1
|
Zhou Y, Wang X, Zhang D, Cui H, Tian X, Du W, Yang Z, Wan D, Qiu Z, Liu C, Yang Z, Zhang L, Yang Q, Xu X, Li W, Wang D, Huang H, Wu W. Precision-Guided Stealth Missiles in Biomedicine: Biological Carrier-Mediated Nanomedicine Hitchhiking Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504672. [PMID: 40345158 DOI: 10.1002/advs.202504672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Nanodrug delivery systems (NDDS) have demonstrated broad application prospects in disease treatment, prevention, and diagnosis due to several advantages, including functionalization capability, high drug-loading capacity, drug stability protection, and the enhanced permeability and retention (EPR) effect. However, their clinical translation still faces multiple challenges, including rapid clearance by the reticuloendothelial system (RES), poor targeting specificity, and insufficient efficiency in crossing biological barriers. To address these limitations, researchers have developed the biological carrier-mediated nanomedicine hitchhiking strategy (BCM-NHS), which leverages circulating cells, proteins, or bacteria as natural "mobile carriers" to enhance drug delivery. This approach enables nanocarriers to inherit the intrinsic biological properties, endowing them with immune evasion, prolonged circulation, dynamic targeting, biocompatibility, biodegradability, and naturally optimized biological interfaces. Here, a systematic overview of the BCM-NHS is provided. First, the review delves into the methods of nanoparticles (NPs) binding and immobilization, encompassing both the surface-attachment-mediated "backpack" strategy and the encapsulation-based "Trojan horse" strategy. Second, the classification of biological carriers, including both cell-based and non-cell-based carriers, is elucidated. Third, the physical properties and release mechanisms of these nanomaterials are thoroughly described. Finally, the latest applications of BCM-NHS in therapeutic and diagnostic contexts across various disease models including tumor, ischemic stroke, and pneumonia are highlighted.
Collapse
Affiliation(s)
- Yuyan Zhou
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, 610072, China
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Xinyue Wang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Deyu Zhang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Hanxiao Cui
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Xiaorong Tian
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Wei Du
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhenghui Yang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Dongling Wan
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhiwei Qiu
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Chao Liu
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhicheng Yang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Lizhihong Zhang
- Department of Stomatology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong Province, 519041, China
| | - Qiusheng Yang
- Department of Infectious Diseases, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xuefeng Xu
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Wenhao Li
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, 610072, China
| | - Dong Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, 610072, China
| | - Haojie Huang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, 610072, China
| |
Collapse
|
2
|
Yang J, Xing F, Hu F, Hou M, Dong H, Cheng J, Li W, Yan R, Xu J, Xu K, Pan L. Super-resolution microscopy unveils the nanoscale organization and self-limiting clustering of CD47 in human erythrocytes. J Mol Cell Biol 2025; 16:mjae041. [PMID: 39367479 PMCID: PMC11992563 DOI: 10.1093/jmcb/mjae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/16/2023] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
The transmembrane protein CD47, an innate immune checkpoint protein, plays a pivotal role in preventing healthy erythrocytes from immune clearance. Our study utilized stochastic optical reconstruction microscopy (STORM) and single-molecule analysis to investigate the distribution of CD47 on the human erythrocyte membrane. Contrary to previous findings in mouse erythrocytes, we discovered that CD47 exists in randomly distributed monomers rather than in clusters across the human erythrocyte membrane. Using secondary antibody-induced crosslinking, we found that CD47 aggregates into stable clusters within minutes. By comparing these STORM results with those of the fully mobile protein CD59 and the cytoskeleton-bound membrane protein glycophorin C under similar conditions, as well as devising two-color STORM co-labeling and co-clustering experiments, we further quantitatively revealed an intermediate, self-limiting clustering behavior of CD47, elucidating its fractional (∼14%) attachment to the cytoskeleton. Moreover, we report reductions in both the amount of CD47 and its clustering capability in aged erythrocytes, providing new insight into erythrocyte senescence. Together, the combination of STORM and secondary antibody-based crosslinking unveils the unique self-limiting clustering behavior of CD47 due to its fractional cytoskeleton attachment.
Collapse
Affiliation(s)
- Jianyu Yang
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Fulin Xing
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Fen Hu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Mengdi Hou
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Hao Dong
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Jiayu Cheng
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Wan Li
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Cao Z, Liu J. Surface nanocoating of bacteria as a versatile platform to develop living therapeutics. Nat Protoc 2024; 19:3162-3190. [PMID: 39044001 DOI: 10.1038/s41596-024-01019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/01/2024] [Indexed: 07/25/2024]
Abstract
Bacteria have been extensively utilized as living therapeutics for disease treatment due to their unique characteristics, such as genetic manipulability, rapid proliferation and specificity to target disease sites. Various in vivo insults can, however, decrease the vitality of dosed bacteria, leading to low overall bioavailability. Additionally, the innate antigens on the bacterial surface and the released toxins and metabolites may cause undesired safety issues. These limitations inevitably result in inadequate treatment outcomes, thereby hindering the clinical transformation of living bacterial therapeutics. Recently, we have developed a versatile platform to prepare advanced living bacterial therapeutics by nanocoating bacteria individually via either chemical decoration or physical encapsulation, which can improve bioavailability and reduce side effects for enhanced microbial therapy. Here we use interfacial self-assembly to prepare lipid membrane-coated bacteria (LCB), exhibiting increased resistance against a variety of harsh environmental conditions owing to the nanocoating's protective capability. Meanwhile, we apply mechanical extrusion to generate cell membrane-coated bacteria (CMCB), displaying improved biocompatibility owing to the nanocoating's shielding effect. We describe their detailed preparation procedures and demonstrate the expected functions of the coated bacteria. We also show that following oral delivery and intravenous injection in mouse models, LCB and CMCB present appealing potential for treating colitis and tumors, respectively. Compared with bioengineering that lacks versatile molecular tools for heterogeneous expression, the surface nanocoating technique is convenient to introduce functional components without restriction on bacterial strain types. Excluding bacterial culture, the fabrication of LCB takes ~2 h, while the preparation of CMCB takes ~5 h.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Tan Z, Zhang Q, Wang Y, Wang Y, Zhang S, Xing X, Liu H, Shen Z, Sang W. Clinicopathological analysis of immunohistochemical CD47 and signal-regulatory protein-α expression in Extranodal Natural killer/T-cell lymphoma. Ann Hematol 2024; 103:3033-3042. [PMID: 38886192 DOI: 10.1007/s00277-024-05852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The interaction between CD47 and signal-regulatory protein-alpha (SIRPα) inhibits phagocytosis, and their clinicopathological characteristics have been evaluated in various diseases. However, the significance of CD47 and SIRPα expression, as well as the combined effect, in Extranodal Natural killer/T-cell Lymphoma (ENKTL) remains uncertain. METHODS In total, 76 newly diagnosed ENKTL patients (mean age 49.9 years, 73.7% male) were included in this study. CD47 and SIRPα expression were examined by immunohistochemistry. Survival analyses were conducted through Kaplan-Meier curves and the Cox regression model. RESULTS Seventy-one (93.4%) cases were categorized as the CD47 positive group and 59 (77.6%) cases were categorized as the SIRPα positive group. CD47-negative cases had more advanced-stage illness (P = 0.001), while SIRPα-positive cases showed significantly lower levels of high-density lipoprotein (P < 0.001). In univariable analysis, CD47, SIRPα expression, and their combination were significantly associated with prognosis (P < 0.05). In multivariable analysis, only positive SIRPα expression remained significantly associated with superior overall survival (Hazard ratio [HR] 0.446; 95% confidence interval [CI] 0.207-0.963; P = 0.004). Furthermore, SIRPα expression could re-stratify the survival of patients in ECOG (< 2), advanced CA stage, PINK (HR), CD38-positive, PD1-positive, and CD30-positive groups. CONCLUSIONS SIRPα status was a potential independent prognostic factor for ENKTL. The prognostic significance of CD47 expression and the interaction between CD47 and SIRPα in ENKTL need further investigation.
Collapse
Affiliation(s)
- Zaixiang Tan
- Research Center of Health Policy and Health Management, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Qing Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Ying Wang
- Research Center of Health Policy and Health Management, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Department of Personnel, Suqian First Hospital, Suqian, Jiangsu, 223800, China
| | - Yubo Wang
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Shuo Zhang
- Department of Hematology, Linyi People's Hospital, Linyi, Shandong, 276002, China
| | - Xing Xing
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hui Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Ziyuan Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, 221006, China.
| |
Collapse
|
5
|
Dooling LJ, Andrechak JC, Hayes BH, Kadu S, Zhang W, Pan R, Vashisth M, Irianto J, Alvey CM, Ma L, Discher DE. Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nat Biomed Eng 2023; 7:1081-1096. [PMID: 37095318 PMCID: PMC10791169 DOI: 10.1038/s41551-023-01031-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
In solid tumours, the abundance of macrophages is typically associated with a poor prognosis. However, macrophage clusters in tumour-cell nests have been associated with survival in some tumour types. Here, by using tumour organoids comprising macrophages and cancer cells opsonized via a monoclonal antibody, we show that highly ordered clusters of macrophages cooperatively phagocytose cancer cells to suppress tumour growth. In mice with poorly immunogenic tumours, the systemic delivery of macrophages with signal-regulatory protein alpha (SIRPα) genetically knocked out or else with blockade of the CD47-SIRPα macrophage checkpoint was combined with the monoclonal antibody and subsequently triggered the production of endogenous tumour-opsonizing immunoglobulin G, substantially increased the survival of the animals and helped confer durable protection from tumour re-challenge and metastasis. Maximizing phagocytic potency by increasing macrophage numbers, by tumour-cell opsonization and by disrupting the phagocytic checkpoint CD47-SIRPα may lead to durable anti-tumour responses in solid cancers.
Collapse
Affiliation(s)
- Lawrence J Dooling
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason C Andrechak
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Brandon H Hayes
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Siddhant Kadu
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
| | - William Zhang
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruby Pan
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
| | - Manasvita Vashisth
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Cory M Alvey
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
| | - Leyuan Ma
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA.
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Wen J, Liu C, Liu J, Wang L, Miao S, Chen D, Wang Q, Huo M, Shen Y. Dextran 40 hybrid biomimetic bismuth-nanoflower designed for NIR II-triggered hypoxic tumor thermoradiotherapy via macrophage escape. Carbohydr Polym 2023; 310:120697. [PMID: 36925238 DOI: 10.1016/j.carbpol.2023.120697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
At present, NIR-II-triggered photothermal biomedical applications are limited by complex synthesis reactions, mediocre photothermal conversion efficiency, and difficult degradation. Herein, we prepared biodegradable Bi flower-like nanoparticles (phospholipid-modified Bi nanoflowers, BNFs) with high photothermal conversion efficiency (∼33.52 %) in NIR-II by a simple method and then modified them with the red blood cell membrane and dextran 40 (DRBCM) to improve their in vitro stability, to escape macrophages clearance and to enhance tumor accumulation. Dextran coating onto the surface of particles as a dispersant shell stabilizes inorganic particles by maintaining the surface charges and creating steric repulsions upon compression of neighboring polymer chains. In vitro and in vivo experiments proved that combined thermoradiotherapy of DRBCM-BNFs exhibited significantly enhanced tumor inhibition efficacy than monotherapy with good biocompatibility and low toxicity due to its biodegradability. Furthermore, the mechanism studies demonstrated that DRBCM-BNFs could serve as a nano sensitizer to promote the thermoradiotherapy under NIR-II illumination and X-ray irradiation, by downregulating heat shock protein 70 (HSP70) and phosphorylated-p65 (p-p65) to reduce the thermal resistance and radioresistance of tumor cells and increasing the expression of apoptosis-related protein cleaved caspase-3. In conclusion, DRBCM-BNFs could be a promising green delivery platform for the sensitization of synergistic thermoradiotherapy.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Chang Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ji Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Lu Wang
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Si Miao
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| | - Meirong Huo
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Yan Shen
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
7
|
Zeng S, Tang Q, Xiao M, Tong X, Yang T, Yin D, Lei L, Li S. Cell membrane-coated nanomaterials for cancer therapy. Mater Today Bio 2023; 20:100633. [PMID: 37128288 PMCID: PMC10148189 DOI: 10.1016/j.mtbio.2023.100633] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/01/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023] Open
Abstract
With the development of nanotechnology, nanoparticles have emerged as a delivery carrier for tumor drug therapy, which can improve the therapeutic effect by increasing the stability and solubility and prolonging the half-life of drugs. However, nanoparticles are foreign substances for humans, are easily cleared by the immune system, are less targeted to tumors, and may even be toxic to the body. As a natural biological material, cell membranes have unique biological properties, such as good biocompatibility, strong targeting ability, the ability to evade immune surveillance, and high drug-carrying capacity. In this article, we review cell membrane-coated nanoparticles (CMNPs) and their applications to tumor therapy. First, we briefly describe CMNP characteristics and applications. Second, we present the characteristics and advantages of different cell membranes as well as nanoparticles, provide a brief description of the process of CMNPs, discuss the current status of their application to tumor therapy, summarize their shortcomings for use in cancer therapy, and propose future research directions. This review summarizes the research progress on CMNPs in cancer therapy in recent years and assesses remaining problems, providing scholars with new ideas for future research on CMNPs in tumor therapy.
Collapse
Affiliation(s)
- Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tao Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Danhui Yin
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
8
|
Preet Kaur A, Alice A, Crittenden MR, Gough MJ. The role of dendritic cells in radiation-induced immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:61-104. [PMID: 37438021 DOI: 10.1016/bs.ircmb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Dendritic cells perform critical functions in bridging innate and adaptive immunity. Their ability to sense adjuvant signals in their environment, migrate on maturation, and cross-present cell-associated antigens enables these cells to carry antigen from tissue sites to lymph nodes, and thereby prime naïve T cells that cannot enter tissues. Despite being an infrequent cell type in tumors, we discuss how dendritic cells impact the immune environment of tumors and their response to cancer therapies. We review how radiation therapy of tumors can impact dendritic cells, through transfer of cell associated antigens to dendritic cells and the release of endogenous adjuvants, resulting in increased antigen presentation in the tumor-draining lymph nodes. We explore how tumor specific factors can result in negative regulation of dendritic cell function in the tumor, and the impact of direct radiation exposure to dendritic cells in the treatment field. These data suggest an important role for dendritic cell subpopulations in activating new T cell responses and boosting existing T cell responses to tumor associated antigens in tumor draining lymph nodes following radiation therapy. It further justifies a focus on the needs of the lymph node T cells to improve systemic anti-immunity following radiation therapy.
Collapse
Affiliation(s)
- Aanchal Preet Kaur
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States; The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States.
| |
Collapse
|
9
|
Chen L, Jiang P, Shen X, Lyu J, Liu C, Li L, Huang Y. Cascade Delivery to Golgi Apparatus and On-Site Formation of Subcellular Drug Reservoir for Cancer Metastasis Suppression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204747. [PMID: 36585358 DOI: 10.1002/smll.202204747] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As the foremost cause of cancer-related death, metastasis consists of three steps: invasion, circulation, and colonization. Only targeting one single phase of the metastasis cascade may be insufficient since there are many alternative routes for tumor cells to disseminate. Here, to target the whole cascade of metastasis, hybrid erythrocyte and tumor cell membrane-coated nanoparticle (Hyb-NP) is designed with dual functions of increasing circulation time and recognizing primary, circulating, and colonized tumors. After loading with monensin, a recently reported metastasis inhibitor, the delivery system profoundly reduces spontaneous metastasis in an orthotopic breast cancer model. Underlying mechanism studies reveal that Hyb-NP can deliver monensin to its action site in the Golgi apparatus, and in return, monensin can block the exocytosis of Hyb-NP from the Golgi apparatus, forming a reservoir-like subcellular structure. Notably, the Golgi apparatus reservoir displays three vital functions for suppressing metastasis initialization, including enhanced subcellular drug retention, metastasis-related cytokine release inhibition, and directional migration inhibition. Collectively, based on metastasis cascade targeting at the tissue level, further formation of the Golgi apparatus drug reservoir at the subcellular level provides a potential therapeutic strategy for cancer metastasis suppression.
Collapse
Affiliation(s)
- Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Peihang Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xinran Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiayan Lyu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Chendong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
10
|
Luo Z, Sun L, Bian F, Wang Y, Yu Y, Gu Z, Zhao Y. Erythrocyte-Inspired Functional Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206150. [PMID: 36581585 PMCID: PMC9951328 DOI: 10.1002/advs.202206150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Indexed: 05/30/2023]
Abstract
Erythrocytes are the most abundant cells in the blood. As the results of long-term natural selection, their specific biconcave discoid morphology and cellular composition are responsible for gaining excellent biological performance. Inspired by the intrinsic features of erythrocytes, various artificial biomaterials emerge and find broad prospects in biomedical applications such as therapeutic delivery, bioimaging, and tissue engineering. Here, a comprehensive review from the fabrication to the applications of erythrocyte-inspired functional materials is given. After summarizing the biomaterials mimicking the biological functions of erythrocytes, the synthesis strategies of particles with erythrocyte-inspired morphologies are presented. The emphasis is on practical biomedical applications of these bioinspired functional materials. The perspectives for the future possibilities of the advanced erythrocyte-inspired biomaterials are also discussed. It is hoped that the summary of existing studies can inspire researchers to develop novel biomaterials; thus, accelerating the progress of these biomaterials toward clinical biomedical applications.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lingyu Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Feika Bian
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Zhuxiao Gu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|
11
|
Guan T, Zhou X, Zhou W, Lin H. Regulatory T cell and macrophage crosstalk in acute lung injury: future perspectives. Cell Death Dis 2023; 9:9. [PMID: 36646692 PMCID: PMC9841501 DOI: 10.1038/s41420-023-01310-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Acute lung injury (ALI) describes the injury to endothelial cells in the lungs and associated vessels due to various factors. Furthermore, ALI accompanied by inflammation and thrombosis has been reported as a common complication of SARS-COV-2 infection. It is widely accepted that inflammation and the cytokine storm are main causes of ALI. Two classical anti-inflammatory cell types, regulatory T cells (Tregs) and M2 macrophages, are theoretically capable of resisting uncontrolled inflammation. Recent studies have indicated possible crosstalk between Tregs and macrophages involving their mutual activation. In this review, we discuss the current findings related to ALI pathogenesis and the role of Tregs and macrophages. In particular, we review the molecular mechanisms underlying the crosstalk between Tregs and macrophages in ALI pathogenesis. Understanding the role of Tregs and macrophages will provide the potential targets for treating ALI.
Collapse
Affiliation(s)
- Tianshu Guan
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825Queen Mary university, Nanchang University, 330006 Nanchang, Jiangxi Province China
| | - Xv Zhou
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825Queen Mary university, Nanchang University, 330006 Nanchang, Jiangxi Province China
| | - Wenwen Zhou
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China
| | - Hui Lin
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China
| |
Collapse
|
12
|
Seervai RNH, Friske SK, Chu EY, Phillips R, Nelson KC, Huen A, Cho WC, Aung PP, Torres-Cabala CA, Prieto VG, Curry JL. The diverse landscape of dermatologic toxicities of non-immune checkpoint inhibitor monoclonal antibody-based cancer therapy. J Cutan Pathol 2023; 50:72-95. [PMID: 36069496 DOI: 10.1111/cup.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Since their first approval 25 years ago, monoclonal antibodies (mAbs) have become important targeted cancer therapeutics. However, dermatologic toxicities associated with non-immune checkpoint inhibitor (non-ICI) mAbs may complicate the course of cancer treatment. Data on the incidence and types of these reactions are limited. METHODS A comprehensive review was conducted on dermatologic toxicities associated with different classes of non-ICI mAbs approved for treatment of solid tumors and hematologic malignancies. The review included prospective Phase 1, 2, and 3 clinical trials; retrospective literature reviews; systematic reviews/meta-analyses; and case series/reports. RESULTS Dermatologic toxicities were associated with several types of non-ICI mAbs. Inflammatory reactions were the most common dermatologic toxicities, manifesting as maculopapular, urticarial, papulopustular/acneiform, and lichenoid/interface cutaneous adverse events (cAEs) with non-ICI mAbs. Immunobullous reactions were rare and a subset of non-ICI mAbs were associated with the development of vitiligo cAEs. CONCLUSION Dermatologic toxicities of non-ICI mAbs are diverse and mostly limited to inflammatory reactions. Awareness of the spectrum of the histopathologic patterns of cAE from non-ICI mAbs therapy is critical in the era of oncodermatology and oncodermatopathology.
Collapse
Affiliation(s)
- Riyad N H Seervai
- Internal Medicine Residency Program, Providence Portland Medical Center, Portland, Oregon, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA.,Department of Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah K Friske
- Department of Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | - Emily Y Chu
- Department of Dermatology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rhea Phillips
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly C Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Auris Huen
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Woo Cheal Cho
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phyu P Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan L Curry
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Kim W, Ly NK, He Y, Li Y, Yuan Z, Yeo Y. Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery. Adv Drug Deliv Rev 2023; 192:114635. [PMID: 36503885 PMCID: PMC9812987 DOI: 10.1016/j.addr.2022.114635] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
For systemically delivered nanoparticles to reach target tissues, they must first circulate long enough to reach the target and extravasate there. A challenge is that the particles end up engaging with serum proteins and undergo immune cell recognition and premature clearance. The serum protein binding, also known as protein corona formation, is difficult to prevent, even with artificial protection via "stealth" coating. Protein corona may be problematic as it can interfere with the interaction of targeting ligands with tissue-specific receptors and abrogate the so-called active targeting process, hence, the efficiency of drug delivery. However, recent studies show that serum protein binding to circulating nanoparticles may be actively exploited to enhance their downstream delivery. This review summarizes known issues of protein corona and traditional strategies to control the corona, such as avoiding or overriding its formation, as well as emerging efforts to enhance drug delivery to target organs via nanoparticles. It concludes with a discussion of prevailing challenges in exploiting protein corona for nanoparticle development.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nhu Ky Ly
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Université Paris Cité, Faculté de Santé, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Yanying He
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yongzhe Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Zhongyue Yuan
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
14
|
CD47 blockade improves the therapeutic effect of osimertinib in non-small cell lung cancer. Front Med 2022; 17:105-118. [PMID: 36414917 DOI: 10.1007/s11684-022-0934-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
The third-generation epidermal growth factor receptor (EGFR) inhibitor osimertinib (OSI) has been approved as the first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC). This study aims to explore a rational combination strategy for enhancing the OSI efficacy. In this study, OSI induced higher CD47 expression, an important anti-phagocytic immune checkpoint, via the NF-κB pathway in EGFR-mutant NSCLC HCC827 and NCI-H1975 cells. The combination treatment of OSI and the anti-CD47 antibody exhibited dramatically increasing phagocytosis in HCC827 and NCI-H1975 cells, which highly relied on the antibody-dependent cellular phagocytosis effect. Consistently, the enhanced phagocytosis index from combination treatment was reversed in CD47 knockout HCC827 cells. Meanwhile, combining the anti-CD47 antibody significantly augmented the anticancer effect of OSI in HCC827 xenograft mice model. Notably, OSI induced the surface exposure of "eat me" signal calreticulin and reduced the expression of immune-inhibitory receptor PD-L1 in cancer cells, which might contribute to the increased phagocytosis on cancer cells pretreated with OSI. In summary, these findings suggest the multidimensional regulation by OSI and encourage the further exploration of combining anti-CD47 antibody with OSI as a new strategy to enhance the anticancer efficacy in EGFR-mutant NSCLC with CD47 activation induced by OSI.
Collapse
|
15
|
Jiang W, Wu Z, Gao Z, Wan M, Zhou M, Mao C, Shen J. Artificial Cells: Past, Present and Future. ACS NANO 2022; 16:15705-15733. [PMID: 36226996 DOI: 10.1021/acsnano.2c06104] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial cells are constructed to imitate natural cells and allow researchers to explore biological process and the origin of life. The construction methods for artificial cells, through both top-down or bottom-up approaches, have achieved great progress over the past decades. Here we present a comprehensive overview on the development of artificial cells and their properties and applications. Artificial cells are derived from lipids, polymers, lipid/polymer hybrids, natural cell membranes, colloidosome, metal-organic frameworks and coacervates. They can be endowed with various functions through the incorporation of proteins and genes on the cell surface or encapsulated inside of the cells. These modulations determine the properties of artificial cells, including producing energy, cell growth, morphology change, division, transmembrane transport, environmental response, motility and chemotaxis. Multiple applications of these artificial cells are discussed here with a focus on therapeutic applications. Artificial cells are used as carriers for materials and information exchange and have been shown to function as targeted delivery systems of personalized drugs. Additionally, artificial cells can function to substitute for cells with impaired function. Enzyme therapy and immunotherapy using artificial cells have been an intense focus of research. Finally, prospects of future development of cell-mimic properties and broader applications are highlighted.
Collapse
Affiliation(s)
- Wentao Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ziyu Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zheng Gao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
16
|
Haroon H, Hunter A, Farhangrazi Z, Moghimi S. A brief history of long circulating nanoparticles. Adv Drug Deliv Rev 2022; 188:114396. [DOI: 10.1016/j.addr.2022.114396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 12/21/2022]
|
17
|
Bahmani L, Ullah M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022; 11:1989. [PMID: 35805074 PMCID: PMC9265969 DOI: 10.3390/cells11131989] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.
Collapse
Affiliation(s)
- Leila Bahmani
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
18
|
Engineered extracellular vesicles and their mimics in cardiovascular diseases. J Control Release 2022; 347:27-43. [PMID: 35508222 DOI: 10.1016/j.jconrel.2022.04.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Current pharmacological interventions for the CVDs suffer from low bioavailability, low retention rate, poor targeting, drug resistance complicated side effects. Extracellular vesicles (EVs), which are lipid vesicles secreted by cells, play key roles in pathological processes of CVDs. Engineered EVs and EV mimics with superior properties can overcome limitations of traditional medicine, thus emerging as alternative therapeutic options for the CVDs. In this Review, we summarized basic concepts of EVs and EV mimics, highlighted engineering strategies, and lastly discussed applications of engineered EVs and EV mimics against the CVDs. We believe this Review can provide some new insights on engineering EVs and EV mimics and facilitate their application in precise control of CVDs.
Collapse
|
19
|
Wang Y, Zhao C, Liu Y, Wang C, Jiang H, Hu Y, Wu J. Recent Advances of Tumor Therapy Based on the CD47-SIRPα Axis. Mol Pharm 2022; 19:1273-1293. [PMID: 35436123 DOI: 10.1021/acs.molpharmaceut.2c00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is still a major disease that is currently difficult for humans to overcome. When the expression of the cluster of differentiation 47 (CD47) is upregulated, tumor cells interact with the macrophage inhibitory receptor signal regulatory protein α (SIRPα) to transmit the "Don't eat me" signal, thereby avoiding phagocytosis by the macrophages. Therefore, when the CD47-SIRPα axis is inhibited, the macrophages' phagocytic function can be restored and can also exert antitumor effects. This Review mainly introduces recent advances in tumor therapy targeted on the CD47-SIRPα axis, including the antibody and fusion protein, small molecule, gene therapy, cell therapy, and drug delivery system, to inhibit the function of CD47 expressed on tumor cells and promote tumor phagocytosis by macrophages. In addition, this Review also summarizes the current approaches to avoid anemia, a common side effect of CD47-SIRPα inhibitions, and provides ideas for clinical transformation.
Collapse
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chenxuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haojie Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
20
|
Andrechak JC, Dooling LJ, Tobin MP, Zhang W, Hayes BH, Lee JY, Jin X, Irianto J, Discher DE. CD47-SIRPα Checkpoint Disruption in Metastases Requires Tumor-Targeting Antibody for Molecular and Engineered Macrophage Therapies. Cancers (Basel) 2022; 14:1930. [PMID: 35454837 PMCID: PMC9026896 DOI: 10.3390/cancers14081930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
The macrophage checkpoint interaction CD47-SIRPα is an emerging target for cancer therapy, but clinical trials of monoclonal anti-CD47 show efficacy only in liquid tumors when combined with tumor-opsonizing IgG. Here, in challenging metastatic solid tumors, CD47 deletion shows no effect on tumor growth unless combined with otherwise ineffective tumor-opsonization, and we likewise show wild-type metastases are suppressed by SIRPα-blocked macrophages plus tumor-opsonization. Lung tumor nodules of syngeneic B16F10 melanoma cells with CD47 deletion show opsonization drives macrophage phagocytosis of B16F10s, consistent with growth versus phagocytosis calculus for exponential suppression of cancer. Wild-type CD47 levels on metastases in lungs of immunocompetent mice and on human metastases in livers of immunodeficient mice show that systemic injection of antibody-engineered macrophages also suppresses growth. Such in vivo functionality can be modulated by particle pre-loading of the macrophages. Thus, even though CD47-SIRPα disruption and tumor-opsonizing IgG are separately ineffective against established metastatic solid tumors, their combination in molecular and cellular therapies prolongs survival.
Collapse
Affiliation(s)
- Jason C. Andrechak
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Graduate Group of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lawrence J. Dooling
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
| | - Michael P. Tobin
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Graduate Group of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Zhang
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Graduate Group of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon H. Hayes
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Graduate Group of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justine Y. Lee
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
| | - Xiaoling Jin
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
| | - Jerome Irianto
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Dennis E. Discher
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Graduate Group of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Miceli V, Fornasier M, Bulati M, Amico G, Conaldi PG, Casu A, Murgia S. In Vitro Evaluation of Nanoerythrosome Cytotoxicity and Uptake in Pancreatic Endothelial Cells: Implications for β-Cell Imaging Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3403-3411. [PMID: 35262354 DOI: 10.1021/acs.langmuir.1c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomolecule-targeted imaging represents one of the most difficult challenges in medicine. Nanoerythrosomes (NERs) are nanovesicles obtained after lysis of red blood cells, and they are promising tools for drug delivery and imaging. In this work, a formulation based on NERs functionalized with 7-amino-3-methylcoumarin via cross-linking was tested on rat INS-1E and mouse MIN6 β-cells and endothelial MSI cell lines. First, the morphology, size, ζ-potentials, and spectroscopic properties of the aggregates were investigated, highlighting that the functionalization did not significantly affect the nanoparticles' physicochemical features. In vitro, the nanoparticles did not significantly affect the proliferation and function of INS-1E and MIN6 β-cells at different concentrations. Only at the highest concentration tested on the MSI cell line, the formulation inhibited proliferation. Furthermore, NER aggregates were not internalized in both INS-1E and MIN6 cell lines, while a diffuse fluorescence was noticed in the cytosol of the MSI cell line at the highest concentrations. These findings proved that NER formulations might represent a new nanotool for β-cell imaging as a part of a strategy aimed to prevent any intracellular accumulation, thus reducing/avoiding side effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Marco Fornasier
- Department of Chemical and Geological Sciences, University of Cagliari, s.s. bivio Sestu, 09042-I Monserrato, Italy
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
- Ri.MED Foundation, via Bandiera 11, I-90133 Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Anna Casu
- Translational Research Institute─AdventHealth, Orlando, Florida 32804, United States
- Department of Diagnostic and Therapeutic Services, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), via E. Tricomi 5, I-90127 Palermo, Italy
| | - Sergio Murgia
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Department of Life and Environmental Sciences, University of Cagliari and CSGI, via Ospedale 72, I-09124 Cagliari, Italy
| |
Collapse
|
22
|
Wu ZH, Li N, Mei XF, Chen J, Wang XZ, Guo TT, Chen G, Nie L, Chen Y, Jiang MZ, Wang JT, Wang HB. Preclinical characterization of the novel anti-SIRPα antibody BR105 that targets the myeloid immune checkpoint. J Immunother Cancer 2022; 10:jitc-2021-004054. [PMID: 35256517 PMCID: PMC8905892 DOI: 10.1136/jitc-2021-004054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The CD47-SIRPα pathway acts as an important myeloid cell immune checkpoint and targeting the CD47/SIRPα axis represents a promising strategy to promote antitumor immunity. Several CD47-targeting agents show encouraging early activity in clinical trials. However, due to ubiquitous expression of CD47, the antigen sink and hematologic toxicity, such as anemia and thrombocytopenia, are main problems for developing CD47-targeting therapies. Considering the limited expression of SIRPα, targeting SIRPα is an alternative approach to block the CD47-SIRPα pathway, which may result in differential efficacy and safety profiles. METHODS SIRPα-targeting antibody BR105 was generated by hybridoma fusion and following humanization. BR105 was characterized for binding to human SIRPα alleles and blockade of the interaction with CD47. The functional activity was determined in in vitro phagocytosis assays by using human macrophages. The effect of BR105 on human T cell activation was studied using an OKT3-induced T-cell proliferation assay and an allogeneic mixed lymphocyte reaction. Human SIRPα-humanized immunodeficient mice were used in cancer models for evaluating the in vivo antitumor efficacy of BR105. Safety was addressed in a repeat-dose toxicity study in cynomolgus monkeys, and toxicokinetic analysis was further evaluated. RESULTS BR105 shows broad binding activity across various SIRPα variants, and potently blocks the interaction of SIRPα and CD47. In vitro functional assays demonstrated that BR105 synergizes with therapeutic antibodies to promote phagocytosis of tumor cells. Moreover, the combination of BR105 and therapeutic antibody significantly inhibits tumor growth in a xenograft tumor model. Although BR105 may slightly bind to SIRPγ, it does not inhibit T cell activation, unlike other non-selective SIRPα-targeting antibody and CD47-targeting agents. Toxicity studies in non-human primates show that BR105 is well tolerated with no treatment-related adverse effects noted. CONCLUSIONS The novel and differentiated SIRPα-targeting antibody, BR105, was discovered and displays promising antitumor efficacy in vitro and in vivo. BR105 has a favorable safety profile and shows no adverse effects on T cell functionality. These data support further clinical development of BR105, especially as a therapeutic agent to enhance efficacy when used in combination with tumor-targeting antibodies or antibodies that target other immune checkpoints.
Collapse
Affiliation(s)
- Zhen-Hua Wu
- BioRay Pharmaceutical Co., Ltd, Taizhou, Zhejiang, China
| | - Na Li
- BioRay Pharmaceutical Co., Ltd, Taizhou, Zhejiang, China
| | - Xiao-Feng Mei
- BioRay Pharmaceutical Co., Ltd, Taizhou, Zhejiang, China
| | - Juan Chen
- BioRay Pharmaceutical Co., Ltd, Taizhou, Zhejiang, China
| | - Xiao-Ze Wang
- BioRay Pharmaceutical Co., Ltd, Taizhou, Zhejiang, China
| | - Ting-Ting Guo
- BioRay Pharmaceutical Co., Ltd, Taizhou, Zhejiang, China
| | - Gang Chen
- BioRay Pharmaceutical Corp, San Diego, California, USA
| | - Lei Nie
- BioRay Pharmaceutical Co., Ltd, Taizhou, Zhejiang, China
| | - Yao Chen
- BioRay Pharmaceutical Co., Ltd, Taizhou, Zhejiang, China
| | - Mei-Zhu Jiang
- BioRay Pharmaceutical Co., Ltd, Taizhou, Zhejiang, China
| | - Ji-Teng Wang
- BioRay Pharmaceutical Co., Ltd, Taizhou, Zhejiang, China
| | - Hai-Bin Wang
- BioRay Pharmaceutical Co., Ltd, Taizhou, Zhejiang, China
| |
Collapse
|
23
|
Zeng Y, Li S, Zhang S, Wang L, Yuan H, Hu F. Cell membrane coated-nanoparticles for cancer immunotherapy. Acta Pharm Sin B 2022; 12:3233-3254. [PMID: 35967284 PMCID: PMC9366230 DOI: 10.1016/j.apsb.2022.02.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/14/2021] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy can effectively inhibit cancer progression by activating the autoimmune system, with low toxicity and high effectiveness. Some of cancer immunotherapy had positive effects on clinical cancer treatment. However, cancer immunotherapy is still restricted by cancer heterogeneity, immune cell disability, tumor immunosuppressive microenvironment and systemic immune toxicity. Cell membrane-coated nanoparticles (CMCNs) inherit abundant source cell-relevant functions, including “self” markers, cross-talking with the immune system, biological targeting, and homing to specific regions. These enable them to possess preferred characteristics, including better biological compatibility, weak immunogenicity, immune escaping, a prolonged circulation, and tumor targeting. Therefore, they are applied to precisely deliver drugs and promote the effect of cancer immunotherapy. In the review, we summarize the latest researches of biomimetic CMCNs for cancer immunotherapy, outline the existing specific cancer immune therapies, explore the unique functions and molecular mechanisms of various cell membrane-coated nanoparticles, and analyze the challenges which CMCNs face in clinical translation.
Collapse
|
24
|
Wang Y, Cao Y, Jiang Z, Li Y, Yuan B, Xing J, Li M, Gao Q, Xu K, Akakuru OU, Wu A, Li J. The Neuropeptide Y 1 Receptor Ligand-Modified Cell Membrane Promotes Targeted Photodynamic Therapy of Zeolitic Imidazolate Frameworks for Breast Cancer. J Phys Chem Lett 2021; 12:11280-11287. [PMID: 34767373 DOI: 10.1021/acs.jpclett.1c03562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs), widely regarded as promising materials for application in catalysis and separation, hold an increasingly significant position in drug delivery systems for their high drug loading capacity. Focused specifically on the rational design of targeting and bioresponsive nanovehicles, a neuropeptide Y1 receptor ligand (Y1L)-modified cell membrane camouflaged bioresponsive ZIF system (Y1L-RBC@ZIF-90@Ce6) was constructed for targeted photodynamic therapy of breast cancer. The biomimetic ZIF-based nanocarrier enhanced tumor accumulation by both neuropeptide Y1 receptor-targeted guidance and long-term stability. Y1L served as a good ligand-mediated selective targeting molecule for breast cancer, and red blood cell membrane-camouflaged nanocomposites displayed favorable biocompatibility. With the dual response of the ZIF to pH and adenosine triphosphate, the stimulus responsive photosensitizer Chlorin e6 delivery system effectively suppressed tumors in vivo. This work offers a platform for developing much safer and more efficient photodynamic therapy for the treatment of Y1R-overexpressed breast cancer.
Collapse
Affiliation(s)
- Yinjie Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yi Cao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo Yuan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingli Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qianqian Gao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Kaiwei Xu
- Department of Radiology, Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo 315010, P. R. China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| |
Collapse
|
25
|
Xu Z, Zeng H, Liu Z, Jin K, Chang Y, Wang Y, Liu L, Zhu Y, Xu L, Wang Z, Guo J, Xu J. Poor clinical outcomes and immunoevasive contexture in SIRPα + tumor-associated macrophages enriched muscle-invasive bladder cancer patients. Urol Oncol 2021; 40:109.e11-109.e20. [PMID: 34600802 DOI: 10.1016/j.urolonc.2021.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/31/2021] [Accepted: 08/28/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES In tumor immune microenvironment, the functions of tumor-associated macrophages (TAMs), including phagocytosis and immunomodulatory, have attracted increasing attention recently. With the discovery of CD47-signal regulatory protein-α (SIRPα) as "don't eat me" signaling pathway, the role of novel subpopulation of TAMs expressing SIRPα has not been fully elucidated in a wide spectrum of solid tumors including bladder cancer. In this study, we investigated the prognostic and predictive implication of SIRPα+ TAMs regarding clinical outcomes and adjuvant chemotherapeutic benefit in muscle-invasive bladder cancer (MIBC), and preliminarily characterized the phenotypic features of SIRPα+ TAMs and its relationship with immune contexture. MATERIALS AND METHODS A total of 141 histochemical MIBC samples from Zhongshan Hospital (ZS), 45 fresh tissue samples, and 391 MIBC patients from TCGA database were enrolled in this study. SIRPα+ TAMs was evaluated by immunohistochemical staining of CD68 and SIRPα, and flow cytometry fluorescence staining. RESULTS Our results illustrated that SIRPα+ TAMs were enriched in MIBC specimens. Patients with high SIRPα+ TAMs infiltration suffered significant poor overall survival and recurrence-free survival (P = 0.0030 and P = 0.0282). SIRPα+ TAMs infiltration was an independent prognosticator in multivariate Cox model. Moreover, adjuvant chemotherapy (ACT) application showed significantly survival benefit in patients with low SIRPα+ TAMs infiltration (P = 0.0135). SIRPα+ TAMs with suppressive phenotype exhibited a positive correlation with immune tolerance and dysfunctional CD8+ T cells in MIBC. CONCLUSIONS SIRPα+ TAMs infiltration indicated poor prognosis and ACT resistance in MIBC. Immunosuppressive SIRPα+ TAMs is closely related to immune evasion with exhausted T cells states, suggesting the prospect of SIRPα+ TAMs as a potential therapeutic target in MIBC.
Collapse
Affiliation(s)
- Ziang Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Al-Dossary AA, Tawfik EA, Isichei AC, Sun X, Li J, Alshehri AA, Alomari M, Almughem FA, Aldossary AM, Sabit H, Almalik AM. Engineered EV-Mimetic Nanoparticles as Therapeutic Delivery Vehicles for High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13123075. [PMID: 34203051 PMCID: PMC8234974 DOI: 10.3390/cancers13123075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we begin with the role of natural extracellular vesicles (EVs) in high-grade serous ovarian cancer (HGSOC). Then, we narrow our focus on the advantages of using EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics. Furthermore, we discuss the challenges of the clinical translation of engineering EV mimetic drug delivery systems and the promising directions of further development. Abstract High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy among women. Several obstacles impede the early diagnosis and effective treatment options for ovarian cancer (OC) patients, which most importantly include the development of platinum-drug-resistant strains. Currently, extensive efforts are being put into the development of strategies capable of effectively circumventing the physical and biological barriers present in the peritoneal cavity of metastatic OC patients, representing a late stage of gastrointestinal and gynecological cancer with an extremely poor prognosis. Naturally occurring extracellular vesicles (EVs) have been shown to play a pivotal role in progression of OC and are now being harnessed as a delivery vehicle for cancer chemotherapeutics. However, there are limitations to their clinical application due to current challenges in their preparation techniques. Intriguingly, there is a recent drive towards the use of engineered synthetic EVs for the delivery of chemotherapeutics and RNA interference therapy (RNAi), as they show the promise of overcoming the obstacles in the treatment of OC patients. This review discusses the therapeutic application of EVs in OC and elucidates the potential use of engineered EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics, which would potentially improve clinical outcomes of OC patients.
Collapse
Affiliation(s)
- Amal A. Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
- Correspondence: ; Tel.: +966-1-333-31137
| | - Essam A. Tawfik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Adaugo C. Isichei
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Xin Sun
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Jiahe Li
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Abdullah A. Alshehri
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Fahad A. Almughem
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Hussein Sabit
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdulaziz M. Almalik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| |
Collapse
|
27
|
Wang H, Zhang C, Zhang Y, Tian R, Cheng G, Pan H, Cui M, Chang J. An efficient delivery of photosensitizers and hypoxic prodrugs for a tumor combination therapy by membrane camouflage nanoparticles. J Mater Chem B 2021; 8:2876-2886. [PMID: 32191252 DOI: 10.1039/d0tb00235f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photodynamic therapy (PDT) is an oxygen-dependent, non-invasive cancer treatment. The hypoxia in the tumor environment limits the therapeutic effects of PDT. The combined delivery of photosensitizers and hypoxic prodrugs is expected to improve the efficacy of tumor treatment. In this paper, an erythrocyte and tumor cell membrane camouflage nanocarrier co-loaded with a photosensitizer (indocyanine green) and a hypoxic prodrug (tirapazamine) were used to combine PDT with chemotherapy. The system achieved less macrophage clearance through erythrocyte membranes and tumor-targeted tumor cell membranes, thereby inducing cell death and increasing tumor environment hypoxia by NIR irradiation of photosensitizers. Furthermore, the hypoxic environment activated TPZ to kill more tumor cells. In vivo results showed that the tumor inhibition rate of the drug-loaded nanoparticles increased from 34% to 64% after membrane modification. Moreover, the tumor inhibition rate of the photodynamic treatment group alone was only 47%, and the tumor inhibition rate after the combination was 1.3 times that of photodynamic therapy alone. Our platform is expected to contribute to the further application of cancer combination therapy.
Collapse
Affiliation(s)
- Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China. and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, P. R. China
| | - Chaonan Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China. and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, P. R. China
| | - Yingying Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China. and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, P. R. China
| | - Ran Tian
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China. and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, P. R. China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China. and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, P. R. China
| | - Huizhuo Pan
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China. and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, P. R. China
| | - Meihui Cui
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China. and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, P. R. China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China. and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, P. R. China
| |
Collapse
|
28
|
Morandi V, Petrik J, Lawler J. Endothelial Cell Behavior Is Determined by Receptor Clustering Induced by Thrombospondin-1. Front Cell Dev Biol 2021; 9:664696. [PMID: 33869231 PMCID: PMC8044760 DOI: 10.3389/fcell.2021.664696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
The thrombospondins (TSPs) are a family of multimeric extracellular matrix proteins that dynamically regulate cellular behavior and response to stimuli. In so doing, the TSPs directly and indirectly affect biological processes such as embryonic development, wound healing, immune response, angiogenesis, and cancer progression. Many of the direct effects of Thrombospondin 1 (TSP-1) result from the engagement of a wide range of cell surface receptors including syndecans, low density lipoprotein receptor-related protein 1 (LRP1), CD36, integrins, and CD47. Different or even opposing outcomes of TSP-1 actions in certain pathologic contexts may occur, depending on the structural/functional domain involved. To expedite response to external stimuli, these receptors, along with vascular endothelial growth factor receptor 2 (VEGFR2) and Src family kinases, are present in specific membrane microdomains, such as lipid rafts or tetraspanin-enriched microdomains. The molecular organization of these membrane microdomains and their constituents is modulated by TSP-1. In this review, we will describe how the presence of TSP-1 at the plasma membrane affects endothelial cell signal transduction and angiogenesis.
Collapse
Affiliation(s)
| | - Jim Petrik
- University of Guelph, Guelph, ON, Canada
| | - Jack Lawler
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Novel engineering: Biomimicking erythrocyte as a revolutionary platform for drugs and vaccines delivery. Eur J Pharmacol 2021; 900:174009. [PMID: 33722591 DOI: 10.1016/j.ejphar.2021.174009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Over the years, extensive studies on erythrocytes, also known as red blood cells (RBCs), as a mechanism for drug delivery, have been explored mainly because the cell itself is the most abundant and has astonishing properties such as a long life span of 100-120 days, low immunogenicity, good biocompatibility, and flexibility. There are various types of RBC-based systems for drug delivery, including those that are genetically engineered, non-genetically engineered RBCs, as well as employing erythrocyte as nanocarriers for drug loading. Although promising, these systems are still in an early development stage. In this review, we aimed to highlight the development of biomimicking RBC-based drug and vaccine delivery systems, as well as the loading methods with illustrative examples. Drug-erythrocyte associations will also be discussed and highlighted in this review. We have highlighted the possibility of exploiting erythrocytes for the sustained delivery of drugs and vaccines, encapsulation of these biological agents within the erythrocyte or coupling to the surface of carrier erythrocytes, and provided insights on genetically- and non-genetically engineered erythrocytes-based strategies. Erythrocytes have been known as effective cellular carriers for therapeutic moieties for several years. Herein, we outline various loading methods that can be used to reap the benefits of these natural carriers. It has been shown that drugs and vaccines can be delivered via erythrocytes but it is important to select appropriate methods for increasing the drug encapsulated or conjugated on the surface of the erythrocyte membrane. The outlined examples will guide the selection of the most effective method as well as the impact of using erythrocytes as delivery systems for drugs and vaccines.
Collapse
|
30
|
Gheibihayat SM, Jaafari MR, Hatamipour M, Sahebkar A. Improvement of the pharmacokinetic characteristics of liposomal doxorubicin using CD47 biomimickry. J Pharm Pharmacol 2021; 73:169-177. [PMID: 33793801 DOI: 10.1093/jpp/rgaa005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/05/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVES In view of their biodegradability, biocompatibility, encapsulation efficiency and targeted release, as well as low toxicity, liposomes are being widely used in the context of drug delivery. However, the efficiency of such drug delivery systems might face limitations by macrophage-mediated clearance (CL), which reduces circulation half-life (T½). This problem can be resolved through surface functionalization via poly (ethylene glycol) (PEG) in the process of PEGylation. However, the use of PEG might have its own disadvantages. Accordingly, the main purpose of this study was to produce novel stealth nanoliposomes using CD47 mimicry peptide [namely self-peptide (SP)] as an alternative to PEG for minimizing macrophage-mediated CL and enhancing circulation T½. METHODS At first, doxorubicin (Dox)-containing liposomes [i.e.liposomal Dox (LD)] were coated with different concentrations of SP (viz. SP-LD) (0.5%, 1% and 2%). In addition, PEG-functionalized LD (i.e. PLD) was fabricated as a standard control group. Then, various types of liposomal formulae were injected into a population of mice, assigned to six groups (four mice per group) for biodistribution. After sacrificing these animals in prespecified time points (namely 0.5, 6, 12, 24, 48, 72, 96 and 168 h), serum, liver, spleen, heart, kidney and lung samples were collected to estimate the encapsulated drug content in different groups through measuring intrinsic autofluorescence signal of Dox. KEY FINDINGS The tissue distribution results in the liver, spleen, heart, kidney and lung samples indicated a significant difference between the SP-LD and the PLD groups. Furthermore, the examination of Dox content, 6 h after administration, showed a growth rate of 28% in Dox content in the SP group compared with the PLD one. Subsequently, these values were, respectively, 63% and 75% at 24 and 48 h. CONCLUSIONS The results of tissue distribution and serum kinetic analysis correspondingly revealed that the use of the SP could augment the circulation time of Dox in comparison with PEG, and it could additionally minimize the tissue accumulation of the drug, which is normally the cause of drug-induced toxicity. The use of the SP on nanoliposomes could prolong the circulation of T½ and diminish the tissue accumulation of LD. These findings are relevant for improving therapeutic efficacy and reducing the toxicity of liposomal drugs.
Collapse
Affiliation(s)
- Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmoud R Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
31
|
Liu X, Zhang L, Jiang W, Yang Z, Gan Z, Yu C, Tao R, Chen H. In vitro and in vivo evaluation of liposomes modified with polypeptides and red cell membrane as a novel drug delivery system for myocardium targeting. Drug Deliv 2021; 27:599-606. [PMID: 32308051 PMCID: PMC7191910 DOI: 10.1080/10717544.2020.1754525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ischemic cardiac disease (ICD) is a cardiovascular disease with high morbidity and mortality. In this study, a novel myocardial targeted drug delivery system was developed represented by co-modified liposomes consisting of red cell membrane (RCM), and the peptides TAT and PCM. Liposomes were prepared using a membrane dispersion-ultrasonic method; the prepared 1% TAT and 3% PCM micelles were mixed with liposomes and under overnight stirring to form polypeptid-modified liposomes. RCM was isolated from mice blood, and the mechanical force facilitated RCM adhesion to the lipid bilayer. The characteristics of liposomes such as the morphology, particle size, zeta-potential, and RCM-conjugation to lipsomes were evaluated. Uptake efficiency and cellular toxicity of liposomes were evaluated in vitro on myocardial cells (MCs). As regard the experiments in vivo, liposomes were intravenously injected into mice, and the blood and organs were collectedat different times to analyze the pharmacokinetics profile of liposomes. The cellular uptake and intracellular distribution of liposomes of different composition into MCs demonstrated that RCM-modified liposomes had the best delivery capability. The pharmacokinetics study further demonstrated that RCM-modified liposomes had prolonged mean residence time (MRT) and more accumulation in the heart. This study indicated that RCM can be used to modify liposomes in combination with polypeptides, because such modification increases the myocardial targeting of liposomes. Therefore, this system constructed in this study might be a potentially effective myocardial drug delivery system.
Collapse
Affiliation(s)
- Xueyan Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Liangke Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Wengao Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhangyou Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zongjie Gan
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China.,Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ran Tao
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China.,Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Andrejeva G, Capoccia BJ, Hiebsch RR, Donio MJ, Darwech IM, Puro RJ, Pereira DS. Novel SIRPα Antibodies That Induce Single-Agent Phagocytosis of Tumor Cells while Preserving T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:712-721. [PMID: 33431660 DOI: 10.4049/jimmunol.2001019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
The signal regulatory protein α (SIRPα)/CD47 axis has emerged as an important innate immune checkpoint that enables cancer cell escape from macrophage phagocytosis. SIRPα expression is limited to macrophages, dendritic cells, and neutrophils-cells enriched in the tumor microenvironment. In this study, we present novel anti-SIRP Abs, SIRP-1 and SIRP-2, as an approach to targeting the SIRPα/CD47 axis. Both SIRP-1 and SIRP-2 bind human macrophage SIRPα variants 1 and 2, the most common variants in the human population. SIRP-1 and SIRP-2 are differentiated among reported anti-SIRP Abs in that they induce phagocytosis of solid and hematologic tumor cell lines by human monocyte-derived macrophages as single agents. We demonstrate that SIRP-1 and SIRP-2 disrupt SIRPα/CD47 interaction by two distinct mechanisms: SIRP-1 directly blocks SIRPα/CD47 and induces internalization of SIRPα/Ab complexes that reduce macrophage SIRPα surface levels and SIRP-2 acts via disruption of higher-order SIRPα structures on macrophages. Both SIRP-1 and SIRP-2 engage FcγRII, which is required for single-agent phagocytic activity. Although SIRP-1 and SIRP-2 bind SIRPγ with varying affinity, they show no adverse effects on T cell proliferation. Finally, both Abs also enhance phagocytosis when combined with tumor-opsonizing Abs, including a highly differentiated anti-CD47 Ab, AO-176, currently being evaluated in phase 1 clinical trials, NCT03834948 and NCT04445701 SIRP-1 and SIRP-2 are novel, differentiated SIRP Abs that induce in vitro single-agent and combination phagocytosis and show no adverse effects on T cell functionality. These data support their future development, both as single agents and in combination with other anticancer drugs.
Collapse
|
33
|
Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. Int J Mol Sci 2020; 22:E153. [PMID: 33375718 PMCID: PMC7796437 DOI: 10.3390/ijms22010153] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Red blood cells (RBCs) release extracellular vesicles (EVs) including both endosome-derived exosomes and plasma-membrane-derived microvesicles (MVs). RBC-derived EVs (RBCEVs) are secreted during erythropoiesis, physiological cellular aging, disease conditions, and in response to environmental stressors. RBCEVs are enriched in various bioactive molecules that facilitate cell to cell communication and can act as markers of disease. RBCEVs contribute towards physiological adaptive responses to hypoxia as well as pathophysiological progression of diabetes and genetic non-malignant hematologic disease. Moreover, a considerable number of studies focus on the role of EVs from stored RBCs and have evaluated post transfusion consequences associated with their exposure. Interestingly, RBCEVs are important contributors toward coagulopathy in hematological disorders, thus representing a unique evolving area of study that can provide insights into molecular mechanisms that contribute toward dysregulated hemostasis associated with several disease conditions. Relevant work to this point provides a foundation on which to build further studies focused on unraveling the potential roles of RBCEVs in health and disease. In this review, we provide an analysis and summary of RBCEVs biogenesis, composition, and their biological function with a special emphasis on RBCEV pathophysiological contribution to coagulopathy. Further, we consider potential therapeutic applications of RBCEVs.
Collapse
Affiliation(s)
- Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Sabari Nath Neerukonda
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Upendra Katneni
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Paul W. Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
34
|
Witika BA, Makoni PA, Mweetwa LL, Ntemi PV, Chikukwa MTR, Matafwali SK, Mwila C, Mudenda S, Katandula J, Walker RB. Nano-Biomimetic Drug Delivery Vehicles: Potential Approaches for COVID-19 Treatment. Molecules 2020; 25:E5952. [PMID: 33339110 PMCID: PMC7765509 DOI: 10.3390/molecules25245952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Larry L. Mweetwa
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
| | - Pascal V. Ntemi
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Melissa T. R. Chikukwa
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Jonathan Katandula
- Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| |
Collapse
|
35
|
Zeng G, Chen Y. Surface modification of black phosphorus-based nanomaterials in biomedical applications: Strategies and recent advances. Acta Biomater 2020; 118:1-17. [PMID: 33038527 DOI: 10.1016/j.actbio.2020.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Black phosphorus-based nanomaterials (BPNMs), an emerging member of two-dimensional (2D) nanomaterials, possess excellent physicochemical properties and hold great potential for application in advanced nanomedicines. However, the bare BPNMs easily decrease their biomedical activities due to their degradability and in vivo interactions with biological macromolecules such as plasma proteins, largely restricting their biomedical application. A variety of surface modifications, via chemical, physical or biological approaches, have been developed for BPNMs to avoid these limitations and achieve stable, long-lasting and safe therapeutic effects, thus enlighten the development of the multifunctional BPNMs for more practical application in the field of biomedicine. The present review summarizes the recent advances in the surface modification of BPNMs and the resultant expansion of their biomedical applications. Focus is put on the strategy and method of modification while the effects incurred on the behavior and potential toxicity of BPNMs are also included. The future and challenge of the surface modification of the therapeutic BPNMs are finally discussed.
Collapse
Affiliation(s)
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
36
|
Yu WB, Ye ZH, Chen X, Shi JJ, Lu JJ. The development of small-molecule inhibitors targeting CD47. Drug Discov Today 2020; 26:561-568. [PMID: 33197622 DOI: 10.1016/j.drudis.2020.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Immunotherapy has become an indispensable part of cancer treatment. A pivotal phagocytosis checkpoint, named cluster of differentiation 47 (CD47), which functions as 'don't eat me' signal to protect cells from phagocytosis upon interaction with signal regulatory protein alpha (SIRPα) on macrophages, has recently attracted much attention. Numerous antibodies targeting the CD47/SIRPα axis have shown encouraging efficacy in clinical trials. Meanwhile, studies on small-molecule inhibitors that interfere with CD47/SIRPα interaction or regulate CD47 expression are also in full swing. In this review, we summarize the small-molecule inhibitors interrupting the binding of CD47/SIRPα and regulating CD47 at the transcriptional, translational, and post-translational modification (PTM) levels. We provide perspectives and strategies for targeting the CD47/SIRPα phagocytosis checkpoint.
Collapse
Affiliation(s)
- Wei-Bang Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zi-Han Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jia-Jie Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
37
|
Cao Z, Liu J. Bacteria and bacterial derivatives as drug carriers for cancer therapy. J Control Release 2020; 326:396-407. [PMID: 32681947 DOI: 10.1016/j.jconrel.2020.07.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 01/21/2023]
Abstract
The application of bacteria and bacteria-derived membrane vesicles (MVs) has promising potential to make a great impact on the development of controllable targeted drug delivery for combatting cancer. Comparing to most other traditional drug delivery systems, bacteria and their MVs have unique capabilities as drug carriers for cancer treatment. They can overcome physical barriers to target and accumulate in tumor tissues and initiate antitumor immune responses. Furtherly, they are able to be modified both genetically and chemically, to produce and transport anticancer agents into tumor tissues with improved safety and efficacy of cancer treatment but decreased cytotoxic effects to normal cells. In this review, we present some examples of tumor-targeting bacteria and bacteria-derived MVs for the delivery of anticancer drugs, including chemo-therapeutic, radio-therapeutic, photothermal-therapeutic, and immuno-therapeutic agents. We also discuss the advantages as well as the limitations of these tumor-targeting bacteria and their MVs used as platforms for controlled delivery of anticancer therapeutic agents, and further highlight their great potential on clinical translation.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
38
|
Gheibi Hayat SM, Jaafari MR, Hatamipour M, Jamialahmadi T, Sahebkar A. Harnessing CD47 mimicry to inhibit phagocytic clearance and enhance anti-tumor efficacy of nanoliposomal doxorubicin. Expert Opin Drug Deliv 2020; 17:1049-1058. [PMID: 32434390 DOI: 10.1080/17425247.2020.1772749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND We hypothesized if phagocytosis of liposomes by macrophages could be mitigated through incorporation of a CD47 mimicry peptide (Self peptide: SP) on the surface of liposomes. METHODS Thin film hydration method followed by extrusion was used to prepare nanoliposomes, and Dox encapsulation in liposomes was done via remote-loading method. Decorated liposomes with SP peptide (SP-LD) at different peptide densities (300 and 600 peptides on the surface of each liposome) were prepared using a pre-insertion technique. Macrophage cell lines were used to compare the cellular uptake of decorated and unmodified liposomes. For biodistribution studies, tumor-bearing mice received the preparations, and fluorescence signals of Dox in different tissues were measured. To evaluate anti-tumor efficacy, tumor size and survival rates were assessed. Also, pharmacokinetic parameters were determined. RESULTS Compared with PEGylated liposomes, uptake by macrophages was largely decreased when SP was incorporated on liposomes. Following intravenous injection, SP-liposomes were cleared more slowly compared with PEGylated liposomes. Eventually, SP-liposomes were highly distributed to tumor tissues compared with PEGylated liposomes, and significantly reduced tumor size and improved the survival of tumor-bearing mice. CONCLUSIONS This research showed reduced macrophage uptake, increased blood circulation, and enhanced tumor accumulation of liposomes through SP incorporation on the surface of particles.
Collapse
Affiliation(s)
- Seyed Mohammad Gheibi Hayat
- Department of Medical Biotechnology, Faculty Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Mahmoud R Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch , Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA , Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences , Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences , Mashhad, Iran
| |
Collapse
|
39
|
Zhang J, Tan SB, Guo ZG. CD47 decline in pancreatic islet cells promotes macrophage-mediated phagocytosis in type I diabetes. World J Diabetes 2020; 11:239-251. [PMID: 32547698 PMCID: PMC7284019 DOI: 10.4239/wjd.v11.i6.239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/30/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type I diabetes (T1D) is characterized by insulin loss caused by inflammatory cells that excessively infiltrate and destroy the pancreas, resulting in dysregulation of tissue homeostasis, mechanobiological properties, and the immune response. The streptozotocin (STZ)-induced mouse model exhibits multiple features of human T1D and enables mechanistic analysis of disease progression. However, the relationship between the mechanochemical signaling regulation of STZ-induced T1D and macrophage migration and phagocytosis is unclear.
AIM To study the mechanochemical regulation of STZ-induced macrophage response on pancreatic beta islet cells to gain a clearer understanding of T1D.
METHODS We performed experiments using different methods. We stimulated isolated pancreatic beta islet cells with STZ and then tested the macrophage migration and phagocytosis.
RESULTS In this study, we discovered that the integrin-associated surface factor CD47 played a critical role in immune defense in the STZ-induced T1D model by preventing pancreatic beta islet inflammation. In comparison with healthy mice, STZ-treated mice showed decreased levels of CD47 on islet cells and reduced interaction of CD47 with signal regulatory protein α (SIRPα), which negatively regulates macrophage-mediated phagocytosis. This resulted in weakened islet cell immune defense and promoted macrophage migration and phagocytosis of target inflammatory cells. Moreover, lipopolysaccharide-activated human acute monocytic leukemia THP-1 cells also exhibited enhanced phagocytosis in the STZ-treated islets, and the aggressive attack of the inflammatory islets correlated with impaired CD47-SIRPα interactions. In addition, CD47 overexpression rescued the pre-labeled targeted cells.
CONCLUSION This study indicates that CD47 deficiency promotes the migration and phagocytosis of macrophages and provides mechanistic insights into T1D by associating the interactions between membrane structures and inflammatory disease progression.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu Province, China
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Su-Bee Tan
- National Key Laboratory for Biochemistry, College of Life Sciences, Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Zhi-Gang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu Province, China
| |
Collapse
|
40
|
Mishra A, Kataria I, Nair S. Pharmacokinetics and Systems Pharmacology of Anti-CD47 Macrophage Immune Checkpoint Inhibitor Hu5F9-G4. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/1875692117666190820105134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:
Hu5F9-G4, a human immunoglobulin G4 (IgG4) monoclonal antibody
(mAb) has recently been granted fast-track designation by the FDA for the treatment
of relapsed or refractory diffuse large B-cell lymphoma (DLBCL) and follicular
lymphoma. Hu5F9-G4 has the ability to block CD47-SIRPα signaling along with anti-
EGFR and anti-PD-L1 immune checkpoint activity that is involved in a variety of cancers
like solid tumors, Non-Hodgkin’s Lymphoma (NHL), colorectal cancer (CRC), breast,
ovarian and bladder cancers, and hematological malignancies. Thus, Hu5F9-G4 is an important
biologic that has increasing clinical relevance in cancer care.
Methods:
We queried PubMed, Web of Science, Google Scholar, Science Direct and Scopus
databases with keywords pertaining to Hu5F9-G4. In addition, we have included the
Hu5F9-G4 data presented at the 60th American Society of Hematology (ASH) Annual
Meeting, the American Society of Clinical Oncology (ASCO) Annual Meeting and 23rd
Congress of the European Hematology Association (EHA).
Results:
We discuss the mechanistic basis and preclinical evidence for the anticancer activity
of Hu5F9-G4. Further, we delineate clinical studies, alone and in combination with
anti-CD20 mAb rituximab, anti-EGFR mAb cetuximab, PD-L1 checkpoint inhibitors avelumab
and atezolizumab, and anti-HER2 mAb trastuzumab. Moreover, the potential adverse
effects, pharmacokinetics, and pharmacodynamics of Hu5F9-G4 with emphasis on
the role of CD47-SIRPα signaling in phagocytosis are presented.
Conclusions:
Taken together, we review the pharmacokinetics and systems pharmacology
of Hu5F9-G4 which appears to hold great promise for the future of cancer care.
Collapse
Affiliation(s)
- Adarsh Mishra
- Shobhaben Pratapbhai Patel School of Pharmacy &Technology Management, SVKM’s NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai – 400 056, India
| | - Ishant Kataria
- Shobhaben Pratapbhai Patel School of Pharmacy &Technology Management, SVKM’s NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai – 400 056, India
| | - Sujit Nair
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V. L. Mehta Road, Vile Parle (West), Mumbai - 400 056, India
| |
Collapse
|
41
|
Yaman S, Chintapula U, Rodriguez E, Ramachandramoorthy H, Nguyen KT. Cell-mediated and cell membrane-coated nanoparticles for drug delivery and cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:879-911. [PMID: 33796822 PMCID: PMC8011581 DOI: 10.20517/cdr.2020.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Nanotechnology-based drug delivery platforms have been developed over the last two decades because of their favorable features in terms of improved drug bioavailability and stability. Despite recent advancement in nanotechnology platforms, this approach still falls short to meet the complexity of biological systems and diseases, such as avoiding systemic side effects, manipulating biological interactions and overcoming drug resistance, which hinders the therapeutic outcomes of the NP-based drug delivery systems. To address these issues, various strategies have been developed including the use of engineered cells and/or cell membrane-coated nanocarriers. Cell membrane receptor profiles and characteristics are vital in performing therapeutic functions, targeting, and homing of either engineered cells or cell membrane-coated nanocarriers to the sites of interest. In this context, we comprehensively discuss various cell- and cell membrane-based drug delivery approaches towards cancer therapy, the therapeutic potential of these strategies, and the limitations associated with engineered cells as drug carriers and cell membrane-associated drug nanocarriers. Finally, we review various cell types and cell membrane receptors for their potential in targeting, immunomodulation and overcoming drug resistance in cancer.
Collapse
Affiliation(s)
- Serkan Yaman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Yaman S and Chintapula U contributed equally to this work
| | - Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Yaman S and Chintapula U contributed equally to this work
| | - Edgar Rodriguez
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Harish Ramachandramoorthy
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence Address: Dr. Kytai T. Nguyen, Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd ERB244, Arlington, TX 76010, USA. E-mail:
| |
Collapse
|
42
|
Cruz P, Sosoniuk-Roche E, Maldonado I, Torres CG, Ferreira A. Trypanosoma cruzi calreticulin: In vitro modulation of key immunogenic markers of both canine tumors and relevant immune competent cells. Immunobiology 2019; 225:151892. [PMID: 31837774 DOI: 10.1016/j.imbio.2019.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
Abstract
Recombinant calreticulin from Trypanosoma cruzi (rTcCalr), the parasite responsible for Chagas' disease, binds to Canine Transmissible Venereal Tumor (CTVT) cells from primary cultures and to a canine mammary carcinoma cell line. A Complement-binding assay indicated that interaction of the first component C1q with these tumor cells operated independently of the rTcCalr-presence. This apparent independence could be explained by the important structural similarities that exist among rTcCarl, endogenous normal canine and/or mutated calreticulins present in several types of cancer. In phagocytosis assays, tumor cells treated with rTcCalr were readily engulfed by macrophages and, co-cultured with DCs, accelerated their maturation. In addition, DCs maturation, induced by tumor cells co-cultured with rTcCalr, activated T cells more efficiently than DCs, treated or not with LPS. In an apparent paradox, a decrease in MHC Class I expression was observed when these tumor cells were co-cultivated with rTcCalr. This decrease may be related to a down regulation signaling promoting the rescue of MHC I. Possibly, these in vitro assays may be valid correlates of in vivo sceneries. Based on these results, we propose that rTcCalr improves in vitro the immunogenicity of two widely different tumor cell lines, thus suggesting that the interesting properties of rTcCalr to boost immune responses warrant future studies.
Collapse
Affiliation(s)
- P Cruz
- Laboratory of Immunology of Microbial Aggression, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Laboratory of Biomedicine and Regenerative Medicine, Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, 8820808, Chile
| | - E Sosoniuk-Roche
- Laboratory of Immunology of Microbial Aggression, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, 8380453, Chile
| | - I Maldonado
- Laboratory of Immunology of Microbial Aggression, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, 8380453, Chile
| | - C G Torres
- Laboratory of Biomedicine and Regenerative Medicine, Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, 8820808, Chile.
| | - A Ferreira
- Laboratory of Immunology of Microbial Aggression, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, 8380453, Chile.
| |
Collapse
|
43
|
Voets E, Paradé M, Lutje Hulsik D, Spijkers S, Janssen W, Rens J, Reinieren-Beeren I, van den Tillaart G, van Duijnhoven S, Driessen L, Habraken M, van Zandvoort P, Kreijtz J, Vink P, van Elsas A, van Eenennaam H. Functional characterization of the selective pan-allele anti-SIRPα antibody ADU-1805 that blocks the SIRPα-CD47 innate immune checkpoint. J Immunother Cancer 2019; 7:340. [PMID: 31801627 PMCID: PMC6894304 DOI: 10.1186/s40425-019-0772-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/05/2019] [Indexed: 11/30/2022] Open
Abstract
Background Accumulating preclinical data indicate that targeting the SIRPα/CD47 axis alone or in combination with existing targeted therapies or immune checkpoint inhibitors enhances tumor rejection. Although several CD47-targeting agents are currently in phase I clinical trials and demonstrate activity in combination therapy, high and frequent dosing was required and safety signals (acute anemia, thrombocytopenia) were recorded frequently as adverse events. Based on the restricted expression pattern of SIRPα we hypothesized that antibodies targeting SIRPα might avoid some of the concerns noted for CD47-targeting agents. Methods SIRPα-targeting antibodies were generated and characterized for binding to human SIRPα alleles and blockade of the interaction with CD47. Functional activity was established in vitro using human macrophages or neutrophils co-cultured with human Burkitt’s lymphoma cell lines. The effect of SIRPα versus CD47 targeting on human T-cell activation was studied using an allogeneic mixed lymphocyte reaction and a Staphylococcus enterotoxin B-induced T-cell proliferation assay. Potential safety concerns of the selected SIRPα-targeting antibody were addressed in vitro using a hemagglutination assay and a whole blood cytokine release assay, and in vivo in a single-dose toxicity study in cynomolgus monkeys. Results The humanized monoclonal IgG2 antibody ADU-1805 binds to all known human SIRPα alleles, showing minimal binding to SIRPβ1, while cross-reacting with SIRPγ, and potently blocking the interaction of SIRPα with CD47. Reduced FcγR binding proved critical to retaining its function towards phagocyte activation. In vitro characterization demonstrated that ADU-1805 promotes macrophage phagocytosis, with similar potency to anti-CD47 antibodies, and enhances neutrophil trogocytosis. Unlike CD47-targeting agents, ADU-1805 does not interfere with T-cell activation and is not expected to require frequent and extensive dosing due to the restricted expression of SIRPα to cells of the myeloid lineage. ADU-1805 is cross-reactive to cynomolgus monkey SIRPα and upon single-dose intravenous administration in these non-human primates (NHPs) did not show any signs of anemia, thrombocytopenia or other toxicities. Conclusions Blocking the SIRPα-CD47 interaction via SIRPα, while similarly efficacious in vitro, differentiates ADU-1805 from CD47-targeting agents with respect to safety and absence of inhibition of T-cell activation. The data presented herein support further advancement of ADU-1805 towards clinical development.
Collapse
Affiliation(s)
- Erik Voets
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | - Marc Paradé
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | | | | | | | - Joost Rens
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | | | | | | | | | | | | | | | - Paul Vink
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | - Andrea van Elsas
- Aduro Biotech Europe B.V, Oss, The Netherlands. .,Aduro Biotech, Inc., Berkeley, USA.
| | | |
Collapse
|
44
|
Cai D, Liu L, Han C, Ma X, Qian J, Zhou J, Zhu W. Cancer cell membrane-coated mesoporous silica loaded with superparamagnetic ferroferric oxide and Paclitaxel for the combination of Chemo/Magnetocaloric therapy on MDA-MB-231 cells. Sci Rep 2019; 9:14475. [PMID: 31597929 PMCID: PMC6785558 DOI: 10.1038/s41598-019-51029-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
To effectively inhibit the growth of breast cancer cells (MDA-MB-231 cells) by the combination method of chemotherapy and magnetic hyperthermia, we fabricated a biomimetic drug delivery (CSiFePNs) system composed of mesoporous silica nanoparticles (MSNs) containing superparamagnetic ferroferric oxide and Paclitaxel (PTX) coated with MDA-MB-231 cell membranes (CMs). In the in vitro cytotoxicity tests, the MDA-MB-231 cells incubated with CSiFePNs obtained IC50 value of 0.8 μgL-1, 3.5-fold higher than that of SiFePNs. The combination method of chemotherapy and magnetic hyperthermia can effectively inhibit the growth of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Likun Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Xiaoxing Ma
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jiayi Qian
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jianwen Zhou
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
45
|
Stealth functionalization of biomaterials and nanoparticles by CD47 mimicry. Int J Pharm 2019; 569:118628. [PMID: 31421198 DOI: 10.1016/j.ijpharm.2019.118628] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Polymeric biomaterials and nanoparticles (NPs) have shown a potential to be widely used for medical purposes. Functional limits of their biocompatibility depend on cellular and molecular responses between host and their artificial surfaces. Accordingly, medical devices of polymer biomaterials like endovascular stents, cardiopulmonary bypass circuits, and prostheses, may trigger inflammation or can be rejected by host due to the induction of immune responses. Furthermore, the main restriction to the use of NPs for medical purposes is their short in vivo circulation time because of their rapid clearance via the reticuloendothelial system. Various methods are under investigation to produce bioinert biomaterials and NPs. Currently, PEGylation and camouflaging are the most common approaches to enhance their biocompatibility. However, the disadvantages and limitations of these methods are leading to research new strategies. The CD47 molecule is well known as a widely expressed cellular surface receptor activating the transudction of the ''don't-eat-me'' signal. This review elaborates on the role of CD47 in the immune system and the application of CD47 mimicry peptides to produce bioinert biomaterials and NPs.
Collapse
|
46
|
Cao Z, Cheng S, Wang X, Pang Y, Liu J. Camouflaging bacteria by wrapping with cell membranes. Nat Commun 2019; 10:3452. [PMID: 31388002 PMCID: PMC6684626 DOI: 10.1038/s41467-019-11390-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria have been extensively utilized for bioimaging, diagnosis and therapy given their unique characteristics including genetic manipulation, rapid proliferation and disease site targeting specificity. However, clinical translation of bacteria for these applications has been largely restricted by their unavoidable side effects and low treatment efficacies. Engineered bacteria for biomedical applications ideally need to generate only a low inflammatory response, show slow elimination by macrophages, low accumulation in normal organs, and almost unchanged inherent bioactivities. Here we describe a set of stealth bacteria, cell membrane coated bacteria (CMCB), meeting these requirement. Our findings are supported by evaluation in multiple mice models and ultimately demonstrate the potential of CMCB to serve as efficient tumor imaging agents. Stealth bacteria wrapped up with cell membranes have the potential for a myriad of bacterial-mediated biomedical applications. The use of engineered bacteria for biomedical applications is limited by side effects such as inflammatory response. Here the authors engineer cell membrane coated bacteria as in vivo tumor imaging agents, and show that these generate a lower inflammatory response and reduced macrophage clearance.
Collapse
Affiliation(s)
- Zhenping Cao
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Shanshan Cheng
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Xinyue Wang
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China.
| | - Jinyao Liu
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China.
| |
Collapse
|
47
|
Xia Q, Zhang Y, Li Z, Hou X, Feng N. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 2019; 9:675-689. [PMID: 31384529 PMCID: PMC6663920 DOI: 10.1016/j.apsb.2019.01.011] [Citation(s) in RCA: 388] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Erythrocytes (red blood cells, RBCs) are the most abundant circulating cells in the blood and have been widely used in drug delivery systems (DDS) because of their features of biocompatibility, biodegradability, and long circulating half-life. Accordingly, a "camouflage" comprised of erythrocyte membranes renders nanoparticles as a platform that combines the advantages of native erythrocyte membranes with those of nanomaterials. Following injection into the blood of animal models, the coated nanoparticles imitate RBCs and interact with the surroundings to achieve long-term circulation. In this review, the biomimetic platform of erythrocyte membrane-coated nano-cores is described with regard to various aspects, with particular focus placed on the coating mechanism, preparation methods, verification methods, and the latest anti-tumor applications. Finally, further functional modifications of the erythrocyte membranes and attempts to fuse the surface properties of multiple cell membranes are discussed, providing a foundation to stimulate extensive research into multifunctional nano-biomimetic systems.
Collapse
Key Words
- ABC, accelerated blood clearance
- APCs, antigen presenting cells
- Antitumor
- AuNCs, gold nanocages
- AuNPs, gold nanoparticles
- Biomimetic nanoparticles
- C8bp, C8 binding protein
- CR1, complement receptor 1
- DAF, decay accelerating factor
- DDS, drug delivery systems
- DLS, dynamic light scattering
- Dox, doxorubicin
- Drug delivery
- ECM, extracellular matrix
- EPR, enhanced permeability and retention
- ETA, endothelin A
- EpCam, epithelial cell adhesion molecule
- FA, folic acid
- GA, gambogic acid
- H&E, hematoxylin and eosin
- HRP, homologous restriction protein
- MCP, membrane cofactor protein
- MNCs, magnetic nanoclusters
- MNs, magnetic nanoparticles
- MPS, mononuclear phagocyte system
- MRI, magnetic resonance imaging
- MSNs, mesoporous silica nanoparticles
- Membrane
- NIR, near-infrared radiation
- Nanoparticles
- PAI, photoacoustic imaging
- PBS, phosphate buffered saline
- PCL, poly(caprolactone)
- PDT, photodynamic therapy
- PEG, polyethylene glycol
- PFCs, perfluorocarbons
- PLA, poly(lactide acid)
- PLGA, poly(d,l-lactide-co-glycolide)
- PPy, polypyrrole
- PS, photosensitizers
- PTT, photothermal therapy
- PTX, paclitaxel
- RBCM-NPs, RBCM-coated nanoparticles
- RBCMs, RBC membranes
- RBCs, red blood cells
- RES, reticuloendothelial system
- ROS, reactive oxygen species
- RVs, RBCM-derived vesicles
- Red blood cells
- SEM, scanning electron microscopy
- SIRPα, signal-regulatory protein alpha
- TEM, transmission electron microscopy
- TEMPO, 2,2,6,6-tetramethylpiperidin-1-yl oxyl
- TPP, triphenylphosphonium
- UCNPs, upconversion nanoparticles
- UV, ultraviolet
- rHuPH20, recombinant hyaluronidase, PH20
Collapse
Affiliation(s)
| | | | | | | | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
48
|
Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles. 3 Biotech 2019; 9:279. [PMID: 31245243 DOI: 10.1007/s13205-019-1807-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022] Open
Abstract
Blood and the linings of blood vessels may be regarded as a fifth tissue type. The human body contains 5 × 109 red blood cells (RBCs) per ml, a total of 2.5 × 1013 cells in the 5 l of blood present in the body. With an average lifetime of 125 days, human RBCs are destroyed by leukocytes in the spleen and liver. Nowadays red blood cells are extensively used to study various metabolic functions. Nanoparticles (NP) are being widely accepted for drug delivery system. This review summarizes the red blood cells, NPs and their characteristics on the basis of the RBC components along with drug delivery systems through RBCs. Further, we also discussed that how erythrocytes can be used as an efficient in vitro model for evaluating the efficacy of various nanocomposite materials.
Collapse
|
49
|
Zhang L, Song S, Jin X, Wan X, Shahzad KA, Pei W, Zhao C, Shen C. An Artificial Antigen-Presenting Cell Delivering 11 Immune Molecules Expands Tumor Antigen–Specific CTLs in Ex Vivo and In Vivo Murine Melanoma Models. Cancer Immunol Res 2019; 7:1188-1201. [DOI: 10.1158/2326-6066.cir-18-0881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/19/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022]
|
50
|
Lee JY, Vyas CK, Kim GG, Choi PS, Hur MG, Yang SD, Kong YB, Lee EJ, Park JH. Red Blood Cell Membrane Bioengineered Zr-89 Labelled Hollow Mesoporous Silica Nanosphere for Overcoming Phagocytosis. Sci Rep 2019; 9:7419. [PMID: 31092899 PMCID: PMC6520393 DOI: 10.1038/s41598-019-43969-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/26/2019] [Indexed: 11/15/2022] Open
Abstract
Biomimetic nanoparticles (NPs) have been actively studied for their biological compatibility due to its distinguished abilities viz. long-term circulation, low toxicity, ease for surface modification, and its ability to avoid phagocytosis of NPs by macrophages. Coating the NPs with a variety of cell membranes bearing the immune control proteins increases drug efficacy while complementing the intrinsic advantages of the NPs. In this study, efforts were made to introduce oxophilic radiometal 89Zr with hollow mesoporous silica nanospheres (HMSNs) having abundant silanol groups and were bioengineered with red blood cell membrane (Rm) having cluster of differentiation 47 (CD47) protein to evaluate its long-term in vivo behavior. We were successful in demonstrating the increased in vivo stability of synthesized Rm-camouflaged, 89Zr-labelled HMSNs with the markedly reduced 89Zr release. Rm camouflaged 89Zr-HMSNs effectively accumulated in the tumor by avoiding phagocytosis of macrophages. In addition, re-injecting the Rm isolated using the blood of the same animal helped to overcome the immune barrier. This novel strategy can be applied extensively to identify the long-term in vivo behavior of nano-drugs while enhancing their biocompatibility.
Collapse
Affiliation(s)
- Jun Young Lee
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Chirag K Vyas
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Gun Gyun Kim
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Pyeong Seok Choi
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Min Goo Hur
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Seung Dae Yang
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Young Bae Kong
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Eun Je Lee
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Jeong Hoon Park
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea.
| |
Collapse
|