproteinase-1 (TIMP1) gene and modulated its expression. Using chromatin and DNA:RNA hybrid immunoprecipitation assays, we report recruitment of OGG1 to the DNA:RNA hybrid in intron 1, where it increases nascent RNA but lowers mRNA levels in O3-exposed human airway epithelial cells and mouse lungs. Decrease in TIMP1 expression is alleviated by antioxidant administration, small interfering RNA depletion, or inhibition of OGG1 binding to its genomic substrate. In vitro studies revealed direct interaction between OGG1 and 8-oxoG containing DNA:RNA hybrid, without excision of its substrate. Inhibition of OGG1 binding to DNA:RNA hybrid translated into an increase in TIMP1 expression and a decrease in oxidant-induced lung inflammatory responses as well as airway remodeling. Data documented here reveal a novel molecular link between OGG1 at damaged sites and transcription dynamics that may contribute to oxidative stress-induced cellular and tissue responses.-Pan, L., Wang, H., Luo, J., Zeng, J., Pi, J., Liu, H., Liu, C., Ba, X., Qu, X., Xiang, Y., Boldogh, I., Qin, X. Epigenetic regulation of TIMP1 expression by 8-oxoguanine DNA glycosylase-1 binding to DNA:RNA hybrid.
Collapse
Affiliation(s)
- Lang Pan
- Department of Physiology, School of Basic Medicine, Xiangya Medical School, Central South University, Changsha, China
| | - Hui Wang
- Department of Physiology, School of Basic Medicine, Xiangya Medical School, Central South University, Changsha, China
| | - Jinhua Luo
- Department of Physiology, School of Basic Medicine, Xiangya Medical School, Central South University, Changsha, China
| | - Ji Zeng
- Department of Physiology, School of Basic Medicine, Xiangya Medical School, Central South University, Changsha, China
| | - Jiao Pi
- Department of Physiology, School of Basic Medicine, Xiangya Medical School, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine, Xiangya Medical School, Central South University, Changsha, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine, Xiangya Medical School, Central South University, Changsha, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine, Xiangya Medical School, Central South University, Changsha, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine, Xiangya Medical School, Central South University, Changsha, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine, Xiangya Medical School, Central South University, Changsha, China
| |
Collapse
|
37
|
Sokolowska M, Quesniaux VFJ, Akdis CA, Chung KF, Ryffel B, Togbe D. Acute Respiratory Barrier Disruption by Ozone Exposure in Mice. Front Immunol 2019; 10:2169. [PMID: 31608051 PMCID: PMC6758598 DOI: 10.3389/fimmu.2019.02169] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Ozone exposure causes irritation, airway hyperreactivity (AHR), inflammation of the airways, and destruction of alveoli (emphysema), the gas exchange area of the lung in human and mice. This review focuses on the acute disruption of the respiratory epithelial barrier in mice. A single high dose ozone exposure (1 ppm for 1 h) causes first a break of the bronchiolar epithelium within 2 h with leak of serum proteins in the broncho-alveolar space, disruption of epithelial tight junctions and cell death, which is followed at 6 h by ROS activation, AHR, myeloid cell recruitment, and remodeling. High ROS levels activate a novel PGAM5 phosphatase dependent cell-death pathway, called oxeiptosis. Bronchiolar cell wall damage and inflammation upon a single ozone exposure are reversible. However, chronic ozone exposure leads to progressive and irreversible loss of alveolar epithelial cells and alveoli with reduced gas exchange space known as emphysema. It is further associated with chronic inflammation and fibrosis of the lung, resembling other environmental pollutants and cigarette smoke in pathogenesis of asthma, and chronic obstructive pulmonary disease (COPD). Here, we review recent data on the mechanisms of ozone induced injury on the different cell types and pathways with a focus on the role of the IL-1 family cytokines and the related IL-33. The relation of chronic ozone exposure induced lung disease with asthma and COPD and the fact that ozone exacerbates asthma and COPD is emphasized.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Valerie F J Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Kian Fan Chung
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Dieudonnée Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France.,ArtImmune SAS, Artinem, Orléans, France
| |
Collapse
|
38
|
Zhou X, Wei T, Cox CW, Walls AF, Jiang Y, Roche WR. Mast cell chymase impairs bronchial epithelium integrity by degrading cell junction molecules of epithelial cells. Allergy 2019; 74:1266-1276. [PMID: 30428129 DOI: 10.1111/all.13666] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND An increased degree of mast cell (MC) degranulation and damage to the epithelial lining are prominent features of bronchial asthma. In asthmatic airways, it seems likely that epithelial cells will be exposed to increased concentrations of proteases from MC, though their actions on the epithelium are still not very clear. METHODS Bronchial rings from human lung tissue or 16HBE cell monolayer were incubated with MC chymase in different doses or various inhibitors. The sections of paraffin-embedded tissue were haematoxylin-eosin stained and computerized by image analysis for epithelial damage-scale-evaluation; the cell viability, proliferation, adhesion and lactate dehydrogenase activity release were assayed; the expressions of gelatinases, cell junction molecules and structure proteins of 16HBE were examined. RESULTS Mast cell chymase was found to provoke profound changes in the morphology of bronchi epithelial layer. Following incubation with chymase, there was 40% reduction in the length of epithelium that was intact, with detachment of columnar epithelial cells and basal cells. Chymase reduced epithelial cell proliferation and induced cell detachment, which were associated with the changes in secretion and activation of matrix metalloproteinase-2/9. In intact epithelial cell layers, immunocytochemistry study revealed that chymase reduced the expressions of occludin, claudin-4, ZO-1, E-cadherin, focal adhesion kinase and cytokeratin. Overall data of this study indicated that MC chymase can influence tissue remodelling, disrupt epithelial cell junctions, inhibit wound healing and impair the barrier function of epithelium, resulting in dysfunction of airway wall and ECM remodelling in pathogenesis of asthma. CONCLUSION Mast cell chymase plays a key role in inducing the damage to bronchial epithelium in asthma.
Collapse
Affiliation(s)
- Xiaoying Zhou
- The School of Pharmaceutical Engineering and Life Science Changzhou University Jiangsu China
- The Faculty of Medicine The University of Southampton Southampton UK
| | - Tao Wei
- The School of Pharmaceutical Engineering and Life Science Changzhou University Jiangsu China
| | | | - Andrew F. Walls
- The Faculty of Medicine The University of Southampton Southampton UK
| | - Yuan Jiang
- The School of Pharmaceutical Engineering and Life Science Changzhou University Jiangsu China
| | - William R. Roche
- The Faculty of Medicine The University of Southampton Southampton UK
| |
Collapse
|
39
|
Shutova MS, Svitkina TM. Common and Specific Functions of Nonmuscle Myosin II Paralogs in Cells. BIOCHEMISTRY (MOSCOW) 2019; 83:1459-1468. [PMID: 30878021 DOI: 10.1134/s0006297918120040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various forms of cell motility critically depend on pushing, pulling, and resistance forces generated by the actin cytoskeleton. Whereas pushing forces largely depend on actin polymerization, pulling forces responsible for cell contractility and resistance forces maintaining the cell shape require interaction of actin filaments with the multivalent molecular motor myosin II. In contrast to muscle-specific myosin II paralogs, nonmuscle myosin II (NMII) functions in virtually all mammalian cells, where it executes numerous mechanical tasks. NMII is expressed in mammalian cells as a tissue-specific combination of three paralogs, NMIIA, NMIIB, and NMIIC. Despite overall similarity, these paralogs differ in their molecular properties, which allow them to play both unique and common roles. Importantly, the three paralogs can also cooperate with each other by mixing and matching their unique capabilities. Through specialization and cooperation, NMII paralogs together execute a great variety of tasks in many different cell types. Here, we focus on mammalian NMII paralogs and review novel aspects of their kinetics, regulation, and functions in cells from the perspective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cells.
Collapse
Affiliation(s)
- M S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Pei D, Shu X, Gassama-Diagne A, Thiery JP. Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol 2019; 21:44-53. [DOI: 10.1038/s41556-018-0195-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
|
41
|
Zhao G, Shi J, Xia J. Analysis of the association between CDH2 gene polymorphism and osteoarthritis risk. Med Sci (Paris) 2018; 34 Focus issue F1:105-112. [PMID: 30403184 DOI: 10.1051/medsci/201834f118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE to define the cadherin 2 (CDH2) gene polymorphism in Chinese osteoarthritis and control populations and to explore the correlation between CDH2 gene polymorphism and the risk of osteoarthritis. METHOD a total of 476 patients with osteoarthritis were collected and 380 control subjects were included in the study. Clinical data such as gender, age and functional score were collected. The blood and tissue samples were collected and genotyped by PCR. Data analysis was performed using SPSS 19.0, Hapioview 4.2 and SNPstats softwares. RESULTS the association of rs11083271 and osteoarthritis was initially validated in this study population (P = 0.016, OR = 1.43 (1.07- 1.93)]. The risk of OA was significantly higher in heterozygous T/C than in homozygous T/T and C/C in rs11083271. By adjusting the age, according to gender stratification analysis, the heterozygous T/C genotype in rs11083271 significantly increased the risk of OA incidence in males [p = 0.011, 3.40 (1.55-7.43)]. The remaining rs sites were not significantly associated with OA. Notably, the association of rs11564299 with OA, regardless of genotyping, gene frequency and RNA expression levels in the study population, was not confirmed. CONCLUSION in this study, we have analyzed the association between CDH2 gene polymorphism and OA in Chinese population. We found that rs11083271 heterozygous T/C genotype significantly increases the risk of OA and the severity of the disease. By contrast, the rs11564299 locus and OA have no significant correlation in the Chinese population. The role of rs11083271 in the regulation of CDH2 expression levels and the mechanisms by which it impacts OA remain to be further studied.
Collapse
Affiliation(s)
- Guanglei Zhao
- Division of orthopaedic surgery, Huashan Hospital, Fudan University, Shanghai, China, 400040 Shanghai, China
| | - Jingsheng Shi
- Division of orthopaedic surgery, Huashan Hospital, Fudan University, Shanghai, China, 400040 Shanghai, China
| | - Jun Xia
- Division of orthopaedic surgery, Huashan Hospital, Fudan University, Shanghai, China, 400040 Shanghai, China
| |
Collapse
|
42
|
Michaudel C, Mackowiak C, Maillet I, Fauconnier L, Akdis CA, Sokolowska M, Dreher A, Tan HTT, Quesniaux VF, Ryffel B, Togbe D. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. J Allergy Clin Immunol 2018; 142:942-958. [DOI: 10.1016/j.jaci.2017.11.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
|
43
|
Shutova MS, Svitkina TM. Mammalian nonmuscle myosin II comes in three flavors. Biochem Biophys Res Commun 2018; 506:394-402. [PMID: 29550471 DOI: 10.1016/j.bbrc.2018.03.103] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
Abstract
Nonmuscle myosin II is an actin-based motor that executes numerous mechanical tasks in cells including spatiotemporal organization of the actin cytoskeleton, adhesion, migration, cytokinesis, tissue remodeling, and membrane trafficking. Nonmuscle myosin II is ubiquitously expressed in mammalian cells as a tissue-specific combination of three paralogs. Recent studies reveal novel specific aspects of their kinetics, intracellular regulation and functions. On the other hand, the three paralogs also can copolymerize and cooperate in cells. Here we review the recent advances from the prospective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cell.
Collapse
Affiliation(s)
- Maria S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
44
|
Marques E, Peltola T, Kaski S, Klefström J. Phenotype-driven identification of epithelial signalling clusters. Sci Rep 2018; 8:4034. [PMID: 29507319 PMCID: PMC5838230 DOI: 10.1038/s41598-018-22293-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/21/2018] [Indexed: 12/27/2022] Open
Abstract
In metazoans, epithelial architecture provides a context that dynamically modulates most if not all epithelial cell responses to intrinsic and extrinsic signals, including growth or survival signalling and transforming oncogene action. Three-dimensional (3D) epithelial culture systems provide tractable models to interrogate the function of human genetic determinants in establishment of context-dependency. We performed an arrayed genetic shRNA screen in mammary epithelial 3D cultures to identify new determinants of epithelial architecture, finding that the key phenotype impacting shRNAs altered not only the data population average but even more noticeably the population distribution. The broad distributions were attributable to sporadic gene silencing actions by shRNA in unselected populations. We employed Maximum Mean Discrepancy concept to capture similar population distribution patterns and demonstrate here the feasibility of the test in identifying an impact of shRNA in populations of 3D structures. Integration of the clustered morphometric data with protein-protein interactions data enabled hypothesis generation of novel biological pathways underlying similar 3D phenotype alterations. The results present a new strategy for 3D phenotype-driven pathway analysis, which is expected to accelerate discovery of context-dependent gene functions in epithelial biology and tumorigenesis.
Collapse
Affiliation(s)
- Elsa Marques
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O Box 63 (street address: Haartmaninkatu 8), 00014 University of Helsinki, Helsinki, Finland
| | - Tomi Peltola
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, PO BOX 15400, FI-00076, Aalto, Finland
| | - Samuel Kaski
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, PO BOX 15400, FI-00076, Aalto, Finland
| | - Juha Klefström
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O Box 63 (street address: Haartmaninkatu 8), 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
45
|
Hendrickx APA, van de Kamer D, Willems RJL. Primary murine mucosal response during cephalosporin-induced intestinal colonization by Enterococcus faecium. Microbiologyopen 2018; 7:e00602. [PMID: 29484836 PMCID: PMC6182561 DOI: 10.1002/mbo3.602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/19/2022] Open
Abstract
Hospitalized patients are often administered antibiotics that perturb the gastrointestinal commensal microbiota, leading to outgrowth of antibiotic-resistant bacteria, like multidrug-resistant Enterococcus faecium, subsequent spread, and eventually infections. However, the events that occur at the initial stage of intestinal colonization and outgrowth by multidrug-resistant E. faecium within the antibiotic-treated host have not been thoroughly studied. Here, we describe and visualize that only 6 hr after cephalosporin treatment of mice, the Muc-2 mucus layer is reduced and E-cadherin junctions were altered. In contrast, the cadherin-17 junctions were unaffected in antibiotic treated mice during E. faecium colonization or in untreated animals. E. faecium was capable to colonize the mouse colon already within 6 hr after inoculation, and agglutinated at the apical side of the intestinal epithelium. During the primary stage of gastrointestinal colonization the number of IgA+ cells and CD11b+ IgA+ cells increased in the lamina propria of the colon and mediated an elevated IgA response upon E. faecium colonization.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Denise van de Kamer
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
46
|
Lachowicz-Scroggins ME, Gordon ED, Wesolowska-Andersen A, Jackson ND, MacLeod HJ, Sharp LZ, Sun M, Seibold MA, Fahy JV. Cadherin-26 (CDH26) regulates airway epithelial cell cytoskeletal structure and polarity. Cell Discov 2018; 4:7. [PMID: 29449961 PMCID: PMC5809386 DOI: 10.1038/s41421-017-0006-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 01/27/2023] Open
Abstract
Polarization of the airway epithelial cells (AECs) in the airway lumen is critical to the proper function of the mucociliary escalator and maintenance of lung health, but the cellular requirements for polarization of AECs are poorly understood. Using human AECs and cell lines, we demonstrate that cadherin-26 (CDH26) is abundantly expressed in differentiated AECs, localizes to the cell apices near ciliary membranes, and has functional cadherin domains with homotypic binding. We find a unique and non-redundant role for CDH26, previously uncharacterized in AECs, in regulation of cell-cell contact and cell integrity through maintaining cytoskeletal structures. Overexpression of CDH26 in cells with a fibroblastoid phenotype increases contact inhibition and promotes monolayer formation and cortical actin structures. CDH26 expression is also important for localization of planar cell polarity proteins. Knockdown of CDH26 in AECs results in loss of cortical actin and disruption of CRB3 and other proteins associated with apical polarity. Together, our findings uncover previously unrecognized functions for CDH26 in the maintenance of actin cytoskeleton and apicobasal polarity of AECs.
Collapse
Affiliation(s)
- Marrah E. Lachowicz-Scroggins
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143 USA
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Erin D. Gordon
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143 USA
| | | | - Nathan D. Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206 USA
| | - Hannah J. MacLeod
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD 21205 USA
| | - Louis Z. Sharp
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Matthew Sun
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Max A. Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206 USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045 USA
| | - John V. Fahy
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143 USA
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
47
|
Zhang X, Jiang G, Wu J, Zhou H, Zhang Y, Miao Y, Feng Y, Yu J. Zinc finger protein 668 suppresses non-small cell lung cancer invasion and migration by downregulating Snail and upregulating E-cadherin and zonula occludens-1. Oncol Lett 2018; 15:3806-3813. [PMID: 29556277 DOI: 10.3892/ol.2018.7802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Zinc finger protein 668 (ZNF668) is a recently discovered protein and its expression levels, as well as its involvement in the invasion and metastasis of non-small cell lung cancer (NSCLC), are largely unknown. In the present study, immunohistochemical analysis demonstrated that ZNF668 protein expression was decreased in lung tumors (51/167, 30.5%) compared with adjacent normal lung tissues (43/62, 69.4%; P<0.001). Subsequent statistical analysis revealed that ZNF668 expression was negatively associated with increased tumor-node-metastasis stage (P=0.019) and lymph node metastasis (P=0.002). Following ZNF668 downregulation by transfection of a ZNF668-expressing plasmid or small interfering RNA, it was demonstrated that ZNF668 inhibited the invasion and migration of NSCLC cells. Furthermore, restoration of ZNF668 expression downregulated the expression of Snail and increased the protein levels of epithelial (E-)cadherin and zonula occludens-1 (ZO-1). The results of the present study suggest that ZNF668 is downregulated in human NSCLC. Furthermore, restoration of ZNF668 expression was demonstrated to decrease the expression of Snail and increase the expression of E-cadherin and ZO-1, suppressing the invasion and migration of NSCLC cells.
Collapse
Affiliation(s)
- Xiupeng Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guiyang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jingjing Wu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Haijing Zhou
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuan Miao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yangyang Feng
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Juanhan Yu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
48
|
Bartle EI, Rao TC, Urner TM, Mattheyses AL. Bridging the gap: Super-resolution microscopy of epithelial cell junctions. Tissue Barriers 2018; 6:e1404189. [PMID: 29420122 PMCID: PMC5823550 DOI: 10.1080/21688370.2017.1404189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/02/2023] Open
Abstract
Cell junctions are critical for cell adhesion and communication in epithelial tissues. It is evident that the cellular distribution, size, and architecture of cell junctions play a vital role in regulating function. These details of junction architecture have been challenging to elucidate in part due to the complexity and size of cell junctions. A major challenge in understanding these features is attaining high resolution spatial information with molecular specificity. Fluorescence microscopy allows localization of specific proteins to junctions, but with a resolution on the same scale as junction size, rendering internal protein organization unobtainable. Super-resolution microscopy provides a bridge between fluorescence microscopy and nanoscale approaches, utilizing fluorescent tags to reveal protein organization below the resolution limit. Here we provide a brief introduction to super-resolution microscopy and discuss novel findings into the organization, structure and function of epithelial cell junctions.
Collapse
Affiliation(s)
- Emily I. Bartle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tejeshwar C. Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tara M. Urner
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
49
|
Advedissian T, Proux-Gillardeaux V, Nkosi R, Peyret G, Nguyen T, Poirier F, Viguier M, Deshayes F. E-cadherin dynamics is regulated by galectin-7 at epithelial cell surface. Sci Rep 2017; 7:17086. [PMID: 29213102 PMCID: PMC5719072 DOI: 10.1038/s41598-017-17332-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/15/2017] [Indexed: 02/02/2023] Open
Abstract
Re-epithelialisation of wounded epidermis is ensured by collective cell migration of keratinocytes. Efficient collective migration requires the maintenance of intercellular adhesion, notably through adherens junctions, to favour cell communication, support tension forces and coordinated movement . Galectin-7, a soluble lectin expressed in stratified epithelia, has been previously implicated in cell migration and intercellular adhesion. Here, we revealed a new function of galectin-7 in the control of directionality and collective behaviour in migrating keratinocytes. Consistently, we identified galectin-7 as a direct partner of E-cadherin, a key component of adherens junctions. Unexpectedly, this interaction does not require glycosylation motifs. Focusing on the underlying mechanisms, we showed that galectin-7 stabilizes E-cadherin at the plasma membrane, restraining its endocytosis. Interestingly, galectin-7 silencing decreases E-cadherin-mediated intercellular adhesion. Consequently, this study not only identifies a new stabilizer of adherens junctions but also emphasises the importance of the interplay between E-cadherin turnover and intercellular adhesion strength.
Collapse
Affiliation(s)
- Tamara Advedissian
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Véronique Proux-Gillardeaux
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France.,Team Membrane Traffic in Health & Disease, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Rachel Nkosi
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Grégoire Peyret
- Team Cell Adhesion and Mechanics, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Thao Nguyen
- Team Cell Adhesion and Mechanics, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Françoise Poirier
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Mireille Viguier
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France.
| | - Frédérique Deshayes
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France.
| |
Collapse
|
50
|
Cortactin deficiency causes increased RhoA/ROCK1-dependent actomyosin contractility, intestinal epithelial barrier dysfunction, and disproportionately severe DSS-induced colitis. Mucosal Immunol 2017; 10:1237-1247. [PMID: 28120846 DOI: 10.1038/mi.2016.136] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/18/2016] [Indexed: 02/04/2023]
Abstract
The intestinal epithelium constitutes a first line of defense of the innate immune system. Epithelial dysfunction is a hallmark of intestinal disorders such as inflammatory bowel diseases (IBDs). The actin cytoskeleton controls epithelial barrier integrity but the function of actin regulators such as cortactin is poorly understood. Given that cortactin controls endothelial permeability, we hypothesized that cortactin is also important for epithelial barrier regulation. We found increased permeability in the colon of cortactin-KO mice that was accompanied by reduced levels of ZO-1, claudin-1, and E-cadherin. By contrast, claudin-2 was upregulated. Cortactin deficiency increased RhoA/ROCK1-dependent actomyosin contractility, and inhibition of ROCK1 rescued the barrier defect. Interestingly, cortactin deficiency caused increased epithelial proliferation without affecting apoptosis. KO mice did not develop spontaneous colitis, but were more susceptible to dextran sulfate sodium colitis and showed severe colon tissue damage and edema formation. KO mice with colitis displayed strong mucus deposition and goblet cell depletion. In healthy human colon tissues, cortactin co-localized with ZO-1 at epithelial cell contacts. In IBDs patients, we observed decreased cortactin levels and loss of co-localization with ZO-1. Thus, cortactin is a master regulator of intestinal epithelial barrier integrity in vivo and could serve as a suitable target for pharmacological intervention in IBDs.
Collapse
|