1
|
Parolini C. Pathophysiology of bone remodelling cycle: Role of immune system and lipids. Biochem Pharmacol 2025; 235:116844. [PMID: 40044049 DOI: 10.1016/j.bcp.2025.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Osteoporosis is the most common skeletal disease worldwide, characterized by low bone mineral density, resulting in weaker bones, and an increased risk of fragility fractures. The maintenance of bone mass relies on the precise balance between bone synthesis and resorption. The close relationship between the immune and skeletal systems, called "osteoimmunology", was coined to identify these overlapping "scientific worlds", and its function resides in the evaluation of the mutual effects of the skeletal and immune systems at the molecular and cellular levels, in both physiological and pathological states. Lipids play an essential role in skeletal metabolism and bone health. Indeed, bone marrow and its skeletal components demand a dramatic amount of daily energy to control hematopoietic turnover, acquire and maintain bone mass, and actively being involved in whole-body metabolism. Statins, the main therapeutic agents in lowering plasma cholesterol levels, are able to promote osteoblastogenesis and inhibit osteoclastogenesis. This review is meant to provide an updated overview of the pathophysiology of bone remodelling cycle, focusing on the interplay between bone, immune system and lipids. Novel therapeutic strategies for the management of osteoporosis are also discussed.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', via Balzaretti 9 - Università degli Studi di Milano 20133 Milano, Italy.
| |
Collapse
|
2
|
Conceição GSA, Pinto KP, Ferreira CMA, de Souza JB, Lopes RT, Coelho BP, Sassone LM, da Silva EJNL. Detrimental effects of chronic sugar-sweetened carbonated soft drink consumption on inflammatory response and the size of apical periodontitis: An animal-based study. Int Endod J 2025; 58:579-586. [PMID: 39815648 DOI: 10.1111/iej.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
AIM This study aimed to evaluate the effects of chronic consumption of two sugar-sweetened carbonated soft drinks - one containing caffeine (Coca-Cola®) and one without (Sprite®) - on the progression of periapical lesions and the levels of pro-inflammatory cytokines in rats. METHODOLOGY Twelve Wistar rats were divided into three groups (n = 4): Control group, Coca-Cola group and Sprite group. The rats in Coca-Cola and Sprite groups were given ad libitum access to their respective soft drinks for 3 months, while the Control group received filtered water. After 2 months of consumption, the pulps of the lower left first molars were exposed for 28 days to induce periapical lesions. Following euthanasia, the jaws were removed, and the periapical lesions were assessed using micro-computed tomography imaging. Blood samples were collected to analyse the pro-inflammatory cytokines IL-1β, IL-6, IL-2, IL-17 and TNF-α via Luminex assay. Non-parametric data were analysed using the Kruskal-Wallis test followed by Dunn's test, while parametric data were analysed using one-way ANOVA followed by Tukey's test (p < 0.05). RESULTS Both the Coca-Cola and Sprite groups exhibited periapical lesions with significantly greater volume and diameter compared to the Control group (p < 0.05). Additionally, both soft drink groups had significantly higher levels of IL-1β, IL-6 and IL-2 compared to the Control group (p < 0.05). The Sprite group displayed significantly higher levels of IL-1β than the Coca-Cola group (p < 0.05), while the Coca-Cola group showed significantly elevated TNF-α levels compared to both the Control and Sprite groups (p < 0.05). No significant differences in IL-17 levels were observed among the groups (p > 0.05). CONCLUSIONS The chronic consumption of sugar-sweetened carbonated soft drinks, regardless of caffeine content, has detrimental effects on the inflammatory response and progression of apical periodontitis in rats.
Collapse
Affiliation(s)
- Gabriela Serrão Abreu Conceição
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Karem Paula Pinto
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Claudio Malizia Alves Ferreira
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Jenif Braga de Souza
- Laboratory of Experimental Surgery, School of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bárbara P Coelho
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Luciana Moura Sassone
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Emmanuel João Nogueira Leal da Silva
- Department of Integrated Clinical Procedures, School of Dentistry, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
- Departament of Endodontics, Grande Rio University (UNIGRANRIO), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Kreller T, Boccaccini AR, Jonitz-Heincke A, Detsch R. Alternating electrical fields to stimulate osteogenic cells and biomimetic calcium phosphate-coated titanium substrates-A combinatorial approach to bone regeneration. BIOMATERIALS ADVANCES 2025; 169:214191. [PMID: 39842166 DOI: 10.1016/j.bioadv.2025.214191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Biophysical stimuli such as alternating electrical fields can mimic endogenous electrical potentials and currents in natural bone. This can help to improve the healing and reconstruction of bone tissue. However, little is known about the combined influence of biomaterials and alternating electric fields on bone cells. Therefore, this study aimed to investigate the impact of both, biomaterials and alternating electric fields, on osteoblast as well as osteoclast differentiation. Initially, either RAW 264.7 or MC3T3-E1 cells were seeded on Ti6Al4V substrates as a load-bearing implant material, modified with biomimetic calcium phosphate (BCP), or uncoated as a reference. The cells were stimulated towards osteoclastic and osteoblastic differentiation via respective growth factors. The effects of BCP substrate modification on cell differentiation were examined after 7 days for RAW 264.7 and after 14 days for MC3T3-E1 cells. In a further series of tests, either RAW 264.7 or MC3T3-E1 cells were seeded on BCP-modified Ti6Al4V substrates, stimulated towards differentiation using growth factors, and further electrically stimulated via alternating electric fields of different voltages and frequencies. In parallel to the first test series RAW 264.7 and MC3T3-E1 cells were stimulated for 7 and 14 days, respectively. Cell morphology was examined via scanning electron microscopy. Cell viabilities were assessed via WST-8 assay. Electrically stimulated MC3T3-E1 cell orientation was evaluated based on fluorescence microscopy images. Marker genes were examined via qPCR. While BCP increased osteoclast-specific gene expression, it had the opposite effect on osteoblast-related genes compared to respective cells seeded on uncoated Ti6Al4V substrates. ES with different parameters showed a broad cellular response due to electrocoupling. While cell viability assessments and gene expression analyses showed clear differences between ES samples and unstimulated controls, only minor cell morphology and orientation differences were observed. Furthermore, there was no clear trend towards a dominant influence of either voltage or frequency as control parameters. Further studies were initiated to investigate the underlying intracellular mechanisms targeted by ES. This work provides an introduction to the targeted control of cellular processes using defined electric fields. The optimization of voltage and frequency could provide therapeutic windows to control specific cellular functions and potentially improve bone regeneration and remodeling processes.
Collapse
Affiliation(s)
- T Kreller
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - A Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany
| | - R Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
4
|
Seo J, Ko R, Kim M, Seo J, Lee H, Kim D, Jeong W, Kim HS, Lee SY. Pim1 promotes the maintenance of bone homeostasis by regulating osteoclast function. Exp Mol Med 2025:10.1038/s12276-025-01421-4. [PMID: 40164682 DOI: 10.1038/s12276-025-01421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
The Pim1 (proviral integration site for Moloney leukemia virus 1) protein is a serine/threonine kinase that is essential for cell proliferation, apoptosis and innate immune responses. Here we show that Pim1 promotes osteoclast resorptive function without affecting osteoclast numbers. Specifically, we found that mice lacking Pim1 (Pim1-/-) developed increased trabecular bone mass and indices such as trabecular bone-mass density. This was due to the direct phosphorylation of TRAF6 by Pim1 in mature osteoclasts, which activated the Akt-GSK3β signaling pathway. This, in turn, promoted the acetylation and consequent stabilization of microtubules, which permitted the formation of the osteoclast sealing zone. In vivo experiments then showed that, when mice with lipopolysaccharide-induced bone loss or tumor-induced osteolysis were treated with SGI-1776, a Pim1 inhibitor that is more selective for Pim1, the bone loss was significantly ameliorated. Thus, Pim1 plays an important role in osteoclast function and may be a therapeutic target for bone-related diseases.
Collapse
Affiliation(s)
- Jeongin Seo
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Ryeojin Ko
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Minhee Kim
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Jeongmin Seo
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Woojin Jeong
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea.
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea.
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
5
|
Andreasen CM, Wölfel EM, Ejersted C, Andersen TL, Frost M. Type 2 diabetes patients exhibit delayed but coupled bone remodelling, maintaining cortical porosity comparable to healthy controls: A histomorphometric analysis of trans-iliac bone biopsies. Bone 2025; 193:117412. [PMID: 39884487 DOI: 10.1016/j.bone.2025.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/06/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVE Fracture risk is increased in longstanding type 2 diabetes (T2D). High-resolution peripheral quantitative CT scans have demonstrated higher cortical porosity in T2D complicated by microvascular disease (MVD). We investigated if cortical bone resorption is followed by inadequate bone formation in individuals with T2D complicated by MVD. METHODS Thirty-five adult men and women with T2D were recruited from outpatient clinics and through public advertisement. All participants had at least one previous measure of c-peptide >700, a negative GAD antibody test, and 13 had known microvascular disease status. Trans iliac crest bone biopsies were collected for histomorphometric analysis. Glucose control was assessed using HbA1c. Additionally, trans iliac bone specimens from 10 individuals without T2D were included as controls. RESULTS Following quality assessment, samples from 30 T2D and 10 controls were used for histomorphometric analyses of cortical bone remodelling. The final study population included 23 men and 7 postmenopausal women with a mean age of 65.8 years for the T2D-MVD group (CI95% 61.2-70.3) and 65.2 years in the T2D + MVD group (CI95% 59.6-70.9), and a mean T2D disease duration of 16.9 years. Seventeen had MVD (57 %). The controls included 5 men and 5 women with a mean age of 64.7 years (CI95% 58.5-70.9). The area, diameter, and density of cortical pores were the same in cases with and without MVD, but the pore diameter was lower than controls. While T2D had significantly more eroded-formative pores compared to controls, there were no significant differences in the proportion of eroded and formative pores between the groups. In quiescent pores/osteons, the osteon diameter and wall thickness were larger in T2D groups than controls. CONCLUSION Cortical bone porosity was not increased in individuals with T2D complicated by MVD. However, an enhanced prevalence of eroded-formative pores and increased osteon diameter concur with a slightly prolonged reversal-resorption phase in T2D irrespective of the presence of MVD.
Collapse
Affiliation(s)
- C M Andreasen
- Molecular Bone Histology Laboratory (MBH lab), Research Unit of Pathology, Dept. of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; Department of Pathology, Odense University Hospital, DK-5000 Odense C, Denmark.
| | - E M Wölfel
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - C Ejersted
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - T L Andersen
- Molecular Bone Histology Laboratory (MBH lab), Research Unit of Pathology, Dept. of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; Department of Pathology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - M Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark; Steno Diabetes Centre Odense, Odense University Hospital, DK-5000 Odense C, Denmark
| |
Collapse
|
6
|
Regner AM, DeLeon M, Gibbons KD, Howard S, Nesbitt DQ, Darghiasi SF, Zavala AG, Lujan TJ, Fitzpatrick CK, Farach-Carson MC, Wu D, Uzer G. Increased deformations are dispensable for encapsulated cell mechanoresponse in engineered bone analogs mimicking aging bone marrow. MECHANOBIOLOGY IN MEDICINE 2025; 3:100097. [PMID: 40134991 PMCID: PMC11936507 DOI: 10.1016/j.mbm.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Aged individuals and astronauts experience bone loss despite rigorous physical activity. Bone mechanoresponse is in-part regulated by mesenchymal stem cells (MSCs) that respond to mechanical stimuli. Direct delivery of low intensity vibration (LIV) recovers MSC proliferation in senescence and simulated microgravity models, indicating that age-related reductions in mechanical signal delivery within bone marrow may contribute to declining bone mechanoresponse. To answer this question, we developed a 3D bone marrow analog that controls trabecular geometry, marrow mechanics and external stimuli. Validated finite element (FE) models were developed to quantify strain environment within hydrogels during LIV. Bone marrow analogs with gyroid-based trabeculae of scaffold volume fractions (SV/TV) corresponding to adult (25 %) and aged (13 %) mice were printed using polylactic acid (PLA). MSCs encapsulated in migration-permissive hydrogels within printed trabeculae showed robust cell populations on both PLA surface and hydrogel within a week. Following 14 days of LIV treatment (1 g, 100 Hz, 1 h/day), cell proliferation, type-I collagen (Collagen-I) and filamentous actin (F-actin) were quantified for the cells in the hydrogel fraction. While LIV increased all measured outcomes, FE models predicted higher von Mises strains for the 13 % SV/TV groups (0.2 %) when compared to the 25 % SV/TV group (0.1 %). While LIV increased collagen-I volume 34 % more in 13 % SV/TV groups when compared to 25 % SV/TV groups, collagen-I and F-actin measures remained lower in the 13 % SV/TV groups when compared to 25 % SV/TV counterparts, indicating that both LIV-induced strains and scaffold volume fraction (i.e. available scaffold surface) affect cell behavior in the hydrogel phase. Overall, bone marrow analogs offer a robust and repeatable platform to study bone mechanobiology.
Collapse
Affiliation(s)
- Alexander M. Regner
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | - Maximilien DeLeon
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry, USA
- Department of Bioengineering, Rice University, USA
| | - Kalin D. Gibbons
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | - Sean Howard
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | | | | | - Anamaria G. Zavala
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | - Trevor J. Lujan
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | | | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry, USA
- Department of Bioengineering, Rice University, USA
- Department of Biosciences, Rice University, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry, USA
- Department of Bioengineering, Rice University, USA
| | - Gunes Uzer
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| |
Collapse
|
7
|
Cong T, Morse KW, Sosa BR, Lane JM, Rodeo SA, Greenblatt MB. Skeletal Stem Cells: A Basis for Orthopaedic Pathology and Tissue Repair. J Bone Joint Surg Am 2025; 107:418-426. [PMID: 39693451 PMCID: PMC11839314 DOI: 10.2106/jbjs.24.00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
➢ Skeletal stem cells (SSCs) continually replenish mature cell populations to support skeletal homeostasis.➢ SSCs repopulate by self-renewal, have multilineage potential, and are long-lived in vivo.➢ SSCs express specific combinations of cell surface markers that reflect their lineage identity.➢ SSCs adapt to their anatomic environment to support regional differences in skeletal behavior and pathology.
Collapse
Affiliation(s)
- Ting Cong
- Department of Orthopaedic Surgery, UPMC Sports Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Orthopedic Surgery, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Kyle W Morse
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Branden R Sosa
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Joseph M Lane
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
8
|
Ninomiya H, Fukuda S, Nishida-Fukuda H, Shibata Y, Sato T, Nakamichi Y, Nakamura M, Udagawa N, Miyazawa K, Suzuki T. Osteoprotegerin secretion and its inhibition by RANKL in osteoblastic cells visualized using bioluminescence imaging. Bone 2025; 191:117319. [PMID: 39500402 DOI: 10.1016/j.bone.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
Bone remodeling is regulated by the interaction between receptor activator of nuclear factor kappa-B ligand (RANKL) and its receptor RANK on osteoblasts and osteoclasts, respectively. Osteoprotegerin (OPG) is secreted from osteoblasts and inhibits osteoclast differentiation by acting as a decoy receptor for RANKL. Despite its importance, the mechanism underlying the secretion of OPG remains poorly understood. Here, we applied a method of video-rate bioluminescence imaging using a fusion protein with Gaussia luciferase (GLase) and visualized the secretion of OPG from living mouse osteoblastic MC3T3-E1 cells. The bioluminescence imaging revealed that the secretion of OPG fused to GLase (OPG-GLase) occurred frequently and widely across the cell surface. Notably, co-expression of RANKL significantly reduced the secretion of OPG-GLase, indicating an inhibitory role of RANKL on OPG secretion within cells. Further imaging and biochemical analyses using deletion mutants of OPG and RANKL, as well as RANKL mutants that cause autosomal recessive osteopetrosis, demonstrated the essential role of protein-protein interaction between OPG and RANKL in the inhibition of OPG secretion. Treatment with proteasome inhibitors resulted in increased levels of OPG in both culture medium and cell lysates. However, the fold-increase of OPG was similar regardless of the presence or absence of RANKL, suggesting that the regulation of OPG secretion by RANKL is independent of proteasome activity. This report visualized the secretion of OPG from living cells and provided evidence for a novel intracellular inhibitory effect of RANKL on OPG secretion.
Collapse
Affiliation(s)
- Hotsuna Ninomiya
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan; Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Shinji Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Hisayo Nishida-Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yuto Shibata
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan; Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Yuko Nakamichi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Takahiro Suzuki
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| |
Collapse
|
9
|
Nasme F, Behera J, Tyagi P, Debnath N, Falcone JC, Tyagi N. The potential link between the development of Alzheimer's disease and osteoporosis. Biogerontology 2025; 26:43. [PMID: 39832071 DOI: 10.1007/s10522-024-10181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) and osteoporosis (OP) pose distinct but interconnected health challenges, both significantly impacting the aging population. AD, a neurodegenerative disorder characterized by memory impairment and cognitive decline, is primarily associated with the accumulation of abnormally folded amyloid beta (Aβ) peptides and neurofibrillary tangles in the brain. OP, a skeletal disorder marked by low bone mineral density, involves dysregulation of bone remodeling and is associated with an increased risk of fractures. Recent studies have revealed an intriguing link between AD and OP, highlighting shared pathological features indicative of common regulatory pathophysiological pathways. In this article, we elucidate the signaling mechanisms that regulate the pathology of AD and OP and offer insights into the intricate network of factors contributing to these conditions. We also examine the role of bone-derived factors in the progression of AD, underscoring the plausibility of bidirectional communication between the brain and the skeletal system. The presence of amyloid plaques in the brain of individuals with AD is akin to the accumulation of brain Aβ in vascular dementia, pointing towards the need for further investigation of shared molecular mechanisms. Moreover, we discuss the role of bone-derived microRNAs that may regulate the pathological progression of AD, providing a novel perspective on the role of skeletal factors in neurodegenerative diseases. The insights presented here should help researchers engaged in exploring innovative therapeutic approaches targeting both neurodegenerative and skeletal disorders in aging populations.
Collapse
Affiliation(s)
- Fariha Nasme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jyotirmaya Behera
- Division of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Prisha Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu, Jammu & Kashmir, 181143, India
| | - Jeff C Falcone
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
Bahrami M, Khonakdar H, Moghaddam A, Mahand SN, Bambizi PE, Kruppke B, Khonakdar HA. A review of the current status and future prospects of the bone remodeling process: Biological and mathematical perspectives. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:16-33. [PMID: 39423965 DOI: 10.1016/j.pbiomolbio.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
This review dives into the complex dynamics of bone remodeling, combining biological insights with mathematical perspectives to better understand this fundamental aspect of skeletal health. Bone, being a crucial part of our body, constantly renews itself, and with the growing number of individuals facing bone-related issues, research in this field is vital. In this review, we categorized and classified most common mathematical models used to simulate the mechanical behavior of bone under different loading and health conditions, shedding light on the evolving landscape of bone biology. While current models have effectively captured the essence of healthy bone remodeling, the ever-expanding knowledge in bone biology suggests an update in mathematical methods. Knowing the role of the skeleton in whole-body physiology, and looking at the recent discoveries about activities of bone cells emphasize the urgency of refining our mathematical descriptions of the bone remodeling process. The underexplored impact of bone diseases like osteoporosis, Paget's disease, or breast cancer on bone remodeling also points to the need for intensified research into diverse disease types and their unique effects on bone health. By reviewing a range of bone remodeling models, we show the necessity for tailor-made mathematical models to decipher their roots and enhance patient treatment strategies. Collaboration among scientists from various domains is pivotal to surmount these challenges, ensuring improved accuracy and applicability of mathematical models. Ultimately, this effort aims to deepen our understanding of bone remodeling processes and their broader implications for diverse health conditions.
Collapse
Affiliation(s)
- Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
| | - Hanieh Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran 14965-115, Iran
| | - Armaghan Moghaddam
- Department of Polyurethane and Advanced Materials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran 14965-115, Iran
| | - Saba Nemati Mahand
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran 14965-115, Iran
| | - Poorya Esmaili Bambizi
- Mechanical Engineering Department, University of Tehran, 16th Azar St, Enghelab Ave, Tehran 4563-11155 - Iran
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran 14965-115, Iran; Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany.
| |
Collapse
|
11
|
Naik A, Kale AA, Rajwade JM. Sensing the future: A review on emerging technologies for assessing and monitoring bone health. BIOMATERIALS ADVANCES 2024; 165:214008. [PMID: 39213957 DOI: 10.1016/j.bioadv.2024.214008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Bone health is crucial at all stages of life. Several medical conditions and changes in lifestyle affect the growth, structure, and functions of bones. This may lead to the development of bone degenerative disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc., which are major public health concerns worldwide. Accurate and reliable measurement and monitoring of bone health are important aspects for early diagnosis and interventions to prevent such disorders. Significant progress has recently been made in developing new sensing technologies that offer non-invasive, low-cost, and accurate measurements of bone health. In this review, we have described bone remodeling processes and common bone disorders. We have also compiled information on the bone turnover markers for their use as biomarkers in biosensing devices to monitor bone health. Second, this review details biosensing technology for bone health assessment, including the latest developments in various non-invasive techniques, including dual-energy X-ray absorptiometry, magnetic resonance imaging, computed tomography, and biosensors. Further, we have also discussed the potential of emerging technologies, such as biosensors based on nano- and micro-electromechanical systems and application of artificial intelligence in non-invasive techniques for improving bone health assessment. Finally, we have summarized the advantages and limitations of each technology and described clinical applications for detecting bone disorders and monitoring treatment outcomes. Overall, this review highlights the potential of emerging technologies for improving bone health assessment with the potential to revolutionize clinical practice and improve patient outcomes. The review highlights key challenges and future directions for biosensor research that pave the way for continued innovations to improve diagnosis, monitoring, and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Amruta Naik
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| | - Anup A Kale
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India
| | - Jyutika M Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, Maharashtra, India.
| |
Collapse
|
12
|
Chen Z, Jiang M, Mo L, Zhou C, Huang H, Ma C, Wang Z, Fan Y, Chen Z, Fang B, Liu Y. A natural agent, 5-deoxycajanin, mitigates estrogen-deficiency bone loss via modulating osteoclast-osteoblast homeostasis. Int Immunopharmacol 2024; 141:112906. [PMID: 39173403 DOI: 10.1016/j.intimp.2024.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Hyperactive osteoclasts and hypoactive osteoblasts usually result in osteolytic conditions such as estrogen-deficiency bone loss. Few natural compounds that both attenuating bone resorption and enhancing bone formation could exert effects on this imbalance. 5-Deoxycajanin (5-D), an isoflavonoid extracted from Cajan leaf with estrogen-like properties, were found to have beneficial pharmacological effects on rebalancing the activities of osteoclasts and osteoblasts. This study revealed that 5-D at the same concentration could inhibit osteoclastogenesis of BMMs and promoted osteoblast differentiation of BMSCs. 5-D not only attenuated the fluorescent formation of RANKL-induced F-actin belts and NFATc1, but also activated ALP and RUNX2 expressions. As to downstream factor expressions, 5-D could block osteoclast-specific genes and proteins including NFATc1 and CTSK, while increased osteogenic genes and proteins including OPG and OCN, as confirmed by Real-time PCR and Western Blotting. Additionally, the network pharmacology and molecular docking identified the involvement of 5-D in the MIF and MAPK signaling pathways and the stable binding between 5-D and MAPK2K1. Further Western blot studies showed that 5-D decreased the phosphorylation of p38 and ERK in osteoclasts, but promoted these phosphorylations in osteoblasts. In a female C57BL/6J mouse model of estrogen deficiency-induced bone loss, 5-D demonstrated efficacy in enhancing BMD through attenuating osteoclast activities and promoting osteogenesis. These results underscore the potential application of 5-D on treating osteolysis resulting from hyperactive osteoclasts and hypoactive osteoblasts, shedding light on modulating osteoclast-osteoblast homeostasis.
Collapse
Affiliation(s)
- Zhiwen Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengyu Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Mo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chi Zhou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoran Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Yangjiang Hospital of Traditional Chinese Medicine, Yangjiang, China
| | - Chao Ma
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangzheng Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinuo Fan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenqiu Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Bin Fang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuhao Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
13
|
Seo YJ, Park JH, Byun JH. Therapeutic Potential of Stearoyl-CoA Desaturase1 (SCD1) in Modulating the Effects of Fatty Acids on Osteoporosis. Cells 2024; 13:1781. [PMID: 39513888 PMCID: PMC11544805 DOI: 10.3390/cells13211781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoporosis is a common skeletal disease, primarily associated with aging, that results from decreased bone density and bone volume. This reduction significantly increases the risk of fractures in osteoporosis patients compared to individuals with normal bone density. Additionally, the bone regeneration process in these patients is slow, making complete healing difficult. Along with the decline in bone volume and density, osteoporosis is characterized by an increase in marrow adipose tissue (MAT), which is fat within the bone. In this altered bone microenvironment, osteoblasts are influenced by various factors secreted by adipocytes. Notably, saturated fatty acids promote osteoclast activity, inhibit osteoblast differentiation, and induce apoptosis, further reducing osteoblast formation. In contrast, monounsaturated fatty acids inhibit osteoclast formation and mitigate the apoptosis caused by saturated fatty acids. Leveraging these properties, we aimed to investigate the effects of overexpressing stearoyl-CoA desaturase 1 (SCD1), an enzyme that converts saturated fatty acids into monounsaturated fatty acids, on osteogenic differentiation and bone regeneration in both in vivo and in vitro models. Through this novel approach, we seek to develop a stem cell-based therapeutic strategy that harnesses SCD1 to improve bone regeneration in the adipocyte-rich osteoporotic environment.
Collapse
Affiliation(s)
- Young-Jin Seo
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea;
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin-Ho Park
- Department of Nutritional Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA;
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea;
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
14
|
El-Masri BM, Andreasen CM, Laursen KS, Kofod VB, Dahl XG, Nielsen MH, Thomsen JS, Brüel A, Sørensen MS, Hansen LJ, Kim AS, Taylor VE, Massarotti C, McDonald MM, You X, Charles JF, Delaisse JM, Andersen TL. Mapping RANKL- and OPG-expressing cells in bone tissue: the bone surface cells as activators of osteoclastogenesis and promoters of the denosumab rebound effect. Bone Res 2024; 12:62. [PMID: 39424806 PMCID: PMC11489716 DOI: 10.1038/s41413-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/21/2024] Open
Abstract
Denosumab is a monoclonal anti-RANKL antibody that inhibits bone resorption, increases bone mass, and reduces fracture risk. Denosumab discontinuation causes an extensive wave of rebound resorption, but the cellular mechanisms remain poorly characterized. We utilized in situ hybridization (ISH) as a direct approach to identify the cells that activate osteoclastogenesis through the RANKL/OPG pathway. ISH was performed across species, skeletal sites, and following recombinant OPG (OPG:Fc) and parathyroid hormone 1-34 (PTH) treatment of mice. OPG:Fc treatment in mice induced an increased expression of RANKL mRNA mainly in trabecular, but not endocortical bone surface cells. Additionally, a decreased expression of OPG mRNA was detected in bone surface cells and osteocytes of both compartments. A similar but more pronounced effect on RANKL and OPG expression was seen one hour after PTH treatment. These findings suggest that bone surface cells and osteocytes conjointly regulate the activation of osteoclastogenesis, and that OPG:Fc treatment induces a local accumulation of osteoclastogenic activation sites, ready to recruit and activate osteoclasts upon treatment discontinuation. Analysis of publicly available single-cell RNA sequencing (scRNAseq) data from murine bone marrow stromal cells revealed that Tnfsf11+ cells expressed high levels of Mmp13, Limch1, and Wif1, confirming their osteoprogenitor status. ISH confirmed co-expression of Mmp13 and Tnfsf11 in bone surface cells of both vehicle- and OPG:Fc-treated mice. Under physiological conditions of human/mouse bone, RANKL is expressed mainly by osteoprogenitors proximate to the osteoclasts, while OPG is expressed mainly by osteocytes and bone-forming osteoblasts.
Collapse
Affiliation(s)
- Bilal M El-Masri
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Christina M Andreasen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Kaja S Laursen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Viktoria B Kofod
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Xenia G Dahl
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Malene H Nielsen
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mads S Sørensen
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lars J Hansen
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Albert S Kim
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Victoria E Taylor
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Caitlyn Massarotti
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Michelle M McDonald
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cancer Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Xiaomeng You
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean-Marie Delaisse
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Thomas L Andersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark.
- Department of Pathology, Odense University Hospital, Odense, Denmark.
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
15
|
Roseti L, Borciani G, Grassi F, Desando G, Gambari L, Grigolo B. Nutraceuticals in osteoporosis prevention. Front Nutr 2024; 11:1445955. [PMID: 39416651 PMCID: PMC11479890 DOI: 10.3389/fnut.2024.1445955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Nutraceuticals are gaining popularity as they can contribute to bone health by delaying the onset or slowing down the progression of pathological bone loss. Osteoporosis's bone loss is a concern for older adults and a crucial aspect of aging. Maintaining healthy bones is the key to living a full and active life. Our review explores the current knowledge on the role of nutraceuticals in preventing osteoporosis by focusing on three main aspects. First, we provide an overview of osteoporosis. Second, we discuss the latest findings on natural nutraceuticals and their efficacy in reducing bone loss, emphasizing clinical trials. Third, we conduct a structured analysis to evaluate nutraceuticals' pros and cons and identify translational gaps. In conclusion, we must address several challenges to consolidate our knowledge, better support clinicians in their prescriptions, and provide people with more reliable nutritional recommendations to help them lead healthier lives.
Collapse
Affiliation(s)
| | - Giorgia Borciani
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | | | | |
Collapse
|
16
|
Harrison K, Loundagin L, Hiebert B, Panahifar A, Zhu N, Marchiori D, Arnason T, Swekla K, Pivonka P, Cooper D. Glucocorticoids disrupt longitudinal advance of cortical bone basic multicellular units in the rabbit distal tibia. Bone 2024; 187:117171. [PMID: 38901788 DOI: 10.1016/j.bone.2024.117171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Glucocorticoids (GCs) are the leading cause of secondary osteoporosis. The emerging perspective, derived primarily from 2D histological study of trabecular bone, is that GC-induced bone loss arises through the uncoupling of bone formation and resorption at the level of the basic multicellular unit (BMU), which carries out bone remodeling. Here we explore the impact of GCs on cortical bone remodeling in the rabbit model. Based upon the rapid reduction of bone formation and initial elevation of resorption caused by GCs, we hypothesized that the rate of advance (longitudinal erosion rate; LER) of cortical BMUs would be increased. To test this hypothesis we divided 20 female New Zealand White rabbits into four experimental groups: ovariohysterectomy (OVH), glucocorticoid (GC), OVH + GC and SHAM controls (n = 5 animals each). Ten weeks post-surgery (OVH or sham), and two weeks after the initiation of dosing (daily subcutaneous injections of 1.5 mg/kg of methylprednisolone sodium succinate in the GC-treated groups and 1 ml of saline for the others), the right tibiae were scanned in vivo using Synchrotron Radiation (SR) in-line phase contrast micro-CT at the Canadian Light Source. After an additional 2 weeks of dosing, the rabbits were euthanized and ex vivo images were collected using desktop micro-CT. The datasets were co-registered in 3D and LER was calculated as the distance traversed by BMU cutting-cones in the 14-day interval between scans. Counter to our hypothesis, LER was greatly reduced in GC-treated rabbits. Mean LER was lower in GC (4.27 μm/d; p < 0.001) and OVH + GC (4.19 μm/d; p < 0.001), while similar in OVH (40.13 μm/d; p = 0.990), compared to SHAM (40.44 μm/d). This approximately 90 % reduction in LER with GCs was also associated with an overall disruption of BMU progression, with radial expansion of the remodeling space occurring in all directions. This unexpected outcome suggests that GCs do not simply uncouple formation and resorption within cortical BMUs and highlights the value of the time-lapsed 4D approach employed.
Collapse
Affiliation(s)
- Kim Harrison
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Lindsay Loundagin
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Beverly Hiebert
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Arash Panahifar
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Canada; Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Ning Zhu
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Canada; Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Denver Marchiori
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Terra Arnason
- Medicine Dept of Endocrinology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Kurtis Swekla
- Animal Care and Research Support Office, Office of the Vice President of Research, University of Saskatchewan, Saskatoon, Canada
| | - Peter Pivonka
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - David Cooper
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
17
|
Wölfel EM, Fernandez-Guerra P, Nørgård MØ, Jeromdesella S, Kjær PK, Elkjær AS, Kassem M, Figeac F. Senescence of skeletal stem cells and their contribution to age-related bone loss. Mech Ageing Dev 2024; 221:111976. [PMID: 39111640 DOI: 10.1016/j.mad.2024.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/18/2024]
Abstract
Human aging is linked to bone loss, resulting in bone fragility and an increased risk of fractures. This is primarily due to an age-related decline in the function of bone-forming osteoblastic cells and accelerated cellular senescence within the bone microenvironment. Here, we provide a detailed discussion of the hypothesis that age-related defective bone formation is caused by senescence of skeletal stem cells, as they are the main source of bone forming osteoblastic cells and influence the composition of bone microenvironment. Furthermore, this review discusses potential strategies to target cellular senescence as an emerging approach to treat age-related bone loss.
Collapse
Affiliation(s)
- Eva M Wölfel
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Paula Fernandez-Guerra
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Mikkel Ørnfeldt Nørgård
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Shakespeare Jeromdesella
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Pernille Kirkegaard Kjær
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Anna Sofie Elkjær
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Moustapha Kassem
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark; Institute of Cellular and Molecular Medicine (ICMM), Panum Institute, University of Copenhagen, 3B Blegdamsvej, Copenhagen N 2200, Denmark.
| | - Florence Figeac
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| |
Collapse
|
18
|
Kolipaka R, Magesh I, Bharathy MA, Karthik S, Saranya I, Selvamurugan N. A potential function for MicroRNA-124 in normal and pathological bone conditions. Noncoding RNA Res 2024; 9:687-694. [PMID: 38577015 PMCID: PMC10990750 DOI: 10.1016/j.ncrna.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/06/2024] Open
Abstract
Cells produce short single-stranded non-coding RNAs (ncRNAs) called microRNAs (miRNAs), which actively regulate gene expression at the posttranscriptional level. Several miRNAs have been observed to exert significant impacts on bone health and bone-related disorders. One of these, miR-124, is observed in bone microenvironments and is conserved across species. It affects bone cell growth and differentiation by activating different transcription factors and signaling pathways. In-depth functional analyses of miR-124 have revealed several physiological and pathological roles exerted through interactions with other ncRNAs. Deciphering these RNA-mediated signaling networks and pathways is essential for understanding the potential impacts of dysregulated miRNA functions on bone biology. In this review, we aim to provide a comprehensive analysis of miR-124's involvement in bone physiology and pathology. We highlight the importance of miR-124 in controlling transcription factors and signaling pathways that promote bone growth. This review reveals therapeutic implications for the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Rushil Kolipaka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Induja Magesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - M.R. Ashok Bharathy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - S. Karthik
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - I. Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - N. Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
19
|
Dufrancais O, Verdys P, Plozza M, Métais A, Juzans M, Sanchez T, Bergert M, Halper J, Panebianco CJ, Mascarau R, Gence R, Arnaud G, Neji MB, Maridonneau-Parini I, Cabec VL, Boerckel JD, Pavlos NJ, Diz-Muñoz A, Lagarrigue F, Blin-Wakkach C, Carréno S, Poincloux R, Burkhardt JK, Raynaud-Messina B, Vérollet C. Moesin controls cell-cell fusion and osteoclast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593799. [PMID: 38798563 PMCID: PMC11118517 DOI: 10.1101/2024.05.13.593799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cell-cell fusion is an evolutionarily conserved process that is essential for many functions, including fertilisation and the formation of placenta, muscle and osteoclasts, multinucleated cells that are unique in their ability to resorb bone. The mechanisms of osteoclast multinucleation involve dynamic interactions between the actin cytoskeleton and the plasma membrane that are still poorly characterized. Here, we found that moesin, a cytoskeletal linker protein member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role in both osteoclast fusion and function. In mouse and human osteoclast precursors, moesin inhibition favors their ability to fuse into multinucleated osteoclasts. Accordingly, we demonstrated that moesin depletion decreases membrane-to-cortex attachment and enhances the formation of tunneling nanotubes (TNTs), F-actin-based intercellular bridges that we reveal here to trigger cell-cell fusion. Moesin also controls HIV-1- and inflammation-induced cell fusion. In addition, moesin regulates the formation of the sealing zone, the adhesive structure determining osteoclast bone resorption area, and thus controls bone degradation, via a β3-integrin/RhoA/SLK pathway. Supporting our results, moesin - deficient mice present a reduced density of trabecular bones and increased osteoclast abundance and activity. These findings provide a better understanding of the regulation of cell-cell fusion and osteoclast biology, opening new opportunities to specifically target osteoclast activity in bone disease therapy.
Collapse
|
20
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
21
|
Wei Z, Zhou J, Shen J, Sun D, Gao T, Liu Q, Wu H, Wang X, Wang S, Xiao S, Han C, Yang D, Dong H, Wu Y, Zhang Y, Xu S, Wang X, Luo J, Dai Q, Zhu J, Lin S, Luo F, Tian Y, Xie Z. Osteostaticytes: A novel osteoclast subset couples bone resorption and bone formation. J Orthop Translat 2024; 47:144-160. [PMID: 39027343 PMCID: PMC11254843 DOI: 10.1016/j.jot.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Osteomyelitis (OM) is an inflammatory condition of bone characterized by cortical bone devascularization and necrosis. Dysregulation of bone remodelling is triggered by OM. Bone remodelling is precisely coordinated by bone resorption and formation via a reversal phase. However, the cellular and molecular mechanisms underlying bone remodelling failure after osteomyelitis remain elusive. METHODS To elucidate the cellular and molecular mechanism underlying bone healing after osteomyelitis, we employed single-cell RNA sequencing (scRNA-seq) to depict the atlas of human cortical bone in normal, infected and reconstructed states. Dimensionality reduction by t-stochastic neighbourhood embedding (t-SNE) and graph-based clustering were applied to analyse the detailed clusters of osteoclast lineages. After trajectory analysis of osteoclast lineages over pseudotime, real-time PCR and immunofluorescence (IF) staining were applied to identify marker gene expression of various osteoclast lineages in the osteoclast induction model and human bone sections, respectively. The potential function and communication of osteoclasts were analysed via gene set enrichment analysis (GSEA) and CellChat. The chemotactic ability of mesenchymal stem cells (MSCs) and osteoclast lineage cells in various differentiation states was determined by transwell assays and coculture assays. The effects of various osteoclast lineages on the osteogenic differentiation potential of MSCs were also determined by using this coculture system. A normal mouse tibia fracture model and an osteomyelitis-related tibia fracture model were generated via injection of luciferase-labelled Staphylococcus aureus to verify the relationships between a novel osteoclast lineage and MSCs. Then, the infection was detected by a bioluminescence imaging system. Finally, immunofluorescence staining was used to detect the expression of markers of MSCs and novel osteoclast lineages in different remodelling phases in normal and infected bone remodelling models. RESULTS In this study, we constructed a cell atlas encompassing normal, infected, and reconstructed cortical bone. Then, we identified a novel subset at the earlier stage of the osteoclast lineage that exhibited increased expression of IDO1, CCL3, and CCL4. These IDO1highCCL3highCCL4high cells, termed osteostaticytes (OSCs), were further regarded as the reservoir of osteoclasts in the reversal phase. Notably, OSCs exhibited the highest chemotactic activity, surpassing other lineage subsets. We also discovered that cells at the earlier stage of the osteoclast lineage play a significant role in recruiting mesenchymal stem cells (MSCs). Finally, the data revealed that OSCs might be positively related to the occurrence of bone MSCs and the contribution of bone remodelling. CONCLUSION Collectively, our findings revealed a novel stage (OSC) within the osteoclast lineage, potentially representing elusive bone reversal cells due to its increased chemotactic ability towards MSCs and potential contribution to bone remodelling. This study provides valuable insights into the intricate mechanisms of the reversal phase during bone remodelling and unveils potential therapeutic strategies for diseases associated with bone uncoupling. TRANSLATIONAL POTENTIAL OF THIS ARTICLE This study identified a new subset, referred to as IDO1(plus symbol) CCL3(plus symbol) CCL4(plus symbol) osteostaticytes which displayed the highest chemotactic activity among all osteoclast lineages and may serve as reversal cells in bone remodelling. These findings offer new insights and insights for understanding bone reversal-related diseases and may serve as novel therapeutic targets for conditions such as osteomyelitis and delayed bone healing.
Collapse
Affiliation(s)
- Zhiyuan Wei
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jian Zhou
- Biomedical Analysis Center, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jie Shen
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Dong Sun
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Tianbao Gao
- Biomedical Analysis Center, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Qin Liu
- Biomedical Analysis Center, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hongri Wu
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xiaohua Wang
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Shulin Wang
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Shiyu Xiao
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Zhang
- Chongqing International Institute for Immunology, Chongqing, PR China
| | - Shuai Xu
- Department of Stomatology, The Second Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xian Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong, PR China
| | - Jie Luo
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Qijie Dai
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jun Zhu
- Shanghai Introncure Biotechnology, Inc., People's Republic of China, Shanghai, PR China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Fei Luo
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhao Xie
- Department of Orthopedics, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, PR China
| |
Collapse
|
22
|
Bouvard B, Mabilleau G. Gut hormones and bone homeostasis: potential therapeutic implications. Nat Rev Endocrinol 2024:10.1038/s41574-024-01000-z. [PMID: 38858581 DOI: 10.1038/s41574-024-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Bone resorption follows a circadian rhythm, with a marked reduction in circulating markers of resorption (such as carboxy-terminal telopeptide region of collagen type I in serum) in the postprandial period. Several gut hormones, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2, have been linked to this effect in humans and rodent models. These hormones are secreted from enteroendocrine cells in the gastrointestinal tract in response to a variety of stimuli and effect a wide range of physiological processes within and outside the gut. Single GLP1, dual GLP1-GIP or GLP1-glucagon and triple GLP1-GIP-glucagon receptor agonists have been developed for the treatment of type 2 diabetes mellitus and obesity. In addition, single GIP, GLP1 and GLP2 analogues have been investigated in preclinical studies as novel therapeutics to improve bone strength in bone fragility disorders. Dual GIP-GLP2 analogues have been developed that show therapeutic promise for bone fragility in preclinical studies and seem to exert considerable activity at the bone material level. This Review summarizes the evidence of the action of gut hormones on bone homeostasis and physiology.
Collapse
Affiliation(s)
- Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France
- CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France.
- CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France.
| |
Collapse
|
23
|
Castoldi NM, Pickering E, Sansalone V, Cooper D, Pivonka P. Bone turnover and mineralisation kinetics control trabecular BMDD and apparent bone density: insights from a discrete statistical bone remodelling model. Biomech Model Mechanobiol 2024; 23:893-909. [PMID: 38280951 PMCID: PMC11101591 DOI: 10.1007/s10237-023-01812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/22/2023] [Indexed: 01/29/2024]
Abstract
The mechanical quality of trabecular bone is influenced by its mineral content and spatial distribution, which is controlled by bone remodelling and mineralisation. Mineralisation kinetics occur in two phases: a fast primary mineralisation and a secondary mineralisation that can last from several months to years. Variations in bone turnover and mineralisation kinetics can be observed in the bone mineral density distribution (BMDD). Here, we propose a statistical spatio-temporal bone remodelling model to study the effects of bone turnover (associated with the activation frequency Ac . f ) and mineralisation kinetics (associated with secondary mineralisation T sec ) on BMDD. In this model, individual basic multicellular units (BMUs) are activated discretely on trabecular surfaces that undergo typical bone remodelling periods. Our results highlight that trabecular BMDD is strongly regulated by Ac . f and T sec in a coupled way. Ca wt% increases with lower Ac . f and short T sec . For example, aAc . f = 4 BMU/year/mm3 and T sec = 8 years result in a mean Ca wt% of 25, which is in accordance with Ca wt% values reported in quantitative backscattered electron imaging (qBEI) experiments. However, for lower Ac . f and shorter T sec (from 0.5 to 4 years) one obtains a high Ca wt% and a very narrow skew BMDD to the right. This close link between Ac . f and T sec highlights the importance of considering both characteristics to draw meaningful conclusion about bone quality. Overall, this model represents a new approach to modelling healthy and diseased bone and can aid in developing deeper insights into disease states like osteoporosis.
Collapse
Affiliation(s)
- Natalia M Castoldi
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
- UMR 8208, MSME, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Créteil, France.
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Vittorio Sansalone
- UMR 8208, MSME, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Créteil, France
| | - David Cooper
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
24
|
Yang DH, Nah H, Lee D, Min SJ, Park S, An SH, Wang J, He H, Choi KS, Ko WK, Lee JS, Kwon IK, Lee SJ, Heo DN. A review on gold nanoparticles as an innovative therapeutic cue in bone tissue engineering: Prospects and future clinical applications. Mater Today Bio 2024; 26:101016. [PMID: 38516171 PMCID: PMC10952045 DOI: 10.1016/j.mtbio.2024.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Bone damage is a complex orthopedic problem primarily caused by trauma, cancer, or bacterial infection of bone tissue. Clinical care management for bone damage remains a significant clinical challenge and there is a growing need for more advanced bone therapy options. Nanotechnology has been widely explored in the field of orthopedic therapy for the treatment of a severe bone disease. Among nanomaterials, gold nanoparticles (GNPs) along with other biomaterials are emerging as a new paradigm for treatment with excellent potential for bone tissue engineering and regenerative medicine applications. In recent years, a great deal of research has focused on demonstrating the potential for GNPs to provide for enhancement of osteogenesis, reduction of osteoclastogenesis/osteomyelitis, and treatment of bone cancer. This review details the latest understandings in regards to GNPs based therapeutic systems, mechanisms, and the applications of GNPs against various bone disorders. The present review aims to summarize i) the mechanisms of GNPs in bone tissue remodeling, ii) preparation methods of GNPs, and iii) functionalization of GNPs and its decoration on biomaterials as a delivery vehicle in a specific bone tissue engineering for future clinical application.
Collapse
Affiliation(s)
- Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Haram Nah
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Donghyun Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Seulki Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Kyu-Sun Choi
- Department of Neurosurgery, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Wan-Kyu Ko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Biofriends Inc, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
25
|
Bohns FR, Akhtar R, Chuang YJ, Chen PY. Bone quality in zebrafish vertebrae improves after alendronate administration in a glucocorticoid-induced osteoporosis model. J Mech Behav Biomed Mater 2024; 154:106521. [PMID: 38555661 DOI: 10.1016/j.jmbbm.2024.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) changes the microarchitecture of bones and often leads to the reduction of bone-mineral density (BMD) and increased fracture rates. Zebrafish has been used as an alternative model for GIOP, however, the interaction of GIOP, and its treatment, with zebrafish bone morphometrics and mechanical properties, remains a challenge. Thus, this study aimed to evaluate the effects of prednisolone and alendronate on the properties of zebrafish vertebrae. Adult 7-month-old zebrafish were distributed into four groups: control (CTRL), prednisolone-only (PN), alendronate-only (ALN), and the sequential use of both medicines (PN + ALN). Fish skeletons were scanned via micro-tomography (n = 3) to obtain vertebra morphometrics (e.g., BMD). Bone morphology was assessed using scanning electron microscopy (n = 4) and the biomechanical behaviour with nanoindentation technique (n = 3). The BMD decreased in PN (426.08 ± 18.58 mg/cm3) and ALN (398.23 ± 10.20 mg/cm3) groups compared to the CTRL (490.43 ± 41.96 mg/cm3) (p < 0.001); however, administering the medicines in sequence recovered the values to healthy levels (495.43 ± 22.06 mg/cm3) (p > 0.05). The bone layered structures remain preserved in all groups. The vertebrae of the groups that received ALN and PN + ALN, displayed higher modulus of elasticity (27.27 ± 1.59 GPa and 25.68 ± 2.07 GPa, respectively) than the CTRL (22.74 ± 1.60 GP) (p < 0.001). ALN alone increased the hardness of zebrafish vertebrae to the highest value among the treatments (1.32 ± 0.13 GPa) (p < 0.001). Conversely, PN + ALN (1.25 ± 0.11 GPa) showed unaltered hardness from the CTRL (1.18 ± 0.13 GPa), but significantly higher than the PN group (1.08 ± 0.12 GPa) (p < 0.001). ALN administered after GIOP development, rescued osteoporotic condition by recovering the BMD and bone hardness in zebrafish vertebrae.
Collapse
Affiliation(s)
- Fabio Rocha Bohns
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan; Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK; International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, Taiwan
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
26
|
Lewis JW, Frost K, Neag G, Wahid M, Finlay M, Northall EH, Abudu O, Kemble S, Davis ET, Powell E, Palmer C, Lu J, Rainger GE, Iqbal AJ, Chimen M, Mahmood A, Jones SW, Edwards JR, Naylor AJ, McGettrick HM. Therapeutic avenues in bone repair: Harnessing an anabolic osteopeptide, PEPITEM, to boost bone growth and prevent bone loss. Cell Rep Med 2024; 5:101574. [PMID: 38776873 PMCID: PMC11148860 DOI: 10.1016/j.xcrm.2024.101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The existing suite of therapies for bone diseases largely act to prevent further bone loss but fail to stimulate healthy bone formation and repair. We describe an endogenous osteopeptide (PEPITEM) with anabolic osteogenic activity, regulating bone remodeling in health and disease. PEPITEM acts directly on osteoblasts through NCAM-1 signaling to promote their maturation and formation of new bone, leading to enhanced trabecular bone growth and strength. Simultaneously, PEPITEM stimulates an inhibitory paracrine loop: promoting osteoblast release of the decoy receptor osteoprotegerin, which sequesters RANKL, thereby limiting osteoclast activity and bone resorption. In disease models, PEPITEM therapy halts osteoporosis-induced bone loss and arthritis-induced bone damage in mice and stimulates new bone formation in osteoblasts derived from patient samples. Thus, PEPITEM offers an alternative therapeutic option in the management of diseases with excessive bone loss, promoting an endogenous anabolic pathway to induce bone remodeling and redress the imbalance in bone turnover.
Collapse
Affiliation(s)
- Jonathan W Lewis
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Kathryn Frost
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Georgiana Neag
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Mussarat Wahid
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Melissa Finlay
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Ellie H Northall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Oladimeji Abudu
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Samuel Kemble
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Edward T Davis
- Royal Orthopaedic Hospital, Bristol Road, Birmingham B31 2AP, UK
| | - Emily Powell
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Charlotte Palmer
- Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Jinsen Lu
- Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Myriam Chimen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Ansar Mahmood
- Department of Trauma and Orthopaedics, University Hospitals NHS Foundation Trust, Edgbaston, Birmingham B15 2GW, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - James R Edwards
- Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Amy J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK.
| |
Collapse
|
27
|
Kim M, Park JH, Go M, Lee N, Seo J, Lee H, Kim D, Ha H, Kim T, Jeong MS, Kim S, Kim T, Kim HS, Kang D, Shim H, Lee SY. RUFY4 deletion prevents pathological bone loss by blocking endo-lysosomal trafficking of osteoclasts. Bone Res 2024; 12:29. [PMID: 38744829 PMCID: PMC11094054 DOI: 10.1038/s41413-024-00326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/01/2024] [Accepted: 03/08/2024] [Indexed: 05/16/2024] Open
Abstract
Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Jin Hee Park
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, South Korea
| | - Miyeon Go
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Nawon Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Jeongin Seo
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, South Korea
| | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, South Korea
| | - Suree Kim
- Fluorescence Core Imaging Center and Bioimaging Data Curation Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Taesoo Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, South Korea
| | - Dongmin Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
- Fluorescence Core Imaging Center and Bioimaging Data Curation Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Hyunbo Shim
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea.
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, South Korea.
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
28
|
Agostinete RR, Werneck AO, Narciso PH, Ubago-Guisado E, Coelho-E-Silva MJ, Bielemann RM, Gobbo LA, Lynch BT, Fernandes RA, Vlachopoulos D. Resistance training presents beneficial effects on bone development of adolescents engaged in swimming but not in impact sports: ABCD Growth Study. BMC Pediatr 2024; 24:247. [PMID: 38594697 PMCID: PMC11003018 DOI: 10.1186/s12887-024-04634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/09/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Sports practice during adolescence is important to enhance bone development, although it may provide different effects depending on the mechanical impact present in the sport. Besides, resistance training (RT) may also induce bone changes directly (via muscle contractions) and indirectly (via myokines). However, there have been no studies analyzing the longitudinal influence of engaging in sport with and without added mechanical load. Thus, this study aims to analyze the combined effects of sports participation and resistance training on areal bone mineral density (aBMD) accrual in adolescent athletes participating in swimming and impact sports for 12-months. METHODS This was a 12-month longitudinal study. The sample comprised 91 adolescents (21 females) aged 10 to 18 years, engaged in impact sports (basketball, tennis, track & field, baseball and gymnastics, n = 66) and non-impact sport (swimming, n = 25). The sample was divided according to resistance training participation: impact sports only (n = 45), impact sports + resistance training (n = 21), swimming-only (n = 17) and swimming + resistance training (n = 8). aBMD and soft tissues were measured using dual-energy X-ray absorptiometry. Generalized linear models analysis was used for the resistance training (RT) x type of sport interaction in predicting aBMD changes overtime, adjusting for maturation, sex and baseline aBMD. RESULTS After 12-months, all groups showed a significant increase in aBMD, except for the swimming groups (regardless of resistant training), which showed a significant loss in spine aBMD (-0.045 [-0.085 to -0.004] g/cm2 in swimming-only and - 0.047 [-0.073 to -0.021] g/cm2 in swimming + RT). In comparisons between groups, only swimming + RT group, compared with swimming-only group presented higher upper limbs aBMD (0.096 g/cm2 [0.074 to 0.118] in swimming + RT vs. 0.046 [0.032 to 0.060] g/cm2 in swimming only; p < 0.05) and whole body less head (WBLH) aBMD (0.039 [0.024 to 0.054] g/cm2 in swimming + RT vs. 0.017 [0.007 to 0.027] g/cm2 swimming-only; p < 0.05). CONCLUSION Despite the significant gain in aBMD in all groups and body sites after 12-months, except for the spine site of swimmers, the results indicate that participation in RT seems to improve aBMD accrual in swimmers at the upper limbs and WBLH.
Collapse
Affiliation(s)
- Ricardo R Agostinete
- Laboratory of Investigation in Exercise (LIVE), Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, Brazil
| | - André O Werneck
- Center for Epidemiological Research in Nutrition and Health, Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo, Brazil
| | - Pedro H Narciso
- Laboratory of Investigation in Exercise (LIVE), Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, Brazil
| | - Esther Ubago-Guisado
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | | | - Renata M Bielemann
- Post-Graduate Program in Nutrition and Foods, Federal University of Pelotas, Pelotas, Brazil
- Post-Graduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Luis Alberto Gobbo
- Skeletal Muscle Assessment Laboratory (LABSIM), Department of Physical Education, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, Brazil
| | - Bruna Turi Lynch
- Department of Physical Education and Exercise Science, Lander University, Greenwood, SC, USA
| | - Romulo Araújo Fernandes
- Laboratory of Investigation in Exercise (LIVE), Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, Brazil
| | - Dimitris Vlachopoulos
- Children's Health and Exercise Research Centre, Public Health and Sport Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
29
|
Cook CV, Lighty AM, Smith BJ, Ford Versypt AN. A review of mathematical modeling of bone remodeling from a systems biology perspective. FRONTIERS IN SYSTEMS BIOLOGY 2024; 4:1368555. [PMID: 40012834 PMCID: PMC11864782 DOI: 10.3389/fsysb.2024.1368555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bone remodeling is an essential, delicately balanced physiological process of coordinated activity of bone cells that remove and deposit new bone tissue in the adult skeleton. Due to the complex nature of this process, many mathematical models of bone remodeling have been developed. Each of these models has unique features, but they have underlying patterns. In this review, the authors highlight the important aspects frequently found in mathematical models for bone remodeling and discuss how and why these aspects are included when considering the physiology of the bone basic multicellular unit, which is the term used for the collection of cells responsible for bone remodeling. The review also emphasizes the view of bone remodeling from a systems biology perspective. Understanding the systemic mechanisms involved in remodeling will help provide information on bone pathology associated with aging, endocrine disorders, cancers, and inflammatory conditions and enhance systems pharmacology. Furthermore, some features of the bone remodeling cycle and interactions with other organ systems that have not yet been modeled mathematically are discussed as promising future directions in the field.
Collapse
Affiliation(s)
- Carley V. Cook
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ariel M. Lighty
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Brenda J. Smith
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, United States
- Department of Obstetrics and Gynecology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
30
|
Nielsen SSR, Pedersen JAZ, Sharma N, Wasehuus PK, Hansen MS, Møller AMJ, Borggaard XG, Rauch A, Frost M, Sondergaard TE, Søe K. Human osteoclasts in vitro are dose dependently both inhibited and stimulated by cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). Bone 2024; 181:117035. [PMID: 38342278 DOI: 10.1016/j.bone.2024.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Legalized use of cannabis for medical or recreational use is becoming more and more common. With respect to potential side-effects on bone health only few clinical trials have been conducted - and with opposing results. Therefore, it seems that there is a need for more knowledge on the potential effects of cannabinoids on human bone cells. We studied the effect of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) (dose range from 0.3 to 30 μM) on human osteoclasts in mono- as well as in co-cultures with human osteoblast lineage cells. We have used CD14+ monocytes from anonymous blood donors to differentiate into osteoclasts, and human osteoblast lineage cells from outgrowths of human trabecular bone. Our results show that THC and CBD have dose-dependent effects on both human osteoclast fusion and bone resorption. In the lower dose ranges of THC and CBD, osteoclast fusion was unaffected while bone resorption was increased. At higher doses, both osteoclast fusion and bone resorption were inhibited. In co-cultures, both osteoclastic bone resorption and alkaline phosphatase activity of the osteoblast lineage cells were inhibited. Finally, we observed that the cannabinoid receptor CNR2 is more highly expressed than CNR1 in CD14+ monocytes and pre-osteoclasts, but also that differentiation to osteoclasts was coupled to a reduced expression of CNR2, in particular. Interestingly, under co-culture conditions, we only detected the expression of CNR2 but not CNR1 for both osteoclast as well as osteoblast lineage nuclei. In line with the existing literature on the effect of cannabinoids on bone cells, our current study shows both stimulatory and inhibitory effects. This highlights that potential unfavorable effects of cannabinoids on bone cells and bone health is a complex matter. The contradictory and lacking documentation for such potential unfavorable effects on bone health as well as other potential effects, should be taken into consideration when considering the use of cannabinoids for both medical and recreational use.
Collapse
Affiliation(s)
- Simone S R Nielsen
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000 Odense C, Denmark.
| | - Juliana A Z Pedersen
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000 Odense C, Denmark.
| | - Neha Sharma
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000 Odense C, Denmark; Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Pernille K Wasehuus
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Morten S Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Anaïs M J Møller
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Department of Clinical Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Kabbeltoft 25, 7100 Vejle, Denmark.
| | - Xenia G Borggaard
- Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000 Odense C, Denmark; Molecular Bone Histology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Alexander Rauch
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Steno Diabetes Centre Odense, Odense University Hospital, Kløvervænget 10, 5000 Odense C, Denmark.
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Steno Diabetes Centre Odense, Odense University Hospital, Kløvervænget 10, 5000 Odense C, Denmark.
| | - Teis E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000 Odense C, Denmark; Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
31
|
Yang K, Zhu Y, Shao Y, Jiang Y, Zhu L, Liu Y, Zhang P, Liu Y, Zhang X, Zhou Y. Apoptotic Vesicles Derived from Dental Pulp Stem Cells Promote Bone Formation through the ERK1/2 Signaling Pathway. Biomedicines 2024; 12:730. [PMID: 38672086 PMCID: PMC11048106 DOI: 10.3390/biomedicines12040730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoporosis is a common degenerative bone disease. The treatment of osteoporosis remains a clinical challenge in light of the increasing aging population. Human dental pulp stem cells (DPSCs), a type of mesenchymal stem cells (MSCs), are easy to obtain and have a high proliferation ability, playing an important role in the treatment of osteoporosis. However, MSCs undergo apoptosis within a short time when used in vivo; therefore, apoptotic vesicles (apoVs) have attracted increasing attention. Currently, the osteogenic effect of DPSC-derived apoVs is unknown; therefore, this study aimed to determine the role of DPSC-derived apoVs and their potential mechanisms in bone regeneration. We found that MSCs could take up DPSC-derived apoVs, which then promoted MSC osteogenesis in vitro. Moreover, apoVs could increase the trabecular bone count and bone mineral density in the mouse osteoporosis model and could promote bone formation in rat cranial defects in vivo. Mechanistically, apoVs promoted MSC osteogenesis by activating the extracellular regulated kinase (ERK)1/2 signaling pathway. Consequently, we propose a novel therapy comprising DPSC-derived apoVs, representing a promising approach to treat bone loss and bone defects.
Collapse
Affiliation(s)
- Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yuzi Shao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yuhe Jiang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Lei Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yaoshan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
32
|
Robin M, Djediat C, Bardouil A, Baccile N, Chareyron C, Zizak I, Fratzl P, Selmane M, Haye B, Genois I, Krafft J, Costentin G, Azaïs T, Artzner F, Giraud‐Guille M, Zaslansky P, Nassif N. Acidic Osteoid Templates the Plywood Structure of Bone Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304454. [PMID: 38115757 PMCID: PMC10916609 DOI: 10.1002/advs.202304454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Bone is created by osteoblasts that secrete osteoid after which an ordered texture emerges, followed by mineralization. Plywood geometries are a hallmark of many trabecular and cortical bones, yet the origin of this texturing in vivo has never been shown. Nevertheless, extensive in vitro work revealed how plywood textures of fibrils can emerge from acidic molecular cholesteric collagen mesophases. This study demonstrates in sheep, which is the preferred model for skeletal orthopaedic research, that the deeper non-fibrillar osteoid is organized in a liquid-crystal cholesteric geometry. This basophilic domain, rich in acidic glycosaminoglycans, exhibits low pH which presumably fosters mesoscale collagen molecule ordering in vivo. The results suggest that the collagen fibril motif of twisted plywood matures slowly through self-assembly thermodynamically driven processes as proposed by the Bouligand theory of biological analogues of liquid crystals. Understanding the steps of collagen patterning in osteoid-maturation processes may shed new light on bone pathologies that emerge from collagen physico-chemical maturation imbalances.
Collapse
Affiliation(s)
- Marc Robin
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Chakib Djediat
- Muséum National d'Histoire NaturelleUMR CNRS 7245, Bâtiment 39, CP 39, 57 rue CuvierParis75231France
| | - Arnaud Bardouil
- Université de Rennes, CNRSInstitut de Physique de Rennes (IPR)RennesF‐35000France
| | - Niki Baccile
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Camille Chareyron
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Ivo Zizak
- Helmholtz‐Zentrum Berlin für Materialien und Energie – Speicherring BESSY IIAlbert‐Einstein Str. 15D‐12349BerlinGermany
| | - Peter Fratzl
- Department of BiomaterialsMax Planck Institute of Colloids and Interfacesam Mühlenberg 114476PotsdamGermany
| | - Mohamed Selmane
- Institut des Matériaux de Paris CentreSorbonne UniversitéParisF‐75005France
| | - Bernard Haye
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Isabelle Genois
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Jean‐Marc Krafft
- Sorbonne Université, CNRSLaboratoire Réactivité de Surface (LRS)ParisF‐75005France
| | - Guylène Costentin
- Sorbonne Université, CNRSLaboratoire Réactivité de Surface (LRS)ParisF‐75005France
| | - Thierry Azaïs
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Franck Artzner
- Université de Rennes, CNRSInstitut de Physique de Rennes (IPR)RennesF‐35000France
| | - Marie‐Madeleine Giraud‐Guille
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Paul Zaslansky
- Department for OperativePreventive and Pediatric DentistryCharité – Universitätsmedizin BerlinAßmannshauser Str. 4–614197BerlinGermany
| | - Nadine Nassif
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| |
Collapse
|
33
|
Hegarty-Cremer SGD, Borggaard XG, Andreasen CM, van der Eerden BCJ, Simpson MJ, Andersen TL, Buenzli PR. How osteons form: A quantitative hypothesis-testing analysis of cortical pore filling and wall asymmetry. Bone 2024; 180:116998. [PMID: 38184100 DOI: 10.1016/j.bone.2023.116998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024]
Abstract
Osteon morphology provides valuable information about the interplay between different processes involved in bone remodelling. The correct quantitative interpretation of these morphological features is challenging due to the complexity of interactions between osteoblast behaviour, and the evolving geometry of cortical pores during pore closing. We present a combined experimental and mathematical modelling study to provide insights into bone formation mechanisms during cortical bone remodelling based on histological cross-sections of quiescent human osteons and hypothesis-testing analyses. We introduce wall thickness asymmetry as a measure of the local asymmetry of bone formation within an osteon and examine the frequency distribution of wall thickness asymmetry in cortical osteons from human iliac crest bone samples from women 16-78 years old. Our measurements show that most osteons possess some degree of asymmetry, and that the average degree of osteon asymmetry in cortical bone evolves with age. We then propose a comprehensive mathematical model of cortical pore filling that includes osteoblast secretory activity, osteoblast elimination, osteoblast embedment as osteocytes, and osteoblast crowding and redistribution along the bone surface. The mathematical model is first calibrated to symmetric osteon data, and then used to test three mechanisms of asymmetric wall formation against osteon data: (i) delays in the onset of infilling around the cement line; (ii) heterogeneous osteoblastogenesis around the bone perimeter; and (iii) heterogeneous osteoblast secretory rate around the bone perimeter. Our results suggest that wall thickness asymmetry due to off-centred Haversian pores within osteons, and that nonuniform lamellar thicknesses within osteons are important morphological features that can indicate the prevalence of specific asymmetry-generating mechanisms. This has significant implications for the study of disruptions of bone formation as it could indicate what biological bone formation processes may become disrupted with age or disease.
Collapse
Affiliation(s)
- Solene G D Hegarty-Cremer
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia; Department of Mathematics and Statistics, The University of Montreal, Montreal, Canada
| | - Xenia G Borggaard
- Clinical Cell Biology, Pathology Research Unit, Dept. of Clinical Research, and Dept. of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Dept. of Pathology, Odense University Hospital, Odense, Denmark
| | - Christina M Andreasen
- Clinical Cell Biology, Pathology Research Unit, Dept. of Clinical Research, and Dept. of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Dept. of Pathology, Odense University Hospital, Odense, Denmark
| | | | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Thomas L Andersen
- Clinical Cell Biology, Pathology Research Unit, Dept. of Clinical Research, and Dept. of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Dept. of Pathology, Odense University Hospital, Odense, Denmark; Dept. of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Pascal R Buenzli
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
34
|
Ozanne H, Moubri L, Abou-Nassif L, Thoumire O, Echalard A, Morin-Grognet S, Atmani H, Ladam G, Labat B. Active Osteoblasts or Quiescent Bone Lining Cells? Preosteoblasts Fate Orchestrated by Curvature and Stiffness of an In Vitro 2.5D Biomimetic Culture System. Adv Healthc Mater 2024; 13:e2302222. [PMID: 37929897 DOI: 10.1002/adhm.202302222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 11/07/2023]
Abstract
Biomimetic cell culture systems are required to provide more physiologically relevant microenvironments for bone cells. Here, a simple 2.5D culture platform is proposed, combining adjustable stiffness and surface features that mimic bone topography by using sandpaper grits as master molds with two stiffness formulations of polydimethylsiloxane (PDMS). The subsequent replicas perfectly conform the grits and reproduce the corresponding negative relief with cavities separated by convex edges. Biomimicry is also provided by an extracellular matrix (ECM)-like thin film coating, using the layer-by-layer (LbL) method. The topographical features, alternating concave, and convex structures drive preosteoblasts organization and morphology. Strikingly, curvature orchestrates the commitment of preosteoblasts, with i) maturation to active osteoblasts able to produce a dense collagenous matrix that ultimately mineralizes in the cavities, and ii) edges hosting quiescent cells that synthetize a very thin immature collagen layer with no mineralization. In summary, the present in vitro culture system model offers a cell-instructive 2.5D microenvironment that controls preosteoblasts fate, leading to two coexisting subpopulations: mature osteoblasts and bone lining cells (BLC). This promising culture system opens new avenues to advanced tissue-engineered modeling and can be applied to precellularized bone biomaterials.
Collapse
Affiliation(s)
- Hélène Ozanne
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Loïc Moubri
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Léa Abou-Nassif
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Olivier Thoumire
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Aline Echalard
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | | | - Hassan Atmani
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Guy Ladam
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Béatrice Labat
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| |
Collapse
|
35
|
Chmielewska A, Dean D. The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure. Acta Biomater 2024; 173:51-65. [PMID: 37972883 DOI: 10.1016/j.actbio.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
It is well documented that overly stiff skeletal replacement and fixation devices may fail and require revision surgery. Recent attempts to better support healing and sustain healed bone have looked at stiffness-matching of these devices to the desired role of limiting the stress on fractured or engrafted bone to compressive loads and, after the reconstructed bone has healed, to ensure that reconstructive medical devices (implants) interrupt the normal loading pattern as little as possible. The mechanical performance of these devices can be optimized by adjusting their location, integration/fastening, material(s), geometry (external and internal), and surface properties. This review highlights recent research that focuses on the optimal design of skeletal reconstruction devices to perform during and after healing as the mechanical regime changes. Previous studies have considered auxetic materials, homogeneous or gradient (i.e., adaptive) porosity, surface modification to enhance device/bone integration, and choosing the device's attachment location to ensure good osseointegration and resilient load transduction. By combining some or all of these factors, device designers work hard to avoid problems brought about by unsustainable stress shielding or stress concentrations as a means of creating sustainable stress-strain relationships that best repair and sustain a surgically reconstructed skeletal site. STATEMENT OF SIGNIFICANCE: Although standard-of-care skeletal reconstruction devices will usually allow normal healing and improved comfort for the patient during normal activities, there may be significant disadvantages during long-term use. Stress shielding and stress concentration are amongst the most common causes of failure of a metallic device. This review highlights recent developments in devices for skeletal reconstruction that match the stiffness, while not interrupting the normal loading pattern of a healthy bone, and help to combat stress shielding and stress concentration. This review summarises various approaches to achieve stiffness-matching: application of materials with modulus close to that of the bone; adaptation of geometry with pre-defined mechanical properties; and/or surface modification that ensures good integration and proper load transfer to the bone.
Collapse
Affiliation(s)
- Agnieszka Chmielewska
- The Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - David Dean
- The Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
36
|
Karkache IY, Molstad DHH, Vu E, Jensen ED, Bradley EW. Phlpp1 Expression in Osteoblasts Plays a Modest Role in Bone Homeostasis. JBMR Plus 2023; 7:e10806. [PMID: 38130760 PMCID: PMC10731110 DOI: 10.1002/jbm4.10806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 12/23/2023] Open
Abstract
Prior work demonstrated that Phlpp1 deficiency alters limb length and bone mass, but the cell types involved and requirement of Phlpp1 for this effect were unclear. To understand the function of Phlpp1 within bone-forming osteoblasts, we crossed Phlpp1 floxed mice with mice harboring type 1 collagen (Col1a12.3kb)-Cre. Mineralization of bone marrow stromal cell cultures derived from Phlpp1 cKOCol1a1 was unchanged, but levels of inflammatory genes (eg, Ifng, Il6, Ccl8) and receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) ratios were enhanced by either Phlpp1 ablation or chemical inhibition. Micro-computed tomography of the distal femur and L5 vertebral body of 12-week-old mice revealed no alteration in bone volume per total volume, but compromised femoral bone microarchitecture within Phlpp1 cKOCol1a1 conditional knockout females. Bone histomorphometry of the proximal tibia documented no changes in osteoblast or osteoclast number per bone surface but slight reductions in osteoclast surface per bone surface. Overall, our data show that deletion of Phlpp1 in type 1 collagen-expressing cells does not significantly alter attainment of peak bone mass of either males or females, but may enhance inflammatory gene expression and the ratio of RANKL/OPG. Future studies examining the role of Phlpp1 within models of advanced age, inflammation, or osteocytes, as well as functional redundancy with the related Phlpp2 isoform are warranted. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
- College of Veterinary SciencesUniversity of MinnesotaMinneapolisMNUSA
| | - David HH Molstad
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
| | - Elizabeth Vu
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
| | | | - Elizabeth W Bradley
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
- College of Veterinary SciencesUniversity of MinnesotaMinneapolisMNUSA
- Department of Orthopedic SurgeryStem Cell Institute, University of MinnesotaMinneapolisMNUSA
| |
Collapse
|
37
|
van Dijk Christiansen P, Andreasen CM, El-Masri BM, Laursen KS, Delaisse JM, Andersen TL. Osteoprogenitor recruitment and differentiation during intracortical bone remodeling of adolescent humans. Bone 2023; 177:116896. [PMID: 37699496 DOI: 10.1016/j.bone.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Recruitment and proliferation of osteoprogenitors during the reversal-resorption phase, and their differentiation into mature bone-forming osteoblasts is crucial for initiation of bone formation during bone remodeling. This study investigates the osteoprogenitors' gradual recruitment, proliferation, and differentiation into bone-forming osteoblasts within intracortical remodeling events of healthy adolescent humans. METHODS The study was conducted on cortical bone specimens from 11 adolescent human controls - patients undergoing surgery due to coxa valga. The osteoprogenitor recruitment route and differentiation into osteoblasts were backtracked using immunostainings and in situ hybridizations with osteoblastic markers (CD271/NGFR, osterix/SP7, COL3A1 and COL1A1). The osteoblastic cell populations were defined based on the pore surfaces, and their proliferation index (Ki67), density and number/circumference were estimated in multiplex-immunofluorescence (Ki67, TRAcP, CD34) stained sections. RESULTS During the reversal-resorption phase, osteoclasts are intermixed with (COL3A1+NFGR+) osteoblastic reversal cells, which are considered to be osteoprogenitors of (COL1A1+SP7+) bone-forming osteoblasts. Initiation of bone formation requires a critical density of these osteoprogenitors (43 ± 9 cells/mm), which is reached though proliferation (4.4 ± 0.5 % proliferative) and even more so through recruitment of osteoprogenitors, but challenged by the ongoing expansion of the canal circumference. These osteoprogenitors most likely originate from osteoblastic bone lining cells and mainly lumen osteoprogenitors, which expand their population though proliferation (4.6 ± 0.3 %) and vascular recruitment. These lumen osteoprogenitors resemble canopy cells above trabecular remodeling sites, and like canopy cells they extend above bone-forming osteoblasts where they may rejuvenate the osteoblast population during bone formation. CONCLUSION Initiation of bone formation during intracortical remodeling requires a critical density of osteoprogenitors on eroded surfaces, which is reached though proliferation and recruitment of local osteoprogenitors: bone lining cells and lumen osteoprogenitors.
Collapse
Affiliation(s)
- Pernille van Dijk Christiansen
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Christina Møller Andreasen
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| | - Bilal Mohamad El-Masri
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| | - Kaja Søndergaard Laursen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Thomas Levin Andersen
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Forensic Medicine, Aarhus University, Aarhus, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| |
Collapse
|
38
|
van Dijk Christiansen P, Sikjær T, Andreasen CM, Thomsen JS, Brüel A, Hauge EM, Delaisse J, Rejnmark L, Andersen TL. Transitory Activation and Improved Transition from Erosion to Formation within Intracortical Bone Remodeling in Hypoparathyroid Patients Treated with rhPTH(1-84). JBMR Plus 2023; 7:e10829. [PMID: 38130746 PMCID: PMC10731115 DOI: 10.1002/jbm4.10829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 12/23/2023] Open
Abstract
In hypoparathyroidism, lack of parathyroid hormone (PTH) leads to low calcium levels and decreased bone remodeling. Treatment with recombinant human PTH (rhPTH) may normalize bone turnover. This study aimed to investigate whether rhPTH(1-84) continued to activate intracortical bone remodeling after 30 months and promoted the transition from erosion to formation and whether this effect was transitory when rhPTH(1-84) was discontinued. Cortical histomorphometry was performed on 60 bone biopsies from patients (aged 31 to 78 years) with chronic hypoparathyroidism randomized to either 100 μg rhPTH(1-84) a day (n = 21) (PTH) or similar placebo (n = 21) (PLB) for 6 months as add-on to conventional therapy. This was followed by an open-label extension, where patients extended their rhPTH(1-84) (PTH) (n = 5), continued conventional treatment (CON) (n = 5), or withdrew from rhPTH(1-84) and resumed conventional therapy (PTHw) for an additional 24 months (n = 8). Bone biopsies were collected at months 6 (n = 42) and 30 (n = 18). After 6 and 30 months, the overall cortical microarchitecture (cortical porosity, thickness, pore density, and mean pore diameter) in the PTH group did not differ from that of the PLB/CON and PTHw groups. Still, the PTH group had a significantly and persistently higher percentage of pores undergoing remodeling than the PLB/CON groups. A significantly higher percentage of these pores was undergoing bone formation in the PTH compared with the PLB/CON groups, whereas the percentage of pores with erosion only was not different. This resulted in a shift in the ratio between formative and eroded pores, reflecting a faster transition from erosion to formation in the PTH-treated patients. In the rhPTH(1-84) withdrawal group PTHw, the latter effects of PTH were completely reversed in comparison to those of the PLB/CON groups. In conclusion, rhPTH(1-84) replacement therapy in hypoparathyroidism patients promotes intracortical remodeling and its transition from erosion to formation without affecting the overall cortical microstructure. The effect persists for at least 30 months and is reversible when treatment is withdrawn. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pernille van Dijk Christiansen
- Department of PathologyOdense University HospitalOdenseDenmark
- Molecular Bone Histology (MBH) Lab, Research Unit of Pathology, Department of Clinical Research and Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Tanja Sikjær
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Christina Møller Andreasen
- Department of PathologyOdense University HospitalOdenseDenmark
- Molecular Bone Histology (MBH) Lab, Research Unit of Pathology, Department of Clinical Research and Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | | | | | - Ellen Margrethe Hauge
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of RheumatologyAarhus University HospitalAarhusDenmark
| | - Jean‐Marie Delaisse
- Department of PathologyOdense University HospitalOdenseDenmark
- Molecular Bone Histology (MBH) Lab, Research Unit of Pathology, Department of Clinical Research and Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Lars Rejnmark
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Thomas Levin Andersen
- Department of PathologyOdense University HospitalOdenseDenmark
- Molecular Bone Histology (MBH) Lab, Research Unit of Pathology, Department of Clinical Research and Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Molecular Bone Histology (MBH) Lab, Department of Forensic MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
39
|
Cooper DML, Harrison KD, Hiebert BD, King GA, Panahifar A, Zhu N, Swekla KJ, Pivonka P, Chapman LD, Arnason T. Daily administration of parathyroid hormone slows the progression of basic multicellular units in the cortical bone of the rabbit distal tibia. Bone 2023; 176:116864. [PMID: 37574096 DOI: 10.1016/j.bone.2023.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Basic Multicellular Units (BMUs) conduct bone remodeling, a critical process of tissue turnover which, if imbalanced, can lead to disease, including osteoporosis. Parathyroid hormone (PTH 1-34; Teriparatide) is an osteoanabolic treatment for osteoporosis; however, it elevates the rate of intra-cortical remodeling (activation frequency) leading, at least transiently, to increased porosity. The purpose of this study was to test the hypothesis that PTH not only increases the rate at which cortical BMUs are initiated but also increases their progression (Longitudinal Erosion Rate; LER). Two groups (n = 7 each) of six-month old female New Zealand white rabbits were both administered 30 μg/kg of PTH once daily for a period of two weeks to induce remodeling. Their distal right tibiae were then imaged in vivo by in-line phase contrast micro-CT at the Canadian Light Source synchrotron. Over the following two weeks the first group (PTH) received continued daily PTH while the second withdrawal group (PTHW) was administrated 0.9 % saline. At four weeks all animals were euthanized, their distal tibiae were imaged by conventional micro-CT ex vivo and histomorphometry was performed. Matching micro-CT datasets (in vivo and ex vivo) were co-registered in 3D and LER was measured from 612 BMUs. Counter to our hypothesis, mean LER was lower (p < 0.001) in the PTH group (30.19 ± 3.01 μm/day) versus the PTHW group (37.20 ± 2.77 μm/day). Despite the difference in LER, osteonal mineral apposition rate (On.MAR) did not differ between groups indicating the anabolic effect of PTH was sustained after withdrawal. The slowing of BMU progression by PTH warrants further investigation; slowed resorption combined with elevated bone formation rate, may play an important role in how PTH enhances coupling between resorption and formation within the BMU. Finally, the prolonged anabolic response following withdrawal may have utility in terms of optimizing clinical dosing regimens.
Collapse
Affiliation(s)
- David M L Cooper
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Kim D Harrison
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Beverly D Hiebert
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gavin A King
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arash Panahifar
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Saskatchewan, Canada; Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ning Zhu
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Saskatchewan, Canada
| | - Kurtis J Swekla
- Animal Care and Research Support Office, Office of the Vice-President of Research, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Peter Pivonka
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - L Dean Chapman
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Terra Arnason
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
40
|
Regner AM, DeLeon M, Gibbons KD, Howard S, Nesbitt DQ, Lujan TJ, Fitzpatrick CK, Farach-Carson MC, Wu D, Uzer G. Increased deformations are dispensable for cell mechanoresponse in engineered bone analogs mimicking aging bone marrow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.24.559187. [PMID: 37905032 PMCID: PMC10614733 DOI: 10.1101/2023.09.24.559187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Aged individuals and astronauts experience bone loss despite rigorous physical activity. Bone mechanoresponse is in-part regulated by mesenchymal stem cells (MSCs) that respond to mechanical stimuli. Direct delivery of low intensity vibration (LIV) recovers MSC proliferation in senescence and simulated microgravity models, indicating that age-related reductions in mechanical signal delivery within bone marrow may contribute to declining bone mechanoresponse. To answer this question, we developed a 3D bone marrow analog that controls trabecular geometry, marrow mechanics and external stimuli. Validated finite element (FE) models were developed to quantify strain environment within hydrogels during LIV. Bone marrow analogs with gyroid-based trabeculae of bone volume fractions (BV/TV) corresponding to adult (25%) and aged (13%) mice were printed using polylactic acid (PLA). MSCs encapsulated in migration-permissive hydrogels within printed trabeculae showed robust cell populations on both PLA surface and hydrogel within a week. Following 14 days of LIV treatment (1g, 100 Hz, 1 hour/day), type-I collagen and F-actin were quantified for the cells in the hydrogel fraction. While LIV increased all measured outcomes, FE models predicted higher von Mises strains for the 13% BV/TV groups (0.2%) when compared to the 25% BV/TV group (0.1%). Despite increased strains, collagen-I and F-actin measures remained lower in the 13% BV/TV groups when compared to 25% BV/TV counterparts, indicating that cell response to LIV does not depend on hydrogel strains and that bone volume fraction (i.e. available bone surface) directly affects cell behavior in the hydrogel phase independent of the external stimuli. Overall, bone marrow analogs offer a robust and repeatable platform to study bone mechanobiology.
Collapse
Affiliation(s)
- Alexander M Regner
- Mechanical and Biomedical Engineering Department, Boise State University
| | - Maximilien DeLeon
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry
- Department of Bioengineering, Rice University
- Department of Biosciences, Rice University
| | - Kalin D. Gibbons
- Mechanical and Biomedical Engineering Department, Boise State University
| | - Sean Howard
- Mechanical and Biomedical Engineering Department, Boise State University
| | | | - Trevor J. Lujan
- Mechanical and Biomedical Engineering Department, Boise State University
| | | | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry
- Department of Bioengineering, Rice University
- Department of Biosciences, Rice University
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry
- Department of Bioengineering, Rice University
- Department of Biosciences, Rice University
| | - Gunes Uzer
- Mechanical and Biomedical Engineering Department, Boise State University
| |
Collapse
|
41
|
Zhang Y, Cheng Z, Liu Z, Shen X, Cai C, Li M, Luo Z. Functionally Tailored Metal-Organic Framework Coatings for Mediating Ti Implant Osseointegration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303958. [PMID: 37705110 PMCID: PMC10582459 DOI: 10.1002/advs.202303958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Indexed: 09/15/2023]
Abstract
Owing to their mechanical resilience and non-toxicity, titanium implants are widely applied as the major treatment modality for the clinical intervention against bone fractures. However, the intrinsic bioinertness of Ti and its alloys often impedes the effective osseointegration of the implants, leading to severe adverse complications including implant loosening, detachment, and secondary bone damage. Consequently, new Ti implant engineering strategies are urgently needed to improve their osseointegration after implantation. Remarkably, metalorganic frameworks (MOFs) are a class of novel synthetic material consisting of coordinated metal species and organic ligands, which have demonstrated a plethora of favorable properties for modulating the interfacial properties of Ti implants. This review comprehensively summarizes the recent progress in the development of MOF-coated Ti implants and highlights their potential utility for modulating the bio-implant interface to improve implant osseointegration, of which the discussions are outlined according to their physical traits, chemical composition, and drug delivery capacity. A perspective is also provided in this review regarding the current limitations and future opportunities of MOF-coated Ti implants for orthopedic applications. The insights in this review may facilitate the rational design of more advanced Ti implants with enhanced therapeutic performance and safety.
Collapse
Affiliation(s)
- Yuan Zhang
- Joint Disease & Sport Medicine CentreDepartment of OrthopaedicsXinqiao HospitalArmy Medical UniversityChongqing400038China
| | - Zhuo Cheng
- School of Life ScienceChongqing UniversityChongqing400044China
| | - Zaiyang Liu
- Joint Disease & Sport Medicine CentreDepartment of OrthopaedicsXinqiao HospitalArmy Medical UniversityChongqing400038China
| | - Xinkun Shen
- Department of OrthopaedicsRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Chunyuan Cai
- Department of OrthopaedicsRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Menghuan Li
- School of Life ScienceChongqing UniversityChongqing400044China
| | - Zhong Luo
- School of Life ScienceChongqing UniversityChongqing400044China
| |
Collapse
|
42
|
Bussola Tovani C, Divoux T, Manneville S, Azaïs T, Laurent G, de Frutos M, Gloter A, Ciancaglini P, Ramos AP, Nassif N. Strontium-driven physiological to pathological transition of bone-like architecture: A dose-dependent investigation. Acta Biomater 2023; 169:579-588. [PMID: 37516416 DOI: 10.1016/j.actbio.2023.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Whilst strontium (Sr2+) is widely investigated for treating osteoporosis, it is also related to mineralization disorders such as rickets and osteomalacia. In order to clarify the physiological and pathological effects of Sr2+ on bone biomineralization , we performed a dose-dependent investigation in bone components using a 3D scaffold that displays the hallmark features of bone tissue in terms of composition (osteoblast, collagen, carbonated apatite) and architecture (mineralized collagen fibrils hierarchically assembled into a twisted plywood geometry). As the level of Sr2+ is increased from physiological-like to excess, both the mineral and the collagen fibrils assembly are destabilized, leading to a drop in the Young modulus, with strong implications on pre-osteoblastic cell proliferation. Furthermore, the microstructural and mechanical changes reported here correlate with that observed in bone-weakening disorders induced by Sr2+ accumulation, which may clarify the paradoxical effects of Sr2+ in bone mineralization. More generally, our results provide physicochemical insights into the possible effects of inorganic ions on the assembly of bone extracellular matrix and may contribute to the design of safer therapies for treating osteoporosis. STATEMENT OF SIGNIFICANCE: Physiological-like (10% Sr2+) and excess accumulation-like (50% Sr2+) doses of Sr2+ are investigated in 3D biomimetic assemblies possessing the high degree of organization found in the extracellular of bone. Above the physiological dose, the organic and inorganic components of the bone-like scaffold are destabilized, resulting in impaired cellular activity, which correlates with bone-weakening disorders induced by Sr2+.
Collapse
Affiliation(s)
- Camila Bussola Tovani
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Thibaut Divoux
- Laboratoire de Physique, ENSL, CNRS, F-69342 Lyon, France
| | | | - Thierry Azaïs
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France
| | - Guillaume Laurent
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France
| | - Marta de Frutos
- Laboratoire de Physique des Solides (LPS), CNRS, Université Paris Saclay, F-91405 Orsay, France
| | - Alexandre Gloter
- Laboratoire de Physique des Solides (LPS), CNRS, Université Paris Saclay, F-91405 Orsay, France
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana P Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nadine Nassif
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France.
| |
Collapse
|
43
|
Zhao S, Chen Z, Li T, Sun Q, Leng H, Huo B. Numerical simulations of fluid flow in trabecular-lacunar cavities under cyclic loading. Comput Biol Med 2023; 163:107144. [PMID: 37315384 DOI: 10.1016/j.compbiomed.2023.107144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Under external loading, the fluid shear stress (FSS) in the porous structures of bones, such as trabecular or lacunar-canalicular cavity, can influence the biological response of bone cells. However, few studies have considered both cavities. The present study investigated the characteristics of fluid flow at different scales in cancellous bone in rat femurs, as well as the effects of osteoporosis and loading frequency. METHODS Sprague Dawley rats (3 months old) were divided into normal and osteoporotic groups. A multiscale 3D fluid-solid coupling finite element model considering trabecular system and lacunar-canalicular system was established. Cyclic displacement loadings with frequencies of 1, 2, and 4 Hz were applied. FINDINGS Results showed that the wall FSS around the adhesion complexes of osteocyte on the canaliculi was higher than that on the osteocyte body. Under the same loading conditions, the wall FSS of the osteoporotic group was smaller than that of the normal group. The fluid velocity and FSS in trabecular pores exhibited a linear relationship with loading frequency. Similarly, the FSS around osteocytes also showed the loading frequency-dependent phenomenon. INTERPRETATION The high cadence in movement can effectively increase the FSS level on osteocytes for osteoporotic bone, i.e., expand the space within the bone with physiological load. This study might help in understanding the process of bone remodeling under cyclic loading and provide the fundamental data for the development of strategies for osteoporosis treatment.
Collapse
Affiliation(s)
- Sen Zhao
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zebin Chen
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Taiyang Li
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Qing Sun
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, PR China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing, 100091, PR China.
| |
Collapse
|
44
|
Krasnova O, Neganova I. Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling. Stem Cell Rev Rep 2023; 19:1635-1658. [PMID: 37204634 DOI: 10.1007/s12015-023-10558-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
As a highly dynamic organ, bone changes during throughout a person's life. This process is referred to as 'bone remodeling' and it involves two stages - a well-balanced osteoclastic bone resorption and an osteoblastic bone formation. Under normal physiological conditions bone remodeling is highly regulated that ensures tight coupling between bone formation and resorption, and its disruption results in a bone metabolic disorder, most commonly osteoporosis. Though osteoporosis is one of the most prevalent skeletal ailments that affect women and men aged over 40 of all races and ethnicities, currently there are few, if any safe and effective therapeutic interventions available. Developing state-of-the-art cellular systems for bone remodeling and osteoporosis can provide important insights into the cellular and molecular mechanisms involved in skeletal homeostasis and advise better therapies for patients. This review describes osteoblastogenesis and osteoclastogenesis as two vital processes for producing mature, active bone cells in the context of interactions between cells and the bone matrix. In addition, it considers current approaches in bone tissue engineering, pointing out cell sources, core factors and matrices used in scientific practice for modeling bone diseases and testing drugs. Finally, it focuses on the challenges that bone regenerative medicine is currently facing.
Collapse
Affiliation(s)
- O Krasnova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - I Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
45
|
Ormazabal ME, Pavan E, Vaena E, Ferino D, Biasizzo J, Mucci JM, Serra F, Cifù A, Scarpa M, Rozenfeld PA, Dardis AE. Exploring the Pathophysiologic Cascade Leading to Osteoclastogenic Activation in Gaucher Disease Monocytes Generated via CRISPR/Cas9 Technology. Int J Mol Sci 2023; 24:11204. [PMID: 37446383 DOI: 10.3390/ijms241311204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Gaucher disease (GD) is caused by biallelic pathogenic variants in the acid β-glucosidase gene (GBA1), leading to a deficiency in the β-glucocerebrosidase (GCase) enzyme activity resulting in the intracellular accumulation of sphingolipids. Skeletal alterations are one of the most disabling features in GD patients. Although both defective bone formation and increased bone resorption due to osteoblast and osteoclast dysfunction contribute to GD bone pathology, the molecular bases are not fully understood, and bone disease is not completely resolved with currently available specific therapies. For this reason, using editing technology, our group has developed a reliable, isogenic, and easy-to-handle cellular model of GD monocytes (GBAKO-THP1) to facilitate GD pathophysiology studies and high-throughput drug screenings. In this work, we further characterized the model showing an increase in proinflammatory cytokines (Interleukin-1β and Tumor Necrosis Factor-α) release and activation of osteoclastogenesis. Furthermore, our data suggest that GD monocytes would display an increased osteoclastogenic potential, independent of their interaction with the GD microenvironment or other GD cells. Both proinflammatory cytokine production and osteoclastogenesis were restored at least, in part, by treating cells with the recombinant human GCase, a substrate synthase inhibitor, a pharmacological chaperone, and an anti-inflammatory compound. Besides confirming that this model would be suitable to perform high-throughput screening of therapeutic molecules that act via different mechanisms and on different phenotypic features, our data provided insights into the pathogenic cascade, leading to osteoclastogenesis exacerbation and its contribution to bone pathology in GD.
Collapse
Affiliation(s)
- Maximiliano Emanuel Ormazabal
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Eleonora Pavan
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| | - Emilio Vaena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Dania Ferino
- Institute of Clinical Pathology, Department of Laboratory Medicine, University Hospital of Udine, 33100 Udine, Italy
| | - Jessica Biasizzo
- Institute of Clinical Pathology, Department of Laboratory Medicine, University Hospital of Udine, 33100 Udine, Italy
| | - Juan Marcos Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Fabrizio Serra
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| | - Adriana Cifù
- Dipartimento di Area Medica, Università degli Studi di Udine, 33100 Udine, Italy
| | - Maurizio Scarpa
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| | - Paula Adriana Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Andrea Elena Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
46
|
Yang R, Cao D, Suo J, Zhang L, Mo C, Wang M, Niu N, Yue R, Zou W. Premature aging of skeletal stem/progenitor cells rather than osteoblasts causes bone loss with decreased mechanosensation. Bone Res 2023; 11:35. [PMID: 37407584 DOI: 10.1038/s41413-023-00269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
A distinct population of skeletal stem/progenitor cells (SSPCs) has been identified that is indispensable for the maintenance and remodeling of the adult skeleton. However, the cell types that are responsible for age-related bone loss and the characteristic changes in these cells during aging remain to be determined. Here, we established models of premature aging by conditional depletion of Zmpste24 (Z24) in mice and found that Prx1-dependent Z24 deletion, but not Osx-dependent Z24 deletion, caused significant bone loss. However, Acan-associated Z24 depletion caused only trabecular bone loss. Single-cell RNA sequencing (scRNA-seq) revealed that two populations of SSPCs, one that differentiates into trabecular bone cells and another that differentiates into cortical bone cells, were significantly decreased in Prx1-Cre; Z24f/f mice. Both premature SSPC populations exhibited apoptotic signaling pathway activation and decreased mechanosensation. Physical exercise reversed the effects of Z24 depletion on cellular apoptosis, extracellular matrix expression and bone mass. This study identified two populations of SSPCs that are responsible for premature aging-related bone loss. The impairment of mechanosensation in Z24-deficient SSPCs provides new insight into how physical exercise can be used to prevent bone aging.
Collapse
Affiliation(s)
- Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dandan Cao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lingli Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chunyang Mo
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Miaomiao Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ningning Niu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
47
|
Messina OD, Vidal M, Adami G, Vidal LF, Clark P, Torres JAM, Lems W, Zerbini C, Arguissain C, Reginster JY, Lane NE. Chronic arthritides and bone structure: focus on rheumatoid arthritis-an update. Aging Clin Exp Res 2023:10.1007/s40520-023-02432-9. [PMID: 37222927 DOI: 10.1007/s40520-023-02432-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Normal bone remodeling depends of a balance between bone forming cells, osteoblasts and bone resorbing cells, the osteoclasts. In chronic arthritides and some inflammatory and autoimmune diseases such as rheumatoid arthritis, there is a great constellation of cytokines produced by pannus that impair bone formation and stimulate bone resorption by inducing osteoclast differentiation and inhibiting osteoblast maturation. Patients with chronic inflammation have multiple causes that lead to low bone mineral density, osteoporosis and a high risk of fracture including circulating cytokines, impaired mobility, chronic administration of glucocorticoids, low vitamin D levels and post-menopausal status in women, among others. Biologic agents and other therapeutic measures to reach prompt remission might ameliorate these deleterious effects. In many cases, bone acting agents need to be added to conventional treatment to reduce the risk of fractures and to preserve articular integrity and independency for daily living activities. A limited number of studies related to fractures in chronic arthritides were published, and future investigation is needed to determine the risk of fractures and the protective effects of different treatments to reduce this risk.
Collapse
Affiliation(s)
- Osvaldo Daniel Messina
- Collaborating Centre WHO, Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires, Argentina
- International Osteoporosis Foundation (IOF), Buenos Aires, Argentina
| | - Maritza Vidal
- Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru.
| | - Giovanni Adami
- Rheumatology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Luis Fernando Vidal
- Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru
- Regional Advisory Council for Latin America - International Osteoporosis Foundation (IOF), Lima, Peru
| | - Patricia Clark
- International Osteoporosis Foundation (IOF), Buenos Aires, Argentina
- Chief of Clinical Epidemiology Unit-Hospital Federico Gomez School of Medicine UNAM, Mexico City, Mexico
| | | | - William Lems
- Department of Rheumatology, Amsterdam UMC, Location VU University Medical Centre Amsterdam, Amsterdam, North-Holland, The Netherlands
| | | | - Constanza Arguissain
- Collaborating Centre WHO, Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires, Argentina
| | - Jean-Yves Reginster
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Centre for Public Health, Aspects of Musculoskeletal Health and Ageing, University of Liege, Liege, Belgium
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| |
Collapse
|
48
|
Marahleh A, Kitaura H, Ohori F, Noguchi T, Mizoguchi I. The osteocyte and its osteoclastogenic potential. Front Endocrinol (Lausanne) 2023; 14:1121727. [PMID: 37293482 PMCID: PMC10244721 DOI: 10.3389/fendo.2023.1121727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/07/2023] [Indexed: 06/10/2023] Open
Abstract
The skeleton is an organ of dual functionality; on the one hand, it provides protection and structural competence. On the other hand, it participates extensively in coordinating homeostasis globally given that it is a mineral and hormonal reservoir. Bone is the only tissue in the body that goes through strategically consistent bouts of bone resorption to ensure its integrity and organismal survival in a temporally and spatially coordinated process, known as bone remodeling. Bone remodeling is directly enacted by three skeletal cell types, osteoclasts, osteoblasts, and osteocytes; these cells represent the acting force in a basic multicellular unit and ensure bone health maintenance. The osteocyte is an excellent mechanosensory cell and has been positioned as the choreographer of bone remodeling. It is, therefore, not surprising that a holistic grasp of the osteocyte entity in the bone is warranted. This review discusses osteocytogenesis and associated molecular and morphological changes and describes the osteocytic lacunocanalicular network (LCN) and its organization. We highlight new knowledge obtained from transcriptomic analyses of osteocytes and discuss the regulatory role of osteocytes in promoting osteoclastogenesis with an emphasis on the case of osteoclastogenesis in anosteocytic bones. We arrive at the conclusion that osteocytes exhibit several redundant means through which osteoclast formation can be initiated. However, whether osteocytes are true "orchestrators of bone remodeling" cannot be verified from the animal models used to study osteocyte biology in vivo. Results from studying osteocyte biology using current animal models should come with the caveat that these models are not osteocyte-specific, and conclusions from these studies should be interpreted cautiously.
Collapse
Affiliation(s)
- Aseel Marahleh
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
49
|
Tomaszewska E, Rudyk H, Muszyński S, Hułas-Stasiak M, Leszczyński N, Mielnik-Błaszczak M, Donaldson J, Dobrowolski P. Prenatal Fumonisin Exposure Impairs Bone Development via Disturbances in the OC/Leptin and RANKL/RANK/OPG Systems in Weaned Rat Offspring. Int J Mol Sci 2023; 24:ijms24108743. [PMID: 37240089 DOI: 10.3390/ijms24108743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The goal of the current study was to examine the effects of prenatal exposure to fumonisins (FBs) on bone properties and metabolism in weaned rat offspring divided into groups intoxicated with FBs at either 0 (the 0 FB group), 60 (the 60 FB group), or 90 mg/kg b.w. 0 (the 90 FB group). Female and male offspring exposed to FBs at a dose of 60 mg/kg b.w. had heavier femora. Mechanical bone parameters changed in a sex and FBs dose-dependent manner. Growth hormone and osteoprotegerin decreased in both sexes, regardless of FBs dose. In males osteocalcin decreased, while receptor activator for nuclear factor kappa-Β ligand increased regardless of FBs dose; while in females changes were dose dependent. Leptin decreased in both male FBs-intoxicated groups, bone alkaline phosphatase decreased only in the 60 FB group. Matrix metalloproteinase-8 protein expression increased in both female FBs-intoxicated groups and decreased in male 90 FB group. Osteoprotegerin and tissue inhibitor of metalloproteinases 2 protein expression decreased in males, regardless of FBs dose, while nuclear factor kappa-Β ligand expression increased only in the 90 FB group. The disturbances in bone metabolic processes seemed to result from imbalances in the RANKL/RANK/OPG and the OC/leptin systems.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Halyna Rudyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
- Laboratory of Feed Additives and Premixtures Control, State Research Control Institute of Veterinary Drugs and Feed Additives, 79000 Lviv, Ukraine
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
| | - Norbert Leszczyński
- Department of Agricultural, Forest and Transport Machinery, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Maria Mielnik-Błaszczak
- Chair and Department of Developmental Dentistry, Medical University of Lublin, 20-081 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
| |
Collapse
|
50
|
Andreasen CM, El-Masri BM, MacDonald B, Laursen KS, Nielsen MH, Thomsen JS, Delaisse JM, Andersen TL. Local coordination between intracortical bone remodeling and vascular development in human juvenile bone. Bone 2023; 173:116787. [PMID: 37150243 DOI: 10.1016/j.bone.2023.116787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Although failure to establish a vascular network has been associated with many skeletal disorders, little is known about what drives development of vasculature in the intracortical bone compartments. Here, we show that intracortical bone resorption events are coordinated with development of the vasculature. We investigated the prevalence of vascular structures at different remodeling stages as well as their 3D organization using proximal femoral cortical bone from 5 girls and 6 boys (aged 6-15 years). A 2D analysis revealed that non-quiescent intracortical pores contained more vascular structures than quiescent pores (p < 0.0001). Type 2 pores, i.e., remodeling of existing pores, had a higher density of vascular structures than type 1 pores, i.e., de novo created pores (p < 0.05). Furthermore, pores at the eroded-formative remodeling stage, had more vascular structures than pores at any other remodeling stage (p < 0.05). A 3D reconstruction of an intracortical remodeling event showed that osteoclasts in the advancing tip of the cutting cone as well as preosteoclasts in the lumen expressed vascular endothelial growth factor-A (VEGFA), while VEGFA-receptors 1 and 2 mainly were expressed in endothelial cells in the adjacent vasculature. Consequently, we propose that the progression of the vascular network in intracortical remodeling events is driven by osteoclasts expressing VEGFA. Moreover, the vasculature is continuously reconfigured according to the demands of the remodeling events at the surrounding bone surfaces.
Collapse
Affiliation(s)
- Christina Møller Andreasen
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Molecular Medicine, University of Southern Denmark, Denmark.
| | - Bilal Mohamad El-Masri
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Molecular Medicine, University of Southern Denmark, Denmark.
| | - Birgit MacDonald
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Clinical Cell Biology, Vejle Hospital - Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark
| | - Kaja Søndergaard Laursen
- Clinical Cell Biology, Vejle Hospital - Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark; Molecular Bone Histology lab, Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| | - Malene Hykkelbjerg Nielsen
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Molecular Medicine, University of Southern Denmark, Denmark.
| | | | - Jean-Marie Delaisse
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Molecular Medicine, University of Southern Denmark, Denmark; Clinical Cell Biology, Vejle Hospital - Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark.
| | - Thomas Levin Andersen
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Molecular Medicine, University of Southern Denmark, Denmark; Clinical Cell Biology, Vejle Hospital - Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark; Molecular Bone Histology lab, Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|