1
|
McArthur HCW, Bajur AT, Iliopoulou M, Spillane KM. Antigen mobility regulates the dynamics and precision of antigen capture in the B cell immune synapse. Proc Natl Acad Sci U S A 2025; 122:e2422528122. [PMID: 40354540 DOI: 10.1073/pnas.2422528122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
B cells discriminate antigens in immune synapses by capturing them from antigen-presenting cells (APCs). This discrimination relies on the application of mechanical force to B cell receptor (BCR)-antigen bonds, allowing B cells to selectively disrupt low-affinity interactions while internalizing high-affinity antigens. Using DNA-based tension sensors combined with high-resolution imaging, we demonstrate that the magnitude, location, and timing of forces within the immune synapse are influenced by the fluidity of the antigen-presenting membrane. Transitioning antigens from a high-mobility to a low-mobility substrate significantly increases the probability and speed of antigen extraction while also improving affinity discrimination. This shift in antigen mobility also reshapes the synapse architecture, altering spatial patterns of antigen uptake. Despite these adaptations, B cells maintain consistent levels of proximal and downstream signaling pathway activation regardless of antigen mobility. They also efficiently transport internalized antigens to major histocompatibility complex class II (MHCII)-positive compartments for processing. These results demonstrate that B cells mount effective responses to antigens across diverse physical environments, though the characteristics of that environment may influence the speed and accuracy of B cell adaptation during an immune response.
Collapse
Affiliation(s)
- Hannah C W McArthur
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Anna T Bajur
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maro Iliopoulou
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Katelyn M Spillane
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Pham JA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2025; 14:e2400965. [PMID: 38843866 PMCID: PMC11834385 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John‐Paul A. Pham
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| | - María M. Coronel
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
3
|
Jain K, Kishan K, Minhaj RF, Kanchanawong P, Sheetz MP, Changede R. Immobile Integrin Signaling Transit and Relay Nodes Organize Mechanosignaling through Force-Dependent Phosphorylation in Focal Adhesions. ACS NANO 2025; 19:2070-2088. [PMID: 39760672 DOI: 10.1021/acsnano.4c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Transmembrane signaling receptors, such as integrins, organize as nanoclusters that provide several advantages, including increasing avidity, sensitivity (increasing the signal-to-noise ratio), and robustness (signaling threshold) of the signal in contrast to signaling by single receptors. Furthermore, compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, whether nanoclusters function as signaling hubs remains poorly understood. Here, we employ fluorescence nanoscopy combined with photoactivation and photobleaching at subdiffraction limited resolution of ∼100 nm length scale within a focal adhesion to examine the dynamics of diverse focal adhesion proteins. We show that (i) subregions of focal adhesions are enriched in an immobile population of integrin β3 organized as nanoclusters, which (ii) in turn serve to organize nanoclusters of associated key adhesome proteins-vinculin, focal adhesion kinase (FAK) and paxillin, demonstrating that signaling proceeds by formation of nanoclusters rather than through individual proteins. (iii) Distinct focal adhesion protein nanoclusters exhibit distinct protein dynamics, which is closely correlated to their function in signaling. (iv) Long-lived nanoclusters function as signaling hubs─wherein immobile integrin nanoclusters organize phosphorylated FAK to form stable nanoclusters in close proximity to them, which are disassembled in response to inactivation signal by removal of force and in turn activation of phosphatase PTPN12. (v) Signaling takes place in response to external signals such as force or geometric arrangement of the nanoclusters and when the signal is removed, these nanoclusters disassemble. We term these functional nanoclusters as integrin signaling transit and relay nodes (STARnodes). Taken together, these results demonstrate that integrin STARnodes seed signaling downstream of the integrin receptors by organizing hubs of signaling proteins (FAK, paxillin, vinculin) to relay the incoming signal intracellularly and bring about robust function.
Collapse
Affiliation(s)
- Kashish Jain
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Kishan Kishan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Neurobit Inc., New York, New York 10036, United States
| | - Rida F Minhaj
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Teora Pte. Ltd, Singapore 139955, Singapore
| |
Collapse
|
4
|
Lin Q, Wang Z, Ding G, Li G, Chen L, Qiu Q, Song S, Liu W, Jiang X, Huang M, Shen L, Xiao T, Xie L. The mechanism underlying B-cell developmental dysfunction in Kawasaki disease based on single-cell transcriptomic sequencing. Front Immunol 2024; 15:1438640. [PMID: 39507528 PMCID: PMC11537935 DOI: 10.3389/fimmu.2024.1438640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Background Kawasaki disease (KD) is an acute systemic vasculitis that can lead to acquired heart disease in children mostly from in developed countries. The previous research showed that B cells in KD patients underwent a profound change in both the cell numbers and types after intravenous immunoglobulin (IVIG) therapy. Methods We performed the single-cell RNA-sequencing for the peripheral blood mononuclear cells (PBMCs) from three febrile patients and three KD patients to investigate the possible mechanism underlying B cell developmental dysfunction in KD. The pseudo-time analysis was employed to study the developmental trajectories of the PBMCs in febrile control and KD patients. Results Overall single-cell expression profiles show that the biological processes of immunity, B cell activation pathway and their related biological entities are repressed in KD patients before IVIG treatment compared to febrile patient and KD patients after IVIG treatment. The differentially expressed gene analyses further demonstrate that B cell signaling pathway is downregulated in B cells and plasma blast cells of KD patients before treatment while cell cycle genes and MYC gene are upregulated in dendritic cells (DCs) and hematopoietic stem and progenitor cells (HSPCs) of KD patients before treatment. The biological process of immune response is upregulated in the HSPCs of KD patients before treatment in our dataset while the biological process of inflammatory response is upregulated in the HSPCs of KD patients before treatment in GSE168732 dataset. Single-cell trajectory analyses demonstrate that KD patients before treatment have a shortened developmental path in which B cells and T cells are failed to differentiate into separate lineages. HSPD1 and HSPE1 genes show an elevated expression level in the early cell development stage of KD patients before treatment accompanied with the repression of MYC, SPI1, MT2A and UBE2C genes. Our analyses of all B cells from KD patients before treatment show most of B cells are arrested in a transitional state with an ill developmental path compared with febrile patients and KD patients after treatment. Conclusion Our results indicate that the immune premature HSPCs accompanied with the abnormal expression dynamics of cell cycle and SPI1 genes are the mechanism underlying B cell developmental dysfunction in KD patients.
Collapse
Affiliation(s)
- Qiuping Lin
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guohui Ding
- Institute for Digital Health, International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Guang Li
- Daozhi Precision Medicine Technology Co., LTD, Shanghai, China
| | - Liqin Chen
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingzhu Qiu
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sirui Song
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liu
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xunwei Jiang
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Huang
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Libing Shen
- Institute for Digital Health, International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Tingting Xiao
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijian Xie
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Iliopoulou M, Bajur AT, McArthur HCW, Gabai M, Coyle C, Ajao F, Köchl R, Cope AP, Spillane KM. Extracellular matrix rigidity modulates physical properties of subcapsular sinus macrophage-B cell immune synapses. Biophys J 2024; 123:2282-2300. [PMID: 37840242 PMCID: PMC11331050 DOI: 10.1016/j.bpj.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/17/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
Subcapsular sinus macrophages (SSMs) play a key role in immune defense by forming immunological barriers that control the transport of antigens from lymph into lymph node follicles. SSMs participate in antibody responses by presenting antigens directly to naive B cells and by supplying antigens to follicular dendritic cells to propagate germinal center reactions. Despite the prominent roles that SSMs play during immune responses, little is known about their cell biology because they are technically challenging to isolate and study in vitro. Here, we used multicolor fluorescence microscopy to identify lymph node-derived SSMs in culture. We focused on the role of SSMs as antigen-presenting cells, and found that their actin cytoskeleton regulates the spatial organization and mobility of multivalent antigens (immune complexes [ICs]) displayed on the cell surface. Moreover, we determined that SSMs are mechanosensitive cells that respond to changes in extracellular matrix rigidity by altering the architecture of the actin cytoskeleton, leading to changes in cell morphology, membrane topography, and IC mobility. Changes to extracellular matrix rigidity also modulate actin remodeling by both SSMs and B cells when they form an immune synapse. This alters synapse duration but not IC internalization nor NF-κB activation in the B cell. Taken together, our data reveal that the mechanical microenvironment may influence B cell responses by modulating physical characteristics of antigen presentation by SSMs.
Collapse
Affiliation(s)
- Maro Iliopoulou
- Department of Physics, King's College London, London, United Kingdom
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | | | - Michael Gabai
- Department of Physics, King's College London, London, United Kingdom
| | - Carl Coyle
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Favour Ajao
- Department of Physics, King's College London, London, United Kingdom
| | - Robert Köchl
- Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom.
| |
Collapse
|
6
|
Hou Y, Treanor B. DNA origami: Interrogating the nano-landscape of immune receptor activation. Biophys J 2024; 123:2211-2223. [PMID: 37838832 PMCID: PMC11331043 DOI: 10.1016/j.bpj.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
The immune response is orchestrated by elaborate protein interaction networks that interweave ligand-mediated receptor reorganization with signaling cascades. While the biochemical processes have been extensively investigated, delineating the biophysical principles governing immune receptor activation has remained challenging due to design limitations of traditional ligand display platforms. These constraints have been overcome by advances in DNA origami nanotechnology, enabling unprecedented control over ligand geometry on configurable scaffolds. It is now possible to systematically dissect the independent roles of ligand stoichiometry, spatial distribution, and rigidity in immune receptor activation, signaling, and cooperativity. In this review, we highlight pioneering efforts in manipulating the ligand presentation landscape to understand immune receptor triggering and to engineer functional immune responses.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario.
| | - Bebhinn Treanor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario; Department of Immunology, University of Toronto, Toronto, Ontario.
| |
Collapse
|
7
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
8
|
Xie W, Ma L, Wang P, Liu X, Wu D, Lin Y, Chu Z, Hou Y, Wei Q. Dynamic Regulation of Cell Mechanotransduction through Sequentially Controlled Mobile Surfaces. NANO LETTERS 2024; 24:7953-7961. [PMID: 38888317 DOI: 10.1021/acs.nanolett.4c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The physical properties of nanoscale cell-extracellular matrix (ECM) ligands profoundly impact biological processes, such as adhesion, motility, and differentiation. While the mechanoresponse of cells to static ligands is well-studied, the effect of dynamic ligand presentation with "adaptive" properties on cell mechanotransduction remains less understood. Utilizing a controllable diffusible ligand interface, we demonstrated that cells on surfaces with rapid ligand mobility could recruit ligands through activating integrin α5β1, leading to faster focal adhesion growth and spreading at the early adhesion stage. By leveraging UV-light-sensitive anchor molecules to trigger a "dynamic to static" transformation of ligands, we sequentially activated α5β1 and αvβ3 integrins, significantly promoting osteogenic differentiation of mesenchymal stem cells. This study illustrates how manipulating molecular dynamics can directly influence stem cell fate, suggesting the potential of "sequentially" controlled mobile surfaces as adaptable platforms for engineering smart biomaterial coatings.
Collapse
Affiliation(s)
- Wenyan Xie
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610065, China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong 999077, China
| | - Peng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaojing Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shangdong 250012, China
| | - Di Wu
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong 999077, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077, China
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong 999077, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
9
|
Pathni A, Wagh K, Rey-Suarez I, Upadhyaya A. Mechanical regulation of lymphocyte activation and function. J Cell Sci 2024; 137:jcs219030. [PMID: 38995113 PMCID: PMC11267459 DOI: 10.1242/jcs.219030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Mechanosensing, or how cells sense and respond to the physical environment, is crucial for many aspects of biological function, ranging from cell movement during development to cancer metastasis, the immune response and gene expression driving cell fate determination. Relevant physical stimuli include the stiffness of the extracellular matrix, contractile forces, shear flows in blood vessels, complex topography of the cellular microenvironment and membrane protein mobility. Although mechanosensing has been more widely studied in non-immune cells, it has become increasingly clear that physical cues profoundly affect the signaling function of cells of the immune system. In this Review, we summarize recent studies on mechanical regulation of immune cells, specifically lymphocytes, and explore how the force-generating cytoskeletal machinery might mediate mechanosensing. We discuss general principles governing mechanical regulation of lymphocyte function, spanning from the molecular scale of receptor activation to cellular responses to mechanical stimuli.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Kaustubh Wagh
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Rey-Suarez
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Microcore, Universidad de Los Andes, Bogota, DC 111711, USA
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Jain K, Minhaj RF, Kanchanawong P, Sheetz MP, Changede R. Nano-clusters of ligand-activated integrins organize immobile, signalling active, nano-clusters of phosphorylated FAK required for mechanosignaling in focal adhesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581925. [PMID: 38464288 PMCID: PMC10925161 DOI: 10.1101/2024.02.25.581925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Transmembrane signalling receptors, such as integrins, organise as nanoclusters that are thought to provide several advantages including, increasing avidity, sensitivity (increasing the signal-to-noise ratio) and robustness (signalling above a threshold rather than activation by a single receptor) of the signal compared to signalling by single receptors. Compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, if nanoclusters function as signalling hubs remains poorly understood. Here, we employ fluorescence nanoscopy combined with photoactivation and photobleaching at sub-diffraction limited resolution of ~100nm length scale within a focal adhesion to examine the dynamics of diverse focal adhesion proteins. We show that (i) subregions of focal adhesions are enriched in immobile population of integrin β3 organised as nanoclusters, which (ii) in turn serve to organise nanoclusters of associated key adhesome proteins- vinculin, focal adhesion kinase (FAK) and paxillin, demonstrating that signalling proceeds by formation of nanoclusters rather than through individual proteins. (iii) Distinct focal adhesion protein nanoclusters exhibit distinct dynamics dependent on function. (iv) long-lived nanoclusters function as signalling hubs- wherein phosphorylated FAK and paxillin formed stable nanoclusters in close proximity to immobile integrin nanoclusters which are disassembled in response to inactivation signal by phosphatase PTPN12 (v) signalling takes place in response to an external signal such as force or geometric arrangement of the nanoclusters and when the signal is removed, these nanoclusters disassemble. Taken together, these results demonstrate that signalling downstream of transmembrane receptors is organised as hubs of signalling proteins (FAK, paxillin, vinculin) seeded by nanoclusters of the transmembrane receptor (integrin).
Collapse
Affiliation(s)
- Kashish Jain
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Rida F Minhaj
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- TeOra Pte. Ltd, Singapore, Singapore
| |
Collapse
|
11
|
Bedi A, Choi K, Keane C, Bolger-Munro M, Ambrose AR, Gold MR. WAVE2 Regulates Actin-Dependent Processes Induced by the B Cell Antigen Receptor and Integrins. Cells 2023; 12:2704. [PMID: 38067132 PMCID: PMC10705906 DOI: 10.3390/cells12232704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
B cell antigen receptor (BCR) signaling induces actin cytoskeleton remodeling by stimulating actin severing, actin polymerization, and the nucleation of branched actin networks via the Arp2/3 complex. This enables B cells to spread on antigen-bearing surfaces in order to increase antigen encounters and to form an immune synapse (IS) when interacting with antigen-presenting cells (APCs). Although the WASp, N-WASp, and WAVE nucleation-promoting factors activate the Arp2/3 complex, the role of WAVE2 in B cells has not been directly assessed. We now show that both WAVE2 and the Arp2/3 complex localize to the peripheral ring of branched F-actin when B cells spread on immobilized anti-Ig antibodies. The siRNA-mediated depletion of WAVE2 reduced and delayed B cell spreading on immobilized anti-Ig, and this was associated with a thinner peripheral F-actin ring and reduced actin retrograde flow compared to control cells. Depleting WAVE2 also impaired integrin-mediated B cell spreading on fibronectin and the LFA-1-induced formation of actomyosin arcs. Actin retrograde flow amplifies BCR signaling at the IS, and we found that depleting WAVE2 reduced microcluster-based BCR signaling and signal amplification at the IS, as well as B cell activation in response to antigen-bearing cells. Hence, WAVE2 contributes to multiple actin-dependent processes in B lymphocytes.
Collapse
Affiliation(s)
- Abhishek Bedi
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Kate Choi
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Connor Keane
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Madison Bolger-Munro
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Ashley R Ambrose
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Michael R Gold
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| |
Collapse
|
12
|
Park J, Pho T, Champion JA. Chemical and biological conjugation strategies for the development of multivalent protein vaccine nanoparticles. Biopolymers 2023; 114:e23563. [PMID: 37490564 PMCID: PMC10528127 DOI: 10.1002/bip.23563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
| | - Thomas Pho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| |
Collapse
|
13
|
Rappazzo CG, Fernández-Quintero ML, Mayer A, Wu NC, Greiff V, Guthmiller JJ. Defining and Studying B Cell Receptor and TCR Interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:311-322. [PMID: 37459189 PMCID: PMC10495106 DOI: 10.4049/jimmunol.2300136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/15/2023] [Indexed: 07/20/2023]
Abstract
BCRs (Abs) and TCRs (or adaptive immune receptors [AIRs]) are the means by which the adaptive immune system recognizes foreign and self-antigens, playing an integral part in host defense, as well as the emergence of autoimmunity. Importantly, the interaction between AIRs and their cognate Ags defies a simple key-in-lock paradigm and is instead a complex many-to-many mapping between an individual's massively diverse AIR repertoire, and a similarly diverse antigenic space. Understanding how adaptive immunity balances specificity with epitopic coverage is a key challenge for the field, and terms such as broad specificity, cross-reactivity, and polyreactivity remain ill-defined and are used inconsistently. In this Immunology Notes and Resources article, a group of experimental, structural, and computational immunologists define commonly used terms associated with AIR binding, describe methodologies to study these binding modes, as well as highlight the implications of these different binding modes for therapeutic design.
Collapse
Affiliation(s)
| | | | - Andreas Mayer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Jenna J. Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
14
|
Pinon L, Ruyssen N, Pineau J, Mesdjian O, Cuvelier D, Chipont A, Allena R, Guerin CL, Asnacios S, Asnacios A, Pierobon P, Fattaccioli J. Phenotyping polarization dynamics of immune cells using a lipid droplet-cell pairing microfluidic platform. CELL REPORTS METHODS 2022; 2:100335. [PMID: 36452873 PMCID: PMC9701611 DOI: 10.1016/j.crmeth.2022.100335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
The immune synapse is the tight contact zone between a lymphocyte and a cell presenting its cognate antigen. This structure serves as a signaling platform and entails a polarization of intracellular components necessary to the immunological function of the cell. While the surface properties of the presenting cell are known to control the formation of the synapse, their impact on polarization has not yet been studied. Using functional lipid droplets as tunable artificial presenting cells combined with a microfluidic pairing device, we simultaneously observe synchronized synapses and dynamically quantify polarization patterns of individual B cells. By assessing how ligand concentration, surface fluidity, and substrate rigidity impact lysosome polarization, we show that its onset and kinetics depend on the local antigen concentration at the synapse and on substrate rigidity. Our experimental system enables a fine phenotyping of monoclonal cell populations based on their synaptic readout.
Collapse
Affiliation(s)
- Léa Pinon
- École Normale Supérieure, UMR 8640, Laboratoire PASTEUR, Département de Chimie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Curie, U932, Immunology and Cancer, INSERM, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - Nicolas Ruyssen
- Arts et Métiers Institute of Technology, Université Paris 13, Sorbonne Paris Cité, IBHGC, HESAM Université, 75013 Paris, France
| | - Judith Pineau
- Institut Curie, U932, Immunology and Cancer, INSERM, 75005 Paris, France
| | - Olivier Mesdjian
- École Normale Supérieure, UMR 8640, Laboratoire PASTEUR, Département de Chimie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - Damien Cuvelier
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
- Institut Curie, UMR 144, PSL Research University, CNRS, Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 926 Chemistry, 75005 Paris, France
| | - Anna Chipont
- Institut Curie, Cytometry Platform, 75005 Paris, France
| | - Rachele Allena
- Arts et Métiers Institute of Technology, Université Paris 13, Sorbonne Paris Cité, IBHGC, HESAM Université, 75013 Paris, France
- LJAD, UMR 7351, Université Côte d’Azur, 06100 Nice, France
| | - Coralie L. Guerin
- Institut Curie, Cytometry Platform, 75005 Paris, France
- Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, 75006 Paris, France
| | - Sophie Asnacios
- Université de Paris, CNRS, Laboratoire Matière et Systèmes Complexes, UMR 7057, 75013 Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 925 Physics, 75005 Paris, France
| | - Atef Asnacios
- Université de Paris, CNRS, Laboratoire Matière et Systèmes Complexes, UMR 7057, 75013 Paris, France
| | - Paolo Pierobon
- Institut Curie, U932, Immunology and Cancer, INSERM, 75005 Paris, France
| | - Jacques Fattaccioli
- École Normale Supérieure, UMR 8640, Laboratoire PASTEUR, Département de Chimie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| |
Collapse
|
15
|
Wheatley BA, Rey-Suarez I, Hourwitz MJ, Kerr S, Shroff H, Fourkas JT, Upadhyaya A. Nanotopography modulates cytoskeletal organization and dynamics during T cell activation. Mol Biol Cell 2022; 33:ar88. [PMID: 35830602 PMCID: PMC9582624 DOI: 10.1091/mbc.e21-12-0601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exposure to MHC-antigen complexes on the surface of antigen-presenting cells (APCs) activates T cells, inducing the formation of the immune synapse (IS). Antigen detection at the APC surface is thus a critical step in the adaptive immune response. The physical properties of antigen-presenting surfaces encountered by T cells in vivo are believed to modulate T cell activation and proliferation. Although stiffness and ligand mobility influence IS formation, the effect of the complex topography of the APC surface on this process is not well understood. Here we investigate how nanotopography modulates cytoskeletal dynamics and signaling during the early stages of T cell activation using high-resolution fluorescence microscopy on nanofabricated surfaces with parallel nanoridges of different spacings. We find that although nanoridges reduce the maximum spread area as compared with cells on flat surfaces, the ridges enhance the accumulation of actin and the signaling kinase ZAP-70 at the IS. Actin polymerization is more dynamic in the presence of ridges, which influence the directionality of both actin flows and microtubule (MT) growth. Our results demonstrate that the topography of the activating surface exerts both global effects on T cell morphology and local changes in actin and MT dynamics, collectively influencing T cell signaling.
Collapse
Affiliation(s)
- Brittany A Wheatley
- Department of Integrative Structural and Computational Biology and.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Sarah Kerr
- Department of Physics, University of Colorado, Boulder, CO 80302
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.,Maryland Quantum Materials Center, University of Maryland, College Park, MD 20742
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742
| |
Collapse
|
16
|
Ahmad A, Uversky VN, Khan RH. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases. Int J Biol Macromol 2022; 220:703-720. [PMID: 35998851 DOI: 10.1016/j.ijbiomac.2022.08.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/05/2022]
Abstract
Recent evidence has shown that the processes of liquid-liquid phase separation (LLPS) or liquid-liquid phase transitions (LLPTs) are a crucial and prevalent phenomenon that underlies the biogenesis of numerous membrane-less organelles (MLOs) and biomolecular condensates within the cells. Findings show that processes associated with LLPS play an essential role in physiology and disease. In this review, we discuss the physical and biomolecular factors that contribute to the development of LLPS, the associated functions, as well as their consequences for cell physiology and neurological disorders. Additionally, the finding of mis-regulated proteins, which have long been linked to aggregates in neuropathology, are also known to induce LLPS/LLPTs, prompting a lot of interest in understanding the connection between aberrant phase separation and disorder conditions. Moreover, the methods used in recent and ongoing studies in this field are also explored, as is the possibility that these findings will encourage new lines of inquiry into the molecular causes of neurodegenerative diseases.
Collapse
Affiliation(s)
- Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P. 202002, India.
| |
Collapse
|
17
|
Ma X, Zhu Y, Dong D, Chen Y, Wang S, Yang D, Ma Z, Zhang A, Zhang F, Guo C, Huang Z. Cryo-EM structures of two human B cell receptor isotypes. Science 2022; 377:880-885. [PMID: 35981028 DOI: 10.1126/science.abo3828] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The B cell receptor (BCR) complex plays a critical role in B cell development and immune responses. The assembly mechanisms underlying the BCR complex remain unknown. We determined the cryo-electron microscopy (cryo-EM) structures of human IgG-BCR and IgM-BCR, which consist of membrane-bound immunoglobulin molecules (mIg) and Igα/β subunits at a 1:1 stoichiometry. Assembly of both BCR complexes involves their extracellular domains, membrane-proximal connection peptides, and transmembrane (TM) helices. The TM helices of mIgG and mIgM share a conserved set of hydrophobic and polar interactions with Igα/β TM helices. By contrast, the IgG-Cγ3 and IgM-Cμ4 domains interact with extracellular Ig-like domains of Igα/β through head-to-tail and side-by-side modes, respectively. This work reveals the structural basis for BCR assembly and provides insights into BCR triggering.
Collapse
Affiliation(s)
- Xinyu Ma
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - De Dong
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yan Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Shubo Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Dehui Yang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhuo Ma
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
18
|
Kramer L, Song HW, Mitchell K, Kartik M, Jain R, Escarra VL, Quiros E, Fu H, Singh A, Roy K. Lipid Membrane-Based Antigen Presentation to B Cells Using a Fully Synthetic Ex Vivo Germinal Center Model. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100137. [PMID: 35937779 PMCID: PMC9351594 DOI: 10.1002/anbr.202100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
High-affinity antigen-specific B cells are generated within specialized structures, germinal centers (GCs), inside lymphoid organs. In GCs, follicular dendritic cells (FDCs) present antigens on their membrane surface to cognate B cells, inducing rapid proliferation and differentiation of the B cells toward antibody-secreting cells. The FDC's fluid membrane surface allows B cells to "pull" the antigens into clusters and internalize them, a process that frequently involves tearing off and internalizing FDC membrane fragments. To study this process ex vivo, liposomal membranes are used as the antigen-presenting FDC-like fluid lipid surface to activate B cells. In a fully synthetic in vitro GC model (sGC), which uses the microbead-based presentation of the CD40 Ligand and a cytokine cocktail to mimic T follicular helper cell signals to B cells, liposomes presenting a model antigen mimic effectively engage B cell receptors (BCRs) and induce greater BCR clustering compared to soluble antigens, resulting in rapid antigen internalization and proliferation of the B cells. B cells showed GC-like reactions and undergo efficient IgG1 class-switching. Taken together, the results suggest that fluid membrane-bound antigen induces a strong GC response and provides a novel synthetic in vitro system for studying GC biology in health and diseases, and for expanding therapeutic B cells ex vivo.
Collapse
Affiliation(s)
- Liana Kramer
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Hannah W. Song
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Kaiya Mitchell
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Mythili Kartik
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Ritika Jain
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Victoria Lozano Escarra
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Enrique Quiros
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Harrison Fu
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Ankur Singh
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine 313 Ferst Dr NW, Atlanta, GA 30332, USA, George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology 313 Ferst Dr NW, Atlanta, GA 30332, USA, Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine 313 Ferst Dr NW, Atlanta, GA 30332, USA, Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| |
Collapse
|
19
|
Wu D, Hou Y, Chu Z, Wei Q, Hong W, Lin Y. Ligand Mobility-Mediated Cell Adhesion and Spreading. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12976-12983. [PMID: 35282676 DOI: 10.1021/acsami.1c22603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells live in a highly dynamic environment where their physical connection and communication with the outside are achieved through receptor-ligands binding. Therefore, a precise knowledge of the interaction between receptors and ligands is critical for our understanding of how cells execute different biological duties. Interestingly, recent evidence has shown that the mobility of ligands at the cell-extracellular matrix (ECM) interface significantly affects the adhesion and spreading of cells, while the underlying mechanism remains unclear. Here, we present a modeling investigation to address this critical issue. Specifically, by adopting the Langevin dynamics, the random movement of ligands was captured by assigning a stochastic force along with a viscous drag on them. After that, the evolution of adhesion and subsequent spreading of cells were analyzed by considering the force-regulated binding/breakage of individual molecular bonds connecting polymerizing actin bundles inside the cell to the ECM. Interestingly, a biphasic relationship between adhesion and ligand diffusivity was predicted, resulting in maximized cell spreading at intermediate mobility of ligand molecules. In addition, this peak position was found to be dictated by the aggregation of ligands, effectively reducing their diffusivity, and how fast bond association/dissociation can occur. These predictions are in excellent agreement with our experimental observations where distinct ligand mobility was introduced by tuning the interactions between the self-assembly polymer coating and the surface.
Collapse
Affiliation(s)
- Di Wu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 000000, China
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 000000, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 000000, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 000000, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518057, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 000000, China
| |
Collapse
|
20
|
Li M, Lee S, Zahedian M, Ding C, Yan J, Yu Y. Immobile ligands enhance FcγR-TLR2/1 crosstalk by promoting interface overlap of receptor clusters. Biophys J 2022; 121:966-976. [PMID: 35150619 PMCID: PMC8943811 DOI: 10.1016/j.bpj.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/09/2022] [Accepted: 02/07/2022] [Indexed: 01/02/2023] Open
Abstract
Innate immune cells detect pathogens through simultaneous stimulation of multiple receptors, but how cells use the receptor crosstalk to elicit context-appropriate responses is unclear. Here, we reveal that the inflammatory response of macrophages from FcγR-TLR2/1 crosstalk inversely depends on the ligand mobility within a model pathogen membrane. The mechanism is that FcγR and TLR2/1 form separate nanoclusters that interact at their interfaces during crosstalk. Less mobile ligands induce stronger interactions and more overlap between the receptor nanoclusters, leading to enhanced signaling. Different from the prevailing view that immune receptors colocalize to synergize their signaling, our results show that FcγR-TLR2/1 crosstalk occurs through interface interactions between non-colocalizing receptor nanoclusters, which are modulated by ligand mobility. This suggests a mechanism by which innate immune cells could use physical properties of ligands to fine-tune host responses.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Seonik Lee
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Maryam Zahedian
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Chuanlin Ding
- Department of Surgery, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Jun Yan
- Department of Surgery, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana.
| |
Collapse
|
21
|
Tseng CY, Wang WX, Douglas TR, Chou LYT. Engineering DNA Nanostructures to Manipulate Immune Receptor Signaling and Immune Cell Fates. Adv Healthc Mater 2022; 11:e2101844. [PMID: 34716686 DOI: 10.1002/adhm.202101844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Immune cells sense, communicate, and logically integrate a multitude of environmental signals to make important cell-fate decisions and fulfill their effector functions. These processes are initiated and regulated by a diverse array of immune receptors and via their dynamic spatiotemporal organization upon ligand binding. Given the widespread relevance of the immune system to health and disease, there have been significant efforts toward understanding the biophysical principles governing immune receptor signaling and activation, as well as the development of biomaterials which exploit these principles for therapeutic immune engineering. Here, how advances in the field of DNA nanotechnology constitute a growing toolbox for further pursuit of these endeavors is discussed. Key cellular players involved in the induction of immunity against pathogens or diseased cells are first summarized. How the ability to design DNA nanostructures with custom shapes, dynamics, and with site-specific incorporation of diverse guests can be leveraged to manipulate the signaling pathways that regulate these processes is then presented. It is followed by highlighting emerging applications of DNA nanotechnology at the crossroads of immune engineering, such as in vitro reconstitution platforms, vaccines, and adjuvant delivery systems. Finally, outstanding questions that remain for further advancing immune-modulatory DNA nanodevices are outlined.
Collapse
Affiliation(s)
- Chung Yi Tseng
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| | - Wendy Xueyi Wang
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| | - Travis Robert Douglas
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| | - Leo Y. T. Chou
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
22
|
Stoycheva D, Simsek H, Weber W, Hauser AE, Klotzsch E. External cues to drive B cell function towards immunotherapy. Acta Biomater 2021; 133:222-230. [PMID: 33636402 DOI: 10.1016/j.actbio.2021.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022]
Abstract
Immunotherapy stands out as a powerful and promising therapeutic strategy in the treatment of cancer, infections, and autoimmune diseases. Adoptive immune therapies are usually centered on modified T cells and their specific expansion towards antigen-specific T cells against cancer and other diseases. However, despite their unmatched features, the potential of B cells in immunotherapy is just beginning to be explored. The main role of B cells in the immune response is to secrete antigen-specific antibodies and provide long-term protection against foreign pathogens. They further function as antigen-presenting cells (APCs) and secrete pro- and anti-inflammatory cytokines and thus exert positive and negative regulatory stimuli on other cells involved in the immune response such as T cells. Therefore, while hyperactivation of B cells can cause autoimmunity, their dysfunctions lead to severe immunodeficiencies. Only suitably activated B cells can play an active role in the treatment of cancers, infections, and autoimmune diseases. As a result, studies have focused on B cell-targeted immunotherapies in recent years. For this, the development, functions, interactions with the microenvironment, and clinical importance of B cells should be well understood. In this review, we summarize the main events during B cell activation. From the viewpoint of mechanobiology we discuss the translation of external cues such as surface topology, substrate stiffness, and biochemical signaling into B cell functions. We further dive into current B cell-targeted therapy strategies and their clinical applications. STATEMENT OF SIGNIFICANCE: B cells are proving as a promising tool in the field of immunotherapy. B cells exhibit various functions such as antibody production, antigen presentation or secretion of immune-regulatory factors which can be utilized in the fight against oncological or immunological disorders. In this review we discuss the importance of external mechanobiological cues such as surface topology, substrate stiffness, and biochemical signaling on B cell function. We further summarize B cell-targeted therapy strategies and their clinical applications, as in the context of anti-tumor responses and autoimmune diseases.
Collapse
|
23
|
Deretic N, Bolger-Munro M, Choi K, Abraham L, Gold MR. The Actin-Disassembly Protein Glia Maturation Factor γ Enhances Actin Remodeling and B Cell Antigen Receptor Signaling at the Immune Synapse. Front Cell Dev Biol 2021; 9:647063. [PMID: 34336818 PMCID: PMC8318000 DOI: 10.3389/fcell.2021.647063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Signaling by the B cell antigen receptor (BCR) initiates actin remodeling. The assembly of branched actin networks that are nucleated by the Arp2/3 complex exert outward force on the plasma membrane, allowing B cells to form membrane protrusions that can scan the surface of antigen-presenting cells (APCs). The resulting Arp2/3 complex-dependent actin retrograde flow promotes the centripetal movement and progressive coalescence of BCR microclusters, which amplifies BCR signaling. Glia maturation factor γ (GMFγ) is an actin disassembly-protein that releases Arp2/3 complex-nucleated actin filaments from actin networks. By doing so, GMFγ could either oppose the actions of the Arp2/3 complex or support Arp2/3 complex-nucleated actin polymerization by contributing to the recycling of actin monomers and Arp2/3 complexes. We now show that reducing the levels of GMFγ in human B cell lines via transfection with a specific siRNA impairs the ability of B cells to spread on antigen-coated surfaces, decreases the velocity of actin retrograde flow, diminishes the coalescence of BCR microclusters into a central cluster at the B cell-APC contact site, and decreases APC-induced BCR signaling. These effects of depleting GMFγ are similar to what occurs when the Arp2/3 complex is inhibited. This suggests that GMFγ cooperates with the Arp2/3 complex to support BCR-induced actin remodeling and amplify BCR signaling at the immune synapse.
Collapse
Affiliation(s)
- Nikola Deretic
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Madison Bolger-Munro
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kate Choi
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Libin Abraham
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Gold
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Bhanja A, Rey-Suarez I, Song W, Upadhyaya A. Bidirectional feedback between BCR signaling and actin cytoskeletal dynamics. FEBS J 2021; 289:4430-4446. [PMID: 34124846 PMCID: PMC8669062 DOI: 10.1111/febs.16074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
When B cells are exposed to antigens, they use their B-cell receptors (BCRs) to transduce this external signal into internal signaling cascades and uptake antigen, which activate transcriptional programs. Signaling activation requires complex cytoskeletal remodeling initiated by BCR signaling. The actin cytoskeletal remodeling drives B-cell morphological changes, such as spreading, protrusion, contraction, and endocytosis of antigen by mechanical forces, which in turn affect BCR signaling. Therefore, the relationship between the actin cytoskeleton and BCR signaling is a two-way feedback loop. These morphological changes represent the indirect ways by which the actin cytoskeleton regulates BCR signaling. Recent studies using high spatiotemporal resolution microscopy techniques have revealed that actin also can directly influence BCR signaling. Cortical actin networks directly affect BCR mobility, not only during the resting stage by serving as diffusion barriers, but also at the activation stage by altering BCR diffusivity through enhanced actin flow velocities. Furthermore, the actin cytoskeleton, along with myosin, enables B cells to sense the physical properties of its environment and generate and transmit forces through the BCR. Consequently, the actin cytoskeleton modulates the signaling threshold of BCR to antigenic stimulation. This review discusses the latest research on the relationship between BCR signaling and actin remodeling, and the research techniques. Exploration of the role of actin in BCR signaling will expand fundamental understanding of the relationship between cell signaling and the cytoskeleton and the mechanisms underlying cytoskeleton-related immune disorders and cancer.
Collapse
Affiliation(s)
- Anshuman Bhanja
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA.,Department Physics, University of Maryland, College Park, MD, USA
| |
Collapse
|
25
|
Bolger-Munro M, Choi K, Cheung F, Liu YT, Dang-Lawson M, Deretic N, Keane C, Gold MR. The Wdr1-LIMK-Cofilin Axis Controls B Cell Antigen Receptor-Induced Actin Remodeling and Signaling at the Immune Synapse. Front Cell Dev Biol 2021; 9:649433. [PMID: 33928084 PMCID: PMC8076898 DOI: 10.3389/fcell.2021.649433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
When B cells encounter membrane-bound antigens, the formation and coalescence of B cell antigen receptor (BCR) microclusters amplifies BCR signaling. The ability of B cells to probe the surface of antigen-presenting cells (APCs) and respond to APC-bound antigens requires remodeling of the actin cytoskeleton. Initial BCR signaling stimulates actin-related protein (Arp) 2/3 complex-dependent actin polymerization, which drives B cell spreading as well as the centripetal movement and coalescence of BCR microclusters at the B cell-APC synapse. Sustained actin polymerization depends on concomitant actin filament depolymerization, which enables the recycling of actin monomers and Arp2/3 complexes. Cofilin-mediated severing of actin filaments is a rate-limiting step in the morphological changes that occur during immune synapse formation. Hence, regulators of cofilin activity such as WD repeat-containing protein 1 (Wdr1), LIM domain kinase (LIMK), and coactosin-like 1 (Cotl1) may also be essential for actin-dependent processes in B cells. Wdr1 enhances cofilin-mediated actin disassembly. Conversely, Cotl1 competes with cofilin for binding to actin and LIMK phosphorylates cofilin and prevents it from binding to actin filaments. We now show that Wdr1 and LIMK have distinct roles in BCR-induced assembly of the peripheral actin structures that drive B cell spreading, and that cofilin, Wdr1, and LIMK all contribute to the actin-dependent amplification of BCR signaling at the immune synapse. Depleting Cotl1 had no effect on these processes. Thus, the Wdr1-LIMK-cofilin axis is critical for BCR-induced actin remodeling and for B cell responses to APC-bound antigens.
Collapse
Affiliation(s)
- Madison Bolger-Munro
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kate Choi
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Faith Cheung
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yi Tian Liu
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - May Dang-Lawson
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Nikola Deretic
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Connor Keane
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Gold
- Department of Microbiology & Immunology and Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Roberts AD, Davenport TM, Dickey AM, Ahn R, Sochacki KA, Taraska JW. Structurally distinct endocytic pathways for B cell receptors in B lymphocytes. Mol Biol Cell 2020; 31:2826-2840. [PMID: 33085561 PMCID: PMC7851864 DOI: 10.1091/mbc.e20-08-0532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
B lymphocytes play a critical role in adaptive immunity. On antigen binding, B cell receptors (BCR) cluster on the plasma membrane and are internalized by endocytosis. In this process, B cells capture diverse antigens in various contexts and concentrations. However, it is unclear whether the mechanism of BCR endocytosis changes in response to these factors. Here, we studied the mechanism of soluble antigen-induced BCR clustering and internalization in a cultured human B cell line using correlative superresolution fluorescence and platinum replica electron microscopy. First, by visualizing nanoscale BCR clusters, we provide direct evidence that BCR cluster size increases with F(ab’)2 concentration. Next, we show that the physical mechanism of internalization switches in response to BCR cluster size. At low concentrations of antigen, B cells internalize small BCR clusters by classical clathrin-mediated endocytosis. At high antigen concentrations, when cluster size increases beyond the size of a single clathrin-coated pit, B cells retrieve receptor clusters using large invaginations of the plasma membrane capped with clathrin. At these sites, we observed early and sustained recruitment of actin and an actin polymerizing protein FCHSD2. We further show that actin recruitment is required for the efficient generation of these novel endocytic carriers and for their capture into the cytosol. We propose that in B cells, the mechanism of endocytosis switches to accommodate large receptor clusters formed when cells encounter high concentrations of soluble antigen. This mechanism is regulated by the organization and dynamics of the cortical actin cytoskeleton.
Collapse
Affiliation(s)
- Aleah D Roberts
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thaddeus M Davenport
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Andrea M Dickey
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Regina Ahn
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
27
|
Sarapulov AV, Petrov P, Hernández-Pérez S, Šuštar V, Kuokkanen E, Cords L, Samuel RVM, Vainio M, Fritzsche M, Carrasco YR, Mattila PK. Missing-in-Metastasis/Metastasis Suppressor 1 Regulates B Cell Receptor Signaling, B Cell Metabolic Potential, and T Cell-Independent Immune Responses. Front Immunol 2020; 11:599. [PMID: 32373113 PMCID: PMC7176992 DOI: 10.3389/fimmu.2020.00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
Efficient generation of antibodies by B cells is one of the prerequisites of protective immunity. B cell activation by cognate antigens via B cell receptors (BCRs), or pathogen-associated molecules through pattern-recognition receptors, such as Toll-like receptors (TLRs), leads to transcriptional and metabolic changes that ultimately transform B cells into antibody-producing plasma cells or memory cells. BCR signaling and a number of steps downstream of it rely on coordinated action of cellular membranes and the actin cytoskeleton, tightly controlled by concerted action of multiple regulatory proteins, some of them exclusive to B cells. Here, we dissect the role of Missing-In-Metastasis (MIM), or Metastasis suppressor 1 (MTSS1), a cancer-associated membrane and actin cytoskeleton regulating protein, in B cell-mediated immunity by taking advantage of MIM knockout mouse strain. We show undisturbed B cell development and largely normal composition of B cell compartments in the periphery. Interestingly, we found that MIM-/- B cells are defected in BCR signaling in response to surface-bound antigens but, on the other hand, show increased metabolic activity after stimulation with LPS or CpG. In vivo, MIM knockout animals exhibit impaired IgM antibody responses to immunization with T cell-independent antigen. This study provides the first comprehensive characterization of MIM in B cells, demonstrates its regulatory role for B cell-mediated immunity, as well as proposes new functions for MIM in tuning receptor signaling and cellular metabolism, processes, which may also contribute to the poorly understood functions of MIM in cancer.
Collapse
Affiliation(s)
- Alexey V. Sarapulov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Petar Petrov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sara Hernández-Pérez
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Vid Šuštar
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Elina Kuokkanen
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Lena Cords
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rufus V. M. Samuel
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Marika Vainio
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
- Rosalind Franklin Institute, Didcot, United Kingdom
| | - Yolanda R. Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Pieta K. Mattila
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
28
|
Sun X, Liu H. Nucleic Acid Nanostructure Assisted Immune Modulation. ACS APPLIED BIO MATERIALS 2020; 3:2765-2778. [DOI: 10.1021/acsabm.9b01195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoli Sun
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
29
|
Griffié J, Peters R, Owen DM. An agent-based model of molecular aggregation at the cell membrane. PLoS One 2020; 15:e0226825. [PMID: 32032349 PMCID: PMC7006917 DOI: 10.1371/journal.pone.0226825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Molecular clustering at the plasma membrane has long been identified as a key process and is associated with regulating signalling pathways across cell types. Recent advances in microscopy, in particular the rise of super-resolution, have allowed the experimental observation of nanoscale molecular clusters in the plasma membrane. However, modelling approaches capable of recapitulating these observations are in their infancy, partly because of the extremely complex array of biophysical factors which influence molecular distributions and dynamics in the plasma membrane. We propose here a highly abstracted approach: an agent-based model dedicated to the study of molecular aggregation at the plasma membrane. We show that when molecules are modelled as though they can act (diffuse) in a manner which is influenced by their molecular neighbourhood, many of the distributions observed in cells can be recapitulated, even though such sensing and response is not possible for real membrane molecules. As such, agent-based offers a unique platform which may lead to a new understanding of how molecular clustering in extremely complex molecular environments can be abstracted, simulated and interpreted using simple rules.
Collapse
Affiliation(s)
- Juliette Griffié
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
- * E-mail: (JG); (DO)
| | - Ruby Peters
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
| | - Dylan M. Owen
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
- * E-mail: (JG); (DO)
| |
Collapse
|
30
|
Rey-Suarez I, Wheatley BA, Koo P, Bhanja A, Shu Z, Mochrie S, Song W, Shroff H, Upadhyaya A. WASP family proteins regulate the mobility of the B cell receptor during signaling activation. Nat Commun 2020; 11:439. [PMID: 31974357 PMCID: PMC6978525 DOI: 10.1038/s41467-020-14335-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Regulation of membrane receptor mobility tunes cellular response to external signals, such as in binding of B cell receptors (BCR) to antigen, which initiates signaling. However, whether BCR signaling is regulated by BCR mobility, and what factors mediate this regulation, are not well understood. Here we use single molecule imaging to examine BCR movement during signaling activation and a novel machine learning method to classify BCR trajectories into distinct diffusive states. Inhibition of actin dynamics downstream of the actin nucleating factors, Arp2/3 and formin, decreases BCR mobility. Constitutive loss or acute inhibition of the Arp2/3 regulator, N-WASP, which is associated with enhanced signaling, increases the proportion of BCR trajectories with lower diffusivity. Furthermore, loss of N-WASP reduces the diffusivity of CD19, a stimulatory co-receptor, but not that of FcγRIIB, an inhibitory co-receptor. Our results implicate a dynamic actin network in fine-tuning receptor mobility and receptor-ligand interactions for modulating B cell signaling. B cell receptors (BCR) capture antigen and initiate downstream antibody responses, but whether and how BCR signaling is regulated by BCR mobility is still unclear. Here the authors show, using single molecule imaging and machine learning analyses, that BCR and CD19 mobility is modulated by the actin nucleation regulators Arp2/3 and N-WASP to control BCR signaling.
Collapse
Affiliation(s)
- Ivan Rey-Suarez
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Brittany A Wheatley
- Department of Physics, University of Maryland, College Park, MD, 20742, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Peter Koo
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Anshuman Bhanja
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Zhou Shu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.,Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Simon Mochrie
- Department of Physics, Yale University, New Haven, CT, 06520, USA
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA. .,Department of Physics, University of Maryland, College Park, MD, 20742, USA. .,Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
31
|
Núñez MF, Wisser K, Veatch SL. Synergistic factors control kinase-phosphatase organization in B-cells engaged with supported bilayers. Mol Biol Cell 2019; 31:667-682. [PMID: 31877064 PMCID: PMC7202075 DOI: 10.1091/mbc.e19-09-0507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
B-cells become activated by ligands with varying valency and mode of presentation to the B-cell receptor (BCR). We previously demonstrated that clustering the immunoglobulin M (IgM) isotype of BCR with an artificial soluble cross-linker stabilized an ordered phase-like domain that enriched kinases and depleted phosphatases to promote receptor tyrosine phosphorylation. BCR is also activated by ligands presented at surfaces, and here we activate B-cells via supported bilayers of phosphatidylcholine lipids, a natural ligand for the IgM BCR expressed in the CH27 cells used. Using superresolution fluorescence localization microscopy, along with a quantitative cross-correlation analysis, we find that BRCs engaged with bilayers sort minimal peptide markers of liquid-ordered and liquid-disordered phases, indicating that ordered-domain stabilization is a general feature of BCR clustering. The phosphatase CD45 is more strongly excluded from bilayer-engaged BRCs than a transmembrane peptide, indicating that mechanisms other than domain partitioning contribute to its organization. Experimental observations are assembled into a minimal model of receptor activation that incorporates both ordered domains and direct phosphatase exclusion mechanisms to produce a more sensitive response.
Collapse
Affiliation(s)
| | - Kathleen Wisser
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105
| |
Collapse
|
32
|
Ziegler CGK, Kim J, Piersanti K, Oyler-Yaniv A, Argyropoulos KV, van den Brink MRM, Palomba ML, Altan-Bonnet N, Altan-Bonnet G. Constitutive Activation of the B Cell Receptor Underlies Dysfunctional Signaling in Chronic Lymphocytic Leukemia. Cell Rep 2019; 28:923-937.e3. [PMID: 31340154 PMCID: PMC8018719 DOI: 10.1016/j.celrep.2019.06.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/18/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
In cancer biology, the functional interpretation of genomic alterations is critical to achieve the promise of genomic profiling in the clinic. For chronic lymphocytic leukemia (CLL), a heterogeneous disease of B-lymphocytes maturing under constitutive B cell receptor (BCR) stimulation, the functional role of diverse clonal mutations remains largely unknown. Here, we demonstrate that alterations in BCR signaling dynamics underlie the progression of B cells toward malignancy. We reveal emergent dynamic features—bimodality, hypersensitivity, and hysteresis—in the BCR signaling pathway of primary CLL B cells. These signaling abnormalities in CLL quantitatively derive from BCR clustering and constitutive signaling with positive feedback reinforcement, as demonstrated through single-cell analysis of phospho-responses, computational modeling, and super-resolution imaging. Such dysregulated signaling segregates CLL patients by disease severity and clinical presentation. These findings provide a quantitative framework and methodology to assess complex and heterogeneous leukemia pathology and to inform therapeutic strategies in parallel with genomic profiling. Using phospho-flow cytometry and computational modeling, Ziegler et al. find that B cell receptor clustering and positive feedback through SYK and LYN drive signaling hypersensitivity, bistability, and hysteresis in chronic lymphocytic leukemic B cells. Super-resolution microscopy confirms membrane auto-aggregation in leukemic B cells, and variability in signaling dysfunction predicts disease severity.
Collapse
Affiliation(s)
- Carly G K Ziegler
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Joel Kim
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kelly Piersanti
- Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alon Oyler-Yaniv
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Physics Department, Ben Gurion University, Beer-Sheva, Israel
| | - Kimon V Argyropoulos
- Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marcel R M van den Brink
- Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Lia Palomba
- Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Grégoire Altan-Bonnet
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cancer Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
33
|
Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M. Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines (Basel) 2019; 7:E58. [PMID: 31266253 PMCID: PMC6789462 DOI: 10.3390/vaccines7030058] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Group A Streptococcus (GAS) infection can cause a variety of diseases in humans, ranging from common sore throats and skin infections, to more invasive diseases and life-threatening post-infectious diseases, such as rheumatic fever and rheumatic heart disease. Although research has been ongoing since 1923, vaccines against GAS are still not available to the public. Traditional approaches taken to develop vaccines for GAS failed due to poor efficacy and safety. Fortunately, headway has been made and modern subunit vaccines that administer minimal bacterial components provide an opportunity to finally overcome previous hurdles in GAS vaccine development. This review details the major antigens and strategies used for GAS vaccine development. The combination of antigen selection, peptide epitope modification and delivery systems have resulted in the discovery of promising peptide vaccines against GAS; these are currently in preclinical and clinical studies.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wanli Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Saori Mukaida
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, QLD 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
34
|
Bolger-Munro M, Choi K, Scurll JM, Abraham L, Chappell RS, Sheen D, Dang-Lawson M, Wu X, Priatel JJ, Coombs D, Hammer JA, Gold MR. Arp2/3 complex-driven spatial patterning of the BCR enhances immune synapse formation, BCR signaling and B cell activation. eLife 2019; 8:e44574. [PMID: 31157616 PMCID: PMC6591008 DOI: 10.7554/elife.44574] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
When B cells encounter antigens on the surface of an antigen-presenting cell (APC), B cell receptors (BCRs) are gathered into microclusters that recruit signaling enzymes. These microclusters then move centripetally and coalesce into the central supramolecular activation cluster of an immune synapse. The mechanisms controlling BCR organization during immune synapse formation, and how this impacts BCR signaling, are not fully understood. We show that this coalescence of BCR microclusters depends on the actin-related protein 2/3 (Arp2/3) complex, which nucleates branched actin networks. Moreover, in murine B cells, this dynamic spatial reorganization of BCR microclusters amplifies proximal BCR signaling reactions and enhances the ability of membrane-associated antigens to induce transcriptional responses and proliferation. Our finding that Arp2/3 complex activity is important for B cell responses to spatially restricted membrane-bound antigens, but not for soluble antigens, highlights a critical role for Arp2/3 complex-dependent actin remodeling in B cell responses to APC-bound antigens.
Collapse
Affiliation(s)
- Madison Bolger-Munro
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
| | - Kate Choi
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
| | - Joshua M Scurll
- Department of Mathematics, Institute of Applied MathematicsUniversity of British ColumbiaVancouverCanada
| | - Libin Abraham
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
- Department of Mathematics, Institute of Applied MathematicsUniversity of British ColumbiaVancouverCanada
| | - Rhys S Chappell
- Department of Mathematics, Institute of Applied MathematicsUniversity of British ColumbiaVancouverCanada
| | - Duke Sheen
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
| | - May Dang-Lawson
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
| | - Xufeng Wu
- Cell Biology and Physiology CenterNational Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - John J Priatel
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
- BC Children’s Hospital Research InstituteVancouverCanada
| | - Daniel Coombs
- Department of Mathematics, Institute of Applied MathematicsUniversity of British ColumbiaVancouverCanada
| | - John A Hammer
- Cell Biology and Physiology CenterNational Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Michael R Gold
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
35
|
Wan Z, Shaheen S, Chau A, Zeng Y, Liu W. Imaging: Gear up for mechano-immunology. Cell Immunol 2019; 350:103926. [PMID: 31151736 DOI: 10.1016/j.cellimm.2019.103926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Immune cells including B and T lymphocytes have a remarkable ability to sense the physical perturbations through their surface expressed receptors. At the advent of modern imaging technologies paired with biophysical methods, we have gained the understanding of mechanical forces exerted by immune cells to perform their functions. This review will go over the imaging techniques already being used to study mechanical forces in immune cells. We will also discuss the dire need for new modern technologies for future work.
Collapse
Affiliation(s)
- Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Alicia Chau
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
36
|
Abstract
A wide range of cell–microenvironmental interactions are mediated by membrane-localized receptors that bind ligands present on another cell or the extracellular matrix. This situation introduces a number of physical effects including spatial organization of receptor–ligand complexes and development of mechanical forces in cells. Unlike traditional experimental approaches, hybrid live cell–supported lipid bilayer (SLB) systems, wherein a live cell interacts with a synthetic substrate supported membrane, allow interrogation of these aspects of receptor signaling. The SLB system directly offers facile control over the identity, density, and mobility of ligands used for engaging cellular receptors. Further, application of various nano- and micropatterning techniques allows for spatial patterning of ligands. In this review, we describe the hybrid live cell–SLB system and its application in uncovering a range of spatial and mechanical aspects of receptor signaling. We highlight the T cell immunological synapse, junctions formed between EphA2- and ephrinA1-expressing cells, and adhesions formed by cadherin and integrin receptors.
Collapse
Affiliation(s)
- Kabir H. Biswas
- NTU Institute for Health Technologies, Nanyang Technological University, Singapore 637553
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
37
|
Li J, Yin W, Jing Y, Kang D, Yang L, Cheng J, Yu Z, Peng Z, Li X, Wen Y, Sun X, Ren B, Liu C. The Coordination Between B Cell Receptor Signaling and the Actin Cytoskeleton During B Cell Activation. Front Immunol 2019; 9:3096. [PMID: 30687315 PMCID: PMC6333714 DOI: 10.3389/fimmu.2018.03096] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/13/2018] [Indexed: 01/27/2023] Open
Abstract
B-cell activation plays a crucial part in the immune system and is initiated via interaction between the B cell receptor (BCR) and specific antigens. In recent years with the help of modern imaging techniques, it was found that the cortical actin cytoskeleton changes dramatically during B-cell activation. In this review, we discuss how actin-cytoskeleton reorganization regulates BCR signaling in different stages of B-cell activation, specifically when stimulated by antigens, and also how this reorganization is mediated by BCR signaling molecules. Abnormal BCR signaling is associated with the progression of lymphoma and immunological diseases including autoimmune disorders, and recent studies have proved that impaired actin cytoskeleton can devastate the normal activation of B cells. Therefore, to figure out the coordination between the actin cytoskeleton and BCR signaling may reveal an underlying mechanism of B-cell activation, which has potential for new treatments for B-cell associated diseases.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cheng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Yu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zican Peng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingbo Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wen
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xizi Sun
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boxu Ren
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. J Control Release 2018; 294:268-278. [PMID: 30572036 DOI: 10.1016/j.jconrel.2018.12.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/09/2018] [Accepted: 12/15/2018] [Indexed: 01/22/2023]
Abstract
Hollow microneedles can help overcome the skin permeation barrier imposed by the stratum corneum and facilitate transcutaneous delivery of nanoparticle delivery systems. In the present study, we investigated the use of the hollow microneedle array for intradermal delivery of polymeric nanoparticles (NPs) in rats. Compared to intravenous and subcutaneous routes of administration, intradermal delivery of polymeric NPs via a hollow microneedle array resulted in a unique pharmacokinetic profile, characterized by an early burst transit through the draining lymph nodes and a relatively limited overall systemic exposure. Based on high local lymphatic concentrations achieved, we investigated the use of this modality for vaccine delivery. A model antigen ovalbumin (OVA) and TLR agonists imiquimod and monophosphoryl Lipid A encapsulated in poly(d,l-lactide-co-glycolide) (PLGA) NPs were used as the vaccine formulation. Compared to soluble OVA-based vaccine, OVA loaded NPs demonstrated faster antibody affinity maturation kinetics. Moreover, antigen loaded NPs delivered via a hollow microneedle array elicited a significantly higher IgG2a antibody response and higher number of interferon (IFN)-γ secreting lymphocytes, both markers of Th1 response, in comparison to antigen loaded NPs delivered by intramuscular injection and soluble antigen delivered through hollow microneedle array. Overall, our results show that hollow microneedle mediated intradermal delivery of polymeric NPs is a promising approach to improve the effectiveness of vaccine formulations.
Collapse
|
39
|
Wang J, Lin F, Wan Z, Sun X, Lu Y, Huang J, Wang F, Zeng Y, Chen YH, Shi Y, Zheng W, Li Z, Xiong C, Liu W. Profiling the origin, dynamics, and function of traction force in B cell activation. Sci Signal 2018; 11:11/542/eaai9192. [PMID: 30087179 DOI: 10.1126/scisignal.aai9192] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
B lymphocytes use B cell receptors (BCRs) to recognize membrane-bound antigens to further initiate cell spreading and contraction responses during B cell activation. We combined traction force microscopy and live-cell imaging to profile the origin, dynamics, and function of traction force generation in these responses. We showed that B cell activation required the generation of 10 to 20 nN of traction force when encountering antigens presented by substrates with stiffness values from 0.5 to 1 kPa, which mimic the rigidity of antigen-presenting cells in vivo. Perturbation experiments revealed that F-actin remodeling and myosin- and dynein-mediated contractility contributed to traction force generation and B cell activation. Moreover, membrane-proximal BCR signaling molecules (including Lyn, Syk, Btk, PLC-γ2, BLNK, and Vav3) and adaptor molecules (Grb2, Cbl, and Dok-3) linking BCR microclusters and motor proteins were also required for the sustained generation of these traction forces. We found a positive correlation between the strength of the traction force and the mean fluorescence intensity of the BCR microclusters. Furthermore, we demonstrated that isotype-switched memory B cells expressing immunoglobulin G (IgG)-BCRs generated greater traction forces than did mature naïve B cells expressing IgM-BCRs during B cell activation. Last, we observed that primary B cells from patients with rheumatoid arthritis generated greater traction forces than did B cells from healthy donors in response to antigen stimulation. Together, these data delineate the origin, dynamics, and function of traction force during B cell activation.
Collapse
Affiliation(s)
- Junyi Wang
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Feng Lin
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Zhengpeng Wan
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China
| | - Yun Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Ying-Hua Chen
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Center for Life Sciences, Department of Basic Medical Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wanli Liu
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China. .,Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
40
|
Mechanics of antigen extraction in the B cell synapse. Mol Immunol 2018; 101:319-328. [PMID: 30036798 DOI: 10.1016/j.molimm.2018.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
B cell encounter with antigen displayed on antigen-presenting cells leads to B cell immune synapse formation, internalisation of the antigen, and stimulation of antibody responses. The sensitivity with which B cells detect antigen, and the quality and quantity of antigen that B cells acquire, depend upon mechanical properties of the immune synapse including interfacial tension, the strength of intermolecular bonds, and the compliance of the molecules and membranes that participate in antigen presentation. In this review, we discuss our current understanding of how these various physical parameters influence B cell antigen extraction in the immune synapse and how a more comprehensive understanding of B cell mechanics may promote the development of new approaches to stimulate the production of desired antibodies.
Collapse
|
41
|
Sánchez MF, Murad F, Gülcüler Balta GS, Martin-Villalba A, García-Sáez AJ, Carrer DC. Early activation of CD95 is limited and localized to the cytotoxic synapse. FEBS J 2018; 285:2813-2827. [PMID: 29797791 DOI: 10.1111/febs.14518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/28/2018] [Accepted: 05/22/2018] [Indexed: 01/13/2023]
Abstract
The cytotoxic synapse formed between cytotoxic T lymphocytes or natural killer cells expressing CD95L and target cells with CD95 on their surface is a key pathway for apoptosis induction by the immune system. Despite similarities with the immune synapse in antigen presenting cells, little is known about the role of the spatiotemporal organization of agonistic proteins/receptor interactions for CD95 signaling. Here, we have developed an artificial cytotoxic synapse to examine how mobility and geometry of an anti-CD95 agonistic antibody affect receptor aggregation and mobility, ie the first step of receptor activation. By measuring the distribution, diffusion coefficient, and fraction of immobile CD95 receptor in living cells, we show that at short times, the initial activation of CD95 occurs locally and is limited to the contact region of the cytotoxic synapse. This anisotropic activation of apoptotic signaling supports a role for confined interactions on the efficiency of signal transduction that may have implications for biomedical applications of extrinsic apoptosis induction.
Collapse
Affiliation(s)
- María Florencia Sánchez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba, Argentina
| | - Fabronia Murad
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Gülce S Gülcüler Balta
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Germany
| | - Ana Martin-Villalba
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dolores C Carrer
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
42
|
Ketchum CM, Sun X, Suberi A, Fourkas JT, Song W, Upadhyaya A. Subcellular topography modulates actin dynamics and signaling in B-cells. Mol Biol Cell 2018; 29:1732-1742. [PMID: 29771636 PMCID: PMC6080708 DOI: 10.1091/mbc.e17-06-0422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
B-cell signaling activation is most effectively triggered by the binding of B-cell receptors (BCRs) to membrane-bound antigens. In vivo, B-cells encounter antigen on antigen-presenting cells (APC), which possess complex surfaces with convoluted topographies, a fluid membrane and deformable cell bodies. However, whether and how the physical properties of antigen presentation affect B-cell activation is not well understood. Here we use nanotopographic surfaces that allow systematic variation of geometric parameters to show that surface features on a subcellular scale influence B-cell signaling and actin dynamics. Parallel nanoridges with spacings of 3 microns or greater induce actin intensity oscillations on the ventral cell surface. Nanotopography-induced actin dynamics requires BCR signaling, actin polymerization, and myosin contractility. The topography of the stimulatory surface also modulates the distribution of BCR clusters in activated B-cells. Finally, B-cells stimulated on nanopatterned surfaces exhibit intracellular calcium oscillations with frequencies that depend on topography. Our results point to the importance of physical aspects of ligand presentation, in particular, nanotopography for B-cell activation and antigen gathering.
Collapse
Affiliation(s)
| | - Xiaoyu Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Alexandra Suberi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Center for Nanophysics and Advanced Materials, University of Maryland, College Park, MD 20742.,Maryland NanoCenter, University of Maryland, College Park, MD 20742
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Arpita Upadhyaya
- Biophysics Program, University of Maryland, College Park, MD 20742.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742
| |
Collapse
|
43
|
Hortigüela V, Larrañaga E, Cutrale F, Seriola A, García-Díaz M, Lagunas A, Andilla J, Loza-Alvarez P, Samitier J, Ojosnegros S, Martínez E. Nanopatterns of Surface-Bound EphrinB1 Produce Multivalent Ligand-Receptor Interactions That Tune EphB2 Receptor Clustering. NANO LETTERS 2018; 18:629-637. [PMID: 29243484 DOI: 10.1021/acs.nanolett.7b04904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here we present a nanostructured surface able to produce multivalent interactions between surface-bound ephrinB1 ligands and membrane EphB2 receptors. We created ephrinB1 nanopatterns of regular size (<30 nm in diameter) by using self-assembled diblock copolymers. Next, we used a statistically enhanced version of the Number and Brightness technique, which can discriminate-with molecular sensitivity-the oligomeric states of diffusive species to quantitatively track the EphB2 receptor oligomerization process in real time. The results indicate that a stimulation using randomly distributed surface-bound ligands was not sufficient to fully induce receptor aggregation. Conversely, when nanopatterned onto our substrates, the ligands effectively induced a strong receptor oligomerization. This presentation of ligands improved the clustering efficiency of conventional ligand delivery systems, as it required a 9-fold lower ligand surface coverage and included faster receptor clustering kinetics compared to traditional cross-linked ligands. In conclusion, nanostructured diblock copolymers constitute a novel strategy to induce multivalent ligand-receptor interactions leading to a stronger, faster, and more efficient receptor activation, thus providing a useful strategy to precisely tune and potentiate receptor responses. The efficiency of these materials at inducing cell responses can benefit applications such as the design of new bioactive materials and drug-delivery systems.
Collapse
Affiliation(s)
- Verónica Hortigüela
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) , Barcelona 08028, Spain
| | - Enara Larrañaga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) , Barcelona 08028, Spain
| | - Francesco Cutrale
- Translational Imaging Center, Molecular and Computational Biology, University of Southern California , Los Angeles, California 90089, United States
| | - Anna Seriola
- Center of Regenerative Medicine in Barcelona (CMRB) , Hospital Duran i Reynals, Hospitalet de Llobregat 08908, Spain
| | - María García-Díaz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) , Barcelona 08028, Spain
| | - Anna Lagunas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) , Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red (CIBER) , Madrid 28029, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology , Castelldefels, Barcelona 08860, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology , Castelldefels, Barcelona 08860, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) , Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red (CIBER) , Madrid 28029, Spain
- Department of Engineering: Electronics, University of Barcelona (UB) , Barcelona 08028, Spain
| | - Samuel Ojosnegros
- Center of Regenerative Medicine in Barcelona (CMRB) , Hospital Duran i Reynals, Hospitalet de Llobregat 08908, Spain
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) , Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red (CIBER) , Madrid 28029, Spain
- Department of Engineering: Electronics, University of Barcelona (UB) , Barcelona 08028, Spain
| |
Collapse
|
44
|
Wang JC, Bolger-Munro M, Gold MR. Imaging the Interactions Between B Cells and Antigen-Presenting Cells. Methods Mol Biol 2018; 1707:131-161. [PMID: 29388105 DOI: 10.1007/978-1-4939-7474-0_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In vivo, B cells are often activated by antigens that are displayed on the surface of antigen-presenting cells (APCs). Binding of membrane-associated antigens to the B cell receptor (BCR) causes rapid cytoskeleton-dependent changes in the spatial organization of the BCR and other B cell membrane proteins, leading to the formation of an immune synapse. This process has been modeled using antigens attached to artificial planar lipid bilayers or to plasma membrane sheets. As a more physiological system for studying B cell-APC interactions, we have expressed model antigens in easily transfected adherent cell lines such as Cos-7 cells. The model antigens that we have used are a transmembrane form of a single-chain anti-Igκ antibody and a transmembrane form of hen egg lysozyme that is fused to a fluorescent protein. This has allowed us to study multiple aspects of B cell immune synapse formation including cytoskeletal reorganization, BCR microcluster coalescence, BCR-mediated antigen gathering, and BCR signaling. Here, we provide protocols for expressing these model antigens on the surface of Cos-7 cells, transfecting B cells with siRNAs or with plasmids encoding fluorescent proteins, using fixed cell and live cell fluorescence microscopy to image B cell-APC interactions, and quantifying APC-induced changes in BCR spatial organization and signaling.
Collapse
Affiliation(s)
- Jia C Wang
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Madison Bolger-Munro
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Michael R Gold
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
45
|
Rey I, Garcia DA, Wheatley BA, Song W, Upadhyaya A. Biophysical Techniques to Study B Cell Activation: Single-Molecule Imaging and Force Measurements. Methods Mol Biol 2018; 1707:51-68. [PMID: 29388099 DOI: 10.1007/978-1-4939-7474-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells of the adaptive immune system recognize pathogenic peptides through specialized receptors on their membranes. The engagement of these receptors with antigen leads to cell activation, which induces profound changes in the cell including cytoskeleton remodeling and membrane deformation. During this process, receptors and signaling molecules undergo spatiotemporal reorganization to form signaling microclusters and the immunological synapse. The cytoskeletal and membrane dynamics also leads to exertion of forces on the cell-substrate interface. In this chapter we describe two techniques-one for single-molecule imaging of B cell receptors to measure their diffusive properties as cells get activated on supported lipid bilayers; and the second for visualizing and quantifying cellular forces using elastic surfaces to stimulate T and B cells.
Collapse
Affiliation(s)
- Ivan Rey
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA
| | - David A Garcia
- Department of Physics, University of Maryland, College Park, MD, 20742, USA
| | | | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Arpita Upadhyaya
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA. .,Department of Physics, University of Maryland, College Park, MD, 20742, USA. .,Institute for Physical Science and Technology, University of Maryland, 1151, PSC Bldg., College Park, MD, 20742, USA.
| |
Collapse
|
46
|
Lehnert T, Figge MT. Dimensionality of Motion and Binding Valency Govern Receptor-Ligand Kinetics As Revealed by Agent-Based Modeling. Front Immunol 2017; 8:1692. [PMID: 29250071 PMCID: PMC5714874 DOI: 10.3389/fimmu.2017.01692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/16/2017] [Indexed: 11/23/2022] Open
Abstract
Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor–ligand binding in the context of antibody–antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors—such as their dimensionality of motion, morphology, and binding valency—on the receptor–ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors.
Collapse
Affiliation(s)
- Teresa Lehnert
- Research Group Applied Systems Biology, Leibniz Institute of Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute of Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
47
|
Mechanosensing in the immune response. Semin Cell Dev Biol 2017; 71:137-145. [PMID: 28830744 DOI: 10.1016/j.semcdb.2017.08.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 01/16/2023]
Abstract
Cells have a remarkable ability to sense and respond to the mechanical properties of their environment. Mechanosensing is essential for many phenomena, ranging from cell movements and tissue rearrangements to cell differentiation and the immune response. Cells of the immune system get activated when membrane receptors bind to cognate antigen on the surface of antigen presenting cells. Both T and B lymphocyte signaling has been shown to be responsive to physical forces and mechanical cues. Cytoskeletal forces exerted by cells likely mediate this mechanical modulation. Here, we discuss recent advances in the field of immune cell mechanobiology at the molecular and cellular scale.
Collapse
|
48
|
Angelov B, Angelova A. Nanoscale clustering of the neurotrophin receptor TrkB revealed by super-resolution STED microscopy. NANOSCALE 2017; 9:9797-9804. [PMID: 28682396 DOI: 10.1039/c7nr03454g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nanoscale organization of the tropomyosin-related kinase receptor type B (TrkB), a promising therapeutic target for severe neurodegenerative and psychiatric disorders, is examined by stimulated emission depletion (STED) microscopy using the deconvoluted gated STED option. The performed immunofluorescence nanoscopic subdiffraction imaging of the membrane receptor localization reveals that clusters of oligomeric TrkB states and randomly organized nanodomains are formed in the membranes of differentiated human neuroblastoma SH-SY5Y cells, which are studied as an in vitro model of neurodegeneration. Despite that the monomeric (isolated) states of the receptor cannot be distinguished from its dimeric forms in such images, TrkB receptor dimers (or couple of individual monomers) are visualized at super-resolution as single pixels in the magnified Huygens-deconvoluted gated STED images. The clusters of higher-order TrkB oligomers are of dynamic nature rather than of a fixed stoichiometry. The propensity for membrane protein clustering as well as the dissociation of the TrkB receptors nanodomains can be modulated by neurotherapeutic formulations containing ω-3 polyunsaturated docosahexaenoic acid (DHA). Nanomolar concentrations of DHA change the receptor topology and lead to disruption of the cluster phases. This result is of therapeutic importance for TrkB receptor availability upon ligand binding as DHA favours the mobility and the dynamic distribution of the protein populations in the cell membranes.
Collapse
Affiliation(s)
- Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | | |
Collapse
|
49
|
|
50
|
Hartwell BL, Pickens CJ, Leon M, Berkland C. Multivalent Soluble Antigen Arrays Exhibit High Avidity Binding and Modulation of B Cell Receptor-Mediated Signaling to Drive Efficacy against Experimental Autoimmune Encephalomyelitis. Biomacromolecules 2017; 18:1893-1907. [PMID: 28474886 DOI: 10.1021/acs.biomac.7b00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A pressing need exists for antigen-specific immunotherapies (ASIT) that induce selective tolerance in autoimmune disease while avoiding deleterious global immunosuppression. Multivalent soluble antigen arrays (SAgAPLP:LABL), consisting of a hyaluronic acid (HA) linear polymer backbone cografted with multiple copies of autoantigen (PLP) and cell adhesion inhibitor (LABL) peptides, are designed to induce tolerance to a specific multiple sclerosis (MS) autoantigen. Previous studies established that hydrolyzable SAgAPLP:LABL, employing a degradable linker to codeliver PLP and LABL, was therapeutic in experimental autoimmune encephalomyelitis (EAE) in vivo and exhibited antigen-specific binding with B cells, targeted the B cell receptor (BCR), and dampened BCR-mediated signaling in vitro. Our results pointed to sustained BCR engagement as the SAgAPLP:LABL therapeutic mechanism, so we developed a new version of the SAgA molecule using nonhydrolyzable conjugation chemistry, hypothesizing it would enhance and maintain the molecule's action at the cell surface to improve efficacy. "Click SAgA" (cSAgAPLP:LABL) uses hydrolytically stable covalent conjugation chemistry (Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC)) rather than a hydrolyzable oxime bond to attach PLP and LABL to HA. We explored cSAgAPLP:LABL B cell engagement and modulation of BCR-mediated signaling in vitro through flow cytometry binding and calcium flux signaling assays. Indeed, cSAgAPLP:LABL exhibited higher avidity B cell binding and greater dampening of BCR-mediated signaling than hydrolyzable SAgAPLP:LABL. Furthermore, cSAgAPLP:LABL exhibited significantly enhanced in vivo efficacy compared to hydrolyzable SAgAPLP:LABL, achieving equivalent efficacy at one-quarter of the dose. These results indicate that nonhydrolyzable conjugation increased the avidity of cSAgAPLP:LABL to drive in vivo efficacy through modulated BCR-mediated signaling.
Collapse
Affiliation(s)
- Brittany L Hartwell
- Bioengineering Graduate Program, University of Kansas 1520 West 15th Street, Lawrence, Kansas 66045, United States
| | - Chad J Pickens
- Department of Pharmaceutical Chemistry, University of Kansas 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Martin Leon
- Department of Chemistry, University of Kansas 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Cory Berkland
- Bioengineering Graduate Program, University of Kansas 1520 West 15th Street, Lawrence, Kansas 66045, United States.,Department of Pharmaceutical Chemistry, University of Kansas 2095 Constant Avenue, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, University of Kansas 1530 West 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|