1
|
Colina SE, Williman MM, Tizzano MA, Serena MS, Echeverría MG, Metz GE. Morbillivirus Canis Infection Induces Activation of Three Branches of Unfolded Protein Response, MAPK and Apoptosis. Viruses 2024; 16:1846. [PMID: 39772156 PMCID: PMC11680218 DOI: 10.3390/v16121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Morbillivirus canis, commonly named Canine distemper virus (CDV), is a morbillivirus implicated in several signs in the Canidae family. In dogs (Canis lupus familiaris), common signs of infection include conjunctivitis, digital hyperkeratosis and neuropathologies. Even with vaccination, the canine distemper disease persists worldwide so the molecular pathways implicated in the infection processes have been an interesting and promising area in new therapeutic drugs research in recent years. It is known that in the process of virus infection, the endoplasmic reticulum (ER) loses its homeostasis, inducing stress and the subsequent unfolded protein response or UPR in which three ER-trans-membrane proteins are implicated: PERK, IRE1 and ATF6. Moreover, in prolonged ER stress, the apoptosis is induced through the CHOP, as a final step of viral infection. Cell culture and molecular techniques such as RT-qPCR and RT-PCR were used in the present study. We demonstrate the activation in vitro of the three UPR pathways after infection with an attenuated strain of CDV. Also, the implication of a MAPK pathway through the p38 protein and the apoptotic CHOP was demonstrated to contribute to the process of infection. Even more, our study suggested that CDV replication occurs in a PERK-dependent manner.
Collapse
Affiliation(s)
- Santiago Emanuel Colina
- Laboratorio de Virología, Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP 1900, Buenos Aires, Argentina; (S.E.C.); (M.M.W.); (M.A.T.); (M.S.S.); (M.G.E.)
- Consejo Nacional de Investigaciones Cientìficas y Técnicas (CONICET), CCT-La Plata, La Plata CP 1900, Buenos Aires, Argentina
| | - Macarena Marta Williman
- Laboratorio de Virología, Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP 1900, Buenos Aires, Argentina; (S.E.C.); (M.M.W.); (M.A.T.); (M.S.S.); (M.G.E.)
- Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Godoy Cruz 2370, Ciudad Autónoma de Buenos Aires (CABA) C1425FQD, Argentina
| | - Marco Antonio Tizzano
- Laboratorio de Virología, Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP 1900, Buenos Aires, Argentina; (S.E.C.); (M.M.W.); (M.A.T.); (M.S.S.); (M.G.E.)
| | - María Soledad Serena
- Laboratorio de Virología, Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP 1900, Buenos Aires, Argentina; (S.E.C.); (M.M.W.); (M.A.T.); (M.S.S.); (M.G.E.)
- Consejo Nacional de Investigaciones Cientìficas y Técnicas (CONICET), CCT-La Plata, La Plata CP 1900, Buenos Aires, Argentina
| | - María Gabriela Echeverría
- Laboratorio de Virología, Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP 1900, Buenos Aires, Argentina; (S.E.C.); (M.M.W.); (M.A.T.); (M.S.S.); (M.G.E.)
- Consejo Nacional de Investigaciones Cientìficas y Técnicas (CONICET), CCT-La Plata, La Plata CP 1900, Buenos Aires, Argentina
| | - Germán Ernesto Metz
- Laboratorio de Virología, Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP 1900, Buenos Aires, Argentina; (S.E.C.); (M.M.W.); (M.A.T.); (M.S.S.); (M.G.E.)
- Consejo Nacional de Investigaciones Cientìficas y Técnicas (CONICET), CCT-La Plata, La Plata CP 1900, Buenos Aires, Argentina
| |
Collapse
|
2
|
Orsi A, van Anken E, Vitale M, Zamai M, Caiolfa VR, Sitia R, Bakunts A. Congress of multiple dimers is needed for cross-phosphorylation of IRE1α and its RNase activity. Life Sci Alliance 2024; 7:e202302562. [PMID: 38886017 PMCID: PMC11184514 DOI: 10.26508/lsa.202302562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The unfolded protein response can switch from a pro-survival to a maladaptive, pro-apoptotic mode. During ER stress, IRE1α sensors dimerize, become phosphorylated, and activate XBP1 splicing, increasing folding capacity in the ER protein factory. The steps that turn on the IRE1α endonuclease activity against endogenous mRNAs during maladaptive ER stress are still unknown. Here, we show that although necessary, IRE1α dimerization is not sufficient to trigger phosphorylation. Random and/or guided collisions among IRE1α dimers are needed to elicit cross-phosphorylation and endonuclease activities. Thus, reaching a critical concentration of IRE1α dimers in the ER membrane is a key event. Formation of stable IRE1α clusters is not necessary for RNase activity. However, clustering could modulate the potency of the response, promoting interactions between dimers and decreasing the accessibility of phosphorylated IRE1α to phosphatases. The stepwise activation of IRE1α molecules and their low concentration at the steady state prevent excessive responses, unleashing full-blown IRE1 activity only upon intense stress conditions.
Collapse
Affiliation(s)
- Andrea Orsi
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Eelco van Anken
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Milena Vitale
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Moreno Zamai
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Valeria R Caiolfa
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Center for Experimental Imaging, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Anush Bakunts
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Tung J, Huang L, George G, Harding HP, Ron D, Ordonez A. A genome-wide CRISPR/Cas9 screen identifies calreticulin as a selective repressor of ATF6α. eLife 2024; 13:RP96979. [PMID: 39073063 PMCID: PMC11286266 DOI: 10.7554/elife.96979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.
Collapse
Affiliation(s)
- Joanne Tung
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Lei Huang
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Ginto George
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Heather P Harding
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - David Ron
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Adriana Ordonez
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|
4
|
Beránková Z, Khanna R, Spěváková M, Langhansová H, Kopecký J, Lieskovská J. Cellular stress is triggered by tick-borne encephalitis virus and limits the virus replication in PMJ2-R mouse macrophage cell line. Ticks Tick Borne Dis 2024; 15:102269. [PMID: 37813002 DOI: 10.1016/j.ttbdis.2023.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Viral infection may represent a stress condition to the host cell. Cells react to it by triggering the defence programme to restore homeostasis and these events may in turn impact the viral replication. The knowledge about tick-borne encephalitis virus (TBEV) infection-associated stress is limited. Here we investigated the interplay between TBEV infection and stress pathways in PMJ2-R mouse macrophage cell line, as macrophages are the target cells in early phases of TBEV infection. First, to determine how stress influences TBEV replication, the effect of stress inducers H2O2 and tunicamycin (TM) was tested. Viral multiplication was decreased in the presence of both stress inducers suggesting that the stress and cellular stress responses restrict the virus replication. Second, we investigated the induction of oxidative stress and endoplasmic reticulum (ER) stress upon TBEV infection. The level of oxidative stress was interrogated by measuring the reactive oxygen species (ROS). ROS were intermittently increased in infected cells at 12 hpi and at 72 hpi. As mitochondrial dysfunction may result in increased ROS level, we evaluated the mitochondrial homeostasis by measuring the mitochondrial membrane potential (MMP) and found that TBEV infection induced the hyperpolarization of MMP. Moreover, a transient increase of gene expression of stress-induced antioxidative enzymes, like p62, Gclm and Hmox1, was detected. Next, we evaluated the ER stress upon TBEV infection by analysing unfolded protein responses (UPR). We found that infection induced gene expression of two general sensors BiP and CHOP and activated the IRE1 pathway of UPR. Finally, since the natural transmission route of TBEV from its tick vector to the host is mediated via tick saliva, the impact of tick saliva from Ixodes ricinus on stress pathways in TBEV-infected cells was tested. We observed only marginal potentiation of UPR pathway. In conclusion, we found that TBEV infection of PMJ2-R cells elicits the changes in redox balance and triggers cellular stress defences, including antioxidant responses and the IRE1 pathway of UPR. Importantly, our results revealed the negative effect of stress-evoked events on TBEV replication and only marginal impact of tick saliva on stress cellular pathways.
Collapse
Affiliation(s)
- Zuzana Beránková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Ritesh Khanna
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Markéta Spěváková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Jan Kopecký
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Jaroslava Lieskovská
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Ciccarelli M, Masser AE, Kaimal JM, Planells J, Andréasson C. Genetic inactivation of essential HSF1 reveals an isolated transcriptional stress response selectively induced by protein misfolding. Mol Biol Cell 2023; 34:ar101. [PMID: 37467033 PMCID: PMC10551698 DOI: 10.1091/mbc.e23-05-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Heat Shock Factor 1 (Hsf1) in yeast drives the basal transcription of key proteostasis factors and its activity is induced as part of the core heat shock response. Exploring Hsf1 specific functions has been challenging due to the essential nature of the HSF1 gene and the extensive overlap of target promoters with environmental stress response (ESR) transcription factors Msn2 and Msn4 (Msn2/4). In this study, we constructed a viable hsf1∆ strain by replacing the HSF1 open reading frame with genes that constitutively express Hsp40, Hsp70, and Hsp90 from Hsf1-independent promoters. Phenotypic analysis showed that the hsf1∆ strain grows slowly, is sensitive to heat as well as protein misfolding and accumulates protein aggregates. Transcriptome analysis revealed that the transcriptional response to protein misfolding induced by azetidine-2-carboxylic acid is fully dependent on Hsf1. In contrast, the hsf1∆ strain responded to heat shock through the ESR. Following HS, Hsf1 and Msn2/4 showed functional compensatory induction with stronger activation of the remaining stress pathway when the other branch was inactivated. Thus, we provide a long-overdue genetic test of the function of Hsf1 in yeast using the novel hsf1∆ construct. Our data highlight that the accumulation of misfolded proteins is uniquely sensed by Hsf1-Hsp70 chaperone titration inducing a highly selective transcriptional stress response.
Collapse
Affiliation(s)
- Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | | | - Jordi Planells
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
6
|
Pomlok K, Pata S, Kulaphisit M, Pangnuchar R, Wipasa J, Smith DR, Kasinrerk W, Lithanatudom P. An IgM monoclonal antibody against domain 1 of CD147 induces non-canonical RIPK-independent necroptosis in a cell type specific manner in hepatocellular carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119295. [PMID: 35598753 DOI: 10.1016/j.bbamcr.2022.119295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
CD147/Basigin/EMMPRIN is overexpressed in several cancerous tissues and it has been shown to induce matrix metalloproteinases (MMPs) whose expression is associated with cancer metastasis. Thus, targeting CD147 with monoclonal antibodies (mAbs) potentially has therapeutic applications in cancer immunotherapy. Here, we report the use of anti-CD147 mAbs targeting domain 1 of CD147, namely M6-1D4 (IgM), M6-1F3 (IgM), M6-2F9 (IgM) and M6-1E9 (IgG2a), against several human cancer cell lines. Strikingly, IgM but not IgG mAbs against CD147, especially clone M6-1D4, induced acute cellular swelling, and this phenomenon appeared to be specifically found with hepatocellular carcinoma (HCC) cells. Furthermore, molecular investigation upon treating HepG2 cells with M6-1D4 showed unfolded protein response (UPR) activation, autophagosome accumulation, and cell cycle arrest, but without classic apoptosis related features. More interestingly, prolonged M6-1D4 treatment (24 h) resulted in irreversible oncosis leading to necroptosis. Furthermore, treatment with a mixed lineage kinase domain-like psuedokinase (MLKL) inhibitor and partial knockout of MLKL resulted in reduced sensitivity to necroptosis in M6-1D4-treated HepG2 cells. Surprisingly however, the observed necroptotic signaling axis appeared to be non-canonical as it was independent of receptor-interacting serine/threonine-protein kinase (RIPK) phosphorylation. In addition, no cytotoxic effect on human dermal fibroblast (HDF) was observed after incubation with M6-1D4. Taken together, this study provides clues to target CD147 in HCC using mAbs, as well as sheds new light on a novel strategy to kill cancerous cells by the induction of necroptosis.
Collapse
Affiliation(s)
- Kumpanat Pomlok
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Ph.D.'s Degree Program in Biology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supansa Pata
- Clinical Immunology Branch, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mattapong Kulaphisit
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Ph.D.'s Degree Program in Biology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rachan Pangnuchar
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraprapa Wipasa
- Center for Molecular and Cell Biology for Infectious Diseases, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Watchara Kasinrerk
- Clinical Immunology Branch, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pathrapol Lithanatudom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
7
|
Li H, Kang M, Sun S, Gao J, Jia Z, Cao X. Cloning and expressions of chop in loach (Misgurnus anguillicaudatus) and its response to hydrogen peroxide (H 2O 2) stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:659-668. [PMID: 35396647 PMCID: PMC8993585 DOI: 10.1007/s10695-022-01067-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
C/EBP [CCAAT/enhancer-binding protein]-homologous protein gene (chop) which plays an important role in endoplasmic reticulum stress-induced apoptosis was investigated here by RACE and qPCR in an aquaculture animal for the first time. The full-length cDNA sequence of loach (Misgurnus anguillicaudatus) chop was 2533 bp, encoding 266 amino acids. The expression level of loach chop changed during different early life stages, with the highest expression at the 8-cell stage. Among different tissues, loach chop predominantly was expressed in gill, spleen, and gonad. We performed a hydrogen peroxide (H2O2, a common-used disinfectant) stress trial to explore the role of loach chop, with three different concentrations (0 μM, 50 μM, and 100 μM) of H2O2. The 100-μM dose was lethal for half the population but the other concentrations did not result in mortality. The activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) in loach gill, liver, and spleen decreased with extended stress time and increased H2O2 concentration. The expression levels of gill chop in loaches from the 100-μM group were significantly higher than those from the other two treatment groups at 12 and 24 h of exposure. atf4 and bax, two proapoptotic genes, were significantly upregulated in gills of loaches from the 100-μM group compared to the other two groups 18 h and 24 h after treatment. bcl2, an antiapoptotic gene, presented an opposite trend. These results indicated a close relationship between H2O2 stress and fish apoptosis with loach chop playing an important role in H2O2 stress response.
Collapse
Affiliation(s)
- Hui Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Minxin Kang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Shouxiang Sun
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Jian Gao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, CAFS, No. 42 Songfa Street, Daoli District, Harbin, 150070, Heilongjiang Province, China.
| | - Xiaojuan Cao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
8
|
Moraga P, Aravena R, Urra H, Hetz C. Assays to Study IRE1 Activation and Signaling. Methods Mol Biol 2022; 2378:141-168. [PMID: 34985699 DOI: 10.1007/978-1-0716-1732-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The endoplasmic reticulum (ER) stress sensor IRE1 is a a major player of the unfolded protein response (UPR), the main pathway driving adaptation processes to restore proteostasis. In addition, overactivation of IRE1 signaling contributes to a variety of pathologies including diabetes, neurodegenerative diseases, and cancer. Under ER stress, IRE1 auto-transphosphorylates and oligomerizes, triggering the activation of its endoribonuclease domain located in the cytosolic region. Active IRE1 catalyzes the splicing of the mRNA encoding for the XBP1 transcription factor, in addition to degrade several RNAs through a process known as regulated IRE1-dependent decay of mRNA (RIDD). Besides its role as an UPR transducer, several posttranslational modifications and protein-protein interactions can regulate IRE1 activity and modulate its signaling in the absence of stress. Thus, investigating the function of IRE1 in physiology and disease requires the use of complementary approaches. Here, we provide detailed protocols to perform four different assays to study IRE1 activation and signaling: (i) Phos-tag gels to evaluate the phosphorylation status of IRE1, (ii) microscopy using TREX-IRE1-GFP cells to measure IRE1 oligomerization, (iii) conventional RT-PCR to assess XBP1 mRNA processing, and (iv) quantitative PCR to determine the levels of canonical UPR target genes and the degradation of several mRNAs that are target of RIDD. We propose to use these experimental strategies as "gold standards" to study IRE1 signaling.
Collapse
Affiliation(s)
- Paloma Moraga
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Raul Aravena
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Hery Urra
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
- The Buck Institute for Research in Aging, Novato, CA, USA.
| |
Collapse
|
9
|
Gómora-García JC, Gerónimo-Olvera C, Pérez-Martínez X, Massieu L. IRE1α RIDD activity induced under ER stress drives neuronal death by the degradation of 14-3-3 θ mRNA in cortical neurons during glucose deprivation. Cell Death Discov 2021; 7:131. [PMID: 34083523 PMCID: PMC8175356 DOI: 10.1038/s41420-021-00518-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Altered protein homeostasis is associated with neurodegenerative diseases and acute brain injury induced under energy depletion conditions such as ischemia. The accumulation of damaged or unfolded proteins triggers the unfolded protein response (UPR), which can act as a homeostatic response or lead to cell death. However, the factors involved in turning and adaptive response into a cell death mechanism are still not well understood. Several mechanisms leading to brain injury induced by severe hypoglycemia have been described but the contribution of the UPR has been poorly studied. Cell responses triggered during both the hypoglycemia and the glucose reinfusion periods can contribute to neuronal death. Therefore, we have investigated the activation dynamics of the PERK and the IRE1α branches of the UPR and their contribution to neuronal death in a model of glucose deprivation (GD) and glucose reintroduction (GR) in cortical neurons. Results show a rapid activation of the PERK/p-eIF2α/ATF4 pathway leading to protein synthesis inhibition during GD, which contributes to neuronal adaptation, however, sustained blockade of protein synthesis during GR promotes neuronal death. On the other hand, IRE1α activation occurs early during GD due to its interaction with BAK/BAX, while ASK1 is recruited to IRE1α activation complex during GR promoting the nuclear translocation of JNK and the upregulation of Chop. Most importantly, results show that IRE1α RNase activity towards its splicing target Xbp1 mRNA occurs late after GR, precluding a homeostatic role. Instead, IRE1α activity during GR drives neuronal death by positively regulating ASK1/JNK activity through the degradation of 14-3-3 θ mRNA, a negative regulator of ASK and an adaptor protein highly expressed in brain, implicated in neuroprotection. Collectively, results describe a novel regulatory mechanism of cell death in neurons, triggered by the downregulation of 14-3-3 θ mRNA induced by the IRE1α branch of the UPR.
Collapse
Affiliation(s)
- Juan Carlos Gómora-García
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, Ciudad de México, México
| | - Cristian Gerónimo-Olvera
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, Ciudad de México, México.,Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular, División de Investigación Básica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, Ciudad de México, México
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, Ciudad de México, México.
| |
Collapse
|
10
|
Echavarría-Consuegra L, Cook GM, Busnadiego I, Lefèvre C, Keep S, Brown K, Doyle N, Dowgier G, Franaszek K, Moore NA, Siddell SG, Bickerton E, Hale BG, Firth AE, Brierley I, Irigoyen N. Manipulation of the unfolded protein response: A pharmacological strategy against coronavirus infection. PLoS Pathog 2021; 17:e1009644. [PMID: 34138976 PMCID: PMC8211288 DOI: 10.1371/journal.ppat.1009644] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.
Collapse
Affiliation(s)
- Liliana Echavarría-Consuegra
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Georgia M. Cook
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Idoia Busnadiego
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Charlotte Lefèvre
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Sarah Keep
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Katherine Brown
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Nicole Doyle
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | - Krzysztof Franaszek
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Nathan A. Moore
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Stuart G. Siddell
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Andrew E. Firth
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| |
Collapse
|
11
|
Liu Y, Wang X, Zhen Z, Yu Y, Qiu Y, Xiang W. GRP78 regulates milk biosynthesis and the proliferation of bovinemammaryepithelial cells through the mTOR signaling pathway. Cell Mol Biol Lett 2019; 24:57. [PMID: 31660059 PMCID: PMC6805561 DOI: 10.1186/s11658-019-0181-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glucose-regulated protein 78 (GRP78) is a member of the HSP70 protein family and a key endoplasmic reticulum chaperone. It has been revealed to play important roles both in the maturation, folding and transport of proteins and in cellproliferation. However, its involvement in milk biosynthesis or the proliferation of bovine primary mammary epithelial cells (BMECs) has yet to be established. METHODS The expressions of GRP78 in BMECs stimulated with methionine, leucine, estrogen and prolactin were determined using western blotting and immunofluorescence assays. To explore the function of GRP78 in BMECs, the protein was overexpressed or knocked down, respectively using an overexpression vector or an siRNA mixture transfected into cells cultured in vitro. Flow cytometry was used to analyze cell proliferation and cell activity. The contents of lactose and triglyceride (TG) secreted from the treated BMECs were measured using lactose and TG assay kits, respectively. Western blotting analysis was used to measure the β-casein content and the protein levels of the signaling molecules known to be involved in milk biosynthesis and cell proliferation. RESULTS GRP78overexpression significantly stimulated milk protein and milk fat synthesis, enhanced cell proliferation, positively regulated the phosphorylation of mammalian target of rapamycin (mTOR), and increased the amount of protein of cyclinD1andsterol regulatory element-binding protein 1c (SREBP-1c). GRP78 knockdown after siRNA transfection had the opposite effects. We further found that GRP78 was located in the cytoplasm of BMECs, and that stimulating methionine, leucine, estrogen and prolactin expression led to a significant increase in the protein expression of GRP78 in BMECs. CONCLUSIONS These data reveal that GRP78 is an important regulator of milk biosynthesis and the proliferation of BMECs through the mTOR signaling pathway.
Collapse
Affiliation(s)
- Ying Liu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | | | - Zhen Zhen
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Yanbo Yu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Youwen Qiu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Wensheng Xiang
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| |
Collapse
|
12
|
Germinality does not necessarily define mAb expression and thermal stability. Appl Microbiol Biotechnol 2019; 103:7505-7518. [PMID: 31350616 PMCID: PMC6719414 DOI: 10.1007/s00253-019-09998-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 01/09/2023]
Abstract
The production potential of recombinant monoclonal antibody (mAb) expressing cell lines depends, among other factors, on the intrinsic antibody structure determined by the amino acid sequence. In this study, we investigated the influence of somatic mutations in the V(D)J sequence of four individual, mature model mAbs on the expression potential. Therefore, we defined four couples, each consisting of one naturally occurring mAb (2G12, Ustekinumab, 4B3, and 2F5) and the corresponding germline-derived cognate mAb (353/11, 554/12, 136/63, and 236/14). For all eight mAb variants, recombinant Chinese hamster ovary (CHO) cell lines were developed with mAbs expressed from a defined chromosomal locus. The presented workflow investigates critical parameters including productivity, intra- and extracellular product profile, XBP1 splicing, thermal stability, and in silico hydrophobicity. Significant differences in productivity were even observed between the germline-derived mAbs which did not undergo somatic mutagenesis. Accordingly, back-to-germline mutations of mature mAbs are not necessarily reflecting improved expression and stability but indicate opportunities and limits of mAb engineering. From our studies, we conclude that germinalization represents a potential to improve mAb properties depending on the antibody’s germline family, highlighting the fact that mAbs should be treated individually.
Collapse
|
13
|
Ávila-Pérez G, Diaz-Beneitez E, Cubas-Gaona LL, Nieves-Molina G, Rodríguez JR, Rodríguez JF, Rodríguez D. Activation of the autophagy pathway by Torovirus infection is irrelevant for virus replication. PLoS One 2019; 14:e0219428. [PMID: 31306441 PMCID: PMC6629058 DOI: 10.1371/journal.pone.0219428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 06/24/2019] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a conserved eukaryotic process that mediates lysosomal degradation of cytoplasmic macromolecules and damaged organelles, also exerting an important role in the elimination of intracellular pathogens. Despite the antiviral role of autophagy, many studies suggest that some positive-stranded RNA viruses exploit this pathway to facilitate their own replication. In this study, we demonstrate that the equine torovirus Berne virus (BEV), the prototype member of the Torovirus genus (Coronaviridae Family, Nidovirales Order), induces autophagy at late times post-infection. Conversion of microtubule associated protein 1B light chain 3 (LC3) from cytosolic (LC3 I) to the membrane associated form (LC3 II), a canonical marker of autophagosome formation, is enhanced in BEV infected cells. However, neither autophagy induction, via starvation, nor pharmacological blockade significantly affect BEV replication. Similarly, BEV infection is not altered in autophagy deficient cells lacking either Beclin 1 or LC3B protein expression. Unexpectedly, the cargo receptor p62, a selective autophagy receptor, aggregates within the region where the BEV main protease (Mpro) localizes. This finding, coupled with observation that BEV replication also induces ER stress at the time when selective autophagy is taking place, suggests that the autophagy pathway is activated in response to the hefty accumulation of virus-encoded polypeptides during the late phase of BEV infection.
Collapse
Affiliation(s)
- Ginés Ávila-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Elisabet Diaz-Beneitez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Liliana L. Cubas-Gaona
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Gliselle Nieves-Molina
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | | | - José F. Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| |
Collapse
|
14
|
Rotavirus Infection Alters Splicing of the Stress-Related Transcription Factor XBP1. J Virol 2019; 93:JVI.01739-18. [PMID: 30541862 DOI: 10.1128/jvi.01739-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/05/2018] [Indexed: 11/20/2022] Open
Abstract
XBP1 is a stress-regulated transcription factor also involved in mammalian host defenses and innate immune response. Our investigation of XBP1 RNA splicing during rotavirus infection revealed that an additional XBP1 RNA (XBP1es) that corresponded to exon skipping in the XBP1 pre-RNA is induced depending on the rotavirus strain used. We show that the translation product of XBP1es (XBP1es) has trans-activation properties similar to those of XBP1 on ER stress response element (ERSE) containing promoters. Using monoreassortant between ES+ ("skipping") and ES- ("nonskipping") strains of rotavirus, we show that gene 7 encoding the viral translation enhancer NSP3 is involved in this phenomenon and that exon skipping parallels the nuclear relocalization of cytoplasmic PABP. We further show, using recombinant rotaviruses carrying chimeric gene 7, that the ES+ phenotype is linked to the eIF4G-binding domain of NSP3. Because the XBP1 transcription factor is involved in stress and immunological responses, our results suggest an alternative way to activate XBP1 upon viral infection or nuclear localization of PABP.IMPORTANCE Rotavirus is one of the most important pathogens causing severe gastroenteritis in young children worldwide. Here we show that infection with several rotavirus strains induces an alternative splicing of the RNA encoding the stressed-induced transcription factor XBP1. The genetic determinant of XBP1 splicing is the viral RNA translation enhancer NSP3. Since XBP1 is involved in cellular stress and immune responses and since the XBP1 protein made from the alternatively spliced RNA is an active transcription factor, our observations raise the question of whether alternative splicing is a cellular response to rotavirus infection.
Collapse
|
15
|
Roest G, Hesemans E, Welkenhuyzen K, Luyten T, Engedal N, Bultynck G, Parys JB. The ER Stress Inducer l-Azetidine-2-Carboxylic Acid Elevates the Levels of Phospho-eIF2α and of LC3-II in a Ca 2+-Dependent Manner. Cells 2018; 7:E239. [PMID: 30513588 PMCID: PMC6316609 DOI: 10.3390/cells7120239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to reduce protein load and restore homeostasis, including via induction of autophagy. We used the proline analogue l-azetidine-2-carboxylic acid (AZC) to induce ER stress, and assessed its effect on autophagy and Ca2+ homeostasis. Treatment with 5 mM AZC did not induce poly adenosine diphosphate ribose polymerase (PARP) cleavage while levels of binding immunoglobulin protein (BiP) and phosphorylated eukaryotic translation initiation factor 2α (eIF2α) increased and those of activating transcription factor 6 (ATF6) decreased, indicating activation of the protein kinase RNA-like ER kinase (PERK) and the ATF6 arms of the UPR but not of apoptosis. AZC treatment in combination with bafilomycin A1 (Baf A1) led to elevated levels of the lipidated form of the autophagy marker microtubule-associated protein light chain 3 (LC3), pointing to activation of autophagy. Using the specific PERK inhibitor AMG PERK 44, we could deduce that activation of the PERK branch is required for the AZC-induced lipidation of LC3. Moreover, both the levels of phospho-eIF2α and of lipidated LC3 were strongly reduced when cells were co-treated with the intracellular Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraaceticacid tetra(acetoxy-methyl) ester (BAPTA-AM) but not when co-treated with the Na⁺/K⁺ ATPase inhibitor ouabain, suggesting an essential role of Ca2+ in AZC-induced activation of the PERK arm of the UPR and LC3 lipidation. Finally, AZC did not trigger Ca2+ release from the ER though appeared to decrease the cytosolic Ca2+ rise induced by thapsigargin while also decreasing the time constant for Ca2+ clearance. The ER Ca2+ store content and mitochondrial Ca2+ uptake however remained unaffected.
Collapse
Affiliation(s)
- Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Evelien Hesemans
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Kirsten Welkenhuyzen
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Tomas Luyten
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Nikolai Engedal
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership for Molecular Medicine, University of Oslo, P.O. Box 1137 Blindern, N-0318 Oslo, Norway.
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
16
|
Bakunts A, Orsi A, Vitale M, Cattaneo A, Lari F, Tadè L, Sitia R, Raimondi A, Bachi A, van Anken E. Ratiometric sensing of BiP-client versus BiP levels by the unfolded protein response determines its signaling amplitude. eLife 2017; 6:27518. [PMID: 29251598 PMCID: PMC5792092 DOI: 10.7554/elife.27518] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/15/2017] [Indexed: 01/03/2023] Open
Abstract
Insufficient folding capacity of the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to restore homeostasis. Yet, how the UPR achieves ER homeostatic readjustment is poorly investigated, as in most studies the ER stress that is elicited cannot be overcome. Here we show that a proteostatic insult, provoked by persistent expression of the secretory heavy chain of immunoglobulin M (µs), is well-tolerated in HeLa cells. Upon µs expression, its levels temporarily eclipse those of the ER chaperone BiP, leading to acute, full-geared UPR activation. Once BiP is in excess again, the UPR transitions to chronic, submaximal activation, indicating that the UPR senses ER stress in a ratiometric fashion. In this process, the ER expands about three-fold and becomes dominated by BiP. As the UPR is essential for successful ER homeostatic readjustment in the HeLa-µs model, it provides an ideal system for dissecting the intricacies of how the UPR evaluates and alleviates ER stress.
Collapse
Affiliation(s)
- Anush Bakunts
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Orsi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Milena Vitale
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Federica Lari
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Tadè
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Angela Bachi
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Eelco van Anken
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
17
|
Chalmers F, van Lith M, Sweeney B, Cain K, Bulleid NJ. Inhibition of IRE1α-mediated XBP1 mRNA cleavage by XBP1 reveals a novel regulatory process during the unfolded protein response. Wellcome Open Res 2017; 2:36. [PMID: 29062910 PMCID: PMC5645705 DOI: 10.12688/wellcomeopenres.11764.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 01/23/2023] Open
Abstract
Background: The mammalian endoplasmic reticulum (ER) continuously adapts to the cellular secretory load by the activation of an unfolded protein response (UPR). This stress response results in expansion of the ER, upregulation of proteins involved in protein folding and degradation, and attenuation of protein synthesis. The response is orchestrated by three signalling pathways each activated by a specific signal transducer, either inositol requiring enzyme α (IRE1α), double-stranded RNA-activated protein kinase-like ER kinase (PERK) or activating transcription factor 6 (ATF6). Activation of IRE1α results in its oligomerisation, autophosphorylation and stimulation of its ribonuclease activity. The ribonuclease initiates the splicing of an intron from mRNA encoding the transcription factor, X-box binding protein 1 (XBP1), as well as degradation of specific mRNAs and microRNAs. Methods: To investigate the consequence of expression of exogenous XBP1, we generated a stable cell-line expressing spliced XBP1 mRNA under the control of an inducible promotor. Results: Following induction of expression, high levels of XBP1 protein were detected, which allowed upregulation of target genes in the absence of induction of the UPR. Remarkably under stress conditions, the expression of exogenous XBP1 repressed splicing of endogenous XBP1 mRNA without repressing the activation of PERK. Conclusions: These results illustrate that a feedback mechanism exists to attenuate Ire1α ribonuclease activity in the presence of XBP1.
Collapse
Affiliation(s)
- Fiona Chalmers
- Institute of Molecular, Cellular and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marcel van Lith
- Institute of Molecular, Cellular and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | - Neil J Bulleid
- Institute of Molecular, Cellular and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
18
|
Chalmers F, van Lith M, Sweeney B, Cain K, Bulleid NJ. Inhibition of IRE1α-mediated XBP1 mRNA cleavage by XBP1 reveals a novel regulatory process during the unfolded protein response. Wellcome Open Res 2017. [PMID: 29062910 DOI: 10.12688/wellcomeopenres.11764.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: The mammalian endoplasmic reticulum (ER) continuously adapts to the cellular secretory load by the activation of an unfolded protein response (UPR). This stress response results in expansion of the ER, upregulation of proteins involved in protein folding and degradation, and attenuation of protein synthesis. The response is orchestrated by three signalling pathways each activated by a specific signal transducer, either inositol requiring enzyme α (IRE1α), double-stranded RNA-activated protein kinase-like ER kinase (PERK) or activating transcription factor 6 (ATF6). Activation of IRE1α results in its oligomerisation, autophosphorylation and stimulation of its ribonuclease activity. The ribonuclease initiates the splicing of an intron from mRNA encoding the transcription factor, X-box binding protein 1 (XBP1), as well as degradation of specific mRNAs and microRNAs. Methods: To investigate the consequence of expression of exogenous XBP1, we generated a stable cell-line expressing spliced XBP1 mRNA under the control of an inducible promotor. Results: Following induction of expression, high levels of XBP1 protein were detected, which allowed upregulation of target genes in the absence of induction of the UPR. Remarkably under stress conditions, the expression of exogenous XBP1 repressed splicing of endogenous XBP1 mRNA without repressing the activation of PERK. Conclusions: These results illustrate that a feedback mechanism exists to attenuate Ire1α ribonuclease activity in the presence of XBP1.
Collapse
Affiliation(s)
- Fiona Chalmers
- Institute of Molecular, Cellular and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marcel van Lith
- Institute of Molecular, Cellular and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | - Neil J Bulleid
- Institute of Molecular, Cellular and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
19
|
Kim SJ, Zemelis-Durfee S, Wilkerson C, Brandizzi F. In Brachypodium a complex signaling is actuated to protect cells from proteotoxic stress and facilitate seed filling. PLANTA 2017; 246:75-89. [PMID: 28364133 PMCID: PMC5892453 DOI: 10.1007/s00425-017-2687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/27/2017] [Indexed: 05/11/2023]
Abstract
A conserved UPR machinery is required for Brachypodium ER stress resistance and grain filling. Human and livestock diets depend on the accumulation of cereal storage proteins and carbohydrates, including mixed-linkage glucan (MLG), in the endosperm during seed development. Storage proteins and proteins responsible for the production of carbohydrates are synthesized in the endoplasmic reticulum (ER). Unfavorable conditions during growth that hamper the ER biosynthetic capacity, such as heat, can cause a potentially lethal condition known as ER stress, which activates the unfolded protein response (UPR), a signaling response designed to mitigate ER stress. The UPR relies primarily on a conserved ER-associated kinase and ribonuclease, IRE1, which splices the mRNA of a transcription factor (TF), such as bZIP60 in plants, to produce an active TF that controls the expression of ER resident chaperones. Here, we investigated activation of the UPR in Brachypodium, as a model to study the UPR in seeds of a monocotyledon species, as well as the consequences of heat stress on MLG deposition in seeds. We identified a Brachypodium bZIP60 orthologue and determined a positive correlation between bZIP60 splicing and ER stress induced by chemicals and heat. Each stress condition led to transcriptional modulation of several BiP genes, supporting the existence of condition-specific BiP regulation. Finally, we found that the UPR is elevated at the early stage of seed development and that MLG production is negatively affected by heat stress via modulation of MLG synthase accumulation. We propose that successful accomplishment of seed filling is strongly correlated with the ability of the plant to sustain ER stress via the UPR.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Starla Zemelis-Durfee
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Curtis Wilkerson
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
20
|
Cuevas EP, Eraso P, Mazón MJ, Santos V, Moreno-Bueno G, Cano A, Portillo F. LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway. Sci Rep 2017; 7:44988. [PMID: 28332555 PMCID: PMC5362953 DOI: 10.1038/srep44988] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) is a key process contributing to the aggressiveness of cancer cells. EMT is triggered by activation of different transcription factors collectively known as EMT-TFs. Different cellular cues and cell signalling networks activate EMT at transcriptional and posttranscriptional level in different biological and pathological situations. Among them, overexpression of LOXL2 (lysyl oxidase-like 2) induces EMT independent of its catalytic activity. Remarkably, perinuclear/cytoplasmic accumulation of LOXL2 is a poor prognosis marker of squamous cell carcinomas and is associated to basal breast cancer metastasis by mechanisms no yet fully understood. Here, we report that overexpression of LOXL2 promotes its accumulation in the Endoplasmic Reticulum where it interacts with HSPA5 leading to activation of the IRE1-XBP1 signalling pathway of the ER-stress response. LOXL2-dependent IRE1-XBP1 activation induces the expression of several EMT-TFs: SNAI1, SNAI2, ZEB2 and TCF3 that are direct transcriptional targets of XBP1. Remarkably, inhibition of IRE1 blocks LOXL2-dependent upregulation of EMT-TFs thus hindering EMT induction.
Collapse
Affiliation(s)
- Eva P Cuevas
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| | - Pilar Eraso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| | - María J Mazón
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| | - Vanesa Santos
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain.,Fundación MD Anderson International, Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, CIBERONC, Madrid, Spain
| |
Collapse
|
21
|
Chen WY, Zhang J, Ghare S, Barve S, McClain C, Joshi-Barve S. Acrolein Is a Pathogenic Mediator of Alcoholic Liver Disease and the Scavenger Hydralazine Is Protective in Mice. Cell Mol Gastroenterol Hepatol 2016; 2:685-700. [PMID: 28119953 PMCID: PMC5042858 DOI: 10.1016/j.jcmgh.2016.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/17/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Alcoholic liver disease (ALD) remains a major cause of morbidity and mortality, with no Food and Drug Administration-approved therapy. Chronic alcohol consumption causes a pro-oxidant environment and increases hepatic lipid peroxidation, with acrolein being the most reactive/toxic by-product. This study investigated the pathogenic role of acrolein in hepatic endoplasmic reticulum (ER) stress, steatosis, and injury in experimental ALD, and tested acrolein elimination/scavenging (using hydralazine) as a potential therapy in ALD. METHODS In vitro (rat hepatoma H4IIEC cells) and in vivo (chronic+binge alcohol feeding in C57Bl/6 mice) models were used to examine alcohol-induced acrolein accumulation and consequent hepatic ER stress, apoptosis, and injury. In addition, the potential protective effects of the acrolein scavenger, hydralazine, were examined both in vitro and in vivo. RESULTS Alcohol consumption/metabolism resulted in hepatic accumulation of acrolein-protein adducts, by up-regulation of cytochrome P4502E1 and alcohol dehydrogenase, and down-regulation of glutathione-s-transferase-P, which metabolizes/detoxifies acrolein. Alcohol-induced acrolein adduct accumulation led to hepatic ER stress, proapoptotic signaling, steatosis, apoptosis, and liver injury; however, ER-protective/adaptive responses were not induced. Notably, direct exposure to acrolein in vitro mimicked the in vivo effects of alcohol, indicating that acrolein mediates the adverse effects of alcohol. Importantly, hydralazine, a known acrolein scavenger, protected against alcohol-induced ER stress and liver injury, both in vitro and in mice. CONCLUSIONS Our study shows the following: (1) alcohol consumption triggers pathologic ER stress without ER adaptation/protection; (2) alcohol-induced acrolein is a potential therapeutic target and pathogenic mediator of hepatic ER stress, cell death, and injury; and (3) removal/clearance of acrolein by scavengers may have therapeutic potential in ALD.
Collapse
Key Words
- ADH, alcohol dehydrogenase
- ALD, alcoholic liver disease
- ALDH, aldehyde dehydrogenase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- ATF, activating transcription factor
- Apoptosis
- CHOP
- CHOP, CCAAT/enhancer-binding protein homologous protein
- CYP2E1, cytochrome P4502E1
- ER, endoplasmic reticulum
- FDP-lysine, Nε-(3-formyl-3,4-dehydropiperidino)lysine
- GRP, glucose regulated protein
- GSTP, glutathione-s-transferase-Pi
- IRE1, inositol-requiring enzyme 1
- JNK, cJun N-terminal kinase
- LPO, lipid peroxidation
- Lipid Peroxidation
- NIAAA, National Institute on Alcohol Abuse and Alcoholism
- PERK, protein kinase RNA-like endoplasmic reticulum kinase
- PUFA, polyunsaturated fatty acids
- TRAF, TNF receptor-associated factor
- TUNEL, terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling
- Therapeutic
- UPR, unfolded protein response
- XBP1, X-box binding protein-1
- mRNA, messenger RNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Wei-Yang Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
- Alcohol Research Center, University of Louisville, Louisville, Kentucky
| | - Jingwen Zhang
- Alcohol Research Center, University of Louisville, Louisville, Kentucky
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Smita Ghare
- Alcohol Research Center, University of Louisville, Louisville, Kentucky
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Shirish Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
- Alcohol Research Center, University of Louisville, Louisville, Kentucky
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Craig McClain
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
- Alcohol Research Center, University of Louisville, Louisville, Kentucky
- Department of Medicine, University of Louisville, Louisville, Kentucky
- Robley Rex Veterans Affairs Medical Center, University of Louisville, Louisville, Kentucky
| | - Swati Joshi-Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
- Alcohol Research Center, University of Louisville, Louisville, Kentucky
- Department of Medicine, University of Louisville, Louisville, Kentucky
- Correspondence Address correspondence to: Swati Joshi-Barve, PhD, Departments of Medicine, and Pharmacology and Toxicology, University of Louisville, 505 South Hancock Street, Room 505 Clinical Translational Research Building, Louisville, Kentucky 40202. fax: (502) 852-8927.Departments of Medicine, and Pharmacology and ToxicologyUniversity of Louisville505 South Hancock StreetRoom 505 Clinical Translational Research BuildingLouisvilleKentucky 40202
| |
Collapse
|
22
|
Jabouille A, Delugin M, Pineau R, Dubrac A, Soulet F, Lhomond S, Pallares-Lupon N, Prats H, Bikfalvi A, Chevet E, Touriol C, Moenner M. Glioblastoma invasion and cooption depend on IRE1α endoribonuclease activity. Oncotarget 2016; 6:24922-34. [PMID: 26325176 PMCID: PMC4694804 DOI: 10.18632/oncotarget.4679] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/10/2015] [Indexed: 12/19/2022] Open
Abstract
IRE1α is an endoplasmic reticulum (ER)-resident transmembrane signaling protein and a cellular stress sensor. The protein harbors a cytosolic dual kinase/endoribonuclease activity required for adaptive responses to micro-environmental changes. In an orthotopic xenograft model of human glioma, invalidation of IRE1α RNase or/and kinase activities generated tumors with remarkably distinct phenotypes. Contrasting with the extensive angiogenesis observed in tumors derived from control cells, the double kinase/RNase invalidation reprogrammed mesenchymal differentiation of cancer cells and produced avascular and infiltrative glioblastomas with blood vessel co-option. In comparison, selective invalidation of IRE1α RNase did not compromise tumor angiogenesis but still elicited invasive features and vessel co-option. In vitro, IRE1α RNase deficient cells were also endowed with a higher ability to migrate. Constitutive activation of both enzymes led to wild-type-like lesions. The presence of IRE1α, but not its RNase activity, is therefore required for glioblastoma neovascularization, whereas invasion results only from RNase inhibition. In this model, two key mechanisms of tumor progression and cancer cell survival are functionally linked to IRE1α.
Collapse
Affiliation(s)
- Arnaud Jabouille
- Inserm, U1029, 33400 Talence, France.,Université de Bordeaux, 33000 Bordeaux, France
| | - Maylis Delugin
- Inserm, U1029, 33400 Talence, France.,Université de Bordeaux, 33000 Bordeaux, France
| | | | | | - Fabienne Soulet
- Inserm, U1029, 33400 Talence, France.,Université de Bordeaux, 33000 Bordeaux, France
| | - Stéphanie Lhomond
- Université de Bordeaux, 33000 Bordeaux, France.,Inserm, U1053, 33000 Bordeaux, France
| | - Nestor Pallares-Lupon
- Université de Bordeaux, 33000 Bordeaux, France.,Inserm, U1053, 33000 Bordeaux, France
| | - Hervé Prats
- Inserm, U1037, CHU de Rangueil, 31432 Toulouse, France
| | - Andreas Bikfalvi
- Inserm, U1029, 33400 Talence, France.,Université de Bordeaux, 33000 Bordeaux, France
| | - Eric Chevet
- Université de Bordeaux, 33000 Bordeaux, France.,Inserm, U1053, 33000 Bordeaux, France.,Centre Régional de Lutte Contre le Cancer Eugène Marquis, 35000 Rennes, France.,ER440, Oncogenesis, Stress, Signaling, Université Rennes 1, Rennes, France
| | | | - Michel Moenner
- Inserm, U1029, 33400 Talence, France.,Université de Bordeaux, 33000 Bordeaux, France.,CNRS UMR5095, IBGC, 33700 Bordeaux, France
| |
Collapse
|
23
|
Artero-Castro A, Perez-Alea M, Feliciano A, Leal JA, Genestar M, Castellvi J, Peg V, Ramón Y Cajal S, Lleonart MEL. Disruption of the ribosomal P complex leads to stress-induced autophagy. Autophagy 2016; 11:1499-519. [PMID: 26176264 DOI: 10.1080/15548627.2015.1063764] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human ribosomal P complex, which consists of the acidic ribosomal P proteins RPLP0, RPLP1, and RPLP2 (RPLP proteins), recruits translational factors, facilitating protein synthesis. Recently, we showed that overexpression of RPLP1 immortalizes primary cells and contributes to transformation. Moreover, RPLP proteins are overexpressed in human cancer, with the highest incidence in breast carcinomas. It is thought that disruption of the P complex would directly affect protein synthesis, causing cell growth arrest and eventually apoptosis. Here, we report a distinct mechanism by which cancer cells undergo cell cycle arrest and induced autophagy when RPLP proteins are downregulated. We found that absence of RPLP0, RPLP1, or RPLP2 resulted in reactive oxygen species (ROS) accumulation and MAPK1/ERK2 signaling pathway activation. Moreover, ROS generation led to endoplasmic reticulum (ER) stress that involved the EIF2AK3/PERK-EIF2S1/eIF2α-EIF2S2-EIF2S3-ATF4/ATF-4- and ATF6/ATF-6-dependent arms of the unfolded protein response (UPR). RPLP protein-deficient cells treated with autophagy inhibitors experienced apoptotic cell death as an alternative to autophagy. Strikingly, antioxidant treatment prevented UPR activation and autophagy while restoring the proliferative capacity of these cells. Our results indicate that ROS are a critical signal generated by disruption of the P complex that causes a cellular response that follows a sequential order: first ROS, then ER stress/UPR activation, and finally autophagy. Importantly, inhibition of the first step alone is able to restore the proliferative capacity of the cells, preventing UPR activation and autophagy. Overall, our results support a role for autophagy as a survival mechanism in response to stress due to RPLP protein deficiency.
Collapse
Affiliation(s)
- Ana Artero-Castro
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Mileidys Perez-Alea
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Andrea Feliciano
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Jose A Leal
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Mónica Genestar
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Josep Castellvi
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Vicente Peg
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Santiago Ramón Y Cajal
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Matilde E L Lleonart
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| |
Collapse
|
24
|
Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway. Sci Rep 2016; 6:27278. [PMID: 27255611 PMCID: PMC4891703 DOI: 10.1038/srep27278] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022] Open
Abstract
The hexosamine biosynthetic pathway (HBP) is a nutrient-sensing metabolic pathway that produces the activated amino sugar UDP-N-acetylglucosamine, a critical substrate for protein glycosylation. Despite its biological significance, little is known about the regulation of HBP flux during nutrient limitation. Here, we report that amino acid or glucose shortage increase GFAT1 production, the first and rate-limiting enzyme of the HBP. GFAT1 is a transcriptional target of the activating transcription factor 4 (ATF4) induced by the GCN2-eIF2α signalling pathway. The increased production of GFAT1 stimulates HBP flux and results in an increase in O-linked β-N-acetylglucosamine protein modifications. Taken together, these findings demonstrate that ATF4 provides a link between nutritional stress and the HBP for the regulation of the O-GlcNAcylation-dependent cellular signalling.
Collapse
|
25
|
Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response. Proc Natl Acad Sci U S A 2015; 112:E6790-7. [PMID: 26598709 DOI: 10.1073/pnas.1508716112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.
Collapse
|
26
|
Liu Z, Xia Y, Li B, Xu H, Wang C, Liu Y, Li Y, Li C, Gao N, Li L. Induction of ER stress-mediated apoptosis by ceramide via disruption of ER Ca(2+) homeostasis in human adenoid cystic carcinoma cells. Cell Biosci 2014; 4:71. [PMID: 25937892 PMCID: PMC4417540 DOI: 10.1186/2045-3701-4-71] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/15/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ceramides are a class of sphingolipids that form the structural component of the cell membrane and also act as second messengers in cell signaling pathways. Emerging results suggest that ceramide induces growth arrest and apoptosis in various human cancer cells. However, the mechanisms underlying its antitumor activity are yet to be identified. Endoplasmic reticulum stress (ER stress), a cellular adaptive response, is believed to initially compensate for damage but can eventually trigger cell death if the stimulus is severe or prolonged. In this study, we investigated whether ceramide induces cell death in human salivary adenoid cystic carcinoma (ACCs) through activation of the apoptotic ER stress. RESULTS RT-PCR, real-time PCR and western blot demonstrated that exogenous ceramide treatment up-regulated GRP78 and p-eIF2α expression and XBP1 splicing. Moreover, the ceramide synthase inhibitor FB1 abolished ceramide-induced ER stress. Up-regulation of the ER stress-associated apoptosis promoting transcription factor CHOP and p-JNK suggested that the antitumor activity of ceramide is owing to activation of apoptotic ER stress. Mechanistically, [Ca(2+)]ER depletion and SERCA inhibition by ceramide treatment suggested that it induces ER stress by disrupting [Ca(2+)]ER homeostasis. The chemical chaperone TUDCA inhibited ceramide-induced ER stress and cell death. In addition, the downstream metabolite of ceramide, S1P, cannot activate ER stress. CONCLUSIONS These results demonstrated that exogenous ceramide induces cancer cell death through a mechanism involving severe ER stress triggered by the disruption of ER Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Yichao Xia
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Bo Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Hui Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Chenxing Wang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Ying Liu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Yi Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Ning Gao
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Longjiang Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| |
Collapse
|
27
|
Sommerweiss D, Gorski T, Richter S, Garten A, Kiess W. Oleate rescues INS-1E β-cells from palmitate-induced apoptosis by preventing activation of the unfolded protein response. Biochem Biophys Res Commun 2013; 441:770-6. [PMID: 24189472 DOI: 10.1016/j.bbrc.2013.10.130] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Saturated free fatty acids (FFAs), such as palmitate, cause β-cell apoptosis whereas unsaturated FFAs, e.g. oleate, are not harmful. The toxicity of palmitate could be mediated through endoplasmic reticulum (ER) stress which triggers the activation of a signal responding cascade also called unfolded protein response (UPR). We investigated whether or not palmitate induced β-cell apoptosis through UPR activation and whether or not oleate as a monounsaturated fatty acid could counteract these effects. METHODS INS-1E β-cells were incubated with palmitate [0.5mM], oleate [1mM] or the combination [0.5/1mM] for 1, 6 and 24h. Viability and induction of apoptosis were measured by WST-1 assay and FITC-Annexin/PI-staining, respectively. Western blot analyses were performed for UPR specific proteins and mRNA expression of target molecules was determined by qPCR. RESULTS Palmitate significantly decreased viability (29±8.8%) of INS-1E β-cells compared to controls after 24h. Stimulation with oleate showed no effect on viability but the combination of oleate and palmitate improved viability compared to palmitate treated cells (55±9.3%) or controls (26±5.3%). The number of apoptotic cells was increased 2-fold after 24h incubation with palmitate compared to controls. Again, oleate showed no effect but in combination ameliorated the effect of palmitate to control level. Phosphorylation of eIF2α was increased after 6 and 24h incubation with palmitate. In contrast, oleate had no effect and in combination prevented phosphorylation of eIF2α. Increased Xbp1 splicing was visible already 6h after palmitate treatment and remained elevated at 24h. The combination with oleate abolished Xbp1 splicing. Interestingly, mRNA expression of the chaperones Bip, Pdi, Calnexin and Grp94 was not altered by FFA treatment. Only the proapoptotic transcription factor Chop was significantly enhanced by palmitate incubation. In accordance with sustained cell survival the combination as well as oleate alone, did not result in increased Chop levels compared to controls. In summary, we showed that oleate protects INS-1E β-cells from palmitate-induced apoptosis by the suppression of ER stress which was independent of chaperone activation.
Collapse
Affiliation(s)
- Dietlind Sommerweiss
- Center for Pediatric Research Leipzig (CPL), Hospital for Children and Adolescents, University of Leipzig, Germany
| | | | | | | | | |
Collapse
|
28
|
Tomar D, Prajapati P, Sripada L, Singh K, Singh R, Singh AK, Singh R. TRIM13 regulates caspase-8 ubiquitination, translocation to autophagosomes and activation during ER stress induced cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3134-3144. [PMID: 24021263 DOI: 10.1016/j.bbamcr.2013.08.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 01/06/2023]
Abstract
The emerging evidences suggest that endoplasmic (ER) stress is involved in onset of many pathological conditions like cancer and neurodegeneration. The persistent ER stress results in misfolded protein aggregates, which are degraded through the process of autophagy or lead to cell death through activation of caspases. The regulation of crosstalk of autophagy and cell death during ER stress is emerging. Ubiquitination plays regulatory role in crosstalk of autophagy and cell death. In the current study, we describe the role of TRIM13, RING E3 ubiquitin ligase, in regulation of ER stress induced cell death. The expression of TRIM13 sensitizes cells to ER stress induced death. TRIM13 induced autophagy is essential for ER stress induced caspase activation and cell death. TRIM13 induces K63 linked poly-ubiquitination of caspase-8, which results in its stabilization and activation during ER stress. TRIM13 regulates translocation of caspase-8 to autophagosome and its fusion with lysosome during ER stress. This study first time demonstrated the role of TRIM13 as novel regulator of caspase-8 activation and cell death during ER stress.
Collapse
Affiliation(s)
- Dhanendra Tomar
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Paresh Prajapati
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Lakshmi Sripada
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Kritarth Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Rochika Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Arun Kumar Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Rajesh Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
29
|
Wong VKW, Li T, Law BYK, Ma EDL, Yip NC, Michelangeli F, Law CKM, Zhang MM, Lam KYC, Chan PL, Liu L. Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death Dis 2013; 4:e720. [PMID: 23846222 PMCID: PMC3730398 DOI: 10.1038/cddis.2013.217] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/08/2022]
Abstract
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase pump, leading to autophagy induction through the activation of the Ca(2+)/calmodulin-dependent kinase kinase-AMP-activated protein kinase-mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.
Collapse
Affiliation(s)
- V KW Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - T Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - B YK Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - E DL Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - N C Yip
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - F Michelangeli
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - C KM Law
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - M M Zhang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - K YC Lam
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - P L Chan
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - L Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
30
|
Das I, Png CW, Oancea I, Hasnain SZ, Lourie R, Proctor M, Eri RD, Sheng Y, Crane DI, Florin TH, McGuckin MA. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. ACTA ACUST UNITED AC 2013; 210:1201-16. [PMID: 23650437 PMCID: PMC3674691 DOI: 10.1084/jem.20121268] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dexamethasone suppresses ER stress in inflammatory bowel disease by promoting correct protein folding and ER-associated degradation. Endoplasmic reticulum (ER) stress in intestinal secretory cells has been linked with colitis in mice and inflammatory bowel disease (IBD). Endogenous intestinal glucocorticoids are important for homeostasis and glucocorticoid drugs are efficacious in IBD. In Winnie mice with intestinal ER stress caused by misfolding of the Muc2 mucin, the glucocorticoid dexamethasone (DEX) suppressed ER stress and activation of the unfolded protein response (UPR), substantially restoring goblet cell Muc2 production. In mice lacking inflammation, a glucocorticoid receptor antagonist increased ER stress, and DEX suppressed ER stress induced by the N-glycosylation inhibitor, tunicamycin (Tm). In cultured human intestinal secretory cells, in a glucocorticoid receptor-dependent manner, DEX suppressed ER stress and UPR activation induced by blocking N-glycosylation, reducing ER Ca2+ or depleting glucose. DEX up-regulated genes encoding chaperones and elements of ER-associated degradation (ERAD), including EDEM1. Silencing EDEM1 partially inhibited DEX’s suppression of misfolding-induced ER stress, showing that DEX enhances ERAD. DEX inhibited Tm-induced MUC2 precursor accumulation, promoted production of mature mucin, and restored ER exit and secretion of Winnie mutant recombinant Muc2 domains, consistent with enhanced protein folding. In IBD, glucocorticoids are likely to ameliorate ER stress by promoting correct folding of secreted proteins and enhancing removal of misfolded proteins from the ER.
Collapse
Affiliation(s)
- Indrajit Das
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland 4101, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Birk J, Meyer M, Aller I, Hansen HG, Odermatt A, Dick TP, Meyer AJ, Appenzeller-Herzog C. Endoplasmic reticulum: reduced and oxidized glutathione revisited. J Cell Sci 2013; 126:1604-17. [PMID: 23424194 DOI: 10.1242/jcs.117218] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The reducing power of glutathione, expressed by its reduction potential EGSH, is an accepted measure for redox conditions in a given cell compartment. In the endoplasmic reticulum (ER), EGSH is less reducing than elsewhere in the cell. However, attempts to determine EGSH(ER) have been inconsistent and based on ineligible assumptions. Using a codon-optimized and evidently glutathione-specific glutaredoxin-coupled redox-sensitive green fluorescent protein (roGFP) variant, we determined EGSH(ER) in HeLa cells as -208±4 mV (at pH 7.0). At variance with existing models, this is not oxidizing enough to maintain the known redox state of protein disulfide isomerase family enzymes. Live-cell microscopy confirmed ER hypo-oxidation upon inhibition of ER Ca(2+) import. Conversely, stressing the ER with a glycosylation inhibitor did not lead to more reducing conditions, as reported for yeast. These results, which for the first time establish the oxidative capacity of glutathione in the ER, illustrate a context-dependent interplay between ER stress and EGSH(ER). The reported development of ER-localized EGSH sensors will enable more targeted in vivo redox analyses in ER-related disorders.
Collapse
Affiliation(s)
- Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Moreno AA, Mukhtar MS, Blanco F, Boatwright JL, Moreno I, Jordan MR, Chen Y, Brandizzi F, Dong X, Orellana A, Pajerowska-Mukhtar KM. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS One 2012; 7:e31944. [PMID: 22359644 PMCID: PMC3281089 DOI: 10.1371/journal.pone.0031944] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/16/2012] [Indexed: 11/18/2022] Open
Abstract
Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in plant immunity.
Collapse
Affiliation(s)
- Adrian A. Moreno
- FONDAP Center for Genome Regulation, Núcleo Milenio en Biotecnología Celular Vegetal, Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Francisca Blanco
- FONDAP Center for Genome Regulation, Núcleo Milenio en Biotecnología Celular Vegetal, Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Jon Lucas Boatwright
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ignacio Moreno
- FONDAP Center for Genome Regulation, Núcleo Milenio en Biotecnología Celular Vegetal, Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Melissa R. Jordan
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yani Chen
- Michigan State University–DOE Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Federica Brandizzi
- Michigan State University–DOE Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Xinnian Dong
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ariel Orellana
- FONDAP Center for Genome Regulation, Núcleo Milenio en Biotecnología Celular Vegetal, Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | | |
Collapse
|
33
|
Feng X, Krishnan K, Richie DL, Aimanianda V, Hartl L, Grahl N, Powers-Fletcher MV, Zhang M, Fuller KK, Nierman WC, Lu LJ, Latgé JP, Woollett L, Newman SL, Cramer RA, Rhodes JC, Askew DS. HacA-independent functions of the ER stress sensor IreA synergize with the canonical UPR to influence virulence traits in Aspergillus fumigatus. PLoS Pathog 2011; 7:e1002330. [PMID: 22028661 PMCID: PMC3197630 DOI: 10.1371/journal.ppat.1002330] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a condition in which the protein folding capacity of the ER becomes overwhelmed by an increased demand for secretion or by exposure to compounds that disrupt ER homeostasis. In yeast and other fungi, the accumulation of unfolded proteins is detected by the ER-transmembrane sensor IreA/Ire1, which responds by cleaving an intron from the downstream cytoplasmic mRNA HacA/Hac1, allowing for the translation of a transcription factor that coordinates a series of adaptive responses that are collectively known as the unfolded protein response (UPR). Here, we examined the contribution of IreA to growth and virulence in the human fungal pathogen Aspergillus fumigatus. Gene expression profiling revealed that A. fumigatus IreA signals predominantly through the canonical IreA-HacA pathway under conditions of severe ER stress. However, in the absence of ER stress IreA controls dual signaling circuits that are both HacA-dependent and HacA-independent. We found that a ΔireA mutant was avirulent in a mouse model of invasive aspergillosis, which contrasts the partial virulence of a ΔhacA mutant, suggesting that IreA contributes to pathogenesis independently of HacA. In support of this conclusion, we found that the ΔireA mutant had more severe defects in the expression of multiple virulence-related traits relative to ΔhacA, including reduced thermotolerance, decreased nutritional versatility, impaired growth under hypoxia, altered cell wall and membrane composition, and increased susceptibility to azole antifungals. In addition, full or partial virulence could be restored to the ΔireA mutant by complementation with either the induced form of the hacA mRNA, hacAi, or an ireA deletion mutant that was incapable of processing the hacA mRNA, ireAΔ10. Together, these findings demonstrate that IreA has both HacA-dependent and HacA-independent functions that contribute to the expression of traits that are essential for virulence in A. fumigatus. Aspergillus fumigatus is the predominant mold pathogen of humans, responsible for life-threatening infections in patients with depressed immunity. The fungus is highly adapted for secretion, a feature that it uses to extract nutrients from the host environment. High rates of protein secretion can overwhelm the protein folding capacity of the endoplasmic reticulum (ER). The resulting ER stress is alleviated by the unfolded protein response (UPR), a signaling pathway that is triggered by the ER-membrane sensor IreA and executed by the downstream transcription factor HacA. This paper uncovers a novel role for IreA in the expression of multiple adaptive traits that allow the fungus to cope with stress conditions that are encountered during infection. Gene expression profiling of ΔireA and ΔhacA mutants revealed that IreA signals predominantly through the canonical IreA-HacA UPR pathway under extreme conditions of ER stress, but has unexpected HacA-dependent and HacA-independent functions even in the absence of ER stress. These findings establish IreA as an important regulator of A. fumigatus pathogenicity and suggest that therapeutic targeting of the dual functions of this protein could be an effective antifungal strategy.
Collapse
Affiliation(s)
- Xizhi Feng
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Karthik Krishnan
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Daryl L. Richie
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | - Lukas Hartl
- Unité des Aspergillus, Institut Pasteur, Paris, France
| | - Nora Grahl
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Margaret V. Powers-Fletcher
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Minlu Zhang
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Kevin K. Fuller
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - William C. Nierman
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Long Jason Lu
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | - Laura Woollett
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Simon L. Newman
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Robert A. Cramer
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Judith C. Rhodes
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David S. Askew
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
34
|
DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, Regla-Nava JA, Alvarez E, Oliveros JC, Zhao J, Fett C, Perlman S, Enjuanes L. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog 2011; 7:e1002315. [PMID: 22028656 PMCID: PMC3197621 DOI: 10.1371/journal.ppat.1002315] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/29/2011] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome virus (SARS-CoV) that lacks the envelope (E) gene (rSARS-CoV-ΔE) is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1) of the unfolded protein response, but not the PKR-like ER kinase (PERK) or activating transcription factor 6 (ATF-6) pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE. To identify potential mechanisms mediating the in vivo attenuation of SARS-CoV lacking the E gene (rSARS-CoV-ΔE), the effect of the presence of the E gene on host gene expression was studied. In rSARS-CoV-ΔE-infected cells, the expression of at least 25 stress response genes was preferentially upregulated, compared to cells infected with rSARS-CoV. E protein supplied in trans reversed the increase in stress response genes observed in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, and by treatment with drugs causing stress by different mechanisms. Furthermore, in the presence of the E protein a subset (IRE-1 pathway), but not two others (PERK and ATF-6), of the unfolded protein response was also reduced. Nevertheless, the activation of the unfolded protein response to control cell homeostasis was not sufficient to alleviate cell stress, and an increase in cell apoptosis in cells infected with the virus lacking E protein was observed. This apoptotic response was probably induced to protect the host by limiting virus production and dissemination. In cells infected with rSARS-CoV-ΔE, genes associated with the proinflammatory pathway were down-regulated compared to cells infected with virus expressing E protein, supporting the idea that a reduction in inflammation was also relevant in the attenuation of the virus deletion mutant.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rotavirus infection induces the unfolded protein response of the cell and controls it through the nonstructural protein NSP3. J Virol 2011; 85:12594-604. [PMID: 21937647 DOI: 10.1128/jvi.05620-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR) is a cellular mechanism that is triggered in order to cope with the stress caused by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). This response is initiated by the endoribonuclease inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), and PKR-like ER kinase, which increase the expression of the genes involved in the folding and degradation processes and decrease the protein input into the ER by inhibiting translation. It has been shown that viruses both induce and manipulate the UPR in order to protect the host cells from an ER stress-mediated death, thus permitting the translation of viral proteins and the efficient replication of the virus. To understand the cellular events that occur during the rotavirus replication cycle, we examined the activation of the three UPR arms following infection, using luciferase reporters driven by promoters of the ER stress-responsive genes and real-time reverse transcription-PCR to determine the levels of the stress-induced mRNAs. Our findings indicated that during rotavirus infection two of the three arms of the UPR (IRE1 and ATF6) become activated; however, these pathways are interrupted at the translational level by the general inhibition of protein synthesis caused by NSP3. This response seems to be triggered by more than one viral protein synthesized during the replication of the virus, but not by the viral double-stranded RNA (dsRNA), since cells transfected with psoralen-inactivated virions, or with naked viral dsRNA, did not induce UPR.
Collapse
|
36
|
Gao N, Shang J, Huynh D, Manthati VL, Arias C, Harding HP, Kaufman RJ, Mohr I, Ron D, Falck JR, Lehrman MA. Mannose-6-phosphate regulates destruction of lipid-linked oligosaccharides. Mol Biol Cell 2011; 22:2994-3009. [PMID: 21737679 PMCID: PMC3164449 DOI: 10.1091/mbc.e11-04-0286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/08/2011] [Accepted: 06/28/2011] [Indexed: 12/22/2022] Open
Abstract
Mannose-6-phosphate (M6P) is an essential precursor for mannosyl glycoconjugates, including lipid-linked oligosaccharides (LLO; glucose(3)mannose(9)GlcNAc(2)-P-P-dolichol) used for protein N-glycosylation. In permeabilized mammalian cells, M6P also causes specific LLO cleavage. However, the context and purpose of this paradoxical reaction are unknown. In this study, we used intact mouse embryonic fibroblasts to show that endoplasmic reticulum (ER) stress elevates M6P concentrations, leading to cleavage of the LLO pyrophosphate linkage with recovery of its lipid and lumenal glycan components. We demonstrate that this M6P originates from glycogen, with glycogenolysis activated by the kinase domain of the stress sensor IRE1-α. The apparent futility of M6P causing destruction of its LLO product was resolved by experiments with another stress sensor, PKR-like ER kinase (PERK), which attenuates translation. PERK's reduction of N-glycoprotein synthesis (which consumes LLOs) stabilized steady-state LLO levels despite continuous LLO destruction. However, infection with herpes simplex virus 1, an N-glycoprotein-bearing pathogen that impairs PERK signaling, not only caused LLO destruction but depleted LLO levels as well. In conclusion, the common metabolite M6P is also part of a novel mammalian stress-signaling pathway, responding to viral stress by depleting host LLOs required for N-glycosylation of virus-associated polypeptides. Apparently conserved throughout evolution, LLO destruction may be a response to a variety of environmental stresses.
Collapse
Affiliation(s)
- Ningguo Gao
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Jie Shang
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Dang Huynh
- Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Vijaya L. Manthati
- Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Carolina Arias
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Heather P. Harding
- University of Cambridge Metabolic Research Laboratories, Cambridge CB2 0QQ, United Kingdom
| | - Randal J. Kaufman
- Departments of Internal Medicine and Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - David Ron
- University of Cambridge Metabolic Research Laboratories, Cambridge CB2 0QQ, United Kingdom
| | - John R. Falck
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
- Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Mark A. Lehrman
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| |
Collapse
|
37
|
Heldens L, Hensen SMM, Onnekink C, van Genesen ST, Dirks RP, Lubsen NH. An atypical unfolded protein response in heat shocked cells. PLoS One 2011; 6:e23512. [PMID: 21853144 PMCID: PMC3154502 DOI: 10.1371/journal.pone.0023512] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 07/19/2011] [Indexed: 11/18/2022] Open
Abstract
Background The heat shock response (HSR) and the unfolded protein response (UPR) are both activated by proteotoxic stress, although in different compartments, and share cellular resources. How these resources are allocated when both responses are active is not known. Insight in possible crosstalk will help understanding the consequences of failure of these systems in (age-related) disease. Results In heat stressed HEK293 cells synthesis of the canonical UPR transcription factors XBP1s and ATF4 was detected as well as HSF1 independent activation of the promoters of the ER resident chaperones HSPA5 (BiP) and DNAJB9 (ERdj4). However, the heat stress activation of the DNAJB9 promoter, a XBP1s target, was not blocked in cells expressing a dominant negative IRE1α mutant, and thus did not require XBP1s. Furthermore, the DNA element required for heat stress activation of the DNAJB9 promoter is distinct from the ATF4 and ATF6 target elements; even though inhibition of eIF2α phosphorylation resulted in a decreased activation of the DNAJB9 promoter upon heat stress, suggesting a role for an eIF2α phosphorylation dependent product. Conclusions The initial step in the UPR, synthesis of transcription factors, is activated by heat stress but the second step, transcriptional transactivation by these factors, is blocked and these pathways of the UPR are thus not productive. Expression of canonical ER chaperones is part of the response of heat stressed cells but another set of transcription factors has been recruited to regulate expression of these ER chaperones.
Collapse
Affiliation(s)
- Lonneke Heldens
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sanne M. M. Hensen
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Carla Onnekink
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Siebe T. van Genesen
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ron P. Dirks
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nicolette H. Lubsen
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J Virol 2011; 85:6319-33. [PMID: 21507968 DOI: 10.1128/jvi.02627-10] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a conserved eukaryotic mechanism that mediates the removal of long-lived cytoplasmic macromolecules and damaged organelles via a lysosomal degradative pathway. Recently, a multitude of studies have reported that viral infections may have complex interconnections with the autophagic process. The findings reported here demonstrate that hepatitis B virus (HBV) can enhance the autophagic process in hepatoma cells without promoting protein degradation by the lysosome. Mutation analysis showed that HBV small surface protein (SHBs) was required for HBV to induce autophagy. The overexpression of SHBs was sufficient to induce autophagy. Furthermore, SHBs could trigger unfolded protein responses (UPR), and the blockage of UPR signaling pathways abrogated the SHB-induced lipidation of LC3-I. Meanwhile, the role of the autophagosome in HBV replication was examined. The inhibition of autophagosome formation by the autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA duplexes targeting the genes critical for autophagosome formation (Beclin1 and ATG5 genes) markedly inhibited HBV production, and the induction of autophagy by rapamycin or starvation greatly contributed to HBV production. Furthermore, evidence was provided to suggest that the autophagy machinery was required for HBV envelopment but not for the efficiency of HBV release. Finally, SHBs partially colocalized and interacted with autophagy protein LC3. Taken together, these results suggest that the host's autophagy machinery is activated during HBV infection to enhance HBV replication.
Collapse
|
39
|
Abstract
When the homeostasis of endoplasmic reticulum (ER) is disturbed by the accumulation of unfolded or misfolded proteins, a series of signaling responses collectively called the unfolded protein response (UPR) is triggered. UPR transducers IRE1, PERK, ATF6, and UPR-responsive genes such as GRP78/BiP, ERAD genes such as EDEM, and synthesis of the protein N-linked glycosylation donor lipid-linked oligosaccharides (LLOs) are mobilized. This chapter provides methods used in our laboratory to quantitatively measure the accumulation of mRNAs encoding BiP and EDEM, splicing of XBP1, cleavage of ATF6, inhibition of protein synthesis by PERK, and extension of LLOs under control and stress conditions.
Collapse
Affiliation(s)
- Jie Shang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
40
|
Abstract
Arenaviruses are enveloped RNA viruses with a nonlytic life cycle that cause acute and persistent infections. Here, we investigated the role of the host cell's unfolded protein response (UPR) in infection of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). In mammalian cells, the endoplasmic reticulum (ER) chaperone protein GRP78/BiP functions as the principal sensor for the induction of the UPR and interacts with three mediators: kinase/endonuclease inositol-requiring protein 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Acute infection with LCMV resulted in a selective induction of the ATF6-regulated branch of the UPR, whereas pathways controlled by PERK and IRE1 were neither activated nor blocked. Expression of individual LCMV proteins revealed that the viral glycoprotein precursor (GPC), but not that of other viral proteins, was responsible for the induction of ATF6. Rapid downregulation of the viral GPC during transition from acute to persistent LCMV infection restored basal levels of UPR signaling. To address a possible role of ATF6 signaling in LCMV infection, we used cells deficient in site 2 protease (S2P), a metalloprotease required for the activation of ATF6. Cells deficient in S2P showed significantly lower levels of production of infectious virus during acute but not persistent infection, indicating a requirement for ATF6-mediated signaling for optimal virus multiplication. In summary, acute LCMV infection seems to selectively induce the ATF6-regulated branch of the UPR that is likely beneficial for virus replication and cell viability, but it avoids induction of PERK and IRE1, whose activation may be detrimental for virus and the host cell.
Collapse
|
41
|
Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H, Mundel P, Jehle AW. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol 2010; 299:F821-9. [PMID: 20668104 PMCID: PMC2957252 DOI: 10.1152/ajprenal.00196.2010] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/21/2010] [Indexed: 01/01/2023] Open
Abstract
Apoptosis of podocytes is considered critical in the pathogenesis of diabetic nephropathy (DN). Free fatty acids (FFAs) are critically involved in the pathogenesis of diabetes mellitus type 2, in particular the regulation of pancreatic β cell survival. The objectives of this study were to elucidate the role of palmitic acid, palmitoleic, and oleic acid in the regulation of podocyte cell death and endoplasmic reticulum (ER) stress. We show that palmitic acid increases podocyte cell death, both apoptosis and necrosis of podocytes, in a dose and time-dependent fashion. Palmitic acid induces podocyte ER stress, leading to an unfolded protein response as reflected by the induction of the ER chaperone immunoglobulin heavy chain binding protein (BiP) and proapoptotic C/EBP homologous protein (CHOP) transcription factor. Of note, the monounsaturated palmitoleic and oleic acid can attenuate the palmitic acid-induced upregulation of CHOP, thereby preventing cell death. Similarly, gene silencing of CHOP protects against palmitic acid-induced podocyte apoptosis. Our results offer a rationale for interventional studies aimed at testing whether dietary shifting of the FFA balance toward unsaturated FFAs can delay the progression of DN.
Collapse
Affiliation(s)
- Jonas Sieber
- Dept. of Biomedicine, Molecular Nephrology, Univ. Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
XBP1U inhibits the XBP1S-mediated upregulation of the iNOS gene expression in mammalian ER stress response. Cell Signal 2010; 22:1818-28. [PMID: 20637858 DOI: 10.1016/j.cellsig.2010.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 07/08/2010] [Indexed: 11/21/2022]
Abstract
Upregulation of the inducible nitric oxide synthase (iNOS) gene is associated with many pathological conditions such as endoplasmic reticulum (ER) stress, and X-box binding protein 1 (XBP1) is critical in mediating ER-stress responsive genes, including iNOS. Nonetheless, the mechanism by which XBP1 regulates iNOS during ER stress remains unexplored. Here we show that the active/spliced form of XBP1 protein, XBP1S, directly binds to the AABS (A-activator-binding site) in the iNOS promoter in vitro and in living cells. XBP1S exhibits dose-dependent activation of iNOS-specific reporter gene activity and endogenous iNOS expression. XBP1S is elevated whereas the unspliced form of XBP1, XBP1U, reduced in ER stress in HepG2 cells. In addition, XBP1U binds to XBP1S and this complex is associated with the iNOS promoter in response to ER stress. Furthermore, XBP1U acts as a negative mediator and suppresses XBP1S-mediated induction of iNOS. Collectively, we present the first evidence demonstrating the regulation of iNOS gene induction by the interaction between the spliced and unspliced forms of XBP1 in response to ER stress.
Collapse
|
43
|
Hajduch M, Hearne LB, Miernyk JA, Casteel JE, Joshi T, Agrawal GK, Song Z, Zhou M, Xu D, Thelen JJ. Systems analysis of seed filling in Arabidopsis: using general linear modeling to assess concordance of transcript and protein expression. PLANT PHYSIOLOGY 2010; 152:2078-87. [PMID: 20118269 PMCID: PMC2850034 DOI: 10.1104/pp.109.152413] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/26/2010] [Indexed: 05/18/2023]
Abstract
Previous systems analyses in plants have focused on a single developmental stage or time point, although it is often important to additionally consider time-index changes. During seed development a cascade of events occurs within a relatively brief time scale. We have collected protein and transcript expression data from five sequential stages of Arabidopsis (Arabidopsis thaliana) seed development encompassing the period of reserve polymer accumulation. Protein expression profiling employed two-dimensional gel electrophoresis coupled with tandem mass spectrometry, while transcript profiling used oligonucleotide microarrays. Analyses in biological triplicate yielded robust expression information for 523 proteins and 22,746 genes across the five developmental stages, and established 319 protein/transcript pairs for subsequent pattern analysis. General linear modeling was used to evaluate the protein/transcript expression patterns. Overall, application of this statistical assessment technique showed concurrence for a slight majority (56%) of expression pairs. Many specific examples of discordant protein/transcript expression patterns were detected, suggesting that this approach will be useful in revealing examples of posttranscriptional regulation.
Collapse
|
44
|
Law BYK, Wang M, Ma DL, Al-Mousa F, Michelangeli F, Cheng SH, Ng MHL, To KF, Mok AYF, Ko RYY, Lam SK, Chen F, Che CM, Chiu P, Ko BCB. Alisol B, a novel inhibitor of the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase pump, induces autophagy, endoplasmic reticulum stress, and apoptosis. Mol Cancer Ther 2010; 9:718-30. [PMID: 20197400 DOI: 10.1158/1535-7163.mct-09-0700] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging evidence suggests that autophagic modulators have therapeutic potential. This study aims to identify novel autophagic inducers from traditional Chinese medicinal herbs as potential antitumor agents. Using an image-based screen and bioactivity-guided purification, we identified alisol B 23-acetate, alisol A 24-acetate, and alisol B from the rhizome of Alisma orientale as novel inducers of autophagy, with alisol B being the most potent natural product. Across several cancer cell lines, we showed that alisol B-treated cells displayed an increase of autophagic flux and formation of autophagosomes, leading to cell cycle arrest at the G(1) phase and cell death. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B-treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, we showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase. This study provides detailed insights into the cytotoxic mechanism of a novel antitumor compound.
Collapse
Affiliation(s)
- Betty Y K Law
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lithanatudom P, Leecharoenkiat A, Wannatung T, Svasti S, Fucharoen S, Smith DR. A mechanism of ineffective erythropoiesis in β-thalassemia/Hb E disease. Haematologica 2009; 95:716-23. [PMID: 20015891 DOI: 10.3324/haematol.2009.015701] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cells respond to stress stimuli through a number of response pathways, of which one of the most important and well characterized is the unfolded protein response. Despite a large body of work which suggests that stress in erythroblasts may play a pivotal role in the pathogenesis of beta-thalassemia/Hb E disease, this pathway remains uninvestigated. DESIGN AND METHODS Day 10 erythroblasts from normal controls and beta-thalassemia/Hb E patients were subjected to internal (treatment with tunicamycin) and external (serum and growth factor withdrawal) stress stimuli and the activation of the unfolded protein response pathway was investigated. RESULTS Normal erythroblasts responded to both internal and external stress by activating the unfolded protein response (UPR) pathway while in contrast, erythroblasts from beta-thalassemia/Hb E patients only showed activation of the unfolded protein response pathway in response to internal stress. This was reflected by a markedly increased induction of apoptosis in serum and growth factor deprived beta-thalassemia/Hb E erythroblasts as compared to control cells. Modulation of the levels of intracellular Ca(2+) in thalassemic erythroblasts restored UPR activation during serum deprivation and significantly reduced the level of serum deprivation induced apoptosis to control levels. CONCLUSIONS These results suggest the failure of thalassemic erythroblasts to cope with cellular stress caused by an impaired UPR function as a result of high Ca(2+) levels may exacerbate thalassemic cell death during erythropoiesis.
Collapse
Affiliation(s)
- Pathrapol Lithanatudom
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonthon Sai 4, Salaya, Nakon Pathom, Thailand 73170
| | | | | | | | | | | |
Collapse
|
46
|
Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 2009; 186:323-31. [PMID: 19651891 PMCID: PMC2728407 DOI: 10.1083/jcb.200903014] [Citation(s) in RCA: 775] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 07/06/2009] [Indexed: 12/30/2022] Open
Abstract
Maintenance of endoplasmic reticulum (ER) function is achieved in part through Ire1 (inositol-requiring enzyme 1), a transmembrane protein activated by protein misfolding in the ER. The cytoplasmic nuclease domain of Ire1 cleaves the messenger RNA (mRNA) encoding XBP-1 (X-box-binding protein 1), enabling splicing and production of this active transcription factor. We recently showed that Ire1 activation independently induces the rapid turnover of mRNAs encoding membrane and secreted proteins in Drosophila melanogaster cells through a pathway we call regulated Ire1-dependent decay (RIDD). In this study, we show that mouse fibroblasts expressing wild-type Ire1 but not an Ire1 variant lacking nuclease activity also degrade mRNAs in response to ER stress. Using a second variant of Ire1 that is activated by a small adenosine triphosphate analogue, we show that although XBP-1 splicing can be artificially induced in the absence of ER stress, RIDD appears to require both Ire1 activity and ER stress. Our data suggest that cells use a multitiered mechanism by which different conditions in the ER lead to distinct outputs from Ire1.
Collapse
Affiliation(s)
- Julie Hollien
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Sado M, Yamasaki Y, Iwanaga T, Onaka Y, Ibuki T, Nishihara S, Mizuguchi H, Momota H, Kishibuchi R, Hashimoto T, Wada D, Kitagawa H, Watanabe TK. Protective effect against Parkinson's disease-related insults through the activation of XBP1. Brain Res 2008; 1257:16-24. [PMID: 19135031 DOI: 10.1016/j.brainres.2008.11.104] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 11/26/2008] [Accepted: 11/28/2008] [Indexed: 12/21/2022]
Abstract
The accumulation of misfolded and unfolded proteins in endoplasmic reticulum (ER) induces ER stress, activating the unfolded protein response (UPR). Recent evidence has suggested the relationship between UPR and dopaminergic neuronal cell death in Parkinson's disease (PD); however, it remains unclear whether it makes sense to modulate UPR, to mitigate the progression of PD. In this study, we investigated a role of the IRE1 alpha-XBP1 pathway in the survival of dopaminergic cells, under stress induced by PD-related insults. The exogenous expression of the active-form XBP1 (XBP1s) protein had protective effects against cell death induced by 1-methyl-4-phenylpyridinium (MPP+) and proteasome inhibitors. Moreover, adenoviral XBP1s expression significantly suppressed the degeneration of dopaminergic neurons in the mouse model of PD, as induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These results demonstrate that the enhancement of XBP1 could be a novel PD therapeutic strategy.
Collapse
Affiliation(s)
- Megumi Sado
- Second Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ 2008; 15:1460-71. [PMID: 18551133 PMCID: PMC2758056 DOI: 10.1038/cdd.2008.81] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammalian cells, endoplasmic reticulum (ER) stress has recently been shown to induce autophagy and the induction requires the unfolded protein response (UPR) signaling pathways. However, little is known whether autophagy regulates UPR pathways and how specific UPR targets might control autophagy. Here, we demonstrated that although ER stress-induced autophagy was suppressed by class III phosphatidylinositol-3'-kinase (PI3KC3) inhibitor 3-methyladenine (3-MA), wortmannin and knockdown of Beclin1 using small interfering RNA (siRNA), only 3-MA suppressed UPR activation. We discovered that the UPR regulator and ER chaperone GRP78/BiP is required for stress-induced autophagy. In cells in which GRP78 expression was knocked down by siRNA, despite spontaneous activation of UPR pathways and LC3 conversion, autophagosome formation induced by ER stress as well as by nutrition starvation was inhibited. GRP78 knockdown did not disrupt PI3KC3-Beclin1 association. However, electron microscopic analysis of the intracellular organelle structure reveals that the ER, a putative membrane source for generating autophagosomal double membrane, was massively expanded and disorganized in cells in which GRP78 was knocked down. ER expansion is known to be dependent on the UPR transcription factor XBP-1. Simultaneous knockdown of GRP78 and XBP-1 recovered normal levels of stress-induced autophagosome formation. Thus, these studies uncover 3-MA as an inhibitor of UPR activation and establish GRP78 as a novel obligatory component of autophagy in mammalian cells.
Collapse
Affiliation(s)
- J Li
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Los Angeles, California 90089, USA
| | - M Ni
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Los Angeles, California 90089, USA
| | - B Lee
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Los Angeles, California 90089, USA
| | - E Barron
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA
| | - DR Hinton
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA
| | - AS Lee
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Los Angeles, California 90089, USA
| |
Collapse
|
49
|
Li Y, Bevilacqua E, Chiribau CB, Majumder M, Wang C, Croniger CM, Snider MD, Johnson PF, Hatzoglou M. Differential control of the CCAAT/enhancer-binding protein beta (C/EBPbeta) products liver-enriched transcriptional activating protein (LAP) and liver-enriched transcriptional inhibitory protein (LIP) and the regulation of gene expression during the response to endoplasmic reticulum stress. J Biol Chem 2008; 283:22443-56. [PMID: 18550528 PMCID: PMC2504880 DOI: 10.1074/jbc.m801046200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 05/13/2008] [Indexed: 11/06/2022] Open
Abstract
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers a stress response program that protects cells early in the response and can lead to apoptosis during prolonged stress. The basic leucine zipper transcription factor, CCAAT/enhancer-binding protein beta (C/EBPbeta), is one of the genes with increased expression during ER stress. Translation of the C/EBPbeta mRNA from different initiation codons leads to the synthesis of two transcriptional activators (LAP-1 and -2) and a transcriptional repressor (LIP). The LIP/LAP ratio is a critical factor in C/EBPbeta-mediated gene transcription. It is shown here that the LIP/LAP ratio decreased by 5-fold during the early phase of ER stress and increased by 20-fold during the late phase, mostly because of changes in LIP levels. The early decrease in LIP required degradation via the proteasome pathway and phosphorylation of the translation initiation factor, eIF2alpha. The increased LIP levels during the late phase were due to increased synthesis and increased stability of the protein. It is proposed that regulation of synthesis and degradation rates during ER stress controls the LIP/LAP ratio. The importance of C/EBPbeta in the ER-stress response program was demonstrated using C/EBPbeta-deficient mouse embryonic fibroblasts. It is shown that C/EBPbeta attenuates expression of pro-survival ATF4 target genes in late ER stress and enhances expression of cell death-associated genes downstream of CHOP. The inhibitory effect of LIP on ATF4-induced transcription was demonstrated for the cat-1 amino acid transporter gene. We conclude that regulation of LIP/LAP ratios during ER stress is a novel mechanism for modulating the cellular stress response.
Collapse
Affiliation(s)
- Yi Li
- Department of Nutrition, School of Medicine, Case Western University, Cleveland, Ohio 44106-4954, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Roberts GG, Di Loreto MJ, Marshall M, Wang J, DeGracia DJ. Hippocampal cellular stress responses after global brain ischemia and reperfusion. Antioxid Redox Signal 2007; 9:2265-75. [PMID: 17715997 DOI: 10.1089/ars.2007.1786] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brain ischemia and reperfusion (I/R) induce neuronal intracellular stress responses, including the heat-shock response (HSR) and the unfolded protein response (UPR), but the roles of each in neuronal survival or death are not well understood. We assessed the relative expression of UPR (ATF4, CHOP, GRP78, XBP-1) and HSR-related (HSP70 and HSC70) mRNAs and proteins after brain I/R. We evaluated these in hippocampal CA1 and CA3 after normothermic, transient global forebrain ischemia and up to 42 h of reperfusion. In CA1, chop and xbp-1 mRNA showed maximal 14- and 12-fold increases, and the only protein increase observed was for 30-kDa XBP-1. CA3 showed induction of only xbp-1. GRP78 protein declined in CA1, but increased twofold and then declined in CA3. Transcription of hsp70 was an order of magnitude greater than that of any UPR-induced transcript in either CA1 or CA3. HSP70 translation in CA1 lagged CA3 by approximately 24 h. We conclude that (a) in terms of functional end products, the ER stress response after brain ischemia and reperfusion more closely resembles the integrated stress response than the UPR; and (b) the HSR leads to quantitatively greater mRNA production in postischemic neurons, suggesting that cytoplasmic stress predominates over ER stress in reperfused neurons.
Collapse
Affiliation(s)
- George G Roberts
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|