1
|
Rezazadeh K, Barzegar M, Nezamdoost E, Shoaran M, Abbasi MM, Ghasemi B, Madadi S, Raeisi S. Hepatic toll of keto: unveiling the inflammatory and structural consequences of ketogenic diet in rats. BMC Nutr 2025; 11:72. [PMID: 40200308 PMCID: PMC11980344 DOI: 10.1186/s40795-025-01057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The ketogenic diet (KD) has been used as a therapeutic diet for a range of diseases such as epilepsy, obesity, and cancer. However, it may cause some adverse effects that are not well known. This study aimed to assess the possible impact of the KD on liver structure and function, as well as hepatic inflammatory markers. METHODS Ninety male rats were randomly divided into two groups: the normal diet group consumed a standard rat chow, and the KD group consumed a diet composed of 90% fat, 8% protein, and 2% carbohydrates for 30 days. The serum levels of lipid profile (cholesterol and triglyceride), liver enzymes, hepatic levels of inflammatory markers, and steatosis grading were evaluated and compared between the two groups. RESULTS The serum cholesterol and alanine transaminase (ALT) levels in the KD group were significantly higher than in the normal diet group. However, there were no significant differences between groups in serum triglyceride and aspartate transaminase (AST) levels. Hepatic inflammatory markers, interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), both were higher in the KD group compared to the normal diet group. In the liver biopsy, the degree of steatosis was significantly higher in the KD group compared to the normal diet group. CONCLUSION The KD may cause hepatic adverse effects by inducing steatosis and inflammation.
Collapse
Affiliation(s)
- Khatereh Rezazadeh
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Nezamdoost
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Shoaran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Babollah Ghasemi
- Division of Clinical Laboratory, , Zahra Mardani Azari Children Training, Research, and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Madadi
- Division of Clinical Laboratory, , Zahra Mardani Azari Children Training, Research, and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Raeisi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Lv T, Liu C, Ye M, Li G, Liu Z. Ketone therapy improves cardiac function and structure in rodents with heart failure: A systematic review and meta-analysis. Nutr Res 2025; 137:56-70. [PMID: 40252394 DOI: 10.1016/j.nutres.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/21/2025]
Abstract
This meta-analysis aimed to quantitatively assess the effects of ketone intervention on cardiac function and structure in rodents with heart failure (HF). We hypothesized that ketone intervention could enhance the cardiac function and structure in HF. We systematically searched PubMed, Cochrane Library, and Embase databases for relevant studies up to April 13, 2024. Ketone therapy encompassed a ketogenic diet, ketone esters, medium-chain triglycerides, and β-hydroxybutyrate. The effect measures are mainly expressed as standardized mean difference (SMD) and 95% confidence interval (CI). Our meta-analysis included 24 animal studies. Ketone therapy significantly improved left ventricular ejection fraction (SMD: 1.31, 95% CI: 0.79-1.82, I2 = 77%), cardiac output (SMD: 0.70, 95% CI: 0.28-1.11, I2 = 0%), and ameliorated myocardial hypertrophy (SMD: -1.95, 95% CI: -2.76 to -1.13, I2 = 76%), myocardial fibrosis (SMD: -0.87, 95% CI: -1.60 to -0.15, I2 = 68%), and ventricular remodeling in HF rodents. Subgroup analysis indicated that ketone intervention worsened myocardial fibrosis in non-HF rodents (SMD: 0.86, 95% CI: 0.09-1.63, I2 = 78%) and had no significant effect on cardiac function. Additionally, further subgroup analysis indicated that ketogenic diet significantly alleviated cardiac hypertrophy and fibrosis, whereas ketone esters did not yield significant effects. The effect of ketone on left ventricular ejection fraction strengthened with the duration of intervention. Our results suggested that ketone therapy significantly improved the cardiac systolic function and structure in rodents with HF, and had no effect in rodents non-HF. Thus, ketone intervention may be a promising treatment for HF patients.
Collapse
Affiliation(s)
- Tingting Lv
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, PR China; Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Chunyan Liu
- Department of Infection Management, Shaoxing People's Hospital, Shaoxing, PR China.
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital (Affiliated Mental Health Center, Medical College of Shaoxing University), Shaoxing, Zhejiang, PR China
| | - Gang Li
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, PR China
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| |
Collapse
|
3
|
Lv T, Liu C, Guo S, Wu M, Wang X, Zhang Z, Zhou J, Yao Y, Shen Z, Yang J, Sun S, Liu Z, Chi J. Targeting Ketone Body Metabolism Improves Cardiac Function and Hemodynamics in Patients With Heart Failure: A Systematic Review and Meta-Analysis. Nutr Rev 2025:nuae179. [PMID: 39873669 DOI: 10.1093/nutrit/nuae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
CONTEXT The impacts of elevated ketone body levels on cardiac function and hemodynamics in patients with heart failure (HF) remain unclear. OBJECTIVE The effects of ketone intervention on these parameters in patients with HF were evaluated quantitatively in this meta-analysis. DATA SOURCES We searched the PubMed, Cochrane Library, and Embase databases for relevant studies published from inception to April 13, 2024. Ketone therapy included ketone ester and β-hydroxybutyrate intervention. DATA EXTRACTION Seven human studies were included for the quantitative analysis. DATA ANALYSIS Our results showed that ketone therapy significantly improved left ventricular ejection fraction (standardized mean difference, 0.52 [95% CI, 0.25-0.80]; I2 = 0%), cardiac output (0.84 [95% CI, 0.36-1.32]; I2 = 68%) and stroke volume (0.47 [95% CI, 0.10-0.84]; I2 = 39%), and significantly reduced systemic vascular resistance (-0.92 [95% CI, -1.52 to -0.33]; I2 = 74%) without influencing mean arterial pressure (-0.09 [95% CI: -0.40 to 0.22]; I2 = 0%) in patients with HF. Subgroup analysis revealed that the enhanced cardiac function and favorable hemodynamic effects of ketone therapy were also applicable to individuals without HF. CONCLUSIONS Ketone therapy may significantly improve cardiac systolic function and hemodynamics in patients with HF and in patients without HF, suggesting it may be a promising treatment for patients with HF and also a beneficial medical strategy for patients without HF or healthy individuals.
Collapse
Affiliation(s)
- Tingting Lv
- Department of General Practice, Shaoxing People's Hospital, Shaoxing 312000, P. R. China
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Chunyan Liu
- Department of Infection Management, Shaoxing People's Hospital, Shaoxing 312000, P. R. China
| | - Shitian Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P. R. China
| | - Menglu Wu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Xiang Wang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Ziyi Zhang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Jiedong Zhou
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Yiying Yao
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Zeyu Shen
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Juntao Yang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Shijia Sun
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Zheng Liu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Jufang Chi
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Department of Cardiology, Zhuji People's Hospital (Zhuji Hospital, Wenzhou Medical University), Zhuji, Zhejiang 311800, P. R. China
| |
Collapse
|
4
|
Moore HN, Goncalves MD, Johnston AM, Mayer EL, Rugo HS, Gradishar WJ, Zylla DM, Bergenstal RM. Effective Strategies for the Prevention and Mitigation of Phosphatidylinositol-3-Kinase Inhibitor-Associated Hyperglycemia: Optimizing Patient Care. Clin Breast Cancer 2025; 25:1-11. [PMID: 39462728 DOI: 10.1016/j.clbc.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
Hyperglycemia is a common adverse event (AE) associated with phosphatidylinositol-3-kinase inhibitors (PI3Kis) and considered an on-target effect. Presence of hyperglycemia is associated with poor outcomes in patients with cancer, and there is need for further refinement of hyperglycemia prevention and mitigation strategies in patients receiving PI3Kis. In this review, the authors highlight effective strategies for preventing PI3Ki-induced hyperglycemia before and during treatment as well as hyperglycemia management. Prior to initiating treatment with PI3Ki, identify baseline risk factors of patients at increased risk for developing hyperglycemia, which include older age, obesity, and glycosylated hemoglobin (HbA1c) 5.7%-6.4% (prediabetes or Type 2 diabetes). To prevent new-onset hyperglycemia, optimize blood glucose, and recommend a low-carbohydrate (60-130 g/day) diet along with regular exercise to all patients prior to initiating the PI3Ki. Prophylactic metformin may be considered in all patients starting a PI3Ki with HbA1c ≤6.4%. Although existing recommendations support monitoring fasting blood glucose (FBG) once weekly (twice-weekly for intermediate-risk, daily for high-risk patients) and HbA1c every 3 months upon initiation of PI3Ki, more frequent FBG monitoring may be considered for prompt detection of hyperglycemia. Experts also recommend considering postprandial glucose monitoring because it is an early indicator of glucose intolerance. If hyperglycemia develops, metformin (first-line) and/or sodium glucose co-transporter 2 inhibitors or thiazolidinediones (second-/third-line) are the preferred agents; consider early referral to an endocrinologist. In conclusion, hyperglycemia is a common but manageable AE associated with PI3Kis. Multidisciplinary approach to the prevention, monitoring, and management of hyperglycemia optimizes patient care and allows patients to maintain therapy on PI3Ki.
Collapse
Affiliation(s)
| | | | | | - Erica L Mayer
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Hope S Rugo
- Department of Medicine (Hematology/Oncology), University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | | | - Dylan M Zylla
- The Cancer Research Center, HealthPartners Institute, Minneapolis, MN
| | | |
Collapse
|
5
|
Abstract
OBJECTIVES A comprehensive review of the current literature was conducted to summarize the potential therapeutic and management roles of ketogenic diet (KD) for cardiovascular disease (CVD). BACKGROUND Consensus has not been reached on the optimal diet for individuals with cardiovascular risk factors. KDs are characterized by high-fat, low-carbohydrate, and appropriate protein content, and have gained popularity in recent years in the management of various conditions, including cardiovascular and metabolic diseases. METHODS Original research, systematic reviews, and meta-analyses available in the PubMed, Web of Science, and Google Scholar databases were reviewed. RESULTS The current body of preclinical and clinical evidence on the efficacy of KD in the management of CVD remains limited. Specific applications of KD seem to suggest a positive impact on management of CVD. However, conflicting results and a lack of precise molecular and biochemical mechanisms of action provide ample opportunity for future investigation. CONCLUSION More multidisciplinary studies are needed to determine the true clinical benefit of KD in the management of CVD and so justify its expanded clinical use.
Collapse
Affiliation(s)
- Mohamed S Zaghloul
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Santiago Elizondo-Benedetto
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO, USA
- McKelvey School of Engineering, Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Surgery, Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA
| |
Collapse
|
6
|
Tian X, Xiang G, Mou C, Zhu L, Song J, Li G, Lv H. Integrated Transcriptomic and Metabolomic Analysis Reveals Possible Molecular Mechanisms of Leaf Growth and Development in Disanthus cercidifolius var. longipes. Metabolites 2024; 14:654. [PMID: 39728434 DOI: 10.3390/metabo14120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background:Disanthus cercidifolius var. longipes is an ancient relic plant unique to China. However, the typical shade-loving plant is largely exposed to the sun, which poses a major challenge to its conservation. Methods: This study explored dynamic changes in primary and secondary metabolites in D. cercidifolius leaves at different stages of development, combining metabolomics and transcriptome analysis to discuss the differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs). Results: The DAMs and DEGs were enriched in pathways related to photosynthesis, carbon (C) metabolism, anthocyanin synthesis, plant hormone signal transduction, and flavonoid synthesis. At the initial stage of leaf development, many primary metabolites were synthesized in the leaves. Before leaf maturity, many primary metabolites were converted into secondary metabolites. Combined transcriptome and metabolome analysis showed that the metabolites and genes related to anthocyanin synthesis and flavonoid metabolism were upregulated. In contrast, the genes related to C metabolism and C fixation were downregulated. After leaf maturity, photosynthetic capacity increased, total flavonoid content peaked (implying the strongest photoprotection capacity), and the transformation of anthocyanins and flavonoids was weakened. Conclusions: Light intensity indirectly affects the accumulation of the primary and secondary metabolism of D. cercidifolius. With the enhancement of photoprotection, the photosynthetic energy capacity decreases. It is, therefore, inferable that D. cercidifolius has shading properties and achieves a stable nutrient supply during growth and development through these strategies. Thus, D. cercidifolius protection requires a shaded environment.
Collapse
Affiliation(s)
- Xiaoming Tian
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha 411006, China
| | - Guangfeng Xiang
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha 411006, China
| | - Cun Mou
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha 411006, China
| | - Lu Zhu
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha 411006, China
| | - Jing Song
- Forestry Affairs Center of Hunan Province, Changsha 410114, China
| | - Gaofei Li
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha 411006, China
| | - Hao Lv
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha 411006, China
| |
Collapse
|
7
|
Selman C. The dietary exposome: a brief history of diet, longevity, and age-related health in rodents. Clin Sci (Lond) 2024; 138:1343-1356. [PMID: 39444221 DOI: 10.1042/cs20241248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
It has been recognized for over a century that feeding animals less food than they would normally eat increases lifespan and leads to broad-spectrum improvements in age-related health. A significant number of studies have subsequently shown that restricting total protein, branched chain amino acids or individual amino acids in the diet, as well as ketogenic diets, can elicit similar effects. In addition, it is becoming clear that fasting protocols, such as time-restricted-feeding or every-other-day feeding, without changes in overall energy intake can also profoundly affect rodent longevity and late-life health. In this review, I will provide a historical perspective on various dietary interventions that modulate ageing in rodents and discuss how this understanding of the dietary exposome may help identify future strategies to maintain late-life health and wellbeing in humans.
Collapse
Affiliation(s)
- Colin Selman
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom, G12 8QQ
| |
Collapse
|
8
|
Ma Y, Singhal G, Chan SS, Wang C, Yu H, Yin B, Pang J, Malvar G, Nasser I, Mather ML, Maratos-Flier E. FGF21 protects against ischaemia reperfusion injury in normal and fatty livers. Liver Int 2024; 44:1668-1679. [PMID: 38554044 DOI: 10.1111/liv.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Liver ischaemia/reperfusion (I/R) injury, which is an inevitable clinical problem of liver resection, liver transplantation and haemorrhagic shock. Fibroblast growth factor 21 (FGF21) was intimately coupled with multiple metabolic processes and proved to protect against apoptosis and inflammatory response in hepatocytes during hepatic I/R injury. However, the regulatory mechanisms of FGF21 in hepatic I/R injury remains unknown. Therefore, we hypothesize that FGF21 protects hepatic tissues from I/R injury. METHODS Blood samples were available from haemangiomas patients undergoing hepatectomy and murine liver I/R model and used to further evaluate the serum levels of FGF21 both in humans and mice. We further explored the regulatory mechanisms of FGF21 in murine liver I/R model by using FGF21-knockout mice (FGF21-KO mice) and FGF21-overexpression transgenic mice (FGF21-OE mice) fed a high-fat or ketogenic diet. RESULTS Our results show that the circulating levels of FGF21 were robustly decreased after liver I/R in both humans and mice. Silencing FGF21 expression with FGF21-KO mice aggravates liver injury at 6 h after 75 min of partial liver ischaemia, while FGF21-OE mice display alleviated hepatic I/R injury and inflammatory response. Compared with chow diet mice, exogenous FGF21 decreases the levels of aminotransferase, histological changes, apoptosis and inflammatory response in hepatic I/R injury treatment mice with a high-fat diet. Meanwhile, ketogenic diet mice are not sensitive to hepatic I/R injury. CONCLUSIONS The circulating contents of FGF21 are decreased during liver warm I/R injury and exogenous FGF21 exerts hepatoprotective effects on hepatic I/R injury. Thus, FGF21 regulates hepatic I/R injury and may be a key therapeutic target.
Collapse
Affiliation(s)
- Yong Ma
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Garima Singhal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne S Chan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Chaoqun Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongjun Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bing Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Pang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Grace Malvar
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie L Mather
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Eleftheria Maratos-Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Gallop MR, Vieira RFL, Matsuzaki ET, Mower PD, Liou W, Smart FE, Roberts S, Evason KJ, Holland WL, Chaix A. Long-term ketogenic diet causes hyperlipidemia, liver dysfunction, and glucose intolerance from impaired insulin trafficking and secretion in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599117. [PMID: 38948738 PMCID: PMC11212871 DOI: 10.1101/2024.06.14.599117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A ketogenic diet (KD) is a very low-carbohydrate, very high-fat diet proposed to treat obesity and type 2 diabetes. While KD grows in popularity, its effects on metabolic health are understudied. Here we show that, in male and female mice, while KD protects against weight gain and induces weight loss, over long-term, mice develop hyperlipidemia, hepatic steatosis, and severe glucose intolerance. Unlike high fat diet-fed mice, KD mice are not insulin resistant and have low levels of insulin. Hyperglycemic clamp and ex vivo GSIS revealed cell-autonomous and whole-body impairments in insulin secretion. Major ER/Golgi stress and disrupted ER-Golgi protein trafficking was indicated by transcriptomic profiling of KD islets and confirmed by electron micrographs showing a dilated Golgi network likely responsible for impaired insulin granule trafficking and secretion. Overall, our results suggest long-term KD leads to multiple aberrations of metabolic parameters that caution its systematic use as a health promoting dietary intervention.
Collapse
|
10
|
Soto-Mota A, Jansen LT, Norwitz NG, Pereira MA, Ebbeling CB, Ludwig DS. Physiologic Adaptation to Macronutrient Change Distorts Findings from Short Dietary Trials: Reanalysis of a Metabolic Ward Study. J Nutr 2024; 154:1080-1086. [PMID: 38128881 PMCID: PMC11347797 DOI: 10.1016/j.tjnut.2023.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
An influential 2-wk cross-over feeding trial without a washout period purported to show advantages of a low-fat diet (LFD) compared with a low-carbohydrate diet (LCD) for weight control. In contrast to several other macronutrient trials, the diet order effect was originally reported as not significant. In light of a new analysis by the original investigative group identifying an order effect, we aimed to examine, in a reanalysis of publicly available data (16 of 20 original participants; 7 female; mean BMI, 27.8 kg/m2), the validity of the original results and the claims that trial data oppose the carbohydrate-insulin model of obesity (CIM). We found that energy intake on the LCD was much lower when this diet was consumed first compared with second (a difference of -1164 kcal/d, P = 3.6 × 10-13); the opposite pattern was observed for the LFD (924 kcal/d, P = 2.0 × 10-16). This carry-over effect was significant (P interaction = 0.0004) whereas the net dietary effect was not (P = 0.4). Likewise, the between-arm difference (LCD - LFD) was -320 kcal/d in the first period and +1771 kcal/d in the second. Body fat decreased with consumption of the LCD first and increased with consumption of this diet second (-0.69 ± 0.33 compared with 0.57 ± 0.32 kg, P = 0.007). LCD-first participants had higher β-hydroxybutyrate levels while consuming the LCD and lower respiratory quotients while consuming LFD when compared with LFD-first participants on their respective diets. Change in insulin secretion as assessed by C-peptide in the first diet period predicted higher energy intake and less fat loss in the second period. These findings, which tend to support rather than oppose the CIM, suggest that differential (unequal) carry-over effects and short duration, with no washout period, preclude causal inferences regarding chronic macronutrient effects from this trial.
Collapse
Affiliation(s)
- Adrian Soto-Mota
- Metabolic Diseases Research Unit. National Institute of Medical Sciences and Nutrition Salvador Zubiran. Mexico City, Mexico; Tecnologico de Monterrey. School of Medicine. Mexico City, Mexico
| | - Lisa T Jansen
- Department of Dietetics & Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Arkansas Children's Nutrition Center, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Mark A Pereira
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, MN, United States
| | - Cara B Ebbeling
- Harvard Medical School, Boston, MA, United States; New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston MA, United States
| | - David S Ludwig
- Harvard Medical School, Boston, MA, United States; New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston MA, United States; Department of Nutrition, Exercise and Sports, University of Copenhagen.
| |
Collapse
|
11
|
Baylie T, Ayelgn T, Tiruneh M, Tesfa KH. Effect of Ketogenic Diet on Obesity and Other Metabolic Disorders: Narrative Review. Diabetes Metab Syndr Obes 2024; 17:1391-1401. [PMID: 38529169 PMCID: PMC10962461 DOI: 10.2147/dmso.s447659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Obesity is defined as an abnormal or excessive accumulation of fat that increases the burden of different chronic diseases in the population. It has reached epidemic proportions and is a major risk factor for a variety of diseases, including hypertension, cardiovascular disease, type 2 diabetes, dyslipidaemia, atherosclerosis, and some malignancies. Weight gain is a result of excessive energy intake compared to energy expenditure (energy loss from metabolism and physical exercise). A ketogenic diet has a more useful effect on obesity than other diets. A ketogenic diet is a low-carbohydrate, high-fat, moderate-protein diet that induces the production of ketone bodies by mimicking the breakdown of a fasting state. The mechanism behind the ketogenic diet is still unknown, although it obviously helps people with obesity lose weight. Several pathways for the ketogenic diet effect on weight loss have been hypothesized by researchers, including reduced appetite due to effects on appetite control hormones and a possible direct appetite suppressant action of ketone bodies; reduced lipogenesis and increased lipolysis; greater metabolic efficiency; and increased metabolic costs.
Collapse
Affiliation(s)
- Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Tiget Ayelgn
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Markeshaw Tiruneh
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Kibur Hunie Tesfa
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
12
|
Galali Y, Zebari SMS, Aj. Jabbar A, Hashm Balaky H, Sadee BA, Hassanzadeh H. The impact of ketogenic diet on some metabolic and non-metabolic diseases: Evidence from human and animal model experiments. Food Sci Nutr 2024; 12:1444-1464. [PMID: 38455178 PMCID: PMC10916642 DOI: 10.1002/fsn3.3873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
The ketogenic diet (KD) is recognized as minimum carbohydrate and maximum fat intakes, which leads to ketosis stimulation, a state that is thought to metabolize fat more than carbohydrates for energy supply. KD has gained more interest in recent years and is for many purposes, including weight loss and managing serious diseases like type 2 diabetes. On the other hand, many believe that KD has safety issues and are uncertain about the health drawbacks. Thus, the outcomes of the effect of KD on metabolic and non-metabolic disease remain disputable. The current narrative review aims to evaluate the effect of KD on several diseases concerning the human health. To our best knowledge, the first report aims to investigate the efficacy of KD on multiple human health issues including type 2 diabetes and weight loss, cardiovascular disease, kidney failure and hypertension, non-alcoholic fatty liver, mental problem, oral health, libido, and osteoporosis. The literature searches were performed in Databases, PubMed, Scopus, and web of Science looking for both animal and human model designs. The results heterogeneity seems to be explained by differences in diet composition and duration. Also, the available findings may show that proper control of carbohydrates, a significant reduction in glycemic control and glycated hemoglobin, and weight loss by KD can be an approach to improve diabetes and obesity, hypertension, non-alcoholic fatty liver, PCOS, libido, oral health, and mental problem if isocaloric is considered. However, for some other diseases like cardiovascular disease and osteoporosis, more robust data are needed. Therefore, there is robust data to support the notion that KD can be effective for some metabolic and non-metabolic diseases but not for all of them. So they have to be followed cautiously and under the supervision of health professionals.
Collapse
Affiliation(s)
- Yaseen Galali
- Food Technology DepartmentCollege of Agricultural Engineering Sciences, Salahaddin University‐ErbilErbilIraq
| | - Salih M. S. Zebari
- Department of Nutrition and DieteticsCihan University‐ErbilErbilIraq
- Animal Resource DepartmentCollege of Agricultural Engineering Sciences, Salahaddin University‐ErbilErbilIraq
| | - Ahmed Aj. Jabbar
- Department of Medical Laboratory TechnologyErbil Technical Health and Medical College, Erbil Polytechnic UniversityErbilIraq
| | - Holem Hashm Balaky
- General Science Department, Faculty of EducationSoran UniversityErbilIraq
- Mergasor Technical InstituteErbil Polytechnic UniversityErbilIraq
| | - Bashdar Abuzed Sadee
- Food Technology DepartmentCollege of Agricultural Engineering Sciences, Salahaddin University‐ErbilErbilIraq
- Department of Nutrition and DieteticsCihan University‐ErbilErbilIraq
| | - Hamed Hassanzadeh
- Department of Food Science and Technology, Faculty of Para‐veterinaryIlam UniversityIlamIran
| |
Collapse
|
13
|
Roohy F, Siri M, Kohansal K, Ghalandari A, Rezaei R, Maleki MH, Shams M, Monsef A, Dastghaib S. Targeting apoptosis and unfolded protein response: the impact of β-hydroxybutyrate in clear cell renal cell carcinoma under glucose-deprived conditions. Mol Biol Rep 2024; 51:168. [PMID: 38252187 DOI: 10.1007/s11033-023-08977-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) plays a significant role in the mortality associated with kidney cancer. Targeting biological processes that inhibit cancer growth opens up new treatment possibilities. The unfolded protein response (UPR) and apoptosis have crucial roles in RCC progression. This study investigates the impact of β-hydroxybutyrate (BHB) on ccRCC cells under glucose deprivation resembling as a ketogenic diet. METHOD Caki-1 ccRCC cells were exposed to decreasing glucose concentrations alone or in combination with 10 or 25 mM BHB during 48 and 72 h. Cell viability was determined using MTT assay. The mRNA expression level of apoptosis-and UPR-related markers (Bcl-2, Bax, caspase 3, XBP1s, BIP, CHOP, ATF4, and ATF6) were assayed by qRT-PCR. RESULTS Cell viability experiments demonstrated that combining different doses of BHB with decreasing glucose levels initially improved cell viability after 48 h. Nevertheless, this trend reversed after 72 h, with higher impacts disclosed at 25 mM BHB. Apoptosis was induced in BHB-treated cells as caspase-3 and Bax were increased and Bcl-2 was downregulated. BHB supplementation reduced UPR-related gene expression (XBP1s, BIP, CHOP, ATF4, and ATF6), revealing a possible mechanism by which BHB affects cell survival. CONCLUSION This research emphasizes the dual effect of BHB, initially suppressing cell- survival under glucose deprivation but eventually triggering apoptosis and suppressing UPR signaling. These data highlight the intricate connection between metabolic reprogramming and cellular stress response in ccRCC. Further research is recommended to explore the potential of BHB as a therapeutic strategy for managing ccRCC.
Collapse
Affiliation(s)
- Fatemeh Roohy
- Department of Genetics, Islamic Azad University, Kazerun, Iran
| | - Morvarid Siri
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kiarash Kohansal
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Afsane Ghalandari
- Student Research Committee, Sari Branch, Islamic Azad University, Sari, Iran
| | - Roya Rezaei
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mesbah Shams
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Demicheva E, Dordiuk V, Polanco Espino F, Ushenin K, Aboushanab S, Shevyrin V, Buhler A, Mukhlynina E, Solovyova O, Danilova I, Kovaleva E. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites 2024; 14:54. [PMID: 38248857 PMCID: PMC10820779 DOI: 10.3390/metabo14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers a universal and precise analytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids, peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of the research landscape in mass spectrometry-based blood metabolomics profiling. While the field of metabolomics research is primarily focused on cancer, this review specifically highlights studies related to non-cancer diseases, aiming to bring attention to valuable research that often remains overshadowed. Employing natural language processing methods, we processed 507 articles to provide insights into the application of metabolomic studies for specific diseases and physiological systems. The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing blood samples, researchers gain valuable insights into the metabolic perturbations associated with these diseases, potentially leading to the identification of novel biomarkers and the development of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS, LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based studies. This addition will contribute to a more exhaustive understanding of the available analytical techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare professionals can pave the way for precision medicine and personalized therapeutic interventions. Continuous advancements in mass spectrometry technology and data analysis methods will further enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its translation from the laboratory to routine clinical application.
Collapse
Affiliation(s)
- Ekaterina Demicheva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Vladislav Dordiuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Fernando Polanco Espino
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Konstantin Ushenin
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
| | - Saied Aboushanab
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Vadim Shevyrin
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Aleksey Buhler
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Elena Mukhlynina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Olga Solovyova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Irina Danilova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Elena Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| |
Collapse
|
15
|
Chen Y, Yamamoto T, Takahashi Y, Moro T, Tajima T, Sakaguchi Y, Sakata N, Yokoyama A, Hijioka S, Sada A, Tabata Y, Ohki R. Metabolic intervention by low carbohydrate diet suppresses the onset and progression of neuroendocrine tumors. Cell Death Dis 2023; 14:597. [PMID: 37679316 PMCID: PMC10484927 DOI: 10.1038/s41419-023-06123-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Insulin signaling often plays a role in the regulation of cancer, including tumor initiation, progression, and response to treatment. In addition, the insulin-regulated PI3K-Akt-mTOR pathway plays an important role in the regulation of islet cell proliferation, and this pathway is hyperactivated in human non-functional pancreatic neuroendocrine tumors (PanNETs). We, therefore, investigated the effect of a very low carbohydrate diet (ketogenic diet) on a mouse model that develops non-functional PanNETs to ask how reduced PI3K-Akt-mTOR signaling might affect the development and progression of non-functional PanNET. We found that this dietary intervention resulted in lower PI3K-Akt-mTOR signaling in islet cells and a significant reduction in PanNET formation and progression. We also found that this treatment had a significant effect on the suppression of pituitary NET development. Furthermore, we found that non-functional PanNET patients with lower blood glucose levels tend to have a better prognosis than patients with higher blood glucose levels. This preclinical study shows that a dietary intervention that results in lower serum insulin levels leads to lower insulin signals within the neuroendocrine cells and has a striking suppressive effect on the development and progression of both pancreatic and pituitary NETs.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tatsuki Yamamoto
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yura Takahashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
- Tokyo College of Biotechnology, 1-3-14 Kitakoujiya, Ohta-ku, Tokyo, 144-0032, Japan
| | - Tomoka Moro
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
- Tokyo College of Biotechnology, 1-3-14 Kitakoujiya, Ohta-ku, Tokyo, 144-0032, Japan
| | - Tomoko Tajima
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukiko Sakaguchi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, 997-0052, Japan
| | - Susumu Hijioka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Akane Sada
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuko Tabata
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
16
|
Akiyama M, Akiyama T, Saigusa D, Hishinuma E, Matsukawa N, Shibata T, Tsuchiya H, Mori A, Fujii Y, Mogami Y, Tokorodani C, Kuwahara K, Numata-Uematsu Y, Inoue K, Kobayashi K. Comprehensive study of metabolic changes induced by a ketogenic diet therapy using GC/MS- and LC/MS-based metabolomics. Seizure 2023; 107:52-59. [PMID: 36958064 DOI: 10.1016/j.seizure.2023.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
OBJECTIVE The ketogenic diet (KD), a high-fat and low-carbohydrate diet, is effective for a subset of patients with drug-resistant epilepsy, although the mechanisms of the KD have not been fully elucidated. The aims of this observational study were to investigate comprehensive short-term metabolic changes induced by the KD and to explore candidate metabolites or pathways for potential new therapeutic targets. METHODS Subjects included patients with intractable epilepsy who had undergone the KD therapy (the medium-chain triglyceride [MCT] KD or the modified Atkins diet using MCT oil). Plasma and urine samples were obtained before and at 2-4 weeks after initiation of the KD. Targeted metabolome analyses of these samples were performed using gas chromatography-tandem mass spectrometry (GC/MS/MS) and liquid chromatography-tandem mass spectrometry (LC/MS/MS). RESULTS Samples from 10 and 11 patients were analysed using GC/MS/MS and LC/MS/MS, respectively. The KD increased ketone bodies, various fatty acids, lipids, and their conjugates. In addition, levels of metabolites located upstream of acetyl-CoA and propionyl-CoA, including catabolites of branched-chain amino acids and structural analogues of γ-aminobutyric acid and lactic acid, were elevated. CONCLUSIONS The metabolites that were significantly changed after the initiation of the KD and related metabolites may be candidates for further studies for neuronal actions to develop new anti-seizure medications.
Collapse
Affiliation(s)
- Mari Akiyama
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Tomoyuki Akiyama
- Department of Paediatrics (Child Neurology), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Eiji Hishinuma
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Centre for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takashi Shibata
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Hiroki Tsuchiya
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Atsushi Mori
- Department of Neurology, Shiga Medical Centre for Children, Moriyama, Japan
| | - Yuji Fujii
- Department of Paediatrics, Hiroshima City Funairi Citizens Hospital, Hiroshima, Japan
| | - Yukiko Mogami
- Department of Paediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Chiho Tokorodani
- Department of Paediatrics, Kochi Health Sciences Centre, Kochi, Japan
| | - Kozue Kuwahara
- Department of Paediatrics, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | | | - Kenji Inoue
- Department of Neurology, Shiga Medical Centre for Children, Moriyama, Japan
| | - Katsuhiro Kobayashi
- Department of Paediatrics (Child Neurology), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
17
|
Gross EC, Putananickal N, Orsini AL, Schoenen J, Fischer D, Soto-Mota A. Defining metabolic migraine with a distinct subgroup of patients with suboptimal inflammatory and metabolic markers. Sci Rep 2023; 13:3787. [PMID: 36882474 PMCID: PMC9992685 DOI: 10.1038/s41598-023-28499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/19/2023] [Indexed: 03/09/2023] Open
Abstract
Emerging evidence suggest migraine is a response to cerebral energy deficiency or oxidative stress in the brain. Beta-hydroxybutyrate (BHB) is likely able to circumvent some of the meta-bolic abnormalities reported in migraine. Exogenous BHB was given to test this assumption and, in this post-hoc analysis, multiple metabolic biomarkers were identified to predict clinical improvements. A randomized clinical trial, involving 41 patients with episodic migraine. Each treatment period was 12 weeks long, followed by eight weeks of washout phase / second run-in phase before entering the corresponding second treatment period. The primary endpoint was the number of migraine days in the last 4 weeks of treatment adjusted for baseline. BHB re-sponders were identified (those with at least a 3-day reduction in migraine days over placebo) and its predictors were evaluated using Akaike's Information Criterion (AIC) stepwise boot-strapped analysis and logistic regression. Responder analysis showed that metabolic markers could identify a "metabolic migraine" subgroup, which responded to BHB with a 5.7 migraine days reduction compared to the placebo. This analysis provides further support for a "metabolic migraine" subtype. Additionally, these analyses identified low-cost and easily accessible biomarkers that could guide recruitment in future research on this subgroup of patients.This study is part of the trial registration: ClinicalTrials.gov: NCT03132233, registered on 27.04.2017, https://clinicaltrials.gov/ct2/show/NCT03132233.
Collapse
Affiliation(s)
- Elena C Gross
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| | - Niveditha Putananickal
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Anna-Lena Orsini
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB) & Neurology Department, University Hospital Basel (USB), University of Basel, Basel, Switzerland
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-Citadelle Hospital, University of Liège, Liège, Belgium
| | - Dirk Fischer
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Tlalpan, Mexico.,School of Medicine, Tecnologico de Monterrey, Mexico City, Mexico
| |
Collapse
|
18
|
Aminzadeh-Gohari S, Kofler B, Herzog C. Dietary restriction in senolysis and prevention and treatment of disease. Crit Rev Food Sci Nutr 2022; 64:5242-5268. [PMID: 36484738 PMCID: PMC7616065 DOI: 10.1080/10408398.2022.2153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging represents a key risk factor for a plethora of diseases. Targeting detrimental processes which occur during aging, especially before onset of age-related disease, could provide drastic improvements in healthspan. There is increasing evidence that dietary restriction (DR), including caloric restriction, fasting, or fasting-mimicking diets, extend both lifespan and healthspan. This has sparked interest in the use of dietary regimens as a non-pharmacological means to slow aging and prevent disease. Here, we review the current evidence on the molecular mechanisms underlying DR-induced health improvements, including removal of senescent cells, metabolic reprogramming, and epigenetic rejuvenation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
The Age-Accompanied and Diet-Associated Remodeling of the Phospholipid, Amino Acid, and SCFA Metabolism of Healthy Centenarians from a Chinese Longevous Region: A Window into Exceptional Longevity. Nutrients 2022; 14:nu14204420. [PMID: 36297104 PMCID: PMC9612356 DOI: 10.3390/nu14204420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
As centenarians provide a paradigm of healthy aging, investigating the comprehensive metabolic profiles of healthy centenarians is of utmost importance for the pursuit of health and longevity. However, relevant reports, especially studies considering the dietary influence on metabolism, are still limited, mostly lacking the guidance of a model of healthy aging. Therefore, exploring the signatures of the integrative metabolic profiles of the healthy centenarians from a famous longevous region, Bama County, China, should be an effective way. The global metabolome in urine and the short-chain fatty acids (SCFAs) in the feces of 30 healthy centenarians and 31 elderly people aged 60−70 from the longevous region were analyzed by non-targeted metabolomics combined with metabolic target analysis. The results showed that the characteristic metabolites related to longevity were mostly summarized into phosphatidylserine, lyso-phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, bile acids, and amino acids (p < 0.05). Six metabolic pathways were found significant relevant to longevity. Furthermore, acetic acid, propionic acid, butyric acid, valeric acid, and total SCFA were significantly increased in the centenarian group (p < 0.05) and were also positively associated with the dietary fiber intake (p < 0.01). It was age-accompanied and diet-associated remodeling of phospholipid, amino acid, and SCFA metabolism that expressed the unique metabolic signatures related to exceptional longevity. This metabolic remodeling is suggestive of cognitive benefits, better antioxidant capacity, the attenuation of local inflammation, and health-span-promoting processes, which play a critical and positive role in shaping healthy aging.
Collapse
|
20
|
The Paradoxical Role of Circulating Ketone Bodies in Glycemic Control of Individuals with Type 2 Diabetes: High Risk, High Reward? Biomolecules 2022; 12:biom12091318. [PMID: 36139157 PMCID: PMC9496560 DOI: 10.3390/biom12091318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction: Fasting plasma ketone bodies (KB) are elevated in individuals with type 2 diabetes (T2D) and could affect glycemic control and disease progression. Prolonged KB exposure may result in adaptive beneficial responses, counteracting glycemic dysregulation. In the current proof-of-concept study in adults with T2D, we hypothesized that fasting plasma KB are cross-sectionally associated with poorer glycemic control but prospectively with better glycemic control. Materials and Methods: Fasting plasma KB were measured via nuclear magnetic resonance spectroscopy in patients with T2D treated in primary care (Zodiac cohort; The Netherlands). We analyzed the associations between KB and HbA1c at baseline using linear regression analyses and HbA1c changes over time using linear mixed models. We adjusted for potential confounders, including risk factors for poor glycemic control. Individuals with T2D participating in the general population-based PREVEND study were used as a replication cohort. Results: We included 271 individuals with T2D with a total of 859 HbA1c measurements during a follow-up period of 3.0 (2.0–3.2) years. At baseline, the total amount of fasting plasma KB was independently and positively associated with HbA1c levels (regression coefficient in the fully adjusted analysis = 0.31; 95% CI 0.06–0.57, per doubling of KB; p = 0.02). In contrast, in the longitudinal analyses, fasting plasma KB were associated with a yearly HbA1c (%) decrease of −0.10 (95% CI −0.19 to −0.00 per doubling baseline KB; p = 0.05). Results were replicated in 387 individuals with T2D from a general population cohort with a total of 1115 glucose measurements during a follow-up period of 7.5 (7.2–8.0) years. A yearly decrease in fasting plasma glucose (mmol/L) of 0.09 was found per doubling of baseline KB. Conclusions: This study is the first to suggest a paradoxical role of circulating KB on glycemic control in T2D: elevated KB are associated with cross-sectionally poorer glycemic control but longitudinally with better long-term glycemic control.
Collapse
|
21
|
Duan H, Li J, Yu L, Fan L. The road ahead of dietary restriction on anti-aging: focusing on personalized nutrition. Crit Rev Food Sci Nutr 2022; 64:891-908. [PMID: 35950606 DOI: 10.1080/10408398.2022.2110034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary restriction (DR), including caloric restriction (CR), intermittent fasting (IF), and restriction of specific food compositions, can delay aging, and the main mechanisms include regulation of nutrient-sensing pathways and gut microbiota. However, the effects of DR regimens on longevity remain controversial, as some studies have demonstrated that IF, rather than CR or diet composition, influences longevity, while other studies have shown that the restricted-carbohydrate or -protein diets, rather than CR, determine health and longevity. Many factors, including DR-related factors (carbohydrate or protein composition, degree and duration of DR), and individual differences (health status, sex, genotype, and age of starting DR), would be used to explain the controversial anti-aging effects of DR, thus highlighting the necessity of precise DR intervention for anti-aging. Personalized DR intervention in humans is challenging because of the lack of accurate aging molecular biomarkers and vast individual variability. Using machine learning to build a predictive model based on the data set of clinical features, gut microbiome and metabolome, may be a good method to achieve precise DR intervention. Therefore, this review analyzed the anti-aging effects of various DR regimens, summarized their mechanisms and influencing factors, and proposed a future research direction for achieving personalized DR regimens for slowing aging.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Weber DD, Aminzadeh-Gohari S, Thapa M, Redtenbacher AS, Catalano L, Capelôa T, Vazeille T, Emberger M, Felder TK, Feichtinger RG, Koelblinger P, Dallmann G, Sonveaux P, Lang R, Kofler B. Ketogenic diets slow melanoma growth in vivo regardless of tumor genetics and metabolic plasticity. Cancer Metab 2022; 10:12. [PMID: 35851093 PMCID: PMC9290281 DOI: 10.1186/s40170-022-00288-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Growing evidence supports the use of low-carbohydrate/high-fat ketogenic diets as an adjunctive cancer therapy. However, it is unclear which genetic, metabolic, or immunological factors contribute to the beneficial effect of ketogenic diets. Therefore, we investigated the effect of ketogenic diets on the progression and metabolism of genetically and metabolically heterogeneous melanoma xenografts, as well as on the development of melanoma metastases in mice with a functional immune system. Methods Mice bearing BRAF mutant, NRAS mutant, and wild-type melanoma xenografts as well as mice bearing highly metastatic melanoma allografts were fed with a control diet or ketogenic diets, differing in their triglyceride composition, to evaluate the effect of ketogenic diets on tumor growth and metastasis. We performed an in-depth targeted metabolomics analysis in plasma and xenografts to elucidate potential antitumor mechanisms in vivo. Results We show that ketogenic diets effectively reduced tumor growth in immunocompromised mice bearing genetically and metabolically heterogeneous human melanoma xenografts. Furthermore, the ketogenic diets exerted a metastasis-reducing effect in the immunocompetent syngeneic melanoma mouse model. Targeted analysis of plasma and tumor metabolomes revealed that ketogenic diets induced distinct changes in amino acid metabolism. Interestingly, ketogenic diets reduced the levels of alpha-amino adipic acid, a biomarker of cancer, in circulation to levels observed in tumor-free mice. Additionally, alpha-amino adipic acid was reduced in xenografts by ketogenic diets. Moreover, the ketogenic diets increased sphingomyelin levels in plasma and the hydroxylation of sphingomyelins and acylcarnitines in tumors. Conclusions Ketogenic diets induced antitumor effects toward melanoma regardless of the tumors´ genetic background, its metabolic signature, and the host immune status. Moreover, ketogenic diets simultaneously affected multiple metabolic pathways to create an unfavorable environment for melanoma cell proliferation, supporting their potential as a complementary nutritional approach to melanoma therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-022-00288-7.
Collapse
Affiliation(s)
- Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | | | - Anna-Sophia Redtenbacher
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - Tânia Capelôa
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Thibaut Vazeille
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | | | - Thomas K Felder
- Department of Laboratory Medicine, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - Peter Koelblinger
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | | | - Pierre Sonveaux
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria.
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria.
| |
Collapse
|
23
|
Duan H, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int 2022; 158:111501. [DOI: 10.1016/j.foodres.2022.111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
24
|
Kalafut KC, Mitchell SJ, MacArthur MR, Mitchell JR. Short-Term Ketogenic Diet Induces a Molecular Response That Is Distinct From Dietary Protein Restriction. Front Nutr 2022; 9:839341. [PMID: 35433789 PMCID: PMC9005751 DOI: 10.3389/fnut.2022.839341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
There is increasing interest in utilizing short-term dietary interventions in the contexts of cancer, surgical stress and metabolic disease. These short-term diets may be more feasible than extended interventions and may be designed to complement existing therapies. In particular, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used to treat epilepsy, has gained popularity as a potential strategy for weight loss and improved metabolic health. In mice, long-term KD improves insulin sensitivity and may extend lifespan and healthspan. Dietary protein restriction (PR) causes increased energy expenditure, weight loss and improved glucose homeostasis. Since KD is inherently a low-protein diet (10% of calories from protein vs. >18% in control diet), here we evaluated the potential for mechanistic overlap between PR and KD via activation of a PR response. Mice were fed control, protein-free (PF), or one of four ketogenic diets with varying protein content for 8 days. PF and KD both decreased body weight, fat mass, and liver weights, and reduced fasting glucose and insulin levels, compared to mice fed the control diet. However, PF-fed animals had significantly improved insulin tolerance compared to KD. Furthermore, contrary to the PF-fed mice, mice fed ketogenic diets containing more than 5% of energy from protein did not increase hepatic Fgf21 or brown adipose Ucp1 expression. Interestingly, mice fed KD lacking protein demonstrated greater elevations in hepatic Fgf21 than mice fed a low-fat PF diet. To further elucidate potential mechanistic differences between PF and KD and the interplay between dietary protein and carbohydrate restriction, we conducted RNA-seq analysis on livers from mice fed each of the six diets and identified distinct gene sets which respond to dietary protein content, dietary fat content, and ketogenesis. We conclude that KD with 10% of energy from protein does not induce a protein restriction response, and that the overlapping metabolic benefits of KD and PF diets may occur via distinct underlying mechanisms.
Collapse
Affiliation(s)
- Krystle C. Kalafut
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Sarah J. Mitchell
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| | - Michael R. MacArthur
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| | - James R. Mitchell
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| |
Collapse
|
25
|
|
26
|
Castro R, Whalen CA, Gullette S, Mattie FJ, Florindo C, Heil SG, Huang NK, Neuberger T, Ross AC. A Hypomethylating Ketogenic Diet in Apolipoprotein E-Deficient Mice: A Pilot Study on Vascular Effects and Specific Epigenetic Changes. Nutrients 2021; 13:nu13103576. [PMID: 34684577 PMCID: PMC8537671 DOI: 10.3390/nu13103576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022] Open
Abstract
Hyperhomocysteneinemia (HHcy) is common in the general population and is a risk factor for atherosclerosis by mechanisms that are still elusive. A hypomethylated status of epigenetically relevant targets may contribute to the vascular toxicity associated with HHcy. Ketogenic diets (KD) are diets with a severely restricted amount of carbohydrates that are being widely used, mainly for weight-loss purposes. However, studies associating nutritional ketosis and HHcy are lacking. This pilot study investigates the effects of mild HHcy induced by nutritional manipulation of the methionine metabolism in the absence of dietary carbohydrates on disease progression and specific epigenetic changes in the apolipoprotein-E deficient (apoE-/-) mouse model. ApoE-/- mice were either fed a KD, a diet with the same macronutrient composition but low in methyl donors (low methyl KD, LMKD), or control diet. After 4, 8 or 12 weeks plasma was collected for the quantification of: (1) nutritional ketosis, (i.e., the ketone body beta-hydroxybutyrate using a colorimetric assay); (2) homocysteine by HPLC; (3) the methylating potential S-adenosylmethionine to S-adenosylhomocysteine ratio (AdoHcy/AdoMet) by LC-MS/MS; and (4) the inflammatory cytokine monocyte chemoattractant protein 1 (MCP1) by ELISA. After 12 weeks, aortas were collected to assess: (1) the vascular AdoHcy/AdoMet ratio; (2) the volume of atherosclerotic lesions by high-field magnetic resonance imaging (14T-MRI); and (3) the content of specific epigenetic tags (H3K27me3 and H3K27ac) by immunofluorescence. The results confirmed the presence of nutritional ketosis in KD and LMKD mice but not in the control mice. As expected, mild HHcy was only detected in the LMKD-fed mice. Significantly decreased MCP1 plasma levels and plaque burden were observed in control mice versus the other two groups, together with an increased content of one of the investigated epigenetic tags (H3K27me3) but not of the other (H3K27ac). Moreover, we are unable to detect any significant differences at the p < 0.05 level for MCP1 plasma levels, vascular AdoMet:AdoHcy ratio levels, plaque burden, and specific epigenetic content between the latter two groups. Nevertheless, the systemic methylating index was significantly decreased in LMKD mice versus the other two groups, reinforcing the possibility that the levels of accumulated homocysteine were insufficient to affect vascular transmethylation reactions. Further studies addressing nutritional ketosis in the presence of mild HHcy should use a higher number of animals and are warranted to confirm these preliminary observations.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: ; Tel.: +1-814-865-2938
| | - Courtney A. Whalen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Sean Gullette
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.G.); (T.N.)
| | - Floyd J. Mattie
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Cristina Florindo
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Sandra G. Heil
- Medical Center Rotterdam, Department of Clinical Chemistry, Erasmus MC University, 3015 GD Rotterdam, The Netherlands;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Jean Mayer USDA Human Nutrition Research Center on Aging, Cardiovascular Nutrition Laboratory, Tufts University, Boston, MA 02111, USA
| | - Thomas Neuberger
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.G.); (T.N.)
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| |
Collapse
|
27
|
Cortez NE, Mackenzie GG. Ketogenic Diets in Pancreatic Cancer and Associated Cachexia: Cellular Mechanisms and Clinical Perspectives. Nutrients 2021; 13:nu13093202. [PMID: 34579079 PMCID: PMC8471358 DOI: 10.3390/nu13093202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and extremely therapy-resistant cancer. It is estimated that up to 80% of PDAC patients present with cachexia, a multifactorial disorder characterized by the involuntary and ongoing wasting of skeletal muscle that affects therapeutic response and survival. During the last decade, there has been an increased interest in exploring dietary interventions to complement the treatment of PDAC and associated cachexia. Ketogenic diets (KDs) have gained attention for their anti-tumor potential. Characterized by a very low carbohydrate, moderate protein, and high fat composition, this diet mimics the metabolic changes that occur in fasting. Numerous studies report that a KD reduces tumor growth and can act as an adjuvant therapy in various cancers, including pancreatic cancer. However, research on the effect and mechanisms of action of KDs on PDAC-associated cachexia is limited. In this narrative review, we summarize the evidence of the impact of KDs in PDAC treatment and cachexia mitigation. Furthermore, we discuss key cellular mechanisms that explain KDs’ potential anti-tumor and anti-cachexia effects, focusing primarily on reprogramming of cell metabolism, epigenome, and the gut microbiome. Finally, we provide a perspective on future research needed to advance KDs into clinical use.
Collapse
|
28
|
Dai X, Bu X, Gao Y, Guo J, Hu J, Jiang C, Zhang Z, Xu K, Duan J, He S, Zhang J, Wan L, Liu T, Zhou X, Hung MC, Freeman GJ, Wei W. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol Cell 2021; 81:2317-2331.e6. [PMID: 33909988 PMCID: PMC8178223 DOI: 10.1016/j.molcel.2021.03.037] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/26/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Aberrant energy status contributes to multiple metabolic diseases, including obesity, diabetes, and cancer, but the underlying mechanism remains elusive. Here, we report that ketogenic-diet-induced changes in energy status enhance the efficacy of anti-CTLA-4 immunotherapy by decreasing PD-L1 protein levels and increasing expression of type-I interferon (IFN) and antigen presentation genes. Mechanistically, energy deprivation activates AMP-activated protein kinase (AMPK), which in turn, phosphorylates PD-L1 on Ser283, thereby disrupting its interaction with CMTM4 and subsequently triggering PD-L1 degradation. In addition, AMPK phosphorylates EZH2, which disrupts PRC2 function, leading to enhanced IFNs and antigen presentation gene expression. Through these mechanisms, AMPK agonists or ketogenic diets enhance the efficacy of anti-CTLA-4 immunotherapy and improve the overall survival rate in syngeneic mouse tumor models. Our findings reveal a pivotal role for AMPK in regulating the immune response to immune-checkpoint blockade and advocate for combining ketogenic diets or AMPK agonists with anti-CTLA4 immunotherapy to combat cancer.
Collapse
Affiliation(s)
- Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yang Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jia Hu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jinzhi Duan
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaohui He
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Crabtree CD, Kackley ML, Buga A, Fell B, LaFountain RA, Hyde PN, Sapper TN, Kraemer WJ, Scandling D, Simonetti OP, Volek JS. Comparison of Ketogenic Diets with and without Ketone Salts versus a Low-Fat Diet: Liver Fat Responses in Overweight Adults. Nutrients 2021; 13:966. [PMID: 33802651 PMCID: PMC8002465 DOI: 10.3390/nu13030966] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Ketogenic diets (KDs) often contain high levels of saturated fat, which may increase liver fat, but the lower carbohydrate intake may have the opposite effect. Using a controlled feeding design, we compared liver fat responses to a hypocaloric KD with a placebo (PL) versus an energy-matched low-fat diet (LFD) in overweight adults. We also examined the added effect of a ketone supplement (KS). Overweight adults were randomized to a 6-week KD (KD + PL) or a KD with KS (KD + KS); an LFD group was recruited separately. All diets were estimated to provide 75% of energy expenditure. Weight loss was similar between groups (p > 0.05). Liver fat assessed by magnetic resonance imaging decreased after 6 week (p = 0.004) with no group differences (p > 0.05). A subset with nonalcoholic fatty liver disease (NAFLD) (liver fat > 5%, n = 12) showed a greater reduction in liver fat, but no group differences. In KD participants with NAFLD, 92% of the variability in change in liver fat was explained by baseline liver fat (p < 0.001). A short-term hypocaloric KD high in saturated fat does not adversely impact liver health and is not impacted by exogenous ketones. Hypocaloric low-fat and KDs can both be used in the short-term to significantly reduce liver fat in individuals with NAFLD.
Collapse
Affiliation(s)
- Christopher D. Crabtree
- Department of Human Sciences, The Ohio State University, Columbus, OH 43201, USA; (C.D.C.); (M.L.K.); (A.B.); (B.F.); (R.A.L.); (P.N.H.); (T.N.S.); (W.J.K.)
| | - Madison L. Kackley
- Department of Human Sciences, The Ohio State University, Columbus, OH 43201, USA; (C.D.C.); (M.L.K.); (A.B.); (B.F.); (R.A.L.); (P.N.H.); (T.N.S.); (W.J.K.)
| | - Alexandru Buga
- Department of Human Sciences, The Ohio State University, Columbus, OH 43201, USA; (C.D.C.); (M.L.K.); (A.B.); (B.F.); (R.A.L.); (P.N.H.); (T.N.S.); (W.J.K.)
| | - Brandon Fell
- Department of Human Sciences, The Ohio State University, Columbus, OH 43201, USA; (C.D.C.); (M.L.K.); (A.B.); (B.F.); (R.A.L.); (P.N.H.); (T.N.S.); (W.J.K.)
| | - Richard A. LaFountain
- Department of Human Sciences, The Ohio State University, Columbus, OH 43201, USA; (C.D.C.); (M.L.K.); (A.B.); (B.F.); (R.A.L.); (P.N.H.); (T.N.S.); (W.J.K.)
| | - Parker N. Hyde
- Department of Human Sciences, The Ohio State University, Columbus, OH 43201, USA; (C.D.C.); (M.L.K.); (A.B.); (B.F.); (R.A.L.); (P.N.H.); (T.N.S.); (W.J.K.)
| | - Teryn N. Sapper
- Department of Human Sciences, The Ohio State University, Columbus, OH 43201, USA; (C.D.C.); (M.L.K.); (A.B.); (B.F.); (R.A.L.); (P.N.H.); (T.N.S.); (W.J.K.)
| | - William J. Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH 43201, USA; (C.D.C.); (M.L.K.); (A.B.); (B.F.); (R.A.L.); (P.N.H.); (T.N.S.); (W.J.K.)
| | - Debbie Scandling
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (D.S.); (O.P.S.)
| | - Orlando P. Simonetti
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (D.S.); (O.P.S.)
- Departments of Radiology and Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH 43201, USA; (C.D.C.); (M.L.K.); (A.B.); (B.F.); (R.A.L.); (P.N.H.); (T.N.S.); (W.J.K.)
| |
Collapse
|
30
|
Mierziak J, Burgberger M, Wojtasik W. 3-Hydroxybutyrate as a Metabolite and a Signal Molecule Regulating Processes of Living Organisms. Biomolecules 2021; 11:biom11030402. [PMID: 33803253 PMCID: PMC8000602 DOI: 10.3390/biom11030402] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
3-hydroxybutyrate (3-HB) as a very important metabolite occurs in animals, bacteria and plants. It is well known that in animals, 3-HB is formed as a product of the normal metabolism of fatty acid oxidation and can therefore be used as an energy source in the absence of sufficient blood glucose. In microorganisms, 3-HB mainly serves as a substrate for the synthesis of polyhydroxybutyrate, which is a reserve material. Recent studies show that in plants, 3-HB acts as a regulatory molecule that most likely influences the expression of genes involved in DNA methylation, thereby altering DNA methylation levels. Additionally, in animals, 3-HB is not only an intermediate metabolite, but also an important regulatory molecule that can influence gene expression, lipid metabolism, neuronal function, and overall metabolic rate. Some of these effects are the direct effects of 3-HB itself, while others are indirect effects, regulated by the metabolites into which 3-HB is converted. One of the most important regulatory functions of 3-HB is the inhibition of the activity of histone deacetylases and thus the epigenetic regulation of many genes. Due to the number of functions of this compound, it also shows promising therapeutic properties.
Collapse
|
31
|
Masino SA, Ruskin DN, Freedgood NR, Lindefeldt M, Dahlin M. Differential ketogenic diet-induced shift in CSF lipid/carbohydrate metabolome of pediatric epilepsy patients with optimal vs. no anticonvulsant response: a pilot study. Nutr Metab (Lond) 2021; 18:23. [PMID: 33648550 PMCID: PMC7923458 DOI: 10.1186/s12986-020-00524-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/21/2020] [Indexed: 02/02/2023] Open
Abstract
Background The low carbohydrate, high fat ketogenic diet can be an effective anticonvulsant treatment in some pediatric patients with pharmacoresistant epilepsy. Its mechanism(s) of action, however, remain uncertain. Direct sampling of cerebrospinal fluid before and during metabolic therapy may reveal key changes associated with differential clinical outcomes. We characterized the relationship between seizure responsiveness and changes in lipid and carbohydrate metabolites. Methods We performed metabolomic analysis of cerebrospinal fluid samples taken before and during ketogenic diet treatment in patients with optimal response (100% seizure remission) and patients with no response (no seizure improvement) to search for differential diet effects in hallmark metabolic compounds in these two groups. Optimal responders and non-responders were similar in age range and included males and females. Seizure types and the etiologies or syndromes of epilepsy varied but did not appear to differ systematically between responders and non-responders. Results Analysis showed a strong effect of ketogenic diet treatment on the cerebrospinal fluid metabolome. Longitudinal and between-subjects analyses revealed that many lipids and carbohydrates were changed significantly by ketogenic diet, with changes typically being of larger magnitude in responders. Notably, responders had more robust changes in glucose and the ketone bodies β-hydroxybutyrate and acetoacetate than non-responders; conversely, non-responders had significant increases in fructose and sorbose, which did not occur in responders. Conclusions The data suggest that a differential and stronger metabolic response to the ketogenic diet may predict a better anticonvulsant response, and such variability is likely due to inherent biological factors of individual patients. Strategies to boost the metabolic response may be beneficial.
Collapse
Affiliation(s)
- Susan A Masino
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, 06106, USA
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, 06106, USA.
| | - Natalie R Freedgood
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, 06106, USA
| | - Marie Lindefeldt
- Neuropediatric Department, Astrid Lindgren Children's Hospital, Karolinska Hospital, Stockholm, Sweden
| | - Maria Dahlin
- Neuropediatric Department, Astrid Lindgren Children's Hospital, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Yurista SR, Chong CR, Badimon JJ, Kelly DP, de Boer RA, Westenbrink BD. Therapeutic Potential of Ketone Bodies for Patients With Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:1660-1669. [PMID: 33637354 DOI: 10.1016/j.jacc.2020.12.065] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Metabolic perturbations underlie a variety of cardiovascular disease states; yet, metabolic interventions to prevent or treat these disorders are sparse. Ketones carry a negative clinical stigma as they are involved in diabetic ketoacidosis. However, evidence from both experimental and clinical research has uncovered a protective role for ketones in cardiovascular disease. Although ketones may provide supplemental fuel for the energy-starved heart, their cardiovascular effects appear to extend far beyond cardiac energetics. Indeed, ketone bodies have been shown to influence a variety of cellular processes including gene transcription, inflammation and oxidative stress, endothelial function, cardiac remodeling, and cardiovascular risk factors. This paper reviews the bioenergetic and pleiotropic effects of ketone bodies that could potentially contribute to its cardiovascular benefits based on evidence from animal and human studies.
Collapse
Affiliation(s)
- Salva R Yurista
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands. https://twitter.com/salvareverentia
| | - Cher-Rin Chong
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Juan J Badimon
- AtheroThrombosis Research Unit, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands. https://twitter.com/Rudolf_deboer
| | - B Daan Westenbrink
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands.
| |
Collapse
|
33
|
Yalcin G, Lee CK. The Discovery of Druggable Anti-aging Agents. Ann Geriatr Med Res 2021; 24:232-242. [PMID: 33389971 PMCID: PMC7781965 DOI: 10.4235/agmr.20.0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Caloric restriction (CR) has been shown to extend the lifespan of many species. Research to identify compounds that imitate the results of CR has shown extensions of both lifespan and healthspan via different mechanisms. For example, mechanistic target of rapamycin (mTOR) inhibitors such as rapamycin, phenols, and flavonoids show antioxidant characteristics, while spermidine induces autophagy. Herein, we summarize research progress and proposed mechanisms for the most well-known compounds showing lifespan-extending potential for anti-aging characteristics.
Collapse
Affiliation(s)
- Gulperi Yalcin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
34
|
Zhang W, Guo X, Chen L, Chen T, Yu J, Wu C, Zheng J. Ketogenic Diets and Cardio-Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:753039. [PMID: 34795641 PMCID: PMC8594484 DOI: 10.3389/fendo.2021.753039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
While the prevalence of cardio-metabolic diseases (CMDs) has become a worldwide epidemic, much attention is paid to managing CMDs effectively. A ketogenic diet (KD) constitutes a high-fat and low-carbohydrate diet with appropriate protein content and calories. KD has drawn the interests of clinicians and scientists regarding its application in the management of metabolic diseases and related disorders; thus, the current review aimed to examine the evidences surrounding KD and the CMDs to draw the clinical implications. Overall, KD appears to play a significant role in the therapy of various CMDs, which is manifested by the effects of KDs on cardio-metabolic outcomes. KD therapy is generally promising in obesity, heart failure, and hypertension, though different voices still exist. In diabetes and dyslipidemia, the performance of KD remains controversial. As for cardiovascular complications of metabolic diseases, current evidence suggests that KD is generally protective to obese related cardiovascular disease (CVD), while remaining contradictory to diabetes and other metabolic disorder related CVDs. Various factors might account for the controversies, including genetic background, duration of therapy, food composition, quality, and sources of KDs. Therefore, it's crucial to perform more rigorous researches to focus on clinical safety and appropriate treatment duration and plan of KDs.
Collapse
Affiliation(s)
- Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Juan Zheng, ; Chaodong Wu,
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
- *Correspondence: Juan Zheng, ; Chaodong Wu,
| |
Collapse
|
35
|
Shen F, Zhao Y, Ding W, Liu K, Ren X, Zhang Q, Yu J, Hu Y, Zuo H, Guo M, Jin L, Gong M, Wu W, Gu X, Xu L, Yang F, Lu J. Autonomous climbing: An effective exercise mode with beneficial outcomes of aerobic exercise and resistance training. Life Sci 2020; 265:118786. [PMID: 33221346 DOI: 10.1016/j.lfs.2020.118786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
AIMS To assess the effects of three specific exercise training modes, aerobic exercise (A), resistance training (R) and autonomous climbing (AC), aimed at proposing a cross-training method, on improving the physical, molecular and metabolic characteristics of mice without many side effects. MATERIALS AND METHODS Seven-week-old male mice were randomly divided into four groups: control (C), aerobic exercise (A), resistance training (R), and autonomous climbing (AC) groups. Physical changes in mice were tracked and analysed to explore the similarities and differences of these three exercise modes. Histochemistry, quantitative real-time PCR (RT-PCR), western blot (WB) and metabolomics analysis were performed to identify the underlying relationships among the three training modes. KEY FINDINGS Mice in the AC group showed better body weight control, glucose and energy homeostasis. Molecular markers of myogenesis, hypertrophy, antidegradation and mitochondrial function were highly expressed in the muscle of mice after autonomous climbing. The serum metabolomics landscape and enriched pathway comparison indicated that the aerobic oxidation pathway (pentose phosphate pathway, galactose metabolism and fatty acid degradation) and amino acid metabolism pathway (tyrosine, arginine and proline metabolism) were significantly enriched in group AC, suggesting an increased muscle mitochondrial function and protein balance ability of mice after autonomous climbing. SIGNIFICANCE We propose a new exercise mode, autonomous climbing, as a convenient but effective training method that combines the beneficial effects of aerobic exercise and resistance training.
Collapse
Affiliation(s)
- Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yu Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China; Department of Physical Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710049, PR China
| | - Wubin Ding
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Kailin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Xiangyu Ren
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yepeng Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China; Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ling Jin
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Mingkai Gong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Wenhao Wu
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Fenglei Yang
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
36
|
Kumar S, Behl T, Sachdeva M, Sehgal A, Kumari S, Kumar A, Kaur G, Yadav HN, Bungau S. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci 2020; 264:118661. [PMID: 33121986 DOI: 10.1016/j.lfs.2020.118661] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
Obesity and diabetes are the two major metabolic complications linked with bad eating habits and the sedentary (lazy) lifestyle. In the worst-case situation, metabolic problems are a causative factor for numerous other conditions. There is also an increased demand to control the emergence of such diseases. Dietary and lifestyle improvements contribute to their leadership at an elevated level. The present review, therefore, recommends the use of the ketogenic diet (KD) in obesity and diabetes treatment. The KD involves a diet that replaces glucose sugar with ketone bodies and is effective in numerous diseases, such as metabolic disorders, epileptic seizures, autosomal dominant polycystic disease of the kidney, cancers, peripheral neuropathy, and skeletal muscle atrophy. A lot of high profile pathways are available for KD action, including sustaining the metabolic actions on glucose sugar, suppressing insulin-like growth factor-1 (IGF1) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways, altering homeostasis of the systemic ketone bodies, contributing to lowering diabetic hyperketonemia, and others. The KD regulates the level of glucose sugar and insulin and can thus claim to be an effective diabetes approach. Thus, a stopgap between obesity and diabetes treatment can also be evidenced by KD.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shilpa Kumari
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Romania
| |
Collapse
|
37
|
Bose S, Allen AE, Locasale JW. The Molecular Link from Diet to Cancer Cell Metabolism. Mol Cell 2020; 78:1034-1044. [PMID: 32504556 PMCID: PMC7305994 DOI: 10.1016/j.molcel.2020.05.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Malignant cells remodel their metabolism to meet the demands of uncontrolled cell proliferation. These demands lead to differential requirements in energy, biosynthetic precursors, and signaling intermediates. Both genetic programs arising from oncogenic events and transcriptional programs and epigenomic events are important in providing the necessary metabolic network activity. Accumulating evidence has established that environmental factors play a major role in shaping cancer cell metabolism. For metabolism, diet and nutrition are the major environmental aspects and have emerged as key components in determining cancer cell metabolism. In this review, we discuss these emerging concepts in cancer metabolism and how diet and nutrition influence cancer cell metabolism.
Collapse
Affiliation(s)
- Shree Bose
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Annamarie E Allen
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
38
|
Hopkins BD, Goncalves MD, Cantley LC. Insulin-PI3K signalling: an evolutionarily insulated metabolic driver of cancer. Nat Rev Endocrinol 2020; 16:276-283. [PMID: 32127696 PMCID: PMC7286536 DOI: 10.1038/s41574-020-0329-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 12/17/2022]
Abstract
Cancer is driven by incremental changes that accumulate, eventually leading to oncogenic transformation. Although genetic alterations dominate the way cancer biologists think about oncogenesis, growing evidence suggests that systemic factors (for example, insulin, oestrogen and inflammatory cytokines) and their intracellular pathways activate oncogenic signals and contribute to targetable phenotypes. Systemic factors can have a critical role in both tumour initiation and therapeutic responses as increasingly targeted and personalized therapeutic regimens are used to treat patients with cancer. The endocrine system controls cell growth and metabolism by providing extracellular cues that integrate systemic nutrient status with cellular activities such as proliferation and survival via the production of metabolites and hormones such as insulin. When insulin binds to its receptor, it initiates a sequence of phosphorylation events that lead to activation of the catalytic activity of phosphoinositide 3-kinase (PI3K), a lipid kinase that coordinates the intake and utilization of glucose, and mTOR, a kinase downstream of PI3K that stimulates transcription and translation. When chronically activated, the PI3K pathway can drive malignant transformation. Here, we discuss the insulin-PI3K signalling cascade and emphasize its roles in normal cells (including coordinating cell metabolism and growth), highlighting the features of this network that make it ideal for co-option by cancer cells. Furthermore, we discuss how this signalling network can affect therapeutic responses and how novel metabolic-based strategies might enhance treatment efficacy for cancer.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Marcus D Goncalves
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
39
|
Long-term treatment with spermidine increases health span of middle-aged Sprague-Dawley male rats. GeroScience 2020; 42:937-949. [PMID: 32285289 DOI: 10.1007/s11357-020-00173-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/30/2019] [Indexed: 10/24/2022] Open
Abstract
Let alone calorie restriction, life span extension in higher organisms has proven to be difficult to achieve using simple drugs. Previous studies have shown that the polyamine spermidine increased the maximum life span in C. elegans and the median life span in mice. However, younger subjects (< 40 years of age) are infrequently prescribed nor self-medicating with antiaging drugs. Therefore, in the present study, we aimed at assessing the effect of long-term treatment with spermidine given in the drinking water on behavioral performance and longevity of male, middle-aged Sprague-Dawley rats. We report that spermidine given in the drinking water did not extend neither the median nor the maximum life span of the middle-aged male Sprague-Dawley rats. However, spermidine treatment had a beneficial effect on the body weight and the kidney tubules, liver, and heart morphology. Behaviorally, spermidine led to a reduction in anxiety and an increase in curiosity, as assessed by exploratory behavior. Moreover, long-term treatment with spermidine enhanced autophagy in the brain and led to a diminished expression of the inflammatory markers, Tgfb, CD11b, Fcgr1, Stat1, CR3, and GFAP mRNAs in several cortical region and hippocampus of the treated rats suggesting that one beneficial effect of the long-term treatment with spermidine is an attenuated proinflammatory state in the aged brain. Our results suggest that long-term treatment with spermidine increases health span of middle-aged rats by attenuating neuroinflammation and improving anxiety and exploratory behavior.
Collapse
|
40
|
Hu X, Li S, Cirillo P, Krigbaum N, Tran V, Ishikawa T, La Merrill MA, Jones DP, Cohn B. Metabolome Wide Association Study of serum DDT and DDE in Pregnancy and Early Postpartum. Reprod Toxicol 2020; 92:129-137. [PMID: 31102720 PMCID: PMC7055929 DOI: 10.1016/j.reprotox.2019.05.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
The advancement of high-resolution metabolomics (HRM) and metabolome-wide-association study (MWAS) enables the readout of environmental effects in human specimens. We used HRM to understand DDT-induced alterations of in utero environment and potential health effects. Endogenous metabolites were measured in 397 maternal perinatal serum samples collected during 1959-1967 in the Child Health and Development Studies (CHDS) and in 16 maternal postnatal serum samples of mice treated with or without DDT. MWAS was performed to assess associations between metabolites and p,p'-DDT, o,p'-DDT and p,p'-DDE levels, followed by pathway analysis. Distinct metabolic profiles were found with p,p'-DDT and p,p'-DDE. Amino acids such arginine had a strong association with p,p'-DDT and o,p'-DDT in both women and mice, whereas lipids and acyl-carnitine intermediates were found exclusively associated with p,p'-DDE in CHDS women indicating mitochondrial impairment. It suggests that the role of serine and fatty acid metabolism on the causal disease pathway should be examined.
Collapse
Affiliation(s)
- Xin Hu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Shuzhao Li
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Piera Cirillo
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - Nickilou Krigbaum
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - ViLinh Tran
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Tomoko Ishikawa
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA.
| | - Barbara Cohn
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA.
| |
Collapse
|
41
|
Weber DD, Aminzadeh-Gohari S, Tulipan J, Catalano L, Feichtinger RG, Kofler B. Ketogenic diet in the treatment of cancer - Where do we stand? Mol Metab 2020; 33:102-121. [PMID: 31399389 PMCID: PMC7056920 DOI: 10.1016/j.molmet.2019.06.026] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cancer is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly enhance the efficacy of standard anticancer therapies. The ketogenic diet, a high-fat, low-carbohydrate diet with adequate amounts of protein, appears to sensitize most cancers to standard treatment by exploiting the reprogramed metabolism of cancer cells, making the diet a promising candidate as an adjuvant cancer therapy. SCOPE OF REVIEW To critically evaluate available preclinical and clinical evidence regarding the ketogenic diet in the context of cancer therapy. Furthermore, we highlight important mechanisms that could explain the potential antitumor effects of the ketogenic diet. MAJOR CONCLUSIONS The ketogenic diet probably creates an unfavorable metabolic environment for cancer cells and thus can be regarded as a promising adjuvant as a patient-specific multifactorial therapy. The majority of preclinical and several clinical studies argue for the use of the ketogenic diet in combination with standard therapies based on its potential to enhance the antitumor effects of classic chemo- and radiotherapy, its overall good safety and tolerability and increase in quality of life. However, to further elucidate the mechanisms of the ketogenic diet as a therapy and evaluate its application in clinical practice, more molecular studies as well as uniformly controlled clinical trials are needed.
Collapse
Affiliation(s)
- Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Julia Tulipan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| |
Collapse
|
42
|
Watanabe M, Singhal G, Fisher FM, Beck TC, Morgan DA, Socciarelli F, Mather ML, Risi R, Bourke J, Rahmouni K, McGuinness OP, Flier JS, Maratos-Flier E. Liver-derived FGF21 is essential for full adaptation to ketogenic diet but does not regulate glucose homeostasis. Endocrine 2020; 67:95-108. [PMID: 31728756 PMCID: PMC7948212 DOI: 10.1007/s12020-019-02124-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is expressed in several metabolically active tissues, including liver, fat, and acinar pancreas, and has pleiotropic effects on metabolic homeostasis. The dominant source of FGF21 in the circulation is the liver. OBJECTIVE AND METHODS To analyze the physiological functions of hepatic FGF21, we generated a hepatocyte-specific knockout model (LKO) by mating albumin-Cre mice with FGF21 flox/flox (fl/fl) mice and challenged it with different nutritional models. RESULTS Mice fed a ketogenic diet typically show increased energy expenditure; this effect was attenuated in LKO mice. LKO on KD also developed hepatic pathology and altered hepatic lipid homeostasis. When evaluated using hyperinsulinemic-euglycemic clamps, glucose infusion rates, hepatic glucose production, and glucose uptake were similar between fl/fl and LKO DIO mice. CONCLUSIONS We conclude that liver-derived FGF21 is important for complete adaptation to ketosis but has a more limited role in the regulation of glycemic homeostasis.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - Garima Singhal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ffolliott M Fisher
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Thomas C Beck
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Fabio Socciarelli
- Department of Oncology-Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Marie L Mather
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - Jared Bourke
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jeffrey S Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Eleftheria Maratos-Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
43
|
Abstract
The way cancer cells utilize nutrients to support their growth and proliferation is determined by cancer cell-intrinsic and cancer cell-extrinsic factors, including interactions with the environment. These interactions can define therapeutic vulnerabilities and impact the effectiveness of cancer therapy. Diet-mediated changes in whole-body metabolism and systemic nutrient availability can affect the environment that cancer cells are exposed to within tumours, and a better understanding of how diet modulates nutrient availability and utilization by cancer cells is needed. How diet impacts cancer outcomes is also of great interest to patients, yet clear evidence for how diet interacts with therapy and impacts tumour growth is lacking. Here we propose an experimental framework to probe the connections between diet and cancer metabolism. We examine how dietary factors may affect tumour growth by altering the access to and utilization of nutrients by cancer cells. Our growing understanding of how certain cancer types respond to various diets, how diet impacts cancer cell metabolism to mediate these responses and whether dietary interventions may constitute new therapeutic opportunities will begin to provide guidance on how best to use diet and nutrition to manage cancer in patients.
Collapse
Affiliation(s)
- Evan C Lien
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
44
|
Untargeted Metabolomics Reveals Molecular Effects of Ketogenic Diet on Healthy and Tumor Xenograft Mouse Models. Int J Mol Sci 2019; 20:ijms20163873. [PMID: 31398922 PMCID: PMC6719192 DOI: 10.3390/ijms20163873] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
The application of ketogenic diet (KD) (high fat/low carbohydrate/adequate protein) as an auxiliary cancer therapy is a field of growing attention. KD provides sufficient energy supply for healthy cells, while possibly impairing energy production in highly glycolytic tumor cells. Moreover, KD regulates insulin and tumor related growth factors (like insulin growth factor-1, IGF-1). In order to provide molecular evidence for the proposed additional inhibition of tumor growth when combining chemotherapy with KD, we applied untargeted quantitative metabolome analysis on a spontaneous breast cancer xenograft mouse model, using MDA-MB-468 cells. Healthy mice and mice bearing breast cancer xenografts and receiving cyclophosphamide chemotherapy were compared after treatment with control diet and KD. Metabolomic profiling was performed on plasma samples, applying high-performance liquid chromatography coupled to tandem mass spectrometry. Statistical analysis revealed metabolic fingerprints comprising numerous significantly regulated features in the group of mice bearing breast cancer. This fingerprint disappeared after treatment with KD, resulting in recovery to the metabolic status observed in healthy mice receiving control diet. Moreover, amino acid metabolism as well as fatty acid transport were found to be affected by both the tumor and the applied KD. Our results provide clear evidence of a significant molecular effect of adjuvant KD in the context of tumor growth inhibition and suggest additional mechanisms of tumor suppression beyond the proposed constrain in energy supply of tumor cells.
Collapse
|
45
|
Montrose DC, Galluzzi L. Drugging cancer metabolism: Expectations vs. reality. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:1-26. [PMID: 31451211 DOI: 10.1016/bs.ircmb.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As compared to their normal counterparts, neoplastic cells exhibit a variety of metabolic changes that reflect not only genetic and epigenetic defects underlying malignant transformation, but also the nutritional and immunobiological conditions of the tumor microenvironment. Such alterations, including the so-called Warburg effect (an increase in glucose uptake largely feeding anabolic and antioxidant metabolism), have attracted considerable attention as potential targets for the development of novel anticancer therapeutics. However, very few drugs specifically conceived to target bioenergetic cancer metabolism are currently approved by regulatory agencies for use in humans. This reflects the elevated degree of heterogeneity and redundancy in the metabolic circuitries exploited by neoplastic cells from different tumors (even of the same type), as well as the resemblance of such metabolic pathways to those employed by highly proliferating normal cells. Here, we summarize the major metabolic alterations that accompany oncogenesis, the potential of targeting bioenergetic metabolism for cancer therapy, and the obstacles that still prevent the clinical translation of such a promising therapeutic paradigm.
Collapse
Affiliation(s)
- David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
46
|
Okuda T. A low-carbohydrate ketogenic diet promotes ganglioside synthesis via the transcriptional regulation of ganglioside metabolism-related genes. Sci Rep 2019; 9:7627. [PMID: 31110277 PMCID: PMC6527835 DOI: 10.1038/s41598-019-43952-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 04/24/2019] [Indexed: 11/17/2022] Open
Abstract
Low-carbohydrate ketogenic diets (LCKDs) are used for treating obesity and epilepsy; however, the molecular mechanism of LCKDs in tissues has not been fully investigated. In this study, novel LCKD-associated molecular targets were explored using gene expression profiling in the liver of mice fed a LCKD. The result showed that the LCKD promoted the expression of glycosyltransferase genes involved in ganglioside synthesis and suppressed the expression of Gm2a, the gene encoding GM2 ganglioside activator protein, a lysosomal protein indispensable for ganglioside degradation. These changes were correlated with increased ganglioside content in the liver and serum. As gangliosides are mainly expressed in central nervous tissues, we also analyzed LCKD effect on cerebral cortex. Although ganglioside levels were unchanged in mice on the LCKD, Gm2a expression was significantly down-regulated. Further analyses suggested that the LCKD altered the expression levels of gangliosides in a limited area of central nervous system tissues susceptible to Gm2a.
Collapse
Affiliation(s)
- Tetsuya Okuda
- Bio-Design Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
47
|
Gross EC, Klement RJ, Schoenen J, D'Agostino DP, Fischer D. Potential Protective Mechanisms of Ketone Bodies in Migraine Prevention. Nutrients 2019; 11:E811. [PMID: 30974836 PMCID: PMC6520671 DOI: 10.3390/nu11040811] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
An increasing amount of evidence suggests that migraines are a response to a cerebral energy deficiency or oxidative stress levels that exceed antioxidant capacity. The ketogenic diet (KD), a diet mimicking fasting that leads to the elevation of ketone bodies (KBs), is a therapeutic intervention targeting cerebral metabolism that has recently shown great promise in the prevention of migraines. KBs are an alternative fuel source for the brain, and are thus likely able to circumvent some of the abnormalities in glucose metabolism and transport found in migraines. Recent research has shown that KBs-D-β-hydroxybutyrate in particular-are more than metabolites. As signalling molecules, they have the potential to positively influence other pathways commonly believed to be part of migraine pathophysiology, namely: mitochondrial functioning, oxidative stress, cerebral excitability, inflammation and the gut microbiome. This review will describe the mechanisms by which the presence of KBs, D-BHB in particular, could influence those migraine pathophysiological mechanisms. To this end, common abnormalities in migraines are summarised with a particular focus on clinical data, including phenotypic, biochemical, genetic and therapeutic studies. Experimental animal data will be discussed to elaborate on the potential therapeutic mechanisms of elevated KBs in migraine pathophysiology, with a particular focus on the actions of D-BHB. In complex diseases such as migraines, a therapy that can target multiple possible pathogenic pathways seems advantageous. Further research is needed to establish whether the absence/restriction of dietary carbohydrates, the presence of KBs, or both, are of primary importance for the migraine protective effects of the KD.
Collapse
Affiliation(s)
- Elena C Gross
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland.
| | - Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422 Schweinfurt, Germany.
| | - Jean Schoenen
- Headache Research Unit, University of Liège, Dept of Neurology-Citadelle Hospital, 4000 Liège, Belgium.
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Metabolic Medicine Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA.
| | - Dirk Fischer
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
48
|
Abdurrachim D, Teo XQ, Woo CC, Ong SY, Salleh NF, Lalic J, Tan RS, Lee PTH. Cardiac metabolic modulation upon low-carbohydrate low-protein ketogenic diet in diabetic rats studied in vivo using hyperpolarized 13 C pyruvate, butyrate and acetoacetate probes. Diabetes Obes Metab 2019; 21:949-960. [PMID: 30536560 DOI: 10.1111/dom.13608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
AIM To investigate the effects of long-term low-carbohydrate low-protein ketogenic diet (KD) on cardiac metabolism and diabetic cardiomyopathy status in lean diabetic Goto-Kakizaki (GK) rats. MATERIALS AND METHODS Diabetic GK rats were fed with KD for 62 weeks. Cardiac function and metabolism were assessed using magnetic resonance imaging and 13 C magnetic resonance spectroscopy (13 C-MRS), at rest and under dobutamine stress. 13 C-MRS was performed following injection of hyperpolarized [3-13 C]acetoacetate, [1-13 C]butyrate or [1-13 C]pyruvate to assess ketone body, short-chain fatty acid or glucose utilization, respectively. Protein expression and cardiomyocyte structure were determined via Western blotting and histology, respectively. RESULTS KD lowered blood glucose, triglyceride and insulin levels while increasing blood ketone body levels. In KD-fed diabetic rats, myocardial ketone body and glucose oxidation were lower than in chow-fed diabetic rats, while myocardial glycolysis and short-chain fatty acid oxidation were unaltered. Dobutamine stress revealed an increased cardiac preload and reduced cardiac compliance in KD-fed diabetic rats. Dobutamine-induced stimulation of myocardial glycolysis was more enhanced in KD-fed diabetic rats than in chow-fed diabetic rats, which was potentially facilitated via an upregulation in basal expression of proteins involved in glucose transport and glycolysis in the hearts of KD-fed rats. The metabolic profile induced by KD was accompanied by cardiac hypertrophy, a trend for increased myocardial lipid and collagen content, and an increased marker of oxidative stress. CONCLUSION KD seems to exacerbate diabetic cardiomyopathy in GK rats, which may be associated with maladaptive cardiac metabolic modulation and lipotoxicity.
Collapse
Affiliation(s)
- Desiree Abdurrachim
- Functional Metabolism Group, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | - Xing Qi Teo
- Functional Metabolism Group, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | - Chern Chiuh Woo
- Functional Metabolism Group, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | - Sing Yee Ong
- Functional Metabolism Group, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | - Nurul Farhana Salleh
- Functional Metabolism Group, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | - Janise Lalic
- Functional Metabolism Group, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - Philip Teck Hock Lee
- Functional Metabolism Group, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| |
Collapse
|
49
|
Kraeuter AK, Guest PC, Sarnyai Z. The Therapeutic Potential of Ketogenic Diet Throughout Life: Focus on Metabolic, Neurodevelopmental and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:77-101. [PMID: 31493223 DOI: 10.1007/978-3-030-25650-0_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter reviews the efficacy of the ketogenic diet in a variety of neurodegenerative, neurodevelopmental and metabolic conditions throughout different stages of life. It describes conditions affecting children, metabolic disorders in adults and disorderrs affecting the elderly. We have focused on application of the ketogenic diet in clinical studies and in preclinical models and discuss the benefits and negative aspects of the diet. Finally, we highlight the need for further research in this area with a view of discovering novel mechanistic targets of the ketogenic diet, as a means of maximising the potential benefits/risks ratio.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.,Discipline of Biomedicine, College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Zoltan Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia. .,Discipline of Biomedicine, College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
| |
Collapse
|
50
|
Parry HA, Kephart WC, Mumford PW, Romero MA, Mobley CB, Zhang Y, Roberts MD, Kavazis AN. Ketogenic diet increases mitochondria volume in the liver and skeletal muscle without altering oxidative stress markers in rats. Heliyon 2018; 4:e00975. [PMID: 30533548 PMCID: PMC6260463 DOI: 10.1016/j.heliyon.2018.e00975] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/22/2018] [Accepted: 11/21/2018] [Indexed: 01/27/2023] Open
Abstract
Ketogenic diets (KD) consist of high fat, moderate protein and low carbohydrates. Studies have suggested that KD may influence oxidative stress by affecting mitochondrial quantity and/or quality, and perhaps lengthen lifespan. Therefore, we determined the effects of KD on multi-organ mitochondria volume and oxidative stress markers in rats. Ten month-old male Fisher 344 rats (n = 8 per group) were provided with one of two isocaloric diets: standard chow (SC) or KD. Rats were euthanized if: a) vitality scores exceeded a score of 16, b) rapid weight loss, or c) veterinarian deemed euthanasia necessary. The median lifespan of rats was higher in KD (762 days) compared to SC (624 days). Citrate synthase activity (i.e. estimate of mitochondria volume) was higher in the liver (p = 0.034) and gastrocnemius (p = 0.041) of KD compared to SC. Liver superoxide dismutase 1 and catalase antioxidant protein levels were higher in KD, albeit not significant (p = 0.094 and p = 0.062, respectively). No significant differences in protein levels of other antioxidants or markers of lipid and protein oxidative damage were observed in either the gastrocnemius, liver, or brain. In summary, KD increased mitochondria volume in liver and gastrocnemius and median lifespan in rats. Additionally, our data show that the increase in mitochondrial volume occurred without changes in oxidative damage or antioxidant protein levels in the gastrocnemius, liver, or brain.
Collapse
|