1
|
Rey M, Kruse MS, Gómez J, Simirgiotis MJ, Tapia A, Coirini H. Ultra-High-Resolution Liquid Chromatography Coupled with Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry Analysis of Tessaria absinthioides (Hook. & Arn.) DC. (Asteraceae) and Antioxidant and Hypocholesterolemic Properties. Antioxidants (Basel) 2023; 13:50. [PMID: 38247475 PMCID: PMC10812689 DOI: 10.3390/antiox13010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Recently, we reported the chemical profile and the hypocholesterolemic effects of a decoction of Tessaria absinthioides (Hook. & Arn.) DC. (Asteraceae). In this study, we evaluated a methanolic extract (METa) instead. Metabolite profiling was conducted using ultra-high-resolution liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS), identifying thirty compounds, including flavonoids, phenolic acids, fatty acids, and phorbolesters. Antioxidant properties were assessed through 2,2-diphenyl-1-picrylhydrazyl (DPPH), Trolox equivalent antioxidant activity (TEAC), ferric-reducing antioxidant power (FRAP), and inhibition of lipid peroxidation in erythrocytes (ILP) assays, exhibiting robust antioxidant activity. The in vivo impact of METa on serum lipid parameters and liver X receptors (LXRs) was evaluated in a hypercholesterolemic animal model. After 14 days on a high-fat diet, male rats received either a vehicle (V) or METa100, METa200 or METa500 (100; 200 and 500 mg METa/kg animal, respectively) for an additional two weeks. METa500 reduced total cholesterol levels (17.62%; p < 0.05) and all doses increased high-density lipoprotein cholesterol levels (METa100: 86.27%; METa200: 48.37%, and METa500: 29.42%; p < 0.0001). However, METa did not alter LXRs expression. The observed antioxidant and hypocholesterolemic properties of METa may be linked to the presence of six di-caffeoylquinic acids. These findings underscore T. absinthioides as a potential candidate for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Mariana Rey
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires C1428ADN, Argentina;
| | - María Sol Kruse
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires C1428ADN, Argentina;
| | - Jessica Gómez
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), San Juan J5400ARL, Argentina; (J.G.); (A.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), San Juan J5400ARL, Argentina; (J.G.); (A.T.)
| | - Héctor Coirini
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires C1428ADN, Argentina;
| |
Collapse
|
2
|
Rey M, Kruse MS, Magrini-Huamán RN, Gómez J, Simirgiotis MJ, Tapia A, Feresin GE, Coirini H. Tessaria absinthioides (Hook. & Arn.) DC. (Asteraceae) Decoction Improves the Hypercholesterolemia and Alters the Expression of LXRs in Rat Liver and Hypothalamus. Metabolites 2021; 11:579. [PMID: 34564396 PMCID: PMC8467473 DOI: 10.3390/metabo11090579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic high-fat diet consumption induces hypercholesterolemia. The effect of Tessaria absinthioides (Hook. & Arn.) DC. (Asteraceae) was studied on the levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and triglycerides, and on the expression of liver X receptors (LXRs) in a hypercholesterolemic model. Adult male rats received a normal diet (ND) or a high-fat diet (HFD; normal diet + bovine fat + cholesterol). After 14 days, rats received water (W) or a decoction of the aerial parts of T. absinthioides (Ta; 10% w/v) for 2, 4, or 6 weeks. Four and six weeks of Ta improved the levels of TC and HDL-c in HFD. After 6 weeks of Ta, the expression of LXRs in HFD was the same as that in ND in both tissues. The Ta chemical profile was studied with an ultrahigh resolution liquid chromatography Orbitrap MS analysis (UHPLC-PDA-OT-MS/MS). Fifty-one compounds were identified, of which twelve are reported for the first time. Among these compounds, caffeoylquinic acid and its derivatives could modify the lipid profile and the expression of LXRs. This is the first in vivo report of T. absinthioides, which may be a potential candidate against hypercholesterolemia.
Collapse
Affiliation(s)
- Mariana Rey
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
| | - María S Kruse
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
| | - Rocío N Magrini-Huamán
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
- Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza 1516, San Juan 5400, Argentina
| | - Jessica Gómez
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
| | - Gabriela E Feresin
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Godoy Cruz 2290 (C1425FQB), Argentina
| | - Héctor Coirini
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
| |
Collapse
|
3
|
Rey M, Kruse MS, Magrini-Huamán RN, Coirini H. High-Fat Diets and LXRs Expression in Rat Liver and Hypothalamus. Cell Mol Neurobiol 2019; 39:963-974. [PMID: 31161476 PMCID: PMC11457829 DOI: 10.1007/s10571-019-00692-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/25/2019] [Indexed: 12/25/2022]
Abstract
Disturbances on lipid metabolism are associated with health disorders. High-fat diets (HFDs) consumption promotes cardiovascular and neurodegenerative diseases where cholesterol plays an important role. Among regulators of this steroid homeostasis, the liver X receptors (LXRs) induce genes that protect cells from cholesterol overload. We previously described how both hypothalamic LXRα and LXRβ are sensitive to a high-fructose diet, suggesting that these receptors trigger responses related to control of energy and food intake. The present work's main objective was to study the effect of different HFDs on LXRs expression (in hypothalamus and liver), and lipid profile. Male rats received control diet (CD), HFD1 (CD + bovine fat (BF)), HFD2 (CD + BF + cholic acid (CA)), HFD3 (CD + BF + cholesterol), or HFD4 (CD + BF + CA + cholesterol) for different time periods. Hypothalamic LXRβ, both hepatic LXRs subtypes, and total cholesterol (TC) raised after 2 weeks of HFDs. Four and 8 weeks of HFD3 and HFD4 increased the LXRs subtypes in both tissues and TC levels. Only HFD4 reduced triglycerides (TG) levels after 2 and 8 weeks. The TC and TG values correlated significantly with LXRs expression only in rats fed with HFD4. These data add relevant information about how diet composition can produce different scales of hypercholesterolemia states accompanied with central and peripheral changes in the LXRs expression.
Collapse
Affiliation(s)
- Mariana Rey
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - María Sol Kruse
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Rocío Nahimé Magrini-Huamán
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ingenieria, Instituto de Biotecnologia, Universidad Nacional de San Juan, Av. Libertador Gral. San Martín 1109, J5400ARL, San Juan, Argentina
- Facultad de Ciencias Medicas, Universidad Catolica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, J5400, San Juan, Argentina
| | - Héctor Coirini
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina.
- Facultad de Ciencias Medicas, Universidad Catolica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, J5400, San Juan, Argentina.
- Departamento de Bioquimica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 5to Piso, C1121ABG, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Shang C, Sun W, Wang C, Wang X, Zhu H, Wang L, Yang H, Wang X, Gong F, Pan H. Comparative Proteomic Analysis of Visceral Adipose Tissue in Morbidly Obese and Normal Weight Chinese Women. Int J Endocrinol 2019; 2019:2302753. [PMID: 31929791 PMCID: PMC6935805 DOI: 10.1155/2019/2302753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Visceral adipose tissue (VAT) plays a central role in the balance of energy metabolism. The objective of this study was to investigate the differentially expressed proteins in VAT between morbidly obese (BMI >35 kg/m2) and normal weight Chinese women. METHOD Nine morbidly obese women and 8 normal weight women as controls were enrolled. Abdominal VAT was excised and analyzed by label-free one-dimensional liquid chromatography tandem mass spectrometry (1D-LC-MS/MS). Differentially expressed VAT proteins were further analyzed with Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA). Masson's trichrome staining and CD68 immunohistochemical staining of VAT were conducted in all subjects. RESULT A total of 124 differentially expressed proteins were found with a ≥2-fold difference. Forty-one proteins were upregulated, and 83 proteins were downregulated in obese individuals. These altered VAT proteins were involved in the attenuation of the liver X receptor/retinoid X receptor (LXR/RXR) signaling pathway and the activation of the acute-phase response process. Three proteins (ACSL1, HADH, and UCHL1) were validated by western blotting using the same set of VAT samples from 6 morbidly obese and 7 normal weight patients, and the results indicated that the magnitude and direction of the protein changes were in accordance with the proteomic analysis. Masson's trichrome staining and CD68 immunohistochemical staining demonstrated that there was much more collagen fiber deposition and CD68-positive macrophages in the VAT of morbidly obese patients, suggesting extensive fiber deposition and macrophage infiltration. CONCLUSION A number of differentially expressed proteins were identified in VAT between morbidly obese and normal weight Chinese females. These differential proteins could be potential candidates in addressing the role of VAT in the development of obesity.
Collapse
Affiliation(s)
- Chen Shang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chunlin Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Xiangqing Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Xue Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
5
|
de Wit NM, Vanmol J, Kamermans A, Hendriks JJA, de Vries HE. Inflammation at the blood-brain barrier: The role of liver X receptors. Neurobiol Dis 2017; 107:57-65. [DOI: 10.1016/j.nbd.2016.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/11/2016] [Accepted: 09/17/2016] [Indexed: 02/05/2023] Open
|
6
|
Fonseca E, Ruivo R, Lopes-Marques M, Zhang H, Santos MM, Venkatesh B, Castro LFC. LXRα and LXRβ Nuclear Receptors Evolved in the Common Ancestor of Gnathostomes. Genome Biol Evol 2017; 9:222-230. [PMID: 28057729 PMCID: PMC5381633 DOI: 10.1093/gbe/evw305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2016] [Indexed: 12/25/2022] Open
Abstract
Nuclear receptors (NRs) regulate numerous aspects of the endocrine system. They mediate endogenous and exogenous cues, ensuring a homeostatic control of development and metabolism. Gene duplication, loss and mutation have shaped the repertoire and function of NRs in metazoans. Here, we examine the evolution of a pivotal orchestrator of cholesterol metabolism in vertebrates, the liver X receptors (LXRs). Previous studies suggested that LXRα and LXRβ genes emerged in the mammalian ancestor. However, we show through genome analysis and functional assay that bona fide LXRα and LXRβ orthologues are present in reptiles, coelacanth and chondrichthyans but not in cyclostomes. These findings show that LXR duplicated before gnathostome radiation, followed by asymmetric paralogue loss in some lineages. We suggest that a tighter control of cholesterol levels in vertebrates was achieved through the exploitation of a wider range of oxysterols, an ability contingent on ligand-binding pocket remodeling.
Collapse
Affiliation(s)
- Elza Fonseca
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U. Porto, Portugal.,Department of Biology, FCUP - Faculty of Sciences, U. Porto, Portugal
| | - Raquel Ruivo
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U. Porto, Portugal
| | - Mónica Lopes-Marques
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U. Porto, Portugal.,ICBAS - Institute of Biomedical Sciences Abel Salazar - U. Porto, Portugal
| | - Huixian Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Miguel M Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U. Porto, Portugal.,Department of Biology, FCUP - Faculty of Sciences, U. Porto, Portugal
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U. Porto, Portugal.,Department of Biology, FCUP - Faculty of Sciences, U. Porto, Portugal
| |
Collapse
|
7
|
Dong Y, Gao G, Fan H, Li S, Li X, Liu W. Activation of the Liver X Receptor by Agonist TO901317 Improves Hepatic Insulin Resistance via Suppressing Reactive Oxygen Species and JNK Pathway. PLoS One 2015; 10:e0124778. [PMID: 25909991 PMCID: PMC4409387 DOI: 10.1371/journal.pone.0124778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/03/2015] [Indexed: 12/19/2022] Open
Abstract
Activation of Liver X receptors (LXRs), key transcriptional regulators of glucose metabolism, normalizes glycemia and improves insulin sensitivity in rodent models with insulin resistance. However, the molecular mechanism is unclear. This study is aimed to elucidate the mechanism of LXRs-mediated liver glucose metabolic regulation in vitro and in vivo. Db/db mice were used as an in vivo model of diabetes; palmitate (PA)-stimulated HepG2 cells were used as an in vitro cell model with impairment of insulin signaling. TO901317 (TO) was chosen as the LXRs agonist. We demonstrated that TO treatment for 14 days potently improved the hepatic glucose metabolism in db/db mice, including fasting blood glucose, fasting insulin level, and HOMA-IR. TO had no effect on the glucose metabolism in normal WT mice. TO-mediated activation of hepatic LXRs led to strong inhibition of ROS production accompanied by inactivation of JNK pathway and re-activation of Akt pathway. TO also suppressed the expression of gluconeogenic genes such as PEPCK and G-6-pase in db/db mice, but not in WT mice. In HepG2 cells, TO almost completely restored PA-induced Akt inactivation, and suppressed PA-stimulated ROS production and JNK activation. Interestingly, basal level of ROS was also inhibited by TO in HepG2 cells. TO significantly inhibited PA-stimulated expressions of gluconeogenic genes. Finally, we found that anti-oxidative genes, such as Nrf2, were up-regulated after LXRs activation by TO. These results strongly support the notion that activation of LXRs is critical in suppression of liver gluconeogenesis and improvement of insulin sensitivity in diabetic individuals. At molecular levels, the mode of action appears to be as fellows: under diabetic condition, ROS production is increased, JNK is activated, and Akt activity is inhibited; TO-mediated LXR activation potently inhibits ROS production, increases anti-oxidative gene expressions, suppresses JNK activation, and restores Akt activity. Our data provide new evidence to support LXRs as promising therapeutic targets for anti-diabetic drug development.
Collapse
Affiliation(s)
- Ying Dong
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Guirong Gao
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hongyan Fan
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shengxian Li
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xuhang Li
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine, Baltimore, United States of America
- * E-mail: (WL); (XL)
| | - Wei Liu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail: (WL); (XL)
| |
Collapse
|
8
|
Basse AL, Dixen K, Yadav R, Tygesen MP, Qvortrup K, Kristiansen K, Quistorff B, Gupta R, Wang J, Hansen JB. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling. BMC Genomics 2015; 16:215. [PMID: 25887780 PMCID: PMC4407871 DOI: 10.1186/s12864-015-1405-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/26/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). RESULTS We analyzed the postnatal transformation of adipose in sheep with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose and the transition phase 170 genes were differentially expressed, and 717 genes were differentially expressed between the transition and the white adipose phase. Thirty-eight genes were shared among the two sets of differentially expressed genes. We identified a number of regulated transcription factors, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time. CONCLUSIONS Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides a useful resource for further studies in adipose tissue plasticity.
Collapse
Affiliation(s)
- Astrid L Basse
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - Karen Dixen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - Rachita Yadav
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - Malin P Tygesen
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg, Denmark.
| | - Klaus Qvortrup
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Karsten Kristiansen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - Bjørn Quistorff
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Ramneek Gupta
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| | - Jun Wang
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
- BGI-Shenzhen, Shenzhen, 518083, China.
- Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China.
| | - Jacob B Hansen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
9
|
Archer A, Stolarczyk E, Doria ML, Helguero L, Domingues R, Howard JK, Mode A, Korach-André M, Gustafsson JÅ. LXR activation by GW3965 alters fat tissue distribution and adipose tissue inflammation in ob/ob female mice. J Lipid Res 2013; 54:1300-11. [PMID: 23446231 DOI: 10.1194/jlr.m033977] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To investigate the role of liver X receptor (LXR) in adipose tissue metabolism during obesity, ob/ob mice were treated for 5 weeks with the synthetic LXR agonist GW3965. MRI analysis revealed that pharmacological activation of LXR modified fat distribution by decreasing visceral (VS) fat and inversely increasing subcutaneous (SC) fat storage without affecting whole body fat content. This was concordant with opposite regulation by GW3965 of the lipolytic markers hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) in the two fat depots; moreover, the expression of genes involved in lipogenesis was significantly induced in SC fat. Lipidomic analysis suggested that changes in lipid composition in response to GW3965 also varied between VS and SC fat. In both depots, the observed alteration in lipid composition indicated an overall change toward less lipotoxic lipids. Flow cytometry analysis showed decreased immune cell infiltration in adipose tissue of ob/ob mice in response to GW3965 treatment, which in VS fat mainly affected the macrophage population and in SC fat the lymphocyte population. In line with this, the expression and secretion of proinflammatory markers was decreased in both fat deposits with GW3965 treatment.
Collapse
Affiliation(s)
- Amena Archer
- Department of Biosciences and Nutrition, Karolinska Insitutet, Huddinge, Sweden, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kang J, Rivest S. Lipid metabolism and neuroinflammation in Alzheimer's disease: a role for liver X receptors. Endocr Rev 2012; 33:715-46. [PMID: 22766509 DOI: 10.1210/er.2011-1049] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver X receptors (LXR) are nuclear receptors that have emerged as key regulators of lipid metabolism. In addition to their functions as cholesterol sensors, LXR have also been found to regulate inflammatory responses in macrophages. Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive cognitive decline associated with inflammation. Evidence indicates that the initiation and progression of AD is linked to aberrant cholesterol metabolism and inflammation. Activation of LXR can regulate neuroinflammation and decrease amyloid-β peptide accumulation. Here, we highlight the role of LXR in orchestrating lipid homeostasis and neuroinflammation in the brain. In addition, diabetes mellitus is also briefly discussed as a significant risk factor for AD because of the appearing beneficial effects of LXR on glucose homeostasis. The ability of LXR to attenuate AD pathology makes them potential therapeutic targets for this neurodegenerative disease.
Collapse
Affiliation(s)
- Jihong Kang
- Department of Physiology and Pathophysiology and Key Laboratory of Molecular Cardiovascular Sciences, State Education Ministry, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
11
|
Bantubungi K, Prawitt J, Staels B. Control of metabolism by nutrient-regulated nuclear receptors acting in the brain. J Steroid Biochem Mol Biol 2012; 130:126-37. [PMID: 22033286 DOI: 10.1016/j.jsbmb.2011.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 10/04/2011] [Accepted: 10/08/2011] [Indexed: 12/22/2022]
Abstract
Today, we are witnessing a rising incidence of obesity worldwide. This increase is due to a sedentary life style, an increased caloric intake and a decrease in physical activity. Obesity contributes to the appearance of type 2 diabetes, dyslipidemia and cardiovascular complications due to atherosclerosis, and nephropathy. Therefore, the development of new therapeutic strategies may become a necessity. Given the metabolism controlling properties of nuclear receptors in peripheral organs (such as liver, adipose tissues, pancreas) and their implication in various processes underlying metabolic diseases, they constitute interesting therapeutic targets for obesity, dyslipidemia, cardiovascular disease and type 2 diabetes. The recent identification of the central nervous system as a player in the control of peripheral metabolism opens new avenues to our understanding of the pathophysiology of obesity and type 2 diabetes and potential novel ways to treat these diseases. While the metabolic functions of nuclear receptors in peripheral organs have been extensively investigated, little is known about their functions in the brain, in particular with respect to brain control of energy homeostasis. This review provides an overview of the relationships between nuclear receptors in the brain, mainly at the hypothalamic level, and the central regulation of energy homeostasis. In this context, we will particularly focus on the role of PPARα, PPARγ, LXR and Rev-erbα.
Collapse
Affiliation(s)
- Kadiombo Bantubungi
- Univ Lille Nord de France, INSERM UMR1011, UDSL, Institut Pasteur de Lille, Lille, France
| | | | | |
Collapse
|
12
|
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor family and are present in two isoforms, α and β, encoded by two separate genes. Originally described in the liver, LXRs have in the last 15 years been implicated in central metabolic pathways, including bile acid synthesis, lipid and glucose homeostasis. Although the vast majority of studies have been performed in non-adipose cells/tissues, results in recent years suggest that LXRs may have important modulatory roles in adipose tissue and adipocytes. Although several authors have published reviews on LXR, there have been no attempts to summarize the effects reported specifically in adipose systems. This overview gives a brief introduction to LXR and describes the sometimes-contradictory results obtained in murine cell systems and in rodent adipose tissue. The so far very limited number of studies performed in human adipocytes and adipose tissue are also presented. It should be apparent that although LXR may impact on several different pathways in metabolism, the clinical role of LXR modulation in adipose tissue is still not clear.
Collapse
|
13
|
Both liver-X receptor (LXR) isoforms control energy expenditure by regulating brown adipose tissue activity. Proc Natl Acad Sci U S A 2010; 108:403-8. [PMID: 21173252 DOI: 10.1073/pnas.1017884108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Brown adipocytes are multilocular lipid storage cells that play a crucial role in nonshivering thermogenesis. Uncoupling protein 1 (UCP1) is a unique feature of brown fat cells that allows heat generation on sympathetic nervous system stimulation. As conventional transcriptional factors that are activated in various signaling pathways, liver-X receptors (LXRs) play important roles in many physiological processes. The role of LXRs in the regulation of energy homeostasis remains unclear, however. Female WT, LXRαβ(-/-), LXRα(-/-), and LXRβ(-/-) mice were fed with either a normal diet (ND) or a high-carbohydrate diet (HCD) supplemented with or without GW3965-LXR agonist. LXRαβ(-/-) mice exhibited higher energy expenditure (EE) as well as higher UCP1 expression in brown adipose tissue (BAT) compared with WT mice on the HCD. In addition, long-term treatment of WT mice with GW3965 showed lower EE at thermoneutrality (30 °C) and lower Ucp1 expression level in BAT. Furthermore, H&E staining of the BAT of LXRαβ(-/-) mice exhibited decreased lipid droplet size compared with WT mice on the HCD associated with a more intense UCP1-positive reaction. Quantification of triglyceride (TG) content in BAT showed lower TG accumulation in LXRβ(-/-) mice compared with WT mice. Surprisingly, GW3965 treatment increased TG content (twofold) in the BAT of WT and LXRα(-/-) mice but not in LXRβ(-/-) mice. Furthermore, glucose transporter (GLUT4) in the BAT of LXRα(-/-) and LXRβ(-/-) mice was sixfold and fourfold increased, respectively, compared with WT mice on the ND. These findings suggest that LXRα as well as LXRβ could play a crucial role in the regulation of energy homeostasis in female mice and may be a potential target for the treatment of obesity and energy regulation.
Collapse
|
14
|
Li X, Shridas P, Forrest K, Bailey W, Webb NR. Group X secretory phospholipase A2 negatively regulates adipogenesis in murine models. FASEB J 2010; 24:4313-24. [PMID: 20585029 DOI: 10.1096/fj.10-154716] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Studies in vitro indicate that group X secretory phospholipase A(2) (GX sPLA(2)) potently releases arachidonic acid (AA) and lysophosphatidylcholine from mammalian cell membranes. To define the function of GX sPLA(2) in vivo, our laboratory recently generated C57BL/6 mice with targeted deletion of GX sPLA(2) (GX(-/-) mice). When fed a normal rodent diet, GX(-/-) mice gained significantly more weight and had increased adiposity compared to GX(+/+) mice, which was not attributable to alterations in food consumption or energy expenditure. When treated with adipogenic stimuli ex vivo, stromal vascular cells isolated from adipose tissue of GX(-/-) mice accumulated significantly more (20%) triglyceride compared to cells from GX(+/+) mice. Conversely, overexpression of GX sPLA(2), but not catalytically inactive GX sPLA(2), resulted in a significant 50% reduction in triglyceride accumulation in OP9 adipocytes. The induction of genes encoding adipogenic proteins (PPARγ, SREBP-1c, SCD1, and FAS) was also significantly blunted by 50-80% in OP9 cells overexpressing GX sPLA(2). Activation of the liver X receptor (LXR), a nuclear receptor known to up-regulate adipogenic gene expression, was suppressed in 3T3-L1 and OP9 cells when GX sPLA(2) was overexpressed. Thus, hydrolytic products generated by GX sPLA(2) negatively regulate adipogenesis, possibly by suppressing LXR activation.
Collapse
Affiliation(s)
- Xia Li
- Graduate Center for Nutritional Sciences, University of Kentucky Medical Center, Lexington, KY 40536-0200, USA
| | | | | | | | | |
Collapse
|
15
|
Hessvik NP, Boekschoten MV, Baltzersen MA, Kersten S, Xu X, Andersén H, Rustan AC, Thoresen GH. LXR{beta} is the dominant LXR subtype in skeletal muscle regulating lipogenesis and cholesterol efflux. Am J Physiol Endocrinol Metab 2010; 298:E602-13. [PMID: 19996385 DOI: 10.1152/ajpendo.00553.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver X receptors (LXRs) are important regulators of cholesterol, lipid, and glucose metabolism and have been extensively studied in liver, macrophages, and adipose tissue. However, their role in skeletal muscle is poorly studied and the functional role of each of the LXRalpha and LXRbeta subtypes in skeletal muscle is at present unknown. To study the importance of each of the receptor subtypes, myotube cultures derived from wild-type (WT) and LXRalpha and LXRbeta knockout (KO) mice were established. The present study showed that treatment with the LXR agonist T0901317 increased lipogenesis and apoA1-dependent cholesterol efflux in LXRalpha KO and WT myotubes but not in LXRbeta KO cells. The functional studies were confirmed by T0901317-induced increase in mRNA levels of LXR target genes involved in lipid and cholesterol metabolism in myotubes established from WT and LXRalpha KO mice, whereas only minor changes were observed for these genes in myotubes from LXRbeta KO mice. Gene expression analysis using microarrays showed that very few genes other than the classical, well-known LXR target genes were regulated by LXR in skeletal muscle. The present study also showed that basal glucose uptake was increased in LXRbeta KO myotubes compared with WT myotubes, suggesting a role for LXRbeta in glucose metabolism in skeletal muscle. In conclusion, LXRbeta seems to be the main LXR subtype regulating lipogenesis and cholesterol efflux in skeletal muscle.
Collapse
Affiliation(s)
- N P Hessvik
- Dept. of Pharmaceutical Biosciences, Univ. of Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Korach-André M, Parini P, Larsson L, Arner A, Steffensen KR, Gustafsson JA. Separate and overlapping metabolic functions of LXRalpha and LXRbeta in C57Bl/6 female mice. Am J Physiol Endocrinol Metab 2010; 298:E167-78. [PMID: 19690071 DOI: 10.1152/ajpendo.00184.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The two liver X receptors (LXRs), LXRalpha and LXRbeta, are transcriptional regulators of cholesterol, lipid, and glucose metabolism and are both activated by oxysterols. Impaired metabolism is linked with obesity, insulin resistance, and type 2-diabetes (T2D). In the present study, we aimed to delineate the specific roles of LXRalpha and -beta in metabolic processes. C57Bl/6 female mice were fed a normal or a high-fat diet (HFD) and metabolic responses in wild-type, LXRalpha(-/-), LXRbeta(-/-), and LXRalphabeta(-/-) mice were analyzed. Whole body fat and intramyocellular lipid contents were measured by nuclear magnetic resonance. Energy expenditure was measured in individual metabolic cages. Glucose, insulin, and pyruvate tolerance tests were performed and gene expression profiles analyzed by qPCR. We found that both LXRbeta(-/-) and LXRalphabeta(-/-) mice are resistant to HFD-induced obesity independently of the presence of high cholesterol. Using tolerance tests, we found that, on an HFD, LXRbeta(-/-) mice enhanced their endogenous glucose production and became highly insulin resistant, whereas LXRalpha(-/-) and LXRalphabeta(-/-) mice remained glucose tolerant and insulin sensitive. Gene expression profiling confirmed that LXRbeta is the regulator of lipogenic genes in visceral white adipose tissue (WAT) and muscle tissue and, surprisingly, that Ucp1 and Dio2 are not responsible for the protection against diet-induced obesity observed in LXRbeta(-/-) and LXRalphabeta(-/-) mice. LXRalpha is required for the control of cholesterol metabolism in the liver, while LXRbeta appears to be a major regulator of glucose homeostasis and energy utilization and of fat storage in muscle and WAT. We conclude that selective LXRbeta agonists would be novel pharmaceuticals in the treatment of T2D.
Collapse
Affiliation(s)
- Marion Korach-André
- Dept. of Biosciences and Nutrition, Karolinska Institutet, S-141 57 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Lee JH, Park SM, Kim OS, Lee CS, Woo JH, Park SJ, Joe EH, Jou I. Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes. Mol Cell 2009; 35:806-17. [PMID: 19782030 DOI: 10.1016/j.molcel.2009.07.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/13/2009] [Accepted: 07/24/2009] [Indexed: 01/04/2023]
Abstract
To unravel the roles of LXRs in inflammation and immunity, we examined the function of LXRs in development of IFN-gamma-mediated inflammation using cultured rat brain astrocytes. LXR ligands inhibit neither STAT1 phosphorylation nor STAT1 translocation to the nucleus but, rather, inhibit STAT1 binding to promoters and the expression of IRF1, TNFalpha, and IL-6, downstream effectors of STAT1 action. Immunoprecipitation data revealed that LXRbeta formed a trimer with PIAS1-pSTAT1, whereas LXRalpha formed a trimer with HDAC4-pSTAT1, mediated by direct ligand binding to the LXR proteins. In line with the fact that both PIAS1 and HDAC4 belong to the SUMO E3 ligase family, LXRbeta and LXRalpha were SUMO-conjugated by PIAS1 or HDAC4, respectively, and SUMOylation was blocked by transient transfection of appropriate individual siRNAs, reversing LXR-induced suppression of IRF1 and TNFalpha expression. Together, our data show that SUMOylation is required for the suppression of STAT1-dependent inflammatory responses by LXRs in IFN-gamma-stimulated brain astrocytes.
Collapse
Affiliation(s)
- Jee Hoon Lee
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 442-721, Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hellemans KH, Hannaert JC, Denys B, Steffensen KR, Raemdonck C, Martens GA, Van Veldhoven PP, Gustafsson JA, Pipeleers D. Susceptibility of pancreatic beta cells to fatty acids is regulated by LXR/PPARalpha-dependent stearoyl-coenzyme A desaturase. PLoS One 2009; 4:e7266. [PMID: 19787047 PMCID: PMC2746288 DOI: 10.1371/journal.pone.0007266] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 09/02/2009] [Indexed: 01/22/2023] Open
Abstract
Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARalpha-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRbeta(-/-) and LXRalphabeta(-/-)), beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARalpha agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARalpha agonists favors their desaturation and subsequent incorporation in neutral lipids.
Collapse
Affiliation(s)
- Karine H Hellemans
- Diabetes Research Center, Brussels Free University-VUB, and JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rippmann JF, Schoelch C, Nolte T, Pavliska H, van Marle A, van Es H, Prestle J. Improved lipid profile through liver-specific knockdown of liver X receptor alpha in KKAy diabetic mice. J Lipid Res 2008; 50:22-31. [PMID: 18769020 DOI: 10.1194/jlr.m700571-jlr200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nuclear hormone receptors liver X receptor (LXRalpha and LXRbeta) ligands are attractive approaches for the treatment of dyslipidemia and atherosclerosis. To further elucidate the function of LXRalpha in liver lipid metabolism in a disease-relevant animal model, the KKAy mouse, we used adenoviral vectors to selectively knock down LXRalpha gene expression. Out of five different short hairpin RNAs (shRNAs) that were tested in vitro, one construct was selected for detailed analysis of LXRalpha knockdown in vivo. Reduction of LXRalpha transcript levels to 48 +/- 13% compared with control virus transduction resulted in a significant downregulation of the LXRalpha-regulated lipogenic genes sterol-regulatory element binding protein-1c (SREBP1c) and stearoyl CoA desaturase 1 in vivo. Interestingly, ABCA1 and phoshoenolpyruvate carboxykinase 1 expression was not affected, whereas lipoprotein lipase (LPL) expression was found to be increased. In addition, 8 days after virus transduction, both plasma and liver triglycerides (TGs) were reduced by about 50%. Changes in TG levels were not due to reduced food intake in virus-treated animals, because pair-fed mice showed unchanged TG levels. Taken together, liver-specific knockdown of LXRalpha in vivo by shRNA reduced expression of lipogenic master genes, like SREBP1c, and improved the lipid profile of hypertriglyceridemic KKAy mice.
Collapse
Affiliation(s)
- Joerg F Rippmann
- Department of Pulmonary Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Madsen L, Petersen RK, Steffensen KR, Pedersen LM, Hallenborg P, Ma T, Frøyland L, Døskeland SO, Gustafsson JÅ, Kristiansen K. Activation of Liver X Receptors Prevents Statin-induced Death of 3T3-L1 Preadipocytes. J Biol Chem 2008; 283:22723-36. [DOI: 10.1074/jbc.m800720200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
21
|
Fernández-Veledo S, Nieto-Vazquez I, Rondinone CM, Lorenzo M. Liver X receptor agonists ameliorate TNFalpha-induced insulin resistance in murine brown adipocytes by downregulating protein tyrosine phosphatase-1B gene expression. Diabetologia 2006; 49:3038-48. [PMID: 17072583 DOI: 10.1007/s00125-006-0472-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 08/10/2006] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS The nuclear receptors, including nuclear receptor subfamily 1, group H, member 3 (NR1HR, also known as liver X receptor [LXR]), are sensors of cholesterol metabolism and lipid biosynthesis that have recently been proposed as insulin sensitisers. TNFalpha has been described as a link between obesity and the development of insulin resistance, an important contributor to the pathogenesis of type 2 diabetes. Therefore, we decided to investigate the ability of NR1HR agonists to ameliorate TNFalpha-induced insulin resistance in brown adipocytes. METHODS Primary brown adipocytes from rat fetuses, and from wild-type neonate mice and neonate mice deficient in the gene encoding protein tyrosine phosphatase-1B (Ptpn1, also known as Ptp1b) were cultured in the absence or presence of TNFalpha and different nuclear receptor agonists. Among them, the unrelated NR1HR ligands T0901317, GW3965 and (22R)-hydroxycholesterol were tested. After insulin stimulation, glucose uptake and solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4, formerly known as GLUT4) translocation were measured. Next the insulin signalling cascade was determined by submitting cells to lysis, immunoprecipitation and immunoblotting. RESULTS NR1HR agonists ameliorate TNFalpha-induced insulin resistance restoring completely insulin-stimulated glucose uptake and SLC2A4 translocation to plasma membrane. This effect is parallel to the recovery of the insulin cascade insulin receptor/IRS-2/phosphatidylinositol 3-kinase/protein kinase B, and could be due to the fact that T0901317 prevents the increase of PTPN1 production and phosphatase activity produced by TNFalpha. In this regard, Ptpn1-deficient brown adipocytes showed protection against insulin resistance by TNFalpha. Moreover, we observed that T0901317 produced in itself a significant increase over basal glucose uptake consistent with an increase of SLC2A4 protein content in plasma membrane, attributable to the activation of protein kinase zeta and/or the increase of Slc2a4 expression. CONCLUSIONS/INTERPRETATION Nuclear receptors NR1HR are interesting potential targets for drug treatment of insulin resistance.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/physiology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/embryology
- Adipose Tissue, Brown/enzymology
- Adipose Tissue, Brown/physiology
- Animals
- Animals, Newborn
- Biological Transport/drug effects
- DNA-Binding Proteins/agonists
- DNA-Binding Proteins/physiology
- Fetus
- Gene Expression Regulation, Enzymologic/drug effects
- Glucose/metabolism
- Insulin Resistance/physiology
- Liver X Receptors
- Mice
- Mice, Knockout
- Orphan Nuclear Receptors
- Protein Tyrosine Phosphatases/deficiency
- Protein Tyrosine Phosphatases/genetics
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/physiology
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- S Fernández-Veledo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Schuster GU, Johansson L, Kietz S, Stulnig TM, Parini P, Gustafsson JA. Improved metabolic control by depletion of Liver X Receptors in mice. Biochem Biophys Res Commun 2006; 348:176-82. [PMID: 16876124 DOI: 10.1016/j.bbrc.2006.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Liver X Receptors (LXRs) coordinate the regulation of lipid and carbohydrate metabolism and insulin signaling. LXR-ligands lower plasma glucose in hyperglycemic rodents and have consequently been proposed as anti-diabetic agents. We investigated the metabolic effects induced by high carbohydrate diet in LXRalpha(-/-)beta(-/-) mice. Irrespective of diets, LXRalpha(-/-)beta(-/-) mice had reduced fatty acid, insulin, and C-peptide plasma levels than wild-type controls, suggesting a lower insulin production. High carbohydrate diet decreased the plasma glucose levels and the homeostasis model assessment (HOMA)-index in LXRalpha(-/-)beta(-/-) mice and increased hepatic triglyceride content and mRNA levels of lipogenic genes in wild-type and LXRalpha(-/-)beta(-/-) mice, proportionally. In wild-type mice high carbohydrate diet was associated with induced expression of LXR (1.5-fold), despite unchanged SREBP-1c expression. LXRalpha(-/-)beta(-/-) mice responded to this diet by induction of SREBP-1c. Our study suggests that in LXRalpha(-/-)beta(-/-) mice, glucose utilization seems to be privileged possibly due to reduced circulating free fatty acid levels.
Collapse
Affiliation(s)
- Gertrud U Schuster
- Department of Biosciences and Nutrition, Karolinska University Hospital, Novum, Karolinska Institutet, S-141 57 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
23
|
Robertson KM, Norgård M, Windahl SH, Hultenby K, Ohlsson C, Andersson G, Gustafsson JA. Cholesterol-sensing receptors, liver X receptor alpha and beta, have novel and distinct roles in osteoclast differentiation and activation. J Bone Miner Res 2006; 21:1276-87. [PMID: 16869726 DOI: 10.1359/jbmr.060503] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The liver X receptor (alpha,beta) is responsible for regulating cholesterol homeostasis in cells. However, our studies using the LXRalpha-/-, LXRbeta-/-, and LXRalpha-/-beta-/- mice show that both LXRalpha and beta are also important for bone turnover, mainly by regulating osteoclast differentiation/activity. INTRODUCTION The liver X receptors (alpha,beta) are primarily responsible for regulating cholesterol homeostasis within cells and the whole body. However, as recent studies show that the role for this receptor is expanding, we studied whether the LXRs could be implicated in bone homeostasis and development. MATERIALS AND METHODS pQCT was performed on both male and female LXRalpha-/-, LXRbeta-/-, LXRalpha-/-beta-/-, and WT mice at 4 months and 1 year of age. Four-month-old female mice were additionally analyzed with reference to qPCR, immunohistochemistry, histomorphometry, transmission electron microscopy, and serum bone turnover markers. RESULTS At the mRNA level, LXRbeta was more highly expressed than LXRalpha in both whole long bones and differentiating osteoblast-like MC3T3-E1 and osteoclast-like RAW 264.7 cells. Four-month-old female LXRalpha-/- mice had a significant increase in BMD because of an increase in all cortical parameters. No difference was seen regarding trabecular BMD. Quantitative histomorphometry showed that these mice had significantly more endosteal osteoclasts in the cortical bone; however, these cells appeared less active than normal cells as suggested by a significant reduction in serum levels of cross-linked carboxyterminal telopeptides of type I collagen (CTX) and a reduction in bone TRACP activity. Conversely, the female LXRbeta-/- mice exhibited no change in BMD, presumably because a significant decline in the number of the trabecular osteoclasts was compensated for by an increase in the expression of the osteoclast markers cathepsin K and TRACP. These mice also had a significant decrease in serum CTX, suggesting decreased bone resorption; however, in addition presented with an increase in the expression of osteoblast associated genes, bone formation markers, and serum leptin levels. CONCLUSIONS Our findings show that both LXRs influence cellular function within the bone, with LXRalpha having an impact on osteoclast activity, primarily in cortical bone, whereas LXRbeta modulates trabecular bone turnover.
Collapse
|
24
|
Abildayeva K, Jansen PJ, Hirsch-Reinshagen V, Bloks VW, Bakker AHF, Ramaekers FCS, de Vente J, Groen AK, Wellington CL, Kuipers F, Mulder M. 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J Biol Chem 2006; 281:12799-808. [PMID: 16524875 DOI: 10.1074/jbc.m601019200] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both apolipoprotein E (apoE) and 24(S)-hydroxycholesterol are involved in the pathogenesis of Alzheimer disease (AD). It has been hypothesized that apoE affects AD development via isoform-specific effects on lipid trafficking between astrocytes and neurons. However, the regulation of the cholesterol supply of neurons via apoE-containing high density lipoproteins remains to be clarified. We show for the first time that the brain-specific metabolite of cholesterol produced by neurons, i.e. 24(S)-hydroxycholesterol, induces apoE transcription, protein synthesis, and secretion in a dose- and time-dependent manner in cells of astrocytic but not of neuronal origin. Moreover, 24(S)-hydroxycholesterol primes astrocytoma, but not neuroblastoma cells, to mediate cholesterol efflux to apoE. Similar results were obtained using the synthetic liver X receptor (LXR) agonist GW683965A, suggesting involvement of an LXR-controlled signaling pathway. A 10-20-fold higher basal LXRalpha and -beta expression level in astrocytoma compared with neuroblastoma cells may underlie these differential effects. Furthermore, apoE-mediated cholesterol efflux from astrocytoma cells may be controlled by the ATP binding cassette transporters ABCA1 and ABCG1, since their expression was also up-regulated by both compounds. In contrast, ABCG4 seems not to be involved, because its expression was induced only in neuronal cells. The expression of sterol regulatory element-binding protein (SREBP-2), low density lipoprotein receptor, 3-hydroxy-3-methylglutaryl-CoA reductase, and SREBP-1c was transiently up-regulated by GW683965A in astrocytes but down-regulated by 24(S)-hydroxycholesterol, suggesting that cholesterol efflux and synthesis are regulated independently. In conclusion, evidence is provided that 24(S)-hydroxycholesterol induces apoE-mediated efflux of cholesterol in astrocytes via an LXR-controlled pathway, which may be relevant for chronic and acute neurological diseases.
Collapse
Affiliation(s)
- Karlygash Abildayeva
- Department of Molecular Cell Biology, Institute of Brain and Behavior (European Graduate School of Neuroscience, EURON), University of Maastricht, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lund EG, Peterson LB, Adams AD, Lam MHN, Burton CA, Chin J, Guo Q, Huang S, Latham M, Lopez JC, Menke JG, Milot DP, Mitnaul LJ, Rex-Rabe SE, Rosa RL, Tian JY, Wright SD, Sparrow CP. Different roles of liver X receptor alpha and beta in lipid metabolism: effects of an alpha-selective and a dual agonist in mice deficient in each subtype. Biochem Pharmacol 2005; 71:453-63. [PMID: 16325781 DOI: 10.1016/j.bcp.2005.11.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/02/2005] [Accepted: 11/02/2005] [Indexed: 12/20/2022]
Abstract
Liver X receptor (LXR) alpha and LXRbeta are closely related nuclear receptors that respond to elevated levels of intracellular cholesterol by enhancing transcription of genes that control cholesterol efflux and fatty acid biosynthesis. The consequences of inactivation of either LXR isoform have been thoroughly studied, as have the effects of simultaneous activation of both LXRalpha and LXRbeta by synthetic compounds. We here describe the effects of selective activation of LXRalpha or LXRbeta on lipid metabolism. This was accomplished by treating mice genetically deficient in either LXRalpha or LXRbeta with an agonist with equal potency for both isoforms (Compound B) or a synthetic agonist selective for LXRalpha (Compound A). We also determined the effect of these agonists on gene expression and cholesterol efflux in peritoneal macrophages derived from wild-type and knockout mice. Both compounds raised HDL-cholesterol and increased liver triglycerides in wild-type mice; in contrast, in mice deficient in LXRalpha, Compound B increased HDL-cholesterol but did not cause hepatic steatosis. Compound B induced ATP-binding cassette transporter (ABC) A1 expression and stimulated cholesterol efflux in macrophages from both LXRalpha and LXRbeta-deficient mice. Our data lend further experimental support to the hypothesis that LXRbeta-selective agonists may raise HDL-cholesterol and stimulate macrophage cholesterol efflux without causing liver triglyceride accumulation.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- ATP Binding Cassette Transporter 1
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Administration, Oral
- Animals
- Cholesterol/metabolism
- Cholesterol, HDL/blood
- Cholesterol, HDL/metabolism
- Cyclic AMP/pharmacology
- DNA-Binding Proteins/agonists
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Isoxazoles/pharmacology
- Lipid Metabolism/physiology
- Liver/drug effects
- Liver/metabolism
- Liver X Receptors
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Structure
- Orphan Nuclear Receptors
- Phenylurea Compounds/pharmacology
- Protein Isoforms/agonists
- Protein Isoforms/genetics
- Protein Isoforms/physiology
- Pyrazines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sterol Regulatory Element Binding Protein 1/genetics
- Sterol Regulatory Element Binding Protein 1/metabolism
- Triglycerides/blood
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Erik G Lund
- Department of Cardiovascular Diseases, Merck Research Laboratories, Merck & Co., Inc., RY80W-250, P.O. Box 2000, Rahway, NJ 07065, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huanling Y, Yong L, Junbo W, Liping Z, Weixing Y. Chinese soft-shelled turtle egg powder lowers serum cholesterol, increases faecal neutral steroids and bile acid excretion, and up-regulates liver cytochrome P450 mRNA level in rats. Br J Nutr 2005; 94:315-20. [PMID: 16176600 DOI: 10.1079/bjn20051485] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the present study was to investigate the effect of Chinese soft-shelled turtle whole egg powder (TE) on cholesterol metabolism in Sprague-Dawley rats to determine whether it has a cholesterol-lowering effect. Forty male Sprague-Dawley rats were fed a high-fat diet supplemented with TE (0, 0.75, 1.50 or 3.00 g/kg body weight) administrated by gavage for 24 weeks. Serum total cholesterol (TC), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C) and faecal total bile acids levels were determined by enzymatic methods. Faecal steroid concentrations were measured by GC. Means and standard deviations were calculated where appropriate for values, and the data were tested by one-way ANOVA. After 24 weeks of feeding a high-fat diet with TE supplementation, serum TC and LDL-C levels, liver cholesterol and liver lipid levels were reduced in rats. TE supplementation did not affect the faecal output, but significantly increased steroid concentrations in faeces, indicating increased steroids excretion. The faecal bile acid excretion was also increased as evidence by elevated mRNA level of liver cytochrome P450, family 7, subfamily A, polypeptide 1. Our results demonstrated that the TE does have a cholesterol-lowering effect by increasing the excretion of total bile acids and neutral steroids.
Collapse
Affiliation(s)
- Yu Huanling
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| | | | | | | | | |
Collapse
|
27
|
Robertson KM, Schuster GU, Steffensen KR, Hovatta O, Meaney S, Hultenby K, Johansson LC, Svechnikov K, Söder O, Gustafsson JA. The liver X receptor-{beta} is essential for maintaining cholesterol homeostasis in the testis. Endocrinology 2005; 146:2519-30. [PMID: 15761042 DOI: 10.1210/en.2004-1413] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The liver X receptor (LXR)alpha and -beta has been found to play a central role in maintaining cellular cholesterol homeostasis. In this study we comprehensively investigated the effect of deleting LXRalpha and -beta on testicular morphology and function. In the absence of LXRbeta, excessive cholesterol accumulated in the Sertoli cells from 2.5 months, resulting in severe cellular disruption and dysregulation of spermatogenesis by 10 months of age. This correlated with gene expression analyses that clearly indicated that LXRbeta was the dominant transcript in the testis Although the LXRalpha(-/-) testis was normal, the LXRalpha(-/-)beta(-/-) testis presented with a more severe phenotype than the LXRbeta(-/-) mice, and males were infertile by 4 months of age, indicating LXRalpha may partially rescue the testicular phenotype. Although Leydig cells did not accumulate excessive cholesterol, declining serum and intratesticular androgen levels with age suggested that these cells were in fact less functional. Treatment of a Sertoli cell line with the LXR agonist T0901317 led to increased expression of known LXR target genes like ATP binding cassette-G1 and sterol regulatory binding protein-1c; similar results were observed in wild-type testis after in vivo administration, suggesting the LXR is functioning in the same way as in other tissues. Ordinarily increased levels of cholesterol activate intracellular sensors to decrease these levels; however, the increasing amount of cholesterol in the Sertoli cells indicates improper control of cholesterol metabolism when LXRbeta is absent. Although the precise molecular mechanism at this time remains unclear, our study highlights the crucial role for LXRbeta in retaining cholesterol homeostasis in Sertoli cells.
Collapse
Affiliation(s)
- Kirsten M Robertson
- Karolinska Institutet, Department of Biosciences at Novum, Huddinge 14157, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gerin I, Dolinsky VW, Shackman JG, Kennedy RT, Chiang SH, Burant CF, Steffensen KR, Gustafsson JA, MacDougald OA. LXRβ Is Required for Adipocyte Growth, Glucose Homeostasis, and β Cell Function. J Biol Chem 2005; 280:23024-31. [PMID: 15831500 DOI: 10.1074/jbc.m412564200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver X receptors (LXR) alpha and beta are nuclear oxysterol receptors with established roles in cholesterol, lipid, and carbohydrate metabolism. Although LXRs have been extensively studied in liver and macrophages, the importance for development and metabolism of other tissues and cell types is not as well characterized. We demonstrate here that although LXRalpha and LXRbeta are not required for adipocyte development per se, LXRbeta is required for the increase in adipocyte size that normally occurs with aging and diet-induced obesity. Similar food intake and oxygen consumption in LXRbeta-/- mice suggests that reduced storage of lipid in adipose tissue is not due to altered energy balance. Despite reduced amounts of adipose tissue, LXRbeta-/- mice on a chow diet have insulin sensitivity and levels of adipocyte hormones similar to wild type mice. However, these mice are glucose-intolerant due to impaired glucose-induced insulin secretion. Lipid droplets in pancreatic islets may result from accumulation of cholesterol esters as analysis of islet gene expression reveals that LXRbeta is required for expression of the cholesterol transporters, ABCA1 and ABCG1. Our data establish novel roles for LXRbeta in adipocyte growth, glucose homeostasis, and beta cell function.
Collapse
Affiliation(s)
- Isabelle Gerin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Madsen L, Petersen RK, Kristiansen K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta Mol Basis Dis 2005; 1740:266-86. [PMID: 15949694 DOI: 10.1016/j.bbadis.2005.03.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 02/23/2005] [Accepted: 03/02/2005] [Indexed: 12/11/2022]
Abstract
A diet enriched in PUFAs, in particular of the n-3 family, decreases adipose tissue mass and suppresses development of obesity in rodents. Although several nuclear hormone receptors are identified as PUFA targets, the precise molecular mechanisms underlying the effects of PUFAs still remain to be elucidated. Here we review research aimed at elucidating molecular mechanisms governing the effects of PUFAs on the differentiation and function of white fat cells. This review focuses on dietary PUFAs as signaling molecules, with special emphasis on agonistic and antagonistic effects on transcription factors currently implicated as key players in adipocyte differentiation and function, including peroxisome proliferator activated receptors (PPARs) (alpha, beta and gamma), sterol regulatory element binding proteins (SREBPs) and liver X receptors (LXRs). We review evidence that dietary n-3 PUFAs decrease adipose tissue mass and suppress the development of obesity in rodents by targeting a set of key regulatory transcription factors involved in both adipogensis and lipid homeostasis in mature adipocytes. The same set of factors are targeted by PUFAs of the n-6 family, but the cellular/physiological responses are dependent on the experimental setting as n-6 PUFAs may exert either an anti- or a proadipogenic effect. Feeding status and hormonal background may therefore be of particular importance in determining the physiological effects of PUFAs of the n-6 family.
Collapse
Affiliation(s)
- Lise Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|
30
|
Davies JD, Carpenter KLH, Challis IR, Figg NL, McNair R, Proudfoot D, Weissberg PL, Shanahan CM. Adipocytic differentiation and liver x receptor pathways regulate the accumulation of triacylglycerols in human vascular smooth muscle cells. J Biol Chem 2004; 280:3911-9. [PMID: 15548517 DOI: 10.1074/jbc.m410075200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid accumulation by vascular smooth muscle cells (VSMC) is a feature of atherosclerotic plaques. In this study we describe two mechanisms whereby human VSMC foam cell formation is driven by de novo synthesis of fatty acids leading to triacylglycerol accumulation in intracellular vacuoles, a process distinct from serum lipoprotein uptake. VSMC cultured in adipogenic differentiation medium accumulated lipids and were induced to express the adipocyte marker genes adipsin, adipocyte fatty acid-binding protein, C/EBPalpha, PPARgamma, and leptin. However, complete adipocyte differentiation was not observed as numerous genes present in mature adipocytes were not detected, and the phenotype was reversible. The rate of lipid accumulation was not affected by PPARgamma agonists, but screening for the effects of other nuclear receptor agonists showed that activation of the liver X receptors (LXR) dramatically promoted lipid accumulation in VSMC. Both LXRalpha and LXRbeta were present in VSMC, and their activation with TO901317 resulted in induction of the lipogenic genes fatty acid synthetase, sterol regulatory element binding protein (SREBP1c), and stearoyl-CoA desaturase. 27-Hydroxycholesterol, an abundant oxysterol synthesized by VSMC acted as an LXR antagonist and, therefore, may have a protective role in preventing foam cell formation. Immunohistochemistry showed that VSMC within atherosclerotic plaques express adipogenic and lipogenic markers, suggesting these pathways are present in vivo. Moreover, the development of an adipogenic phenotype in VSMC is consistent with their known phenotypic plasticity and may contribute to their dysfunction in atherosclerotic plaques and, thus, impinge on plaque growth and stability.
Collapse
Affiliation(s)
- John D Davies
- Department of Medicine, University of Cambridge, ACCI, Box 110, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Steffensen KR, Holter E, Alikhani N, Eskild W, Gustafsson JA. Glucocorticoid response and promoter occupancy of the mouse LXRalpha gene. Biochem Biophys Res Commun 2004; 312:716-24. [PMID: 14680824 DOI: 10.1016/j.bbrc.2003.10.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2003] [Indexed: 10/26/2022]
Abstract
The liver X receptors alpha and beta (LXRalpha and LXRbeta) are members of the nuclear receptor superfamily of proteins which are highly expressed in metabolically active tissues. They regulate gene expression of critical genes involved in cholesterol catabolism and transport, lipid and triglyceride biosynthesis, and carbohydrate metabolism in response to distinct oxysterol intermediates in the cholesterol metabolic pathway. Several LXR target genes have been identified, but there is limited information on how expression of the LXRs themselves is controlled. In this study we have characterized the upstream flanking region of the mouse LXRalpha gene. Transient transfections show that the LXRalpha promoter is able to drive transcription of a luciferase reporter gene, however, the transcriptional potential of the promoter in the cell lines used was low. The -2143 to -1513 region of the promoter mediates repression of reporter gene activity in all cells analyzed and multiple DNA-protein interactions were detected in this region by DNase I footprinting. The Zta, Ets, and Hes1 transcription factors were all shown to mediate alterations in reporter gene activity driven by LXRalpha promoter deletion constructs. These factors have been linked to cell cycle and differentiation processes suggesting that expression of LXRalpha might be under control of signalling mechanisms regulating cell proliferation. Several putative binding sites of the glucocorticoid receptor (GR) were identified in the LXRalpha promoter and transient cotransfections of the GR and LXRalpha promoter deletion constructs induced reporter gene activity. Addition of dexamethasone, a GR agonist, abolished this effect suggesting cross talk between GR and LXR signalling.
Collapse
Affiliation(s)
- Knut R Steffensen
- Department of Biosciences, Karolinska Institutet at NOVUM, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|