1
|
Al-Refai W, Keenan S, Camera DM, Cooke MB. The Influence of Vegan, Vegetarian, and Omnivorous Diets on Protein Metabolism: A Role for the Gut-Muscle Axis? Nutrients 2025; 17:1142. [PMID: 40218900 PMCID: PMC11990293 DOI: 10.3390/nu17071142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
There has been a growing interest globally in vegan and vegetarian diets over the last decade for a combination of health, ethical, environmental, spiritual, and social reasons. In line with this popularity, research examining the role of plant-based food sources, including vegan and vegetarian diets, in supporting skeletal muscle remodeling and anabolism in humans has also received considerable attention. The emergence of the microbiota-gut-muscle axis, a bidirectional pathway where the gut microbiota impacts skeletal muscle and vice versa, has been suggested as a potential mediator of food and nutrition's influence on the mechanistic processes that regulate muscle mass and function. Considering inherent nutritional differences between vegan, vegetarian, and omnivorous diets related to the fiber and macronutrient content, presence of anti-nutritional factors, and diverse food and supplemental sources for obtaining protein, it stands to reason that the regulation of the microbiota-gut-muscle axis via diet-induced changes in gut microbiota composition and function may be dissimilar. However, whether this translates into differential effects on the skeletal muscle is unclear. This review article aims to provide a contemporary perspective for how variations in gut microbiota linked to vegan, vegetarian, and omnivorous diets may be a potential mechanism for influencing protein metabolism in skeletal muscle mass via a purported microbiota-gut-muscle axis.
Collapse
Affiliation(s)
- Waed Al-Refai
- Department of Health and Biostatistics, School of Health Sciences, Swinburne University, Melbourne, VIC 3122, Australia;
| | - Stephen Keenan
- Department Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Donny M. Camera
- Department of Health and Biostatistics, School of Health Sciences, Swinburne University, Melbourne, VIC 3122, Australia;
| | - Matthew B. Cooke
- Department Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC 3086, Australia;
| |
Collapse
|
2
|
Ding T, Liu C, Li Z. The mycobiome in human cancer: analytical challenges, molecular mechanisms, and therapeutic implications. Mol Cancer 2025; 24:18. [PMID: 39815314 PMCID: PMC11734361 DOI: 10.1186/s12943-025-02227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis. Fungal microbes (the mycobiome), although representing only ∼ 0.1-1% of the microbiome, are a critical immunologically active component of the tumor microbiome. Accumulating evidence suggests a possible involvement of commensal and pathogenic fungi in cancer initiation, progression, and treatment responsiveness. The tumor-associated mycobiome mainly consists of the gut mycobiome, the oral mycobiome, and the intratumoral mycobiome. However, the role of fungi in cancer remains poorly understood, and the diversity and complexity of analytical methods make it challenging to access this field. This review aims to elucidate the causal and complicit roles of mycobiome in cancer development and progression while highlighting the issues that need to be addressed in executing such research. We systematically summarize the advantages and limitations of current fungal detection and analysis methods. We enumerate and integrate these recent findings into our current understanding of the tumor mycobiome, accompanied by the prospect of novel and exhilarating clinical implications.
Collapse
Affiliation(s)
- Ting Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Li X, Xiao X, Wu Z, Li A, Wang W, Lin R. Global, regional, and national burden of early-onset colorectal cancer and projection to 2050: An analysis based on the Global Burden of Disease Study 2021. Public Health 2025; 238:245-253. [PMID: 39700867 DOI: 10.1016/j.puhe.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES Early-onset colorectal cancer (EO-CRC) is becoming increasingly concerning due to its impact on individuals under 50 years old. We explored the burden of EO-CRC to provide information for planning effective management and prevention strategies. STUDY DESIGN We conducted secondary analyses to assess the burden of EO-CRC using data from GBD 2021. METHODS The incidence, prevalence, deaths, disability-adjusted life years (DALYs) and their rates across 204 countries and territories were obtained from GBD 2021 database. The estimated annual percentage change (EAPC) calculation was used to assess temporal trends in these metrics. Additionally, we reported the proportion of DALYs attributable to risk factors and projected future disease burden till 2050. RESULTS The global number of new EO-CRC cases increased from 107,310 in 1990 to 211,890 in 2021. Both age-standardized incidence rate (ASIR) and prevalence rate (ASPR) of EO-CRC showed overall increases over the study period (ASIR: EAPC = 0.96 (0.9-1.02), ASPR: EAPC = 1.5 (1.44-1.55)). However, a decline in ASIR and ASPR was observed in 2020 and 2021. Males consistently showed higher EO-CRC indicators compared to females. Furthermore, projections indicated that deaths and DALYs cases are likely to fluctuate but generally increase by 2050, reaching 85,602 and 4,283,093, respectively. CONCLUSIONS The global impact of EO-CRC has increased significantly from 1990 to 2021, revealing notable variations across SDI regions, countries, age groups, and sexes. Besides, deaths and DALYs are predicted to rise by 2050. These results highlight the importance of implementing measures to address the growing burden of EO-CRC globally.
Collapse
Affiliation(s)
- Xinyi Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyan Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zenghong Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anni Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Skulsky SL, Koutoukidis DA, Carter JL, Piernas C, Jebb SA, Gao M, Astbury NM. Associations between Dietary Patterns and Incident Colorectal Cancer in 114,443 Individuals from the UK Biobank: A Prospective Cohort Study. Cancer Epidemiol Biomarkers Prev 2024; 33:1445-1455. [PMID: 39158415 PMCID: PMC11528196 DOI: 10.1158/1055-9965.epi-24-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/01/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Diet-disease association studies increasingly use dietary patterns (DP) to account for the complexity of the exposure. We assessed if a DP associated with type 2 diabetes mellitus, cardiovascular disease, and all-cause mortality is also associated with colorectal cancer. METHODS We used reduced rank regression on 24-hour recall data to identify DPs, explaining the maximum variation in four nutrient-response variables: energy density, saturated fatty acids, free sugars, and fiber density. Cox proportional hazards models examined prospective associations between DP adherence (coded in a continuous scale as z-scores as well as in quintiles) and incident colorectal cancer. Subgroup analyses were conducted for tumor site, age, and sex. RESULTS After exclusions, 1,089 colorectal cancer cases occurred in 114,443 participants over a median follow-up of 8.0 years. DP1 was characterized by increased intake of chocolate and confectionery; butter; low-fiber bread; red and processed meats; and alcohol, as well as low intake of fruits, vegetables, and high-fiber cereals. After accounting for confounders, including body mass, there were positive linear associations between DP1 and incident overall colorectal cancer (HR of quintile 5 vs. 1, 1.34; 95% confidence interval, 1.16-1.53, Ptrend = 0.005) and rectal cancer (HR of quintile 5 vs. 1, 1.58; 95% confidence interval, 1.27-1.96, Ptrend = 0.009) but not for proximal or distal colon cancers. No DP2-colorectal cancer association was observed. CONCLUSIONS A DP previously associated with cardiometabolic disease is also associated with incident colorectal cancer, especially rectal cancers. IMPACT These consistent associations of particular food groups with both cardiometabolic disease and this diet-related cancer strengthen the evidence base for holistic population dietary guidelines to prevent ill-health.
Collapse
Affiliation(s)
- Samuel L. Skulsky
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Dimitrios A. Koutoukidis
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Jennifer L. Carter
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Carmen Piernas
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy; Centre for Biomedical Research; Institute of Nutrition and Food Technology; Biosanitary Research Institute ibs.Granada; University of Granada, Spain
| | - Susan A. Jebb
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Min Gao
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Health Biomedical Research Centre, Oxford, United Kingdom
| | - Nerys M. Astbury
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Elias Masiques N, Vossen E, De Vrieze J, De Smet S, Van Hecke T. The formation of sulfur metabolites during in vitro gastrointestinal digestion of fish, white meat and red meat is affected by the addition of fructo-oligosaccharides. Food Funct 2024; 15:8729-8739. [PMID: 39101364 DOI: 10.1039/d4fo00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The formation of sulfur metabolites during large intestinal fermentation of red meat may affect intestinal health. In this study, four muscle sources with varying heme-Fe content (beef, pork, chicken and salmon), with or without fructo-oligosaccharides (FOS), were exposed to an in vitro gastrointestinal digestion and fermentation model, after which the formation of sulfur metabolites, protein fermentation metabolites, and short (SCFA) and branched (BCFA) chain fatty acids was assessed. When FOS were present during muscle fermentation, levels of SCFA (+54%) and H2S (+36%) increased, whereas levels of CS2 (-37%), ammonia (-60%) and indole (-30%) decreased, and the formation of dimethyl sulfides and phenol was suppressed. Red meat fermentation was not accompanied by higher H2S formation, but beef ferments tended to contain 33 to 49% higher CS2 levels compared to the ferments of other muscle sources. In conclusion, there is a greater effect on sulfur fermentation by the addition of FOS to the meats, than the intrinsic heme-Fe content of meat.
Collapse
Affiliation(s)
- Núria Elias Masiques
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| | - Els Vossen
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), P.O. Frieda Saeysstraat 1, B-9000 Gent, Belgium
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| | - Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
6
|
Duarte TL, Viveiros N, Godinho C, Duarte D. Heme (dys)homeostasis and liver disease. Front Physiol 2024; 15:1436897. [PMID: 39135705 PMCID: PMC11317413 DOI: 10.3389/fphys.2024.1436897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Heme is essential for a variety of proteins involved in vital physiological functions in the body, such as oxygen transport, drug metabolism, biosynthesis of steroids, signal transduction, antioxidant defense and mitochondrial respiration. However, free heme is potentially cytotoxic due to the capacity of heme iron to promote the oxidation of cellular molecules. The liver plays a central role in heme metabolism by significantly contributing to heme synthesis, heme detoxification, and recycling of heme iron. Conversely, enzymatic defects in the heme biosynthetic pathway originate multisystemic diseases (porphyrias) that are highly associated with liver damage. In addition, there is growing evidence that heme contributes to the outcomes of inflammatory, metabolic and malignant liver diseases. In this review, we summarize the contribution of the liver to heme metabolism and the association of heme dyshomeostasis with liver disease.
Collapse
Affiliation(s)
- Tiago L. Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nicole Viveiros
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Catarina Godinho
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Delfim Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Serviço de Hematologia e Transplantação da Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| |
Collapse
|
7
|
Wang Z, Yao W, Wu W, Huang J, Ma Y, Yang C, Shi J, Fu J, Wang Y, Wong MCS, Xu W. Global incidence trends of early-onset colorectal cancer and related exposures in early-life: an ecological analysis based on the GBD 2019. Front Public Health 2024; 12:1367818. [PMID: 38966706 PMCID: PMC11222603 DOI: 10.3389/fpubh.2024.1367818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Background The incidence of early-onset colorectal cancer (EOCRC) is increasing globally. This study aims to describe the temporal trends of incidence and explore related risk exposures in early-life at the country level based on the GBD 2019. Methods Data on the incidence and attributable risk factors of EOCRC were obtained from the GBD 2019. Temporal trends of age-standardized incidence were evaluated by average annual percentage change (AAPC). Early-life exposures were indicated as summary exposure values (SEV) of selected factors, SDI and GDP per capita in previous decades and at ages 0-4, 5-9, 10-14 and 15-19 years. Weighted linear or non-linear regressions were applied to evaluate the ecological aggregate associations of the exposures with incidences of EOCRC. Results The global age-standardized incidence of EOCRC increased from 3.05 (3.03, 3.07) to 3.85 (3.83, 3.86) per 100,000 during 1990 and 2019. The incidence was higher in countries with high socioeconomic levels, and increased drastically in countries in East Asia and Caribbean, particularly Jamaica, Saudi Arabia and Vietnam. The GDP per capita, SDI, and SEVs of iron deficiency, alcohol use, high body-mass index, and child growth failure in earlier years were more closely related with the incidences of EOCRC in 2019. Exposures at ages 0-4, 5-9, 10-14 and 15-19 years were also associated with the incidences, particularly for the exposures at ages 15-19 years. Conclusion The global incidence of EOCRC increased during past three decades. The large variations at regional and national level may be related with the distribution of risk exposures in early life.
Collapse
Affiliation(s)
- Ziyang Wang
- Global Health Institute, Fudan University School of Public Health, Shanghai, China
| | - Weiyuan Yao
- Global Health Institute, Fudan University School of Public Health, Shanghai, China
| | - Weimiao Wu
- Global Health Institute, Fudan University School of Public Health, Shanghai, China
| | - Junjie Huang
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chen Yang
- Centre for Disease Control & Prevention in Pudong New Area of Shanghai, Shanghai, China
| | - Jufang Shi
- Office of Cancer Screening, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiongxing Fu
- Global Health Institute, Fudan University School of Public Health, Shanghai, China
| | - Yingying Wang
- Centre for Disease Control & Prevention in Pudong New Area of Shanghai, Shanghai, China
| | - Martin C. S. Wong
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Wanghong Xu
- Global Health Institute, Fudan University School of Public Health, Shanghai, China
| |
Collapse
|
8
|
Chen H, Chu Z, Huang J, Wen Y. Regulatory potential of secondary metabolite DIMBOA and baicalein to imazethapyr-induced toxicity in wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38265-38273. [PMID: 38801610 DOI: 10.1007/s11356-024-33812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Controlling and mitigating the toxicity of herbicides to non-target plants is of significant importance in reducing ecological risks. The development of green and natural herbicide control technologies has become an urgent necessity. In this paper, how 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA) and baicalein alleviated oxidative stress induced by imazethapyr (IM) in wheat seedlings was investigated. We found that DIMBOA and baicalein enhanced the antioxidant enzyme activities in wheat seedlings exposed to IM and reduced the excessive reactive oxygen species due to IM stress by 21.3% and 23.5%, respectively. DIMBOA and baicalein also restored the iron content reduced by IM and effectively mitigated Fe2+ overload by alleviating the response of heme oxygenase 1 to IM stress. The antioxidant and iron homeostatic maintenance properties of DIMBOA and baicalein enhanced the defenses of wheat seedlings against IM stress. Our results highlight the potential implication of secondary metabolites as natural products to modulate herbicide toxicity to non-target plants.
Collapse
Affiliation(s)
- Hui Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Zheyu Chu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Singhabahu R, Kodagoda Gamage SM, Gopalan V. Pathological significance of heme oxygenase-1 as a potential tumor promoter in heme-induced colorectal carcinogenesis. CANCER PATHOGENESIS AND THERAPY 2024; 2:65-73. [PMID: 38601482 PMCID: PMC11002664 DOI: 10.1016/j.cpt.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2024]
Abstract
The significance of the heme-metabolizing enzyme heme oxygenase-1 (HMOX1) in the pathogenesis of colorectal cancer (CRC) has not been fully explored. HMOX1 cytoprotection is imperative to limit oxidative stress. However, its roles in preventing carcinogenesis in response to high levels of heme are not thoroughly understood. This study reviews various mechanisms associated with the paradoxical role of HMOX1, which is advantageous for tumor growth, refractoriness, and survival of cancer cells amid oxidative stress in heme-induced CRC. The alternate role of HMOX1 promotes cell proliferation and metastasis through immune modulation and angiogenesis. Inhibiting HMOX1 has been found to reverse tumor promotion. Thus, HMOX1 acts as a conditional tumor promoter in CRC pathogenesis.
Collapse
Affiliation(s)
- Rachitha Singhabahu
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Sujani M. Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
- Faculty of Health Sciences and Medicine, Bond University, Robina 4226, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
10
|
Liang M, Wu J, Li H, Zhu Q. N-glycolylneuraminic acid in red meat and processed meat is a health concern: A review on the formation, health risk, and reduction. Compr Rev Food Sci Food Saf 2024; 23:e13314. [PMID: 38389429 DOI: 10.1111/1541-4337.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
One of the most consistent epidemiological associations between diet and human disease risk is the impact of consuming red meat and processed meat products. In recent years, the health concerns surrounding red meat and processed meat have gained worldwide attention. The fact that humans have lost the ability to synthesize N-glycolylneuraminic acid (Neu5Gc) makes red meat and processed meat products the most important source of exogenous Neu5Gc for humans. As our research of Neu5Gc has increased, it has been discovered that Neu5Gc in red meat and processed meat is a key factor in many major diseases. Given the objective evidence of the harmful risk caused by Neu5Gc in red meat and processed meat to human health, there is a need for heightened attention in the field of food. This updated review has several Neu5Gc aspects given including biosynthetic pathway of Neu5Gc and its accumulation in the human body, the distribution of Neu5Gc in food, the methods for detecting Neu5Gc, and most importantly, a systematic review of the existing methods for reducing the content of Neu5Gc in red meat and processed meat. It also provides some insights into the current status and future directions in this area.
Collapse
Affiliation(s)
- Meilian Liang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- ChinaLaboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hongying Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- ChinaLaboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- ChinaLaboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Ma H, Qi X. Red Meat Consumption and Cancer Risk: A Systematic Analysis of Global Data. Foods 2023; 12:4164. [PMID: 38002221 PMCID: PMC10670314 DOI: 10.3390/foods12224164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The association between red meat consumption and cancer risk remains a controversy. In this study, we systematically collected and analyzed global data (from Our World in Data and Global Cancer Observatory) to investigate this association for the first time. Our results confirmed significant positive associations between red meat consumption (RMC) and overall cancer incidence (0.798, p < 0.001), or colorectal cancer incidence (0.625, p < 0.001). Several previously unreported cancer types linked to RMC were also unveiled. Gross domestic product (GDP) per capita were found to have an impact on this association. However, even after controlling it, RMC remained significantly associated with cancer incidence (0.463, p < 0.001; 0.592, p < 0.001). Meanwhile, after controlling GDP per capita, the correlation coefficients between white meat consumption and overall cancer incidence were found to be much lower and insignificant, at 0.089 (p = 0.288) for poultry consumption and at -0.055 (p = 0.514) for seafood and fish consumption. Notably, an interesting comparison was performed between changes of colorectal cancer incidence and RMC in many countries and regions. A lag of 15-20 years was found, implying causality between RMC and cancer risk. Our findings will contribute to the development of more rational meat consumption concept.
Collapse
Affiliation(s)
- Hongyue Ma
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China;
- Haide College, Ocean University of China, Qingdao 266404, China
| | - Xiangming Qi
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China;
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| |
Collapse
|
13
|
Fahrer J, Wittmann S, Wolf AC, Kostka T. Heme Oxygenase-1 and Its Role in Colorectal Cancer. Antioxidants (Basel) 2023; 12:1989. [PMID: 38001842 PMCID: PMC10669411 DOI: 10.3390/antiox12111989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme located at the endoplasmic reticulum, which is responsible for the degradation of cellular heme into ferrous iron, carbon monoxide and biliverdin-IXa. In addition to this main function, the enzyme is involved in many other homeostatic, toxic and cancer-related mechanisms. In this review, we first summarize the importance of HO-1 in physiology and pathophysiology with a focus on the digestive system. We then detail its structure and function, followed by a section on the regulatory mechanisms that control HO-1 expression and activity. Moreover, HO-2 as important further HO isoform is discussed, highlighting the similarities and differences with regard to HO-1. Subsequently, we describe the direct and indirect cytoprotective functions of HO-1 and its breakdown products carbon monoxide and biliverdin-IXa, but also highlight possible pro-inflammatory effects. Finally, we address the role of HO-1 in cancer with a particular focus on colorectal cancer. Here, relevant pathways and mechanisms are presented, through which HO-1 impacts tumor induction and tumor progression. These include oxidative stress and DNA damage, ferroptosis, cell cycle progression and apoptosis as well as migration, proliferation, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| | | | | | - Tina Kostka
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| |
Collapse
|
14
|
Kiweler N, Schwarz H, Nguyen A, Matschos S, Mullins C, Piée-Staffa A, Brachetti C, Roos WP, Schneider G, Linnebacher M, Brenner W, Krämer OH. The epigenetic modifier HDAC2 and the checkpoint kinase ATM determine the responses of microsatellite instable colorectal cancer cells to 5-fluorouracil. Cell Biol Toxicol 2023; 39:2401-2419. [PMID: 35608750 PMCID: PMC10547618 DOI: 10.1007/s10565-022-09731-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
The epigenetic modifier histone deacetylase-2 (HDAC2) is frequently dysregulated in colon cancer cells. Microsatellite instability (MSI), an unfaithful replication of DNA at nucleotide repeats, occurs in about 15% of human colon tumors. MSI promotes a genetic frameshift and consequently a loss of HDAC2 in up to 43% of these tumors. We show that long-term and short-term cultures of colorectal cancers with MSI contain subpopulations of cells lacking HDAC2. These can be isolated as single cell-derived, proliferating populations. Xenografted patient-derived colon cancer tissues with MSI also show variable patterns of HDAC2 expression in mice. HDAC2-positive and HDAC2-negative RKO cells respond similarly to pharmacological inhibitors of the class I HDACs HDAC1/HDAC2/HDAC3. In contrast to this similarity, HDAC2-negative and HDAC2-positive RKO cells undergo differential cell cycle arrest and apoptosis induction in response to the frequently used chemotherapeutic 5-fluorouracil, which becomes incorporated into and damages RNA and DNA. 5-fluorouracil causes an enrichment of HDAC2-negative RKO cells in vitro and in a subset of primary colorectal tumors in mice. 5-fluorouracil induces the phosphorylation of KAP1, a target of the checkpoint kinase ataxia-telangiectasia mutated (ATM), stronger in HDAC2-negative cells than in their HDAC2-positive counterparts. Pharmacological inhibition of ATM sensitizes RKO cells to cytotoxic effects of 5-fluorouracil. These findings demonstrate that HDAC2 and ATM modulate the responses of colorectal cancer cells towards 5-FU.
Collapse
Affiliation(s)
- Nicole Kiweler
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
- Present Address: Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Helena Schwarz
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Alexandra Nguyen
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephanie Matschos
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Christina Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Christina Brachetti
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Wynand P. Roos
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Günter Schneider
- Klinikum Rechts Der Isar, Medical Clinic and Polyclinic II, Technical University Munich, 81675 Munich, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Walburgis Brenner
- Clinic for Obstetrics and Women’s Health, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
15
|
Wu J, Xia C, Liu C, Zhang Q, Xia C. The role of gut microbiota and drug interactions in the development of colorectal cancer. Front Pharmacol 2023; 14:1265136. [PMID: 37680706 PMCID: PMC10481531 DOI: 10.3389/fphar.2023.1265136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The human gut microbiota is a complex ecosystem regulating the host's environmental interaction. The same functional food or drug may have varying bioavailability and distinct effects on different individuals. Drugs such as antibiotics can alter the intestinal flora, thus affecting health. However, the relationship between intestinal flora and non-antibiotic drugs is bidirectional: it is not only affected by drugs; nevertheless, it can alter the drug structure through enzymes and change the bioavailability, biological activity, or toxicity of drugs to improve their efficacy and safety. This review summarizes the roles and mechanisms of antibiotics, antihypertensive drugs, nonsteroidal anti-inflammatory drugs, lipid-lowering drugs, hypoglycemic drugs, virus-associated therapies, metabolites, and dietary in modulating the colorectal cancer gut microbiota. It provides a reference for future antitumor therapy targeting intestinal microorganisms.
Collapse
Affiliation(s)
- Jinna Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Pharmacy, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Lai S, Yan Y, Pu Y, Lin S, Qiu JG, Jiang BH, Keller MI, Wang M, Bork P, Chen WH, Zheng Y, Zhao XM. Enterotypes of the human gut mycobiome. MICROBIOME 2023; 11:179. [PMID: 37563687 PMCID: PMC10416509 DOI: 10.1186/s40168-023-01586-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The fungal component of the human gut microbiome, also known as the mycobiome, plays a vital role in intestinal ecology and human health. However, the overall structure of the gut mycobiome as well as the inter-individual variations in fungal composition remains largely unknown. In this study, we collected a total of 3363 fungal sequencing samples from 16 cohorts across three continents, including 572 newly profiled samples from China. RESULTS We identify and characterize four mycobiome enterotypes using ITS profiling of 3363 samples from 16 cohorts. These enterotypes exhibit stability across populations and geographical locations and significant correlation with bacterial enterotypes. Particularly, we notice that fungal enterotypes have a strong age preference, where the enterotype dominated by Candida (i.e., Can_type enterotype) is enriched in the elderly population and confers an increased risk of multiple diseases associated with a compromised intestinal barrier. In addition, bidirectional mediation analysis reveals that the fungi-contributed aerobic respiration pathway associated with the Can_type enterotype might mediate the association between the compromised intestinal barrier and aging. CONCLUSIONS We show that the human gut mycobiome has stable compositional patterns across individuals and significantly correlates with multiple host factors, such as diseases and host age. Video Abstract.
Collapse
Affiliation(s)
- Senying Lai
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yan Yan
- CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yanni Pu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuchun Lin
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jian-Ge Qiu
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Bing-Hua Jiang
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Marisa Isabell Keller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Mingyu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany.
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- International Human Phenome Institutes (Shanghai), Shanghai, China.
| |
Collapse
|
17
|
Guo GX, Wu KY, Zhang XY, Lai FX, Tsim KWK, Qin QW, Hu WH. The extract of Curcumae Longae Rhizoma suppresses angiogenesis via VEGF-induced PI3K/Akt-eNOS-NO pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116299. [PMID: 36842721 DOI: 10.1016/j.jep.2023.116299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumae Longae Rhizoma (CLR) is a safe natural herbal medicine, and which has been widely used for centuries as functional food and health products, but its effects on angiogenesis and related underlying mechanism remain unclear. AIM OF THE STUDY The abnormal angiogenesis is closely related with various diseases, and therefore the precise control of angiogenesis is of great importance. The well-known angiogenic factor, vascular endothelial growth factor (VEGF), mediates angiogenesis and induces multiple signalling pathways via binding to VEGF receptor (VEGFR). The attenuation of VEGF-triggered angiogenic-related signalling pathways may relieve various diseases through suppression of angiogenesis. Here, we aimed to elucidate that CLR extract could exert striking anti-angiogenic activities both in vitro and in vivo. MATERIALS AND METHODS The viability of human umbilical vascular endothelial cell (HUVEC) was examined by LDH and MTT assays. Migrative and invasive ability of the endothelial cells were independently evaluated by wound healing and transwell assays. The activities of CLR extract on in vitro angiogenesis was tested by tube formation assay. In vivo vascularization was determined by using zebrafish embryo model in the present of CLR extract. Western blotting was applied to determine the phosphorylated levels of VEGFR2, PI3K, AKT and eNOS. Besides, the levels of nitric oxide (NO) and reactive oxygen species (ROS) were separately evaluated by Griess assay and 2'7'-dichlorofluorescein diacetate reaction. In addition, the cell migrative ability of cancer cell was estimated by using cultured human colon carcinoma cells (HT-29 cell line), and immunofluorescence assay was applied to evaluate the effect of CLR extract on nuclear translocation of NF-κB p65 subunit in the VEGF-treated HT-29 cultures. RESULTS CLR extract significantly suppressed a series of VEGF-mediated angiogenic responses, including endothelial cell proliferation, migration, invasion, and tube formation. Moreover, CLR extract reduced in vivo sub-intestinal vessel formation in zebrafish embryo model. Mechanistically, the extract of CLR attenuated the VEGF-triggered signalling, as demonstrated by decreased level of phosphorylated VEGFR2 and subsequently inactivated its downstream regulators, e.g. phospho-PI3K, phospho-AKT and phospho-eNOS. The production of NO and formation of ROS were markedly inhibited in HUVECs. Furthermore, CLR extract suppressed cell migration and NF-κB translocation in cultured HT-29 cells. CONCLUSIONS These preclinical findings demonstrate that the extract of CLR remarkably attenuates angiogenesis and which has great potential as a natural drug candidate with excellent anti-angiogenic activity.
Collapse
Affiliation(s)
- Guo-Xia Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Ke-Yue Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiao-Yong Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| | - Fu-Xiang Lai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Karl Wah-Keung Tsim
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Qi-Wei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| | - Wei-Hui Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| |
Collapse
|
18
|
Liang H, He X, Tong Y, Bai N, Pu Y, Han K, Wang Y. Ferroptosis open a new door for colorectal cancer treatment. Front Oncol 2023; 13:1059520. [PMID: 37007121 PMCID: PMC10061081 DOI: 10.3389/fonc.2023.1059520] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Colorectal cancer (CRC) is the third highest incidence and the second highest mortality malignant tumor in the world. The etiology and pathogenesis of CRC are complex. Due to the long course of the disease and no obvious early symptoms, most patients are diagnosed as middle and late stages. CRC is prone to metastasis, most commonly liver metastasis, which is one of the leading causes of death in CRC patients. Ferroptosis is a newly discovered cell death form with iron dependence, which is driven by excessive lipid peroxides on the cell membrane. It is different from other form of programmed cell death in morphology and mechanism, such as apoptosis, pyroptosis and necroptosis. Numerous studies have shown that ferroptosis may play an important role in the development of CRC. For advanced or metastatic CRC, ferroptosis promises to open a new door in the setting of poor response to chemotherapy and targeted therapy. This mini review focuses on the pathogenesis of CRC, the mechanism of ferroptosis and the research status of ferroptosis in CRC treatment. The potential association between ferroptosis and CRC and some challenges are discussed.
Collapse
Affiliation(s)
- Hong Liang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xia He
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yitong Tong
- Chengdu Second People’s Hospital Party Committee Office, Chengdu, China
| | - Niuniu Bai
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Yushu Pu
- Nanchang University Queen Mary School, Nanchang, China
| | - Ke Han
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pharmacy, The First People’s Hospital of Chengdu, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sicuhan, China
| |
Collapse
|
19
|
Zhu Y, Li X. Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells 2023; 12:cells12030447. [PMID: 36766788 PMCID: PMC9913588 DOI: 10.3390/cells12030447] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common cancers worldwide, with a high mortality rate despite the decreasing incidence and new diagnostic and therapeutic strategies. CRC arises from both epidemiologic and molecular backgrounds. In addition to hereditary factor and genetic mutations, the strongly varying incidence of CRC is closely linked to chronic inflammatory disorders of the intestine and terrible dietary habits. The Wnt signalling pathway is a complex regulatory network that is implicated in many CRC physiological processes, including cancer occurrence, development, prognosis, invasion, and metastasis. It is currently believed to include classical Wnt/β-catenin, Wnt/PCP, and Wnt/Ca2+. In this review, we summarise the recent mechanisms and potential regulators of the three branches of the Wnt signalling pathway in CRC.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- Shandong Kelun Pharmaceutical Co., Ltd., Binzhou 256600, China
- Correspondence: ; Tel.: +86-0531-8838-2612
| |
Collapse
|
20
|
Wolf PG, Bernabe BP, Oliveira ML, Hamm A, McLeod A, Olender S, Castellanos K, Loman BR, Gaskins HR, Fitzgibbon M, Tussing-Humphreys L. Effect of Diets Varying in Iron and Saturated Fat on the Gut Microbiota and Intestinal Inflammation: A Crossover Feeding Study among Older Females with Obesity. Nutr Cancer 2023; 75:876-889. [PMID: 36625531 PMCID: PMC10023443 DOI: 10.1080/01635581.2022.2163668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
Obesity is considered an independent risk factor for colorectal cancer (CRC). Altered nutrient metabolism, particularly changes to digestion and intestinal absorption, may play an important role in the development of CRC. Iron can promote the formation of tissue-damaging and immune-modulating reactive oxygen species. We conducted a crossover, controlled feeding study to examine the effect of three, 3-week diets varying in iron and saturated fat content on the colonic milieu and systemic markers among older females with obesity. Anthropometrics, fasting venous blood and stool were collected before and after each diet. There was a minimum 3-week washout period between diets. Eighteen participants consumed the three diets (72% Black; mean age 60.4 years; mean body mass index 35.7 kg/m2). Results showed no effect of the diets on intestinal inflammation (fecal calprotectin) or circulating iron, inflammation, and metabolic markers. Pairwise comparisons revealed less community diversity between samples (beta diversity, calculated from 16S rRNA amplicon sequences) among participants when consuming a diet low in iron and high in saturated fat vs. when consuming a diet high in iron and saturated fat. More studies are needed to investigate if dietary iron represents a salient target for CRC prevention among individuals with obesity.
Collapse
Affiliation(s)
- Patricia G. Wolf
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | - Manoela Lima Oliveira
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, USA
| | - Alyshia Hamm
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, USA
| | - Andrew McLeod
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, IL, USA
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sarah Olender
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, USA
| | - Karla Castellanos
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brett R. Loman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - H. Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Marian Fitzgibbon
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lisa Tussing-Humphreys
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Xia W, Gao Z, Jiang X, Jiang L, Qin Y, Zhang D, Tian P, Wang W, Zhang Q, Zhang R, Zhang N, Xu S. Alzheimer's risk factor FERMT2 promotes the progression of colorectal carcinoma via Wnt/β-catenin signaling pathway and contributes to the negative correlation between Alzheimer and cancer. PLoS One 2022; 17:e0278774. [PMID: 36480537 PMCID: PMC9731493 DOI: 10.1371/journal.pone.0278774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence from epidemiological studies indicate that Alzheimer's disease (AD) has a negative relationship with the incidence of cancers. Whether the Alzheimer's genetic risk factor, named as fermitin family homolog-2 (FERMT2), plays a pivotal part in the progressive process of colorectal carcinoma (CRC) yet remains unclear. This study revealed that FERMT2 was upregulated in CRC tissues which predicted an unfavorable outcome of CRC using the PrognoScan web tool. FERMT2 was co-expressed with a variety of genes have been linked with CRC occurrence and implicated in the infiltration of immune cell in CRC tissues. Overexpressing FERMT2 promoted CRC progression with upregulation of Wnt/β-catenin signaling. Knockdown of FERMT2 suppressed the cell multiplication, colony formation rate, migration and invasion, along with the epithelial to mesenchymal transition (EMT) with downregulation Wnt/β-catenin proteins in cells of CRC, while overexpressing β-catenin reversed the inhibitory effects of silencing FERMT2 on the migration or invasion of CRC cells. Furthermore, Aβ1-42 treated HT22 cells induced downregulation of FERMT2 and inhibited the migration, invasion and EMT in co-cultured CT26 cells through Wnt/β-catenin signaling. Our results revealed that the downregulated FERMT2 gene during AD is prominently activated in CRC, which promotes its progression via Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wenzhen Xia
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Xia Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Key Laboratory for Colorectal Cancer Precision Diagnosis and Treatment of Hebei Province, Shijiazhuang, Hebei, China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Yushi Qin
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Di Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pei Tian
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wanchang Wang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Nan Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China,* E-mail:
| |
Collapse
|
22
|
Gao H, Xing F. A novel signature model based on mitochondrial-related genes for predicting survival of colon adenocarcinoma. BMC Med Inform Decis Mak 2022; 22:277. [PMID: 36273131 PMCID: PMC9587559 DOI: 10.1186/s12911-022-02020-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Background Colon cancer is the foremost reason of cancer-related mortality worldwide. Colon adenocarcinoma constitutes 90% of colon cancer, and most patients with colon adenocarcinoma (COAD) are identified until advanced stage. With the emergence of an increasing number of novel pathogenic mechanisms and treatments, the role of mitochondria in the development of cancer, has been studied and reported with increasing frequency. Methods We systematically analyzed the effect of mitochondria-related genes in COAD utilizing RNA sequencing dataset from The Cancer Genome Atlas database and 1613 mitochondrial function-related genes from MitoMiner database. Our approach consisted of differentially expressed gene, gene set enrichment analysis, gene ontology terminology, Kyoto Encyclopedia of Genes and Genomes, independent prognostic analysis, univariate and multivariate analysis, Kaplan–Meier survival analysis, immune microenvironment correlation analysis, and Cox regression analysis. Results Consequently, 8 genes were identified to construct 8 mitochondrial-related gene model by applying Cox regression analysis, CDC25C, KCNJ11, NOL3, P4HA1, QSOX2, Trap1, DNAJC28, and ATCAY. Meanwhile, we assessed the connection between this model and clinical parameters or immune microenvironment. Risk score was an independent predictor for COAD patients’ survival with an AUC of 0.687, 0.752 and 0.762 at 1-, 3- and 5-year in nomogram, respectively. The group with the highest risk score had the lowest survival rate and the worst clinical stages. Additionally, its predictive capacity was validated in GSE39582 cohort. Conclusion In summary, we established a prognostic pattern of mitochondrial-related genes, which can predict overall survival in COAD, which may enable a more optimized approach for the clinical treatment and scientific study of COAD. This gene signature model has the potential to improve prognosis and treatment for COAD patients in the future, and to be widely implemented in clinical settings. The utilization of this mitochondrial-related gene signature model may be benefit in the treatments and medical decision-making of COAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12911-022-02020-3.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Tumor Stem Cell and Transforming Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China. .,Tumor Stem Cell and Transforming Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
23
|
Seok JH, Kim DH, Kim HJ, Jo HH, Kim EY, Jeong JH, Park YS, Lee SH, Kim DJ, Nam SY, Lee BJ, Lee HJ. Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation. J Vet Sci 2022; 23:e74. [PMID: 36174978 PMCID: PMC9523342 DOI: 10.4142/jvs.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Previous studies have presented evidence to support the significant association between red meat intake and colon cancer, suggesting that heme iron plays a key role in colon carcinogenesis. Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, exhibits anti-oxidative and anti-cancer effects. However, the effect of EGCG on red meat-associated colon carcinogenesis is not well understood. OBJECTIVES We aimed to investigate the regulatory effects of hemin and EGCG on colon carcinogenesis and the underlying mechanism of action. METHODS Hemin and EGCG were treated in Caco2 cells to perform the water-soluble tetrazolium salt-1 assay, lactate dehydrogenase release assay, reactive oxygen species (ROS) detection assay, real-time quantitative polymerase chain reaction and western blot. We investigated the regulatory effects of hemin and EGCG on an azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colon carcinogenesis mouse model. RESULTS In Caco2 cells, hemin increased cell proliferation and the expression of cell cycle regulatory proteins, and ROS levels. EGCG suppressed hemin-induced cell proliferation and cell cycle regulatory protein expression as well as mitochondrial ROS accumulation. Hemin increased nuclear factor erythroid-2-related factor 2 (Nrf2) expression, but decreased Keap1 expression. EGCG enhanced hemin-induced Nrf2 and antioxidant gene expression. Nrf2 inhibitor reversed EGCG reduced cell proliferation and cell cycle regulatory protein expression. In AOM/DSS mice, hemin treatment induced hyperplastic changes in colon tissues, inhibited by EGCG supplementation. EGCG reduced the hemin-induced numbers of total aberrant crypts and malondialdehyde concentration in the AOM/DSS model. CONCLUSIONS We demonstrated that EGCG reduced hemin-induced proliferation and colon carcinogenesis through Nrf2-inhibited mitochondrial ROS accumulation.
Collapse
Affiliation(s)
- Ju Hyung Seok
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Dae Hyun Kim
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Hye Jih Kim
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Hang Hyo Jo
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Eun Young Kim
- Korea Food Culture Promotion Association, Cheongju 28553, Korea
| | - Jae-Hwang Jeong
- Department of Biotechnology and Biomedicine, Chungbuk Provincial University, Cheongju 28160, Korea
| | - Young Seok Park
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju 28644, Korea
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Sang Hun Lee
- Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Korea
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea
| | - Dae Joong Kim
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Sang Yoon Nam
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Beom Jun Lee
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea.
| | - Hyun Jik Lee
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
24
|
Malesza IJ, Bartkowiak-Wieczorek J, Winkler-Galicki J, Nowicka A, Dzięciołowska D, Błaszczyk M, Gajniak P, Słowińska K, Niepolski L, Walkowiak J, Mądry E. The Dark Side of Iron: The Relationship between Iron, Inflammation and Gut Microbiota in Selected Diseases Associated with Iron Deficiency Anaemia—A Narrative Review. Nutrients 2022; 14:nu14173478. [PMID: 36079734 PMCID: PMC9458173 DOI: 10.3390/nu14173478] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Iron is an indispensable nutrient for life. A lack of it leads to iron deficiency anaemia (IDA), which currently affects about 1.2 billion people worldwide. The primary means of IDA treatment is oral or parenteral iron supplementation. This can be burdened with numerous side effects such as oxidative stress, systemic and local-intestinal inflammation, dysbiosis, carcinogenic processes and gastrointestinal adverse events. Therefore, this review aimed to provide insight into the physiological mechanisms of iron management and investigate the state of knowledge of the relationship between iron supplementation, inflammatory status and changes in gut microbiota milieu in diseases typically complicated with IDA and considered as having an inflammatory background such as in inflammatory bowel disease, colorectal cancer or obesity. Understanding the precise mechanisms critical to iron metabolism and the awareness of serious adverse effects associated with iron supplementation may lead to the provision of better IDA treatment. Well-planned research, specific to each patient category and disease, is needed to find measures and methods to optimise iron treatment and reduce adverse effects.
Collapse
Affiliation(s)
- Ida J. Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Jakub Winkler-Galicki
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Aleksandra Nowicka
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Marta Błaszczyk
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Paulina Gajniak
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Karolina Słowińska
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Leszek Niepolski
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Correspondence:
| |
Collapse
|
25
|
Association between Blood Donation and Malignant and Benign Tumour Risk: A Population-Based Study of 3.4 Million Participants in China. JOURNAL OF ONCOLOGY 2022; 2022:7647431. [PMID: 35847363 PMCID: PMC9286895 DOI: 10.1155/2022/7647431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022]
Abstract
This study aims to identify the relationship between blood donation and malignant and benign tumour hospitalization risk. The cohort study was constructed in Shaanxi, China, to include blood donors and match nonblood donors one-to-one by gender, age, and county of residence. The study compared the hospitalization records of two groups from 2012 to 2018. A log-binomial regression model was used to estimate the relative risk (RR) of tumour risk between donors and nonblood donors among different age groups. A total of 1,625,599 donors were recruited (including 968,823 males) and compared with the matched nonblood donor group. Significantly lower risk of malignancy in males was found among donors (adjusted RR: 0.82, 95% CI: 0.75–0.92). Lower risks for specific types of tumours among donors were observed, including liver (0.42, [0.28–0.67]), lung (0.74, [0.59–0.87]), lymphoma (0.75, [0.62–0.85]), and oesophagus (0.55, [0.41–0.72]). However, the risk of brain cancer was higher among male donors (RR 1.19 [1.06–1.29]). Among female donors, lower risk of liver (0.57, [0.42–0.79]) and oesophagus malignancy (0.73, [0.62–0.88]) was observed. For benign tumours, male donors have a lower risk of benign skin tumour (0.79, [0.62–0.94]) and hemangioma and lymphangioma (0.75, [0.51–0.89]), while female donors have a lower risk in hemangioma and lymphangioma (0.65, [0.44–0.83]). We also found that the risk decreased with age among donors in the prevalence of tumours compared to that in nonblood donors (
). Blood donation appears to be significantly associated with various tumour risks among both males and females. Overall, the risk of tumours decreased more substantially with age in blood donors compared with nonblood donors. Further research is warranted to investigate the impact of ‘health donor effects’ on these findings.
Collapse
|
26
|
Syed Soffian SS, Mohammed Nawi A, Hod R, Ja’afar MH, Isa ZM, Chan HK, Hassan MRA. Meta-Analysis of the Association between Dietary Inflammatory Index (DII) and Colorectal Cancer. Nutrients 2022; 14:nu14081555. [PMID: 35458117 PMCID: PMC9031004 DOI: 10.3390/nu14081555] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
The Dietary Inflammatory Index (DII) was extensively used to examine the inflammatory potential of diet related to colorectal cancer (CRC). This meta-analysis aimed to update the evidence of the association between the DII and CRC across various culture-specific dietary patterns. Literature search was performed through online databases (Scopus, Web of Science, PubMed, and EBSCOHost). Observational studies exploring the association between the DII and CRC, published between 2017 and 2021, were included. The risk ratio (RR) and 95% confidence interval (CI) were separately computed for 12 studies comparing the highest and lowest DII scores and for 3 studies that presented continuous DII scores. A high DII score was associated with a higher risk of CRC (RR:1.16; 95% CI, 1.05–1.27). In the subgroup analysis, significant associations were seen in cohort design (RR: 1.24; 95% CI, 1.06–1.44), those lasting for 10 years or longer (RR: 2.95; 95% CI, 2.47–3.52), and in adjustment factor for physical activity (RR: 1.13; 95% CI, 1.07–1.20). An increase of one point in the DII score elevates the risk of CRC by 1.34 (95% CI: 1.15–1.55) times. The findings call for standardized measurement of the inflammatory potential of diet in future studies to enable the establishment of global guidelines for CRC prevention.
Collapse
Affiliation(s)
- Sharifah Saffinas Syed Soffian
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.S.S.S.); (R.H.); (M.H.J.); (Z.M.I.)
| | - Azmawati Mohammed Nawi
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.S.S.S.); (R.H.); (M.H.J.); (Z.M.I.)
- Correspondence:
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.S.S.S.); (R.H.); (M.H.J.); (Z.M.I.)
| | - Mohd Hasni Ja’afar
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.S.S.S.); (R.H.); (M.H.J.); (Z.M.I.)
| | - Zaleha Md Isa
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.S.S.S.); (R.H.); (M.H.J.); (Z.M.I.)
| | - Huan-Keat Chan
- Clinical Research Center, Sultanah Bahiyah Hospital, Alor Setar 05400, Malaysia; (H.-K.C.); (M.R.A.H.)
| | - Muhammad Radzi Abu Hassan
- Clinical Research Center, Sultanah Bahiyah Hospital, Alor Setar 05400, Malaysia; (H.-K.C.); (M.R.A.H.)
| |
Collapse
|
27
|
A multivariate insight into the organoleptic properties of porcine muscle by ultrasound-assisted brining: Protein oxidation, water state and microstructure. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Pieri M, Theori E, Dweep H, Flourentzou M, Kalampalika F, Maniori MA, Papagregoriou G, Papaneophytou C, Felekkis K. A bovine miRNA, bta-miR-154c, withstands in vitro human digestion but does not affect cell viability of colorectal human cell lines after transfection. FEBS Open Bio 2022; 12:925-936. [PMID: 35318810 PMCID: PMC9063428 DOI: 10.1002/2211-5463.13402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequent human cancer with over 1.3 million new cases globally. CRC is a complex disease caused by interactions between genetic and environmental factors; in particular, high consumption of red meat, including beef, is considered a risk factor for CRC initiation and progression. Recent data demonstrate that exogenous microRNAs (miRNAs) entering the body via ingestion could pose an effect on the consumer. In this study, we focused on bovine miRNAs that do not share a seed sequence with humans and mice. We identified bta-miR-154c, a bovine miRNA found in edible parts of beef and predicted via cross-species bioinformatic analysis to affect cancer-related pathways in human cells. When bovine tissue was subjected to cooking and a simulation of human digestion, bta-miR-154c was still detected after all procedures, albeit at reduced concentrations. However, lipofection of bta-miR-154c in three different colorectal human cell lines did not affect their viability as evaluated at various time points and concentrations. These data indicate that bta-miR-154c (a) may affect cancer-related pathways in human cells, (b) can withstand digestion and be detected after all stages of an in vitro digestion protocol, but (c) it does not appear to alter epithelial cell viability after entering human enterocytes, even at supraphysiological amounts. Further experiments will elucidate whether bta-miR-154c exerts a different functional effect on the human gut epithelium, which may cause it to contribute to CRC progression through its consumption.
Collapse
Affiliation(s)
- Myrtani Pieri
- Department of Life and Health Sciences, University of Nicosia, Cyprus
| | - Elena Theori
- Department of Life and Health Sciences, University of Nicosia, Cyprus
| | - Harsh Dweep
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - Kyriacos Felekkis
- Department of Life and Health Sciences, University of Nicosia, Cyprus
| |
Collapse
|
29
|
Chambers T, Douwes J, Mannetje A, Woodward A, Baker M, Wilson N, Hales S. Nitrate in drinking water and cancer risk: the biological mechanism, epidemiological evidence and future research. Aust N Z J Public Health 2022; 46:105-108. [PMID: 35238441 DOI: 10.1111/1753-6405.13222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Tim Chambers
- Health, Environment & Infection Research Unit, Department of Public Health, University of Otago, Wellington
| | - Jeroen Douwes
- Research Centre for Hauora and Health, Massey University Wellington
| | | | | | - Michael Baker
- Health, Environment & Infection Research Unit, Department of Public Health, University of Otago, Wellington
| | - Nick Wilson
- Health, Environment & Infection Research Unit, Department of Public Health, University of Otago, Wellington
| | - Simon Hales
- Health, Environment & Infection Research Unit, Department of Public Health, University of Otago, Wellington
| |
Collapse
|
30
|
Chen X, Hoffmeister M, Brenner H. Red and Processed Meat Intake, Polygenic Risk Score, and Colorectal Cancer Risk. Nutrients 2022; 14:nu14051077. [PMID: 35268052 PMCID: PMC8912739 DOI: 10.3390/nu14051077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
High red and processed meat intake (RPMI) is an established risk factor for colorectal cancer (CRC). We aimed to assess the impact of RPMI on CRC risk according to and in comparison with genetically determined risk, which was quantified by a polygenic risk score (PRS). RPMI and potential confounders (ascertained by questionnaire) and a PRS (based on 140 CRC-related loci) were obtained from 5109 CRC cases and 4134 controls in a population-based case−control study. Associations of RPMI with CRC risk across PRS levels were assessed using logistic regression models and compared to effect estimates of PRS using “genetic risk equivalent” (GRE), a novel metric for effective risk communication. RPMI multiple times/week, 1 time/day, and >1 time/day was associated with 19% (95% CI 1% to 41%), 41% (18% to 70%), and 73% (30% to 132%) increased CRC risk, respectively, when compared to RPMI ≤ 1 time/week. Associations were independent of PRS levels (pinteraction = 0.97). The effect of RPMI > 1 time/day was equivalent to the effect of having 42 percentiles higher PRS level (GRE 42, 95% CI 20−65). RPMI increases CRC risk regardless of PRS levels. Avoiding RPMI can compensate for a substantial proportion of polygenic risk for CRC.
Collapse
Affiliation(s)
- Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (X.C.); (M.H.)
- Medical Faculty Heidelberg, Heidelberg University, 69117 Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (X.C.); (M.H.)
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (X.C.); (M.H.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
31
|
Chronic diseases are first associated with the degradation and artificialization of food matrices rather than with food composition: calorie quality matters more than calorie quantity. Eur J Nutr 2022; 61:2239-2253. [DOI: 10.1007/s00394-021-02786-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
|
32
|
O'Connor LE, Herrick KA, Parsons R, Reedy J. Heterogeneity in Meat Food Groups Can Meaningfully Alter Population-Level Intake Estimates of Red Meat and Poultry. Front Nutr 2021; 8:778369. [PMID: 34977122 PMCID: PMC8714904 DOI: 10.3389/fnut.2021.778369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022] Open
Abstract
Heterogeneity in meat food groups hinders interpretation of research regarding meat intake and chronic disease risk. Our objective was to investigate how heterogeneity in red meat (RM) and poultry food groups influences US population intake estimates. Based on a prior systematic review, we created an ontology of methods used to estimate RM [1= unprocessed RM; 2 (reference)= unprocessed RM + processed RM; 3= unprocessed RM + processed RM + processed poultry; and 4=unprocessed RM + processed RM + processed poultry + chicken patties/nuggets/tenders (PNT)] and three for poultry [A=unprocessed poultry; B= unprocessed poultry + PNT; C (reference)= unprocessed poultry + processed poultry + PNT). We applied methods to 2015-18 National Health and Nutrition Examination Survey data to estimate RM and poultry intake prevalence and amount. We estimated and compared intakes within RM and within poultry methods via the NCI Method for individuals ≥2 years old (n = 15,038), adjusted for age, sex, and race/Hispanic origin. We compared the population percentage that exceeded age- and sex-specific RM and poultry allotments from the Dietary Guidelines for Americans recommended eating patterns. The percent that consumed RM ranged from 47 ± 1.2% to 75 ± 0.8% across methods and mean amount ranged from 10.5 ± 0.28 to 18.2 ± 0.35 lean oz-equivalents/week; 38 ± 1.2% to 71 ± 0.7% and 9.8 ± 0.35 to 13.3 ± 0.35 lean oz-equivalents/week across poultry methods. Estimates for higher, but not lower, intake percentiles differed across RM methods. Compared to the reference, Method 1 was ≥3.0 oz-equivalents/week lower from 20th-70th percentiles, ≥6.0 oz-equivalents/week lower from 75th-90th percentiles, and ≥9.0 oz-equivalents/week lower for the 95th percentile. Method 4, but not Method 3, was ≥3.0 oz-equivalents/week higher than the reference from 50 to 95th percentiles. The population percentage that exceeded allotments was 27 ± 1.8% lower for Method 1, 9 ± 0.8% higher for Method 3, and 14 ± 0.9% higher for Method 4 compared to the reference. Differences were less pronounced for poultry. Our analysis quantifies the magnitude of bias introduced by heterogeneous meat food group methodology. Explicit descriptions of meat food groups are important for development of dietary recommendations to ensure that research studies are compared appropriately.
Collapse
Affiliation(s)
- Lauren E. O'Connor
- Risk Factor Assessment Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Kirsten A. Herrick
- Risk Factor Assessment Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ruth Parsons
- Information Management Services, Inc., Rockville, MD, United States
| | - Jill Reedy
- Risk Factor Assessment Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
33
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Drakoulis N, Porter AL, Tsatsakis A, Spandidos DA. Contributing factors common to COVID‑19 and gastrointestinal cancer. Oncol Rep 2021; 47:16. [PMID: 34779496 PMCID: PMC8611322 DOI: 10.3892/or.2021.8227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from the dysfunctional immune response of an individual following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events, ultimately leading to COVID-19. The authors have previously identified a number of contributing factors (CFs) common to myriad chronic diseases. Based on these observations, it was hypothesized that there may be a significant overlap between CFs associated with COVID-19 and gastrointestinal cancer (GIC). Thus, in the present study, a streamlined dot-product approach was used initially to identify potential CFs that affect COVID-19 and GIC directly (i.e., the simultaneous occurrence of CFs and disease in the same article). The nascent character of the COVID-19 core literature (~1-year-old) did not allow sufficient time for the direct effects of numerous CFs on COVID-19 to emerge from laboratory experiments and epidemiological studies. Therefore, a literature-related discovery approach was used to augment the COVID-19 core literature-based ‘direct impact’ CFs with discovery-based ‘indirect impact’ CFs [CFs were identified in the non-COVID-19 biomedical literature that had the same biomarker impact pattern (e.g., hyperinflammation, hypercoagulation, hypoxia, etc.) as was shown in the COVID-19 literature]. Approximately 2,250 candidate direct impact CFs in common between GIC and COVID-19 were identified, albeit some being variants of the same concept. As commonality proof of concept, 75 potential CFs that appeared promising were selected, and 63 overlapping COVID-19/GIC potential/candidate CFs were validated with biological plausibility. In total, 42 of the 63 were overlapping direct impact COVID-19/GIC CFs, and the remaining 21 were candidate GIC CFs that overlapped with indirect impact COVID-19 CFs. On the whole, the present study demonstrates that COVID-19 and GIC share a number of common risk/CFs, including behaviors and toxic exposures, that impair immune function. A key component of immune system health is the removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA 20155, USA
| | | | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I‑70125 Bari, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
34
|
Arnold C, Demuth P, Seiwert N, Wittmann S, Boengler K, Rasenberger B, Christmann M, Huber M, Brunner T, Linnebacher M, Fahrer J. The mitochondrial disruptor devimistat (CPI-613®) synergizes with genotoxic anticancer drugs in colorectal cancer therapy in a Bim-dependent manner. Mol Cancer Ther 2021; 21:100-112. [PMID: 34750196 DOI: 10.1158/1535-7163.mct-21-0393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/22/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent tumor entities, with an increasing incidence and mortality in younger adults in Europe and the US. 5-year survival rates for advanced CRC are still low, highlighting the need for novel targets in CRC therapy. Here, we investigated the therapeutic potential of the compound devimistat (CPI 613®) that targets altered mitochondrial cancer cell metabolism and its synergism with the antineoplastic drugs 5-fluorouracil (5-FU) and irinotecan (IT) in CRC. Devimistat exerted a comparable cytotoxicity in a panel of established CRC cell lines and patient-derived short-term culture independent of their genetic and epigenetic status, whereas human colonic epithelial cells were more resistant indicating tumor selectivity. These findings were corroborated in intestinal organoid and tumoroid models. Mechanistically, devimistat disrupted mitochondrial membrane potential and severely impaired mitochondrial respiration, resulting in CRC cell death induction independent of p53. Combination treatment of devimistat with 5-FU or IT demonstrated synergistic cell killing in CRC cells as shown by Combenefit modelling and Chou-Talalay analysis. Increased cell death induction was revealed as major mechanism involving downregulation of anti-apoptotic genes and accumulation of pro-apoptotic Bim, which was confirmed by its genetic knockdown. In human CRC xenograft mouse models, devimistat showed anti-tumor activity and synergized with IT, resulting in prolonged survival and enhanced therapeutic efficacy. In human tumor xenografts, devimistat prevented IT-triggered p53 stabilization and caused synergistic Bim induction. Taken together, our study revealed devimistat as a promising candidate in CRC therapy by synergizing with established antineoplastic drugs in vitro and in vivo.
Collapse
Affiliation(s)
- Carina Arnold
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| | - Philipp Demuth
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| | - Nina Seiwert
- Institute of Toxicology, Medical Center of the University Mainz
| | - Simon Wittmann
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| | | | | | | | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipp University of Marburg
| | | | - Michael Linnebacher
- Department of General Surgery, Division of Molecular Oncology and Immunotherapy, University of Rostock
| | - Jörg Fahrer
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| |
Collapse
|
35
|
Uttarawichien T, Khumsri W, Suwannalert P, Sibmooh N, Payuhakrit W. Onion Peel Extract Inhibits Cancer Cell Growth and Progression through the Roles of L1CAM, NF-κB, and Angiogenesis in HT-29 Colorectal Cancer Cells. Prev Nutr Food Sci 2021; 26:330-337. [PMID: 34737994 PMCID: PMC8531428 DOI: 10.3746/pnf.2021.26.3.330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is an aggressive malignancy. Critical mechanisms that support CRC progression include cell migration, invasion, metastasis, and angiogenesis, which is associated with L1 cell adhesion molecule (L1CAM) and nuclear factor-kappa B (NF-κB) signaling pathways. In this study, viability of HT-29 cells and human umbilical vein endothelial cells (HUVECs) was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, and cell apoptosis was investigated by flow cytometry assays. HT-29 cell migration and invasion were observed by wound healing and Transwell invasion assays, respectively, and tube formation of HUVECs was observed by tubulogenesis assays. L1CAM and NF-κB protein expressions in HT-29 cells treated with onion peel extract were determined by indirect immunofluorescence. Results showed that high dose treatments of onion peel extract inhibited cell viability of both HT-29 cells and HUVECs, induced HT-29 cell apoptosis, and inhibited HT-29 cell migration and invasion. Moreover, onion peel extract decreased total HUVEC tube length and, at a concentration of 10 μg/mL, showed potential to downregulate L1CAM and NF-κB. In conclusion, onion peel extract inhibits HT-29 cell growth, migration, and invasion through suppressing pathways related to angiogenesis downstream of L1CAM-activated NF-κB.
Collapse
Affiliation(s)
- Tamonwan Uttarawichien
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wilunplus Khumsri
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nathawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
36
|
Zhang Y, Tian X, Jiao Y, Liu Q, Li R, Wang W. An out of box thinking: the changes of iron-porphyrin during meat processing and gastrointestinal tract and some methods for reducing its potential health hazard. Crit Rev Food Sci Nutr 2021; 63:1390-1405. [PMID: 34387535 DOI: 10.1080/10408398.2021.1963946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron-porphyrin is a very important substance in organisms, especially in animals. It is not only the source of iron in human body, but is also the catalytic center of many reactions. Previous studies suggested that adequate intake of iron was important for the health of human, especially for children and pregnant women. However, associated diseases caused by iron over-intake and excessive meat consumption suggested its potential harmfulness for human health. During meat processing, Iron-porphyrin will cause the oxidation of proteins and fatty acids. In the gastrointestinal tract, iron-porphyrin can induce the production of malondialdehyde, fats oxidation, and indirectly cause oxidation of amino acids and nitrates etc. Iron-porphyrin enters the intestinal tract and disturbs the balance of intestinal flora. Finally, some common measures for inhibiting its activity are introduced, including the use of chelating agent, antioxidants, competitive inhibitor, etc., as well as give the hypothesis that sodium chloride increases the catalytic activity of iron-porphyrin. The purpose of this review is to present an overview of current knowledge about the changes of iron-porphyrin in the whole technico- and gastrointesto- processing axis and to provide ideas for further research in meat nutrition.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qiubo Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
37
|
Natural Merosesquiterpenes Activate the DNA Damage Response via DNA Strand Break Formation and Trigger Apoptotic Cell Death in p53-Wild-type and Mutant Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13133282. [PMID: 34209047 PMCID: PMC8268692 DOI: 10.3390/cancers13133282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bowel cancer is a serious disease, which affects many people worldwide. Unfortunately, the disease is often diagnosed in an advanced stage, which impairs the chance of survival. Furthermore, resistance to therapy occurs frequently. Thus, novel therapeutic approaches are required to improve cancer therapy. Here, we studied whether merosesquiterpenes might be useful for cancer treatment. These compounds occur in marine sponges and were isolated by our group. We were able to identify three compounds with potent cytotoxic activity in different cell lines established from human large bowel cancer. Our experiments provided evidence that the compounds cause DNA damage and trigger cell death, so-called mitochondrial apoptosis, which was attested in cancer cells with expression of wild-type and mutated p53 tumor suppressor. Finally, we show that merosesquiterpenes also kill intestinal tumor organoids, an ex vivo model of large bowel cancer. Abstract Colorectal cancer (CRC) is a frequently occurring malignant disease with still low survival rates, highlighting the need for novel therapeutics. Merosesquiterpenes are secondary metabolites from marine sponges, which might be useful as antitumor agents. To address this issue, we made use of a compound library comprising 11 isolated merosesquiterpenes. The most cytotoxic compounds were smenospongine > ilimaquinone ≈ dactylospontriol, as shown in different human CRC cell lines. Alkaline Comet assays and γH2AX immunofluorescence microscopy demonstrated DNA strand break formation in CRC cells. Western blot analysis revealed an activation of the DNA damage response with CHK1 phosphorylation, stabilization of p53 and p21, which occurred both in CRC cells with p53 knockout and in p53-mutated CRC cells. This resulted in cell cycle arrest followed by a strong increase in the subG1 population, indicative of apoptosis, and typical morphological alterations. In consistency, cell death measurements showed apoptosis following exposure to merosesquiterpenes. Gene expression studies and analysis of caspase cleavage revealed mitochondrial apoptosis via BAX, BIM, and caspase-9 as the main cell death pathway. Interestingly, the compounds were equally effective in p53-wild-type and p53-mutant CRC cells. Finally, the cytotoxic activity of the merosesquiterpenes was corroborated in intestinal tumor organoids, emphasizing their potential for CRC chemotherapy.
Collapse
|
38
|
Kodagoda Gamage SM, Cheng T, Lee KTW, Dissabandara L, Lam AKY, Gopalan V. Hemin, a major heme molecule, induced cellular and genetic alterations in normal colonic and colon cancer cells. Pathol Res Pract 2021; 224:153530. [PMID: 34243108 DOI: 10.1016/j.prp.2021.153530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Heme, a molecule abundant in red meat, is assumed to exert carcinogenic effects on normal colonic cells and tumour suppressive effects on cancer cells, though the hypothesis has not been explicitly proven yet. The present study aims to investigate hemin induced cytotoxic, genetic and biological alterations in both normal and cancerous colonic epithelial cells, which may imply its carcinogenic and anticarcinogenic properties. Normal colonic epithelial cells and colon carcinoma cells were treated with a 0-500 µM concentration of hemin for 1-4 days following which cytotoxicity and wound healing assays, western blot, rt-PCR and cell cycle analysis were performed. Interestingly, hemin was cytotoxic to normal colonic cells, but carcinoma cells were more resistant. Cell migration potential of both normal colonic cells and colon carcinoma cells was impeded by hemin. Hemin caused upregulation of both P53 and β-catenin gene and proteins expression in normal colonic cells with concomitant cell cycle arrest at G1(Gap 1) and G2/M (Gap 2/ Mitosis). G1 and G2 cell cycle arrests were also observed in colon carcinoma cells. In conclusion, the present study confirms that hemin, a main heme molecule present in red meat, facilitates behavioural, genetic and cell cycle kinetic alterations in both normal colonic epithelial and colon carcinoma cells.
Collapse
Affiliation(s)
- Sujani Madhurika Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia; Department of Anatomy, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | - Tracie Cheng
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Katherine Ting-Wei Lee
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Lakal Dissabandara
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
39
|
Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into Crosstalk between Ferroptosis and Necroptosis: Novel Therapeutics in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9991001. [PMID: 34257829 PMCID: PMC8257382 DOI: 10.1155/2021/9991001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent accumulation of lipid hydroperoxides to lethal levels. Necroptosis, an alternative form of programmed necrosis, is regulated by receptor-interacting protein (RIP) 1 activation and by RIP3 and mixed-lineage kinase domain-like (MLKL) phosphorylation. Ferroptosis and necroptosis both play important roles in the pathological progress in ischemic stroke, which is a complex brain disease regulated by several cell death pathways. In the past few years, increasing evidence has suggested that the crosstalk occurs between necroptosis and ferroptosis in ischemic stroke. However, the potential links between ferroptosis and necroptosis in ischemic stroke have not been elucidated yet. Hence, in this review, we overview and analyze the mechanism underlying the crosstalk between necroptosis and ferroptosis in ischemic stroke. And we find that iron overload, one mechanism of ferroptosis, leads to mitochondrial permeability transition pore (MPTP) opening, which aggravates RIP1 phosphorylation and contributes to necroptosis. In addition, heat shock protein 90 (HSP90) induces necroptosis and ferroptosis by promoting RIP1 phosphorylation and suppressing glutathione peroxidase 4 (GPX4) activation. In this work, we try to deliver a new perspective in the exploration of novel therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yue Zhou
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jun Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhigang Mei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Xun Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinwen Ge
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Medicine, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
40
|
Lu JJ, Abudukeyoumu A, Zhang X, Liu LB, Li MQ, Xie F. Heme oxygenase 1: a novel oncogene in multiple gynecological cancers. Int J Biol Sci 2021; 17:2252-2261. [PMID: 34239353 PMCID: PMC8241721 DOI: 10.7150/ijbs.61073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Heme oxygenase 1 (HO-1), also known as heat shock protein 32 (HSP32), is a stress-inducible enzyme. In the past, it was believed to participate in maintaining cell homeostasis, reducing oxidative stress damage and exerting anti-apoptotic effects. When exposed to noxious stimulation, the expression of HO-1 in the body will increase, antagonizing these oxidative stresses and protecting our bodies. Recently, many studies showed that HO-1 was also highly-expressed in multiple gynecological cancers (such as ovarian cancer, cervical cancer and endometrial cancer), suggesting that it should be closely related to cell proliferation, metastasis, immune regulation and angiogenesis as an oncogene. This review summarizes the different effects of HO-1 under normal and diseased conditions with a brief discussion of its implications on the diagnosis and treatment of gynecological cancers, aiming to provide a new clue for prevention and treatment of diseases.
Collapse
Affiliation(s)
- Jia-Jing Lu
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ayitila Abudukeyoumu
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Xing Zhang
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No.2 People's Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, 213003, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
41
|
Abstract
Excessive gut luminal iron contributes to the initiation and progression of colorectal cancer. However, emerging evidence suggests that reduced iron intake and low systemic iron levels are also associated with the pathogenesis of colorectal cancer. This is important because patients with colorectal cancer often present with iron deficiency. Iron is necessary for appropriate immunological functions; hence, iron deficiency may hinder cancer immunosurveillance and potentially modify the tumor immune microenvironment, both of which may assist cancer development. This is supported by studies showing that patients with colorectal cancer with iron deficiency have inferior outcomes and reduced response to therapy. Here, we provide an overview of the immunological consequences of iron deficiency and suggest ensuring adequate iron therapy to limit these outcomes.
Collapse
Affiliation(s)
- Oliver Phipps
- O. Phipps, M.J. Brookes, and H.O. Al-Hassi are with the Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Matthew J Brookes
- O. Phipps, M.J. Brookes, and H.O. Al-Hassi are with the Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom.,Royal Wolverhampton Hospitals NHS Trust, Gastroenterology Unit Wolverhampton, Wolverhampton, United Kingdom
| | - Hafid O Al-Hassi
- O. Phipps, M.J. Brookes, and H.O. Al-Hassi are with the Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|
42
|
Chronic intestinal inflammation drives colorectal tumor formation triggered by dietary heme iron in vivo. Arch Toxicol 2021; 95:2507-2522. [PMID: 33978766 PMCID: PMC8241717 DOI: 10.1007/s00204-021-03064-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
The consumption of red meat is associated with an increased risk for colorectal cancer (CRC). Multiple lines of evidence suggest that heme iron as abundant constituent of red meat is responsible for its carcinogenic potential. However, the underlying mechanisms are not fully understood and particularly the role of intestinal inflammation has not been investigated. To address this important issue, we analyzed the impact of heme iron (0.25 µmol/g diet) on the intestinal microbiota, gut inflammation and colorectal tumor formation in mice. An iron-balanced diet with ferric citrate (0.25 µmol/g diet) was used as reference. 16S rRNA sequencing revealed that dietary heme reduced α-diversity and caused a persistent intestinal dysbiosis, with a continuous increase in gram-negative Proteobacteria. This was linked to chronic gut inflammation and hyperproliferation of the intestinal epithelium as attested by mini-endoscopy, histopathology and immunohistochemistry. Dietary heme triggered the infiltration of myeloid cells into colorectal mucosa with an increased level of COX-2 positive cells. Furthermore, flow cytometry-based phenotyping demonstrated an increased number of T cells and B cells in the lamina propria following heme intake, while γδ-T cells were reduced in the intraepithelial compartment. Dietary heme iron catalyzed formation of fecal N-nitroso compounds and was genotoxic in intestinal epithelial cells, yet suppressed intestinal apoptosis as evidenced by confocal microscopy and western blot analysis. Finally, a chemically induced CRC mouse model showed persistent intestinal dysbiosis, chronic gut inflammation and increased colorectal tumorigenesis following heme iron intake. Altogether, this study unveiled intestinal inflammation as important driver in heme iron-associated colorectal carcinogenesis.
Collapse
|
43
|
Nurlaila I, Hidayat AA, Budiarto A, Mahesworo B, Purwandari K, Pardamean B. Dietary Intake as Determinant Nongenetic Factors to Colorectal Cancer Incidence and Staging Progression: A Study in South Sulawesi Population, Indonesia. Nutr Cancer 2021; 73:2523-2531. [PMID: 33410363 DOI: 10.1080/01635581.2020.1839516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Reports from various population-based studies indicate that the incidence of colorectal cancer may be strongly affected by dietary patterns of the respective populations. The nature of dietary patterns of specific Indonesia population on the risk of colorectal cancer might differ from previously published data with the global population. Therefore, we conducted a study where the dietary pattern in colorectal cancer patient cohorts was compared to age- and population-matched control. We documented 89 colorectal cancer cases and among 173 individuals from the South Sulawesi population. A series of logistic regression and Fisher's exact tests were utilized to test associations of dietary intakes and colorectal cancer risk as well as colorectal cancer staging. Our data demonstrate that vegetable (p-value = 8.70 × 10-26, OR = 0.49) and fruit (p-value = 7.59x10-5, OR = 0.70) intakes are associated with the reduced risk of colorectal cancer incidence. Conversely, acidic food, reheated food, meat, spicy food, and alcohol are associated with the increment case of cancer. Moreover, meat intake (p-value < 0.01) shows a significant association with cancer staging progression. Common dietary pattern is a determinant aspect to the colorectal cancer incidence as well as its staging progression.
Collapse
Affiliation(s)
- Ika Nurlaila
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia.,Information System Department, BINUS Online Learning, Bina Nusantara University, Jakarta, Indonesia
| | - Alam A Hidayat
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia.,Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Kartika Purwandari
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia.,Computer Science Department, BINUS Graduate Program-Master of Computer Science, BINUS Graduate Program-Master of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| |
Collapse
|
44
|
Is There Such a Thing as "Anti-Nutrients"? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients 2020; 12:nu12102929. [PMID: 32987890 PMCID: PMC7600777 DOI: 10.3390/nu12102929] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Plant-based diets are associated with reduced risk of lifestyle-induced chronic diseases. The thousands of phytochemicals they contain are implicated in cellular-based mechanisms to promote antioxidant defense and reduce inflammation. While recommendations encourage the intake of fruits and vegetables, most people fall short of their target daily intake. Despite the need to increase plant-food consumption, there have been some concerns raised about whether they are beneficial because of the various ‘anti-nutrient’ compounds they contain. Some of these anti-nutrients that have been called into question included lectins, oxalates, goitrogens, phytoestrogens, phytates, and tannins. As a result, there may be select individuals with specific health conditions who elect to decrease their plant food intake despite potential benefits. The purpose of this narrative review is to examine the science of these ‘anti-nutrients’ and weigh the evidence of whether these compounds pose an actual health threat.
Collapse
|
45
|
Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell Death Dis 2020; 11:787. [PMID: 32968051 PMCID: PMC7511955 DOI: 10.1038/s41419-020-02950-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
The consumption of red meat is probably carcinogenic to humans and is associated with an increased risk to develop colorectal cancer (CRC). Red meat contains high amounts of heme iron, which is thought to play a causal role in tumor formation. In this study, we investigated the genotoxic and cytotoxic effects of heme iron (i.e., hemin) versus inorganic iron in human colonic epithelial cells (HCEC), human CRC cell lines and murine intestinal organoids. Hemin catalyzed the formation of reactive oxygen species (ROS) and induced oxidative DNA damage as well as DNA strand breaks in both HCEC and CRC cells. In contrast, inorganic iron hardly affected ROS levels and only slightly increased DNA damage. Hemin, but not inorganic iron, caused cell death and reduced cell viability. This occurred preferentially in non-malignant HCEC, which was corroborated in intestinal organoids. Both hemin and inorganic iron were taken up into HCEC and CRC cells, however with differential kinetics and efficiency. Hemin caused stabilization and nuclear translocation of Nrf2, which induced heme oxygenase-1 (HO-1) and ferritin heavy chain (FtH). This was not observed after inorganic iron treatment. Chemical inhibition or genetic knockdown of HO-1 potentiated hemin-triggered ROS generation and oxidative DNA damage preferentially in HCEC. Furthermore, HO-1 abrogation strongly augmented the cytotoxic effects of hemin in HCEC, revealing its pivotal function in colonocytes and highlighting the toxicity of free intracellular heme iron. Taken together, this study demonstrated that hemin, but not inorganic iron, induces ROS and DNA damage, resulting in a preferential cytotoxicity in non-malignant intestinal epithelial cells. Importantly, HO-1 conferred protection against the detrimental effects of hemin.
Collapse
|
46
|
Nucci D, Fatigoni C, Amerio A, Odone A, Gianfredi V. Red and Processed Meat Consumption and Risk of Depression: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6686. [PMID: 32937855 PMCID: PMC7559491 DOI: 10.3390/ijerph17186686] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Depression is one of the leading causes of disability worldwide, with more than 264 million people affected. On average, depression first appears during the late teens to mid-20s as result of a complex interaction of social, psychological and biological factors. The aim of this systematic review with meta-analysis is to assess the association between red and processed meat intake and depression (both incident and prevalent). This systematic review was conducted according to the methods recommended by the Cochrane Collaboration and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Relevant papers published through March 2020 were identified by searching the electronic databases MEDLINE, Embase and Scopus. All analyses were conducted using ProMeta3 software. A critical appraisal was conducted. Finally, 17 studies met the inclusion criteria. The overall effect size (ES) of depression for red and processed meat intake was 1.08 [(95% CI = 1.04; 1.12), p-value < 0.001], based on 241,738 participants. The results from our meta-analysis showed a significant association between red and processed meat intake and risk of depression. The presented synthesis will be useful for health professionals and policy makers to better consider the effect of diet on mental health status.
Collapse
Affiliation(s)
- Daniele Nucci
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy;
| | - Cristina Fatigoni
- Department of Pharmaceutical Science, University of Perugia, Via del Giochetto, 06123 Perugia, Italy;
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Psychiatry, Tufts University, Medford, MA 02111, USA
| | - Anna Odone
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Vincenza Gianfredi
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy;
- CAPHRI Care and Public Health Research Institute, Maastricht University, 6211 Maastricht, The Netherlands
| |
Collapse
|
47
|
Anxiety is a potential effect modifier of the association between red and processed meat consumption and cancer risk: findings from the NutriNet-Santé cohort. Eur J Nutr 2020; 60:1887-1896. [PMID: 32889607 DOI: 10.1007/s00394-020-02381-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Red and processed meats are recognized by the International Agency for Research on Cancer as probably carcinogenic and carcinogenic to humans, respectively. Heme iron has been proposed as a central factor responsible for this effect. Furthermore, anxiety affects the intestinal barrier function by increasing intestinal permeability. The objective of this work was to assess how anxiety modifies the association between red and processed meat consumption and cancer risk in the NutriNet-Santé prospective cohort (2009-2019). METHODS Using multi-adjusted Cox models in a sample of 101,269 subjects, we studied the associations between the consumption of red and processed meat, the amount of heme iron coming from these meats and overall, colorectal, prostate, and breast cancer risks, overall and separately among participants with and without anxiety. RESULTS An increase in red and processed meat consumption was associated with an increased risk of developing colorectal cancer in the total population (HR for an increase of 50 g/day = 1.18 (1.01-1.37), p = 0.03). After stratification on anxiety, the HR 50 g/day was 1.42 (1.03-1.94, p = 0.03) in anxious participants and 1.12 (0.94-1.33, p = 0.20) in other participants. Similar trends were observed for overall cancer risk. Analyses conducted with heme iron also provided similar results. CONCLUSIONS Our results strengthen the existing body of evidence supporting that red and processed meat consumption and heme iron intake are associated with an increased risk of overall and more specifically colorectal cancer, and suggest that anxiety modifies these associations, with an increased risk in anxious participants.
Collapse
|
48
|
Phipps O, Al-Hassi HO, Quraishi MN, Kumar A, Brookes MJ. Influence of Iron on the Gut Microbiota in Colorectal Cancer. Nutrients 2020; 12:nu12092512. [PMID: 32825236 PMCID: PMC7551435 DOI: 10.3390/nu12092512] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Perturbations of the colonic microbiota can contribute to the initiation and progression of colorectal cancer, leading to an increase in pathogenic bacteria at the expense of protective bacteria. This can contribute to disease through increasing carcinogenic metabolite/toxin production, inducing inflammation, and activating oncogenic signaling. To limit disease progression, external factors that may influence the colonic microbiota need to be considered in patients with colorectal cancer. One major factor that can influence the colonic microbiota is iron. Iron is an essential micronutrient that is required by both prokaryotes and eukaryotes for cellular function. Most pathogenic bacteria have heightened iron acquisition mechanisms and therefore tend to outcompete protective bacteria for free iron. Colorectal cancer patients often present with anemia due to iron deficiency, and thus they require iron therapy. Depending upon the route of administration, iron therapy has the potential to contribute to a procarciongenic microbiota. Orally administered iron is the common treatment for anemia in these patients but can lead to an increased gut iron concentration. This suggests the need to reassess the route of iron therapy in these patients. Currently, this has only been assessed in murine studies, with human trials being necessary to unravel the potential microbial outcomes of iron therapy.
Collapse
Affiliation(s)
- Oliver Phipps
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (H.O.A.-H.); (A.K.); (M.J.B.)
- Correspondence:
| | - Hafid O. Al-Hassi
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (H.O.A.-H.); (A.K.); (M.J.B.)
| | - Mohammed N. Quraishi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Aditi Kumar
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (H.O.A.-H.); (A.K.); (M.J.B.)
- Royal Wolverhampton Hospitals NHS Trust, Gastroenterology Unit, Wolverhampton WV10 0QP, UK
| | - Matthew J. Brookes
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (H.O.A.-H.); (A.K.); (M.J.B.)
- Royal Wolverhampton Hospitals NHS Trust, Gastroenterology Unit, Wolverhampton WV10 0QP, UK
| |
Collapse
|
49
|
Kostka T, Fohrer J, Guigas C, Briviba K, Seiwert N, Fahrer J, Steinberg P, Empl MT. Synthesis and in vitro characterization of the genotoxic, mutagenic and cell-transforming potential of nitrosylated heme. Arch Toxicol 2020; 94:3911-3927. [PMID: 32671443 PMCID: PMC7603461 DOI: 10.1007/s00204-020-02846-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
Data from epidemiological studies suggest that consumption of red and processed meat is a factor contributing to colorectal carcinogenesis. Red meat contains high amounts of heme, which in turn can be converted to its nitrosylated form, NO-heme, when adding nitrite-containing curing salt to meat. NO-heme might contribute to colorectal cancer formation by causing gene mutations and could thereby be responsible for the association of (processed) red meat consumption with intestinal cancer. Up to now, neither in vitro nor in vivo studies characterizing the mutagenic and cell transforming potential of NO-heme have been published due to the fact that the pure compound is not readily available. Therefore, in the present study, an already existing synthesis protocol was modified to yield, for the first time, purified NO-heme. Thereafter, newly synthesized NO-heme was chemically characterized and used in various in vitro approaches at dietary concentrations to determine whether it can lead to DNA damage and malignant cell transformation. While NO-heme led to a significant dose-dependent increase in the number of DNA strand breaks in the comet assay and was mutagenic in the HPRT assay, this compound tested negative in the Ames test and failed to induce malignant cell transformation in the BALB/c 3T3 cell transformation assay. Interestingly, the non-nitrosylated heme control showed similar effects, but was additionally able to induce malignant transformation in BALB/c 3T3 murine fibroblasts. Taken together, these results suggest that it is the heme molecule rather than the NO moiety which is involved in driving red meat-associated carcinogenesis.
Collapse
Affiliation(s)
- Tina Kostka
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany.
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Hannover, Germany.
| | - Jörg Fohrer
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Claudia Guigas
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Karlis Briviba
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Nina Seiwert
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
50
|
Neitzel C, Demuth P, Wittmann S, Fahrer J. Targeting Altered Energy Metabolism in Colorectal Cancer: Oncogenic Reprogramming, the Central Role of the TCA Cycle and Therapeutic Opportunities. Cancers (Basel) 2020; 12:E1731. [PMID: 32610612 PMCID: PMC7408264 DOI: 10.3390/cancers12071731] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the most frequent cancer entities worldwide. Multiple factors are causally associated with CRC development, such as genetic and epigenetic alterations, inflammatory bowel disease, lifestyle and dietary factors. During malignant transformation, the cellular energy metabolism is reprogrammed in order to promote cancer cell growth and proliferation. In this review, we first describe the main alterations of the energy metabolism found in CRC, revealing the critical impact of oncogenic signaling and driver mutations in key metabolic enzymes. Then, the central role of mitochondria and the tricarboxylic acid (TCA) cycle in this process is highlighted, also considering the metabolic crosstalk between tumor and stromal cells in the tumor microenvironment. The identified cancer-specific metabolic transformations provided new therapeutic targets for the development of small molecule inhibitors. Promising agents are in clinical trials and are directed against enzymes of the TCA cycle, including isocitrate dehydrogenase, pyruvate dehydrogenase kinase, pyruvate dehydrogenase complex (PDC) and α-ketoglutarate dehydrogenase (KGDH). Finally, we focus on the α-lipoic acid derivative CPI-613, an inhibitor of both PDC and KGDH, and delineate its anti-tumor effects for targeted therapy.
Collapse
Affiliation(s)
| | | | | | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany; (C.N.); (P.D.); (S.W.)
| |
Collapse
|