1
|
Burton AM, Else KJ, Irving J, Mair I, Shultz S. Antibodies and Inflammation: Fecal Biomarkers of Gut Health in Domestic Ruminants. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:468-479. [PMID: 39840509 PMCID: PMC11959687 DOI: 10.1002/jez.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 01/23/2025]
Abstract
Gastrointestinal infections present major challenges to ruminant livestock systems, and gut health is a key constraint on fitness, welfare, and productivity. Fecal biomarkers present opportunities to monitor animal health without using invasive methods, and with greater resolution compared to observational metrics. Here we developed enzyme-linked immunosorbent assays for three potential fecal biomarkers of gut health in domestic ruminants: two immunological (total immunoglobulin [Ig]A and total IgG) and one inflammatory (lactoferrin). We analytically validated the assays, then evaluated whether they could be used as a biomarker of clinically diagnosed gastrointestinal pathologies in cattle (Bos taurus), and finally compared them with helminth fecal egg counts in sheep (Ovis aries). The analytes were detected above the lower limits of detection in cattle, sheep, and goats. Fecal IgA and lactoferrin were higher in cattle with infectious pathologies (strongyles, coccidiosis and symptomatic Johne's disease) compared to healthy controls. Lactoferrin was additionally higher in animals with infectious pathologies compared to noninfectious pathologies, and to asymptomatic Johne's cases. No significant relationships were found with sheep fecal egg counts. These initial findings suggest that fecal IgA and lactoferrin may be useful biomarkers of poor gastrointestinal health in cattle, and that fecal lactoferrin is specific to active inflammation caused by infectious agents. These could be incorporated into the growing suite of noninvasive ecoimmunological tools and used to understand ruminant gut health in a range of species. Applications include improving treatment regimens for gastrointestinal infections, and understanding wildlife physiological responses to infectious challenges.
Collapse
Affiliation(s)
- A. M. Burton
- Department of Earth and Environmental Science, School of Natural Sciences, Faculty of Science and EngineeringThe University of ManchesterManchesterUK
| | - K. J. Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - J. Irving
- Department of Earth and Environmental Science, School of Natural Sciences, Faculty of Science and EngineeringThe University of ManchesterManchesterUK
| | - I. Mair
- Institute of Ecology and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesThe University of EdinburghEdinburghUK
| | - S. Shultz
- Department of Earth and Environmental Science, School of Natural Sciences, Faculty of Science and EngineeringThe University of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
2
|
Su L, Yi H, Xu E, Xiao M, Gao Y. Colonic bacterial community responding to selenium-enriched yeast supplementation associated with improved gut mucus function in growing-finishing pigs. BMC Microbiol 2025; 25:213. [PMID: 40223092 PMCID: PMC11995588 DOI: 10.1186/s12866-025-03909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Selenium-enriched yeast (SeY), a high-quality organic source of selenium, enhances antioxidant activity and intestinal health in swine. This study aims to evaluate the effects of varying dietary SeY levels on intestinal morphology, epithelial mucus production, antioxidant activity, and colonic bacterial communities in growing-finishing pigs. Thirty 90-day-old Duroc×Landrace×Yorkshire growing-finishing pigs (average body weight of 54.37±2.13 kg) were randomly assigned to five treatment groups. The control group (CON) was fed a basal diet, while the other four groups were fed the basal diet supplemented with SeY at 0.3, 1, 3, and 5 mg/kg, respectively, for an 80-day of feeding trial. The results showed that the addition of SeY at 0.3 mg/kg increased villus height, villus height/crypt ratio, and mucus production in the ileum, as evidenced by the increase in goblet cell number and mucus thickness (P < 0.05). Furthermore, 0.3 mg/kg SeY up-regulated the mRNA expression levels of the MUC-1, claudin-1, occludin, and ZO-1 genes (P < 0.05). In contrast, high-dose SeY at 5 mg/kg resulting in damage to mucosal morphology. Ileal antioxidant activity of SOD and GSH-Px, and jejunal mRNA expression of GPX-1 and GPX-4, were higher in response to SeY (P < 0.05). Faecal Se excretion increased in SeY groups in a dose-dependent manner (P < 0.05). SeY led to a significant difference in beta diversity among treatment groups (P = 0.002) and led to a significant decrease in the concentrations of isobutyric and isovaleric acids when compared to the control group (P < 0.05). The acetate, propionate, butyrate, and total short-chain fatty acids were positively correlated with the biomarker genera Agathobacter (SeY at 0.3mg/kg), while isobutyrate and isovalerate were negatively correlated with biomarker genera Lactobacillus (SeY at 0.3mg/kg) (P < 0.05). Faecal accumulation of Se was positively correlated with the biomarker genera Alloprevotella (SeY at 3mg/kg) and Prevotellaceae_UCG-001 (SeY at 5mg/kg) and was negatively correlated with biomarker genera Agathobacter (SeY at 0.3mg/kg), Bacteroides (CON), and Faecalibacterium (CON) (P < 0.05). In conclusion, SeY doses of 0.3 mg/kg have beneficial effects on intestinal health, whereas prolonged SeY doses up to 5 mg/kg may compromise the intestinal mucus function in growing-finishing pigs.
Collapse
Affiliation(s)
- Lingling Su
- College of Animal and Veterinary Sciences, Ministry of Education Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resources Reservation and Utilization, Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - E Xu
- College of Animal Science, Guizhou University, Guizhou, 550025, China
| | - Mingfei Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- College of Animal Science, Guizhou University, Guizhou, 550025, China
| | - Yanhua Gao
- College of Animal and Veterinary Sciences, Ministry of Education Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resources Reservation and Utilization, Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Chang C, Gu Z, Du L, Guo J, Yang Y, Wu Z. Effects of L-β-Galactoglucan Supplementation on Growth Performance, Palatability, and Intestinal Microbiota in Adult Beagle Dogs. Metabolites 2025; 15:160. [PMID: 40137125 PMCID: PMC11944019 DOI: 10.3390/metabo15030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Background: This study was conducted to investigate the effects of different levels of L-β-galactoglucan on growth performance, palatability, and health condition of dogs. Methods: A total of 32 healthy beagle dogs (2.0 ± 0.5 yr; 13.2 ± 2.1 kg) were randomly assigned into four treatment groups, with 8 dogs in each group. The dogs were fed basal diets supplemented with 0 (control), 0.25, 0.5, or 1% L-β-galactoglucan. Results: The results showed that the feed intake ratio of the dogs in the Low_Gal (0.25%) group was significantly higher (p < 0.05) as compared with the control (Con) group. The low-density lipoprotein cholesterol (LDL-C) levels of the Mid_Gal (0.5%) group showed a trend toward lower levels as compared with the control (Con) group (p = 0.069). Compared with the control (Con) group, the alpha diversity of the bacterial flora of the Shannon index of the Mid_Gal (0.5%) group was significantly higher (p < 0.05). The Simpson index was significantly reduced (p < 0.05), and a PCoA indicated a significant change in the gut microbiota structure among the four groups (p < 0.05). The relative abundance of Blautia and Peptoclostridium in the Low_Gal (0.25%) group was significantly higher as compared with the control (Con) group (p < 0.05). Conclusions: These results indicated that L-β-galactoglucan exhibited a positive effect on improving the palatability and gut microbiota of dogs.
Collapse
Affiliation(s)
- Chenghe Chang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.C.); (Z.G.); (Z.W.)
| | - Zifeng Gu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.C.); (Z.G.); (Z.W.)
| | - Lingling Du
- Chengdu Sydix Biotech Co., Ltd., Chengdu 610000, China;
| | - Jiantao Guo
- Beijing Shanchongshuifu Technology Development Co., Beijing 100084, China;
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.C.); (Z.G.); (Z.W.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.C.); (Z.G.); (Z.W.)
| |
Collapse
|
4
|
Bassols A, Amigó N, Pérez-Rodado M, Saco Y, Peña R, Pato R, Pisoni L, Devant M, Marti S. Fecal metabolomics to understand intestinal dysfunction in male dairy beef calves at arrival to the rearing farm. Sci Rep 2025; 15:6887. [PMID: 40011507 DOI: 10.1038/s41598-025-90407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Fecal biomarkers are becoming an important analytical tool since feces are in direct contact with the inflamed intestine and site for the gut microbiome. The objective of this study was the identification of differential fecal metabolites by means of 1H-NMR to evaluate the management of male dairy beef calves, and which could become potential biomarkers of gastrointestinal disorders. Holstein calves were subjected to a protocol aimed to simulate real conditions of the dairy beef market. Three groups were studied: Control (CTR: high colostrum, no transport, milk replacer), LCMR (low colostrum, transport, milk replacer) and LCRS (low colostrum, transport, rehydrating solution). Fecal lactoferrin was determined as marker of intestinal inflammation, and metabolomic profiling was performed in feces collected the day after arrival to the farm. 41 polar and 10 non-polar metabolites were identified, of which proline, formate and creatine increased in the LCRS group, whereas butyrate and uracil decreased. Less differences were found in non-polar metabolites. Multivariate analysis indicated that most differences are found between the LCRS group and the others. In conclusion, this study indicates that feed restriction has a more important effect at this age than colostrum uptake and transport. These results should help to identify robust fecal biomarkers to assess calf intestinal health and improve management protocols.
Collapse
Affiliation(s)
- Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària (SBCV), Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
| | - Núria Amigó
- Biosfer Teslab, Plaça del Prim 10, 43201, Reus, Spain
- Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Av. Universitat 1, 43204, Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Marc Pérez-Rodado
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària (SBCV), Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Yolanda Saco
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària (SBCV), Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Raquel Peña
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària (SBCV), Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Raquel Pato
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària (SBCV), Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Lucia Pisoni
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Maria Devant
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Sònia Marti
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, 08140, Caldes de Montbui, Spain
| |
Collapse
|
5
|
Zhou M, Luo Y, Qiu J, Wang H, Li X, Zhang K, Li X, Yaqoob MU, Wang M. Effects of dietary supplementation with butyrate glycerides on lipid metabolism, intestinal morphology, and microbiota population in laying hens. Poult Sci 2025; 104:104755. [PMID: 39862486 PMCID: PMC11803851 DOI: 10.1016/j.psj.2024.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The present study investigated the impact of butyrate glycerides (BG) on lipid metabolism, intestinal morphology, and microbiota of laying hens. Four hundred eighty 54-week-old Hy-line Brown laying hens were randomly selected and divided into five groups. The control group (ND) was fed a basal diet. Meanwhile, the remaining groups were given a basal supplemented with 0.5, 1, 2, and 4 g/kg of the product containing BG and were designated as BG-0.5, BG-1, BG-2, and BG-4 groups, respectively. The findings showed that: (1) BG supplementation significantly decreased (P < 0.001) the blood Glu levels (BG-0.5, BG-1, BG-2, and BG-4) and increased (P < 0.001) the serum HDL-C levels (BG-2, and BG-4). (2) The BG-2 and BG-4 groups showed an increase (P < 0.01) in abdominal lipid HSL activity. (3) The levels of hepatic TC and TG in all BG groups were significantly decreased (P < 0.05). (4) The addition of BG resulted in a significant reduction in the mRNA expression of the liver X receptor alpha (LXRα) (P < 0.05). (5) All BG groups presented a substantial reduction in duodenal crypt depth and a notable increase in the ratio of villus height to crypt depth (V/C) (P < 0.01). Additionally, all BG groups exhibited a significant increase in villus height in the ileum (P < 0.001). (6) Both the BG-1 and BG-4 groups exhibited a significant reduction in the amounts of n-butyric and n-glutaric acids in the cecum contents (P < 0.05). (7) The inclusion of BG did not substantially impact the diversity of cecal microbiota in laying hens. However, it dramatically boosted the proportion of the beneficial bacterium Alistipes (P < 0.05) and reduced the abundance of the harmful bacterium Verrucomicrobiota (P < 0.05). Overall, incorporating BG with glycerol monobutyrate as the diet's primary active component reduces fat accumulation in laying hens' blood and liver. It potentially regulates lipid metabolism via the PPARγ-LXRα-SREBP1c pathway. Additionally, BG has the potential to enhance the structure of the small intestine's mucous membrane and increase the presence of beneficial bacteria. Under the experimental conditions, late-laying hens supplemented with 4 g/kg BG performed best overall.
Collapse
Affiliation(s)
- Minyao Zhou
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yanqiu Luo
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Ji Qiu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Haidong Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Kexin Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoteng Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | | | - Minqi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Saco Y, Crusellas-Villorbina N, Peña R, Pato R, Marti S, Pisoni L, Devant M, Pelegrí-Pineda A, Bassols A. Bovine fecal biomarkers of intestinal inflammatory process: Calprotectin and lactoferrin, a comparative study. Res Vet Sci 2025; 183:105500. [PMID: 39647213 DOI: 10.1016/j.rvsc.2024.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Fecal lactoferrin and fecal calprotectin have been proposed as biomarkers of intestinal inflammation in several animal species. The main objectives of this work were to validate an analytical procedure for the measurement of lactoferrin in calf feces, to study the correlation between lactoferrin and calprotectin concentrations, and to evaluate the influence of fecal water content in the determination of these proteins. This knowledge is essential for effectively using these biomarkers in young calves exposed to inflammatory gastrointestinal diseases.Seventy-eight male Holstein dairy calves between two and three weeks of age were included in the study. Lactoferrin was determined with a bovine milk lactoferrin ELISA kit and calprotectin was measured using a human immunoturbidimetric method previously validated in bovine feces. Analytical validation of the lactoferrin assay achieved good results, with intra and inter assay CV < 10 %, recovery rates between 80 and 120 %, and optimal linearity under dilution. A robust correlation was observed between fecal calprotectin concentrations in dry and wet feces (r = 0.903), while a moderate correlation was observed for fecal lactoferrin concentrations (r = 0.648). Correlation between both biomarkers was moderate in fresh feces (r = 0.514) as well as in dry feces (r = 0.561). In conclusion, the lactoferrin ELISA kit is valid for its use with calf fecal samples, both biomarkers showed a moderate correlation between them, and fecal lactoferrin concentration is more influenced by feces moisture than fecal calprotectin concentration.
Collapse
Affiliation(s)
- Yolanda Saco
- Veterinary Clinical Biochemistry Service, Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Núria Crusellas-Villorbina
- Veterinary Clinical Biochemistry Service, Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Raquel Peña
- Veterinary Clinical Biochemistry Service, Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Raquel Pato
- Veterinary Clinical Biochemistry Service, Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Sonia Marti
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, Caldes de Montbui, Spain
| | - Lucía Pisoni
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, Caldes de Montbui, Spain
| | - Maria Devant
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, Caldes de Montbui, Spain
| | - Anna Pelegrí-Pineda
- Veterinary Clinical Biochemistry Service, Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Anna Bassols
- Veterinary Clinical Biochemistry Service, Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain.
| |
Collapse
|
7
|
Huang J, Xu T, Guo F, Bi R, Lu H, Li P, Abbas W, Hu Z, Liu L, Sengers MJ, Xie X, Cheng T, Guo Y, Wang Z. Effects of drinking water supplemented with essential oils and organic acids mixtures on growth performance and intestinal health of broilers challenged with necrotic enteritis. Poult Sci 2025; 104:104712. [PMID: 39721270 PMCID: PMC11732541 DOI: 10.1016/j.psj.2024.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
It is urgent to develop effective antibiotic alternatives for the control of subclinical necrotic enteritis (NE) in chickens after in-feed antibiotics have been banned. The current study investigated the efficacy of drinking water supplemented with essential oils and organic acids mixtures (EOA) on growth performance and intestinal health of broilers challenged with necrotic enteritis (NE). A total of 360 one-day-old Arbor Acres male broilers were randomly divided into 5 treatment groups, including non-challenged control group (T0), challenged NE group (T1), and challenged NE chickens treated with 0.2 % EOA1 (T2) or 0.2 % EOA2 (T3) in drinking water, along with NE-challenged chickens treated with 45 mg/kg bacitracin methylene disalicylate (BMD) in the diet (T4). Results showed that drinking water supplemented with either EOA1 or EOA2 significantly decreased Clostridium perfringens load in ileal content (P < 0.05). EOA2 markedly reduced jejunal crypt depth, serum lipopolysaccharide (LPS) content, ileal IL-1β mRNA level and myeloperoxidase (MPO) activity, significantly increased Mucin-2 mRNA abundance in ileum of NE infected broilers (P < 0.05) when compared with single NE-infected group. The 16S sequencing analysis revealed that, compared with single NE-challenge group and the antibiotic BMD group, the addition of EOA1 in drinking water significantly increased the Shannon index and Simpson index of ileal microbiota in NE-infected broilers (P < 0.05), while drinking water supplemented with either EOA1 or EOA2 significantly decreased Streptococcus relative abundance of NE-infected broilers (P < 0.05). In summary, drinking water with EOA2 might alleviate the intestinal injury induced by NE challenge, and the gut health-improving effects of EOA2 were better than that of EOA1.
Collapse
Affiliation(s)
- Jia Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ruichen Bi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haisheng Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengfei Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - M J Sengers
- Delvigent Biotechnology Co., Ltd., Hebei, China
| | - Xiang Xie
- Delvigent Biotechnology Co., Ltd., Hebei, China
| | | | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Żak-Bochenek A, Żebrowska-Różańska P, Bajzert J, Łaczmański Ł, Szponar B, Siwińska N, Gładysz K, Sikorska K, Chełmońska-Soyta A. Investigating the potential immunomodulatory effects of commercial oral probiotic supplements on equine gastrointestinal tract barrier function. Front Immunol 2025; 15:1487664. [PMID: 39906737 PMCID: PMC11790434 DOI: 10.3389/fimmu.2024.1487664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 02/06/2025] Open
Abstract
Background Oral probiotic dietary supplements are widely used in veterinary medicine, including in horses. It is hypothesized that the presence of probiotic strains can both modulate the intestinal microbiota and affect mucosal immunity parameters. Such a study has not yet been conducted in horses. Methods This study involved 12 healthy horses, which were randomly divided into a control group and a group that received a commercial oral probiotic formula containing Lactobacillus rhamnosus, Pedioccus acidilactici or Enterococcus faecium for 84 days. Fecal samples were collected from all horses on day 0 (D0), 28 days after starting the probiotic (D28), 56 days (D56), 84 days (D84) and 28 days after stopping the probiotic (DX) treatment. The samples were subjected to microbiome analysis via next-generation sequencing of hypervariable regions V3-V4 and V7-V9 of the 16S rRNA gene for analysis of short-chain fatty acids via HPLC analysis and fecal secretory immunoglobulin A (SIgA) quantification via ELISA. Results Microbiome analysis revealed no significant differences in either alpha or beta diversity parameters between the groups. No probiotic strains were detected in the samples. Significant changes were detected in three taxa: the family Bacteroidales RF16 group, the genus Erysipelotrichaceae UCG-004, and the genus Fibrobacter during the study in both groups. In all the cases, there was a gradual decrease in relative abundance over time. The concentrations of SCFAs, specifically acetic and propionic acids, significantly increased over time in both groups according to the generalized linear mixed effects (GLME) model. There were no significant differences in fecal SIgA secretion. Conclusion The present study revealed no effect of the use of a commercial probiotic dietary supplement on either mucosal immunity or the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Agnieszka Żak-Bochenek
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Joanna Bajzert
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Bogumiła Szponar
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Natalia Siwińska
- Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Klaudia Gładysz
- Student Scientific Association, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Sikorska
- Division of Phytopathology and Mycology, Department of Plant Protection, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Anna Chełmońska-Soyta
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
9
|
de Oliveira MJK, Babatunde OO, Rodrigues LA, Erinle TJ, Htoo JK, Mendoza SM, Columbus DA. Development of an indigestible dietary protein index to investigate the effects of dietary protein content in postweaned pigs. J Anim Sci 2025; 103:skae374. [PMID: 39657758 PMCID: PMC11705088 DOI: 10.1093/jas/skae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
Proteolytic fermentation induces negative effects on gut health and function, which may affect pig performance. The objective was to conduct a meta-analysis to develop an index of dietary indigestible dietary protein (IDP) to investigate growth performance outcomes of mixed-sex weanling pigs (average body weight of 7.59 kg). Eighty-nine articles reporting growth performance variables [average daily gain (ADG), average daily feed intake (ADFI), gain:feed ratio (GF), initial (IBW), and final body weight] in pigs fed different dietary protein (DP) content (from 12% to 33.6%) and protein sources (plant and animal) were included. DP and IDP index was calculated in all experiments using a common database, with the IDP index defined as the difference between total DP and standardized ileal digestible DP. A DP- and an IDP-based model were developed to predict the ADG, GF, and ADFI (by their relationship) of weaning pigs using a multivariable linear mixed model regression approach with estimates of variable effects obtained using the residual maximum likelihood method. Based on a stepwise manual forward selection, significant predictor variables with improvement of at least 2 points in the Bayesian information criterion were included in the final regression model. Statistical significance was set at P ≤ 0.05 and a trend at P < 0.10. Initial exploratory analysis of the database showed a quadratic increase (P < 0.01) in the IDP index with increasing inclusion of plant protein sources in diet formulation and a linear decrease (P < 0.01) in the IDP index with increasing synthetic amino acid inclusion. Regarding the models, the DP-based model could not account for the inclusion of protein sources compared to the IDP-based model. There was a tendency for DP to positively affect (P < 0.10) ADG and GF. Increasing the IDP index tended to negatively impact (P < 0.10) ADG while reducing (P < 0.05) ADFI. Using a practical and hypothetical feed formulation simulation, the final regression models predicted the expected negative impact of a high IDP index on newly weaned pig performance when compared to a low IDP diet. The IDP-based model predicted a stronger negative effect of high IDP when compared to the DP-based model. Results indicate that IDP may be an improved and more reliable index to investigate the impact of DP on pig performance in the postweaning phase.
Collapse
Affiliation(s)
| | | | - Lucas A Rodrigues
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - Taiwo J Erinle
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - John K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | | | - Daniel A Columbus
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| |
Collapse
|
10
|
Obianwuna UE, Chang X, Oleforuh-Okoleh VU, Onu PN, Zhang H, Qiu K, Wu S. Phytobiotics in poultry: revolutionizing broiler chicken nutrition with plant-derived gut health enhancers. J Anim Sci Biotechnol 2024; 15:169. [PMID: 39648201 PMCID: PMC11626766 DOI: 10.1186/s40104-024-01101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 12/10/2024] Open
Abstract
As the global population continues to expand, the demand for broiler chicken production to supply safe and high-quality meat is increasing. To meet this ever-growing demand, broiler chickens with enhanced growth performance are being developed, but they often face challenges related to oxidative stress, which can adversely affect gut health. Phytobiotics, which are plant-derived feed additives known for their antimicrobial, antioxidant, immune-modulating, and growth-promoting properties, have emerged as promising natural alternatives to synthetic antibiotics. This review consolidates recent advancements in the use of phytobiotics-derived products from leaves, roots, seeds, flowers, and their extracts in broiler diets reared under standard experimental conditions, without the introduction of stressors. The focus is on elucidating the key mechanisms through which phytobiotics improve gut health, including their effects on gut morphology, integrity, microflora composition, antioxidant capacity, and immune function. The review highlights the potential of phytobiotics to revolutionize broiler nutrition by acting as natural enhancers of gut health. Research findings reveal that phytobiotics significantly improve intestinal health, and boost growth performance, offering a sustainable approach to managing to gut dysfunction. These findings indicate a potential shift in how gut-health related challenges in broilers can be addressed, moving towards natural phytobiotic therapy. However, several challenges persist. Optimizing the dosage of phytobiotics, ensuring consistent performance, and overcoming the limitations related to their extraction and application are key areas requiring further investigation. The review emphasizes the importance of continued research to refine phytobiotic formulations, explore synergistic effects, and incorporate advanced technologies such as AI-driven methods and precision nutrition to tailor feeding strategies more effectively. Additionally, the development of innovative delivery systems, such as nanoencapsulation, is suggested as a way to enhance the effectiveness and reliability of phytobiotics. By highlighting the potential of phytobiotics to revolutionize broiler nutrition, this review supports the poultry industry's shift towards antibiotic-free and sustainable dietary solutions, offering new perspectives on the future of broiler chicken production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Patience N Onu
- Department of Animal Science, Ebonyi State University, Abakiliki, Ebonyi State, Nigeria
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
11
|
Blue CEC, Suarez MG, Nacer-Khodja E, Rodriguez MA, Dalloul RA. Positive impact of dietary marine sulfated polysaccharides derived from macroalgae during a necrotic enteritis challenge. Poult Sci 2024; 103:104502. [PMID: 39520754 PMCID: PMC11585719 DOI: 10.1016/j.psj.2024.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Caused by the Gram-positive bacteria Clostridium perfringens, necrotic enteritis (NE) is an enteric disease with significant economic implications in broiler production. This study employed an experimental NE model involving co-infection with Eimeria maxima and C. perfringens to assess whether sulfate polysaccharides extracted from marine macroalgae could mitigate the adverse effects of NE in broilers. A total of 600 day (d)-old Ross 708 male broilers were randomly assigned to one of four treatment groups: NC (negative control, fed a corn-soybean meal diet); PC (positive control, NC + 15 ppm Avilamycin and 125 ppm Amprolium); AGS (Algimun® Standard, NC + Algimun added at 0.1 % of the diet); and AGH (Algimun High, NC + Algimun added at 0.2 % of the diet). Average daily feed intake and weight gain were calculated and adjusted for daily mortality on d 14, 21, 28, and 42. On d 21, four birds/pen were examined for intestinal NE lesions. On d 14, 21, and 42, serum and jejunum samples from one bird/pen were collected to measure the concentration of the biomarker calprotectin and mRNA abundance of cytokines and tight junction proteins. Data were analyzed using JMP and significance between treatments identified by LSD (P ≤ 0.05). NE lesion scores on d 21, and mortality and FCR during d 0 to 42 were lower in PC, AGS, and AGH compared to NC birds. AGS birds had the lowest levels for serum calprotectin on d 21 while PC, AGS, and AGH had lower levels than the NC group on d 42. On d 14 and d 42, mRNA abundance of CLDN1, 3, ZO1, IL1β, IFNγ, IL10, and IL12B was greater in AGS and AGH birds compared to NC. Also, AGH had a greater abundance of TNFα on d 14 and d 42 compared to NC. Further, mRNA abundance of CLDN3, ZO1, 2, OCLDN, IL1β, IL10, IL12B, IFNγ, and ANXA1 was greater in PC on d 21 compared to NC and AGS. Based on these findings, dietary supplementation of this macroalgae-derived sulfated polysaccharides yielded a similar response to an antibiotic growth promoter presenting potential as an alternative additive.
Collapse
Affiliation(s)
- Candice E C Blue
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, USA
| | | | | | | | - Rami A Dalloul
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
12
|
Huaman SOB, de Souza FA, Bonato MA, Dias CP, Callegari MA, Oba A, de Carvalho RH, da Silva CA. Effects of prebiotic and multispecies probiotic supplementation on the gut microbiota, immune function, and growth performance of weaned piglets. PLoS One 2024; 19:e0313475. [PMID: 39570882 PMCID: PMC11581253 DOI: 10.1371/journal.pone.0313475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
In this study, we evaluated the impact of yeast cell wall prebiotics and multispecies probiotics on the gut microbiota, immune response, and growth performance of weaned piglets, as alternatives to antibiotics as growth promoters (AGPs). A randomized complete block design was employed, involving 160 piglets divided into four treatment groups during the nursery phase. The treatments applied throughout the experimental period were as follows: CONT+ = basal diet with halquinol (AGP); YCW = basal diet with yeast cell wall (cell wall of Saccharomyces cerevisiae yeast); SIM+ = basal diet with yeast cell wall + multispecies probiotic (Bacillus subtilis (2.0 x 109 CFU/g), Bacillus coagulans (5.0 x 108 CFU/g), Clostridium butyricum (5.0 x 107 CFU/g), and Bacillus licheniformis (2.0 x 109 CFU/g)); SIM- = basal diet with yeast cell wall + multispecies probiotic (half dose). The parameters assessed included daily feed intake, weight gain, feed conversion ratio (FCR), diarrhea score, serum cytokine levels, and chemokine concentrations, as well as microbiota analysis. During the 21 to 63-day study period, only FCR differed significantly (p = 0.0076). CONT+ and PREB had superior FCRs of 1.543 and 1.585, while SIM- had the least favorable FCR at 1.654. At 35 days, IL-10 levels were greater in the SIM- group, showing a 271.25% increase over those in the other groups. By 49 days, the IL-8 concentration was lower in the PREB group than in the CONT+ group, with a reduction of 247%, while the IL-8 concentrations in the SIM+ and SIM- groups were not significantly different from those in the other groups. The Firmicutes/Bacteroidetes (F/B) ratio in the CONT+ group was lower than that in the PREB, SIM+, and SIM- treatment groups. The Lactobacillaceae family was more abundant in the SIM+ treatment, followed by the SIM- and PREB treatments. The CONT+ treatment had the lowest abundance. The abundance of the genus Lactobacillus differed between the CONT+ group and the PREB, SIM+, and SIM- treatment groups. Prebiotics, used either alone or combined with probiotics, serve as effective substitutes for AGPs, boosting piglets' health and performance throughout the nursery phase.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandre Oba
- Department of Animal Science, State University of Londrina, Londrina, Paraná, Brazil
| | - Rafael Humberto de Carvalho
- Department of Animal Science, State University of Londrina, Londrina, Paraná, Brazil
- Akei Animal Research, Fartura, São Paulo, Brazil
| | - Caio Abércio da Silva
- Department of Animal Science, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
13
|
Li R, Liu J, Liu M, Liang M, Wang Z, Sha Y, Ma H, Lin Y, Li B, You J, Zhang L, Qin M. Effects of selenium-enriched yeast dietary supplementation on egg quality, gut morphology and caecal microflora of laying hens. Anim Biotechnol 2024; 35:2258188. [PMID: 38193802 DOI: 10.1080/10495398.2023.2258188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Selenium (Se) is an essential micronutrient for humans and animals and is a powerful antioxidant that can promote reproductive and immune functions. The purpose of this study was to evaluate the effects of supplemental dietary selenium-enriched yeast (SeY) on egg quality, gut morphology and microflora in laying hens. In total, 100 HY-Line Brown laying hens (45-week old) were randomly allocated to two groups with 10 replicates and fed either a basal diet (without Se supplementation) or a basal diet containing 0.2 mg/kg Se in the form of SeY for 8 weeks. The Se supplementation did not have a significant effect on egg quality and intestinal morphology of laying hens. Based on the 16S rRNA sequencing, SeY dietary supplementation effectively modulated the cecal microbiota structure. An alpha diversity analysis demonstrated that birds fed 100 mg/kg SeY had a higher cecal bacterial diversity. SeY dietary addition elevated Erysipelotrichia (class), Lachnospiraceae (family), Erysipelotrichaceae (family) and Ruminococcus_torques_group (genus; p < .05). Analysis of microbial community-level phenotypes revealed that SeY supplementation decreased the microorganism abundance of facultatively anaerobic and potentially pathogenic phenotypes. Overall, SeY supplementation cannot significantly improve intestinal morphology; however, it modulated the composition of cecal microbiota toward a healthier gut.
Collapse
Affiliation(s)
- Ruili Li
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Jiewei Liu
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, China
| | - Minxiao Liu
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Mingzhi Liang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Zengguang Wang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yufen Sha
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Huiwen Ma
- Yantai Animal Disease Prevention and Control Center, Yantai, China
| | - Yafeng Lin
- Yantai Agricultural Technology Extension Center, Yantai, China
| | - Baohua Li
- Haiyang Animal Disease Prevention and Control Center, Yantai, China
| | - Jinming You
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, China
| | - Lei Zhang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Ming Qin
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| |
Collapse
|
14
|
Miralles A, Ramis G, Pallarés FJ, Párraga-Ros E, Seva J. Medium- and Long-Term Immune Responses in the Small Intestine in Piglets from Oral Vaccination against Escherichia coli. Animals (Basel) 2024; 14:2779. [PMID: 39409727 PMCID: PMC11476012 DOI: 10.3390/ani14192779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Post-weaning stress, together with Escherichia coli, are two of the key factors in the occurrence of post-weaning diarrhea. There are different commercial vaccines that induce immunity at the local or systemic level, improving farm health and avoiding economic losses in the pork industry. That is why the objective of this study was to evaluate the effect of an oral enterotoxigenic E. coli F4/F18 vaccine on immunity and intestinal integrity in the middle and long term after inoculation. The gene expression of the biomarkers indicative of cellular infiltration (calprotectin, CAL), tight junction proteins (occludin, OCL; zonulin, ZON; and claudin, CLA) and a panel of proinflammatory (interleukins, IL: IL1α, IL1β, IL6, IL8, IL12p35 and IL12p40; interferons, IFN: IFNα and IFNγ; and tumoral necrosis factor, TNF: TNFα) and anti-inflammatory mediator cytokines (TGFβ and IL10) were analyzed, as well as histomorphology in jejunum and ileum, the cell density of goblet cells, intraepithelial lymphocytes and IgA-producing cells. Differences were observed in ZON, CLA and CAL, with greater gene expression in observed in vaccinated piglets at 42 days post vaccination (dpv) in the ileum. Regarding the expression of cytokines, the vaccinated animals showed significant differences in IL1α, IL6, IL12p35, IL12p40, IFNα, IFNγ, TNFα and TGFβ at 42 dpv in the jejunum or ileum. The villi showed greater height in the vaccinated piglets and the ratio between villus height and crypt depth was significantly greater in the vaccinated group in the jejunum at 84 dpv. The count of IgA-producing cells shows higher values for the unvaccinated group in the ileum, while intraepithelial lymphocytes show a significant increase in both jejunum and ileum in vaccinated piglets. We can conclude that oral vaccination against E. coli produces an evident effect, which manifests itself even in the middle and long term after the challenge, including immune response, decrease in antimicrobials usage, better histological structure in intestine and the improvement of performance.
Collapse
Affiliation(s)
- Aida Miralles
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (A.M.); (E.P.-R.); (J.S.)
- CEFU, S.A., 30840 Alhama de Murcia, Spain
| | - Guillermo Ramis
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain
| | - Francisco J. Pallarés
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Ester Párraga-Ros
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (A.M.); (E.P.-R.); (J.S.)
| | - Juan Seva
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (A.M.); (E.P.-R.); (J.S.)
| |
Collapse
|
15
|
Galli GM, Andretta I, Carvalho CL, Stefanello TB, Mendéz MSC, Mendes RE, Horn VW, Kipper M. Combination of β-mannanase plus multi-carbohydrase complex in simple or complex post-weaned pig diets on nutrient metabolism and gut health. Front Vet Sci 2024; 11:1404382. [PMID: 39220766 PMCID: PMC11362134 DOI: 10.3389/fvets.2024.1404382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
This study was conducted to evaluate whether adding β-mannanase alone or in combination with a multi-carbohydrase complex to simple and complex diets could improve diet digestibility, nutrient and energy metabolism, and gut health in weaned pigs. Thirty pigs (7.9 kg ± 0.851 kg) weaned at 28 days were randomly split into a 2 × 3 factorial arrangement, considering a simple (corn and soybean meal-based diet) or complex diet (13% point reduction in inclusion of soybean meal, 5% of whey power, and 2.5% of spray-dried plasma compared to the simple diet) and diet without any addition (control) or the addition of β-mannanase (BM; 0.300 g/kg of the diet) or β-mannanase plus a multi-carbohydrase complex blend such as xylanase, β-glucanase, and arabinofuranosidases (BM + MCC; 0.300 + 0.050 g/kg of the diet) for 17 days post-weaned. Total fecal and urine samples were collected on days 11-17. Fecal samples were collected from all pigs to identify fecal biomarkers using commercial ELISA tests. Blood samples were collected from all pigs at the end of the experimental period to assess serum concentrations of acute-phase proteins. All pigs were euthanized on day 18 for intestinal tissue collection. The simple diet had greater (p < 0.05) protein digestibility and metabolizability coefficients than the complex diet. Greater (p < 0.05) energy digestibility and energy metabolizability coefficients were observed in the BM and BM+ MCC compared to the control diet. On average, BM improved by 64 kcal/kg and BM + MCC improved by 100 kcal/kg of metabolizable energy. Furthermore, the addition of BM and BM + MCC to the diets led to lower fecal moisture and fecal output. Moreover, the BM and BM + MCC diets also reduced fecal calprotectin concentrations by 29 and 46%, respectively, compared to control pigs (p < 0.001). We conclude that simple diets are a suitable alternative to complex diets, without compromising the nutrient digestibility and gut health of post-weaned pigs. The addition of exogenous enzymes improves nutrient and energy utilization, as well as the absorption area, and decreases calprotectin concentrations.
Collapse
Affiliation(s)
- Gabriela M. Galli
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ines Andretta
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila L. Carvalho
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais B. Stefanello
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria S. C. Mendéz
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ricardo E. Mendes
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Vitor W. Horn
- Laboratory of Veterinary Pathology, Instituto Federal Catarinense, Concórdia, Brazil
| | | |
Collapse
|
16
|
Shah T, Guo X, Song Y, Fang Y, Ding L. Comparative Analysis of Gut Bacterial Diversity in Wild and Domestic Yaks on the Qinghai-Tibetan Plateau. Animals (Basel) 2024; 14:2380. [PMID: 39199914 PMCID: PMC11350814 DOI: 10.3390/ani14162380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota is a diverse and complex population, and it has a key role in the host's health and adaptability to the environment. The present study investigated the fecal bacterial community of wild grazing (WG) and domestic grazing (DG) yaks on natural grazing pastures, analyzing the gut microbiota using 16S rRNA sequencing to assess bacterial diversity. A total of 48 yak fecal samples were selected from two different grazing habitats. The DG group had more crude proteins and non-fiber carbohydrates. The WG group had more OM, insoluble dietary fiber such as NDF, ADF, ether extract, and TC. There were 165 and 142 unique operational taxonomic units (OTUs) in the WG and DG groups, respectively. Shannon index analysis revealed a higher bacterial diversity in the WG group than in the DG group. At the phylum level, Firmicutes were the dominant bacterial taxa in both groups. The relative abundance of Firmicutes in the WG group was higher than in the DG group. At the family level, the WG group had a significantly higher abundance of Ruminococcaceae (p < 0.001) and Rikenellaceae (p < 0.001) than the DG group. The abundances of Alloprevotella and Succinivibrio were more pronounced in the DG group than in the WG group at the genus level. This study presents a novel understanding of the bacterial communities of ruminants and their potential applications for livestock production.
Collapse
Affiliation(s)
- Tariq Shah
- Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Tibetan Plateau, Institute of Qinghai–Tibetan Plateau, College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xusheng Guo
- Probiotics and Biological Feed Research Centre, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongwu Song
- Animal Husbandry and Veterinary Station, Gangcha County, Haibei 812399, China
| | - Yonggui Fang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Luming Ding
- Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Tibetan Plateau, Institute of Qinghai–Tibetan Plateau, College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
| |
Collapse
|
17
|
Oketch EO, Yu M, Hong JS, Chaturanga NC, Seo E, Lee H, Hermes RG, Smeets N, Taechavasonyoo A, Kirwan S, Rodriguez-Sanchez R, Heo JM. Laying hen responses to multi-strain Bacillus-based probiotic supplementation from 25 to 37 weeks of age. Anim Biosci 2024; 37:1418-1427. [PMID: 38575130 PMCID: PMC11222866 DOI: 10.5713/ab.23.0495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the efficacy of Bacillus-based probiotics supplemented at two different levels to modulate the productive performance, egg quality, tibia traits, and specific cecal bacteria counts of Hy-Line Brown layers from 25 to 37 weeks of age. METHODS A total of 216 twenty-five-week-old hens were randomly distributed into 3 experimental diets with 12 replicates of 6 birds per cage. Diets included basal diet supplemented with 0 (CON), 3×108 (PRO1), or 3×109 (PRO2) colony-forming unit (CFU) of the test probiotic containing Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 per kilogram of feed. RESULTS Improved egg weights and mass at 29 weeks; and feed intake at 31 weeks (p<0.10) were noticed with the probiotic-supplemented PRO1 and PRO2 diets. Considering egg quality, the shell thickness, Haugh units, and yolk color were improved; but yolk cholesterol was lowered (p<0.05) with PRO1 and PRO2 diets at 29 weeks. At both 33 and 37 weeks, the egg-breaking strength, shell color and thickness, albumen height, Haugh units, and yolk color were improved; but yolk cholesterol was similarly lowered (p<0.05) with the PRO1 and PRO2 diets. Improved tibia Ca, ash, weights, and density; and raised cecal counts of Bifidobacteria and Lactobacilli (p<0.05) were noticed with PRO1 and PRO2 diets. Improved tibia P but reduced Clostridia counts (p<0.10) were also observed with the PRO1 and PRO2 diets. CONCLUSION Probiotic supplementation of Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 at 3×108 CFU/kg of feed is adequate to significantly improve egg quality, lower yolk cholesterol, enhance several tibia traits, and raise the populations of beneficial cecal bacteria. Modest improvements in several productive parameters and tibia P but reduced Clostridia were also observed; and could warrant further investigation of probiotic effects beyond the current test period.
Collapse
Affiliation(s)
- Elijah Ogola Oketch
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Myunghwan Yu
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Jun Seon Hong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Nuwan Chamara Chaturanga
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Eunsoo Seo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Hans Lee
- Kemin Animal Nutrition and Health, Asia Pacific, 12 Senoko Drive,
Singapore 758200
| | | | - Natasja Smeets
- Kemin Animal Nutrition and Health, Europa NV, Herentals 2200,
Belgium
| | | | - Susanne Kirwan
- Kemin Animal Nutrition and Health, Europa NV, Herentals 2200,
Belgium
| | | | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
18
|
Lin Q, Tu X, Li X, Gou F, Gao H, Lu Z, Feng J, Ying Y, Hu C. Effects of low protein diets on acid-base balance, electrolyte balance, intestinal structure, and amino acid transport in piglets. J Anim Physiol Anim Nutr (Berl) 2024; 108:1107-1118. [PMID: 38567963 DOI: 10.1111/jpn.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 07/09/2024]
Abstract
Reducing the dietary crude protein (CP) could effectively reduce pressure on protein ingredient supplies. However, few data have been reported about the extent to which CP can be reduced and whether limiting the use of soybean meal leads to electrolyte imbalance. In this experiment, using the low protein (LP) diet [2% lower than NRC (2012)], seventy-two piglets (35 days old) were randomly divided into 2 groups with 6 replicates of 6 piglets each: CON group (CP = 18.5%) and LP group (CP = 16.5%), to investigate the effect of the LP diet on electrolyte balance, acid-base balance, intestinal structure and amino acid transport in piglets. The results revealed that the LP diet decreased the average daily gain and dietary CP digestibility, and damaged the villi structure of the small intestine. Compared with the CON diet, the potassium content decreased and the chlorine content increased in the LP diet, and similar trends were shown in piglet serum. The arterial pH, pCO2, HCO3 -, and base excess of piglets in the LP group were lower than those in the CON group, while pO2 was higher than those in the CON group. Interestingly, the LP diet significantly increased the lysine content in piglet serum and significantly decreased the levels of arginine, leucine, and glutamic acid. Furthermore, the LP diet significantly affected the expression of some amino acid transport vectors (B0AT1, EAAC1, and y+LAT1). In summary, these findings suggested that the LP diet leads to acid-base imbalance, amino acid transport disorder and amino acids imbalance in piglets, and the dietary electrolyte may be a key factor in the impact of the LP diet on piglet growth performance and intestinal health.
Collapse
Affiliation(s)
- Qian Lin
- College of Animal Sciences, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
| | - Xiaodian Tu
- College of Animal Sciences, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
| | - Xin Li
- College of Animal Sciences, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
| | - Feiyang Gou
- College of Animal Sciences, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
| | - Hui Gao
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Hangzhou, China
| | - Zeqing Lu
- College of Animal Sciences, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
| | - Jie Feng
- College of Animal Sciences, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
| | - Yongfei Ying
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Hangzhou, China
| | - Caihong Hu
- College of Animal Sciences, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
| |
Collapse
|
19
|
Jansseune SCG, Lammers A, van Baal J, Blanc F, van der Laan MHP, Calenge F, Hendriks WH. Diet composition influences probiotic and postbiotic effects on broiler growth and physiology. Poult Sci 2024; 103:103650. [PMID: 38555756 PMCID: PMC10998222 DOI: 10.1016/j.psj.2024.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Dietary ingredient and nutrient composition may affect the efficacy of additives in broilers. Specific feed ingredients can represent dietary challenging conditions for broilers, resulting in impaired performances and health, which might be alleviated by dietary probiotics and postbiotics. We assessed the effects of a Lactobacilli probiotic (Pro) and postbiotic (Post) when added to a standard (SD) and challenge (CD) diet. A completely randomized block study with 2 diets (SD, CD) and 3 additive conditions (Control, Pro and Post) involving 1,368 one-day-old Ross male broilers, equally distributed among 36 pens, from d1 to d42 was conducted. Both diets were formulated to contain identical levels of nutrients, with CD formulated to be richer than SD in nonstarch polysaccharides using rye and barley as ingredients. Readout parameters included growth performance parameters, footpad lesions score, blood minerals and biochemical parameters, and tibia health, strength, and composition. Compared to SD, CD decreased BW (1,936 vs. 2,033 g; p = 0.001), increased FCR (p < 0.01) and impaired tibia health and strength (p < 0.05) at d35, thereby confirming the challenging effect of CD. Pro and Post increased BW in CD (+4.7 and +3.2%, respectively, at d35; P < 0.05) but not in the SD group, without affecting FCR. Independently of the diet, Pro increased plasma calcium, phosphorus and uric acid at d21 (+6.2, +7.4, and +15.5%, respectively) and d35 (+6.6, +6.2 and +21.0%, respectively) (P < 0.05) while Post increased plasma magnesium only at d21 (+11.3%; P = 0.037). Blood bile acids were affected by additives in an age- and diet-dependent manner, with some opposite effects between dietary conditions. Diet composition modulated Pro and Post effects on broiler growth performance. Additionally, Pro and Post affected animal metabolism and leg health diet-dependently for some but not all investigated parameters. Our findings show that the effects of pro- and postbiotics on the growth performance and physiology of broilers can be dependent on diet composition and thus possibly other factors affecting diet characteristics.
Collapse
Affiliation(s)
- Samuel C G Jansseune
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands; Adaptation and Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands; Idena, Sautron, France.
| | - Aart Lammers
- Adaptation and Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Jürgen van Baal
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Fany Blanc
- Adaptation and Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Fanny Calenge
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Wouter H Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
20
|
Shi H, Lopes T, Tompkins YH, Liu G, Choi J, Sharma MK, Kim WK. Effects of phytase supplementation on broilers fed with calcium and phosphorus-reduced diets, challenged with Eimeria maxima and Eimeria acervulina: influence on growth performance, body composition, bone health, and intestinal integrity. Poult Sci 2024; 103:103511. [PMID: 38340661 PMCID: PMC10869301 DOI: 10.1016/j.psj.2024.103511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
An experiment was conducted to evaluate the effects of phytase in calcium (Ca) and available phosphorous (avP)-reduced diet on growth performance, body composition, bone health, and intestinal integrity of broilers challenged with Eimeria maxima and Eimeria acervulina. A total of 672 14-day-old male broilers were allocated to a 2 × 4 factorial arrangement with 6 replicates per treatment and 14 birds per replicate. Two factors were Eimeria challenge and 4 dietary treatments: 1) a positive control (PC; 0.84% Ca and 0.42% avP); 2) a negative control (NC; 0.74% Ca and 0.27% avP); 3) NC + 500 FTU/Kg of phytase (NC + 500PHY); and 4) NC + 1,500 FTU/Kg of phytase (NC + 1500PHY). On d 14, birds in the Eimeria-challenged groups received a solution containing 15,000 sporulated oocysts of E. maxima and 75,000 sporulated oocysts of E. acervulina via oral gavage. At 5 d postinoculation (DPI), the challenged birds showed a higher (P < 0.01) FITC-d level than the unchallenged birds. While the permeability of the NC group did not differ from the PC group, the phytase supplementation groups (NC + 500PHY and NC + 1500PHY) showed lower (P < 0.05) serum FITC-d levels compared to the NC group. Interaction effects (P < 0.05) of Eimeria challenge and dietary treatments on feed intake (FI), mucin-2 (MUC2) gene expression, bone ash concentration, and mineral apposition rate (MAR) were observed. On 0 to 6 and 0 to 9 DPI, Eimeria challenge decreased (P < 0.01) body weight (BW), body weight gain (BWG), FI, bone mineral density (BMD), bone mineral content (BMC), bone area, fat free bone weight (FFBW), bone ash weight, bone ash percentage and bone ash concentration; and it showed a higher FCR (P < 0.01) compared to the unchallenged group. The reduction Ca and avP in the diet (NC) did not exert adverse effects on all parameters in birds, and supplementing phytase at levels of 500 or 1,500 FTU/Kg improved body composition, bone mineralization, and intestinal permeability, with the higher dose of 1,500 FTU/Kg showing more pronounced enhancements. There was an observed increase in FI (P < 0.01) when phytase was supplemented at 1,500 FTU/Kg during 0 to 6 DPI. In conclusion, results from the current study suggest that dietary nutrients, such as Ca and avP, can be moderately reduced with the supplementation of phytase, particularly in birds infected with Eimeria spp., which has the potential to save feed cost without compromising growth performance, bone health, and intestinal integrity of broilers.
Collapse
Affiliation(s)
- Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Taina Lopes
- Department of Poultry Science, Auburn University, Auburn, AL, 36849, USA
| | - Yuguo Hou Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Janghan Choi
- US National Poultry Research Center, United States Department of Agriculture Agricultural Research Service, Athens, GA, 30605, USA
| | - Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
21
|
Perez-Palencia JY, Ramirez-Camba CD, Haydon K, Urschel KL, Levesque CL. Effects of increasing dietary arginine supply during the three first weeks after weaning on pig growth performance, plasma amino acid concentrations, and health status. Transl Anim Sci 2024; 8:txae047. [PMID: 38651117 PMCID: PMC11034433 DOI: 10.1093/tas/txae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
A total of 425 weaned pigs (Exp. 1: 225 pigs [5.8 ± 0.9 kg]; Exp. 2: 200 pigs [6.1 ± 1.2 kg]) were used to determine the optimal dietary standardized ileal digestible (SID) arginine (Arg) level in early nursery diets based on growth and health responses. The basal diet in Exp.1 was formulated to meet SID Arg recommendation (0.66%; NRC, 2012) and in Exp. 2, SID Arg was set to simulate current industry practices for feeding nursery pigs (1.15 %). Basal diets were supplemented with 0.3%, 0.6%, 0.9%, and 1.2% of l-arginine to provide five levels of dietary SID Arg. Experimental diets were fed during phases I (days 0 to 7) and II (days 8 to 21) with common diets until market. Feed disappearance and body weight (BW) were measured on days 7, 14, 21, and 43. Final BW was recorded at first removal of pigs for market. Pen fecal score was assigned daily from days 0 to 21. Plasma immunoglobulin A (IgA) was determined on days 0, 7, and 14 and amino acids (AAs) concentration and plasma urea nitrogen (PUN) on days 0 and 14. Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of dietary Arg. Optimal SID Arg was determined by fitting the data with piecewise regression, using growth performance as the primary response variable. In Exp. 1, dietary Arg linearly increased (P < 0.1) BW, average daily gain (ADG), and gain to feed ratio (G:F) ratio on day 21, as well as reduced (χ2 = 0.004) the percentage of pigs that lost weight (PLW) in week 1 by 29%. Dietary Arg resulted in linear improvement (P = 0.082) of ADG for the overall nursery period and quadratic improvement (P < 0.1) of final BW at marketing. In Exp. 2, dietary Arg linearly increased (P < 0.05) ADG and average daily feed intake (ADFI) in week 1, BW and ADFI (P < 0.1) on day 14, as well as reduced (χ2 ≤ 0.001) PLW in week 1. From days 0 to 21, G:F was improved quadratically (P < 0.1). Dietary Arg linearly increased (P < 0.1) ADG and BW on day 43. Dietary Arg supplementation decreased the incidence (χ2 < 0.05) of soft and watery feces during the first weeks after weaning and lower concentration of plasma IgA on days 7 and 14. Dietary Arg linearly and/or quadratically influenced plasma AA concentrations (P < 0.05), including an increase in Arg, Leu, Phe, Val, citrulline, ornithine, and PUN concentrations. Overall, weaned pigs exhibit optimal nursery growth performance and health when provided with dietary SID Arg ranging from 1.5% to 1.9%. This dietary range contributes to a reduction in the occurrence of fall-back pigs and improvements in final BW at marketing.
Collapse
Affiliation(s)
| | - Christian D Ramirez-Camba
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
- Department of Animal Science, University of Minnesota, St. Paul, MN 57008, USA
| | - Keith Haydon
- CJ Bio America Inc, Downers Grove, IL 60515, USA
| | - Kristine L Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
22
|
Sanz-Fernandez MV, Doelman JH, Daniel JB, Ilg T, Mertens C, Martín-Tereso J. Characterization of a model of hindgut acidosis in mid-lactation cows: A pilot study. J Dairy Sci 2024; 107:829-839. [PMID: 37709027 DOI: 10.3168/jds.2023-23607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The objective of this pilot study was to generate data to support the development of an experimental model of hindgut acidosis to further understand its systemic consequences independently of rumen acidosis. Four ruminally fistulated multiparous Holstein cows (213 ± 11 d in milk) were subjected to 2 consecutive experimental periods (P1 and P2), separated by a 3-d washout. Experimental periods were 96 h long from the baseline to the final measurements but expanded over 5 calendar days (d 0-4). Abomasal infusions of saline and corn starch (2.8 kg/d) were performed for the first 72 h (d 0-3) of P1 and P2, respectively. Final measurements were performed 24 h after the end of the infusions (d 4). Each cow was used as its own control by comparing P2 to P1. Postruminal-intestinal permeability was assessed by Cr appearance in blood after a pulse dose administration of Cr-EDTA into the abomasum on d 2 (48 h after infusion initiation) of each period. Starch infusion during P2 was associated with a milk protein yield increase (3.3%) and a decrease in milk urea nitrogen (11%). Fecal dry matter increased (8.8%), and starch content tended to increase (∼2 fold) during P2. There was a period-by-day interaction for fecal pH as it decreased during starch infusion (1.3 pH points) but remained constant during P1. Although fecal lactate was not detectable during P1, it consistently increased during starch infusion. Fecal alkaline phosphatase activity also increased (∼17 fold) in association with starch infusion. Two hours after Cr-EDTA administration, blood Cr concentration was higher during starch infusion, resulting in a tendency for a treatment-by-hour interaction. Furthermore, blood d-lactate increased (∼2.5 fold), serum Cu decreased (18%), and blood urea nitrogen, cholesterol, and Ca tended to decrease (9.4%, 1.2%, and 2.4%, respectively), relative to P1. The current results suggest that hindgut acidosis was successfully induced by postruminal starch infusion, leading to gut damage and increased intestinal permeability. However, indications of systemic inflammation were not observed. The herein described preliminary results will require confirmation in a properly powered study.
Collapse
Affiliation(s)
| | - John H Doelman
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands
| | | | - Thomas Ilg
- Elanco Animal Health GmbH, 40789, Monheim, Germany
| | | | | |
Collapse
|
23
|
Tan Z, Chen Y, Zhou Y. Palygorskite improves growth performance and prevents liver damage in avian pathogenic Escherichia coli-challenged broiler chickens at an early age. J Anim Sci 2024; 102:skae302. [PMID: 39373204 PMCID: PMC11525485 DOI: 10.1093/jas/skae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/06/2024] [Indexed: 10/08/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major bacterial infection that causes economic losses in the global poultry industry. Palygorskite (PAL) has been shown to enhance growth performance while improving antioxidative and anti-inflammatory properties of broilers. This study evaluated the protective effects of PAL on growth performance and liver function in broilers subjected to APEC challenge. A total of 320 one-day-old male Arbor Acres chicks were divided into 4 groups with 8 replicates of 10 birds each, based on a 2 × 2 factorial arrangement (basal diet or 5 g/kg PAL-supplemented diet) and inoculation (bacterial culture medium or APEC). PAL increased body weight gain (BWG) prior to APEC challenge (P < 0.05). However, APEC caused losses in BWG, feed intake (FI), and feed efficiency, along with increased relative hepatic weight, hepatic pathology scores, and hepatic-cell apoptosis rate (P < 0.05). Compared to normal birds, APEC increased interleukin (IL)-1β, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and nitric oxide (NO) levels, as well as lysozyme (LZM) and myeloperoxidase (MPO) activities, while decreasing total antioxidant capacity (T-AOC) and IL-10 levels, and total superoxide dismutase (T-SOD) and catalase (CAT) activities in both serum and liver, APEC also raised alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, but reduced total protein (TP), albumin (ALB), immunoglobulin (Ig) A, IgG, and IgM levels in serum (P < 0.05). Moreover, APEC increased hepatic mRNA level of IL-1β, IFN-γ, TNF-α, nuclear factor kappa B, and inducible nitric oxide synthase (iNOS), while inhibited mRNA level of IL-10 (P < 0.05). In contrast, PAL increased BWG and FI, and alleviated hepatic-cell apoptosis rate during the challenge period (P < 0.05). Incorporation of PAL reduced triglyceride and NO contents, ALT, and AST activities, while increasing TP, ALB, IL-10, IgG, and IgM levels in serum, enhancing serum T-SOD and CAT activities, elevating hepatic T-AOC and CAT activities, inhibiting hepatic MDA accumulation, and reducing IL-1β levels and LZM activity in both liver and serum (P < 0.05). An interactive effect was found for hepatic TNF-α and iNOS mRNA expression, in which PAL inhibited their mRNA expression in APEC-challenged birds (P < 0.05). Overall, PAL addition partially mitigated the negative impact of the APEC challenge on the growth performance and liver function of broiler chicks at an early age.
Collapse
Affiliation(s)
- Zichao Tan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People’s Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People’s Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People’s Republic of China
| |
Collapse
|
24
|
Dyshlyuk LS, Milentyeva IS, Asyakina LK, Ostroumov LA, Osintsev AM, Pozdnyakova AV. Using bifidobacterium and propionibacterium strains in probiotic consortia to normalize the gastrointestinal tract. BRAZ J BIOL 2024; 84:e256945. [DOI: 10.1590/1519-6984.256945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract The gastrointestinal microflora regulates the body’s functions and plays an important role in its health. Dysbiosis leads to a number of chronic diseases such as diabetes, obesity, inflammation, atherosclerosis, etc. However, these diseases can be prevented by using probiotics – living microorganisms that benefit the microflora and, therefore, improve the host organism's health. The most common probiotics include lactic acid bacteria of the Bifidobacterium and Propionibacterium genera. We studied the probiotic properties of the following strains: Bifidobacterium adolescentis АС-1909, Bifidobacterium longum infantis АС-1912, Propionibacterium jensenii В-6085, Propionibacterium freudenreichii В-11921, Propionibacterium thoenii В-6082, and Propionibacterium acidipropionici В-5723. Antimicrobial activity was determined by the ‘agar blocks’ method against the following test cultures: Escherichia coli ATCC 25922, Salmonella enterica ATCC 14028, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa B6643, Proteus vulgaris ATCC 63, and Listeria monocytogenes ATCC 7644. Moderate antimicrobial activity against all the test cultures was registered in Bifidobacterium adolescentis АС-1909, Propionibacterium jensenii В-6085, and Propionibacterium thoenii В-6082. Antioxidant activity was determined by the DPPH inhibition method in all the lactic acid strains. Our study indicated that some Propionibacterium and Bifidobacterium strains or, theoretically, their consortia could be used as probiotic cultures in dietary supplements or functional foods to prevent a number of chronic diseases.
Collapse
|
25
|
Goetz BM, Abeyta MA, Rodriguez-Jimenez S, Mayorga EJ, Opgenorth J, Jakes GM, Freestone AD, Moore CE, Dickson DJ, Hergenreder JE, Baumgard LH. Effects of Bacillus subtilis PB6 supplementation on production, metabolism, inflammatory biomarkers, and gastrointestinal tract permeability in transition dairy cows. J Dairy Sci 2023; 106:9793-9806. [PMID: 37641308 DOI: 10.3168/jds.2023-23562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/16/2023] [Indexed: 08/31/2023]
Abstract
Objectives were to evaluate the effects of Bacillus subtilis PB6 (BSP) on gastrointestinal tract permeability, metabolism, inflammation, and production parameters in periparturient Holstein cows. Multiparous cows (n = 48) were stratified by previous 305-d mature equivalent milk yield and parity and assigned to 1 of 2 top-dressed dietary treatments 21 d before expected calving through 63 DIM: (1) control (CON; 13 g/d calcium carbonate; n = 24) or (2) BSP (13 g/d BSP; CLOSTAT, Kemin Industries, Des Moines, IA; n = 24). Gastrointestinal tract permeability was evaluated in vivo using the oral paracellular marker chromium (Cr)-EDTA. Effects of treatment, time, and treatment × time were assessed using PROC MIXED of SAS version 9.4 (SAS Institute Inc.). Prepartum dry matter intake (DMI) was unaffected by treatment; however, BSP supplementation decreased postpartum DMI relative to CON (0.7 kg). Milk yield, energy-corrected milk (ECM), fat-corrected milk (FCM), and solids-corrected milk (SCM) increased in BSP cows compared with CON (1.6, 1.8, 1.6, and 1.5 kg, respectively). Decreased DMI and increased production collectively improved feed efficiency of milk yield, ECM, FCM, and SCM for BSP cows (6, 5, 5, and 5%, respectively). No treatment differences were observed for concentrations of milk fat, protein, total solids, somatic cell count, somatic cell score, body weight, or body condition score. Milk urea nitrogen concentrations decreased (5%), whereas milk protein and lactose yield increased (5 and 2%, respectively) with BSP supplementation. Prepartum fecal pH did not differ among treatments; conversely, postpartum fecal pH was increased with BSP supplementation (0.09 pH units). Prepartum fecal dry matter percentage, starch, acetic acid, propionic acid, butyric acid, and ethanol did not differ among treatments. Postpartum concentrations of the aforementioned fecal parameters were also unaffected by treatment, but fecal propionic acid concentration was decreased (24%) in BSP cows relative to CON. Circulating glucose, nonesterified fatty acids, l-lactate, and insulin were similar between treatments both pre- and postpartum. Prepartum β-hydroxybutyrate (BHB) did not differ between treatments, but postpartum BSP supplementation decreased (21%) circulating BHB relative to CON. Regardless of treatment, inflammatory markers (serum amyloid A and haptoglobin) peaked immediately following parturition and progressively decreased with time, but this pattern was not influenced by treatment. Postpartum lipopolysaccharide binding protein tended to be decreased on d 3 in BSP relative to CON cows (19%). Neither treatment nor time affected Cr-EDTA area under the curve. In summary, supplementing BSP had no detectable effects prepartum, but increased key postpartum production parameters. Bacillus subtilis PB6 consistently increased postpartum fecal pH and decreased fecal propionate concentrations but did not appear to have an effect on gastrointestinal tract permeability.
Collapse
Affiliation(s)
- B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - G M Jakes
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - C E Moore
- Kemin Industries Inc., Des Moines, IA 50317
| | | | | | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
26
|
Medeot DB, Nilson A, Miazzo RD, Grosso V, Ferrari W, Jofré E, Soltermann A, Peralta MF. Stevia as a natural additive on gut health and cecal microbiota in broilers. Vet Anim Sci 2023; 22:100322. [PMID: 38045012 PMCID: PMC10692954 DOI: 10.1016/j.vas.2023.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Stevia mash (SM), leaves of Stevia rebaudiana Bertoni plant, is an additive used in poultry that enhances growth and health. Objective: to determine the effect of 1 % SM on productive parameters, gut health, and the cecal microbiome in broilers between the first 15 and 21 days old. One hundred sixty male, 1-day-old broilers (48.5 ± 2.5 g) were divided into Control (C) without SM and Treated (T) with 1 % SM on diet, during 15/21 days. Each subgroup had eight broilers/five repetitions/treatment. At day 15 or 21, all broilers were dissected, Fabricius Bursa and Gut removed and processed for histomorphometry, followed by Villi Height/Crypt Deep (VH/CD) ratio. Conversion Index (CI) was determined. The V3-V4 region of 16S rRNA gene was amplified from DNA obtained from pooled cecal contents and sequenced on Illumina Miseq PE 2 × 250 platform. Sequence processing and taxonomic assignments were performed using the SHAMAN pipeline. Both T groups have better VH/CD Ratios than C groups (p ≤ 0.05). In guts, increased plasmatic and goblet cells number and thicker mucus layer were found in T15 and T21. All groups received SM showed early immunological maturity in Fabricius Bursa. IC was similar between all treatments. Faecalibacterium, Ruminococcus torques group, and Bacteroides were the major genera modulated by SM addition. At 15 and 21 days old, SM exerts a impact on diversity and evenness of the cecal microbiome. Conclusion: SM (1 %) produced early immunologic maturity on Fabricius Bursa, increased intestinal functionality, and modified the microbiota, increasing beneficial microbial genera and microbial diversity.
Collapse
Affiliation(s)
- Daniela B. Medeot
- Laboratorio de Biología Molecular de las Interacciones Planta-Bacteria-Instituto de Biotecnología Ambiental y de Salud (INBIAS)- Universidad Nacional de Rio Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNRC: ruta 36 Km 601-5800-Rio Cuarto, Córdoba, Argentina
| | - Armando Nilson
- Unidad de Investigación Aviar, Producción Avícola, Facultad de Agronomía y Veterinaria-UNRC, Argentina
| | - Raul D. Miazzo
- Unidad de Investigación Aviar, Producción Avícola, Facultad de Agronomía y Veterinaria-UNRC, Argentina
| | - Viviana Grosso
- Laboratorio de Vinculación Tecnológica, Facultad de Ciencias Exactas, Físico-Químicas y Naturales-UNRC, Argentina
| | - Walter Ferrari
- Laboratorio de Biología Molecular de las Interacciones Planta-Bacteria-Instituto de Biotecnología Ambiental y de Salud (INBIAS)- Universidad Nacional de Rio Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNRC: ruta 36 Km 601-5800-Rio Cuarto, Córdoba, Argentina
| | - Edgardo Jofré
- Laboratorio de Biología Molecular de las Interacciones Planta-Bacteria-Instituto de Biotecnología Ambiental y de Salud (INBIAS)- Universidad Nacional de Rio Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNRC: ruta 36 Km 601-5800-Rio Cuarto, Córdoba, Argentina
| | - Arnaldo Soltermann
- Laboratorio de Vinculación Tecnológica, Facultad de Ciencias Exactas, Físico-Químicas y Naturales-UNRC, Argentina
| | - María Fernanda Peralta
- Unidad de Investigación Aviar, Producción Avícola, Facultad de Agronomía y Veterinaria-UNRC, Argentina
| |
Collapse
|
27
|
Tortadès M, Marti S, Devant M, Vidal M, Fàbregas F, Terré M. Feeding colostrum and transition milk facilitates digestive tract functionality recovery from feed restriction and fasting of dairy calves. J Dairy Sci 2023; 106:8642-8657. [PMID: 37641341 DOI: 10.3168/jds.2023-23345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/14/2023] [Indexed: 08/31/2023]
Abstract
The objective of this study was to evaluate the digestive tract recovery and metabolism of feeding either bovine colostrum (BC), transition milk (TM), or milk replacer (MR) after an episode of feed restriction and fasting (FRF) in dairy calves. Thirty-five Holstein male calves (22 ± 4.8 d old) were involved in a 50-d study. After 3 d of feeding 2 L of rehydration solution twice daily and 19 h of fasting (d 1 of study), calves were randomly assigned to one of the 5 feeding treatments (n = 7): calves were offered either pooled BC during 4 (C4) or 10 (C10) days, pooled TM during 4 (TM4) or 10 (TM10) days, or MR for 10 d (CTRL) at the rate of 720 g/d DM content. Then, all calves were fed the same feeding program, gradually decreasing MR from 3 L twice daily to 2 L once daily at 12.5% DM until weaning (d 42), and concentrate feed, water, and straw were offered ad libitum until d 50. Citrulline, Cr-EDTA, β-hydroxybutyrate (BHB), and nonesterified fatty acids (NEFA) in serum and complete blood count (CBC) were determined on d -3, 1, 2, 5, and 11 relative to FRF, except BHB and NEFA at d -3. Volatile fatty acids (VFA), lactoferrin (LTF), IgA, and microbiota (Firmicutes to Bacteroidetes ratio and Fecalis prausnitzii) were analyzed in feces on d 5 and 11 before the morning feeding. Health scores were recorded daily from d -3 to d 14 as well as d 23 and 30. Feed concentrate, MR, and straw intake were recorded daily, and body weight on d -3, 1, 2, 5, and 11 and weekly afterward. Calf performance, intake, serum Cr-EDTA, CBC, fecal LTF concentrations and microbiota parameters were similar among treatments throughout the study. Serum NEFA concentrations were greater in TM4, TM10 and C10 calves compared with the CTRL ones from d 2 to 11, and after the FRF, serum concentrations of BHB were lower in CTRL calves than in the other treatments, and on d 11, serum BHB concentrations in the long treatments (C10 and TM10) remained greater than those in the shorter ones (C4 and TM4) and CTRL. Serum citrulline concentrations were similar on d -3 and 1 in all treatments, but they were greater in C4, C10, TM4, and TM10 on d 2 and 5, and on d 11 they were only greater in C10 and TM10 than in CTRL calves. Fecal IgA concentrations tended to be greater in C10 than in CTRL, TM4, and TM10 calves, and in C4 and TM10 than in CTRL animals. Fecal propionate proportion was lesser in C10 than in CTRL, TM4, and TM10 calves, while butyrate was greater in C4 and C10 than in TM4 and CTRL calves. The proportion of non-normal fecal scores of C10 fed calves was greater than TM4 and TM10 calves. Results showed that TM and BC may help to recover intestinal functionality, provide gut immune protection, and increase liver fatty acid oxidation in calves after a FRF episode.
Collapse
Affiliation(s)
- M Tortadès
- Department of Ruminant Production, IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain
| | - S Marti
- Department of Ruminant Production, IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain
| | - M Devant
- Department of Ruminant Production, IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain
| | - M Vidal
- Department of Ruminant Production, IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain
| | - F Fàbregas
- Department of Ruminant Production, IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain
| | - M Terré
- Department of Ruminant Production, IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain.
| |
Collapse
|
28
|
Pato R, Peña R, Pelegrí-Pineda A, Crusellas-Villorbina N, Pisoni L, Devant M, Marti S, Solà-Oriol D, Bassols A, Saco Y. Validation of the fCAL turbo immunoturbidimetric assay for measurement of calprotectin in porcine and bovine fecal samples. Res Vet Sci 2023; 164:105042. [PMID: 37806097 DOI: 10.1016/j.rvsc.2023.105042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
The concentration of calprotectin in feces is a well-studied marker of gastrointestinal inflammation in humans. However, little is known about fecal calprotectin in farm animals. In this work, we have validated an immunoturbidimetric method for fecal calprotectin (Bühlmann fCAL® turbo assay, Schönenbuch, Switzerland) in porcine and bovine fecal samples. Linearity was evaluated by serial dilution (R2 > 0.97 was obtained for both species). Accuracy was assessed by a recovery study, with results between 80 and 120% for low, medium, and high samples in both species. Intra- and inter-assay variability was <20%. Limit of detection was 6.4 μg/g in pig and 5.3 μg/g in cow. Limit of quantification was 13.4 μg/g (pig) and 11.1 μg/g (cow). Additionally, clinical validation has been included to evaluate the ability of the assay to detect inflammatory status in the intestine under different management conditions. In experiments with porcine, it was found that piglets treated with ZnO had lower concentrations of fecal calprotectin. In a second experiment in bovine, calves with diarrhea had higher concentration of fecal calprotectin. The Bühlmann fCAL® turbo assay is suitable for measurement of calprotectin in porcine and bovine fecal samples. Moreover, fecal calprotectin could be a good biomarker of intestinal inflammation in both species.
Collapse
Affiliation(s)
- Raquel Pato
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Raquel Peña
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Anna Pelegrí-Pineda
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Núria Crusellas-Villorbina
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| | - Lucia Pisoni
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, Caldes de Montbui, Spain
| | - Maria Devant
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, Caldes de Montbui, Spain
| | - Sonia Marti
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, Caldes de Montbui, Spain
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Anna Bassols
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain.
| | - Yolanda Saco
- Veterinary Clinical Biochemistry Service (SBCV), Department of Biochemistry and Molecular Biology, School of Veterinary, Autonomous University of Barcelona, Spain
| |
Collapse
|
29
|
Oketch EO, Wickramasuriya SS, Oh S, Choi JS, Heo JM. Physiology of lipid digestion and absorption in poultry: An updated review on the supplementation of exogenous emulsifiers in broiler diets. J Anim Physiol Anim Nutr (Berl) 2023; 107:1429-1443. [PMID: 37435748 DOI: 10.1111/jpn.13859] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Lipids are a concentrated source of energy with at least twice as much energy as the same amount of carbohydrates and protein. Dietary lipids provide a practical alternative toward increasing the dietary energy density of feeds for high-performing modern broilers. However, the digestion and absorption of dietary lipids are much more complex than that of the other macronutrients. In addition, young birds are physiologically limited in their capacity to utilise dietary fats and oils effectively. The use of dietary emulsifiers as one of the strategies aimed at improving fat utilisation has been reported to elicit several physiological responses including improved fat digestibility and growth performance. In practical terms, this allows for the incorporation of lipids into lower-energy diets without compromising broiler performance. Such an approach may potentially lower feed costs and raise revenue gains. The current review revisits lipids and the different roles that they perform in diets and whole-body metabolism. Additional information on the process of dietary lipid digestion and absorption in poultry; and the physiological limitation brought about by age on lipid utilisation in the avian gastrointestinal tract have been discussed. Subsequently, the physiological responses resulting from the dietary supplementation of exogenous emulsifiers as a strategy for improved lipid utilisation in broiler nutrition are appraised. Suggestions of nascent areas for a better understanding of exogenous emulsifiers have been highlighted.
Collapse
Affiliation(s)
- Elijah O Oketch
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Samiru S Wickramasuriya
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Sungtaek Oh
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, John Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jun Seung Choi
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
30
|
Zhang B, Zhang M, Xing Y, Wang B, Fan W, Kong M, Li W, Wang C. Dietary cholecalciferol and 25-hydroxycholecalciferol supplementation interact to modulate reproductive performance, egg quality, serum antioxidant capacity, intestinal morphology and tibia quality of breeder geese. Br Poult Sci 2023; 64:625-633. [PMID: 37466364 DOI: 10.1080/00071668.2023.2229266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 07/20/2023]
Abstract
1. A study was conducted to evaluate the effects of dietary cholecalciferol (vitamin D3) and 25-hydroxycholecalciferol (25-OH-D3) supplementation on the reproductive performance, egg quality, eggshell ultrastructure, serum hormone level and antioxidant capacity, intestinal morphology and tibia quality of breeder geese during the laying period.2. The trial was designed as a 3 × 3 factorial arrangement with three levels (300, 400 and 500 IU/kg) of vitamin D3 supplementation and three levels (25, 50 and 75 μg/kg) of 25-OH-D3 supplementation in a 10-wk feeding trial.3. The results showed that the combined supplementation of 400 IU/kg vitamin D3 and 50 μg/kg 25-OH-D3 had a better feed conversion ratio and a higher egg laying rate than the other groups. Vitamin D3 supplementation significantly increased the rate of qualified eggs for hatching, eggshell strength and thickness, serum testosterone and progesterone levels, serum total superoxide dismutase and glutathione peroxidase activities, tibia ash content and bone mineral density (P < 0.05). Dietary 25-OH-D3 supplementation significantly increased serum glutathione peroxidase activity and duodenal villus height and villus height-to-crypt-depth ratio (P < 0.05). The geese receiving 500 IU/kg vitamin D3 and 75 µg/kg 25-OH-D3 had the highest tibia calcium and phosphorous content among all groups (P < 0.05).4. Feeding 400 IU/kg vitamin D3 plus 50 µg/kg 25-OH-D3 gave optimal effects on feed conversion ratio and egg laying rate. This combination could be a nutritional strategy for increasing the laying rate, eggshell quality, serum hormone levels and serum antioxidant function regardless of 25-OH-D3 supplementation. Supplementation of 50 μg/kg 25-OH-D3 could be a recommended dose for improving the serum antioxidant capacity and intestinal morphology regardless of vitamin D3 supplementation.
Collapse
Affiliation(s)
- B Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - M Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Nutrition and Feed Laboratory of China Agriculture Research System, Qingdao, China
| | - Y Xing
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - B Wang
- Nutrition and Feed Laboratory of China Agriculture Research System, Qingdao, China
| | - W Fan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - M Kong
- Nutrition and Feed Laboratory of China Agriculture Research System, Qingdao, China
| | - W Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - C Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| |
Collapse
|
31
|
Bishehsari F, Drees M, Adnan D, Sharma D, Green S, Koshy J, Giron LB, Goldman A, Abdel-Mohsen M, Rasmussen HE, Miller GE, Keshavarzian A. Multi-omics approach to socioeconomic disparity in metabolic syndrome reveals roles of diet and microbiome. Proteomics 2023; 23:e2300023. [PMID: 37525324 DOI: 10.1002/pmic.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
The epidemy of metabolic syndrome (MetS) is typically preceded by adoption of a "risky" lifestyle (e.g., dietary habit) among populations. Evidence shows that those with low socioeconomic status (SES) are at an increased risk for MetS. To investigate this, we recruited 123 obese subjects (body mass index [BMI] ≥ 30) from Chicago. Multi-omic data were collected to interrogate fecal microbiota, systemic markers of inflammation and immune activation, plasma metabolites, and plasma glycans. Intestinal permeability was measured using the sugar permeability testing. Our results suggest a heterogenous metabolic dysregulation among obese populations who are at risk of MetS. Systemic inflammation, linked to poor diet, intestinal microbiome dysbiosis, and gut barrier dysfunction may explain the development of MetS in these individuals. Our analysis revealed 37 key features associated with increased numbers of MetS features. These features were used to construct a composite metabolic-inflammatory (MI) score that was able to predict progression of MetS among at-risk individuals. The MI score was correlated with several markers of poor diet quality as well as lower levels of gut microbial diversity and abnormalities in several species of bacteria. This study reveals novel targets to reduce the burden of MetS and suggests access to healthy food options as a practical intervention.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Michael Drees
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan Green
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Jane Koshy
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Leila B Giron
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Aaron Goldman
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | - Gregory E Miller
- Institute for Policy Research and Dept of Psychology, Northwestern Univ, Evanston, Illinois, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
32
|
Teichenné J, Catalán Ú, Mariné-Casadó R, Domenech-Coca C, Mas-Capdevila A, Alcaide-Hidalgo JM, Chomiciute G, Rodríguez-García A, Hernández A, Gutierrez V, Puiggròs F, Del Bas JM, Caimari A. Bacillus coagulans GBI-30, 6086 (BC30) improves lactose digestion in rats exposed to a high-lactose meal. Eur J Nutr 2023; 62:2649-2659. [PMID: 37249602 DOI: 10.1007/s00394-023-03183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Bacillus coagulans GBI-30, 6086 (BC30) was previously shown to improve nutrient digestibility and amino acid absorption from milk protein in vitro. However, the effect of supplementation with this probiotic on lactose digestibility has not yet been evaluated in vivo. METHODS Wistar female rats were exposed to an acute high-lactose diet (LD; 35% lactose) meal challenge after 7 days of administration of BC30 (LD-BC; n = 10) or vehicle (LD-C; n = 10). Rats treated with vehicle and exposed to control diet (CD; 35% corn starch) meal were used as controls (CD-C; n = 10). Carbohydrate oxidation (CH_OX) and lipid oxidation (L_OX) were monitored by indirect calorimetry before and after lactose challenge. After the challenge, rats were treated daily with vehicle or probiotic for an additional week and were fed with CD or LD ad libitum to determine the effects of BC30 administration in a lactose-induced diarrhoea and malnutrition model. RESULTS LD-C rats showed lower CH_OX levels than CD rats, while LD-BC rats showed similar CH_OX levels compared to CD rats during the lactose challenge, suggesting a better digestion of lactose in the rats supplemented with BC30. BC30 completely reversed the increase in the small intestine length of LD-C animals. LD-BC rats displayed increased intestinal mRNA Muc2 expression. No significant changes were observed due to BC30 administration in other parameters, such as serum calprotectin, intestinal MPO activity, intestinal A1AT and SGLT1 levels or intestinal mRNA levels of Claudin2 and Occludin. CONCLUSION Treatment with BC30 improved the digestibility of lactose in an acute lactose challenge and ameliorated some of the parameters associated with lactose-induced malnutrition.
Collapse
Affiliation(s)
- Joan Teichenné
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain.
| | - Úrsula Catalán
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Cristina Domenech-Coca
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Anna Mas-Capdevila
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Juan María Alcaide-Hidalgo
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | | | - Ana Hernández
- Delafruit SLU, 43470, La Selva del Camp, Catalonia, Spain
| | | | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| |
Collapse
|
33
|
Ji F, Yang H, Wang Q, Li J, Zhou H, Liu S. Porcine intestinal antimicrobial peptide as an in-feed antibiotic alternative improves intestinal digestion and immunity by shaping the gut microbiota in weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:43-55. [PMID: 37234948 PMCID: PMC10208801 DOI: 10.1016/j.aninu.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/25/2023] [Accepted: 04/05/2023] [Indexed: 05/28/2023]
Abstract
Antibiotic resistance of pathogens, which is caused by the abuse of in-feed antibiotics, threatens the sustainable development of livestock production. The present study aimed to investigate the efficiency of porcine intestinal antimicrobial peptide (PIAP) as an alternative to in-feed antibiotics in terms of growth performance, intestinal morphology, digestive enzymes and immunity, and microbiota community of the post-weaning piglets. A total of 204 piglets (Duroc × Landrace × Yorkshire, weaned at 28 d age) with a similar body weight of 7.97 ± 1.04 kg were randomly allocated to 4 groups (51 piglets per group): (1) control group: basal diet; (2) AB group: antibiotic, basal diet + chlortetracycline (1000 mg/kg from d 1 to 24; 500 mg/kg from d 25 to 37); (3) P1 group: basal diet + a relatively low dose of PIAP (400 mg/kg from d 1 to 24; 300 mg/kg from d 25 to 37); (4) P2 group, basal diet + a relatively high dose of PIAP (600 mg/kg from d 1 to 24; 500 mg/kg from d 25 to 37). The results showed that serum indicators of hepatocyte damage and relative organ weight were not affected by these treatments (P > 0.05). Compared with the AB treatment, the P1 treatment remarkably decreased jejunal crypt depth and increased jejunal and ileal villus height:crypt depth ratio (P < 0.05). The values of jejunal maltase, lactase, sucrase, intestinal alkaline phosphatase, and secretory immunoglobulin A (SIgA) in the P1 group were sharply increased compared with those in the control and P2 groups (P < 0.05). Compared with the control group, the P1 group decreased serum concentrations of D-lactate, diamine oxidase, and endotoxin (P < 0.05), and increased the abundance of Lactobacillus reuteri (P < 0.05) in the colonic feces. Furthermore, there was a positive correlation between the abundance of L. reuteri and the concentrations of maltase, lactase, sucrase, and SIgA (P < 0.05). Collectively, dietary supplementation with a relatively low dose of PIAP (400 mg/kg from d 1 to 24; 300 mg/kg from d 25 to 37) demonstrates beneficial effects on intestinal morphology, digestive enzymes, immunity, and permeability by shaping the gut microbiota composition in weaned piglets. This study will provide a valuable reference for using PIAP as an in-feed antibiotic alternative in swine production.
Collapse
Affiliation(s)
- Fengjie Ji
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shengmin Liu
- Hainan Agri-Farming Animal Husbandry Group Co., Ltd., Haikou, 570226, China
| |
Collapse
|
34
|
Ma F, Ma B, Zhang B, He Y, Wang Y. Disturbance of oxidation/antioxidant status and histopathological damage in tsinling lenok trout under acute thermal stress. Trop Anim Health Prod 2023; 55:287. [PMID: 37542536 DOI: 10.1007/s11250-023-03705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
The tsinling lenok trout (Brachymystax Lenok tsinlingensis) is a typical land-locked cold salmon. In this study, through the acute high temperature stress (16, 24, and 26°C), samples were taken at multiple temperature points to analyze the dynamic changes of serum non-specific immune indexes and histopathological changes of tissues of tsinling lenok trout. The histopathological investigation of different studied tissues revealed an increase of histological lesions' frequency and severity with increasing water temperature. The activity of T-SOD, GSH-Px, CAT, ACP, and LZM and MDA concentration are all impacted by high temperature stress. The activities of T-SOD, GSH-Px, and ACP are significantly lower in temperatures higher than 16°C (P<0.05). However, with the increase of water temperature, MDA content increased significantly. The activities of CAT and LZM were the highest at 24°C, which were significantly higher than those at 26°C (P<0.05). The above results indicate that 24°C is a "critical high temperature point" for tsinling lenok trout under heat stress, and this temperature point may be the critical point for tsinling lenok trout to enter "damaged" from adaptive adjustment. Our results can provide a theoretical basis for the development of genetic breeding, improvement, and control measures of heat stress in tsinling lenok trout in the future.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China.
| | - Baohua Ma
- Zhangjiachuan Country Fishery Technology Promotion Station, Tianshui City, Gansu Province, People's Republic of China
| | - Binxia Zhang
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China
| | - Yude He
- Zhangjiachuan Country Fishery Technology Promotion Station, Tianshui City, Gansu Province, People's Republic of China
| | - Yun Wang
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China
| |
Collapse
|
35
|
Sciascia QL, Metges CC. Review: Methods and biomarkers to investigate intestinal function and health in pigs. Animal 2023; 17 Suppl 3:100860. [PMID: 37316380 DOI: 10.1016/j.animal.2023.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Society is becoming increasingly critical of animal husbandry due to its environmental impact and issues involving animal health and welfare including scientific experiments conducted on farm animals. This opens up two new fields of scientific research, the development of non- or minimally invasive (1) methods and techniques using faeces, urine, breath or saliva sampling to replace existing invasive models, and (2) biomarkers reflecting a disease or malfunction of an organ that may predict the future outcome of a pig's health, performance or sustainability. To date, there is a paucity of non- or minimally invasive methods and biomarkers investigating gastrointestinal function and health in pigs. This review describes recent literature pertaining to parameters that assess gastrointestinal functionality and health, tools currently used to investigate them, and the development or the potential to develop new non- and minimally invasive methods and/or biomarkers in pigs. Methods described within this review are those that characterise gastrointestinal mass such as the citrulline generation test, intestinal protein synthesis rate, first pass splanchnic nutrient uptake and techniques describing intestinal proliferation, barrier function and transit rate, and microbial composition and metabolism. An important consideration is gut health, and several molecules with the potential to act as biomarkers of compromised gut health in pigs are reported. Many of these methods to investigate gut functionality and health are considered 'gold standards' but are invasive. Thus, in pigs, there is a need to develop and validate non-invasive methods and biomarkers that meet the principles of the 3 R guidelines, which aim to reduce and refine animal experimentation and replace animals where possible.
Collapse
Affiliation(s)
- Q L Sciascia
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology "Oskar Kellner", Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - C C Metges
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology "Oskar Kellner", Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
36
|
Bastos TS, Souza CMM, Kaelle GCB, do Nascimento MQ, de Oliveira SG, Félix AP. Diet supplemented with Saccharomyces cerevisiae from different fermentation media modulates the faecal microbiota and the intestinal fermentative products in dogs. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 37129233 DOI: 10.1111/jpn.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
This study aimed at evaluating the coefficients of total tract apparent digestibility (CTTAD) of nutrients, metabolisable energy (ME), diet palatability, faecal fermentative products and microbiota of dogs fed yeasts from different fermentation media and its fractions. Four diets were evaluated: control, without yeast (CO); diet with 10 g/kg brewer's yeast (BY); diet with 10 g/kg brewer's yeast + corn yeast (BCY); and diet with 10 g/kg BCY + cell wall fractions (BCYF). Twelve adult dogs were distributed in a randomized block design (periods). Each of the four diets was fed to a group of three dogs per period of 20 days, totalling two periods and six repetitions per treatment. Sixteen adult dogs were used for the palatability test, which compared the CO diet versus each one of the yeast diets. Data with normal distribution were subjected to analysis of variance (p < 0.05). Means were compared by orthogonal contrasts (p < 0.05): (A) CO diet versus BY, BCY and BCYF diets; (B) BY diet versus BCY and BCYF diets; (C) BCY diet versus BCYF diet. There was no difference in the CTTAD and ME of the diets (p > 0.05). Yeast diets reduced faecal odour and indole peak area (p < 0.05). Faecal short-chain fatty acids concentration was greater in dogs fed yeast diets compared to those fed the CO (p < 0.05). Yeast diets showed a higher intake ratio compared to the CO (p < 0.05). The BCY and BCYF diets resulted in a greater abundance of Bacteroides, Faecalibacterium, Coprococcus, and Phascolarctobacterium in relation to the CO (p < 0.05). Our results suggest that dietary yeast supplementation results in beneficial changes in intestinal functionality indicators, mainly with the combination of yeasts from brewers and corn fermentation media. In addition, yeast supplementation improves diet palatability without compromising nutrient digestibility.
Collapse
Affiliation(s)
- Taís Silvino Bastos
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | - Ananda Portella Félix
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
37
|
Obianwuna UE, Agbai Kalu N, Wang J, Zhang H, Qi G, Qiu K, Wu S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants (Basel) 2023; 12:antiox12040911. [PMID: 37107286 PMCID: PMC10136232 DOI: 10.3390/antiox12040911] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nenna Agbai Kalu
- Department of Animal Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
38
|
Cerquetella M, Mangiaterra S, Rossi G, Gavazza A, Marchegiani A, Sagratini G, Ricciutelli M, Angeloni S, Fioretti L, Marini C, Pucciarelli S, Vincenzetti S. Fecal Protein Profile in Eight Dogs Suffering from Acute Uncomplicated Diarrhea before and after Treatment. Vet Sci 2023; 10:vetsci10030233. [PMID: 36977272 PMCID: PMC10051911 DOI: 10.3390/vetsci10030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Acute diarrhea is a very frequent condition affecting dogs; nevertheless, little is known about what happens in the GI tract during such conditions. Proteomics allows the study of proteins present in a specific biologic substrate, and fecal proteomic investigations have been recently implemented to study GI diseases in dogs. In the present study, the fecal protein profiles of eight dogs suffering from acute uncomplicated diarrhea at the time of inclusion was investigated for the first time, and then the same patients were followed, replicating two further evaluations at two subsequent time points (after 2 and 14 days from the first presentation), with the aim of gaining possible new insights regarding the pathologic changes in the gastrointestinal environment during such conditions. Two-dimensional gel electrophoresis (2-DE) was performed, followed by mass spectrometry. Nine spots, corresponding to four (groups of) proteins (i.e., albumin, alkaline phosphatase, chymotrypsin-C-like, and some immunoglobulins), showed significant differences at two or more of the three time points investigated, almost all behaving similarly and decreasing at T1 (2 days after the onset of the condition) and significantly increasing at T2 (14 days after the onset), mainly evidencing a reaction of the organism. Further studies including a greater number of patients and possibly different techniques are needed to confirm the present findings.
Collapse
Affiliation(s)
- Matteo Cerquetella
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | | | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy
| | - Massimo Ricciutelli
- Chemistry Interdisciplinary Project (ChIP) Laboratory of LC-MS, University of Camerino, 62032 Camerino, Italy
| | - Simone Angeloni
- Chemistry Interdisciplinary Project (ChIP) Laboratory of LC-MS, University of Camerino, 62032 Camerino, Italy
| | | | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile II da Varano, 62032 Camerino, Italy
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| |
Collapse
|
39
|
Rodríguez SP, Herrera AL, Parra JE. Gene expression of pro-inflammatory (IL-8, IL-18, TNF-α, and IFN-γ) and anti-inflammatory (IL-10) cytokines in the duodenum of broiler chickens exposed to lipopolysaccharides from Escherichia coli and Bacillus subtilis. Vet World 2023; 16:564-570. [PMID: 37041838 PMCID: PMC10082750 DOI: 10.14202/vetworld.2023.564-570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/24/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Intestinal infections are associated with Gram-negative bacteria like Escherichia coli. When eliminated by treatments during replication, E. coli release lipopolysaccharides (LPS) that can activate the intestinal immune system and increase the expression of cytokines, such as interleukin (IL)-8, IL-18, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ), by the intestinal epithelium under pathological conditions. This study aimed to evaluate the addition of Bacillus subtilis to the duodenal gene expression of pro-inflammatory and anti-inflammatory cytokines in broilers exposed to LPS from E. coli. Materials and Methods RNA was extracted using the Zymo Research total RNA commercial kit, according to the manufacturer's specifications, from the intestinal tissue of the duodenum previously resuspended in the lysis buffer of the kit. The expression of the cytokines of interest was measured using the QuantiNova SYBR green real-time polymerase chain reaction kit (Qiagen). Transcript quantification was performed by the ΔΔC(t) method using glyceraldehyde 3-phosphate dehydrogenase as a normalizing constitutive gene. Results For the measurement of pro-inflammatory (IL-8, IL-18, TNF-α, and IFN-γ) and anti-inflammatory (IL-10) cytokines, there was no statistically significant difference (p > 0.05) between the basal diet and the diet with antibiotic (avilamycin). There was a statistical difference (p < 0.05) between diets with LPS. The diet with B. subtilis presented the lowest expression; the results differed on each sampling day (days 14, 28, and 42). Conclusion A decrease in the expression of pro-inflammatory cytokines (IL-8, IL-18, TNF-α, and IFN-γ) and an increase in IL-10 (anti-inflammatory) was observed; in this way, a balance of the inflammatory response to bacterial infection is achieved, suggesting that the use of B. subtilis as an additive in a broiler diet has a similar effect to that produced with antibiotic growth promoter.
Collapse
Affiliation(s)
- Sandra Paola Rodríguez
- Department of Animal Production, Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Medellín campus 050034, Colombia
- Corresponding author: Sandra Paola Rodríguez, e-mail: Co-authors: ALH: , JEP:
| | - Albeiro López Herrera
- Department of Animal Production, Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Medellín campus 050034, Colombia
| | - Jaime Eduardo Parra
- Department of Animal Production, Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Medellín campus 050034, Colombia
| |
Collapse
|
40
|
Zou S, Ji S, Xu H, Wang M, Li B, Shen Y, Li Y, Gao Y, Li J, Cao Y, Li Q. Rumen-Protected Lysine and Methionine Supplementation Reduced Protein Requirement of Holstein Bulls by Altering Nitrogen Metabolism in Liver. Animals (Basel) 2023; 13:ani13050843. [PMID: 36899700 PMCID: PMC10000044 DOI: 10.3390/ani13050843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
The aim of this study was to investigate the effect of low-protein diets supplemented with rumen-protected lysine (RPLys) and methionine (RPMet) on growth performance, rumen fermentation, blood biochemical parameters, nitrogen metabolism, and gene expression related to N metabolism in the liver of Holstein bulls. Thirty-six healthy and disease-free Holstein bulls with a similar body weight (BW) (424 ± 15 kg, 13 months old) were selected. According to their BW, they were randomly divided into three groups with 12 bulls in each group in a completely randomized design. The control group (D1) was fed with a high-protein basal diet (CP13%), while bulls in two low-protein groups were supplied a diet with 11% crude protein and RPLys 34 g/d·head + RPMet 2 g/d·head (low protein with low RPAA, T2) or RPLys 55 g/d·head + RPMet 9 g/d·head (low protein with high RPAA, T3). At the end of the experiment, the feces and urine of dairy bulls were collected for three consecutive days. Blood and rumen fluid were collected before morning feeding, and liver samples were collected after slaughtering. The results showed that the average daily gain (ADG) of bulls in the T3 group was higher than those in D1 (p < 0.05). Compared with D1, a significantly higher nitrogen utilization rate (p < 0.05) and serum IGF-1 content (p < 0.05) were observed in both T2 and T3 groups; however, blood urea nitrogen (BUN) content was significantly lower in the T2 and T3 groups (p < 0.05). The content of acetic acid in the rumen of the T3 group was significantly higher than that of the D1 group. No significant differences were observed among the different groups (p > 0.05) in relation to the alpha diversity. Compared with D1, the relative abundance of Christensenellaceae_R-7_group in T3 was higher (p < 0.05), while that of Prevotellaceae _YAB2003_group and Succinivibrio were lower (p < 0.05). Compared with D1 and T2 group, the T3 group showed an expression of messenger ribonucleic acid (mRNA) that is associated with (CPS-1, ASS1, OTC, ARG) and (N-AGS, S6K1, eIF4B, mTORC1) in liver; moreover, the T3 group was significantly enhanced (p < 0.05). Overall, our results indicated that low dietary protein (11%) levels added with RPAA (RPLys 55 g/d +RPMet 9 g/d) can benefit the growth performance of Holstein bulls by reducing nitrogen excretion and enhancing nitrogen efficiency in the liver.
Collapse
Affiliation(s)
- Songyan Zou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Shoukun Ji
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Hongjian Xu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Mingya Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Beibei Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yan Li
- College of Animal Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yufeng Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (Y.C.); (Q.L.)
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (Y.C.); (Q.L.)
| |
Collapse
|
41
|
Souza CMM, Bastos TS, Kaelle GCB, Bortolo M, de Oliveira SG, Félix AP. Fine cassava fibre utilization as a dietary fibre source for dogs: Effects on kibble characteristics, diet digestibility and palatability, faecal metabolites and microbiota. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 36807651 DOI: 10.1111/jpn.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/18/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
The objective was to evaluate through three experiments the effects of a fine cassava fibre (CA: 106 µm) on kibble characteristics, coefficients of total tract apparent digestibility (CTTAD) of macronutrients, diet palatability and faecal metabolites and microbiota of dogs. Dietary treatments consisted of a control diet (CO), without an added fibre source and with 4.3% total dietary fibre (TDF), and a diet with 9.6% CA (106 µm), with 8.4% TDF. Experiment I evaluated the physical characteristics of the kibbles. The palatability test was evaluated in experiment II, which compared the diets CO versus CA. In experiment III, 12 adult dogs were randomly assigned to one of the two dietary treatments for 15 days, totalling six replicates/treatment, to assess the CTTAD of macronutrients; faecal characteristics, faecal metabolites and microbiota. The expansion index, kibble size and friability of diets with CA were higher than the CO (p < 0.05). Additionally, the CA diet presented higher palatability than the CO (p < 0.05) but did not affect CTTAD except for those of fibre (p > 0.05). Moreover, a greater faecal concentration of acetate, butyrate and total short-chain fatty acids (SCFA) and a lower faecal concentration of phenol, indole and isobutyrate were observed in dogs fed the CA diet (p < 0.05). Dogs fed with the CA diet presented a greater bacterial diversity and richness and a greater abundance of genera considered to be beneficial for gut health, such as Blautia, Faecalibacterium and Fusobacterium when compared to the CO group (p < 0.05). The inclusion of 9.6% of a fine CA improves the expansion of kibbles and diet palatability without affecting most of the CTTAD of nutrients. Besides, it improves the production of some SCFA and modulates the faecal microbiota of dogs.
Collapse
Affiliation(s)
- Camilla M M Souza
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Taís S Bastos
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Gislaine C B Kaelle
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Simone G de Oliveira
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ananda P Félix
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
42
|
Effect of Yeast Saccharomyces cerevisiae as a Probiotic on Diet Digestibility, Fermentative Metabolites, and Composition and Functional Potential of the Fecal Microbiota of Dogs Submitted to an Abrupt Dietary Change. Microorganisms 2023; 11:microorganisms11020506. [PMID: 36838473 PMCID: PMC9965016 DOI: 10.3390/microorganisms11020506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The aim was to evaluate the effects of yeast probiotic on diet digestibility, fermentative metabolites, and fecal microbiota of dogs submitted to dietary change. Sixteen dogs were divided into two groups of eight dogs each: control, without, and with probiotic, receiving 0.12 g/dog/day of live Saccharomyces cerevisiae yeast. The dogs were fed a lower protein and fiber diet for 21 days and then changed to a higher protein and fiber diet until day 49. Yeast supplementation did not statistically influence diet digestibility. The probiotic group had a lower fecal concentration of total biogenic amines (days 21 and 49), ammonia (day 23), and aromatic compounds and a higher fecal concentration of butyrate (p < 0.05). The probiotic group showed a lower dysbiosis index, a higher abundance (p < 0.05) of Bifidobacterium (days 35 and 49) and Turicibacter, and a lower abundance of Lactobacillus and E. coli (p < 0.05). Beta diversity demonstrated a clear differentiation in the gut microbiota between the control and probiotic groups on day 49. The control group showed upregulation in genes related to virulence factors, antibiotic resistance, and osmotic stress. The results indicated that the live yeast evaluated can have beneficial effects on intestinal functionality of dogs.
Collapse
|
43
|
Wickramasuriya SS, Park I, Lee Y, Richer LM, Przybyszewski C, Gay CG, van Oosterwijk JG, Lillehoj HS. Orally delivered Bacillus subtilis expressing chicken NK-2 peptide stabilizes gut microbiota and enhances intestinal health and local immunity in coccidiosis-infected broiler chickens. Poult Sci 2023; 102:102590. [PMID: 36940653 PMCID: PMC10033313 DOI: 10.1016/j.psj.2023.102590] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
We recently reported a stable Bacillus subtilis-carrying chicken NK-lysin peptide (B. subtilis-cNK-2) as an effective oral delivery system of an antimicrobial peptide to the gut with therapeutic effect against Eimeria parasites in broiler chickens. To further investigate the effects of a higher dose of an oral B. subtilis-cNK-2 treatment on coccidiosis, intestinal health, and gut microbiota composition, 100 (14-day-old) broiler chickens were allocated into 4 treatment groups in a randomized design: 1) uninfected control (CON), 2) infected control without B. subtilis (NC), 3) B. subtilis with empty vector (EV), and 4) B. subtilis with cNK-2 (NK). All chickens, except the CON group, were infected with 5,000 sporulated Eimeria acervulina (E. acervulina) oocysts on d 15. Chickens given B. subtilis (EV and NK) were orally gavaged (1 × 1012 cfu/mL) daily from d 14 to 18. Growth performances were measured on d 6, 9, and 13 postinfection (dpi). Spleen and duodenal samples were collected on 6 dpi to assess the gut microbiota, and gene expressions of gut integrity and local inflammation makers. Fecal samples were collected from 6 to 9 dpi to enumerate oocyst shedding. Blood samples were collected on 13 dpi to measure the serum 3-1E antibody levels. Chickens in the NK group showed significantly improved (P < 0.05) growth performance, gut integrity, reduced fecal oocyst shedding and mucosal immunity compared to NC. Interestingly, there was a distinct shift in the gut microbiota profile in the NK group compared to that of NC and EV chickens. Upon challenge with E. acervulina, the percentage of Firmicutes was reduced and that of Cyanobacteria increased. In NK chickens, however, the ratio between Firmicutes and Cyanobacteria was not affected and was similar to that of CON chickens. Taken together, NK treatment restored dysbiosis incurred by E. acervulina infection and showed the general protective effects of orally delivered B. subtilis-cNK-2 on coccidiosis infection. This includes reduction of fecal oocyst shedding, enhancement of local protective immunity, and maintenance of gut microbiota homeostasis in broiler chickens.
Collapse
Affiliation(s)
- Samiru S Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | | | | | - Cyril G Gay
- Office of National Program-Animal Health, US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | | | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| |
Collapse
|
44
|
González F, Carelli A, Komarcheuski A, Uana M, do Prado RM, Rossoni D, Gomes M, Vasconcellos R. Yeast Cell Wall Compounds on The Formation of Fermentation Products and Fecal Microbiota in Cats: An In Vivo and In Vitro Approach. Animals (Basel) 2023; 13:637. [PMID: 36830424 PMCID: PMC9951743 DOI: 10.3390/ani13040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 02/15/2023] Open
Abstract
The effects of yeast cell wall compounds (YCWs) being added to cat food on hindgut fermentation metabolites and fecal microbiota were assessed in in vivo Experiment 1 (Exp. 1) and in vitro Experiments 2 and 3 (Exp. 2 and 3). In Exp. 1, the cats' diets were supplemented with two dietary concentrations (46.2 and 92.4 ppm) of YCWs (YCW-15 and YCW-30, respectively), and a negative control diet with no compound in three groups (six cats per group) was used to assess the fecal score, pH, digestibility, fermentation products, and microbiota. In Exp. 2, feces from the cats that were not supplemented with YCWs (control) were used as an inoculum. A blend of pectin, amino acids, and cellulose was used as a substrate, and the YCW compound was added at two levels (5 and 10 mg). In Exp. 3, feces from cats fed YCWs were used as an inoculum to test three different substrates (pectin, amino acids, and cellulose). In Exp. 2 and 3, the gas production, pH, and fermentation products (ammonia, SCFAs, and BCFAs) were assessed. YCW-30 resulted in a higher digestibility coefficient of the crude protein, organic matter (OM) (p < 0.05), and energy of the diet (p < 0.10). Regarding the fermentation products, YCW-15 showed a trend toward higher concentrations of propionate, acetate, lactate, ammonia, isobutyrate, and valerate, while YCW-30 showed a trend (p < 0.10) toward higher levels of butyrate and pH values. The bacteroidia class and the genus Prevotella were increased by using YCW-30 and the control. At the gender level, decreased (p < 0.01) Megasphaera was observed with YCW inclusion. The microbiota differed (p < 0.01) among the groups in their Shannon indexes. For beta diversity, YCW-30 showed higher indexes (p = 0.008) than the control. The microbiota metabolic profile differed in the pathway CENTFERM-PWY; it was more expressed in YCW-30 compared to the control. In Exp. 2, the YCWs showed a higher ratio (p = 0.006) of the fermentation products in the treatments with additives with a trend towards a high dose of the additive (10 mg). In Exp. 3, the effects of the substrates (p < 0.001), but not of the YCWs, on the fermentation products were observed, perhaps due to the low dietary concentrations we used. However, the marked responses of the fermentation products to the substrates validated the methodology. We could conclude that the YCWs, even at low dietary concentrations, affected fecal SCFA production, reduced the fecal pH, and modulated the fecal microbiota in the cats. These responses were more pronounced under in vitro conditions.
Collapse
Affiliation(s)
- Fernando González
- Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of São Paulo (USP)—São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 13690-970, Brazil
| | - Amanda Carelli
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Alina Komarcheuski
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Mayara Uana
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Rodolpho Martin do Prado
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Diogo Rossoni
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Márcia Gomes
- Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of São Paulo (USP)—São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 13690-970, Brazil
| | - Ricardo Vasconcellos
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| |
Collapse
|
45
|
Shah AM, Bano I, Qazi IH, Matra M, Wanapat M. "The Yak"-A remarkable animal living in a harsh environment: An overview of its feeding, growth, production performance, and contribution to food security. Front Vet Sci 2023; 10:1086985. [PMID: 36814466 PMCID: PMC9940766 DOI: 10.3389/fvets.2023.1086985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Yaks play an important role in the livelihood of the people of the Qinghai-Tibet Plateau (QTP) and contribute significantly to the economy of the different countries in the region. Yaks are commonly raised at high altitudes of ~ 3,000-5,400 m above sea level. They provide many important products, namely, milk, meat, fur, and manure, as well as social status, etc. Yaks were domesticated from wild yaks and are present in the remote mountains of the QTP region. In the summer season, when a higher quantity of pasture is available in the mountain region, yaks use their long tongues to graze the pasture and spend ~ 30-80% of their daytime grazing. The remaining time is spent walking, resting, and doing other activities. In the winter season, due to heavy snowfall in the mountains, pasture is scarce, and yaks face feeding issues due to pasture scarcity. Hence, the normal body weight of yaks is affected and growth retardation occurs, which consequently affects their production performance. In this review article, we have discussed the domestication of yaks, the feeding pattern of yaks, the difference between the normal and growth-retarded yaks, and also their microbial community and their influences. In addition, blood biochemistry, the compositions of the yaks' milk and meat, and reproduction are reported herein. Evidence suggested that yaks play an important role in the daily life of the people living on the QTP, who consume milk, meat, fur, use manure for fuel and land fertilizer purposes, and use the animals for transportation. Yaks' close association with the people's well-being and livelihood has been significant.
Collapse
Affiliation(s)
- Ali Mujtaba Shah
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand,Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Iqra Bano
- Department of Veterinary Physiology and Biochemistry, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Izhar Hyder Qazi
- Department of Veterinary Anatomy, Histology, and Embryology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand,*Correspondence: Metha Wanapat ✉
| |
Collapse
|
46
|
Sánchez-Tirado E, Agüí L, González-Cortés A, Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical (Bio)Sensing Devices for Human-Microbiome-Related Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:837. [PMID: 36679633 PMCID: PMC9864681 DOI: 10.3390/s23020837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The study of the human microbiome is a multidisciplinary area ranging from the field of technology to that of personalized medicine. The possibility of using microbiota biomarkers to improve the diagnosis and monitoring of diseases (e.g., cancer), health conditions (e.g., obesity) or relevant processes (e.g., aging) has raised great expectations, also in the field of bioelectroanalytical chemistry. The well-known advantages of electrochemical biosensors-high sensitivity, fast response, and the possibility of miniaturization, together with the potential for new nanomaterials to improve their design and performance-position them as unique tools to provide a better understanding of the entities of the human microbiome and raise the prospect of huge and important developments in the coming years. This review article compiles recent applications of electrochemical (bio)sensors for monitoring microbial metabolites and disease biomarkers related to different types of human microbiome, with a special focus on the gastrointestinal microbiome. Examples of electrochemical devices applied to real samples are critically discussed, as well as challenges to be faced and where future developments are expected to go.
Collapse
Affiliation(s)
| | | | | | | | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
47
|
Wellington MO, Hulshof TG, Ernst K, Balemans A, Page GI, Van Hees HMJ. Impact of L-Arginine and L-Glutamine supplementation on growth performance and immune status in weanling pigs challenged with Escherichia coli F4. J Anim Sci 2023; 101:skad138. [PMID: 37140541 PMCID: PMC10243967 DOI: 10.1093/jas/skad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
Arginine (ARG) and Glutamine (GLN) have been reported to play significant roles in protein metabolism, immunity, and intestinal health in weanling pigs. The present study investigated the independent and interactive effect of supplementing ARG and GLN on pigs immune status and growth performance following an Escherichia coli F4 challenge. A total of 240 mixed-sex pigs (24 ± 2 d old; 7.3 ± 0.1 kg BW) were used in a 42-d experiment after selection for E. coli F4 susceptibility. The pigs were group-housed (3 pigs per pen), and pens were randomly assigned to five experimental treatments (N = 16 pens per treatment). Experimental treatments were: 1) a wheat-barley-soybean meal-based basal diet (CTRL), 2) a basal diet with 2500 mg/kg zinc oxide (ZnO), 3) a basal diet + 0.5% Glutamine (0.5% GLN), 4) basal diet + 0.5% Arginine (0.5% ARG), and 5) basal diet with 0.5% Glutamine + 0.5% Arginine (0.5% GLN + ARG). All Pigs were inoculated with E. coli F4 on days 7, 8, and 9 post-weaning. Rectal swabs were taken from each pig and plated on blood agar plates for E. coli F4 presence. Blood and fecal samples were taken to determine the acute phase response and selected fecal biomarkers for the immune response. Growth performance and fecal scores were recorded. Fecal swabs resulted in no positive pig for E. coli F4 before inoculation and 73.3% positive postinoculation. Diarrhea incidence during days 7 to 14 was significantly lower for the ZnO treatment (P < 0.05). The haptoglobin level on day 3 was lower than days 10 and 20, irrespective of treatment (P < 0.05). The albumin level was lower on day 20 compared to days 3 and 10 (P < 0.05). There was no treatment effect on albumin levels regardless of sampling day (P > 0.05). The PigMAP was lowest on day 3 and highest on day 10 (P < 0.05). We did not observe significant treatment differences (P > 0.05) in myeloperoxidase and calprotectin. Pancreatitis-associated protein was higher in the ZnO (P = 0.001) treatment than in the other treatments. Fecal IgA tended (P = 0.10) to be higher in the ZnO and 0.5% ARG treatments. There were no performance differences, except during days 0 to 7, where the ZnO treatment was lower in average daily gain and average daily feed intake (P < 0.001), while feed efficiency (G:F) FE was similar across treatments. In summary, no improved performance was observed with either ARG, glutamate, or both. The immune response results showed that the E. coli F4 challenge may have exacerbated the acute phase response; hence, the benefits of dietary treatments did not go beyond immune repair and reduction in inflammation.
Collapse
Affiliation(s)
- Michael O Wellington
- Swine Research Centre, Trouw Nutrition R&D, Veerstraat 38, 5831JNBoxmeer, The Netherlands
| | - Tetske G Hulshof
- Swine Research Centre, Trouw Nutrition R&D, Veerstraat 38, 5831JNBoxmeer, The Netherlands
| | - Kristi Ernst
- Swine Research Centre, Trouw Nutrition R&D, Veerstraat 38, 5831JNBoxmeer, The Netherlands
| | - Anke Balemans
- Swine Research Centre, Trouw Nutrition R&D, Veerstraat 38, 5831JNBoxmeer, The Netherlands
| | - Greg I Page
- Swine Research Centre, Trouw Nutrition R&D, Veerstraat 38, 5831JNBoxmeer, The Netherlands
| | - Hubèrt M J Van Hees
- Swine Research Centre, Trouw Nutrition R&D, Veerstraat 38, 5831JNBoxmeer, The Netherlands
| |
Collapse
|
48
|
José Karpeggiane de Oliveira M, Diego Brandão Melo A, Alves Marçal D, Alves da Cunha Valini G, Alisson Silva C, Mari Veira A, Zem Fraga A, Righetti Arnaut P, Henrique Reis Furtado Campos P, Sousa dos Santos L, Khun Kyaw Htoo J, Gastmann Brand H, Hauschild L. Effects of lowering dietary protein content without or with increased protein-bound and feed-grade amino acids supply on growth performance, body composition, metabolism, and acute-phase protein of finishing pigs under daily cyclic heat stress. J Anim Sci 2023; 101:skac387. [PMID: 36420675 PMCID: PMC9833036 DOI: 10.1093/jas/skac387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effects of a low-protein diet with or without an increase in dietary protein and feed-grade amino acids (AAs) on the growth performance, body composition, metabolism, and serum acute-phase proteins of finishing pigs reared in thermoneutrality or cyclic heat stress conditions. A total of 90 gilts (67.7 ± 6.2 kg) were distributed in a 2 × 3 factorial arrangement (two ambient temperatures and three diets). Ambient temperatures (AT) were thermoneutral (TN, 22 °C for 24 h) and cyclic heat stress (CHS, 12 h to 35 °C and 12 h to 22 °C). The evaluated diets (D) were high crude protein (HP); low CP-free AA-supplemented diets (LPAAs); low CP-free AA-supplemented diets and digestible Lys level (+20%), and Lys:AA ratios above recommendations (LPAA+). The experimental period lasted 48 d (two experimental phases: days 0-27 and days 28-48, respectively). CHS pigs had higher skin temperature (P < 0.05) than TN pigs. Pigs in CHS had higher rectal temperature (P < 0.05) than TN pigs until day 38 but similar (P > 0.10) to TN pigs from 38 to 45 d. For the entire experiment, CHS pigs had lower (P < 0.05) final BW, average daily gain and daily feed intake, net energy intake, body lipid, bone mineral, lipid deposition, energy retention, Lys and CP intake, and nitrogen excretion than TN pigs. The level of CP intake impacted nitrogen excretion, nitrogen retention efficiency, and urea as pigs fed HP had the highest values, and pigs fed LPAA had the lowest values (P < 0.05). On day 27, CHS pigs had lower (P < 0.05) free triiodothyronine than TN pigs. LPAA+ pigs had lower (P < 0.05) insulin than LPAA. On day 48, CHS pigs had lower (P < 0.05) thyroxine, albumin, and lactate than TN pigs. On day 27, pigs fed LPAA+ had higher (P < 0.05) lactate than pigs fed HP or LPAA. Both AT and D were enough to stimulate the immune system as CHS pigs had lower (P < 0.05) transferrin and 23-kDa protein levels than TN pigs, and HP pigs had higher haptoglobin than LPAA on day 27. These results confirm the deleterious effects of high AT on performance, body composition, metabolism, and immune system stimulation in finishing pigs. These data also show that a diet with low levels of CP can be provided to pigs in CHS without affecting performance and body composition while reducing nitrogen excretion. However, the use of a diet with an AA level above the requirements obtained by increasing intact protein and free AA did not attenuate the impact of CHS on performance and body composition of pigs.
Collapse
Affiliation(s)
- Marllon José Karpeggiane de Oliveira
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Antonio Diego Brandão Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Danilo Alves Marçal
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Graziela Alves da Cunha Valini
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Cleslei Alisson Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Alini Mari Veira
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Alícia Zem Fraga
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Pedro Righetti Arnaut
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | | | - Luan Sousa dos Santos
- Department of Animal Nutrition and Pastures, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | | | - Luciano Hauschild
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
49
|
Tanghe S, De Vos M, Degroote J, Lannoo K, Vande Ginste J, D'Inca R, Michiels J. Araceae root and citrus fibers tend to decrease Escherichia coli adhesion and myeloperoxidase levels in weaned piglets. Front Vet Sci 2023; 10:1111639. [PMID: 37187931 PMCID: PMC10175662 DOI: 10.3389/fvets.2023.1111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Weaning is a stressful experience in the piglet's life, and it often coincides with impaired gut health. Post-weaning diarrhea in piglets is frequently caused by enterotoxigenic Escherichia coli (E. coli). The first step of an E. coli infection is the adhesion to host-specific receptors present on enterocytes, leading to pro-inflammatory immune responses. The aim of this study was to examine if specific fiber fractions in the piglet diet can prevent E. coli adhesion and subsequent immune responses. Methods The trial included 200 piglets (Danbred × Piétrain): 10 piglets/pen × 10 pens/dietary treatment × 2 dietary treatments. From weaning until 14 days (d14) post-weaning, piglets were fed a control diet or test diet with 2 kg/ton of a mixture of specific fiber fractions derived from Araceae root and citrus. Afterwards, 1 piglet per pen was euthanized, a section was taken at 75% of small intestinal length and E. coli colonization on the mucosal epithelium was quantified by scraping and conventional plating. From the same small intestinal section, histo-morphological indices were assessed, and mucosal scrapings were analyzed for gene expression of pro- and anti-inflammatory cytokines, and NF-kB. Analyses of specific intestinal bacteria and SCFA were performed on samples of intestinal content (small intestine, caecum, colon). Fecal samples were taken to measure myeloperoxidase (MPO), calprotectin and PAP/RAG3A as biomarkers for intestinal inflammation. Results and discussion Piglets fed the fiber mixture tended to have decreased E. coli colonization to the mucosal epithelium (5.65 vs. 4.84 log10 CFU/g; P = 0.07), less E. coli in the caecum (8.91 vs. 7.72 log10 CFU/g; P = 0.03) and more Lachnospiraceae in the colon (11.3 vs. 11.6 log10 CFU/g; P = 0.03). Additionally, the fiber mixture tended to increase cecal butyric acid (10.4 vs. 19.1 mmol/kg; P = 0.07). No significant effect on histo-morphological indices and on gene expression of pro- and anti-inflammatory cytokines and NF-kB was observed. The fecal MPO concentration tended to decrease (20.2 vs. 10.4 ng/g; P = 0.07), indicating less intestinal inflammation. In conclusion, this study showed that specific fiber fractions from Araceae root and citrus in piglet weaner diets may decrease the risk of pathogen overgrowth by reducing E. coli adhesion and intestinal inflammation.
Collapse
Affiliation(s)
- Sofie Tanghe
- Nutrition Sciences N.V., Drongen, Belgium
- *Correspondence: Sofie Tanghe
| | | | - Jeroen Degroote
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Gajęcka M, Zielonka Ł, Babuchowski A, Gajęcki MT. Exposure to Low Zearalenone Doses and Changes in the Homeostasis and Concentrations of Endogenous Hormones in Selected Steroid-Sensitive Tissues in Pre-Pubertal Gilts. Toxins (Basel) 2022; 14:toxins14110790. [PMID: 36422963 PMCID: PMC9692984 DOI: 10.3390/toxins14110790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study was undertaken to analyze whether prolonged exposure to low-dose zearalenone (ZEN) mycotoxicosis affects the concentrations of ZEN, α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL) in selected reproductive system tissues (ovaries, uterine horn-ovarian and uterine sections, and the middle part of the cervix), the hypothalamus, and pituitary gland, or the concentrations of selected steroid hormones in pre-pubertal gilts. For 42 days, gilts were administered per os different ZEN doses (MABEL dose [5 µg/kg BW], the highest NOAEL dose [10 µg/kg BW], and the lowest LOAEL dose [15 µg/kg BW]). Tissue samples were collected on days seven, twenty-one, and forty-two of exposure to ZEN (exposure days D1, D2, and D3, respectively). Blood for the analyses of estradiol and progesterone concentrations was collected in vivo on six dates at seven-day intervals (on analytical dates D1-D6). The analyses revealed that both ZEN and its metabolites were accumulated in the examined tissues. On successive analytical dates, the rate of mycotoxin accumulation in the studied tissues decreased gradually by 50% and proportionally to the administered ZEN dose. A hierarchical visualization revealed that values of the carry-over factor (CF) were highest on exposure day D2. In most groups and on most exposure days, the highest CF values were found in the middle part of the cervix, followed by the ovaries, both sections of the uterine horn, and the hypothalamus. These results suggest that ZEN, α-ZEL, and β-ZEL were deposited in all analyzed tissues despite exposure to very low ZEN doses. The presence of these undesirable compounds in the examined tissues can inhibit the somatic development of the reproductive system and compromise neuroendocrine coordination of reproductive competence in pre-pubertal gilts.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
- Correspondence:
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Andrzej Babuchowski
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland
| | - Maciej Tadeusz Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| |
Collapse
|