1
|
Shi Y, Pan Q, Chen W, Xie L, Tang S, Yang Z, Zhang M, Yin D, Lin L, Liao JY. Pan-cancer oncogenic properties and therapeutic potential of SF3B4. Cancer Gene Ther 2025:10.1038/s41417-025-00910-y. [PMID: 40394232 DOI: 10.1038/s41417-025-00910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025]
Abstract
Splicing factor 3B (SF3B) subunit 4 (SF3B4), an SF3B complex component essential for spliceosome assembly and accurate splicing, plays a major role in cancer development. However, the precise mechanism through which SF3B4 contributes to tumor growth remains unclear. Here, we demonstrate that SF3B4 is strongly expressed in patients with various cancer types and correlated with their survival. By using hepatocellular carcinoma (HCC) as a model, we reveal that SF3B4's interactions with and regulatory influence on the checkpoint protein BUB1 are essential for appropriate cancer cell mitosis and proliferation. Our results thus demonstrate the roles of SF3B4 as both a cell-cycle regulator and an oncogenic factor in HCC, highlighting its potential as a pan-cancer therapeutic target and diagnostic biomarker.
Collapse
Affiliation(s)
- Yanmei Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Qimei Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Wenli Chen
- Center for Bioresources and Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Limin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Shiru Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Zhizhi Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Man Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China.
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China.
| |
Collapse
|
2
|
Collins MD, Scott WJ. Thalidomide-induced limb malformations: an update and reevaluation. Arch Toxicol 2025; 99:1643-1747. [PMID: 40198353 DOI: 10.1007/s00204-024-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 04/10/2025]
Abstract
Historically, thalidomide-induced congenital malformations have served as an important example of the enhanced susceptibility of developing embryos to chemical perturbation. The compound produced a wide variety of congenital malformations in humans, which were initially detected by an association with a relatively rare limb defect labeled phocomelia. Although true phocomelia in the most severe form is a transverse defect with intercalary absence of limb regions, it is proposed that thalidomide produces a longitudinal limb phenotype in humans under usual circumstances that can become transverse in severe cases with a preferential sensitivity of forelimb over hindlimb, preaxial over postaxial, and left more impacted than the corresponding non-autopod limb bones on the right. The thalidomide-induced limb phenotype in humans is described and followed by a hierarchical comparison with various laboratory animal species. Mechanistic studies have been hampered by the fact that only non-human primates and rabbits have malformations that are anatomically similar to humans. Included in this review are unpublished data on limb malformations produced by thalidomide in rhesus monkeys from experiments performed more than 50 years ago. The critical period in gestation for the induction of phocomelia may initiate prior to the development of the embryonic limb bud, which contrasts with other chemical and physical agents that are known to produce this phenotype. The importance of toxicokinetic parameters is reviewed including dose, enantiomers, absorption, distribution, and both non-enzymatic and enzymatic biotransformations. The limb embryopathy mechanism that provides a partial explanation of the limb phenotype is that cereblon binds to thalidomide creating a protein complex that ubiquitinates protein substrates (CRL4CRBN) that are not targets for the complex in the absence of the thalidomide. One of these neosubstrates is SALL4 which when mutated causes a syndrome that phenocopies aspects of thalidomide embryopathy. Other candidate neosubstrates for the complex that have been found in non-human species may contribute to an understanding of the limb defect including PLZF, p63, and various zinc finger transcription factors. It is proposed that it is important to consider the species-specificity of the compound when considering potential mechanistic pathways and that some of the more traditional mechanisms for explaining the embryopathy, such as anti-angiogenesis and redox perturbation, may contribute to a full understanding of this teratogen.
Collapse
Affiliation(s)
- Michael D Collins
- Department of Environmental Health Sciences and Molecular Toxicology Interdisciplinary Program, UCLA School of Public Health, CHS 46-078, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - William J Scott
- Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
3
|
Rao S, Watt KEN, Maili L, Lamb M, Farrow E, Hassan H, Weaver K, Miller B, Dash S, Cox LL, Gallacher L, Kant SG, Gibson M, Pastinen T, Li D, Bhoj EJK, Zhu H, Zhang J, Zhang YB, Tan TY, Trainor PA, Cox TC. Splicing Defects and Cell Death Cause SF3B2-Linked Craniofacial Microsomia. J Dent Res 2025:220345251325818. [PMID: 40275713 DOI: 10.1177/00220345251325818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Craniofacial microsomia (CFM) is a genetically and phenotypically heterogeneous disorder characterized by hypoplasia of facial tissue that is often asymmetric. Affected tissues typically include the ears (external and internal), mandible, and maxilla, but various extracranial anomalies have also been reported. Loss-of-function variants in the SF3B2 gene have recently been reported in 8 cases of CFM, representing one of the more common genetic causes identified to date. To better define the full phenotypic spectrum associated with variants in SF3B2, we report novel loss-of-function variants in SF3B2 in 5 new families with CFM. Furthermore, to determine the mechanism by which SF3B2 loss-of-function perturbs craniofacial development, we established sf3b2-null mutant zebrafish, which exhibited severe deficiencies in craniofacial cartilage and bone progenitors due to elevated apoptosis and reduced proliferation of cranial neural crest cells. In addition, we generated a heterozygous truncating variant of SF3B2 in human induced pluripotent stem cells using CRISPR/Cas9 gene editing. Differentiation of these cells into neural crest cells was accompanied by increased cell death and reduced proliferation. RNA sequencing of sf3b2 mutant zebrafish revealed widespread disruption of mRNA splicing, including mdm2, a key regulator of Tp53-mediated apoptosis. Genetic inhibition of tp53 in sf3b2 mutants demonstrated that tp53 inhibition reduces early cell death but does not improve proliferation or craniofacial cartilage development. Therefore, our functional studies indicate that widespread mRNA splicing disruption, in addition to Tp53-dependent cell death, contributes to the craniofacial features observed in SF3B2-related CFM.
Collapse
Affiliation(s)
- S Rao
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - K E N Watt
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - L Maili
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - M Lamb
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - E Farrow
- Children's Mercy Hospital, Kansas City, MO, USA
| | - H Hassan
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - K Weaver
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - B Miller
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - S Dash
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biological Sciences, University at Albany (SUNY Albany), Albany, NY, USA
| | - L L Cox
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - L Gallacher
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - S G Kant
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Gibson
- Children's Mercy Hospital, Kansas City, MO, USA
| | - T Pastinen
- Children's Mercy Hospital, Kansas City, MO, USA
| | - D Li
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - E J K Bhoj
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - H Zhu
- School of Engineering Medicine, Beihang University, Beijing, China
| | - J Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Y-B Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - T Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - P A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - T C Cox
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
4
|
Wenger TL, Wild KT, Zaniletti I, Zackai EH, Lioy J, Resnick CM, Chaudhari BP, Rottgers SA, Goldstein J, Vyas R, Ahmad I, Coghill CH, Gogcu S, Lai KC, Cielo CM, Padula MA. Management and Outcomes of Neonates with Treacher Collins and Nager Syndromes. J Pediatr 2025; 283:114614. [PMID: 40280475 DOI: 10.1016/j.jpeds.2025.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVE To compare management and outcomes of infants with mandibulofacial dysostosis syndromes (Treacher Collins and Nager syndromes) admitted to neonatal intensive care units (NICUs) to infants with other causes of micrognathia. STUDY DESIGN The Children's Hospitals Neonatal Database from 2010 to 2023 was queried for infants with diagnoses of Treacher Collins syndrome (TCS), Nager syndrome (NS), and other infants in NICUs with micrognathia (n = 4210). RESULTS We identified 103 infants with TCS and 11 with NS to compare with the micrognathia cohort (n = 4210). Compared with infants with micrognathia, those with TCS were more likely to undergo tracheostomy (54% vs 11%) and gastrostomy tube placement (67% vs 35%) and were less likely to undergo mandibular distraction (9.7% vs 28.2%). The hospital mortality rate in TCS was lower than micrognathia cohort (1.9% vs 7.2%). Apgar scores were similar for TCS and micrognathia cohorts (6 and 8 vs 7 and 8, at 1 and 5 minutes, respectively) but lower for NS (2 and 6). Infants with NS had the highest rate of intubation at birth (91%) and tracheostomy placement (72.7%), and a higher mortality rate than TCS (27.3% vs 1.9%). Hospital length of stay was longer in TCS (47.5 days) and NS (43 days) than the micrognathia cohort (37 days). CONCLUSIONS Infants with mandibulofacial dysostosis (TCS and NS) were more likely to have a tracheostomy and gastrostomy tube, and less likely to undergo mandibular distraction than infants with micrognathia from other causes. NS was most severe with highest mortality rate and lowest Apgar scores. Despite a higher rate of tracheostomy and longer length of stay, the mortality rate for TCS remained low.
Collapse
Affiliation(s)
- Tara L Wenger
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA.
| | - K Taylor Wild
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Janet Lioy
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Cory M Resnick
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA
| | - Bimal P Chaudhari
- Division of Neonatology, Nationwide Children's Hospital, Columbus, OH; Division of Genetics, Nationwide Children's Hospital, Columbus, OH
| | - S Alex Rottgers
- Division of Plastic Surgery, John's Hopkins University, Baltimore, MD
| | | | - Raj Vyas
- Division of Plastic Surgery, Children's Hospital of Orange County, Orange, CA
| | - Irfan Ahmad
- Division of Neonatology, Children's Hospital of Orange County, Orange, CA
| | - Carl H Coghill
- Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL
| | - Semsa Gogcu
- Division of Neonatology, Warren Alpert Medical School of Brown University, Providence, RI
| | - Kuan-Chi Lai
- Division of Neonatology, Children's Hospital of Los Angeles, Los Angeles, CA
| | - Christopher M Cielo
- Division of Pulmonary & Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Michael A Padula
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA; Children's Hospitals Neonatal Consortium, Dover, DE
| |
Collapse
|
5
|
Griffin C, Coppenrath K, Khan D, Lin Z, Horb M, Saint-Jeannet JP. Deletion of sf3b4 causes splicing defects and gene dysregulation that disrupt craniofacial development and survival. Dis Model Mech 2025; 18:dmm052169. [PMID: 40126363 PMCID: PMC11980789 DOI: 10.1242/dmm.052169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
Nager and Rodriguez syndromes are rare craniofacial and limb disorders characterized by midface retrusion, micrognathia, absent thumbs and radial hypoplasia. These disorders result from haploinsufficiency of SF3B4 (splicing factor 3b, subunit 4), a component of the pre-mRNA spliceosomal machinery. Although the spliceosome is present and functions in all cells of the body, most spliceosomopathies - including Nager and Rodriguez syndromes - are cell- or tissue-specific in their pathology. To understand the pathomechanism underlying these conditions, we generated a Xenopus tropicalis sf3b4 mutant line using CRISPR/Cas9 gene-editing technology. Homozygous deletion of sf3b4 is detrimental to the development of cranial neural crest (NC)-derived cartilage progenitors. Temporal RNA-sequencing analyses of mutant embryos identified an increase in exon-skipping events, followed by important transcriptional changes associated with an enrichment for terms consistent with defects in NC cell migration and survival. We propose that disruption of these processes may underly the pathogenesis of Nager and Rodriguez syndromes.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Doha Khan
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratory, NYU Grossman School of Medicine, New York, NY 10010, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| |
Collapse
|
6
|
Moore JA, Jerome-Majewska LA. Are vagal neural crest derived tissues impacted in spliceosomopathies? Differentiation 2025; 142:100846. [PMID: 40059017 DOI: 10.1016/j.diff.2025.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
Splicing factors required for mRNA maturation have emerged as important contributors to neural crest development in the craniofacial region. Less is known of the role of these proteins in vagal neural crest cells that contribute to the outflow tract and form the enteric nervous system. In this review, we discuss the current state of our understanding of splicing and potential contribution of mis-splicing to cardiac and ENS defects.
Collapse
Affiliation(s)
- Joshua A Moore
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada; Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A J1, Canada
| | - Loydie A Jerome-Majewska
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 2B2, Canada; Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada; Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A J1, Canada; Department of Paediatrics, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
7
|
Del Viso F, Zhou D, Starling S, Fleming E, Saunders C. SF3B2 Haploinsufficiency Associated With Hirschprung Disease and Complex Cardiac Defect Without Craniofacial Microsomia. Am J Med Genet A 2025; 197:e63886. [PMID: 39305124 DOI: 10.1002/ajmg.a.63886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 01/04/2025]
Abstract
Haploinsufficiency of SF3B2 is associated with craniofacial microsomia, characterized by mandibular hypoplasia and microtia, often with preauricular tags or pits, epibulbar dermoids, and cleft palate. In addition, extracraniofacial anomalies may be present, such as skeletal, cardiac renal, and abnormalities of the central nervous system. Variants have been either de novo or inherited, and both inter- and intrafamilial variability has been observed. Here we describe a patient referred for exome sequencing for a complex congenital heart defect and Hirschsprung disease found by exome sequencing to be heterozygous for a loss of function variant, c.945dup (p.Val316SerfsTer5), in SF3B2. This variant was inherited from a parent with an isolated cardiac defect. Interestingly, neither have the defining craniofacial features or other dysmorphisms. This report further illustrates the degree of phenotypic variability seen in SF3B2-related disease and expands the spectrum to include Hirschsprung disease.
Collapse
Affiliation(s)
- Florencia Del Viso
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Dihong Zhou
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, Missouri, USA
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, USA
| | - Susan Starling
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, Missouri, USA
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, USA
| | - Emily Fleming
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, Missouri, USA
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, USA
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
8
|
Zanetti A, Dujardin G, Fares-Taie L, Amiel J, Roger JE, Audo I, Robert MP, David P, Jung V, Goudin N, Guerrera IC, Moriceau S, Amana D, Assia Batzir N, Bachar-Zipori A, Basel Salmon L, Boddaert N, Briault S, Bruel AL, Costet-Fighiera C, Coutinho Santos L, Gitiaux C, Kaminska K, Kuentz P, Orenstein N, Philip-Sarles N, Plutino M, Quinodoz M, Santos C, Sigaudy S, Soeiro E Sá M, Sofrin E, Sousa AB, Sousa-Luis R, Thauvin-Robinet C, van Dijk EL, Zaafrane-Khachnaoui K, Zur D, Kaplan J, Rivolta C, Rozet JM, Perrault I. GPATCH11 variants cause mis-splicing and early-onset retinal dystrophy with neurological impairment. Nat Commun 2024; 15:10096. [PMID: 39572588 PMCID: PMC11582697 DOI: 10.1038/s41467-024-54549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Here we conduct a study involving 12 individuals with retinal dystrophy, neurological impairment, and skeletal abnormalities, with special focus on GPATCH11, a lesser-known G-patch domain-containing protein, regulator of RNA metabolism. To elucidate its role, we study fibroblasts from unaffected individuals and patients carrying the recurring c.328+1 G > T mutation, which specifically removes the main part of the G-patch domain while preserving the other domains. Additionally, we generate a mouse model replicating the patients' phenotypic defects, including retinal dystrophy and behavioral abnormalities. Our results reveal a subcellular localization of GPATCH11 characterized by a diffuse presence in the nucleoplasm, as well as centrosomal localization, suggesting potential functions in RNA and cilia metabolism. Transcriptomic analysis performed on mouse retina detect dysregulation in both gene expression and splicing activity, impacting key processes such as photoreceptor light responses, RNA regulation, and primary cilia-associated metabolism. Proteomic analysis of mouse retina confirms the roles GPATCH11 plays in RNA processing, splicing, and transcription regulation, while also suggesting additional functions in synaptic plasticity and nuclear stress response. Our research provides insights into the diverse roles of GPATCH11 and identifies that the mutations affecting this protein are responsible for a recently characterized described syndrome.
Collapse
Affiliation(s)
- Andrea Zanetti
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Gwendal Dujardin
- Génétique, Génomique fonctionnelle et Biotechnologies (GGB), Université de Brest, INSERM UMR1078, EFS, Brest, France
| | - Lucas Fares-Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Malformations, INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neurosciences, CERTO-Retina France, CNRS, Paris-Saclay University, Saclay, France
| | - Isabelle Audo
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET F-, Paris, France
| | - Matthieu P Robert
- Ophthalmology Department, University Hospital Necker-Enfants Malades, APHP, Paris, France
| | - Pierre David
- Transgenesis platform, Laboratory of Animal Experimentation and Transgenesis (LEAT) of the Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMSS3633, Institute of Genetic Diseases, Imagine, Paris, France
| | - Vincent Jung
- Proteomic Platform Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Nicolas Goudin
- Necker Bioimage Analysis Core Facility of the Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Stéphanie Moriceau
- Platform for Neurobehavioral and metabolism, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Institute of Genetic Diseases, Imagine, Paris, France
| | - Danielle Amana
- Ophthalmology Department, Hospital Center of Orleans, Orleans, France
| | - Nurit Assia Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Anat Bachar-Zipori
- Ophthalmology Division, Tel Aviv Medical Center; Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lina Basel Salmon
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Recanati Genetics Institute, Rabin Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Nathalie Boddaert
- Pediatric-Radiology Department, University Hospital Necker-Enfants Malades, APHP, Paris Cité University, INSERM UMR1163, Paris, France
| | - Sylvain Briault
- Genetics Department, Regional Hospital of Orleans (CHRO), Orleans, France
| | - Ange-Line Bruel
- INSERM UMR1231, GAD team Université de Bourgogne-Franche Comté, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | | | | | - Cyril Gitiaux
- Department of Clinical Neurophysiology, Reference center for neuromuscular pathologies Paris Nord Est, University Hospital Necker-Enfants Malades, Paris Cité University, Paris, France
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Paul Kuentz
- INSERM UMR1231, GAD team Université de Bourgogne-Franche Comté, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Morgane Plutino
- Service de Génétique Médicale, Hôpital l'Archet 2, CHU de Nice, Nice, France
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Cristina Santos
- Instituto de Oftalmologia Dr. Gama Pinto (IOGP), Lisboa, Portugal
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sabine Sigaudy
- Medical Genetics Department, Hospital Timone Enfant, Marseille, France
| | - Mariana Soeiro E Sá
- Department of Medical Genetics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Efrat Sofrin
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Ana Berta Sousa
- Department of Medical Genetics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- Laboratory of Basic Immunology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Rui Sousa-Luis
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christel Thauvin-Robinet
- INSERM UMR1231, GAD team Université de Bourgogne-Franche Comté, FHU-TRANSLAD, CHU Dijon, Dijon, France
- Reference Center for Rare Diseases "Developmental Abnormalities and Malformation Syndromes" of the East, Genetic center, Hopital d'Enfants, FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette Cedex, France
| | | | - Dinah Zur
- Ophthalmology Division, Tel Aviv Medical Center; Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France.
| |
Collapse
|
9
|
Hoshino Y, Liu S, Furutera T, Yamada T, Koyabu D, Nukada Y, Miyazawa M, Yoda T, Ichimura K, Iseki S, Tasaki J, Takechi M. Pharmacological Inhibition of the Spliceosome SF3b Complex by Pladienolide-B Elicits Craniofacial Developmental Defects in Mouse and Zebrafish. Birth Defects Res 2024; 116:e2404. [PMID: 39494782 PMCID: PMC11579809 DOI: 10.1002/bdr2.2404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Mutations in genes encoding spliceosome components result in craniofacial structural defects in humans, referred to as spliceosomopathies. The SF3b complex is a crucial unit of the spliceosome, but model organisms generated through genetic modification of the complex do not perfectly mimic the phenotype of spliceosomopathies. Since the phenotypes are suggested to be determined by the extent of spliceosome dysfunction, an alternative experimental system that can seamlessly control SF3b function is needed. METHODS To establish another experimental system for model organisms elucidating relationship between spliceosome function and human diseases, we administered Pladienolide-B (PB), a SF3b complex inhibitor, to mouse and zebrafish embryos and assessed resulting phenotypes. RESULTS PB-treated mouse embryos exhibited neural tube defect and exencephaly, accompanied by apoptosis and reduced cell proliferation in the neural tube, but normal structure in the midface and jaw. PB administration to heterozygous knockout mice of Sf3b4, a gene coding for a SF3b component, influenced the formation of cranial neural crest cells (CNCCs). Despite challenges in continuous PB administration and a high death rate in mice, PB was stably administered to zebrafish embryos, resulting in prolonged survival. Brain, cranial nerve, retina, midface, and jaw development were affected, mimicking spliceosomopathy phenotypes. Additionally, alterations in cell proliferation, cell death, and migration of CNCCs were detected. CONCLUSIONS We demonstrated that zebrafish treated with PB exhibited phenotypes similar to those observed in human spliceosomopathies. This experimental system may serve as a valuable research tool for understanding spliceosome function and human diseases.
Collapse
Affiliation(s)
- Yukiko Hoshino
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Office of VaccinesPharmaceuticals and Medical Devices Agency (PMDA)Japan
| | - Shujie Liu
- R&D, Safety Science Research, Kao CorporationKawasakiJapan
| | - Toshiko Furutera
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| | - Takahiko Yamada
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Daisuke Koyabu
- Research and Development Center for Precision MedicineUniversity of TsukubaIbarakiJapan
| | - Yuko Nukada
- R&D, Safety Science Research, Kao CorporationTochigiJapan
| | | | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Koichiro Ichimura
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Junichi Tasaki
- R&D, Safety Science Research, Kao CorporationKawasakiJapan
| | - Masaki Takechi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
10
|
Woronowicz KC, Esin EV, Markevich GN, Martinez CS, McMenamin SK, Daane JM, Harris MP, Shkil FN. Phylogenomic analysis of the Lake Kronotskoe species flock of Dolly Varden charr reveals genetic and developmental signatures of sympatric radiation. Development 2024; 151:dev203002. [PMID: 39417576 PMCID: PMC11698049 DOI: 10.1242/dev.203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Recent adaptive radiations provide experimental opportunities to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetic analyses as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, charr species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotskoe represent the most extensive radiation described for the genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages within the clade. We find that changes in genes associated with thyroid signaling and craniofacial development provided a foundational shift in evolution to the lake. The thyroid axis is further implicated in subsequent lineage partitioning events. These results delineate a genetic scenario for the diversification of specialized lineages and highlight a common axis of change biasing the generation of specific forms during adaptive radiation.
Collapse
Affiliation(s)
- Katherine C. Woronowicz
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Evgeny V. Esin
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | - Grigorii N. Markevich
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | | | | | - Jacob M. Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Matthew P. Harris
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Fedor N. Shkil
- Laboratory of Evolutionary Morphology, Severtsov Institute, Moscow 119071, Russian Federation
- Laboratory of Postembryonic Development, Koltzov Institute, Moscow 119071, Russian Federation
| |
Collapse
|
11
|
Meng L, Jin H, Yulug B, Altay O, Li X, Hanoglu L, Cankaya S, Coskun E, Idil E, Nogaylar R, Ozsimsek A, Shoaie S, Turkez H, Nielsen J, Zhang C, Borén J, Uhlén M, Mardinoglu A. Multi-omics analysis reveals the key factors involved in the severity of the Alzheimer's disease. Alzheimers Res Ther 2024; 16:213. [PMID: 39358810 PMCID: PMC11448018 DOI: 10.1186/s13195-024-01578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder with a global impact, yet its pathogenesis remains poorly understood. While age, metabolic abnormalities, and accumulation of neurotoxic substances are potential risk factors for AD, their effects are confounded by other factors. To address this challenge, we first utilized multi-omics data from 87 well phenotyped AD patients and generated plasma proteomics and metabolomics data, as well as gut and saliva metagenomics data to investigate the molecular-level alterations accounting the host-microbiome interactions. Second, we analyzed individual omics data and identified the key parameters involved in the severity of the dementia in AD patients. Next, we employed Artificial Intelligence (AI) based models to predict AD severity based on the significantly altered features identified in each omics analysis. Based on our integrative analysis, we found the clinical relevance of plasma proteins, including SKAP1 and NEFL, plasma metabolites including homovanillate and glutamate, and Paraprevotella clara in gut microbiome in predicting the AD severity. Finally, we validated the predictive power of our AI based models by generating additional multi-omics data from the same group of AD patients by following up for 3 months. Hence, we observed that these results may have important implications for the development of potential diagnostic and therapeutic approaches for AD patients.
Collapse
Affiliation(s)
- Lingqi Meng
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Han Jin
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lutfu Hanoglu
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Seyda Cankaya
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ebru Coskun
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ezgi Idil
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Rahim Nogaylar
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ahmet Ozsimsek
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Saeed Shoaie
- Centre for Host-Microbiome Interaction's, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
- Centre for Host-Microbiome Interaction's, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
12
|
Kumar S, Bareke E, Lee J, Carlson E, Merkuri F, Schwager EE, Maglio S, Fish JL, Majewski J, Jerome-Majewska LA. Etiology of craniofacial and cardiac malformations in a mouse model of SF3B4-related syndromes. Proc Natl Acad Sci U S A 2024; 121:e2405523121. [PMID: 39292749 PMCID: PMC11441570 DOI: 10.1073/pnas.2405523121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/26/2024] [Indexed: 09/20/2024] Open
Abstract
Pathogenic variants in SF3B4, a component of the U2 snRNP complex important for branchpoint sequence recognition and splicing, are responsible for the acrofacial disorders Nager and Rodriguez Syndrome, also known as SF3B4-related syndromes. Patients exhibit malformations in the head, face, limbs, vertebrae as well as the heart. To uncover the etiology of craniofacial malformations found in SF3B4-related syndromes, mutant mouse lines with homozygous deletion of Sf3b4 in neural crest cells (NCC) were generated. Like in human patients, these embryos had craniofacial and cardiac malformations with variable expressivity and penetrance. The severity and survival of Sf3b4 NCC mutants was modified by the level of Sf3b4 in neighboring non-NCC. RNA sequencing analysis of heads of embryos prior to morphological abnormalities revealed significant changes in expression of genes forming the NCC regulatory network, as well as an increase in exon skipping. Additionally, several key histone modifiers involved in craniofacial and cardiac development showed increased exon skipping. Increased exon skipping was also associated with use of a more proximal branch point, as well as an enrichment in thymidine bases in the 50 bp around the branch points. We propose that decrease in Sf3b4 causes changes in the expression and splicing of transcripts required for proper craniofacial and cardiac development, leading to abnormalities.
Collapse
Affiliation(s)
- Shruti Kumar
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Jimmy Lee
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QCH3A 0G1, Canada
| | - Emma Carlson
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Evelyn E. Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Steven Maglio
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Jennifer L. Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Loydie A. Jerome-Majewska
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 2B2, Canada
- Department of Pediatrics, McGill University, Montreal, QCH4A 3J1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre at Glen Site, Montreal, QCH4A 3J1, Canada
| |
Collapse
|
13
|
Ulhaq ZS, You MS, Yabe T, Takada S, Chen JK, Ogino Y, Jiang YJ, Tse WKF. Fgf8 contributes to the pathogenesis of Nager syndrome. Int J Biol Macromol 2024; 280:135692. [PMID: 39288852 DOI: 10.1016/j.ijbiomac.2024.135692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Nager syndrome (NS, OMIM 154400) is a rare disease characterized by craniofacial and limb malformations due to variants in the gene encoding splicing factor 3B subunit 4 (SF3B4). Although various noncanonical functions of SF3B4 unrelated to splicing have been previously described, limited studies elucidate molecular mechanisms underlying NS pathogenesis. Here we showed that sf3b4-deficient fish displayed craniofacial and segmentation defects associated with suppression of fgf8 levels, which perturbed FGF signaling and neural crest cell (NCC) expression. Our finding also pointed out that oxidative stress-induced apoptosis was prominently detected in sf3b4-deficient fish and may further exaggerate the bone remodeling process. Notably, injection of exogenous FGF8 significantly rescued the demonstrated defects in sf3b4-deficient fish, which further supported the participation of Fgf8 in NS pathogenesis. Overall, our study provides valuable insights into the molecular mechanism underlying developmental abnormalities observed in NS and suggests future therapeutic strategies to protect against the pathogenesis of NS and possibilities for preventing severe outcomes.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia.
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Taijiro Yabe
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinji Takada
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
14
|
Ogawa T, Xue J, Guo L, Inoue-Arai MS, Vendramini-Pittoli S, Zechi-Ceide RM, Candido-Souza RM, Tonello C, Brandão MM, Ozawa TO, Peixoto AP, Ruiz DMCF, Nakashima T, Ikegawa S, Moriyama K, Kokitsu-Nakata NM. Identification of a de novo PUF60 variant associated with craniofacial microsomia. Am J Med Genet A 2024; 194:e63631. [PMID: 38647383 DOI: 10.1002/ajmg.a.63631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Craniofacial microsomia (CFM), also known as the oculo-auriculo-vertebral spectrum, is a congenital disorder characterized by hypoplasia of the mandible and external ear due to tissue malformations originating from the first and second branchial arches. However, distinguishing it from other syndromes of branchial arch abnormalities is difficult, and causal variants remain unidentified in many cases. In this report, we performed an exome sequencing analysis of a Brazilian family with CFM. The proband was a 12-month-old boy with clinical findings consistent with the diagnostic criteria for CFM, including unilateral mandibular hypoplasia, microtia, and external auditory canal abnormalities. A heterozygous de novo nonsense variant (c.713C>G, p.S238*) in PUF60 was identified, which was predicted to be pathogenic in silico. PUF60 has been reported as a causal gene in Verheij syndrome, but not in CFM. Although the boy showed craniofacial abnormalities and developmental delay that overlapped with Verheij syndrome, the facial asymmetry with unilateral hypoplasia of the mandible observed in this case did not match the previously reported phenotypes of PUF60 variants. Our findings expand the phenotypic range of PUF60 variants that cover CFM and Verheij syndrome.
Collapse
Affiliation(s)
- Takuya Ogawa
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jingyi Xue
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Maristela Sayuri Inoue-Arai
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Siulan Vendramini-Pittoli
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Roseli Maria Zechi-Ceide
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rosana Maria Candido-Souza
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Cristiano Tonello
- Department of Craniofacial Surgery, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Michele Madeira Brandão
- Department of Craniofacial Surgery, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Terumi Okada Ozawa
- Department of Orthodontics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Adriano Porto Peixoto
- Department of Orthodontics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Daniela Maria Cury Ferreira Ruiz
- Department Speech Therapy, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nancy Mizue Kokitsu-Nakata
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| |
Collapse
|
15
|
Fellmann F, Saunders C, O’Donohue MF, Reid DW, McFadden KA, Montel-Lehry N, Yu C, Fang M, Zhang J, Royer-Bertrand B, Farinelli P, Karboul N, Willer JR, Fievet L, Bhuiyan ZA, Kleinhenz AL, Jadeau J, Fulbright J, Rivolta C, Renella R, Katsanis N, Beckmann JS, Nicchitta CV, Da Costa L, Davis EE, Gleizes PE. An atypical form of 60S ribosomal subunit in Diamond-Blackfan anemia linked to RPL17 variants. JCI Insight 2024; 9:e172475. [PMID: 39088281 PMCID: PMC11385091 DOI: 10.1172/jci.insight.172475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional, and biochemical dissection of 2 multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein-encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Further, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10%-20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.
Collapse
Affiliation(s)
- Florence Fellmann
- The ColLaboratory, University of Lausanne, Lausanne, Switzerland
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Carol Saunders
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, USA
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | | | - David W. Reid
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Kelsey A. McFadden
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Nathalie Montel-Lehry
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Cong Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Pietro Farinelli
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | - Jason R. Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Lorraine Fievet
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Zahurul Alam Bhuiyan
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Alissa L.W. Kleinhenz
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Julie Jadeau
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Joy Fulbright
- Division of Hematology/Oncology, Children’s Mercy Hospital and Clinics, Kansas City, Missouri, USA
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Raffaele Renella
- Division of Pediatrics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Jacques S. Beckmann
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Clinical Bioinformatics, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christopher V. Nicchitta
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique, Hôpital Robert Debré, Paris, France
- Université Paris Cité, Paris, France
- Hematim EA4666, CURS, CHU Amiens, Amiens, France
- LABEX GR-EX, Paris, France
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
16
|
Woronowicz KC, Esin EV, Markevich GN, Martinez CS, McMenamin SK, Daane JM, Harris MP, Shkil FN. Phylogenomic analysis of the Lake Kronotskoe species flock of Dolly Varden charr reveals genetic and developmental signatures of sympatric radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.24.529919. [PMID: 38712299 PMCID: PMC11071292 DOI: 10.1101/2023.02.24.529919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Recent adaptive radiations provide evolutionary case studies, which provide the context to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetics as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotske represent the most extensive radiation described for the charr genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages with little evidence of hybridization. We also find that specific selection on thyroid signaling and craniofacial genes forms a genomic basis for the radiation. Thyroid hormone is further implicated in subsequent lineage partitioning events. These results delineate a clear genetic basis for the diversification of specialized lineages, and highlight the role of developmental mechanisms in shaping the forms generated during adaptive radiation.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- Department of Orthopaedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Evgeny V Esin
- AN Severtsov Institute of Ecology and Evolution, RAS; Leninskiy-33, 119071 Moscow, Russian Federation
| | - Grigorii N Markevich
- Kronotsky Nature Biosphere Reserve; Ryabikova-48, 68400 Yelizovo, Russian Federation
| | | | | | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
| | - Matthew P Harris
- Department of Orthopaedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Fedor N Shkil
- AN Severtsov Institute of Ecology and Evolution, RAS; Leninskiy-33, 119071 Moscow, Russian Federation
- NK Koltzov Institute of Developmental Biology, RAS; Vavilova-26, 119334 Moscow, Russian Federation
| |
Collapse
|
17
|
Pan X, Tao AM, Lu S, Ma M, Hannan SB, Slaugh R, Drewes Williams S, O'Grady L, Kanca O, Person R, Carter MT, Platzer K, Schnabel F, Abou Jamra R, Roberts AE, Newburger JW, Revah-Politi A, Granadillo JL, Stegmann APA, Sinnema M, Accogli A, Salpietro V, Capra V, Ghaloul-Gonzalez L, Brueckner M, Simon MEH, Sweetser DA, Glinton KE, Kirk SE, Wangler MF, Yamamoto S, Chung WK, Bellen HJ. De novo variants in FRYL are associated with developmental delay, intellectual disability, and dysmorphic features. Am J Hum Genet 2024; 111:742-760. [PMID: 38479391 PMCID: PMC11023917 DOI: 10.1016/j.ajhg.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/07/2024] Open
Abstract
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alice M Tao
- Vagelos School of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shabab B Hannan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rachel Slaugh
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Sarah Drewes Williams
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren O'Grady
- Division of Medical Genetics & Metabolism, Massachusetts General for Children, Boston, MA, USA; MGH Institute of Health Professions, Charlestown, MA, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Melissa T Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Franziska Schnabel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Medicine, Division of Genetics, Boston Children's Hospital, Boston, MA, USA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Anya Revah-Politi
- Institute for Genomic Medicine and Precision Genomics Laboratory, Columbia University Irving Medical Center, New York, NY, USA
| | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Center, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, University College London Institute of Neurology, Queen Square, London, UK
| | - Valeria Capra
- Unit of Medical Genetics and Genomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lina Ghaloul-Gonzalez
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martina Brueckner
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Marleen E H Simon
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David A Sweetser
- Division of Medical Genetics & Metabolism, Massachusetts General for Children, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin E Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Susan E Kirk
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Cancer and Hematology Center, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Wendy K Chung
- Departments of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Ulhaq ZS, Tse WKF. Transcriptomic analysis reveals mitochondrial dysfunction in the pathogenesis of Nager syndrome in sf3b4-depleted zebrafish. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167128. [PMID: 38508476 DOI: 10.1016/j.bbadis.2024.167128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Nager syndrome (NS) is a rare acrofacial dysostosis caused by heterozygous loss-of-function variants in the splicing factor 3B subunit 4 (SF3B4). The main clinical features of patients with NS are characterized by facial-mandibular and preaxial limb malformations. The migration and specification of neural crest cells are crucial for craniofacial development, and mitochondrial fitness appears to play a role in such processes. Here, by analyzing our previously published transcriptome dataset, we aim to investigate the potential involvement of mitochondrial components in the pathogenesis of craniofacial malformations, especially in sf3b4 mutant zebrafish. We identified that oxidative phosphorylation (OXPHOS) defects and overproduction of reactive oxygen species (ROS) due to decreased antioxidants defense activity, which leads to oxidative damage and mitochondrial dysfunction. Furthermore, our results highlight that fish lacking sf3b4 gene, primarily display defects in mitochondrial complex I. Altogether, our findings suggest that mitochondrial dysfunction may contribute to the development of the craniofacial anomalies observed in sf3b4-depleted zebrafish.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia.
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
19
|
Ulhaq ZS, Soraya GV, Istifiani LA, Pamungkas SA, Arisanti D, Dini B, Astari LF, Hasan YTN, Ayudianti P, Kusuma MAS, Shodry S, Herawangsa S, Nurputra DK, Idaiani S, Tse WKF. A Brief Analysis on Clinical Severity of Mandibulofacial Dysostosis Guion-Almeida Type. Cleft Palate Craniofac J 2024; 61:688-696. [PMID: 36317361 DOI: 10.1177/10556656221136177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Genetic variants in EFTUD2 were proven to influence variable phenotypic expressivity in mandibulofacial dysostosis Guion-Almeida type (MFDGA) or mandibulofacial dysostosis with microcephaly (MFDM). Yet, the association between the severity of clinical findings with variants within the EFTUD2 gene has not been established. Thus, we aim to elucidate a possible genotype-phenotype correlation in MFDM. METHODS Forty articles comprising 156 patients were evaluated. The genotype-phenotype correlation was analyzed using a chi-square or Fisher's exact test. RESULTS The proportion of patients with MFDM was higher in Caucasian relative to Asian populations. Although, in general, there was no apparent genotype-phenotype correlation in patients with MFDM, Asians tended to have more severe clinical manifestations than Caucasians. In addition, cardiac abnormality presented in patients with intronic variants located in canonical splice sites was a predisposing factor in affecting MFDM severity. CONCLUSION Altogether, this article provides the pathogenic variants observed in EFTUD2 and possible genotype-phenotype relationships in this disease.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Kyushu University, Faculty of Agriculture, Fukuoka, Fukuoka, Japan
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University, Malang, East Java, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, East Java, Indonesia
| | | | - Ditya Arisanti
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Badariyatud Dini
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Lina Fitria Astari
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Yuliono Trika Nur Hasan
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Prida Ayudianti
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Muhammad A'raaf Sirojan Kusuma
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Syifaus Shodry
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Sarah Herawangsa
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Dian Kesumapramudya Nurputra
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Sri Idaiani
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Kyushu University, Faculty of Agriculture, Fukuoka, Fukuoka, Japan
| |
Collapse
|
20
|
Regan-Fendt KE, Izumi K. Nuclear speckleopathies: developmental disorders caused by variants in genes encoding nuclear speckle proteins. Hum Genet 2024; 143:529-544. [PMID: 36929417 DOI: 10.1007/s00439-023-02540-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
Nuclear speckles are small, membrane-less organelles that reside within the nucleus. Nuclear speckles serve as a regulatory hub coordinating complex RNA metabolism steps including gene transcription, pre-mRNA splicing, RNA modifications, and mRNA nuclear export. Reflecting the importance of proper nuclear speckle function in regulating normal human development, an increasing number of genetic disorders have been found to result from mutations in the genes encoding nuclear speckle proteins. To denote this growing class of genetic disorders, we propose "nuclear speckleopathies". Notably, developmental disabilities are commonly seen in individuals with nuclear speckleopathies, suggesting the particular importance of nuclear speckles in ensuring normal neurocognitive development. In this review article, a general overview of nuclear speckle function, and the current knowledge of the mechanisms underlying some nuclear speckleopathies, such as ZTTK syndrome, NKAP-related syndrome, TARP syndrome, and TAR syndrome, are discussed. These nuclear speckleopathies represent valuable models to understand the basic function of nuclear speckles and how its functional defects result in human developmental disorders.
Collapse
Affiliation(s)
- Kelly E Regan-Fendt
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Laboratory of Rare Disease Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Griffin C, Coppenrath K, Khan D, Lin Z, Horb M, Saint-Jeannet JP. Sf3b4 mutation in Xenopus tropicalis causes RNA splicing defects followed by massive gene dysregulation that disrupt cranial neural crest development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578190. [PMID: 38352410 PMCID: PMC10862923 DOI: 10.1101/2024.01.31.578190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Nager syndrome is a rare craniofacial and limb disorder characterized by midface retrusion, micrognathia, absent thumbs, and radial hypoplasia. This disorder results from haploinsufficiency of SF3B4 (splicing factor 3b, subunit 4) a component of the pre-mRNA spliceosomal machinery. The spliceosome is a complex of RNA and proteins that function together to remove introns and join exons from transcribed pre-mRNA. While the spliceosome is present and functions in all cells of the body, most spliceosomopathies - including Nager syndrome - are cell/tissue-specific in their pathology. In Nager syndrome patients, it is the neural crest (NC)-derived craniofacial skeletal structures that are primarily affected. To understand the pathomechanism underlying this condition, we generated a Xenopus tropicalis sf3b4 mutant line using the CRISPR/Cas9 gene editing technology. Here we describe the sf3b4 mutant phenotype at neurula, tail bud, and tadpole stages, and performed temporal RNA-sequencing analysis to characterize the splicing events and transcriptional changes underlying this phenotype. Our data show that while loss of one copy of sf3b4 is largely inconsequential in Xenopus tropicalis, homozygous deletion of sf3b4 causes major splicing defects and massive gene dysregulation, which disrupt cranial NC cell migration and survival, thereby pointing at an essential role of Sf3b4 in craniofacial development.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
| | - Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Doha Khan
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratory, NYU Grossman School of Medicine, New York, NY, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | |
Collapse
|
22
|
Knill C, Henderson EJ, Johnson C, Wah VY, Cheng K, Forster AJ, Itasaki N. Defects of the spliceosomal gene SNRPB affect osteo- and chondro-differentiation. FEBS J 2024; 291:272-291. [PMID: 37584444 DOI: 10.1111/febs.16934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023]
Abstract
Although gene splicing occurs throughout the body, the phenotype of spliceosomal defects is largely limited to specific tissues. Cerebro-costo-mandibular syndrome (CCMS) is one such spliceosomal disease, which presents as congenital skeletal dysmorphism and is caused by mutations of SNRPB gene encoding Small Nuclear Ribonucleoprotein Polypeptides B/B' (SmB/B'). This study employed in vitro cell cultures to monitor osteo- and chondro-differentiation and examined the role of SmB/B' in the differentiation process. We found that low levels of SmB/B' by knockdown or mutations of SNRPB led to suppressed osteodifferentiation in Saos-2 osteoprogenitor-like cells, which was accompanied by affected splicing of Dlx5. On the other hand, low SmB/B' led to promoted chondrogenesis in HEPM mesenchymal stem cells. Consistent with other reports, osteogenesis was promoted by the Wnt/β-catenin pathway activator and suppressed by Wnt and BMP blockers, whereas chondrogenesis was promoted by Wnt inhibitors. Suppressed osteogenic markers by SNRPB knockdown were partly rescued by Wnt/β-catenin pathway activation. Reporter analysis revealed that suppression of SNRPB results in attenuated Wnt pathway and/or enhanced BMP pathway activities. SNRPB knockdown altered splicing of TCF7L2 which impacts Wnt/β-catenin pathway activities. This work helps unravel the mechanism underlying CCMS whereby reduced expression of spliceosomal proteins causes skeletal phenotypes.
Collapse
Affiliation(s)
- Chris Knill
- Faculty of Life Sciences, University of Bristol, UK
| | | | - Craig Johnson
- Faculty of Health Sciences, University of Bristol, UK
| | - Vun Yee Wah
- Faculty of Life Sciences, University of Bristol, UK
| | - Kevin Cheng
- Faculty of Life Sciences, University of Bristol, UK
| | | | - Nobue Itasaki
- Faculty of Health Sciences, University of Bristol, UK
| |
Collapse
|
23
|
Marszałek-Kruk BA, Myśliwiec A, Lipowicz A, Wolański W, Kulesa-Mrowiecka M, Dowgierd K. Children with Rare Nager Syndrome-Literature Review, Clinical and Physiotherapeutic Management. Genes (Basel) 2023; 15:29. [PMID: 38254920 PMCID: PMC10815867 DOI: 10.3390/genes15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Nager syndrome is a rare human developmental disorder characterized by craniofacial defects including the downward slanting of the palpebral fissures, cleft palate, limb deformities, mandibular hypoplasia, hypoplasia or absence of thumbs, microretrognathia, and ankylosis of the temporomandibular joint. The prevalence is very rare and the literature describes only about a hundred cases of Nager syndrome. There is evidence of autosomal dominant and autosomal recessive inheritance for Nager syndrome, suggesting genetic heterogeneity. The majority of the described causes of Nager syndrome include pathogenic variants in the SF3B4 gene, which encodes a component of the spliceosome; therefore, the syndrome belongs to the spliceosomopathy group of diseases. The diagnosis is made on the basis of physical and radiological examination and detection of mutations in the SF3B4 gene. Due to the diversity of defects associated with Nager syndrome, patients require multidisciplinary, complex, and long-lasting treatment. Usually, it starts from birth until the age of twenty years. The surgical procedures vary over a patient's lifetime and are related to the needed function. First, breathing and feeding must be facilitated; then, oral and facial clefts should be addressed, followed by correcting eyelid deformities and cheekbone reconstruction. In later age, a surgery of the nose and external ear is performed. Speech and hearing disorders require specialized logopedic treatment. A defect of the thumb is treated by transplanting a tendon and muscle or transferring the position of the index finger. In addition to surgery, in order to maximize a patient's benefit and to reduce functional insufficiency, complementary treatments such as rehabilitation and physiotherapy are recommended. In our study, we describe eight patients of different ages with various cases of Nager syndrome. The aim of our work was to present the actual genetic knowledge on this disease and its treatment procedures.
Collapse
Affiliation(s)
| | - Andrzej Myśliwiec
- Laboratory of Physiotherapy and Physioprevention, Institute of Physiotherapy and Health Sciences, Academy of Physical Education in Katowice, 40-065 Katowice, Poland
| | - Anna Lipowicz
- Department of Anthropology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Wojciech Wolański
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Małgorzata Kulesa-Mrowiecka
- Department of Rehabilitation in Internal Diseases, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland
| | - Krzysztof Dowgierd
- Head and Neck Surgery Clinic for Children and Young Adults, Department of Clinical Pediatrics, Collegium Medicum, University of Warmia and Mazury, 10-561 Olsztyn, Poland
| |
Collapse
|
24
|
Zhang Y, Bi S, Dai L, Zhao Y, Liu Y, Shi Z. Clinical report and genetic analysis of a Chinese neonate with craniofacial microsomia caused by a splicing variant of the splicing factor 3b subunit 2 gene. Mol Genet Genomic Med 2023; 11:e2268. [PMID: 37555391 PMCID: PMC10724505 DOI: 10.1002/mgg3.2268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Craniofacial microsomia (CFM) is a common congenital malformation with unknown pathogenesis. Although few cases have been reported, it is suggested that variants of the SF3B2 gene may lead to CFM. We herein report the case of a neonate with CFM exhibiting rare features of airway obstruction. METHODS Trio whole-exome sequencing and Sanger validation were performed on the proband and her parents. Candidate gene mutations were analyzed using the Genome Aggregation Database (gnomAD) for normal frequency distributions. The Human Splicing Finder (HSF) and Rare Disease Data Center (RDDC) RNA splicer algorithms predicted the variant's harmfulness, verified by a Minigene assay. RESULTS The proband had a heterozygous SF3B2 variant, NM_006842.3:c.777+1G>A. The patient's father also carried this variant and exhibited facial abnormalities. The variant was not in gnomAD, and HSF and RDDC RNA splicers indicated donor site disruption. The minigene assay suggested that two mRNA products were produced, leading to a premature termination codon. CONCLUSION For this family, the pathogenesis of CFM may have been caused by an SF3B2 splicing variant. Affected family members exhibited varying degrees of malformation, indicating that CFM has phenotypic heterogeneity. This finding expands the phenotype and variant spectrum of SF3B2, enriches neonatal CFM research, and provides a possible guide to genetic counseling.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of NeonatologyChildren’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital)HefeiAnhui ProvinceChina
| | - Shaohua Bi
- Department of NeonatologyChildren’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital)HefeiAnhui ProvinceChina
| | - Liying Dai
- Department of NeonatologyChildren’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital)HefeiAnhui ProvinceChina
| | - Yuwei Zhao
- Department of NeonatologyChildren’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital)HefeiAnhui ProvinceChina
| | - Yu Liu
- Department of NeonatologyChildren’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital)HefeiAnhui ProvinceChina
| | - Zifeng Shi
- Center of Imaging DiagnosisChildren’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital)HefeiAnhui ProvinceChina
| |
Collapse
|
25
|
Robson CD. Conductive Hearing Loss in Children. Neuroimaging Clin N Am 2023; 33:543-562. [PMID: 37741657 DOI: 10.1016/j.nic.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
A variety of congenital and acquired disorders result in pediatric conductive hearing loss. Malformations of the external auditory canal are invariably associated with malformations of the middle ear space and ossicles. Isolated ossicular malformations are uncommon. Syndromes associated with external and middle ear malformations are frequently associated with abnormal development of first and second pharyngeal arch derivatives. Chronic inflammatory disorders include cholesteatoma, cholesterol granuloma, and tympanosclerosis.
Collapse
Affiliation(s)
- Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Choi S, Cho N, Kim EM, Kim KK. The role of alternative pre-mRNA splicing in cancer progression. Cancer Cell Int 2023; 23:249. [PMID: 37875914 PMCID: PMC10594706 DOI: 10.1186/s12935-023-03094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
27
|
Harms FL, Dingemans AJM, Hempel M, Pfundt R, Bierhals T, Casar C, Müller C, Niermeijer JMF, Fischer J, Jahn A, Hübner C, Majore S, Agolini E, Novelli A, van der Smagt J, Ernst R, van Binsbergen E, Mancini GMS, van Slegtenhorst M, Barakat TS, Wakeling EL, Kamath A, Downie L, Pais L, White SM, de Vries BBA, Kutsche K. De novo PHF5A variants are associated with craniofacial abnormalities, developmental delay, and hypospadias. Genet Med 2023; 25:100927. [PMID: 37422718 DOI: 10.1016/j.gim.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Arne Jahn
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christoph Hübner
- Department of Neuropaediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silvia Majore
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Jasper van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Robert Ernst
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Emma L Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Arveen Kamath
- All Wales Medical Genomics Service/ Pennaeth Labordy Genomeg Cymru Gyfan, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Lilian Downie
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
28
|
Ulhaq ZS, Okamoto K, Ogino Y, Tse WKF. Dysregulation of Spliceosomes Complex Induces Retinitis Pigmentosa-Like Characteristics in sf3b4-Depleted Zebrafish. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1223-1233. [PMID: 37263342 DOI: 10.1016/j.ajpath.2023.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
The SF3B4 gene encodes a highly conserved protein that plays a critical role in mRNA splicing. Mutations in this gene are known to cause Nager syndrome, a rare craniofacial disorder. Although SF3B4 expression is detected in the optic vesicle before it is detected in the limb and somite, the role of SF3B4 in the eye is not well understood. This study investigated the function of sf3b4 in the retina by performing transcriptome profiles, immunostaining, and behavioral analysis of sf3b4-/- mutant zebrafish. Results from this study suggest that dysregulation of the spliceosome complex affects not only craniofacial development but also retinogenesis. Zebrafish lacking functional sf3b4 displayed characteristics similar to retinitis pigmentosa (RP), marked by severe retinal pigment epithelium defects and rod degeneration. Pathway analysis revealed altered retinol metabolism and retinoic acid signaling in the sf3b4-/- mutants. Supplementation of retinoic acid rescued key cellular phenotypes observed in the sf3b4-/- mutants, offering potential therapeutic strategies for RP in the future. In conclusion, this study sheds light on the previously unknown role of SF3B4 in retinogenesis and provides insights into the underlying mechanisms of RP.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Republic of Indonesia, Cibinong, Indonesia.
| | - Keigo Okamoto
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
29
|
Hennocq Q, Bongibault T, Marlin S, Amiel J, Attie-Bitach T, Baujat G, Boutaud L, Carpentier G, Corre P, Denoyelle F, Djate Delbrah F, Douillet M, Galliani E, Kamolvisit W, Lyonnet S, Milea D, Pingault V, Porntaveetus T, Touzet-Roumazeille S, Willems M, Picard A, Rio M, Garcelon N, Khonsari RH. AI-based diagnosis in mandibulofacial dysostosis with microcephaly using external ear shapes. Front Pediatr 2023; 11:1171277. [PMID: 37664547 PMCID: PMC10469912 DOI: 10.3389/fped.2023.1171277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Mandibulo-Facial Dysostosis with Microcephaly (MFDM) is a rare disease with a broad spectrum of symptoms, characterized by zygomatic and mandibular hypoplasia, microcephaly, and ear abnormalities. Here, we aimed at describing the external ear phenotype of MFDM patients, and train an Artificial Intelligence (AI)-based model to differentiate MFDM ears from non-syndromic control ears (binary classification), and from ears of the main differential diagnoses of this condition (multi-class classification): Treacher Collins (TC), Nager (NAFD) and CHARGE syndromes. Methods The training set contained 1,592 ear photographs, corresponding to 550 patients. We extracted 48 patients completely independent of the training set, with only one photograph per ear per patient. After a CNN-(Convolutional Neural Network) based ear detection, the images were automatically landmarked. Generalized Procrustes Analysis was then performed, along with a dimension reduction using PCA (Principal Component Analysis). The principal components were used as inputs in an eXtreme Gradient Boosting (XGBoost) model, optimized using a 5-fold cross-validation. Finally, the model was tested on an independent validation set. Results We trained the model on 1,592 ear photographs, corresponding to 1,296 control ears, 105 MFDM, 33 NAFD, 70 TC and 88 CHARGE syndrome ears. The model detected MFDM with an accuracy of 0.969 [0.838-0.999] (p < 0.001) and an AUC (Area Under the Curve) of 0.975 within controls (binary classification). Balanced accuracies were 0.811 [0.648-0.920] (p = 0.002) in a first multiclass design (MFDM vs. controls and differential diagnoses) and 0.813 [0.544-0.960] (p = 0.003) in a second multiclass design (MFDM vs. differential diagnoses). Conclusion This is the first AI-based syndrome detection model in dysmorphology based on the external ear, opening promising clinical applications both for local care and referral, and for expert centers.
Collapse
Affiliation(s)
- Quentin Hennocq
- Imagine Institute, INSERM UMR1163, Paris, France
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris Cité, Paris, France
- Laboratoire ‘Forme et Croissance du Crâne’, Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Thomas Bongibault
- Imagine Institute, INSERM UMR1163, Paris, France
- Laboratoire ‘Forme et Croissance du Crâne’, Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Sandrine Marlin
- Imagine Institute, INSERM UMR1163, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Jeanne Amiel
- Imagine Institute, INSERM UMR1163, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Tania Attie-Bitach
- Imagine Institute, INSERM UMR1163, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Geneviève Baujat
- Imagine Institute, INSERM UMR1163, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Lucile Boutaud
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Georges Carpentier
- CHU Lille, Inserm, Service de Chirurgie Maxillo-Faciale et Stomatologie, U1008-Controlled Drug Delivery Systems and Biomaterial, Université de Lille, Lille, France
| | - Pierre Corre
- Department of Oral and Maxillofacial Surgery, INSERM U1229—Regenerative Medicine and Skeleton RMeS, Nantes, France
- Department of Oral and Maxillofacial Surgery, Nantes University, CHU Nantes, Nantes, France
| | - Françoise Denoyelle
- Department of Paediatric Otolaryngology, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | - Eva Galliani
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Wuttichart Kamolvisit
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Stanislas Lyonnet
- Imagine Institute, INSERM UMR1163, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Dan Milea
- Duke-NUS Medical School Singapore, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Véronique Pingault
- Imagine Institute, INSERM UMR1163, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Thantrira Porntaveetus
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sandrine Touzet-Roumazeille
- CHU Lille, Inserm, Service de Chirurgie Maxillo-Faciale et Stomatologie, U1008-Controlled Drug Delivery Systems and Biomaterial, Université de Lille, Lille, France
| | - Marjolaine Willems
- Département de Génétique Clinique, CHRU de Montpellier, Hôpital Arnaud de Villeneuve, Institute for Neurosciences of Montpellier, INSERM, Univ Montpellier, Montpellier, France
| | - Arnaud Picard
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Marlène Rio
- Imagine Institute, INSERM UMR1163, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
| | | | - Roman H. Khonsari
- Imagine Institute, INSERM UMR1163, Paris, France
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris Cité, Paris, France
- Laboratoire ‘Forme et Croissance du Crâne’, Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| |
Collapse
|
30
|
Nagasawa CK, Garcia-Blanco MA. Early Splicing Complexes and Human Disease. Int J Mol Sci 2023; 24:11412. [PMID: 37511171 PMCID: PMC10379813 DOI: 10.3390/ijms241411412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Over the last decade, our understanding of spliceosome structure and function has significantly improved, refining the study of the impact of dysregulated splicing on human disease. As a result, targeted splicing therapeutics have been developed, treating various diseases including spinal muscular atrophy and Duchenne muscular dystrophy. These advancements are very promising and emphasize the critical role of proper splicing in maintaining human health. Herein, we provide an overview of the current information on the composition and assembly of early splicing complexes-commitment complex and pre-spliceosome-and their association with human disease.
Collapse
Affiliation(s)
- Chloe K. Nagasawa
- Human Pathophysiology and Translational Medicine Program, Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555-5302, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-5302, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903-2628, USA
| | - Mariano A. Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-5302, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903-2628, USA
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-5302, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-5302, USA
| |
Collapse
|
31
|
Kumar S, Alam SS, Bareke E, Beauchamp MC, Dong Y, Chan W, Majewski J, Jerome-Majewska LA. Sf3b4 regulates chromatin remodeler splicing and Hox expression. Differentiation 2023; 131:59-73. [PMID: 37167859 DOI: 10.1016/j.diff.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
SF3B proteins form a heptameric complex in the U2 small nuclear ribonucleoprotein, essential for pre-mRNA splicing. Heterozygous pathogenic variants in human SF3B4 are associated with head, face, limb, and vertebrae defects. Using the CRISPR/Cas9 system, we generated mice with constitutive heterozygous deletion of Sf3b4 and showed that mutant embryos have abnormal vertebral development. Vertebrae abnormalities were accompanied by changes in levels and expression pattern of Hox genes in the somites. RNA sequencing analysis of whole embryos and somites of Sf3b4 mutant and control litter mates revealed increased expression of other Sf3b4 genes. However, the mutants exhibited few differentially expressed genes and a large number of transcripts with differential splicing events (DSE), predominantly increased exon skipping and intron retention. Transcripts with increased DSE included several genes involved in chromatin remodeling that are known to regulate Hox expression. Our study confirms that Sf3b4 is required for normal vertebrae development and shows, for the first time, that like Sf3b1, Sf3b4 also regulates Hox expression. We propose that abnormal splicing of chromatin remodelers is primarily responsible for vertebral defects found in Sf3b4 heterozygous mutant embryos.
Collapse
Affiliation(s)
- Shruti Kumar
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | | | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Marie-Claude Beauchamp
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A 3J1, Canada
| | - Yanchen Dong
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Wesley Chan
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 2B2, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Loydie A Jerome-Majewska
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 2B2, Canada; Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A 3J1, Canada; Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
32
|
Boycott KM, Hartley T, Kernohan KD, Dyment DA, Howley H, Innes AM, Bernier FP, Brudno M, Care4Rare Canada Consortium. Care4Rare Canada: Outcomes from a decade of network science for rare disease gene discovery. Am J Hum Genet 2022; 109:1947-1959. [PMID: 36332610 PMCID: PMC9674964 DOI: 10.1016/j.ajhg.2022.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
The past decade has witnessed a rapid evolution in rare disease (RD) research, fueled by the availability of genome-wide (exome and genome) sequencing. In 2011, as this transformative technology was introduced to the research community, the Care4Rare Canada Consortium was launched: initially as FORGE, followed by Care4Rare, and Care4Rare SOLVE. Over what amounted to three eras of diagnosis and discovery, the Care4Rare Consortium used exome sequencing and, more recently, genome and other 'omic technologies to identify the molecular cause of unsolved RDs. We achieved a diagnostic yield of 34% (623/1,806 of participating families), including the discovery of deleterious variants in 121 genes not previously associated with disease, and we continue to study candidate variants in novel genes for 145 families. The Consortium has made significant contributions to RD research, including development of platforms for data collection and sharing and instigating a Canadian network to catalyze functional characterization research of novel genes. The Consortium was instrumental to implementing genome-wide sequencing as a publicly funded test for RD diagnosis in Canada. Despite the successes of the past decade, the challenge of solving all RDs remains enormous, and the work is far from over. We must leverage clinical and 'omic data for secondary use, develop tools and policies to support safe data sharing, continue to explore the utility of new and emerging technologies, and optimize research protocols to delineate complex disease mechanisms. Successful approaches in each of these realms is required to offer diagnostic clarity to all families with RDs.
Collapse
Affiliation(s)
- Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada,Corresponding author
| | - Taila Hartley
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Kristin D. Kernohan
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - David A. Dyment
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Heather Howley
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - A. Micheil Innes
- Department of Medical Genetics and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Francois P. Bernier
- Department of Medical Genetics and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael Brudno
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | | |
Collapse
|
33
|
Kim H, Lee J, Jung SY, Yun HH, Ko JH, Lee JH. SF3B4 Depletion Retards the Growth of A549 Non-Small Cell Lung Cancer Cells via UBE4B-Mediated Regulation of p53/p21 and p27 Expression. Mol Cells 2022; 45:718-728. [PMID: 35996826 PMCID: PMC9589371 DOI: 10.14348/molcells.2022.0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Splicing factor B subunit 4 (SF3B4), a component of the U2-pre-mRNA spliceosomal complex, contributes to tumorigenesis in several types of tumors. However, the oncogenic potential of SF3B4 in lung cancer has not yet been determined. The in vivo expression profiles of SF3B4 in non-small cell lung cancer (NSCLC) from publicly available data revealed a significant increase in SF3B4 expression in tumor tissues compared to that in normal tissues. The impact of SF3B4 deletion on the growth of NSCLC cells was determined using a siRNA strategy in A549 lung adenocarcinoma cells. SF3B4 silencing resulted in marked retardation of the A549 cell proliferation, accompanied by the accumulation of cells at the G0/G1 phase and increased expression of p27, p21, and p53. Double knockdown of SF3B4 and p53 resulted in the restoration of p21 expression and partial recovery of cell proliferation, indicating that the p53/p21 axis is involved, at least in part, in the SF3B4-mediated regulation of A549 cell proliferation. We also provided ubiquitination factor E4B (UBE4B) is essential for p53 accumulation after SF3B4 depletion based on followings. First, co-immunoprecipitation showed that SF3B4 interacts with UBE4B. Furthermore, UBE4B levels were decreased by SF3B4 depletion. UBE4B depletion, in turn, reproduced the outcome of SF3B4 depletion, including reduction of polyubiquitinated p53 levels, subsequent induction of p53/p21 and p27, and proliferation retardation. Collectively, our findings indicate the important role of SF3B4 in the regulation of A549 cell proliferation through the UBE4B/p53/p21 axis and p27, implicating the therapeutic strategies for NSCLC targeting SF3B4 and UBE4B.
Collapse
Affiliation(s)
- Hyungmin Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeehan Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Soon-Young Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
34
|
Olthof AM, White AK, Kanadia RN. The emerging significance of splicing in vertebrate development. Development 2022; 149:dev200373. [PMID: 36178052 PMCID: PMC9641660 DOI: 10.1242/dev.200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Splicing is a crucial regulatory node of gene expression that has been leveraged to expand the proteome from a limited number of genes. Indeed, the vast increase in intron number that accompanied vertebrate emergence might have aided the evolution of developmental and organismal complexity. Here, we review how animal models for core spliceosome components have provided insights into the role of splicing in vertebrate development, with a specific focus on neuronal, neural crest and skeletal development. To this end, we also discuss relevant spliceosomopathies, which are developmental disorders linked to mutations in spliceosome subunits. Finally, we discuss potential mechanisms that could underlie the tissue-specific phenotypes often observed upon spliceosome inhibition and identify gaps in our knowledge that, we hope, will inspire further research.
Collapse
Affiliation(s)
- Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alisa K. White
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
35
|
The Core Splicing Factors EFTUD2, SNRPB and TXNL4A Are Essential for Neural Crest and Craniofacial Development. J Dev Biol 2022; 10:jdb10030029. [PMID: 35893124 PMCID: PMC9326569 DOI: 10.3390/jdb10030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/11/2022] Open
Abstract
Mandibulofacial dysostosis (MFD) is a human congenital disorder characterized by hypoplastic neural-crest-derived craniofacial bones often associated with outer and middle ear defects. There is growing evidence that mutations in components of the spliceosome are a major cause for MFD. Genetic variants affecting the function of several core splicing factors, namely SF3B4, SF3B2, EFTUD2, SNRPB and TXNL4A, are responsible for MFD in five related but distinct syndromes known as Nager and Rodriguez syndromes (NRS), craniofacial microsomia (CFM), mandibulofacial dysostosis with microcephaly (MFDM), cerebro-costo-mandibular syndrome (CCMS) and Burn–McKeown syndrome (BMKS), respectively. Animal models of NRS and MFDM indicate that MFD results from an early depletion of neural crest progenitors through a mechanism that involves apoptosis. Here we characterize the knockdown phenotype of Eftud2, Snrpb and Txnl4a in Xenopus embryos at different stages of neural crest and craniofacial development. Our results point to defects in cranial neural crest cell formation as the likely culprit for MFD associated with EFTUD2, SNRPB and TXNL4A haploinsufficiency, and suggest a commonality in the etiology of these craniofacial spliceosomopathies.
Collapse
|
36
|
Diez-Fuertes F, López-Huertas MR, García-Pérez J, Calonge E, Bermejo M, Mateos E, Martí P, Muelas N, Vílchez JJ, Coiras M, Alcamí J, Rodríguez-Mora S. Transcriptomic Evidence of the Immune Response Activation in Individuals With Limb Girdle Muscular Dystrophy Dominant 2 (LGMDD2) Contributes to Resistance to HIV-1 Infection. Front Cell Dev Biol 2022; 10:839813. [PMID: 35646913 PMCID: PMC9136291 DOI: 10.3389/fcell.2022.839813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
LGMDD2 is a rare form of muscular dystrophy characterized by one of the three heterozygous deletions described within the TNPO3 gene that result in the addition of a 15-amino acid tail in the C-terminus.TNPO3 is involved in the nuclear import of splicing factors and acts as a host cofactor for HIV-1 infection by mechanisms not yet deciphered. Further characterization of the crosstalk between HIV-1 infection and LGMDD2 disease may contribute to a better understanding of both the cellular alterations occurring in LGMDD2 patients and the role of TNPO3 in the HIV-1 cycle. To this regard, transcriptome profiling of PBMCs from LGMDD2 patients carrying the deletion c.2771delA in the TNPO3 gene was compared to healthy controls. A total of 545 differentially expressed genes were detected between LGMDD2 patients and healthy controls, with a high representation of G protein-coupled receptor binding chemokines and metallopeptidases among the most upregulated genes in LGMDD2 patients. Plasma levels of IFN-β and IFN-γ were 4.7- and 2.7-fold higher in LGMDD2 patients, respectively. An increase of 2.3-fold in the expression of the interferon-stimulated gene MxA was observed in activated PBMCs from LGMDD2 patients after ex vivo HIV-1 pseudovirus infection. Thus, the analysis suggests a pro-inflammatory state in LGMDD2 patients also described for other muscular dystrophies, that is characterized by the alteration of IL-17 signaling pathway and the consequent increase of metallopeptidases activity and TNF response. In summary, the increase in interferons and inflammatory mediators suggests an antiviral environment and resistance to HIV-1 infection but that could also impair muscular function in LGMDD2 patients, worsening disease evolution. Biomarkers of disease progression and therapeutic strategies based on these genes and mechanisms should be further investigated for this type of muscular dystrophy.
Collapse
Affiliation(s)
- Francisco Diez-Fuertes
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María Rosa López-Huertas
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Javier García-Pérez
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Esther Calonge
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Mercedes Bermejo
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Elena Mateos
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Pilar Martí
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Nuria Muelas
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Juan Jesús Vílchez
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Mayte Coiras
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - José Alcamí
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Infectious Diseases Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
- *Correspondence: José Alcamí, ; Sara Rodríguez-Mora,
| | - Sara Rodríguez-Mora
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- *Correspondence: José Alcamí, ; Sara Rodríguez-Mora,
| |
Collapse
|
37
|
Blackwell DL, Fraser SD, Caluseriu O, Vivori C, Tyndall AV, Lamont RE, Parboosingh JS, Innes AM, Bernier FP, Childs SJ. Hnrnpul1 controls transcription, splicing, and modulates skeletal and limb development in vivo. G3 GENES|GENOMES|GENETICS 2022; 12:6553027. [PMID: 35325113 PMCID: PMC9073674 DOI: 10.1093/g3journal/jkac067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Mutations in RNA-binding proteins can lead to pleiotropic phenotypes including craniofacial, skeletal, limb, and neurological symptoms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in nucleic acid binding, transcription, and splicing through direct binding to DNA and RNA, or through interaction with other proteins in the spliceosome. We show a developmental role for Hnrnpul1 in zebrafish, resulting in reduced body and fin growth and missing bones. Defects in craniofacial tendon growth and adult-onset caudal scoliosis are also seen. We demonstrate a role for Hnrnpul1 in alternative splicing and transcriptional regulation using RNA-sequencing, particularly of genes involved in translation, ubiquitination, and DNA damage. Given its cross-species conservation and role in splicing, it would not be surprising if it had a role in human development. Whole-exome sequencing detected a homozygous frameshift variant in HNRNPUL1 in 2 siblings with congenital limb malformations, which is a candidate gene for their limb malformations. Zebrafish Hnrnpul1 mutants suggest an important developmental role of hnRNPUL1 and provide motivation for exploring the potential conservation of ancient regulatory circuits involving hnRNPUL1 in human development.
Collapse
Affiliation(s)
- Danielle L Blackwell
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sherri D Fraser
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Amanda V Tyndall
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ryan E Lamont
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jillian S Parboosingh
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Micheil Innes
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - François P Bernier
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarah J Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
38
|
Abstract
SignificanceTo adapt to arboreal lifestyles, treefrogs have evolved a suite of complex traits that support vertical movement and gliding, thus presenting a unique case for studying the genetic basis for traits causally linked to vertical niche expansion. Here, based on two de novo-assembled Asian treefrog genomes, we determined that genes involved in limb development and keratin cytoskeleton likely played a role in the evolution of their climbing systems. Behavioral and morphological evaluation and time-ordered gene coexpression network analysis revealed the developmental patterns and regulatory pathways of the webbed feet used for gliding in Rhacophorus kio.
Collapse
|
39
|
Ulhaq ZS, Soraya GV, Istifiani LA, Pamungkas SA, Tse WKF. SF3B4 Frameshift Variants Represented a More Severe Clinical Manifestation in Nager Syndrome. Cleft Palate Craniofac J 2022:10556656221089156. [PMID: 35331022 DOI: 10.1177/10556656221089156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nager syndrome (NS) is a rare disease marked with craniofacial and preaxial limb anomalies. In this report, we summarized the current evidence to determine a possible genotype-phenotype association among NS individuals. Twenty-four articles comprising of 84 NS (including 9 patients with a severe form of NS [Rodriguez syndrome]) patients were examined, of which 76% were caused by variants in SF3B4 (OMIM *605593, Splicing Factor 3B, Subunit 4). Within the SF3B4 gene, variants located in exon 3 commonly occurred (20%) from a total identified variant, while hotspot location was identified in exon 1 (12%), and primarily occurred as frameshift variants (64%). Thirty-five distinct pathogenic variants within SF3B4 gene were identified with two common sites, c.1A > G and c.1060dupC in exons 1 and 5, respectively. Although no significant genotype-phenotype association was found, it is notable that patients with frameshift SF3B4 variants and predicted to lead to nonsense-mediated RNA decay (NMD) of the transcripts tended to have a more severe clinical manifestation. Additionally, patients harboring variants in exons 2 and 3 displayed a higher proportion of cardiac malformations. Taken together, this article summarizes the pathogenic variants observed in SF3B4 and provides a possible genotype-phenotype relationship in this disease.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- National Research and Innovation Agency, Republic of Indonesia, Jakarta, Indonesia.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.,Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, Indonesia
| | | | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
40
|
Pellerin P, Tonello C, da Silva Freitas R, Tang XJ, Alonso N. Tessier's Cleft Number 6 Revisited: A Series of 26 new Cases and Literature Review of 44. Cleft Palate Craniofac J 2022:10556656221086459. [PMID: 35285292 DOI: 10.1177/10556656221086459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To fix a gray zone left in Tessier's classification of rare clefts with cleft 6 and to give a more comprehensive description of cleft 6 anatomy. DESIGN The material used for the research was a series of 26 clinical cases of patients with assessed cleft 6 and 44 cases found out of a literature review with enough data to be useful. The 70 cases were cross-examined by the authors. STUDY SETTING The authors are senior craniofacial surgeons working in high-case load department from university centers where the patients are documented and receive primary as well as secondary treatment and follow-up. PATIENTS The patients were selected out of the series of craniofacial deformities taken care of by the authors' department as rare clefts. MAIN OUTCOME We describe the full spectrum of cleft 6 as an autonomous entity that could present itself in three subtypes: 6a is the most proximal and could be associated with cleft 8. The subtype 6b is medial toward the zygomatic arch and frequently associated with a bone and teeth appendage (frequently described as a "maxillary duplication"). The subtype 6C goes toward the external ear between the helix crus and the auditory meatus. CONCLUSIONS The Tessier's opinion is that Treacher Collins syndrome was the association of clefts 6, 7, and 8 and is no longer sustainable in the light of modern genetics. Most of the cleft 6 are misdiagnosed in the literature.
Collapse
Affiliation(s)
| | - Cristiano Tonello
- Cirurgia Craniofacial HRAC-USP, Curso de Medicina, da Universidade de São Paulo, Bauru, Brazil
| | | | - Xiao Jun Tang
- 74698Plastic Surgery Hospital of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nivaldo Alonso
- Cirurgia Craniofacial HRAC-USP, Curso de Medicina, da Universidade de São Paulo, Bauru, Brazil
| |
Collapse
|
41
|
Tkemaladze T, Bregvadze K, Kvaratskhelia E, Kapoor MA, Orjonikidze N, Abzianidze E. First case report of Nager syndrome patient from Georgia. SAGE Open Med Case Rep 2022; 10:2050313X221144219. [DOI: 10.1177/2050313x221144219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Nager syndrome (MIM #154400) is a rare acrofacial dysostosis syndrome predominantly characterized by malformations in craniofacial and preaxial limb bones. Most cases are sporadic and present with significant clinical heterogeneity. Although autosomal recessive and autosomal dominant modes of inheritance have been reported, most cases of Nager syndrome are spontaneous. Heterozygous variants in SF3B4 on chromosome 1q21 are found in approximately 60% of patients. Here, we report a first patient from Georgia diagnosed with Nager syndrome with detailed description of its clinical manifestations and diagnosis.
Collapse
|
42
|
李 晓, 洪 梦, 戴 朴, 袁 永. [Clinical case analysis and literature review of mandibulofacial dysostosis with microcephaly syndrome]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:36-40. [PMID: 34979617 PMCID: PMC10128212 DOI: 10.13201/j.issn.2096-7993.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 06/14/2023]
Abstract
Objective:To explore the clinical diagnosis, otological treatment and molecular etiology in a rare syndromic hearing loss case characterized by mandibulofacial dysostosis with microcephaly(MFDM). Methods: The proband underwent detailed history collection, systematic physical examination and phenotypic analysis, as well as audiological examination, chest X-ray, temporal bone CT and brain MRI and other imaging examinations. The blood DNA of the proband and his parents was extracted and tested by the whole exom sequencing. The EFTUD2-related-MFDM literatures published by the end of 2020 were searched and sifted in PubMed and CNKI databases,the clinical characteristics of MFDM were summarized. Results:In this study, the patient presented with hypoplasia of auricle, micrognathia, microcephaly, developmental retardation, severe sensorineural hearing loss in both ears, and developmental malformation of middle and inner ear. Genetic analysis revealed a de novo deletion c.623_624delAT in EFTUD2 gene. According to the clinical features and genetic test results, the patient was diagnosed as MFDM. In order to solve the problem of hearing loss, the patient was further performed bilateral cochlear implantation, and part of the electrodes responded well during and after operation. Conclusion:This is the first domestic reported case of MFDM caused by EFTUD2 gene mutation. The key problem of cochlear implantation for this kind of patient is to avoid damaging the malformed facial nerve during the operation.The effect of speech rehabilitation after cochlear implant operation is related to many factors such as intelligence development of the patients.
Collapse
Affiliation(s)
- 晓雨 李
- 国家耳鼻咽喉疾病临床医学研究中心 解放军总医院第六医学中心耳鼻咽喉头颈外科医学部 解放军总医院第六医学中心耳显微外科(北京,100048)National Clinical Research Center for Otolaryngologic Diseases, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Department of Otomicrosurgery, Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China
| | - 梦迪 洪
- 解放军总医院第一医学中心耳鼻咽喉头颈外科听觉植入中心Auditory Implant Center, Department of Otolaryngology Head and Neck Surgery, First Medical Center of the PLA General Hospital
| | - 朴 戴
- 国家耳鼻咽喉疾病临床医学研究中心 解放军总医院第六医学中心耳鼻咽喉头颈外科医学部 解放军总医院第六医学中心耳显微外科(北京,100048)National Clinical Research Center for Otolaryngologic Diseases, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Department of Otomicrosurgery, Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China
| | - 永一 袁
- 国家耳鼻咽喉疾病临床医学研究中心 解放军总医院第六医学中心耳鼻咽喉头颈外科医学部 解放军总医院第六医学中心耳显微外科(北京,100048)National Clinical Research Center for Otolaryngologic Diseases, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Department of Otomicrosurgery, Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
43
|
Lai HC, Ho UY, James A, De Souza P, Roberts TL. RNA metabolism and links to inflammatory regulation and disease. Cell Mol Life Sci 2021; 79:21. [PMID: 34971439 PMCID: PMC11072290 DOI: 10.1007/s00018-021-04073-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Inflammation is vital to protect the host against foreign organism invasion and cellular damage. It requires tight and concise gene expression for regulation of pro- and anti-inflammatory gene expression in immune cells. Dysregulated immune responses caused by gene mutations and errors in post-transcriptional regulation can lead to chronic inflammatory diseases and cancer. The mechanisms underlying post-transcriptional gene expression regulation include mRNA splicing, mRNA export, mRNA localisation, mRNA stability, RNA/protein interaction, and post-translational events such as protein stability and modification. The majority of studies to date have focused on transcriptional control pathways. However, post-transcriptional regulation of mRNA in eukaryotes is equally important and related information is lacking. In this review, we will focus on the mechanisms involved in the pre-mRNA splicing events, mRNA surveillance, RNA degradation pathways, disorders or symptoms caused by mutations or errors in post-transcriptional regulation during innate immunity especially toll-like receptor mediated pathways.
Collapse
Affiliation(s)
- Hui-Chi Lai
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.
- South West Sydney Clinical School, UNSW Australia, Liverpool, NSW, Australia.
| | - Uda Y Ho
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alexander James
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Paul De Souza
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, Western Sydney University, Macarthur, NSW, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- South West Sydney Clinical School, UNSW Australia, Liverpool, NSW, Australia
- School of Medicine, Western Sydney University, Macarthur, NSW, Australia
| |
Collapse
|
44
|
Haploinsufficiency of SF3B2 causes craniofacial microsomia. Nat Commun 2021; 12:4680. [PMID: 34344887 PMCID: PMC8333351 DOI: 10.1038/s41467-021-24852-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/12/2021] [Indexed: 02/02/2023] Open
Abstract
Craniofacial microsomia (CFM) is the second most common congenital facial anomaly, yet its genetic etiology remains unknown. We perform whole-exome or genome sequencing of 146 kindreds with sporadic (n = 138) or familial (n = 8) CFM, identifying a highly significant burden of loss of function variants in SF3B2 (P = 3.8 × 10-10), a component of the U2 small nuclear ribonucleoprotein complex, in probands. We describe twenty individuals from seven kindreds harboring de novo or transmitted haploinsufficient variants in SF3B2. Probands display mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities. Targeted morpholino knockdown of SF3B2 in Xenopus results in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease. The results establish haploinsufficient variants in SF3B2 as the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases.
Collapse
|
45
|
Yang H, Beutler B, Zhang D. Emerging roles of spliceosome in cancer and immunity. Protein Cell 2021; 13:559-579. [PMID: 34196950 PMCID: PMC9232692 DOI: 10.1007/s13238-021-00856-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by an intricate ribonucleoprotein complex called the spliceosome. Although the spliceosome is considered to be general cell “housekeeping” machinery, mutations in core components of the spliceosome frequently correlate with cell- or tissue-specific phenotypes and diseases. In this review, we expound the links between spliceosome mutations, aberrant splicing, and human cancers. Remarkably, spliceosome-targeted therapies (STTs) have become efficient anti-cancer strategies for cancer patients with splicing defects. We also highlight the links between spliceosome and immune signaling. Recent studies have shown that some spliceosome gene mutations can result in immune dysregulation and notable phenotypes due to mis-splicing of immune-related genes. Furthermore, several core spliceosome components harbor splicing-independent immune functions within the cell, expanding the functional repertoire of these diverse proteins.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
46
|
Innes AM, Lynch DC. Fifty years of recognizable patterns of human malformation: Insights and opportunities. Am J Med Genet A 2021; 185:2653-2669. [PMID: 33951288 DOI: 10.1002/ajmg.a.62240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
Now in its 7th edition, Smith's Recognizable Patterns of Human Malformation was first published in 1970. This 1st edition comprised 135 "dysmorphic syndromes of multiple primary defects" and 12 "single syndromic malformations resulting in secondary defects." Of the former, other than a few chromosomal and environmental disorders, most were heritable conditions of then unknown etiology. In 2021, the majority of these conditions are now "solved," a notable exception is Hallermann-Streiff syndrome. The "solved" conditions were typically clinically delineated decades prior to understanding the underlying etiology, which rarely required recent technologies such as exome sequencing (ES) to elucidate. The 7th edition includes nearly 300 syndromes, sequences, and associations. An increasing number of conditions first appearing in the latest editions are sporadic, with many solved using either array CGH or ES. We have reviewed all syndromes that have appeared in "Smith's" with a focus on inheritance, heterogeneity, and year and method of etiologic discovery. Several themes emerge. Genetic heterogeneity and pleiotropy of genes are frequent. Several of the currently "unresolved" syndromes are clinically diverse such as Dubowitz syndrome. Multiple recurrent constellations of embryonic malformations, with VACTERL association as a paradigm, are increasingly likely to have a shared pathogenesis requiring further study.
Collapse
Affiliation(s)
- A Micheil Innes
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Danielle C Lynch
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
47
|
Maharana SK, Saint-Jeannet JP. Molecular mechanisms of hearing loss in Nager syndrome. Dev Biol 2021; 476:200-208. [PMID: 33864777 DOI: 10.1016/j.ydbio.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023]
Abstract
Nager syndrome is a rare human developmental disorder characterized by hypoplastic neural crest-derived craniofacial bones and limb defects. Mutations in SF3B4 gene, which encodes a component of the spliceosome, are a major cause for Nager. A review of the literature indicates that 45% of confirmed cases are also affected by conductive, sensorineural or mixed hearing loss. Conductive hearing loss is due to defective middle ear ossicles, which are neural crest derived, while sensorineural hearing loss typically results from defective inner ear or vestibulocochlear nerve, which are both derived from the otic placode. Animal model of Nager syndrome indicates that upon Sf3b4 knockdown cranial neural crest progenitors are depleted, which may account for the conductive hearing loss in these patients. To determine whether Sf3b4 plays a role in otic placode formation we analyzed the impact of Sf3b4 knockdown on otic development. Sf3b4-depleted Xenopus embryos exhibited reduced expression of several pan-placodal genes six1, dmrta1 and foxi4.1. We confirmed the dependence of placode genes expression on Sf3b4 function in animal cap explants expressing noggin, a BMP antagonist critical to induce placode fate in the ectoderm. Later in development, Sf3b4 morphant embryos had reduced expression of pax8, tbx2, otx2, bmp4 and wnt3a at the otic vesicle stage, and altered otic vesicle development. We propose that in addition to the neural crest, Sf3b4 is required for otic development, which may account for sensorineural hearing loss in Nager syndrome.
Collapse
Affiliation(s)
- Santosh Kumar Maharana
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, USA
| | | |
Collapse
|
48
|
顾 伟, 樊 悦, 霍 红, 陈 晓. [Obstructive sleep apnea in microtia children with maxillofacial dysostosis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:371-379. [PMID: 33794641 PMCID: PMC10128449 DOI: 10.13201/j.issn.2096-7993.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 06/12/2023]
Abstract
Children with microtia are often associated with maxillofacial dysostosis, such as Treacher Collins syndrome, Goldenhar syndrome, and Nager syndrome, and they are prone to suffer from obstructive sleep apnea(OSA). Obstruction widely occurred in the upper airway is the main mechanism of OSA in these children, and dysplasia of the pharynx and neurodevelopmental abnormalities may also participate. Early diagnosis requires symptom screening and polysomnography. Imaging techniques and endoscopy can be adopted to fully assess the upper airway status to guide further treatment. According to the child's condition and the main obstruction site, treatment methods include maxillofacial deformity correction, continuous positive pressure ventilation and tracheotomy. OSA in microtia children with maxillofacial dysostosis needs to be identified and treated in time to reduce the adverse effects on the growth and development of children.
Collapse
Affiliation(s)
- 伟 顾
- 中国医学科学院 北京协和医学院 北京协和医院耳鼻咽喉头颈外科(北京,100730)
| | - 悦 樊
- 中国医学科学院 北京协和医学院 北京协和医院耳鼻咽喉头颈外科(北京,100730)
| | - 红 霍
- 中国医学科学院 北京协和医学院 北京协和医院耳鼻咽喉头颈外科(北京,100730)
| | - 晓巍 陈
- 中国医学科学院 北京协和医学院 北京协和医院耳鼻咽喉头颈外科(北京,100730)
| |
Collapse
|
49
|
Cadieux-Dion M, Hughes S, Engleman K, Rush ET, Saunders C. Nager syndrome in patient lacking acrofacial dysostosis: Expanding the phenotypic spectrum of SF3B4-related disease. Am J Med Genet A 2021; 185:1515-1518. [PMID: 33559401 DOI: 10.1002/ajmg.a.62113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Nager syndrome epitomizes the acrofacial dysostoses, which are characterized by craniofacial and limb defects. The craniofacial defects include midfacial retrusion, downslanting palpebral fissures, prominent nasal bridge, and micrognathia. Limb malformations typically include hypoplasia or aplasia of radial elements including the thumb. Nager syndrome is caused by haploinsufficiency of SF3B4, encoding a spliceosomal protein called SAP49. Here, we report a patient with a loss of function variant in SF3B4 without acrofacial dysostosis or limb defects, whose reason for referral was developmental and growth delay. This patient is evidence of a broader phenotypic spectrum associated with SF3B4 variants than previously appreciated.
Collapse
Affiliation(s)
- Maxime Cadieux-Dion
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, Missouri, USA
| | - Susan Hughes
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Kendra Engleman
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Eric T Rush
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, Missouri, USA.,University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, USA
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, Missouri, USA.,University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, USA.,Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| |
Collapse
|
50
|
Faundes V, Jennings MD, Crilly S, Legraie S, Withers SE, Cuvertino S, Davies SJ, Douglas AGL, Fry AE, Harrison V, Amiel J, Lehalle D, Newman WG, Newkirk P, Ranells J, Splitt M, Cross LA, Saunders CJ, Sullivan BR, Granadillo JL, Gordon CT, Kasher PR, Pavitt GD, Banka S. Impaired eIF5A function causes a Mendelian disorder that is partially rescued in model systems by spermidine. Nat Commun 2021; 12:833. [PMID: 33547280 PMCID: PMC7864902 DOI: 10.1038/s41467-021-21053-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
The structure of proline prevents it from adopting an optimal position for rapid protein synthesis. Poly-proline-tract (PPT) associated ribosomal stalling is resolved by highly conserved eIF5A, the only protein to contain the amino acid hypusine. We show that de novo heterozygous EIF5A variants cause a disorder characterized by variable combinations of developmental delay, microcephaly, micrognathia and dysmorphism. Yeast growth assays, polysome profiling, total/hypusinated eIF5A levels and PPT-reporters studies reveal that the variants impair eIF5A function, reduce eIF5A-ribosome interactions and impair the synthesis of PPT-containing proteins. Supplementation with 1 mM spermidine partially corrects the yeast growth defects, improves the polysome profiles and restores expression of PPT reporters. In zebrafish, knockdown eif5a partly recapitulates the human phenotype that can be rescued with 1 µM spermidine supplementation. In summary, we uncover the role of eIF5A in human development and disease, demonstrate the mechanistic complexity of EIF5A-related disorder and raise possibilities for its treatment.
Collapse
Affiliation(s)
- Víctor Faundes
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Siobhan Crilly
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sarah Legraie
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sarah E Withers
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sara Cuvertino
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sally J Davies
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Andrew G L Douglas
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Victoria Harrison
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Jeanne Amiel
- Department of Genetics, AP-HP, Hôpital Necker Enfants Malades, Paris, France
- 1Laboratory of Embryology and Genetics of Human Malformations, INSERM UMR 1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Daphné Lehalle
- Department of Genetics, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - William G Newman
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Patricia Newkirk
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, FL, UK
| | - Judith Ranells
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, FL, UK
| | - Miranda Splitt
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle upon Tyne, UK
| | - Laura A Cross
- Division of Clinical Genetics, Children's Mercy, Kansas City, MO, USA
- Department of Pediatrics, University of Missour-Kansas City, Kansas City, MO, USA
| | - Carol J Saunders
- Center for Pediatric Genomic Medicine Children's Mercy, Kansas City, MO, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Children's Mercy, Kansas City, MO, USA
- Department of Pediatrics, University of Missour-Kansas City, Kansas City, MO, USA
| | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher T Gordon
- 1Laboratory of Embryology and Genetics of Human Malformations, INSERM UMR 1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Paul R Kasher
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Siddharth Banka
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK.
| |
Collapse
|