1
|
Liao QQ, Dong QQ, Zhang H, Shu HP, Tu YC, Yao LJ. Contributions of SGK3 to transporter-related diseases. Front Cell Dev Biol 2022; 10:1007924. [PMID: 36531961 PMCID: PMC9753149 DOI: 10.3389/fcell.2022.1007924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/09/2022] [Indexed: 02/09/2024] Open
Abstract
Serum- and glucocorticoid-induced kinase 3 (SGK3), which is ubiquitously expressed in mammals, is regulated by estrogens and androgens. SGK3 is activated by insulin and growth factors through signaling pathways involving phosphatidylinositol-3-kinase (PI3K), 3-phosphoinositide-dependent kinase-1 (PDK-1), and mammalian target of rapamycin complex 2 (mTORC2). Activated SGK3 can activate ion channels (TRPV5/6, SOC, Kv1.3, Kv1.5, Kv7.1, BKCa, Kir2.1, Kir2.2, ENaC, Nav1.5, ClC-2, and ClC Ka), carriers and receptors (Npt2a, Npt2b, NHE3, GluR1, GluR6, SN1, EAAT1, EAAT2, EAAT4, EAAT5, SGLT1, SLC1A5, SLC6A19, SLC6A8, and NaDC1), and Na+/K+-ATPase, promoting the transportation of calcium, phosphorus, sodium, glucose, and neutral amino acids in the kidney and intestine, the absorption of potassium and neutral amino acids in the renal tubules, the transportation of glutamate and glutamine in the nervous system, and the transportation of creatine. SGK3-sensitive transporters contribute to a variety of physiological and pathophysiological processes, such as maintaining calcium and phosphorus homeostasis, hydro-salinity balance and acid-base balance, cell proliferation, muscle action potential, cardiac and neural electrophysiological disturbances, bone density, intestinal nutrition absorption, immune function, and multiple substance metabolism. These processes are related to kidney stones, hypophosphorous rickets, multiple syndromes, arrhythmia, hypertension, heart failure, epilepsy, Alzheimer's disease, amyotrophic lateral sclerosis, glaucoma, ataxia idiopathic deafness, and other diseases.
Collapse
Affiliation(s)
- Qian-Qian Liao
- Department of Nephrology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qing-Qing Dong
- Department of Nephrology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Zhang
- Department of Nephrology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Pan Shu
- Department of Nephrology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Chi Tu
- Department of Nephrology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Jun Yao
- Department of Nephrology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Bonilla DA, Moreno Y, Rawson ES, Forero DA, Stout JR, Kerksick CM, Roberts MD, Kreider RB. A Convergent Functional Genomics Analysis to Identify Biological Regulators Mediating Effects of Creatine Supplementation. Nutrients 2021; 13:2521. [PMID: 34444681 PMCID: PMC8397972 DOI: 10.3390/nu13082521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine (Cr) and phosphocreatine (PCr) are physiologically essential molecules for life, given they serve as rapid and localized support of energy- and mechanical-dependent processes. This evolutionary advantage is based on the action of creatine kinase (CK) isozymes that connect places of ATP synthesis with sites of ATP consumption (the CK/PCr system). Supplementation with creatine monohydrate (CrM) can enhance this system, resulting in well-known ergogenic effects and potential health or therapeutic benefits. In spite of our vast knowledge about these molecules, no integrative analysis of molecular mechanisms under a systems biology approach has been performed to date; thus, we aimed to perform for the first time a convergent functional genomics analysis to identify biological regulators mediating the effects of Cr supplementation in health and disease. A total of 35 differentially expressed genes were analyzed. We identified top-ranked pathways and biological processes mediating the effects of Cr supplementation. The impact of CrM on miRNAs merits more research. We also cautiously suggest two dose-response functional pathways (kinase- and ubiquitin-driven) for the regulation of the Cr uptake. Our functional enrichment analysis, the knowledge-based pathway reconstruction, and the identification of hub nodes provide meaningful information for future studies. This work contributes to a better understanding of the well-reported benefits of Cr in sports and its potential in health and disease conditions, although further clinical research is needed to validate the proposed mechanisms.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
3
|
Ostojic SM. Modulation of CT1 Function: From Klotho Protein to Ammonia and Beyond. Front Nutr 2021; 8:660021. [PMID: 34041260 PMCID: PMC8143434 DOI: 10.3389/fnut.2021.660021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sergej M Ostojic
- FSPE Applied Bioenergetics Lab, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
4
|
Bonilla DA, Kreider RB, Stout JR, Forero DA, Kerksick CM, Roberts MD, Rawson ES. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021; 13:nu13041238. [PMID: 33918657 PMCID: PMC8070484 DOI: 10.3390/nu13041238] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells through a specific symporter called Na+/Cl−-dependent Cr transporter (CRT). Once within cells, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4−]2− and Cr to produce phosphocreatine (PCr) and [Mg2+:ADP3−]−. We aimed to perform a comprehensive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Correspondence: ; Tel.: +57-320-335-2050
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| |
Collapse
|
5
|
Yang C, Li J, Sun F, Zhou H, Yang J, Yang C. The functional duality of SGK1 in the regulation of hyperglycemia. Endocr Connect 2020; 9:R187-R194. [PMID: 32621586 PMCID: PMC7424354 DOI: 10.1530/ec-20-0225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Hyperglycemia is the consequence of blood glucose dysregulation and a driving force of diabetic complications including retinopathy, nephropathy and cardiovascular diseases. The serum and glucocorticoid inducible kinase-1 (SGK1) has been suggested in the modulation of various pathophysiological activities. However, the role of SGK1 in blood glucose homeostasis remains less appreciated. In this review, we intend to summarize the function of SGK1 in glucose level regulation and to examine the evidence supporting the therapeutic potential of SGK1 inhibitors in hyperglycemia. Ample evidence points to the controversial roles of SGK1 in pancreatic insulin secretion and peripheral insulin sensitivity, which reflects the complex interplay between SGK1 activation and blood glucose fluctuation. Furthermore, SGK1 is engaged in glucose absorption and excretion in intestine and kidney and participates in the progression of hyperglycemia-induced secondary organ damage. As a net effect, blockage of SGK1 activation via either pharmacological inhibition or genetic manipulation seems to be helpful in glucose control at varying diabetic stages.
Collapse
Affiliation(s)
- Chunliang Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Correspondence should be addressed to C Yang or J Yang: or
| | - Chao Yang
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
- Correspondence should be addressed to C Yang or J Yang: or
| |
Collapse
|
6
|
Ellery SJ, Murthi P, Davies-Tuck ML, Della Gatta PA, May AK, Kowalski GM, Callahan DL, Bruce CR, Alers NO, Miller SL, Erwich JJHM, Wallace EM, Walker DW, Dickinson H, Snow RJ. Placental creatine metabolism in cases of placental insufficiency and reduced fetal growth. Mol Hum Reprod 2020; 25:495-505. [PMID: 31323678 DOI: 10.1093/molehr/gaz039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/16/2019] [Accepted: 06/27/2019] [Indexed: 11/14/2022] Open
Abstract
Creatine is a metabolite involved in cellular energy homeostasis. In this study, we examined placental creatine content, and expression of the enzymes required for creatine synthesis, transport and the creatine kinase reaction, in pregnancies complicated by low birthweight. We studied first trimester chorionic villus biopsies (CVBs) of small for gestational age (SGA) and appropriately grown infants (AGA), along with third trimester placental samples from fetal growth restricted (FGR) and healthy gestation-matched controls. Placental creatine and creatine precursor (guanidinoacetate-GAA) levels were measured. Maternal and cord serum from control and FGR pregnancies were also analyzed for creatine concentration. mRNA expression of the creatine transporter (SLC6A8); synthesizing enzymes arginine:glycine aminotransferase (GATM) and guanidinoacetate methyltransferase (GAMT); mitochondrial (mtCK) and cytosolic (BBCK) creatine kinases; and amino acid transporters (SLC7A1 & SLC7A2) was assessed in both CVBs and placental samples. Protein levels of AGAT (arginine:glycine aminotransferase), GAMT, mtCK and BBCK were also measured in placental samples. Key findings; total creatine content of the third trimester FGR placentae was 43% higher than controls. The increased creatine content of placental tissue was not reflected in maternal or fetal serum from FGR pregnancies. Tissue concentrations of GAA were lower in the third trimester FGR placentae compared to controls, with lower GATM and GAMT mRNA expression also observed. No differences in the mRNA expression of GATM, GAMT or SLC6A8 were observed between CVBs from SGA and AGA pregnancies. These results suggest placental creatine metabolism in FGR pregnancies is altered in late gestation. The relevance of these changes on placental bioenergetics should be the focus of future investigations.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Padma Murthi
- Department of Physiology, Monash University, Clayton, Victoria; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital and Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Miranda L Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise Sciences, Deakin, Geelong, Australia
| | - Anthony K May
- Institute for Physical Activity and Nutrition, School of Exercise Sciences, Deakin, Geelong, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise Sciences, Deakin, Geelong, Australia
| | - Damien L Callahan
- Centre for Cellular and Molecular Biology, School of Life and Environmental Science, Deakin University, Burwood, Melbourne, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise Sciences, Deakin, Geelong, Australia
| | - Nicole O Alers
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Jan Jaap H M Erwich
- Dept of Obstetrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Hayley Dickinson
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Rod J Snow
- Institute for Physical Activity and Nutrition, School of Exercise Sciences, Deakin, Geelong, Australia
| |
Collapse
|
7
|
Salazar MD, Zelt NB, Saldivar R, Kuntz CP, Chen S, Penn WD, Bonneau R, Koehler Leman J, Schlebach JP. Classification of the Molecular Defects Associated with Pathogenic Variants of the SLC6A8 Creatine Transporter. Biochemistry 2020; 59:1367-1377. [PMID: 32207963 DOI: 10.1021/acs.biochem.9b00956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
More than 80 loss-of-function (LOF) mutations in the SLC6A8 creatine transporter (hCRT1) are responsible for cerebral creatine deficiency syndrome (CCDS), which gives rise to a spectrum of neurological defects, including intellectual disability, epilepsy, and autism spectrum disorder. To gain insight into the nature of the molecular defects caused by these mutations, we quantitatively profiled the cellular processing, trafficking, expression, and function of eight pathogenic CCDS variants in relation to the wild type (WT) and one neutral isoform. All eight CCDS variants exhibit measurable proteostatic deficiencies that likely contribute to the observed LOF. However, the magnitudes of their specific effects on the expression and trafficking of hCRT1 vary considerably, and we find that the LOF associated with two of these variants primarily arises from the disruption of the substrate-binding pocket. In conjunction with an analysis of structural models of the transporter, we use these data to suggest mechanistic classifications for these variants. To evaluate potential avenues for therapeutic intervention, we assessed the sensitivity of these variants to temperature and measured their response to the proteostasis regulator 4-phenylbutyrate (4-PBA). Only one of the tested variants (G132V) is sensitive to temperature, though its response to 4-PBA is negligible. Nevertheless, 4-PBA significantly enhances the activity of WT hCRT1 in HEK293T cells, which suggests it may be worth evaluating as a therapeutic for female intellectual disability patients carrying a single CCDS mutation. Together, these findings reveal that pathogenic SLC6A8 mutations cause a spectrum of molecular defects that should be taken into consideration in future efforts to develop CCDS therapeutics.
Collapse
Affiliation(s)
- Martin D Salazar
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nathan B Zelt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Robert Saldivar
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles P Kuntz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sheng Chen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, United States.,Department of Biology, New York University, New York, New York 10003, United States.,Department of Computer Science, New York University, New York, New York 10012, United States.,Center for Data Science, New York University, New York, New York 10011, United States
| | - Julia Koehler Leman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, United States
| | - Jonathan P Schlebach
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Steffke EE, Kirca D, Mazei-Robison MS, Robison AJ. Serum- and glucocorticoid-inducible kinase 1 activity reduces dendritic spines in dorsal hippocampus. Neurosci Lett 2020; 725:134909. [PMID: 32169587 DOI: 10.1016/j.neulet.2020.134909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
The hippocampus has a well-known role in mediating learning and memory, and its function can be directly regulated by both stress and glucocorticoid receptor activation. Hippocampal contributions to learning are thought to be dependent on changes in the plasticity of synapses within specific subregions, and these functional changes are accompanied by morphological changes in the number and shape of dendritic spines, the physical correlates of these glutamatergic synapses. Serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates dendritic spine morphology in the prefrontal cortex, and modulation of SGK1 expression in mouse hippocampus regulates learning. However, the role of SGK1 in dendritic spine morphology within the CA1 and dentate gyrus regions of the hippocampus are unknown. Thus, herpes simplex viral vectors expressing GFP and various SGK1 constructs, including wild type SGK1, a catalytically inactive version of SGK1 (K127Q), and a phospho-defective version of SGK1 (S78A), were infused into the hippocampus of adult mice and confocal fluorescent microscopy was used to visualize dendritic spines. We show that increasing expression of SGK1 in the dentate gyrus increased the total number of spines, driven primarily by an increase in mushroom spines, while decreasing SGK1 activity (K127Q) in the CA1 region increased the total number of dendritic spines, driven by a significant increase in mushroom and stubby spines. The differential effects of SGK1 in these regions may be mediated by the interactions of SGK1 with multiple pathways required for spine formation and stability. As the formation of mature synapses is a crucial component of learning and memory, this indicates that SGK1 is a potential target in the pathway underlying stress-associated changes in cognition and memory.
Collapse
Affiliation(s)
- Emily E Steffke
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, United States
| | - Deniz Kirca
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, United States
| | | | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
9
|
Stafeev IS, Sklyanik IA, Yah'yaev KA, Shestakova EA, Yurasov AV, Karmadonov AV, Chibalin AV, Yu Menshikov M, Vorotnikov AV, Parfyonova YV, Shestakova MV. Low AS160 and high SGK basal phosphorylation associates with impaired incretin profile and type 2 diabetes in adipose tissue of obese patients. Diabetes Res Clin Pract 2019; 158:107928. [PMID: 31734225 DOI: 10.1016/j.diabres.2019.107928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To compare basal insulin and mTOR signaling in subcutaneous fat of obese T2DM vs. obese subjects with normal glucose tolerance (NGT), and correlate it with clinical parameters of carbohydrate metabolism and incretin secretion profiles. METHODS Recruited were 22 patients with long (>10 years) and morbid (BMI > 35 kg/m2) obesity, 12 of which had NGT and 10 had T2DM. Hyperinsulinemic-euglycemic clamp test and HOMA-IR were used to measure insulin resistance. Blood samples taken at 0, 30 and 120 min of food load test were used to assess incretin profile, insulin and glucose levels. Amount of total and visceral fat was determined by bioelectrical impedance analysis. Subcutaneous fat biopsies were obtained during bariatric surgery for all patients and analyzed by western blots. RESULTS As assessed by western blots of insulin receptor substrate (IRS), Akt, Raptor, Rictor, mTOR and S6K1, the basal insulin signaling and mTORC activities were comparable in NGT and T2DM groups, whereas phosphorylation of AS160 was significantly lower and that of serum and glucocorticoid-induced kinase (SGK) was significantly higher in T2DM group. Various correlations were found between the degree of insulin resistance and amount of visceral fat, changes in incretin profile, glucose metabolic parameters and phosphorylation level of AS160, incretin secretion profile and phosphorylated levels of AS160 or SGK1. CONCLUSION Altered phosphorylation of AS160 and SGK1 is associated with obese T2DM phenotype.
Collapse
Affiliation(s)
- Iurii S Stafeev
- National Medical Research Center for Cardiology, Moscow, Russia; Endocrinology Research Centre, Moscow, Russia.
| | | | | | | | | | | | - Alexander V Chibalin
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; National Research Tomsk State University, Tomsk, Russia
| | | | | | - Yelena V Parfyonova
- National Medical Research Center for Cardiology, Moscow, Russia; M.V. Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
10
|
Guanidinoacetic Acid and Creatine are Associated with Cardiometabolic Risk Factors in Healthy Men and Women: A Cross-Sectional Study. Nutrients 2018; 10:nu10010087. [PMID: 29342866 PMCID: PMC5793315 DOI: 10.3390/nu10010087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 11/27/2022] Open
Abstract
Guanidinoacetic acid (GAA) conversion to creatine is thought to be involved in cardiometabolic disturbances through its role in biological methylation and insulin secretion. We evaluated the association of serum GAA and creatine with cardiometabolic risk factors in a cohort of 151 apparently healthy adults (82 women and 69 men) aged 18–63 years. Serum levels of GAA and creatine were measured with liquid chromatography-tandem mass spectrometry. A multiple linear regression model adjusted for age and sex was employed to examine the relationship of serum GAA and creatine with cardiometabolic risk factors. Higher GAA levels were associated with an unfavorable cardiometabolic risk profile (higher insulin, higher total homocysteine, and higher body fat percentage), while having elevated serum creatine levels (≥31.1 µmol/L) was associated with being overweight (body mass index ≥ 25.0 kg/m). The results from our study suggest a possible role of the GAA–creatine axis in the pathogenesis of cardiovascular and metabolic diseases.
Collapse
|
11
|
Santacruz L, Jacobs DO. Structural correlates of the creatine transporter function regulation: the undiscovered country. Amino Acids 2016; 48:2049-55. [PMID: 26951207 DOI: 10.1007/s00726-016-2206-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
Creatine (Cr) and phosphocreatine constitute an energy shuttle that links ATP production in mitochondria to subcellular locations of ATP consumption. Cells in tissues that are reliant on this energy shuttle, such as myocytes and neurons, appear to have very limited ability to synthesize creatine. Therefore, these cells depend on Cr uptake across the cell membrane by a specialized creatine transporter (CrT solute carrier SLC6A8) in order to maintain intracellular creatine levels. Cr supplementation has been shown to have a beneficial effect in numerous in vitro and in vivo models, particularly in cases of oxidative stress, and is also widely used by athletes as a performance enhancement nutraceutical. Intracellular creatine content is maintained within narrow limits. However, the physiological and cellular mechanisms that mediate Cr transport during health and disease (such as cardiac failure) are not understood. In this narrative mini-review, we summarize the last three decades of research on CrT structure, function and regulation.
Collapse
Affiliation(s)
- Lucia Santacruz
- Department of Biochemistry and Molecular Biology, University of Texas, Medical Branch, 301 University Boulevard, Galveston, TX, USA.
| | - Danny O Jacobs
- Department of Biochemistry and Molecular Biology, University of Texas, Medical Branch, 301 University Boulevard, Galveston, TX, USA.,Departament of Surgery and the institute for Translational Sciences, University of Texas, Medical Branch, Galveston, USA
| |
Collapse
|
12
|
Hanna-El-Daher L, Braissant O. Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models? Amino Acids 2016; 48:1877-95. [PMID: 26861125 DOI: 10.1007/s00726-016-2189-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Abstract
While it has long been thought that most of cerebral creatine is of peripheral origin, the last 20 years has provided evidence that the creatine synthetic pathway (AGAT and GAMT enzymes) is expressed in the brain together with the creatine transporter (SLC6A8). It has also been shown that SLC6A8 is expressed by microcapillary endothelial cells at the blood-brain barrier, but is absent from surrounding astrocytes, raising the concept that the blood-brain barrier has a limited permeability for peripheral creatine. The first creatine deficiency syndrome in humans was also discovered 20 years ago (GAMT deficiency), followed later by AGAT and SLC6A8 deficiencies, all three diseases being characterized by creatine deficiency in the CNS and essentially affecting the brain. By reviewing the numerous and latest experimental studies addressing creatine transport and synthesis in the CNS, as well as the clinical and biochemical characteristics of creatine-deficient patients, our aim was to delineate a clearer view of the roles of the blood-brain and blood-cerebrospinal fluid barriers in the transport of creatine and guanidinoacetate between periphery and CNS, and on the intracerebral synthesis and transport of creatine. This review also addresses the question of guanidinoacetate toxicity for brain cells, as probably found under GAMT deficiency.
Collapse
MESH Headings
- Amidinotransferases/deficiency
- Amidinotransferases/genetics
- Amidinotransferases/metabolism
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Amino Acid Metabolism, Inborn Errors/pathology
- Animals
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/pathology
- Capillaries/metabolism
- Capillaries/pathology
- Creatine/biosynthesis
- Creatine/deficiency
- Creatine/genetics
- Creatine/metabolism
- Developmental Disabilities/genetics
- Developmental Disabilities/metabolism
- Developmental Disabilities/pathology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Guanidinoacetate N-Methyltransferase/deficiency
- Guanidinoacetate N-Methyltransferase/genetics
- Guanidinoacetate N-Methyltransferase/metabolism
- Humans
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Intellectual Disability/pathology
- Language Development Disorders/genetics
- Language Development Disorders/metabolism
- Language Development Disorders/pathology
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/metabolism
- Mental Retardation, X-Linked/pathology
- Movement Disorders/congenital
- Movement Disorders/genetics
- Movement Disorders/metabolism
- Movement Disorders/pathology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
- Plasma Membrane Neurotransmitter Transport Proteins/metabolism
- Speech Disorders/genetics
- Speech Disorders/metabolism
- Speech Disorders/pathology
Collapse
Affiliation(s)
- Layane Hanna-El-Daher
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Olivier Braissant
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, 1011, Lausanne, Switzerland.
| |
Collapse
|
13
|
Almilaji A, Sopjani M, Elvira B, Borras J, Dërmaku-Sopjani M, Munoz C, Warsi J, Lang UE, Lang F. Upregulation of the creatine transporter Slc6A8 by Klotho. Kidney Blood Press Res 2014; 39:516-25. [PMID: 25531216 DOI: 10.1159/000368462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The transmembrane Klotho protein contributes to inhibition of 1,25(OH)2D3 formation. The extracellular domain of Klotho protein could function as an enzyme with e.g. β-glucuronidase activity, be cleaved off and be released into blood and cerebrospinal fluid. Klotho regulates several cellular transporters. Klotho protein deficiency accelerates the appearance of age related disorders including neurodegeneration and muscle wasting and eventually leads to premature death. The main site of Klotho protein expression is the kidney. Klotho protein is also appreciably expressed in other tissues including chorioid plexus. The present study explored the effect of Klotho protein on the creatine transporter CreaT (Slc6A8), which participates in the maintenance of neuronal function and survival. METHODS To this end cRNA encoding Slc6A8 was injected into Xenopus oocytes with and without additional injection of cRNA encoding Klotho protein. Creatine transporter CreaT (Slc6A8) activity was estimated from creatine induced current determined by two-electrode voltage-clamp. RESULTS Coexpression of Klotho protein significantly increased creatine-induced current in Slc6A8 expressing Xenopus oocytes. Coexpression of Klotho protein delayed the decline of creatine induced current following inhibition of carrier insertion into the cell membrane by brefeldin A (5 µM). The increase of creatine induced current by coexpression of Klotho protein in Slc6A8 expressing Xenopus oocytes was reversed by β-glucuronidase inhibitor (DSAL). Similarly, treatment of Slc6A8 expressing Xenopus oocytes with recombinant human alpha Klotho protein significantly increased creatine induced current. CONCLUSION Klotho protein up-regulates the activity of creatine transporter CreaT (Slc6A8) by stabilizing the carrier protein in the cell membrane, an effect requiring β-glucuronidase activity of Klotho protein.
Collapse
Affiliation(s)
- Ahmad Almilaji
- Department of Physiology, Gmelinstr. 5, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
van de Kamp JM, Mancini GM, Salomons GS. X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inherit Metab Dis 2014; 37:715-33. [PMID: 24789340 DOI: 10.1007/s10545-014-9713-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022]
Abstract
Creatine transporter deficiency was discovered in 2001 as an X-linked cause of intellectual disability characterized by cerebral creatine deficiency. This review describes the current knowledge regarding creatine metabolism, the creatine transporter and the clinical aspects of creatine transporter deficiency. The condition mainly affects the brain while other creatine requiring organs, such as the muscles, are relatively spared. Recent studies have provided strong evidence that creatine synthesis also occurs in the brain, leading to the intriguing question of why cerebral creatine is deficient in creatine transporter deficiency. The possible mechanisms explaining the cerebral creatine deficiency are discussed. The creatine transporter knockout mouse provides a good model to study the disease. Over the past years several treatment options have been explored but no treatment has been proven effective. Understanding the pathogenesis of creatine transporter deficiency is of paramount importance in the development of an effective treatment.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/drug therapy
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/pathology
- Animals
- Brain Diseases, Metabolic, Inborn/complications
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/physiopathology
- Creatine/deficiency
- Creatine/genetics
- Genetic Diseases, X-Linked/genetics
- Humans
- Intellectual Disability/etiology
- Intellectual Disability/genetics
- Membrane Transport Proteins/deficiency
- Membrane Transport Proteins/genetics
- Mental Retardation, X-Linked/complications
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/physiopathology
- Mice
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
Collapse
Affiliation(s)
- Jiddeke M van de Kamp
- Department of Clinical Genetics, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
15
|
Brown EL, Snow RJ, Wright CR, Cho Y, Wallace MA, Kralli A, Russell AP. PGC-1α and PGC-1β increase CrT expression and creatine uptake in myotubes via ERRα. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2937-43. [PMID: 25173818 DOI: 10.1016/j.bbamcr.2014.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/20/2022]
Abstract
Intramuscular creatine plays a crucial role in maintaining skeletal muscle energy homeostasis, and its entry into the cell is dependent upon the sodium chloride dependent Creatine Transporter (CrT; Slc6a8). CrT activity is regulated by a number of factors including extra- and intracellular creatine concentrations, hormones, changes in sodium concentration, and kinase activity, however very little is known about the regulation of CrT gene expression. The present study aimed to investigate how Creatine Transporter (CrT) gene expression is regulated in skeletal muscle. Within the first intron of the CrT gene, we identified a conserved sequence that includes the motif recognized by the Estrogen-related receptor α (ERRα), also known as an Estrogen-related receptor response element (ERRE). Additional ERREs confirming to the known consensus sequence were also identified in the region upstream of the promoter. When partnered with peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1α) or beta (PGC-1β), ERRα induces the expression of many genes important for cellular bioenergetics. We therefore hypothesized that PGC-1 and ERRα could also regulate CrT gene expression and creatine uptake in skeletal muscle. Here we show that adenoviral overexpression of PGC-1α or PGC-1β in L6 myotubes increased CrT mRNA (2.1 and 1.7-fold, P<0.0125) and creatine uptake (1.8 and 1.6-fold, P<0.0125), and this effect was inhibited with co-expression of shRNA for ERRα. Overexpression of a constitutively active ERRα (VP16-ERRα) increased CrT mRNA approximately 8-fold (P<0.05), resulting in a 2.2-fold (P<0.05) increase in creatine uptake. Lastly, chromatin immunoprecipitation assays revealed that PGC-1α and ERRα directly interact with the CrT gene and increase CrT gene expression.
Collapse
Affiliation(s)
- Erin L Brown
- Centre for Physical Activity Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia
| | - Rod J Snow
- Centre for Physical Activity Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia
| | - Craig R Wright
- Centre for Physical Activity Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia
| | - Yoshitake Cho
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marita A Wallace
- Centre for Physical Activity Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia
| | - Anastasia Kralli
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron P Russell
- Centre for Physical Activity Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia.
| |
Collapse
|
16
|
Post-transcriptional regulation of the creatine transporter gene: functional relevance of alternative splicing. Biochim Biophys Acta Gen Subj 2014; 1840:2070-9. [PMID: 24561156 DOI: 10.1016/j.bbagen.2014.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Aberrations in about 10-15% of X-chromosome genes account for intellectual disability (ID); with a prevalence of 1-3% (Gécz et al., 2009 [1]). The SLC6A8 gene, mapped to Xq28, encodes the creatine transporter (CTR1). Mutations in SLC6A8, and the ensuing decrease in brain creatine, lead to co-occurrence of speech/language delay, autism-like behaviors and epilepsy with ID. A splice variant of SLC6A8-SLC6A8C, containing intron 4 and exons 5-13, was identified. Herein, we report the identification of a novel variant - SLC6A8D, and functional relevance of these isoforms. METHODS Via (quantitative) RT-PCR, uptake assays, and confocal microscopy, we investigated their expression and function vis-à-vis creatine transport. RESULTS SLC6A8D is homologous to SLC6A8C except for a deletion of exon 9 (without occurrence of a frame shift). Both contain an open reading frame encoding a truncated protein but otherwise identical to CTR1. Like SLC6A8, both variants are predominantly expressed in tissues with high energy requirement. Our experiments reveal that these truncated isoforms do not transport creatine. However, in SLC6A8 (CTR1)-overexpressing cells, a subsequent infection (transduction) with viral constructs encoding either the SLC6A8C (CTR4) or SLC6A8D (CTR5) isoform resulted in a significant increase in creatine accumulation compared to CTR1 cells re-infected with viral constructs containing the empty vector. Moreover, transient transfection of CTR4 or CTR5 into HEK293 cells resulted in significantly higher creatine uptake. CONCLUSIONS CTR4 and CTR5 are possible regulators of the creatine transporter since their overexpression results in upregulated CTR1 protein and creatine uptake. GENERAL SIGNIFICANCE Provides added insight into the mechanism(s) of creatine transport regulation.
Collapse
|
17
|
Tachikawa M, Uchida Y, Ohtsuki S, Terasaki T. Recent Progress in Blood–Brain Barrier and Blood–CSF Barrier Transport Research: Pharmaceutical Relevance for Drug Delivery to the Brain. DRUG DELIVERY TO THE BRAIN 2014. [DOI: 10.1007/978-1-4614-9105-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Joncquel-Chevalier Curt M, Cheillan D, Briand G, Salomons GS, Mention-Mulliez K, Dobbelaere D, Cuisset JM, Lion-François L, Des Portes V, Chabli A, Valayannopoulos V, Benoist JF, Pinard JM, Simard G, Douay O, Deiva K, Tardieu M, Afenjar A, Héron D, Rivier F, Chabrol B, Prieur F, Cartault F, Pitelet G, Goldenberg A, Bekri S, Gerard M, Delorme R, Porchet N, Vianey-Saban C, Vamecq J. Creatine and guanidinoacetate reference values in a French population. Mol Genet Metab 2013; 110:263-7. [PMID: 24090707 DOI: 10.1016/j.ymgme.2013.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 01/19/2023]
Abstract
Creatine and guanidinoacetate are biomarkers of creatine metabolism. Their assays in body fluids may be used for detecting patients with primary creatine deficiency disorders (PCDD), a class of inherited diseases. Their laboratory values in blood and urine may vary with age, requiring that reference normal values are given within the age range. Despite the long known role of creatine for muscle physiology, muscle signs are not necessarily the major complaint expressed by PCDD patients. These disorders drastically affect brain function inducing, in patients, intellectual disability, autistic behavior and other neurological signs (delays in speech and language, epilepsy, ataxia, dystonia and choreoathetosis), being a common feature the drop in brain creatine content. For this reason, screening of PCDD patients has been repeatedly carried out in populations with neurological signs. This report is aimed at providing reference laboratory values and related age ranges found for a large scale population of patients with neurological signs (more than 6 thousand patients) previously serving as a background population for screening French patients with PCDD. These reference laboratory values and age ranges compare rather favorably with literature values for healthy populations. Some differences are also observed, and female participants are discriminated from male participants as regards to urine but not blood values including creatine on creatinine ratio and guanidinoacetate on creatinine ratio values. Such gender differences were previously observed in healthy populations; they might be explained by literature differential effects of testosterone and estrogen in adolescents and adults, and by estrogen effects in prepubertal age on SLC6A8 function. Finally, though they were acquired on a population with neurological signs, the present data might reasonably serve as reference laboratory values in any future medical study exploring abnormalities of creatine metabolism and transport.
Collapse
Affiliation(s)
- Marie Joncquel-Chevalier Curt
- Département de Biochimie et Biologie Moléculaire, Laboratoire d'Hormonologie, Metabolisme-Nutrition & Oncologie (HMNO) - Centre de Biologie et Pathologie (CBP) Pierre-Marie Degand, CHRU Lille, 59037 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bogatikov E, Munoz C, Pakladok T, Alesutan I, Shojaiefard M, Seebohm G, Föller M, Palmada M, Böhmer C, Bröer S, Lang F. Up-regulation of amino acid transporter SLC6A19 activity and surface protein abundance by PKB/Akt and PIKfyve. Cell Physiol Biochem 2012; 30:1538-46. [PMID: 23234856 DOI: 10.1159/000343341] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The amino acid transporter B0AT1 (SLC6A19) accomplishes concentrative cellular uptake of neutral amino acids. SLC6A19 is stimulated by serum- & glucocorticoid-inducible kinase (SGK) isoforms. SGKs are related to PKB/Akt isoforms, which also stimulate several amino acid transporters. PKB/Akt modulates glucose transport in part by phosphorylating and thus activating phosphatidylinositol-3-phosphate-5-kinase (PIKfyve), which fosters carrier protein insertion into the cell membrane. The present study explored whether PKB/Akt and/or PIKfyve stimulate SLC6A19. METHODS SLC6A19 was expressed in Xenopus oocytes with or without wild-type PKB/Akt or inactive (T308A/S473A)PKB/Akt without or with additional expression of wild-type PIKfyve or PKB/Akt-resistant (S318A)PIKfyve. Electrogenic amino acid transport was determined by dual electrode voltage clamping. RESULTS In SLC6A19-expressing oocytes but not in water-injected oocytes, the addition of the neutral amino acid L-leucine (2 mM) to the bath generated a current (I(le)), which was significantly increased following coexpression of PKB/Akt, but not by coexpression of (T308A/S473A)PKB/Akt. The effect of PKB/Akt was augmented by additional coexpression of PIKfyve but not of (S318A)PIKfyve. Coexpression of PKB/Akt enhanced the maximal transport rate without significantly modifying the affinity of the carrier. The decline of I(le) following inhibition of carrier insertion by brefeldin A (5 µM) was similar in the absence and presence of PKB/Akt indicating that PKB/Akt stimulated carrier insertion into rather than inhibiting carrier retrieval from the cell membrane. CONCLUSION PKB/Akt up-regulates SLC6A19 activity, which may foster amino acid uptake into PKB/Akt-expressing epithelial and tumor cells.
Collapse
Affiliation(s)
- Evgenii Bogatikov
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Up-Regulation of the Inwardly Rectifying K+ Channel Kir2.1 (KCNJ2) by Protein Kinase B (PKB/Akt) and PIKfyve. J Membr Biol 2012. [DOI: 10.1007/s00232-012-9520-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Abstract
Little is known about the impact of habitual fluid intake on physiology. Specifically, biomarkers of hydration status and body water regulation have not been adequately explored in adults who consume different fluid volumes in everyday conditions, without prolonged exercise or environmental exposure. The purpose of the present study was to compare adults with habitually different fluid intakes with respect to biomarkers implicated in the assessment of hydration status, the regulation of total body water and the risk of kidney pathologies. In the present cross-sectional study, seventy-one adults (thirty-two men, thirty-nine women, age 25–40 years) were classified according to daily fluid intake: thirty-nine low drinkers (LD; ≤ 1·2 litres/d) and thirty-two high drinkers (HD; 2–4 litres/d). During four consecutive days, urinary parameters (first morning urine (FMU) on day 1 and subsequent 24 h urine (24hU) collections), blood parameters, and food and beverage intake were assessed. ANOVA and non-parametric comparisons revealed significant differences between the LD and HD groups in 24hU volume (1·0 (se 0·1) v. 2·4 (se 0·1) litres), specific gravity (median 1·023 v. 1·010), osmolality (767 (se 27) v. 371 (se 33) mOsm/kg) and colour (3·1 (se 0·2) v. 1·8 (se 0·2)). Similarly, in the FMU, the LD group produced a smaller amount of more concentrated urine. Plasma cortisol, creatinine and arginine vasopressin concentrations were significantly higher among the LD. Plasma osmolality was similar between the groups, suggesting physiological adaptations to preserve plasma osmolality despite low fluid intake. The long-term impact of adaptations to preserve plasma osmolality must be examined, particularly in the context of renal health.
Collapse
|
22
|
Haller M, Amatschek S, Wilflingseder J, Kainz A, Bielesz B, Pavik I, Serra A, Mohebbi N, Biber J, Wagner CA, Oberbauer R. Sirolimus induced phosphaturia is not caused by inhibition of renal apical sodium phosphate cotransporters. PLoS One 2012; 7:e39229. [PMID: 22859939 PMCID: PMC3408497 DOI: 10.1371/journal.pone.0039229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/17/2012] [Indexed: 12/01/2022] Open
Abstract
The vast majority of glomerular filtrated phosphate is reabsorbed in the proximal tubule. Posttransplant phosphaturia is common and aggravated by sirolimus immunosuppression. The cause of sirolimus induced phosphaturia however remains elusive. Male Wistar rats received sirolimus or vehicle for 2 or 7 days (1.5mg/kg). The urine phosphate/creatinine ratio was higher and serum phosphate was lower in sirolimus treated rats, fractional excretion of phosphate was elevated and renal tubular phosphate reabsorption was reduced suggesting a renal cause for hypophosphatemia. PTH was lower in sirolimus treated rats. FGF 23 levels were unchanged at day 2 but lower in sirolimus treated rats after 7 days. Brush border membrane vesicle phosphate uptake was not altered in sirolimus treated groups or by direct incubation with sirolimus. mRNA, protein abundance, and subcellular transporter distribution of NaPi-IIa, Pit-2 and NHE3 were not different between groups but NaPi-IIc mRNA expression was lower at day 7. Transcriptome analyses revealed candidate genes that could be involved in the phosphaturic response. Sirolimus caused a selective renal phosphate leakage, which was not mediated by NaPi-IIa or NaPi-IIc regulation or localization. We hypothesize that another mechanism such as a basolateral phosphate transporter may be responsible for the sirolimus induced phosphaturia.
Collapse
Affiliation(s)
- Maria Haller
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Department of Nephrology and Transplantation, KH Elisabethinen Linz, Linz, Austria
| | - Stefan Amatschek
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | | | - Alexander Kainz
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Bernd Bielesz
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Ivana Pavik
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Andreas Serra
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jürg Biber
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Carsten A. Wagner
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Rainer Oberbauer
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
- Department of Nephrology and Transplantation, KH Elisabethinen Linz, Linz, Austria
- Austrian Dialysis and Transplant Registry, Linz, Austria
- * E-mail:
| |
Collapse
|
23
|
Downregulation of the Creatine Transporter SLC6A8 by JAK2. J Membr Biol 2012; 245:157-63. [DOI: 10.1007/s00232-012-9424-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/16/2012] [Indexed: 12/20/2022]
|
24
|
Darrabie MD, Arciniegas AJL, Mishra R, Bowles DE, Jacobs DO, Santacruz L. AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. Am J Physiol Endocrinol Metab 2011; 300:E870-6. [PMID: 21364119 DOI: 10.1152/ajpendo.00554.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Profound alterations in myocellular creatine and phosphocreatine levels are observed during human heart failure. To maintain its intracellular creatine stores, cardiomyocytes depend upon a cell membrane creatine transporter whose regulation is not clearly understood. Creatine transport capacity in the intact heart is modulated by substrate availability, and it is reduced in the failing myocardium, likely adding to the energy imbalance that characterizes heart failure. AMPK, a key regulator of cellular energy homeostasis, acts by switching off energy-consuming pathways in favor of processes that generate energy. Our objective was to determine the effects of substrate availability and AMPK activation on creatine transport in cardiomyocytes. We studied creatine transport in rat neonatal cardiomyocytes and HL-1 cardiac cells expressing the human creatine transporter cultured in the presence of varying creatine concentrations and the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleoside (AICAR). Transport was enhanced in cardiomyocytes following incubation in creatine-depleted medium or AICAR. The changes in transport were due to alterations in V(max) that correlated with changes in total and cell surface creatine transporter protein content. Our results suggest a positive role for AMPK in creatine transport modulation for cardiomyocytes in culture.
Collapse
Affiliation(s)
- Marcus D Darrabie
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
25
|
Tachikawa M, Hosoya KI. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders. Fluids Barriers CNS 2011; 8:13. [PMID: 21352605 PMCID: PMC3058069 DOI: 10.1186/2045-8118-8-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/28/2011] [Indexed: 12/24/2022] Open
Abstract
Guanidino compounds (GCs), such as creatine, phosphocreatine, guanidinoacetic acid, creatinine, methylguanidine, guanidinosuccinic acid, γ-guanidinobutyric acid, β-guanidinopropionic acid, guanidinoethane sulfonic acid and α-guanidinoglutaric acid, are present in the mammalian brain. Although creatine and phosphocreatine play important roles in energy homeostasis in the brain, accumulation of GCs may induce epileptic discharges and convulsions. This review focuses on how physiologically important and/or neurotoxic GCs are distributed in the brain under physiological and pathological conditions. Transporters for GCs at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) have emerged as substantial contributors to GCs distribution in the brain. Creatine transporter (CRT/solute carrier (SLC) 6A8) expressed at the BBB regulates creatine concentration in the brain, and represents a major pathway for supply of creatine from the circulating blood to the brain. CRT may be a key factor facilitating blood-to-brain guanidinoacetate transport in patients deficient in S-adenosylmethionine:guanidinoacetate N-methyltransferase, the creatine biosynthetic enzyme, resulting in cerebral accumulation of guanidinoacetate. CRT, taurine transporter (TauT/SLC6A6) and organic cation transporter (OCT3/SLC22A3) expressed at the BCSFB are involved in guanidinoacetic acid or creatinine efflux transport from CSF. Interestingly, BBB efflux transport of GCs, including guanidinoacetate and creatinine, is negligible, though the BBB has a variety of efflux transport systems for synthetic precursors of GCs, such as amino acids and neurotransmitters. Instead, the BCSFB functions as a major cerebral clearance system for GCs. In conclusion, transport of GCs at the BBB and BCSFB appears to be the key determinant of the cerebral levels of GCs, and changes in the transport characteristics may cause the abnormal distribution of GCs in the brain seen in patients with certain neurological disorders.
Collapse
Affiliation(s)
- Masanori Tachikawa
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | | |
Collapse
|
26
|
Zemtsova IM, Heise N, Fröhlich H, Qadri SM, Kucherenko Y, Boini KM, Pearce D, Shumilina E, Lang F. Blunted IgE-mediated activation of mast cells in mice lacking the serum- and glucocorticoid-inducible kinase SGK3. Am J Physiol Cell Physiol 2010; 299:C1007-14. [PMID: 20686074 DOI: 10.1152/ajpcell.00539.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that pharmacological inhibition of the phosphoinositol-3 (PI3) kinase disrupts the activation of mast cells. Through phosphoinositide-dependent kinase PDK1, PI3 kinase activates the serum- and glucocorticoid-inducible kinase 3 (SGK3). The present study explored the role of SGK3 in mast cell function. Mast cells were isolated and cultured from bone marrow (BMMCs) of gene-targeted mice lacking SGK3 (sgk3(-/-)) and their wild-type littermates (sgk3(+/+)). BMMC numbers in the ear conch were similar in both genotypes. Stimulation with IgE and cognate antigen triggered the release of intracellular Ca(2+) and entry of extracellular Ca(2+). Influx of extracellular Ca(2+) but not Ca(2+) release from intracellular stores was significantly blunted in sgk3(-/-) BMMCs compared with sgk3(+/+) BMMCs. Antigen stimulation further led to a rapid increase of a K(+)-selective conductance in sgk3(+/+) BMMCs, an effect again blunted in sgk3(-/-) BMMCs. In contrast, the Ca(2+) ionophore ionomycin activated K(+) currents to a similar extent in sgk3(-/-) and in sgk3(+/+) BMMCs. β-Hexosaminidase release, triggered by antigen stimulation, was also significantly decreased in sgk3(-/-) BMMCs. IgE-dependent anaphylaxis measured as a sharp decrease in body temperature upon injection of DNP-HSA antigen was again significantly blunted in sgk3(-/-) compared with sgk3(+/+) mice. Serum histamine levels measured 30 min after induction of an anaphylactic reaction were significantly lower in sgk3(-/-) than in sgk3(+/+) mice. In conclusion, both in vitro and in vivo function of BMMCs are impaired in gene targeted mice lacking SGK3. Thus SGK3 is critical for proper mast cell function.
Collapse
Affiliation(s)
- Irina M Zemtsova
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li H, Thali RF, Smolak C, Gong F, Alzamora R, Wallimann T, Scholz R, Pastor-Soler NM, Neumann D, Hallows KR. Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells. Am J Physiol Renal Physiol 2010; 299:F167-77. [PMID: 20462973 PMCID: PMC2904179 DOI: 10.1152/ajprenal.00162.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/06/2010] [Indexed: 11/22/2022] Open
Abstract
The metabolic sensor AMP-activated protein kinase (AMPK) regulates several transport proteins, potentially coupling transport activity to cellular stress and energy levels. The creatine transporter (CRT; SLC6A8) mediates creatine uptake into several cell types, including kidney epithelial cells, where it has been proposed that CRT is important for reclamation of filtered creatine, a process critical for total body creatine homeostasis. Creatine and phosphocreatine provide an intracellular, high-energy phosphate-buffering system essential for maintaining ATP supply in tissues with high energy demands. To test our hypothesis that CRT is regulated by AMPK in the kidney, we examined CRT and AMPK distribution in the kidney and the regulation of CRT by AMPK in cells. By immunofluorescence staining, we detected CRT at the apical pole in a polarized mouse S3 proximal tubule cell line and in native rat kidney proximal tubules, a distribution overlapping with AMPK. Two-electrode voltage-clamp (TEV) measurements of Na(+)-dependent creatine uptake into CRT-expressing Xenopus laevis oocytes demonstrated that AMPK inhibited CRT via a reduction in its Michaelis-Menten V(max) parameter. [(14)C]creatine uptake and apical surface biotinylation measurements in polarized S3 cells demonstrated parallel reductions in creatine influx and CRT apical membrane expression after AMPK activation with the AMP-mimetic compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. In oocyte TEV experiments, rapamycin and the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate (ZMP) inhibited CRT currents, but there was no additive inhibition of CRT by ZMP, suggesting that AMPK may inhibit CRT indirectly via the mammalian target of rapamycin pathway. We conclude that AMPK inhibits apical membrane CRT expression in kidney proximal tubule cells, which could be important in reducing cellular energy expenditure and unnecessary creatine reabsorption under conditions of local and whole body metabolic stress.
Collapse
Affiliation(s)
- Hui Li
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lang F, Artunc F, Vallon V. The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens 2009; 18:439-48. [PMID: 19584721 PMCID: PMC2883450 DOI: 10.1097/mnh.0b013e32832f125e] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The role of serum and glucocorticoid-inducible kinase 1 (SGK1) in renal physiology and pathophysiology is reviewed with particular emphasis on recent advances. RECENT FINDINGS The mammalian target of rapamycin complex 2 has been shown to phosphorylate SGK1 at Ser422 (the so-called hydrophobic motif). Ser397 and Ser401 are two additional SGK1-phosphorylation sites required for maximal SGK1 activity. A 5' variant alternate transcript of human Sgk1 has been identified that is widely expressed and shows improved stability, enhanced membrane association, and greater stimulation of epithelial Na+ transport. SGK1 is essential for optimal processing of the epithelial sodium channel and also regulates the expression of the Na+-Cl- cotransporter. With regard to pathophysiology, SGK1 participates in the stimulation of renal tubular glucose transport in diabetes, the renal profibrotic effect of both angiotensin II and aldosterone, and in fetal programing of arterial hypertension. SUMMARY The outlined recent findings advanced our understanding of the molecular regulation of SGK1 as well as the role of the kinase in renal physiology and the pathophysiology of renal disease and hypertension. Future studies using pharmacological inhibitors of SGK1 will reveal the utility of the kinase as a new therapeutic target.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tuebingen, Gmelinstrasse 5, Tuebingen 72076, Germany.
| | | | | |
Collapse
|
29
|
Ackermann TF, Boini KM, Völkl H, Bhandaru M, Bareiss PM, Just L, Vallon V, Amann K, Kuhl D, Feng Y, Hammes HP, Lang F. SGK1-sensitive renal tubular glucose reabsorption in diabetes. Am J Physiol Renal Physiol 2009; 296:F859-66. [PMID: 19158347 DOI: 10.1152/ajprenal.90238.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The hyperglycemia of diabetes mellitus increases the filtered glucose load beyond the maximal tubular transport rate and thus leads to glucosuria. Sustained hyperglycemia, however, may gradually increase the maximal renal tubular transport rate and thereby blunt the increase of urinary glucose excretion. The mechanisms accounting for the increase of renal tubular glucose transport have remained ill-defined. A candidate is the serum- and glucocorticoid-inducible kinase SGK1. The kinase has been shown to stimulate Na(+)-coupled glucose transport in vitro and mediate the stimulation of electrogenic intestinal glucose transport by glucocorticoids in vivo. SGK1 expression is confined to glomerula and distal nephron in intact kidneys but may extend to the proximal tubule in diabetic nephropathy. To explore whether SGK1 modifies glucose transport in diabetic kidneys, Akita mice (akita(+/-)), which develop spontaneous diabetes, have been crossbred with gene-targeted mice lacking SGK1 on one allele (sgk1(+/-)) to eventually generate either akita(+/-)/sgk1(-/-) or akita(+/-)/sgk1(+/+) mice. Both akita(+/-)/sgk1(-/-) and akita(+/-)/sgk1(+/+) mice developed profound hyperglycemia (>20 mM) within approximately 6 wk. Body weight and plasma glucose concentrations were not significantly different between these two genotypes. However, urinary excretion of glucose and urinary excretion of fluid, Na(+), and K(+), as well as plasma aldosterone concentrations, were significantly higher in akita(+/-)/sgk1(-/-) than in akita(+/-)/sgk1(+/+) mice. Studies in isolated perfused proximal tubules revealed that the electrogenic glucose transport was significantly lower in akita(+/-)/sgk1(-/-) than in akita(+/-)/sgk1(+/+) mice. The data provide the first evidence that SGK1 participates in the stimulation of renal tubular glucose transport in diabetic kidneys.
Collapse
Affiliation(s)
- Teresa F Ackermann
- Dept. of Physiology, Univ. of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tachikawa M, Fujinawa J, Takahashi M, Kasai Y, Fukaya M, Sakai K, Yamazaki M, Tomi M, Watanabe M, Sakimura K, Terasaki T, Hosoya KI. Expression and possible role of creatine transporter in the brain and at the blood-cerebrospinal fluid barrier as a transporting protein of guanidinoacetate, an endogenous convulsant. J Neurochem 2008; 107:768-78. [DOI: 10.1111/j.1471-4159.2008.05652.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Creatine uptake in mouse hearts with genetically altered creatine levels. J Mol Cell Cardiol 2008; 45:453-9. [PMID: 18602925 PMCID: PMC2568826 DOI: 10.1016/j.yjmcc.2008.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/22/2008] [Accepted: 05/30/2008] [Indexed: 11/24/2022]
Abstract
Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate-N-methyl transferase knock out (GAMT−/−) mice and from mice overexpressing the myocardial CrT (CrT-OE) using 14C-radiolabeled creatine. CrT mRNA levels were measured using real time RT-PCR and creatine levels with HPLC. Hearts from GAMT−/− mice showed a 7-fold increase in Vmax of creatine uptake and a 1.4-fold increase in CrT mRNA levels. The increase in Cr uptake and in CrT mRNA levels, however, was almost completely prevented when mice were fed a creatine supplemented diet, indicating that creatine uptake is subject to negative feedback regulation. Cardiac creatine uptake levels in CrT-OE mice were increased on average 2.7-fold, showing a considerable variation, in line with a similar variation in creatine content. Total CrT mRNA levels correlated well with myocardial creatine content (r = 0.67; p < 0.0001) but endogenous CrT mRNA levels did not correlate at all with myocardial creatine content (r = 0.01; p = 0.96). This study shows that creatine uptake can be massively upregulated in the heart, by almost an order of magnitude and that this upregulation is subject to feedback inhibition. In addition, our results strongly suggest that CrT activity is predominantly regulated by mechanisms other than alterations in gene expression.
Collapse
|
32
|
Schwab M, Lupescu A, Mota M, Mota E, Frey A, Simon P, Mertens PR, Floege J, Luft F, Asante-Poku S, Schaeffeler E, Lang F. Association of SGK1 gene polymorphisms with type 2 diabetes. Cell Physiol Biochem 2008; 21:151-60. [PMID: 18209482 DOI: 10.1159/000113757] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2007] [Indexed: 11/19/2022] Open
Abstract
The serum and glucocorticoid inducible kinase SGK1 is genomically upregulated by glucocorticoids and in turn stimulates a variety of carriers and channels including the renal epithelial Na(+) channel ENaC and the intestinal Na(+) glucose transporter SGLT1. Twin studies disclosed an association of a specific SGK1 haplotype with moderately enhanced blood pressure in individuals who are carrying simultaneously a homozygous genotype for a variant in intron 6 [I6CC] and a homozygous or heterozygous genotype for the C allele of a polymorphism in exon 8 [E8CC/CT] of the SGK1 gene. A subsequent study confirmed the impact of this risk haplotype on blood pressure. SGK1 knockout mice are resistant to the insulin and high salt induced increase of blood pressure, glucocorticoid induced increase of electrogenic glucose transport, and glucocorticoid induced suppression of insulin release. The present study explored whether the I6CC/E8CC/CT haplotype impacts on the prevalence of type 2 diabetes. The prevalence of the I6CC genotype was 3.1% in a healthy German, 2.4 % in a healthy Romanian and 11.6 % in a healthy African population from Ghana (p=0.0006 versus prevalence in Caucasians). Comparison of genotype frequencies between type 2 diabetic patients and the respective control groups revealed significant differences for the intron 6 T>C variant. Carriers of at least one T allele were protected against type 2 diabetes (Romanians: p=0.023; OR 0.29; 95% CI 0.09-0.89; Germans: p=0.01; OR 0.37; 95% CI 0.17-0.81). The SGK1 risk haplotype (I6CC/E8CC/CT) was significantly (p=0.032; OR 4.31, 95% CI 1.19-15.58) more frequent in diabetic patients (7.2 %) than in healthy volunteers from Romania (1.8%). The observations support the view that SGK-1 may participate in the pathogenesis of metabolic syndrome.
Collapse
Affiliation(s)
- Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Simon P, Schneck M, Hochstetter T, Koutsouki E, Mittelbronn M, Merseburger A, Weigert C, Niess A, Lang F. Differential regulation of serum- and glucocorticoid-inducible kinase 1 (SGK1) splice variants based on alternative initiation of transcription. Cell Physiol Biochem 2007; 20:715-28. [PMID: 17982254 DOI: 10.1159/000110432] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2007] [Indexed: 11/19/2022] Open
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is a key-regulator of transport, cell volume and cell survival. SGK1 transcription is under genomic control of a wide variety of hormones and cell stressors. Little is known, however, about sequence variation in SGK1 transcripts. Thus, we took an in silico approach to determine sequence variations in the N-terminal region of SGK1, which is considered particularly important for subcellular SGK1 localization. Expressed Sequence Tag analysis revealed two novel phylogenetically highly conserved SGK1 mRNAs with different promoter sites based on alternative initiation of transcription at -2981, -850 upstream of the transcription initiation site (+1) of the reference mRNA. RT-PCR in various human cell lines and tissues confirmed the expression of the 3 alternative splice variants, which differed exclusively in their first exons. The two novel variants were devoid of the localization and degradation signal with otherwise unchanged and intact open reading frames. Spatial distribution of transcription factor binding sites among the three promoter sites indicated common responsiveness to glucocorticoids but different responsiveness to hypoxia and cellular differentiation. Differential expression under those conditions was confirmed for all variants in cultured myoblasts and myotubes. p53 and ETF-1 binding sites were overrepresented at the promoter site of the reference sequence variant SGK1(+1). Transcript levels were 4.1-fold [SGK1(+1)] and 3.1-fold [SGK1(-850)] higher in renal clear cell carcinoma than in remote tissue. The transcript levels were 42-fold [SGK1(+1)], 26-fold [SGK1(-850)] and 17-fold [SGK1(-2981)] higher in highly malignant human glioma cells than in non-neoplastic brain tissue. SGK1 transcript levels were differentially increased by differentiation or hypoxia (treatment with CoCl(2)). In conclusion, the present observations disclose the transcription of three distinct SGK1 splice variants, which are all markedly upregulated in tumor tissue but differentially upregulated following differentiation or hypoxia.
Collapse
Affiliation(s)
- Perikles Simon
- Medical Clinic, Department of Sports Medicine, University of Tuebingen, Tuebingen (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Strutz-Seebohm N, Shojaiefard M, Christie D, Tavare J, Seebohm G, Lang F. PIKfyve in the SGK1 mediated regulation of the creatine transporter SLC6A8. Cell Physiol Biochem 2007; 20:729-34. [PMID: 17982255 DOI: 10.1159/000110433] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2007] [Indexed: 12/24/2022] Open
Abstract
The Na(+),Cl(-),creatine transporter CreaT (SLC6A8) mediates concentrative cellular uptake of creatine into a wide variety of cells. Previous observations disclosed that SLC6A8 transport activity is enhanced by mammalian target of rapamycin (mTOR) at least partially through the serum and glucocorticoid inducible kinase isoforms SGK1 and SGK3. As SLC6A8 does not contain a putative SGK consensus motif, the mechanism linking SGK1 with SLC6A8 activity remained elusive. A candidate kinase is the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3), which has previously been shown to regulate the glucose transporter GLUT4. The present experiments explored the possibility that SLC6A8 is regulated by PIKfyve. In Xenopus oocytes expressing SLC6A8 but not in water injected oocytes creatine induced a current which was significantly enhanced by coexpression of PIKfyve. The effect of PIKfyve on SLC6A8 was blunted by additional coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K127N)SGK1. The stimulating effect of PIKfyve was abrogated by replacement of the serine in the SGK consensus sequence by alanine ((S318A)PIKfyve). Moreover, coexpression of ( S318A)PIKfyve blunted the effect of SGK1 on SLC6A8 activity. The observations suggest that SGK1 regulates the creatine transporter SLC6A8 at least partially through phosphorylation and activation of PIKfyve and subsequent formation of PI(3,5)P(2).
Collapse
|
35
|
Abstract
Creatine and phosphocreatine provide an intracellular, high-energy phosphate buffering system, essential to maintain ATP levels in tissues with high energy demands. A specific plasma membrane creatine transporter (CRT) is required for the cellular uptake of creatine. This transporter is related to the gamma-aminobutyric acid (GAT) and norepinephrine (NET) transporters and is part of a large gene family of Na(+) - and Cl(-) -dependent neurotransmitter transporters, now known as solute carrier family 6 (SLC6). CRT is essential for normal brain function as mutations in the CRT gene (SLC6A8) result in X-linked mental retardation, associated with the almost complete lack of creatine in the brain, severe speech and language delay, epilepsy, and autistic behaviour. Insight into the structure and function of the CRT has come from studies of creatine transport by tissues and cells, in vitro studies of CRT mutations, identification of mutations associated with CRT deficiency, and from the recent high resolution structure of a prokaryotic homologue of the SLC6 transporters. CRT antibodies have been developed enabling the localization of creatine uptake sites in the brain, retina, muscle and other tissues. These tools in conjunction with the use of appropriate cell models should allow further progress in our knowledge on the regulation and cellular trafficking of the CRT. Development of suitable mouse models may allow improved understanding of the importance of the CRT for normal brain function and how the transporter is regulated in vivo.
Collapse
Affiliation(s)
- David L Christie
- Molecular, Cell and Developmental Biology Section, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
36
|
Shojaiefard M, Strutz-Seebohm N, Tavaré JM, Seebohm G, Lang F. Regulation of the Na(+), glucose cotransporter by PIKfyve and the serum and glucocorticoid inducible kinase SGK1. Biochem Biophys Res Commun 2007; 359:843-7. [PMID: 17570343 DOI: 10.1016/j.bbrc.2007.05.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 01/15/2023]
Abstract
The Na(+), glucose cotransporter SGLT1 (SLC5A1) accomplishes Na(+)-dependent concentrative cellular glucose uptake. SGLT1 activity is enhanced by the serum and glucocorticoid inducible kinase SGK1. As shown recently, the stimulating effect of protein kinase B on the glucose carrier GLUT4 involves the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments thus explored whether PIKfyve is similarly involved in the SGK1-dependent regulation of SLC5A1. In Xenopus oocytes expressing SLC5A1 but not in water injected oocytes glucose induced a current which was significantly enhanced by coexpression of PIKfyve. The effect of PIKfyve on SLC5A1 was blunted by additional coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K119N)SGK1 and mimicked by coexpression of constitutively active (S422D)SGK1. The stimulating effect of PIKfyve was abrogated by replacement of the serine in the SGK consensus sequence by alanine ((S138A)PIKfyve). Moreover, coexpression of (S138A)PIKfyve significantly blunted the effect of SGK1 on SLC5A1 activity. The observations disclose that PIKfyve participates in the SGK1-dependent regulation of SLC5A1.
Collapse
|
37
|
Ohtsuki S, Terasaki T. Contribution of Carrier-Mediated Transport Systems to the Blood–Brain Barrier as a Supporting and Protecting Interface for the Brain; Importance for CNS Drug Discovery and Development. Pharm Res 2007; 24:1745-58. [PMID: 17619998 DOI: 10.1007/s11095-007-9374-5] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/06/2007] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) forms an interface between the circulating blood and the brain and possesses various carrier-mediated transport systems for small molecules to support and protect CNS function. For example, the blood-to-brain influx transport systems supply nutrients, such as glucose and amino acids. Consequently, xenobiotic drugs recognized by influx transporters are expected to have high permeability across the BBB. On the other hand, efflux transporters, including ATP-binding cassette transporters such as P-glycoprotein located at the luminal membrane of endothelial cells, function as clearance systems for metabolites and neurotoxic compounds produced in the brain. Drugs recognized by these transporters are expected to show low BBB permeability and low distribution to the brain. Despite recent progress, the transport mechanisms at the BBB have not been fully clarified yet, especially in humans. However, an understanding of the human BBB transport system is critical, because species differences mean that it can be difficult to extrapolate data obtained in experimental animals during drug development to humans. Recent progress in methodologies is allowing us to address this issue. Positron emission tomography can be used to evaluate the activity of human BBB transport systems in vivo. Proteomic studies may also provide important insights into human BBB function. Construction of a human BBB transporter atlas would be a most important advance from the viewpoint of CNS drug discovery and drug delivery to the brain.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | | |
Collapse
|
38
|
Ingwall JS. On the hypothesis that the failing heart is energy starved: lessons learned from the metabolism of ATP and creatine. Curr Hypertens Rep 2007; 8:457-64. [PMID: 17087856 DOI: 10.1007/s11906-006-0023-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adenosine triphosphate (ATP) and phosphocreatine fall in the failing heart. New insights into the control of ATP synthesis, supply, and utilization, and how this changes in the failing heart, have emerged. In this article, we address four questions: What are the mechanisms explaining loss of ATP and creatine from the failing heart? What are the consequences of these changes? Can metabolism be manipulated to restore a normal ATP supply? Does increasing energy supply have physiologic consequences (ie, does it lead to improved contractile performance)? In part 1 we focus on ATP, in part 2 on creatine, and in part 3 on the relationship between creatine and purine metabolism and purine nucleotide signaling.
Collapse
Affiliation(s)
- Joanne S Ingwall
- NMR Laboratory for Physiological Chemistry, Brigham and Women's Hospital, 221 Longwood Avenue, Room 247, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Tessier M, Woodgett JR. Serum and glucocorticoid-regulated protein kinases: variations on a theme. J Cell Biochem 2006; 98:1391-407. [PMID: 16619268 DOI: 10.1002/jcb.20894] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The phosphatidylinositol 3' kinase (PI3K)-signaling pathway plays a critical role in a variety of cellular responses such as modulation of cell survival, glucose homeostasis, cell division, and cell growth. PI3K generates important lipid second messengers-phosphatidylinositides that are phosphorylated at the 3' position of their inositol ring head-group. These membrane restricted lipids act by binding with high affinity to specific protein domains such as the pleckstrin homology (PH) domain. Effectors of PI3K include molecules that harbor such domains such as phosphoinositide-dependent kinase (PDK1) and protein kinase B (PKB), also termed Akt. The mammalian genome encodes three different PKB genes (alpha, beta, and gamma; Akt1, 2, and 3, respectively) and each is an attractive target for therapeutic intervention in diseases such as glioblastoma and breast cancer. A second family of three protein kinases, termed serum and glucocorticoid-regulated protein kinases (SGKs), is structurally related to the PKB family including regulation by PI3K but lack a PH domain. However, in addition to PH domains, a second class of 3' phosphorylated inositol phospholipid-binding domains exists that is termed Phox homology (PX) domain: this domain is found in one of the SGKs (SGK3). Here, we summarize knowledge of the three SGK isoforms and compare and contrast them to PKB with respect to their possible importance in cellular regulation and potential as therapeutic targets.
Collapse
Affiliation(s)
- Maude Tessier
- Department of Medical Biophysics, Samuel Lunenfeld Research Institute, University of Toronto, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | |
Collapse
|
40
|
Lang F, Böhmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 2006; 86:1151-78. [PMID: 17015487 DOI: 10.1152/physrev.00050.2005] [Citation(s) in RCA: 528] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The serum- and glucocorticoid-inducible kinase-1 (SGK1) is ubiquitously expressed and under genomic control by cell stress (including cell shrinkage) and hormones (including gluco- and mineralocorticoids). Similar to its isoforms SGK2 and SGK3, SGK1 is activated by insulin and growth factors via phosphatidylinositol 3-kinase and the 3-phosphoinositide-dependent kinase PDK1. SGKs activate ion channels (e.g., ENaC, TRPV5, ROMK, Kv1.3, KCNE1/KCNQ1, GluR1, GluR6), carriers (e.g., NHE3, GLUT1, SGLT1, EAAT1-5), and the Na+-K+-ATPase. They regulate the activity of enzymes (e.g., glycogen synthase kinase-3, ubiquitin ligase Nedd4-2, phosphomannose mutase-2) and transcription factors (e.g., forkhead transcription factor FKHRL1, beta-catenin, nuclear factor kappaB). SGKs participate in the regulation of transport, hormone release, neuroexcitability, cell proliferation, and apoptosis. SGK1 contributes to Na+ retention and K+ elimination of the kidney, mineralocorticoid stimulation of salt appetite, glucocorticoid stimulation of intestinal Na+/H+ exchanger and nutrient transport, insulin-dependent salt sensitivity of blood pressure and salt sensitivity of peripheral glucose uptake, memory consolidation, and cardiac repolarization. A common ( approximately 5% prevalence) SGK1 gene variant is associated with increased blood pressure and body weight. SGK1 may thus contribute to metabolic syndrome. SGK1 may further participate in tumor growth, neurodegeneration, fibrosing disease, and the sequelae of ischemia. SGK3 is required for adequate hair growth and maintenance of intestinal nutrient transport and influences locomotive behavior. In conclusion, the SGKs cover a wide variety of physiological functions and may play an active role in a multitude of pathophysiological conditions. There is little doubt that further targets will be identified that are modulated by the SGK isoforms and that further SGK-dependent in vivo physiological functions and pathophysiological conditions will be defined.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Rexhepaj R, Grahammer F, Völkl H, Remy C, Wagner CA, Sandulache D, Artunc F, Henke G, Nammi S, Capasso G, Alessi DR, Lang F. Reduced intestinal and renal amino acid transport in PDK1 hypomorphic mice. FASEB J 2006; 20:2214-22. [PMID: 17077298 DOI: 10.1096/fj.05-5676com] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The phosphoinositide-dependent kinase PDK1 activates the serum- and glucocorticoid-inducible kinase isoforms SGK1, SGK2, and SGK3 and protein kinase B, which in turn are known to up-regulate a variety of sodium-coupled transporters. The present study was performed to explore the role of PDK1 in amino acid transport. As mice completely lacking functional PDK1 are not viable, mice expressing 10-25% of PDK1 (pdk1(hm)) were compared with their wild-type (WT) littermates (pdk1(wt)). Body weight was significantly less in pdk1(hm) than in pdk1(wt) mice. Despite lower body weight of pdk1(hm) mice, food and water intake were similar in pdk1(hm) and pdk1(wt) mice. According to Ussing chamber experiments, electrogenic transport of phenylalanine, cysteine, glutamine, proline, leucine, and tryptophan was significantly smaller in jejunum of pdk1(hm) mice than in pdk1(wt) mice. Similarly, electrogenic transport of phenylalanine, glutamine, and proline was significantly decreased in isolated perfused proximal tubules of pdk1(hm) mice. The urinary excretion of proline, valine, guanidinoacetate, methionine, phenylalanine, citrulline, glutamine/glutamate, and tryptophan was significantly larger in pdk1(hm) than in pdk1(wt) mice. According to immunoblotting of brush border membrane proteins prepared from kidney, expression of the Na+-dependent neutral amino acid transporter B(0)AT1 (SLC6A19), the glutamate transporter EAAC1/EAAT3 (SLC1A1), and the transporter for cationic amino acids and cystine b(0,+)AT (SLC7A9) was decreased but the Na+/proline cotransporter SIT (SLC6A20) was increased in pdk1(hm) mice. In conclusion, reduction of functional PDK1 leads to impairment of intestinal absorption and renal reabsorption of amino acids. The combined intestinal and renal loss of amino acids may contribute to the growth defect of PDK1-deficient mice.
Collapse
Affiliation(s)
- Rexhep Rexhepaj
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Artunc F, Rexhepaj R, Völkl H, Grahammer F, Remy C, Sandulache D, Nasir O, Wagner CA, Alessi DR, Lang F. Impaired intestinal and renal glucose transport in PDK-1 hypomorphic mice. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1533-8. [PMID: 16741145 DOI: 10.1152/ajpregu.00024.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phosphoinositide-dependent kinase-1 (PDK-1) activates the serum- and glucocorticoid-inducible kinase and protein kinase B isoforms, which, in turn, are known to stimulate the renal and intestinal Na+-dependent glucose transporter 1. The present study has been performed to explore the role of PDK-1 in electrogenic glucose transport in small intestine and proximal renal tubules. To this end, mice expressing approximately 20% of PDK-1 (pdk1hm) were compared with their wild-type littermates (pdk1wt). According to Ussing chamber experiments, electrogenic glucose transport was significantly smaller in the jejunum of pdk1hm than of pdk1wt mice. Similarly, proximal tubular electrogenic glucose transport in isolated, perfused renal tubule segments was decreased in pdk1hm compared with pdk1wt mice. Intraperitoneal injection of 3 g/kg body wt glucose resulted in a similar increase of plasma glucose concentration in pdk1hm and in pdk1wt mice but led to a higher increase of urinary glucose excretion in pdk1hm mice. In conclusion, reduction of functional PDK-1 leads to impairment of electrogenic intestinal glucose absorption and renal glucose reabsorption. The experiments disclose a novel element of glucose transport regulation in kidney and small intestine.
Collapse
Affiliation(s)
- Ferruh Artunc
- Dept. of Physiology, Univ. of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shojaiefard M, Lang F. Stimulation of the intestinal phosphate transporter SLC34A2 by the protein kinase mTOR. Biochem Biophys Res Commun 2006; 345:1611-4. [PMID: 16730658 DOI: 10.1016/j.bbrc.2006.05.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/12/2006] [Indexed: 01/27/2023]
Abstract
Adequate phosphate homeostasis is of critical importance for a wide variety of functions including bone mineralization and energy metabolism. Phosphate balance is a function of intestinal absorption and renal elimination, which are both under tight hormonal control. Intestinal phosphate absorption is accomplished by the Na(+), phosphate cotransporter NaPi IIb (SLC34A2). Signaling mechanisms mediating hormonal regulation of SLC34A2 are incompletely understood. The mammalian target of rapamycin (mTOR) is a kinase regulating a variety of nutrient transporters. The present experiments explored whether mTOR regulates the activity of SLC34A2. In Xenopus oocytes expressing SLC34A2 but not in water injected oocytes phosphate (1 mM) induced a current (Ip) which was significantly enhanced by coexpression of mTOR. Preincubation of the oocytes for 24 h with rapamycin (50 nM) did not significantly affect Ip in the absence of mTOR but virtually abolished the increase of Ip following coexpression of mTOR. The wild type serum and glucocorticoid inducible kinase SGK1 and the constitutively active (S422D)SGK1 similarly stimulated Ip, an effect again reversed by rapamycin. Coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K119N)SGK1 significantly decreased Ip and abrogated the stimulating effect of mTOR on Ip. In conclusion, mTOR and SGK1 cooperate in the stimulation of the intestinal phosphate transporter SLC34A2.
Collapse
|
44
|
Shojaiefard M, Christie DL, Lang F. Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR. Biochem Biophys Res Commun 2006; 341:945-9. [PMID: 16466692 DOI: 10.1016/j.bbrc.2006.01.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/17/2006] [Indexed: 12/20/2022]
Abstract
Cellular accumulation of creatine is accomplished by the Na(+), Cl(-), and creatine transporter CreaT (SLC6A8). The mammalian target of rapamycin (mTOR) is a kinase stimulating cellular nutrient uptake. The present experiments explored whether SLC6A8 is regulated by mTOR. In Xenopus oocytes expressing SLC6A8 but not in water injected oocytes, creatine-induced a current which was significantly enhanced by coexpression of mTOR. Kinetic analysis revealed that mTOR enhanced maximal current without significantly altering affinity. Preincubation of the oocytes for 32 h with rapamycin (50 nM) decreased the creatine-induced current and abrogated its stimulation by mTOR. The effect of mTOR on CreaT was blunted by additional coexpression of the inactive mutant of the serum and glucocorticoid-inducible kinase (K119N)SGK1 and mimicked by coexpression of wild type SGK1. In conclusion, mTOR stimulates the creatine transporter SLC6A8 through mechanisms at least partially shared by the serum and glucocorticoid-inducible kinase SGK1.
Collapse
|