1
|
Xie R, Vlaski T, Sha S, Brenner H, Schöttker B. Sex-specific proteomic signatures improve cardiovascular risk prediction for the general population without cardiovascular disease or diabetes. J Adv Res 2025:S2090-1232(25)00194-8. [PMID: 40154735 DOI: 10.1016/j.jare.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
INTRODUCTION Accurate prediction of 10-year major adverse cardiovascular events (MACE) is critical for effective disease prevention and management. Although the SCORE2 model introduced sex-specific algorithms, opportunities remain to further refine prediction. OBJECTIVES To evaluate whether adding sex-specific proteomic profiles to the SCORE2 model enhances 10-year MACE risk prediction in the large UK Biobank (UKB) cohort. METHODS Data from 47,382 UKB participants, aged 40 to 69 years without prior cardiovascular disease or diabetes, were utilized. Proteomic profiling of plasma samples was conducted using the Olink Explore 3072 platform, measuring 2,923 unique proteins, of which 2,085 could be used. Sex-specific Least Absolute Shrinkage and Selection Operator (LASSO) regression was used for biomarker selection. Model performance was assessed by changes in Harrell's C-index (a measure of discrimination), net reclassification index (NRI), and integrated discrimination index (IDI). RESULTS During 10-year follow-up, 2,163 participants experienced MACE. Overall, 18 proteins were selected by LASSO regression, with 5 of them identified in both sexes, 7 only in males, and 6 only in females. Incorporating these proteins significantly improved the C-index of the SCORE2 model from 0.713 to 0.778 (P < 0.001) in the total population. The improvement was greater in males (C-index increase from 0.684 to 0.771; Δ = +0.087) than in females (from 0.720 to 0.769; Δ = +0.049). The WAP four-disulfide core domain protein (WFDC2) and the growth/differentiation factor 15 (GDF15) were the proteins contributing the strongest C-index increase in both sexes, even more than the N-terminal prohormone of brain natriuretic peptide (NTproBNP). CONCLUSION The derived sex-specific 10-year MACE risk prediction models, combining 12 protein concentrations among men and 11 protein concentrations among women with the SCORE2 model, significantly improved the discriminative abilities of the SCORE2 model. This study shows the potential of sex-specific proteomic profiles for enhanced cardiovascular risk stratification and personalized prevention strategies.
Collapse
Affiliation(s)
- Ruijie Xie
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Faculty of Medicine, Heidelberg University, 69115 Heidelberg, Germany
| | - Tomislav Vlaski
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Faculty of Medicine, Heidelberg University, 69115 Heidelberg, Germany
| | - Sha Sha
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Liu T, Chen Y, Hou L, Yu Y, Ma D, Jiang T, Zhao G. Immune cell-mediated features of atherosclerosis. Front Cardiovasc Med 2024; 11:1450737. [PMID: 39234608 PMCID: PMC11371689 DOI: 10.3389/fcvm.2024.1450737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by innate and adaptive immune responses, which seriously threatens human life and health. It is a primary cause of coronary heart disease, myocardial infarction, and peripheral vascular disease. Research has demonstrated that immune cells are fundamental to the development of atherosclerosis and chronic inflammation. Therefore, it is anticipated that immunotherapy targeting immune cells will be a novel technique in the management of atherosclerosis. This article reviews the growth of research on the regulatory role of immune cells in atherosclerosis and targeted therapy approaches. The purpose is to offer new therapeutic approaches for the control and treatment of cardiovascular illnesses caused by atherosclerosis.
Collapse
Affiliation(s)
- Tingting Liu
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yanjun Chen
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lianjie Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yulu Yu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dan Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
3
|
Ishiguro T, Furukawa H, Polen K, Take Y, Sato H, Kudo D, Morgan J, Uchikawa H, Maeda T, Cisneros O, Rahmani R, Ai J, Eguchi S, Lawton M, Hashimoto T. Pharmacological Inhibition of Epidermal Growth Factor Receptor Prevents Intracranial Aneurysm Rupture by Reducing Endoplasmic Reticulum Stress. Hypertension 2024; 81:572-581. [PMID: 38164754 PMCID: PMC10922815 DOI: 10.1161/hypertensionaha.123.21235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Multiple pathways and factors are involved in the rupture of intracranial aneurysms. The EGFR (epidermal growth factor receptor) has been shown to mediate inflammatory vascular diseases, including atherosclerosis and aortic aneurysm. However, the role of EGFR in mediating intracranial aneurysm rupture and its underlying mechanisms have yet to be determined. Emerging evidence indicates that endoplasmic reticulum (ER) stress might be the link between EGFR activation and the resultant inflammation. ER stress is strongly implicated in inflammation and apoptosis of vascular smooth muscle cells, both of which are key components of the pathophysiology of aneurysm rupture. Therefore, we hypothesized that EGFR activation promotes aneurysmal rupture by inducing ER stress. METHODS Using a preclinical mouse model of intracranial aneurysm, we examined the potential roles of EGFR and ER stress in developing aneurysmal rupture. RESULTS Pharmacological inhibition of EGFR markedly decreased the rupture rate of intracranial aneurysms without altering the formation rate. EGFR inhibition also significantly reduced the mRNA (messenger RNA) expression levels of ER-stress markers and inflammatory cytokines in cerebral arteries. Similarly, ER-stress inhibition also significantly decreased the rupture rate. In contrast, ER-stress induction nullified the protective effect of EGFR inhibition on aneurysm rupture. CONCLUSIONS Our data suggest that EGFR activation is an upstream event that contributes to aneurysm rupture via the induction of ER stress. Pharmacological inhibition of EGFR or downstream ER stress may be a promising therapeutic strategy for preventing aneurysm rupture and subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Taichi Ishiguro
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Hajime Furukawa
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Kyle Polen
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Yushiro Take
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Hiroki Sato
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Daisuke Kudo
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Jordan Morgan
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Hiroki Uchikawa
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Takuma Maeda
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Oscar Cisneros
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Redi Rahmani
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Jinglu Ai
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, U.S.A
| | - Michael Lawton
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Tomoki Hashimoto
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| |
Collapse
|
4
|
Hu Z. Exploring the mechanism of curcumin in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and molecular docking technology. Medicine (Baltimore) 2024; 103:e36593. [PMID: 38363942 PMCID: PMC10869047 DOI: 10.1097/md.0000000000036593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 02/18/2024] Open
Abstract
Doxorubicin (DOX) is one of the most effective chemotherapeutic agents. However, the nonselective effect leads to serious cardiotoxicity risk in clinical use. Curcumin is a well-known dietary polyphenol that showed a protective effect against the cardiotoxic effect of DOX. This study aimed to assess the role of curcumin in protection against DOX-induced cardiotoxicity. Potential compound and disease targets were obtained from relevant databases, and common targets were screened. Protein-protein interaction (PPI) was used to predict the core targets. Gene ontology (GO) bioprocess analysis and Kyoto encyclopedia of genes and genome enrichment analysis enriched the possible biological processes (BP), cellular components, molecular function, and signaling pathways involved. Finally, the binding of curcumin to target proteins was evaluated through molecular docking. The docking score verified the reliability of the prediction results. In total, 205 curcumin and 700 disease targets were identified. A topological analysis of the PPI network revealed 10 core targets including TP53, tumor necrosis factor-alpha (TNF), AKT1, vascular endothelial growth factor A (VEGFA), prostaglandin-endoperoxide synthase 2 (PTGS2), signal transducer and activator of the transcription 3 (STAT3), HIF1A, MYC, epidermal growth factor receptor (EGFR), and CASP3 (Caspase-3). Furthermore, the enrichment analyses indicated that the effects of curcumin were mediated by genes related to oxidation, inflammation, toxification, cell proliferation, migration, apoptosis, wounding, metabolism, proteolysis, and the signaling pathway of calcium (Ca2+). Molecular docking showed that curcumin could bind with the target proteins with strong molecular force, exhibiting good docking activity. Curcumin has a multi-cardioprotective effect by modulating the core targets' expression in DOX-induced cardiotoxicity. This study elucidated the key target proteins and provided a theoretical basis for further exploring curcumin in the prevention and treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhen Hu
- Department of Electrocardiography, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
5
|
Noh SS, Shin HJ. Role of Virus-Induced EGFR Trafficking in Proviral Functions. Biomolecules 2023; 13:1766. [PMID: 38136637 PMCID: PMC10741569 DOI: 10.3390/biom13121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since its discovery in the early 1980s, the epidermal growth factor receptor (EGFR) has emerged as a pivotal and multifaceted player in elucidating the intricate mechanisms underlying various human diseases and their associations with cell survival, proliferation, and cellular homeostasis. Recent advancements in research have underscored the profound and multifaceted role of EGFR in viral infections, highlighting its involvement in viral entry, replication, and the subversion of host immune responses. In this regard, the importance of EGFR trafficking has also been highlighted in recent studies. The dynamic relocation of EGFR to diverse intracellular organelles, including endosomes, lysosomes, mitochondria, and even the nucleus, is a central feature of its functionality in diverse contexts. This dynamic intracellular trafficking is not merely a passive process but an orchestrated symphony, facilitating EGFR involvement in various cellular pathways and interactions with viral components. Furthermore, EGFR, which is initially anchored on the plasma membrane, serves as a linchpin orchestrating viral entry processes, a crucial early step in the viral life cycle. The role of EGFR in this context is highly context-dependent and varies among viruses. Here, we present a comprehensive summary of the current state of knowledge regarding the intricate interactions between EGFR and viruses. These interactions are fundamental for successful propagation of a wide array of viral species and affect viral pathogenesis and host responses. Understanding EGFR significance in both normal cellular processes and viral infections may not only help develop innovative antiviral therapies but also provide a deeper understanding of the intricate roles of EGFR signaling in infectious diseases.
Collapse
Affiliation(s)
- Se Sil Noh
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye Jin Shin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Gekle M, Dubourg V, Schwerdt G, Benndorf RA, Schreier B. The role of EGFR in vascular AT1R signaling: From cellular mechanisms to systemic relevance. Biochem Pharmacol 2023; 217:115837. [PMID: 37777161 DOI: 10.1016/j.bcp.2023.115837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| |
Collapse
|
7
|
Lin GB, Chen WT, Kuo YY, Chen YM, Liu HH, Chao CY. Protection of high-frequency low-intensity pulsed electric fields and brain-derived neurotrophic factor for SH-SY5Y cells against hydrogen peroxide-induced cell damage. Medicine (Baltimore) 2023; 102:e34460. [PMID: 37543811 PMCID: PMC10403004 DOI: 10.1097/md.0000000000034460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 08/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) pose a significant global health threat. In particular, Alzheimer disease, the most common type causing dementia, remains an incurable disease. Alzheimer disease is thought to be associated with an imbalance of reactive oxygen species (ROS) in neurons, and scientists considered ROS modulation as a promising strategy for novel remedies. In the study, human neural cell line SH-SY5Y was used in probing the effect of combining noninvasive high-frequency low-intensity pulsed electric field (H-LIPEF) and brain-derived neurotrophic factor (BDNF) in protection against hydrogen peroxide (H2O2)-induced neuron damage. Our result finds that the combination approach has intensified the neuroprotective effect significantly, perhaps due to H-LIPEF and BDNF synergistically increasing the expression level of the phosphorylated epidermal growth factor receptor (p-EGFR), which induces the survival-related mitogen-activated protein kinases (MAPK) proteins. The study confirmed the activation of extracellular signal-regulated kinase (ERK) and the downstream pro-survival and antioxidant proteins as the mechanism underlying neuron protection. These findings highlighted the potential of H-LIPEF combined with BDNF in the treatment of NDDs. Furthermore, BDNF-mimetic drugs combining with noninvasive H-LIPEF to patients is a promising approach worthy of further research. This points to strategies for selecting drugs to cooperate with electric fields in treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Guan-Bo Lin
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Ting Chen
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Yi Kuo
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - You-Ming Chen
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei, Taiwan
| | - Hsu-Hsiang Liu
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Chao
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Maas SL, Donners MMPC, van der Vorst EPC. ADAM10 and ADAM17, Major Regulators of Chronic Kidney Disease Induced Atherosclerosis? Int J Mol Sci 2023; 24:ijms24087309. [PMID: 37108478 PMCID: PMC10139114 DOI: 10.3390/ijms24087309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major health problem, affecting millions of people worldwide, in particular hypertensive and diabetic patients. CKD patients suffer from significantly increased cardiovascular disease (CVD) morbidity and mortality, mainly due to accelerated atherosclerosis development. Indeed, CKD not only affects the kidneys, in which injury and maladaptive repair processes lead to local inflammation and fibrosis, but also causes systemic inflammation and altered mineral bone metabolism leading to vascular dysfunction, calcification, and thus, accelerated atherosclerosis. Although CKD and CVD individually have been extensively studied, relatively little research has studied the link between both diseases. This narrative review focuses on the role of a disintegrin and metalloproteases (ADAM) 10 and ADAM17 in CKD and CVD and will for the first time shed light on their role in CKD-induced CVD. By cleaving cell surface molecules, these enzymes regulate not only cellular sensitivity to their micro-environment (in case of receptor cleavage), but also release soluble ectodomains that can exert agonistic or antagonistic functions, both locally and systemically. Although the cell-specific roles of ADAM10 and ADAM17 in CVD, and to a lesser extent in CKD, have been explored, their impact on CKD-induced CVD is likely, yet remains to be elucidated.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
9
|
Baumer Y, Pita M, Baez A, Ortiz-Whittingham L, Cintron M, Rose R, Gray V, Osei Baah F, Powell-Wiley T. By what molecular mechanisms do social determinants impact cardiometabolic risk? Clin Sci (Lond) 2023; 137:469-494. [PMID: 36960908 PMCID: PMC10039705 DOI: 10.1042/cs20220304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
While it is well known from numerous epidemiologic investigations that social determinants (socioeconomic, environmental, and psychosocial factors exposed to over the life-course) can dramatically impact cardiovascular health, the molecular mechanisms by which social determinants lead to poor cardiometabolic outcomes are not well understood. This review comprehensively summarizes a variety of current topics surrounding the biological effects of adverse social determinants (i.e., the biology of adversity), linking translational and laboratory studies with epidemiologic findings. With a strong focus on the biological effects of chronic stress, we highlight an array of studies on molecular and immunological signaling in the context of social determinants of health (SDoH). The main topics covered include biomarkers of sympathetic nervous system and hypothalamic-pituitary-adrenal axis activation, and the role of inflammation in the biology of adversity focusing on glucocorticoid resistance and key inflammatory cytokines linked to psychosocial and environmental stressors (PSES). We then further discuss the effect of SDoH on immune cell distribution and characterization by subset, receptor expression, and function. Lastly, we describe epigenetic regulation of the chronic stress response and effects of SDoH on telomere length and aging. Ultimately, we highlight critical knowledge gaps for future research as we strive to develop more targeted interventions that account for SDoH to improve cardiometabolic health for at-risk, vulnerable populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rebecca R. Rose
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Veronica C. Gray
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
10
|
Alan E, Liman N, Sağsöz H. Epidermal growth factor receptors and their ligands are expressed in the spleen of the Japanese Quail ( Coturnix coturnix japonica) during the post-hatch period. Br Poult Sci 2023; 64:81-89. [PMID: 36083170 DOI: 10.1080/00071668.2022.2121912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The epidermal growth factor (EGF) family plays an important role in the development, differentiation, migration and apoptosis of cells, as well as in wound healing, which are all essential to the viability of multicellular organisms. The avian spleen is a principal organ of systemic immunity and its importance in disease resistance is presumably accentuated by the scarcity of avian lymph nodes.2. The aim of this study was to determine whether EGF receptors (ErbB1-4) and their ligands (EGF, AREG and NRG) are expressed in the structural components of the quail spleen during the post-hatch period. At each selected age, from 1 d to 7, 14, 21 and 60 d, 10 quails were euthanised under ether anaesthesia and their spleens were fixed in a 10% formaldehyde-alcohol solution. Following routine histological processing, the streptavidin-biotin-peroxidase method was used for immunohistochemical examination.3. Strong cytoplasmic immunoreactions for ErbB2, ErbB4 and NRG were observed in the ellipsoid associated cells (EAC) of the quail spleen throughout the post-hatch period. This immunoreactivity in the EAC increased after the 7th d post-hatch. ErbB1 and ErbB3 immunoreactions were relatively similar and weak in all components of the spleen during the post-hatch period. Some immune cells of the peri-arterial lymphatic sheath (PALS) and peri-ellipsoidal lymphatic sheath (PELS) showed positive immunoreactivity for the ErbB receptors and their ligands. In the vascular smooth muscle cells, immunoreactivity for ErbB2 was stronger than that for the other ErbB receptors and their ligands.4. The data showed that ErbB receptors and their ligands (EGF, AREG and NRG) are expressed by different structural components of the quail spleen during the post-hatch period.
Collapse
Affiliation(s)
- E Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - N Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - H Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
11
|
Chen J, Xiang X, Nie L, Guo X, Zhang F, Wen C, Xia Y, Mao L. The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front Immunol 2023; 13:1079668. [PMID: 36685487 PMCID: PMC9849744 DOI: 10.3389/fimmu.2022.1079668] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease of the large and medium-sized artery walls. The molecular mechanisms regulating the onset and progression of atherosclerosis remain unclear. T cells, one of the most common immune cell types in atherosclerotic plaques, are increasingly recognized as a key mediator in the pathogenesis of atherosclerosis. Th1 cells are a subset of CD4+ T helper cells of the adaptive immune system, characterized by the expression of the transcription factor T-bet and secretion of cytokines such as IFN-γ. Converging evidence shows that Th1 cells play a key role in the onset and progression of atherosclerosis. Besides, Th1 is the central mediator to orchestrate the adaptive immune system. In this review, we aim to summarize the complex role of Th1 cells in atherosclerosis and propose novel preventative and therapeutic approaches targeting Th1 cell-associated specific cytokines and receptors to prevent atherogenesis.
Collapse
Affiliation(s)
| | | | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
12
|
Florentin J, Zhao J, Tai YY, Sun W, Ohayon LL, O'Neil SP, Arunkumar A, Zhang X, Zhu J, Al Aaraj Y, Watson A, Sembrat J, Rojas M, Chan SY, Dutta P. Loss of Amphiregulin drives inflammation and endothelial apoptosis in pulmonary hypertension. Life Sci Alliance 2022; 5:5/11/e202101264. [PMID: 35732465 PMCID: PMC9218345 DOI: 10.26508/lsa.202101264] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension (PH) is a vascular disease characterized by elevated pulmonary arterial pressure, leading to right ventricular failure and death. Pathogenic features of PH include endothelial apoptosis and vascular inflammation, which drive vascular remodeling and increased pulmonary arterial pressure. Re-analysis of the whole transcriptome sequencing comparing human pulmonary arterial endothelial cells (PAECs) isolated from PH and control patients identified AREG, which encodes Amphiregulin, as a key endothelial survival factor. PAECs from PH patients and mice exhibited down-regulation of AREG and its receptor epidermal growth factor receptor (EGFR). Moreover, the deficiency of AREG and EGFR in ECs in vivo and in vitro heightened inflammatory leukocyte recruitment, cytokine production, and endothelial apoptosis, as well as diminished angiogenesis. Correspondingly, hypoxic mice lacking Egfr in ECs (cdh5 cre/+ Egfr fl/fl) displayed elevated RVSP and pulmonary remodeling. Computational analysis identified NCOA6, PHB2, and RRP1B as putative genes regulating AREG in endothelial cells. The master transcription factor of hypoxia HIF-1⍺ binds to the promoter regions of these genes and up-regulates their expression in hypoxia. Silencing of these genes in cultured PAECs decreased inflammation and apoptosis, and increased angiogenesis in hypoxic conditions. Our pathway analysis and gene silencing experiments revealed that BCL2-associated agonist of cell death (BAD) is a downstream mediator of AREG BAD silencing in ECs lacking AREG mitigated inflammation and apoptosis, and suppressed tube formation. In conclusion, loss of Amphiregulin and its receptor EGFR in PH is a crucial step in the pathogenesis of PH, promoting pulmonary endothelial cell death, influx of inflammatory myeloid cells, and vascular remodeling.
Collapse
Affiliation(s)
- Jonathan Florentin
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yi-Yin Tai
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wei Sun
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lee L Ohayon
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Scott P O'Neil
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anagha Arunkumar
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xinyi Zhang
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jianhui Zhu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Annie Watson
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Partha Dutta
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Guner S, Akhayeva T, Nichols CD, Gurdal H. The Ca2+/CaM, Src kinase and/or PI3K-dependent EGFR transactivation via 5-HT2A and 5-HT1B receptor subtypes mediates 5-HT-induced vasoconstriction. Biochem Pharmacol 2022; 206:115317. [DOI: 10.1016/j.bcp.2022.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022]
|
14
|
Wooldridge LK, Keane JA, Rhoads ML, Ealy AD. Bioactive supplements influencing bovine in vitro embryo development. J Anim Sci 2022; 100:6620796. [PMID: 35772761 DOI: 10.1093/jas/skac091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Ovum pickup and in vitro production (IVP) of bovine embryos are replacing traditional multiple ovulation embryo transfer (MOET) as the primary means for generating transferable embryos from genetically elite sires and dams. However, inefficiencies in the IVP process limit the opportunities to produce large numbers of transferable embryos. Also, the post-transfer competency of IVP embryos is inferior to embryos produced by artificial insemination or MOET. Numerous maternal, paternal, embryonic, and culture-related factors can have adverse effects on IVP success. This review will explore the various efforts made on describing how IVP embryo development and post-transfer competency may be improved by supplementing hormones, growth factors, cytokines, steroids and other bioactive factors found in the oviduct and uterus during early pregnancy. More than 40 of these factors, collectively termed as embryokines, are reviewed here. Several embryokines contain abilities to promote embryo development, including improving embryo survivability, improving blastomere cell numbers, and altering the distribution of blastomere cell types in blastocysts. A select few embryokines also can benefit pregnancy retention after IVP embryo transfer and improve neonatal calf health and performance, although very few embryokine-supplemented embryo transfer studies have been completed. Also, supplementing several embryokines at the same time holds promise for improving IVP embryo development and competency. However, more work is needed to explore the post-transfer consequences of adding these putative embryokines for any adverse outcomes, such as large offspring syndrome and poor postnatal health, and to specify the specific embryokine combinations that will best represent the ideal conditions found in the oviduct and uterus.
Collapse
Affiliation(s)
- Lydia K Wooldridge
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jessica A Keane
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michelle L Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
15
|
Ferreira AS, Lopacinski A, Batista M, Hiraiwa PM, Guimarães BG, Zanchin NIT. A toolkit for recombinant production of seven human EGF family growth factors in active conformation. Sci Rep 2022; 12:5034. [PMID: 35322149 PMCID: PMC8943033 DOI: 10.1038/s41598-022-09060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Epidermal growth factors (EGF) play a wide range of roles in embryogenesis, skin development, immune response homeostasis. They are involved in several pathologies as well, including several cancer types, psoriasis, chronic pain and chronic kidney disease. All members share the structural EGF domain, which is responsible for receptor interaction, thereby initiating transduction of signals. EGF growth factors have intense use in fundamental research and high potential for biotechnological applications. However, due to their structural organization with three disulfide bonds, recombinant production of these factors in prokaryotic systems is not straightforward. A significant fraction usually forms inclusion bodies. For the fraction remaining soluble, misfolding and incomplete disulfide bond formation may affect the amount of active factor in solution, which can compromise experimental conclusions and biotechnological applications. In this work, we describe a reliable procedure to produce seven human growth factors of the EGF family in Escherichia coli. Biophysical and stability analyses using limited proteolysis, light scattering, circular dichroism and nanoDSF show that the recombinant factors present folded and stable conformation. Cell proliferation and scratch healing assays confirmed that the recombinant factors are highly active at concentrations as low as 5 ng/ml.
Collapse
Affiliation(s)
- Arthur Schveitzer Ferreira
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil
- Cellular and Molecular Biology Graduate Program, Federal University of Paraná, Curitiba, PR, Brazil
| | - Amanda Lopacinski
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil
- Cellular and Molecular Biology Graduate Program, Federal University of Paraná, Curitiba, PR, Brazil
| | - Michel Batista
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil
| | - Priscila Mazzocchi Hiraiwa
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil
| | - Beatriz Gomes Guimarães
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil
| | - Nilson Ivo Tonin Zanchin
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil.
- Cellular and Molecular Biology Graduate Program, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
16
|
Zhou QB, Chen Y, Zhang Y, Li DD, Wang HQ, Jia ZJ, Jin Y, Xu FQ, Zhang Y. Hypermethylation Effects of Yiqihuoxue Decoction in Diabetic Atherosclerosis Using Genome-Wide DNA Methylation Analyses. J Inflamm Res 2022; 15:163-176. [PMID: 35035227 PMCID: PMC8754469 DOI: 10.2147/jir.s335374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose To investigate if a traditional Chinese medicine formulation, called “Yiqihuoxue” (YQHX), could improve diabetic atherosclerosis (DA) and explore potential mechanisms based on DNA methylation. Methods Apolipoprotein E-knockout mice were administered streptozotocin (50 mg/d, i.p.) for 5 days and fed a high-fat diet for 16 weeks. Mice were divided randomly into DA model, rosiglitazone, as well as low-, medium-, and high-dose YQHX groups. Ten healthy C57BL/6J mice were the control group. Serum levels of fasting insulin, blood glucose, homeostasis model-insulin resistance index (HOMA-IR), serum lipids, and inflammatory factors were analyzed after the final treatment. Aorta tissues were collected for staining (hematoxylin and eosin, and Oil red O). Genomic DNA was extracted for methyl-capture sequencing (MC-seq). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) databases were used to analyze differentially methylated genes. Pyrosequencing was used to verify MC-seq data. Results Low-dose and high-dose YQHX could reduce the HOMA-IR (P < 0.05). Low-dose YQHX reduced expression of total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), TNF-α, andI L-6 in serum compared with that in the model group (P < 0.05). Medium-dose YQHX decoction inhibited the expression level of TNF-α (P < 0.05). High-dose YQHX decreased the expression level of IL-6 (P < 0.05). Staining also showed the anti-atherosclerosis effects of YQHX (P < 0.05). MC-seq revealed many abnormally hypermethylated and hypomethylated genes in DA mice compared with those in the control group. KEGG database analysis showed that the hypermethylated genes induced by YQHX treatment were related to pathways in cancer, Hippo signaling, and mitogen activated protein kinase. The network analysis suggested that the hypermethylated genes epidermal growth factor receptor(Egfr) and phosphoinositide-3-kinase regulatory subunit 1(Pik3r1) induced by YQHX treatment had important roles in DA. Pyrosequencing revealed that YQHX treatment increased methylation of AKT1, Nr1h3 and Fabp4 significantly (P < 0.05). Conclusion YQHX decoction had positive treatment effects against DA, because it could regulate aberrant hypomethylation of DNA.
Collapse
Affiliation(s)
- Qing-Bing Zhou
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Yao Chen
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Yan Zhang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Dan-Dan Li
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Hong-Qin Wang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Zi-Jun Jia
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Yu Jin
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, People's Republic of China
| | - Feng-Qin Xu
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Ying Zhang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| |
Collapse
|
17
|
Nettersheim FS, Picard FSR, Hoyer FF, Winkels H. Immunotherapeutic Strategies in Cancer and Atherosclerosis-Two Sides of the Same Coin. Front Cardiovasc Med 2022; 8:812702. [PMID: 35097027 PMCID: PMC8792753 DOI: 10.3389/fcvm.2021.812702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
The development and clinical approval of immunotherapies has revolutionized cancer therapy. Although the role of adaptive immunity in atherogenesis is now well-established and several immunomodulatory strategies have proven beneficial in preclinical studies, anti-atherosclerotic immunotherapies available for clinical application are not available. Considering that adaptive immune responses are critically involved in both carcinogenesis and atherogenesis, immunotherapeutic approaches for the treatment of cancer and atherosclerosis may exert undesirable but also desirable side effects on the other condition, respectively. For example, the high antineoplastic efficacy of immune checkpoint inhibitors, which enhance effector immune responses against tumor cells by blocking co-inhibitory molecules, was recently shown to be constrained by substantial proatherogenic properties. In this review, we outline the specific role of immune responses in the development of cancer and atherosclerosis. Furthermore, we delineate how current cancer immunotherapies affect atherogenesis and discuss whether anti-atherosclerotic immunotherapies may similarly have an impact on carcinogenesis.
Collapse
Affiliation(s)
- Felix Sebastian Nettersheim
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Enarsson M, Feldreich T, Byberg L, Nowak C, Lind L, Ärnlöv J. Association between Cardiorespiratory Fitness and Circulating Proteins in 50-Year-Old Swedish Men and Women: a Cross-Sectional Study. SPORTS MEDICINE-OPEN 2021; 7:52. [PMID: 34312731 PMCID: PMC8313632 DOI: 10.1186/s40798-021-00343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/04/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS A strong cardiorespiratory fitness is suggested to have beneficial effects on cardiovascular risk; the exact mechanisms underlying the cardioprotective effects of fitness remain uncertain. Our aim was to investigate associations between cardiorespiratory fitness and multiple plasma proteins, in order to obtain insights about physiological pathways associated with the effects of exercise on cardiovascular health. METHODS In the Prospective investigation of Obesity, Energy and Metabolism (POEM) study (n=444 adults aged 50 years, 50% women), cardiorespiratory fitness was measured by a maximal exercise test on bicycle ergometer with gas exchange (VO2peak) normalized for body lean mass (dual-energy X-ray absorptiometry (DXA)). We measured 82 cardiovascular proteins associated with cardiovascular pathology and inflammation in plasma samples with a proximity extension assay. RESULTS In sex-adjusted linear regression, VO2peak was associated with 18 proteins after Bonferroni correction for multiple testing (p<0.0006). Following additional adjustment for fat mass (DXA), fasting glucose (mmol/L), low-density lipoprotein (LDL, mmol/L), smoking status, waist/hip ratio, blood pressure (mmHg), education level, and lpnr (lab sequence number), higher VO2peak was significantly associated with lower levels of 6 proteins: fatty-acid binding protein-4 (FABP4), interleukin-6 (IL-6), leptin, cystatin-B (CSTB), interleukin-1 receptor antagonist (IL-1RA), and growth differentiation factor 15 (GDF-15), and higher levels of 3 proteins: galanin, kallikrein-6 (KLK6), and heparin-binding EGF-like growth factor (HB-EGF), at nominal p-values (p<0.05). CONCLUSIONS We identified multiple novel associations between cardiorespiratory fitness and plasma proteins involved in several atherosclerotic processes and key cellular mechanisms such as inflammation, energy homeostasis, and protease activity, which shed new light on how exercise asserts its beneficial effects on cardiovascular health. Our findings encourage additional studies in order to understand the underlying causal mechanisms for these associations.
Collapse
Affiliation(s)
- Malin Enarsson
- Center for Clinical Research Dalarna, Uppsala University, Region Dalarna, Nissers väg 3, 79182, Falun, Sweden
| | - Tobias Feldreich
- School of Health and Social Studies, Dalarna University, 79188, Falun, Sweden
| | - Liisa Byberg
- Department of Surgical Sciences, Orthopedics, Uppsala University, Dag Hammarskjölds väg 14, B 75185, Uppsala, Sweden
| | - Christoph Nowak
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Alfred Nobels Allé 23, 14183, Huddinge, SE, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Dag Hammarskölds väg 10B, 75237, Uppsala, Sweden
| | - Johan Ärnlöv
- School of Health and Social Studies, Dalarna University, 79188, Falun, Sweden. .,Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Alfred Nobels Allé 23, 14183, Huddinge, SE, Sweden.
| |
Collapse
|
19
|
Pakzad B, Rajae E, Shahrabi S, Mansournezhad S, Davari N, Azizidoost S, Saki N. T-Cell Molecular Modulation Responses in Atherosclerosis Anergy. Lab Med 2021; 51:557-565. [PMID: 32106301 DOI: 10.1093/labmed/lmaa003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis continues to be a major cause of death in patients with cardiovascular diseases. The cooperative role of immunity has been recently considered in atherosclerotic plaque inflammation, especially adaptive immune response by T cells. In this review, we examine the possible role of T cells in atherosclerosis-mediated inflammation and conceivable therapeutic strategies that can ameliorate complications of atherosclerosis. The cytokines secreted by T-lymphocyte subsets, different pathophysiological profiles of microRNAs (miRs), and the growth factor/receptor axis have diverse effects on the inflammatory cycle of atherosclerosis. Manipulation of miRNA expression and prominent growth factor receptors involved in inflammatory cytokine secretion in atherosclerosis can be considered diagnostic biomarkers in the induction of anergy and blockade of atherosclerotic development. This manuscript reviews immunomodulation of T cells responses in atherosclerosis anergy.
Collapse
Affiliation(s)
- Bahram Pakzad
- Internal Medicine Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Rajae
- Department of Rheumatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- -Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Somayeh Mansournezhad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Maheronnaghsh M, Niktab I, Enayati S, Amoli MM, Hosseini SK, Tavakkoly-Bazzaz J. Differentially expressed miR-152, a potential biomarker for in-stent restenosis (ISR) in peripheral blood mononuclear cells (PBMCs) of coronary artery disease (CAD) patients. Nutr Metab Cardiovasc Dis 2021; 31:1137-1147. [PMID: 33712363 DOI: 10.1016/j.numecd.2020.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS In-stent restenosis (ISR) remains the most daunting challenge of current treatments of coronary artery disease (CAD). MicroRNAs (miRNAs) are prominent regulators of key pathological processes leading to restenosis and used as diagnostic tools in different studies. miR-152 and miR-148a are implicated to contribute in the putative intracellular mechanisms of ISR. The aim of present study is to investigate the potential early-stage diagnostic role of miR-152 and miR-148a expression levels for ISR in peripheral blood mononuclear cells (PBMCs) of patients who underwent stent implantation. METHODS AND RESULTS The miRNAs that are supposed to be involved in the ISR were nominated by bioinformatics approach mainly using miRWalk3. Then by quantitative real-time PCR, we determined the relative expression of miR-152 and miR-148a of PBMCs from ISR patients with their age/sex-matched controls. RESULTS The presence of ISR significantly coincided with a decrease in the relative expression of miR-152. The area under the curve (AUC) for miR-152 receiver operating characteristic (ROC) curve was 0.717 (95% CI; 0.60-0.83) with a sensitivity of 70% and a specificity of 67%, suggesting that the miRNA expression level might be employed to identify patients at risk of ISR. CONCLUSIONS To the best of our knowledge, this is the first work to show that the miR-152 expression level can possibly be applied to predict CAD patients at risk of ISR. The results suggest that the expression levels of miR-152 in PBMCs may serve as a biomarker for ISR. Our finding suggests the importance of miRNA levels in PBMCs as a novel biological tool to detect diseases in their early clinical stages.
Collapse
Affiliation(s)
- M Maheronnaghsh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - I Niktab
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - S Enayati
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - M M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - S K Hosseini
- Department of Cardiovascular Disorders, Division of Interventional Cardiology, Tehran University of Medical Sciences, Tehran, Iran.
| | - J Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Sa Söz H, Liman N, Güney Saruhan B, Akbal K ME, Ketani MA, Topalo Lu UU. Expression and localisation of epidermal growth factor receptors and their ligands in the lower genital tract of cycling cows. Reprod Fertil Dev 2020; 31:1692-1706. [PMID: 31270009 DOI: 10.1071/rd18179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/10/2019] [Indexed: 01/02/2023] Open
Abstract
The epidermal growth factor receptor (ErbB) family and its ligands are essential for the regulation of multiple cellular processes required for mammalian reproduction. The objectives of this study were to investigate the expression and localisation of ErbB subtypes (ErbB1-4) and selected ligands, namely epidermal growth factor (EGF), amphiregulin (AREG) and neuregulin (NRG), in the cervix and vagina of cycling cows and to determine possible steroid hormone-dependence of their expression using immunohistochemistry. All four ErbBs and EGF, AREG and NRG proteins were found to be localised in the nucleus and cytoplasm of different cells in the cervix and vagina, and their expression differed during the oestrous cycle. During the follicular phase, in both the cervix and vagina, ErbB1, ErbB2, ErbB3, ErbB4 and EGF expression was higher in the luminal epithelium (LE) than in stromal and smooth muscle (SM) cells (P<0.05). During the luteal phase, the expression of ErbB1, ErbB3 and EGF in the LE was significantly different from that in stromal and SM cells in the cervix, whereas the expression of EGF and AREG differed in the vagina compared to the cervix (P<0.05). Throughout the oestrous cycle, in both the cervix and vagina, although ErbB2/human epidermal growth factor receptor 2 expression in the LE and SM cells was significantly higher than in the stromal cells (P<0.05), NRG expression was similar in the LE, stromal and SM cells (P>0.05). Overall, these results suggest that all four ErbBs and the EGF, AREG and NRG proteins may collectively contribute to several cellular processes in the bovine cervix and vagina during the oestrous cycle.
Collapse
Affiliation(s)
- Hakan Sa Söz
- Dicle University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 21280, Diyarbakir, Turkey; and Corresponding author.
| | - Narin Liman
- Erciyes University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 38039, Kayseri, Turkey
| | - Berna Güney Saruhan
- Dicle University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 21280, Diyarbakir, Turkey
| | - Mehmet E Akbal K
- Dicle University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 21280, Diyarbakir, Turkey
| | - Muzaffer A Ketani
- Dicle University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 21280, Diyarbakir, Turkey
| | - U Ur Topalo Lu
- Dicle University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 21280, Diyarbakir, Turkey
| |
Collapse
|
22
|
Bhopatkar AA, Uversky VN, Rangachari V. Disorder and cysteines in proteins: A design for orchestration of conformational see-saw and modulatory functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:331-373. [PMID: 32828470 DOI: 10.1016/bs.pmbts.2020.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Being responsible for more than 90% of cellular functions, protein molecules are workhorses in all the life forms. In order to cater for such a high demand, proteins have evolved to adopt diverse structures that allow them to perform myriad of functions. Beginning with the genetically directed amino acid sequence, the classical understanding of protein function involves adoption of hierarchically complex yet ordered structures. However, advances made over the last two decades have revealed that inasmuch as 50% of eukaryotic proteome exists as partially or fully disordered structures. Significance of such intrinsically disordered proteins (IDPs) is further realized from their ability to exhibit multifunctionality, a feature attributable to their conformational plasticity. Among the coded amino acids, cysteines are considered to be "order-promoting" due to their ability to form inter- or intramolecular disulfide bonds, which confer robust thermal stability to the protein structure in oxidizing conditions. The co-existence of order-promoting cysteines with disorder-promoting sequences seems counter-intuitive yet many proteins have evolved to contain such sequences. In this chapter, we review some of the known cysteine-containing protein domains categorized based on the number of cysteines they possess. We show that many protein domains contain disordered sequences interspersed with cysteines. We show that a positive correlation exists between the degree of cysteines and disorder within the sequences that flank them. Furthermore, based on the computational platform, IUPred2A, we show that cysteine-rich sequences display significant disorder in the reduced but not the oxidized form, increasing the potential for such sequences to function in a redox-sensitive manner. Overall, this chapter provides insights into an exquisite evolutionary design wherein disordered sequences with interspersed cysteines enable potential modulatory protein functions under stress and environmental conditions, which thus far remained largely inconspicuous.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, Russia
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, United States; Center of Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, United States.
| |
Collapse
|
23
|
Amanatidou AI, Nastou KC, Tsitsilonis OE, Iconomidou VA. Visualization and analysis of the interaction network of proteins associated with blood-cell targeting autoimmune diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165714. [PMID: 32023482 DOI: 10.1016/j.bbadis.2020.165714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
|
24
|
Abstract
Importance While it has long been known that polycystic ovarian syndrome is associated with cardiometabolic risk factors (CMRFs), there is emerging evidence that other benign gynecologic conditions, such as uterine leiomyomas, endometriosis, and even hysterectomy without oophorectomy, can be associated with CMRFs. Understanding the evidence and mechanisms of these associations can lead to novel preventive and therapeutic interventions. Objective This article discusses the evidence and the potential mechanisms mediating the association between CMRFs and benign gynecologic disorders. Evidence Acquisition We reviewed PubMed, EMBASE, Scopus, and Google Scholar databases to obtain plausible clinical and biological evidence, including hormonal, immunologic, inflammatory, growth factor-related, genetic, epigenetic, atherogenic, vitamin D-related, and dietary factors. Results Cardiometabolic risk factors appear to contribute to uterine leiomyoma pathogenesis. For example, obesity can modulate leiomyomatous cellular proliferation and extracellular matrix deposition through hyperestrogenic states, chronic inflammation, insulin resistance, and adipokines. On the other hand, endometriosis has been shown to induce systemic inflammation, thereby increasing cardiometabolic risks, for example, through inducing atherosclerotic changes. Conclusion and Relevance Clinical implications of these associations are 2-fold. First, screening and early modification of CMRFs can be part of a preventive strategy for uterine leiomyomas and hysterectomy. Second, patients diagnosed with uterine leiomyomas or endometriosis can be screened and closely followed for CMRFs and cardiovascular disease.
Collapse
|
25
|
Jian W, Wei CM, Guan JH, Mo CH, Xu YT, Zheng WB, Li L, Gui C. Association between serum HER2/ErbB2 levels and coronary artery disease: a case-control study. J Transl Med 2020; 18:124. [PMID: 32160892 PMCID: PMC7066824 DOI: 10.1186/s12967-020-02292-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Research has associated human epidermal growth factor receptor (HER2) with glucose and lipid metabolism. However, the association between circulating HER2 levels and coronary artery disease (CAD) remains to be elucidated. Methods We performed a case–control study with 435 participants (237 CAD patients and 198 controls) who underwent diagnostic coronary angiography from September 2018 to October 2019. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for CAD were calculated with multiple logistic regression models after adjustment for confounders. Results Overall, increased serum HER2 levels were independently associated with the presence of CAD (OR per 1-standard deviation (SD) increase: 1.438, 95% CI 1.13–1.83; P = 0.003) and the number of stenotic vessels (OR per 1-SD increase: 1.399, 95% CI 1.15–1.71; P = 0.001). In the subgroup analysis, a significant interaction of HER2 with body mass index (BMI) on the presence of CAD was observed (adjusted interaction P = 0.046). Increased serum HER2 levels were strongly associated with the presence of CAD in participants with BMI ≥ 25 kg/m2 (OR per 1-SD increase: 2.143, 95% CI 1.37–3.35; P = 0.001), whereas no significant association was found in participants with BMI < 25 kg/m2 (OR per 1-SD increase: 1.225, 95% CI 0.90–1.67; P = 0.201). Conclusion Elevated HER2 level is associated with an increased risk of CAD, particularly in people with obesity. This finding yields new insight into the pathological mechanisms underlying CAD, and warrants further research regarding HER2 as a preventive and therapeutic target of CAD.
Collapse
Affiliation(s)
- Wen Jian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun-Mei Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Jia-Hui Guan
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Chang-Hua Mo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yu-Tao Xu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Wen-Bo Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
26
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
27
|
Asai D, Kawano T, Murata M, Nakashima H, Toita R, Kang JH. Effect of Fetal Bovine Serum Concentration on Lysophosphatidylcholine-mediated Proliferation and Apoptosis of Human Aortic Smooth Muscle Cells. J Oleo Sci 2020; 69:255-260. [PMID: 32051357 DOI: 10.5650/jos.ess19268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysophosphatidylcholine (lysoPtdCho) is produced by the phospholipase A2-mediated hydrolysis of phosphatidylcholine and can stimulate proliferation and apoptosis of vascular smooth muscle cells. We examined the influence of fetal bovine serum (FBS) concentration in the culture medium on lysoPtdCho-mediated apoptosis and proliferation of human aortic smooth muscle cells (HASMCs) as well as on the activation of extracellular signal-regulated kinases (ERK)1/2. In the presence of 1% FBS, HASMC viability increased after lysoPtdCho treatment at 1 and 10 μM but decreased at 25 and 50 μM. However, lysoPtdCho increased HASMC viability in a dose-dependent manner in the presence of 10% FBS. The activity of caspase 3/7 in HASMCs was increased by 25 μM lysoPtdCho in the presence of 1% FBS, but not 10% FBS. Furthermore, lysoPtdCho at 1 and 10 μM triggered ERK1/2 phosphorylation in the presence of 1% FBS, but not at 10% FBS. Thus, lysoPtdCho-mediated HASMC apoptosis, proliferation, and ERK1/2 activation are dependent on the concentration of FBS.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine
| | | | | | - Hideki Nakashima
- Department of Microbiology, St. Marianna University School of Medicine
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute
| |
Collapse
|
28
|
De Pascale MR, Della Mura N, Vacca M, Napoli C. Useful applications of growth factors for cardiovascular regenerative medicine. Growth Factors 2020; 38:35-63. [PMID: 33028111 DOI: 10.1080/08977194.2020.1825410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel advances for cardiovascular diseases (CVDs) include regenerative approaches for fibrosis, hypertrophy, and neoangiogenesis. Studies indicate that growth factor (GF) signaling could promote heart repair since most of the evidence is derived from preclinical models. Observational studies have evaluated GF serum/plasma levels as feasible biomarkers for risk stratification of CVDs. Noteworthy, two clinical interventional published studies showed that the administration of growth factors (GFs) induced beneficial effect on left ventricular ejection fraction (LVEF), myocardial perfusion, end-systolic volume index (ESVI). To date, large scale ongoing studies are in Phase I-II and mostly focussed on intramyocardial (IM), intracoronary (IC) or intravenous (IV) administration of vascular endothelial growth factor (VEGF) and fibroblast growth factor-23 (FGF-23) which result in the most investigated GFs in the last 10 years. Future data of ongoing randomized controlled studies will be crucial in understanding whether GF-based protocols could be in a concrete way effective in the clinical setting.
Collapse
Affiliation(s)
| | | | - Michele Vacca
- Division of Immunohematology and Transfusion Medicine, Cardarelli Hospital, Naples, Italy
| | - Claudio Napoli
- IRCCS Foundation SDN, Naples, Italy
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
29
|
Hernandez DR, Rojas MG, Martinez L, Rodriguez BL, Zigmond ZM, Vazquez-Padron RI, Lassance-Soares RM. c-Kit deficiency impairs nitric oxide signaling in smooth muscle cells. Biochem Biophys Res Commun 2019; 518:227-232. [PMID: 31416613 PMCID: PMC6732002 DOI: 10.1016/j.bbrc.2019.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Receptor tyrosine kinases have been implicated in various vascular remodeling processes and cardiovascular disease. However, their role in the regulation of vascular tone is poorly understood. Herein, we evaluate the contribution of c-Kit signaling to vasoactive responses. METHODS The vascular reactivity of mesenteric arteries was assessed under isobaric conditions in c-Kit deficient (KitW/W-v) and littermate control mice (Kit+/+) using pressure myography. Protein levels of soluble guanylyl cyclase beta 1 (sGCβ1) were quantified by Western blot. Mean arterial pressure was measured after high salt (8% NaCl) diet treatment using the tail-cuff method. RESULTS Smooth muscle cells (SMCs) from c-Kit deficient mice showed a 5-fold downregulation of sGCβ1 compared to controls. Endothelium-dependent relaxation of mesenteric arteries demonstrated a predominance of prostanoid vs. nitric oxide (NO) signaling in both animal groups. The dependence on prostanoid-induced dilation was higher in c-Kit mutant mice than in controls, as indicated by a significant impairment in vasorelaxation with indomethacin with respect to the latter. Endothelium-independent relaxation showed significant dysfunction of NO signaling in c-Kit deficient SMCs compared to controls. Mesenteric artery dilation was rescued by addition of a cGMP analog, but not with a NO donor, indicating a deficiency in cGMP production in c-Kit deficient SMCs. Finally, c-Kit deficient mice developed higher blood pressure on an 8% NaCl diet compared to their control littermates. CONCLUSION c-Kit deficiency inhibits NO signaling in SMCs. The existence of this c-Kit/sGC signaling axis may be relevant for vascular reactivity and remodeling.
Collapse
Affiliation(s)
- Diana R Hernandez
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Miguel G Rojas
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Laisel Martinez
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Boris L Rodriguez
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Zachary M Zigmond
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | | | | |
Collapse
|
30
|
Hamledari H, Sajjadi SF, Alikhah A, Boroumand MA, Behmanesh M. ASGR1 but not FOXM1 expression decreases in the peripheral blood mononuclear cells of diabetic atherosclerotic patients. J Diabetes Complications 2019; 33:539-546. [PMID: 31202960 DOI: 10.1016/j.jdiacomp.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/22/2019] [Accepted: 05/11/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The ASGR1 was recently shown to play a key role in the development of coronary artery disease (CAD), but its exact mechanism of action in the CAD pathogenesis is not yet known. This study evaluates the possible association between the expression level of ASGR1 and its downstream transcription factor FOXM1 in the inflammatory cells of peripheral blood (PBMC) and the pathogenesis of CAD in the Diabetic condition. METHODS Blood samples were taken from the candidates who had visited the Tehran Heart Center and had underwent diagnostic tests with respect to diabetes and CAD. The peripheral blood cells were harvested, RNA was extracted, and cDNA was synthesized. The qRT-PCR was performed on 79 cDNA samples taken from 49 CAD+ patients and 30 CAD- patients. RESULTS In this study, we observed a significant decrease of ASGR1 expression in the PBMC of CAD+ patients compared to the CAD- patients. We did not identify any considerable differences in the expression of FOXM1 in patients' subgroups with respect to the diabetes and CAD. CONCLUSION The results of our study determine the association of ASGR1 expression and CAD pathogenesis. However, we do not know whether this result is the cause or the effect of CAD.
Collapse
Affiliation(s)
- Homa Hamledari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Fatemeh Sajjadi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Asieh Alikhah
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
31
|
Schölch S, Bogner A, Bork U, Rahbari M, Győrffy B, Schneider M, Reissfelder C, Weitz J, Rahbari NN. Serum PlGF and EGF are independent prognostic markers in non-metastatic colorectal cancer. Sci Rep 2019; 9:10921. [PMID: 31358848 PMCID: PMC6662856 DOI: 10.1038/s41598-019-47429-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to determine the prognostic value of circulating angiogenic cytokines in non-metastatic colorectal cancer (CRC) patients. Preoperative serum samples of a training (TC) (n = 219) and a validation cohort (VC) (n = 168) were analyzed via ELISA to determine PlGF, EGF, VEGF, Ang1, PDGF-A, PDGF-B, IL-8 and bFGF levels. In addition, survival was correlated with PlGF and EGF expression measured by microarray and RNAseq in two publicly available, independent cohorts (n = 550 and n = 463, respectively). Prognostic values for overall (OS) and disease-free survival (DFS) were determined using uni- and multivariate Cox proportional hazard analyses. Elevated PlGF is predictive for impaired OS (TC: HR 1.056; p = 0.046; VC: HR 1.093; p = 0.001) and DFS (TC: HR 1.052; p = 0.029; VC: HR 1.091; p = 0.009). Conversely, elevated EGF is associated with favorable DFS (TC: HR 0.998; p = 0.045; VC: HR 0.998; p = 0.018) but not OS (TC: p = 0.201; VC: p = 0.453). None of the other angiogenic cytokines correlated with prognosis. The prognostic value of PlGF (OS + DFS) and EGF (DFS) was confirmed in both independent retrospective cohorts. Serum PlGF and EGF may serve as prognostic markers in non-metastatic CRC.
Collapse
Affiliation(s)
- Sebastian Schölch
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. .,German Cancer Consortium, Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Andreas Bogner
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Bork
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mohammad Rahbari
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Magyar Tudósok körútja 2., H-1117, Budapest, Hungary.,Semmelweis University, 2nd Department of Pediatrics, Bókay u. 53-54., H-1083, Budapest, Hungary
| | - Martin Schneider
- German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of General, Gastrointestinal and Transplant Surgery, University Hospital Heidelberg, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Christoph Reissfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nuh N Rahbari
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
32
|
Kyotani Y, Takasawa S, Yoshizumi M. Proliferative Pathways of Vascular Smooth Muscle Cells in Response to Intermittent Hypoxia. Int J Mol Sci 2019; 20:ijms20112706. [PMID: 31159449 PMCID: PMC6600262 DOI: 10.3390/ijms20112706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia (IH) and is a risk factor for cardiovascular diseases (e.g., atherosclerosis) and chronic inflammatory diseases (CID). The excessive proliferation of vascular smooth muscle cells (VSMCs) plays a pivotal role in the progression of atherosclerosis. Hypoxia-inducible factor-1 and nuclear factor-κB are thought to be the main factors involved in responses to IH and in regulating adaptations or inflammation pathways, however, further evidence is needed to demonstrate the underlying mechanisms of this process in VSMCs. Furthermore, few studies of IH have examined smooth muscle cell responses. Our previous studies demonstrated that increased interleukin (IL)-6, epidermal growth factor family ligands, and erbB2 receptor, some of which amplify inflammation and, consequently, induce CID, were induced by IH and were involved in the proliferation of VSMCs. Since IH increased IL-6 and epiregulin expression in VSMCs, the same phenomenon may also occur in other smooth muscle cells, and, consequently, may be related to the incidence or progression of several diseases. In the present review, we describe how IH can induce the excessive proliferation of VSMCs and we develop the suggestion that other CID may be related to the effects of IH on other smooth muscle cells.
Collapse
Affiliation(s)
- Yoji Kyotani
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| |
Collapse
|
33
|
Mindur JE, Swirski FK. Growth Factors as Immunotherapeutic Targets in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:1275-1287. [PMID: 31092009 DOI: 10.1161/atvbaha.119.311994] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth factors, such as CSFs (colony-stimulating factors), EGFs (epidermal growth factors), and FGFs (fibroblast growth factors), are signaling proteins that control a wide range of cellular functions. Although growth factor networks are critical for intercellular communication and tissue homeostasis, their abnormal production or regulation occurs in various pathologies. Clinical strategies that target growth factors or their receptors are used to treat a variety of conditions but have yet to be adopted for cardiovascular disease. In this review, we focus on M-CSF (macrophage-CSF), GM-CSF (granulocyte-M-CSF), IL (interleukin)-3, EGFR (epidermal growth factor receptor), and FGF21 (fibroblast growth factor 21). We first discuss the efficacy of targeting these growth factors in other disease contexts (ie, inflammatory/autoimmune diseases, cancer, or metabolic disorders) and then consider arguments for or against targeting them to treat cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- John E Mindur
- From the Graduate Program in Immunology (J.E.M.), Massachusetts General Hospital and Harvard Medical School, Boston.,Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
34
|
Kim S, Graham MJ, Lee RG, Yang L, Kim S, Subramanian V, Layne JD, Cai L, Temel RE, Shih D, Lusis AJ, Berliner JA, Lee S. Heparin-binding EGF-like growth factor (HB-EGF) antisense oligonucleotide protected against hyperlipidemia-associated atherosclerosis. Nutr Metab Cardiovasc Dis 2019; 29:306-315. [PMID: 30738642 PMCID: PMC6452438 DOI: 10.1016/j.numecd.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/24/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Heparin-binding EGF-like growth factor (HB-EGF) is a representative EGF family member that interacts with EGFR under diverse stress environment. Previously, we reported that the HB-EGF-targeting using antisense oligonucleotide (ASO) effectively suppressed an aortic aneurysm in the vessel wall and circulatory lipid levels. In this study, we further examined the effects of the HB-EGF ASO administration on the development of hyperlipidemia-associated atherosclerosis using an atherogenic mouse model. METHODS AND RESULTS The male and female LDLR deficient mice under Western diet containing 21% fat and 0.2% cholesterol content were cotreated with control and HB-EGF ASOs for 12 weeks. We observed that the HB-EGF ASO administration effectively downregulated circulatory VLDL- and LDL-associated lipid levels in circulation; concordantly, the HB-EGF targeting effectively suppressed the development of atherosclerosis in the aorta. An EGFR blocker BIBX1382 administration suppressed the hepatic TG secretion rate, suggesting a positive role of the HB-EGF signaling for the hepatic VLDL production. We newly observed that there was a significant improvement of the insulin sensitivity by the HB-EGF ASO administration in a mouse model under the Western diet as demonstrated by the improvement of the glucose and insulin tolerances. CONCLUSION The HB-EGF ASO administration effectively downregulated circulatory lipid levels by suppressing hepatic VLDL production rate, which leads to effective protection against atherosclerosis in the vascular wall.
Collapse
Affiliation(s)
- S Kim
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - M J Graham
- Cardiovascular Antisense Drug Discovery Group, Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - R G Lee
- Cardiovascular Antisense Drug Discovery Group, Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - L Yang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - S Kim
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - V Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA; Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - J D Layne
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - L Cai
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - R E Temel
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA; Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - D Shih
- Department of Medicine-Cardiology, University of California-Los Angeles (UCLA) School of Medicine, Los Angeles, CA, 90095, USA
| | - A J Lusis
- Department of Medicine-Cardiology, University of California-Los Angeles (UCLA) School of Medicine, Los Angeles, CA, 90095, USA; Department of Human Genetics, University of California-Los Angeles (UCLA) School of Medicine, Los Angeles, CA, 90095, USA; Department of Microbiology, Immunology & Molecular Genetics, University of California-Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - J A Berliner
- Department of Pathology and Laboratory Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - S Lee
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA; Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
35
|
Engineered systems to study the synergistic signaling between integrin-mediated mechanotransduction and growth factors (Review). Biointerphases 2018; 13:06D302. [DOI: 10.1116/1.5045231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Mitsuishi Y, Shibata H, Kurihara I, Kobayashi S, Yokota K, Murai-Takeda A, Hayashi T, Jo R, Nakamura T, Morisaki M, Itoh H. Epidermal growth factor receptor/extracellular signal-regulated kinase pathway enhances mineralocorticoid receptor transcriptional activity through protein stabilization. Mol Cell Endocrinol 2018; 473:89-99. [PMID: 29391190 DOI: 10.1016/j.mce.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Activation of mineralocorticoid receptor (MR) is evoked by aldosterone, and it induces hypertension and cardiovascular disease when it's concomitant with excessive salt loading. We have proposed the notion of "MR-associated hypertension", in which add-on therapy of MR blockers is effective even though serum aldosterone level is within normal range. To elucidate its underlying molecular mechanism, we focused on the effect of epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) activation on MR activity. Epidermal growth factor (EGF) administration increased MR transcriptional activity through EGFR/ERK pathway and increased protein level by counteracting MR ubiquitylation in vitro. EGF administration in vivo also increased MR protein level and target gene expression in kidney, which were decreased by EGFR inhibitor. In addition, the administration of EGFR inhibitor lowered systolic blood pressure and MR activity in DOCA/salt-treated mice. In conclusion, EGFR/ERK pathway activation is considered as one of the underlying mechanisms of aberrant MR activation and EGFR/ERK pathway blockade could be an alternative approach for the prevention of MR-related cardiovascular events.
Collapse
Affiliation(s)
- Yuko Mitsuishi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirotaka Shibata
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasamamachi, Yufu 879-5593, Oita, Japan.
| | - Isao Kurihara
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sakiko Kobayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenichi Yokota
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayano Murai-Takeda
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Diabetes Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishimbashi, Minato-ku, Tokyo 105-8471, Japan
| | - Rie Jo
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshifumi Nakamura
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuha Morisaki
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
37
|
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein and a member of the tyrosine kinase superfamily receptor. Gliomas are tumors originating from glial cells, which show a range of aggressiveness depending on grade and stage. Many EGFR gene alterations have been identified in gliomas, especially glioblastomas, including amplifications, deletions and single nucleotide polymorphisms (SNPs). Glioblastomas are discussed as a separate entity due to their high correlation with EGFR mutants and the reported association of the latter with survival and response to treatment in this glioma subgroup. This review is a comprehensive report of EGFR gene alterations and their relations with several clinical factors in glioblastomas and other gliomas. It covers all EGFR gene alterations including point mutations, SNPs, methylations, copy number variations and amplifications, assessed with regard to different clinical variables, including response to therapy and survival. This review also discusses the current prognostic status of EGFR in glioblastomas and other gliomas, and highlights gaps in previous studies. This serves as an update for the medical community about the role of EGFR gene alterations in gliomas and specifically glioblastomas, as a means for targeted treatment and prognosis.
Collapse
|
38
|
Chen R, Jin G, Li W, McIntyre TM. Epidermal Growth Factor (EGF) Autocrine Activation of Human Platelets Promotes EGF Receptor-Dependent Oral Squamous Cell Carcinoma Invasion, Migration, and Epithelial Mesenchymal Transition. THE JOURNAL OF IMMUNOLOGY 2018; 201:2154-2164. [PMID: 30150285 DOI: 10.4049/jimmunol.1800124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Activated platelets release functional, high m.w. epidermal growth factor (HMW-EGF). In this study, we show platelets also express epidermal growth factor (EGF) receptor (EGFR) protein, but not ErbB2 or ErbB4 coreceptors, and so might respond to HMW-EGF. We found HMW-EGF stimulated platelet EGFR autophosphorylation, PI3 kinase-dependent AKT phosphorylation, and a Ca2+ transient that were blocked by EGFR tyrosine kinase inhibition. Strong (thrombin) and weak (ADP, platelet-activating factor) G protein-coupled receptor agonists and non-G protein-coupled receptor collagen recruited EGFR tyrosine kinase activity that contributed to platelet activation because EGFR kinase inhibition reduced signal transduction and aggregation induced by each agonist. EGF stimulated ex vivo adhesion of platelets to collagen-coated microfluidic channels, whereas systemic EGF injection increased initial platelet deposition in FeCl3-damaged murine carotid arteries. EGFR signaling contributes to oral squamous cell carcinoma (OSCC) tumorigenesis, but the source of its ligand is not established. We find individual platelets were intercalated within OSCC tumors. A portion of these platelets expressed stimulation-dependent Bcl-3 and IL-1β and so had been activated. Stimulated platelets bound OSCC cells, and material released from stimulated platelets induced OSCC epithelial-mesenchymal transition and stimulated their migration and invasion through Matrigel barriers. Anti-EGF Ab or EGFR inhibitors abolished platelet-induced tumor cell phenotype transition, migration, and invasion; so the only factor released from activated platelets necessary for OSCC metastatic activity was HMW-EGF. These results establish HMW-EGF in platelet function and elucidate a previously unsuspected connection between activated platelets and tumorigenesis through rapid, and prolonged, autocrine-stimulated release of HMW-EGF by tumor-associated platelets.
Collapse
Affiliation(s)
- Rui Chen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ge Jin
- Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106
| | - Wei Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106; and.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; .,Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106; and.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| |
Collapse
|
39
|
Barhoumi T, Fraulob-Aquino JC, Mian MOR, Ouerd S, Idris-Khodja N, Huo KG, Rehman A, Caillon A, Dancose-Giambattisto B, Ebrahimian T, Lehoux S, Paradis P, Schiffrin EL. Matrix metalloproteinase-2 knockout prevents angiotensin II-induced vascular injury. Cardiovasc Res 2018; 113:1753-1762. [PMID: 29016715 DOI: 10.1093/cvr/cvx115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/08/2017] [Indexed: 12/24/2022] Open
Abstract
Aims Matrix metalloproteinases (MMPs) have been implicated in the development of hypertension in animal models and humans. Mmp2 deletion did not change Ang II-induced blood pressure (BP) rise. However, whether Mmp2 knockout affects angiotensin (Ang) II-induced vascular injury has not been tested. We sought to determine whether Mmp2 knockout will prevent Ang II-induced vascular injury. Methods and results A fourteen-day Ang II infusion (1000 ng/kg/min, SC) increased systolic BP, decreased vasodilatory responses to acetylcholine, induced mesenteric artery (MA) hypertrophic remodelling, and enhanced MA stiffness in wild-type (WT) mice. Ang II enhanced aortic media and perivascular reactive oxygen species generation, aortic vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 expression, perivascular monocyte/macrophage and T cell infiltration, and the fraction of spleen activated CD4+CD69+ and CD8+CD69+ T cells, and Ly-6Chi monocytes. Study of intracellular signalling showed that Ang II increased phosphorylation of epidermal growth factor receptor and extracellular-signal-regulated kinase 1/2 in vascular smooth muscle cells isolated from WT mice. All these effects were reduced or prevented by Mmp2 knockout, except for systolic BP elevation. Ang II increased Mmp2 expression in immune cells infiltrating the aorta and perivascular fat. Bone marrow (BM) transplantation experiments revealed that in absence of MMP2 in immune cells, Ang II-induced BP elevation was decreased, and that when MMP2 was deficient in either immune or vascular cells, Ang II-induced endothelial dysfunction was blunted. Conclusions Mmp2 knockout impaired Ang II-induced vascular injury but not BP elevation. BM transplantation revealed a role for immune cells in Ang II-induced BP elevation, and for both vascular and immune cell MMP2 in Ang II-induced endothelial dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, #B-127, 3755 Côte-Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
40
|
Cramer CN, Kelstrup CD, Olsen JV, Haselmann KF, Nielsen PK. Generic Workflow for Mapping of Complex Disulfide Bonds Using In-Source Reduction and Extracted Ion Chromatograms from Data-Dependent Mass Spectrometry. Anal Chem 2018; 90:8202-8210. [DOI: 10.1021/acs.analchem.8b01603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christian N. Cramer
- Protein Engineering, Global Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian D. Kelstrup
- Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jesper V. Olsen
- Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kim F. Haselmann
- Protein Engineering, Global Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Peter Kresten Nielsen
- Protein Engineering, Global Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| |
Collapse
|
41
|
The role of the EGFR signaling pathway in stem cell differentiation during planarian regeneration and homeostasis. Semin Cell Dev Biol 2018; 87:45-57. [PMID: 29775660 DOI: 10.1016/j.semcdb.2018.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
Cell signaling is essential for cells to adequately respond to their environment. One of the most evolutionarily conserved signaling pathways is that of the epidermal growth factor receptor (EGFR). Transmembrane receptors with intracellular tyrosine kinase activity are activated by the binding of their corresponding ligands. This in turn activates a wide variety of intracellular cascades and induces the up- or downregulation of target genes, leading to a specific cellular response. Freshwater planarians are an excellent model in which to study the role of cell signaling in the context of stem-cell based regeneration. Owing to the presence of a population of pluripotent stem cells called neoblasts, these animals can regenerate the entire organism from a tiny piece of the body. Here, we review the current state of knowledge of the planarian EGFR pathway. We describe the main components of the pathway and their functions in other animals, and focus in particular on receptors and ligands identified in the planarian Schmidtea mediterranea. Moreover, we summarize current data on the function of some of these components during planarian regeneration and homeostasis. We hypothesize that the EGFR pathway may act as a key regulator of the terminal differentiation of distinct populations of lineage-committed progenitors.
Collapse
|
42
|
Wang D, Uhrin P, Mocan A, Waltenberger B, Breuss JM, Tewari D, Mihaly-Bison J, Huminiecki Ł, Starzyński RR, Tzvetkov NT, Horbańczuk J, Atanasov AG. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv 2018; 36:1586-1607. [PMID: 29684502 DOI: 10.1016/j.biotechadv.2018.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Strada Gheorghe Marinescu 23, 400337 Cluj-Napoca, Romania; Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Johannes M Breuss
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal, 263136 Nainital, Uttarakhand, India
| | - Judit Mihaly-Bison
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Łukasz Huminiecki
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, 1618 Sofia, Bulgaria
| | - Jarosław Horbańczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
43
|
Vieceli Dalla Sega F, Fortini F, Aquila G, Pavasini R, Biscaglia S, Bernucci D, Del Franco A, Tonet E, Rizzo P, Ferrari R, Campo G. Ticagrelor Improves Endothelial Function by Decreasing Circulating Epidermal Growth Factor (EGF). Front Physiol 2018; 9:337. [PMID: 29686623 PMCID: PMC5900783 DOI: 10.3389/fphys.2018.00337] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Ticagrelor is one of the most powerful P2Y12 inhibitor. We have recently reported that, in patients with concomitant Stable Coronary Artery Disease (SCAD) and Chronic Obstructive Pulmonary Disease (COPD) undergoing percutaneous coronary intervention (PCI), treatment with ticagrelor, as compared to clopidogrel, is associated with an improvement of the endothelial function (Clinical Trial NCT02519608). In the present study, we showed that, in the same population, after 1 month treatment with ticagrelor, but not with clopidogrel, there is a decrease of the circulating levels of epidermal growth factor (EGF) and that these changes in circulating levels of EGF correlate with on-treatment platelet reactivity. Furthermore, in human umbilical vein endothelial cells (HUVEC) incubated with sera of the patients treated with ticagrelor, but not with clopidogrel there is an increase of p-eNOS levels. Finally, analyzing the changes in EGF and p-eNOS levels after treatment, we observed an inverse correlation between p-eNOS and EGF changes only in the ticagrelor group. Causality between EGF and eNOS activation was assessed in vitro in HUVEC where we showed that EGF decreases eNOS activity in a dose dependent manner. Taken together our data indicate that ticagrelor improves endothelial function by lowering circulating EGF that results in the activation of eNOS in the vascular endothelium.
Collapse
Affiliation(s)
- Francesco Vieceli Dalla Sega
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Francesca Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Rita Pavasini
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Italy
| | - Simone Biscaglia
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Italy
| | - Davide Bernucci
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Italy
| | - Annamaria Del Franco
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Italy
| | - Elisabetta Tonet
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Italy
| | - Gianluca Campo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Italy
| |
Collapse
|
44
|
Ghatge M, Nair J, Sharma A, Vangala RK. Integrative gene ontology and network analysis of coronary artery disease associated genes suggests potential role of ErbB pathway gene EGFR. Mol Med Rep 2018; 17:4253-4264. [PMID: 29328373 PMCID: PMC5802197 DOI: 10.3892/mmr.2018.8393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Coronary artery disease (CAD) is a major cause of mortality in India, more importantly the young Indians. Combinatorial and integrative approaches to evaluate pathways and genes to gain an improved understanding and potential biomarkers for risk assessment are required. Therefore, 608 genes from the CADgene database version 2.0, classified into 12 functional classes representing the atherosclerotic disease process, were analyzed. Homology analysis of the unique list of gene ontologies (GO) from each functional class gave 8 GO terms represented in 11 and 10 functional classes. Using disease ontology analysis 80 genes belonging to 8 GO terms, using FunDO suggested that 29 of them were identified to be associated with CAD. Extended network analysis of these genes using STRING version 9.1 gave 328 nodes and 4,525 interactions of which the top 5% had a node degree of ≥75 associated with pathways including the ErbB signaling pathway with epidermal growth factor receptor (EGFR) gene as the central hub. Evaluation of EFGR protein levels in age and gender-matched 342 CAD patients vs. 342 control subjects demonstrated significant differences [controls=149.76±2.47 pg/ml and CAD patients stratified into stable angina (SA)=161.65±3.40 pg/ml and myocardial infarction (MI)=171.51±4.26 pg/ml]. Logistic regression analysis suggested that increased EGFR levels exhibit 3-fold higher risk of CAD [odds ratio (OR) 3.51, 95% confidence interval [CI] 1.96–6.28, P≤0.001], upon adjustment for hypertension, diabetes and smoking. A unit increase in EGFR levels increased the risk by 2-fold for SA (OR 2.58, 95% CI 1.25–5.33, P=0.01) and 3.8-fold for MI (OR 3.82, 95% CI 1.94–7.52, P≤0.001) following adjustment. Thus, the use of ontology mapping and network analysis in an integrative manner aids in the prioritization of biomarkers of complex disease.
Collapse
Affiliation(s)
- Madankumar Ghatge
- Tata Proteomics and Coagulation Unit, Thrombosis Research Institute, Narayana Hrudayalaya Hospital, Bengaluru, Karnataka 560099, India
| | - Jiny Nair
- Mary and Garry Weston Functional Genomics Unit, Thrombosis Research Institute, Bengaluru, Karnataka 560099, India
| | - Ankit Sharma
- Manipal University, Manipal, Karnataka 576104, India
| | - Rajani Kanth Vangala
- Tata Proteomics and Coagulation Unit, Thrombosis Research Institute, Narayana Hrudayalaya Hospital, Bengaluru, Karnataka 560099, India
| |
Collapse
|
45
|
Lewis FC, Kumar SD, Ellison-Hughes GM. Non-invasive strategies for stimulating endogenous repair and regenerative mechanisms in the damaged heart. Pharmacol Res 2018; 127:33-40. [DOI: 10.1016/j.phrs.2017.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023]
|
46
|
Selective EGF-Receptor Inhibition in CD4+ T Cells Induces Anergy and Limits Atherosclerosis. J Am Coll Cardiol 2018; 71:160-172. [DOI: 10.1016/j.jacc.2017.10.084] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/15/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022]
|
47
|
Zeboudj L, Giraud A, Guyonnet L, Zhang Y, Laurans L, Esposito B, Vilar J, Chipont A, Papac-Milicevic N, Binder CJ, Tedgui A, Mallat Z, Tharaux PL, Ait-Oufella H. Selective EGFR (Epidermal Growth Factor Receptor) Deletion in Myeloid Cells Limits Atherosclerosis—Brief Report. Arterioscler Thromb Vasc Biol 2018; 38:114-119. [DOI: 10.1161/atvbaha.117.309927] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/17/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Lynda Zeboudj
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Andréas Giraud
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Lea Guyonnet
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Yujiao Zhang
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Ludivine Laurans
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Bruno Esposito
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Jose Vilar
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Anna Chipont
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Nikolina Papac-Milicevic
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Christoph J. Binder
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Alain Tedgui
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Ziad Mallat
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Pierre-Louis Tharaux
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| | - Hafid Ait-Oufella
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes Paris 5, France (L.Z., A.G., L.G., Y.Z., L.L., B.E., J.V., A.C., A.T., Z.M., P.-L.T., H.A.-O.); Center for Molecular Medicine of the Austrian Academy of Sciences (N.P.-M., C.J.B.) and Department of Laboratory Medicine (N.P.-M., C.J.B.), Medical University of Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.); and Service de Réanimation
| |
Collapse
|
48
|
Bryant DM, Sousounis K, Payzin-Dogru D, Bryant S, Sandoval AGW, Martinez Fernandez J, Mariano R, Oshiro R, Wong AY, Leigh ND, Johnson K, Whited JL. Identification of regenerative roadblocks via repeat deployment of limb regeneration in axolotls. NPJ Regen Med 2017; 2:30. [PMID: 29302364 PMCID: PMC5677943 DOI: 10.1038/s41536-017-0034-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Axolotl salamanders are powerful models for understanding how regeneration of complex body parts can be achieved, whereas mammals are severely limited in this ability. Factors that promote normal axolotl regeneration can be examined in mammals to determine if they exhibit altered activity in this context. Furthermore, factors prohibiting axolotl regeneration can offer key insight into the mechanisms present in regeneration-incompetent species. We sought to determine if we could experimentally compromise the axolotl's ability to regenerate limbs and, if so, discover the molecular changes that might underlie their inability to regenerate. We found that repeated limb amputation severely compromised axolotls' ability to initiate limb regeneration. Using RNA-seq, we observed that a majority of differentially expressed transcripts were hyperactivated in limbs compromised by repeated amputation, suggesting that mis-regulation of these genes antagonizes regeneration. To confirm our findings, we additionally assayed the role of amphiregulin, an EGF-like ligand, which is aberrantly upregulated in compromised animals. During normal limb regeneration, amphiregulin is expressed by the early wound epidermis, and mis-expressing this factor lead to thickened wound epithelium, delayed initiation of regeneration, and severe regenerative defects. Collectively, our results suggest that repeatedly amputated limbs may undergo a persistent wound healing response, which interferes with their ability to initiate the regenerative program. These findings have important implications for human regenerative medicine.
Collapse
Affiliation(s)
- Donald M Bryant
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Konstantinos Sousounis
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA.,The Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155 USA
| | - Duygu Payzin-Dogru
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Sevara Bryant
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Aaron Gabriel W Sandoval
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Jose Martinez Fernandez
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Rachelle Mariano
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Rachel Oshiro
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Alan Y Wong
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Nicholas D Leigh
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Kimberly Johnson
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Jessica L Whited
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA.,The Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155 USA
| |
Collapse
|
49
|
Kim S, Yang L, Kim S, Lee RG, Graham MJ, Berliner JA, Lusis AJ, Cai L, Temel RE, Rateri DL, Lee S. Targeting hepatic heparin-binding EGF-like growth factor (HB-EGF) induces anti-hyperlipidemia leading to reduction of angiotensin II-induced aneurysm development. PLoS One 2017; 12:e0182566. [PMID: 28792970 PMCID: PMC5549937 DOI: 10.1371/journal.pone.0182566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Objective The upregulated expression of heparin binding EGF-like growth factor (HB-EGF) in the vessel and circulation is associated with risk of cardiovascular disease. In this study, we tested the effects of HB-EGF targeting using HB-EGF-specific antisense oligonucleotide (ASO) on the development of aortic aneurysm in a mouse aneurysm model. Approach and results Low-density lipoprotein receptor (LDLR) deficient mice (male, 16 weeks of age) were injected with control and HB-EGF ASOs for 10 weeks. To induce aneurysm, the mice were fed a high fat diet (22% fat, 0.2% cholesterol; w/w) at 5 week point of ASO administration and infused with angiotensin II (AngII, 1,000ng/kg/min) for the last 4 weeks of ASO administration. We confirmed that the HB-EGF ASO administration significantly downregulated HB-EGF expression in multiple tissues including the liver. Importantly, the HB-EGF ASO administration significantly suppressed development of aortic aneurysms including thoracic and abdominal types. Interestingly, the HB-EGF ASO administration induced a remarkable anti-hyperlipidemic effect by suppressing very low density lipoprotein (VLDL) level in the blood. Mechanistically, the HB-EGF targeting suppressed hepatic VLDL secretion rate without changing heparin-releasable plasma triglyceride (TG) hydrolytic activity or fecal neutral cholesterol excretion rate. Conclusion This result suggested that the HB-EGF targeting induced protection against aneurysm development through anti-hyperlipidemic effects. Suppression of hepatic VLDL production process appears to be a key mechanism for the anti-hyperlipidemic effects by the HB-EGF targeting.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Lihua Yang
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Seongu Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Richard G. Lee
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Mark J. Graham
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Judith A. Berliner
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Aldons J. Lusis
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Lei Cai
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Ryan E. Temel
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Debra L. Rateri
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Sangderk Lee
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
50
|
The Role Played by Growth Factors TGF-β1, EGF and FGF7 in the Pathogeny of Oral Pseudoepitheliomatous Hyperplasia. CURRENT HEALTH SCIENCES JOURNAL 2017; 43:246-252. [PMID: 30595884 PMCID: PMC6284842 DOI: 10.12865/chsj.43.03.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/27/2017] [Indexed: 11/18/2022]
Abstract
Pseudoepitheliomatous hyperplasia is an epithelial proliferation that develops in the dermis or lamina propria. It is a lesion associated to another pathology, which appears as a response to a great variety of infectious, neoplastic, inflammatory or traumatic stimuli. The etiopathogeny of this lesion is not clear yet. Therefore, we performed an immunohistochemical study on a group of 20 cases of pseudoepitheliomatous hyperplasia cases associated with inflammatory and neoplastic conditions, by investigating TGFβ1 (Beta growth and transformation factor), EGF (Epidermal growth Factor), and FGF7 (Fibroblast growth factor) expressions during in its development. The TGF-β1 expression was recorded in all the layers of the oral hyperplastic epithelium, going from the basal to the superficial layers, but with a different immunoreactive pattern, according to the region. Our study showed the absence of EGF immunoexpression in the carcinomatous proliferation areas associated to pseudoepitheliomatous hyperplasia and an almost exclusive presence in the hyperplasia lesions associated with inflammatory conditions (in about 30% of the investigated lesions) of a expression varying from poor to moderate for EGF. According to our investigations, we observed the presence of an immunolabeling for FGF7 in 80% of the investigated cases of pseudoepitheliomatous hyperplasia, a maximum of intensity being observed within the cases associated with inflammatory conditions.
Collapse
|