1
|
Yang S, Zhang X, Wang Y, Liu J, Wang L, Liao Y, Yang Y, Dai T, Yin X, Li S, Han L, Zhu J, Feng H. Mannose-modified erythrocyte membrane-coated Chuanmingshen violaceum polysaccharide PLGA nanoparticles to improve immune responses in mice. Int Immunopharmacol 2025; 152:114450. [PMID: 40080925 DOI: 10.1016/j.intimp.2025.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
This study developed a poly(lactic-co-glycolic acid) (PLGA) biomimetic nanoparticle (Man-RBC-CVPP) containing Chuanmingshen violaceum polysaccharide (CVP) and coated with a macrophage-targeting mannose receptor (DSPE-PEG-Man) modified RBCM. In vitro experiments demonstrated that Man-RBC-CVPP enhances antigen uptake and immune responses in RAW264.7 cells and can induce an immune response in mouse macrophages by activating the TLR4-mediated NF-κB signaling pathway. In vivo experiments showed that Man-RBC-CVPP promotes the activation of splenic dendritic cells (DCs) by increasing the expression of major histocompatibility complex class II (MHCII), CD80+, and CD86+. Further, it improves the maturation of splenic lymphocytes, increasing the expression of CD4+ and CD8+. It also upregulates the secretion of cytokines, raises serum levels of the specific antibody IgG, and slows the release of OVA at the injection site. In summary, Man-RBC-CVPP can effectively enhance both cellular and humoral immune responses and provide controlled, long-term antigen release.
Collapse
Affiliation(s)
- Shuyao Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Xinnan Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Yao Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Jie Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Lu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Yi Liao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Yanwen Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Tao Dai
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Xuemei Yin
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Shanshan Li
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Lu Han
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China.
| | - Haibo Feng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
2
|
Song Q, Zhang K, Li S, Weng S. Trichosanthes kirilowii Maxim. Polysaccharide attenuates diabetes through the synergistic impact of lipid metabolism and modulating gut microbiota. Curr Res Food Sci 2025; 10:100977. [PMID: 39906503 PMCID: PMC11791362 DOI: 10.1016/j.crfs.2025.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Polysaccharide, a chain of sugars bound by glycosidic bonds, have a wide range of physiological activities, including hypoglycemic activity. In present study, we established T2DM mice models to explore the effects and mechanism of Trichosanthes kirilowii Maxim polysaccharide (TMSP1) on high-fat diet/streptozotocin (HF-STZ) induced diabetes mice. The results showed that high-fat diet significantly increased the oral glucose tolerance test (OGTT), viscera index, oxidative stress, impaired glucose tolerance, decreased body weight, immune response and short-chain fatty acid (SCFAs) content, and disrupted the balance of intestinal flora structure. However, after 6 weeks of TMSP1 intervention decreased lipid accumulation, ameliorated gut microbiota dysbiosis by increasing SCFAs-producing bacteria and mitigated intestinal inflammation and oxidative stress. Moreover, TMSP1 significantly restored the integrity of the intestinal epithelial barrier and mucus barrier. The results of fecal microbiota transplantation confirmed that TMSP1 exerted hypoglycemic effect through regulating intestinal flora to a certain extent. Collectively, the findings revealed TMSP1 intervention inhibits hyperglycemia by improving gut microbiota disorder, lipid metabolism, and inflammation. Hence, TMSP1 may be an effective measure to ameliorate HF-STZ induced diabetes.
Collapse
Affiliation(s)
- Qiaoying Song
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Kunpeng Zhang
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Shuyan Li
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Shaoting Weng
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| |
Collapse
|
3
|
Song W, Zhang T, Wang Y, Xue S, Zhang Y, Zhang G. Glycyrrhiza uralensis Polysaccharide Modulates Characteristic Bacteria and Metabolites, Improving the Immune Function of Healthy Mice. Nutrients 2025; 17:225. [PMID: 39861355 PMCID: PMC11767424 DOI: 10.3390/nu17020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES Polysaccharides from Glycyrrhiza are known to have several bioactive effects. Previous studies have found that low-molecular-weight Glycyrrhiza polysaccharide (GP1) is degraded by Muribaculum_sp_H5 and promotes the production of beneficial bacteria and metabolites, which improves immune disorder and intestinal injury, and then enhances the body's immune regulation ability. However, the immune regulation effect of GP1 on a healthy body has not been studied. In this study, we aimed to reveal the immune enhancement effect and mechanism of GP1 on healthy mice. METHODS The cytotoxicity and immunomodulatory activity of GP1 were analyzed by cell experiment; the effects of GP1 on antioxidation, immune regulation and gut microbiota structure of healthy body were studied in vivo. In addition, the mechanism of GP1 enhancing immune response of healthy body was analyzed by multi-omics. RESULTS The results show that GP1 enhanced the immune function of healthy mice by increasing the index of immune organs, improving the organizational structure of immune organs, and increasing the secretion of immune cytokines and immunoglobulin. GP1 also increased the contents of antioxidant factors such as total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in various organs and reduced the content of oxide malondialdehyde (MDA), thus enhancing the body's antioxidant capacity, promoting cell proliferation and prolonging life. Moreover, GP1 promoted the proliferation of beneficial bacteria, including Muribaculaceae_unclassified, Muribaculum, Prevotellaceae_UCG-001, and Paramuribaculum, and the production of characteristic metabolites (collectively referred to as postbiotics), including α-tocopherol, arachidonic acid, melibiose, taurine, and nicotinic acid. These beneficial bacteria and postbiotics have been proven to have health maintaining functions. CONCLUSIONS GP1 promoted the proliferation of beneficial bacteria and increased the production of postbiotics, which should be the mechanism of its beneficial effect. It is expected to be a promising immune dietary supplement.
Collapse
Affiliation(s)
- Wangdi Song
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Taifeng Zhang
- Testing Center of Xinjiang Tianye Co., Ltd., Shihezi 832099, China
| | - Yunyun Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Shengnan Xue
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yan Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Genlin Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
4
|
Huang Y, He M, Zhang J, Cheng S, Cheng X, Chen H, Wu G, Wang F, Zeng S. White Tea Aqueous Extract: A Potential Anti-Aging Agent Against High-Fat Diet-Induced Senescence in Drosophila melanogaster. Foods 2024; 13:4034. [PMID: 39766976 PMCID: PMC11728359 DOI: 10.3390/foods13244034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/15/2025] Open
Abstract
White tea has been scientifically proven to exhibit positive biological effects in combating chronic diseases, including cancer, metabolic syndrome, etc. Nevertheless, the anti-aging activity and mechanism of white tea on organisms exposed to a high-fat diet remain unexplored. Herein, we prepared a white tea aqueous extract (WTAE) from white peony in Fuding and assessed its in vivo antioxidant and anti-aging effects by employing a Drosophila melanogaster senescence model induced by lard, delving into the underlying molecular mechanisms through which the WTAE contributes to lifespan improvement. Notably, the WTAE significantly extended the lifespan of Drosophila fed a high-fat diet and partially restored the climbing ability of Drosophila on a high-fat diet, accompanied by increased activities of copper-zinc superoxide dismutase, manganese-superoxide dismutase, and catalase and decreased lipid hydroperoxide levels in Drosophila. Furthermore, transcriptomic analysis indicated that the WTAE countered aging triggered by a high-fat diet via activating oxidative phosphorylation, neuroactive ligand-receptor interactions, and more pathways, as well as inhibiting circadian rhythm-fly, protein processing in the endoplasmic reticulum, and more pathways. Our findings suggest that WTAE exhibits excellent inhibitory activity against high-fat diet-induced senescence and holds promising potential as an anti-aging agent that can be further developed.
Collapse
Affiliation(s)
- Yan Huang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (Y.H.); (M.H.); (J.Z.); (S.C.); (X.C.)
| | - Miaoyuan He
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (Y.H.); (M.H.); (J.Z.); (S.C.); (X.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianming Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (Y.H.); (M.H.); (J.Z.); (S.C.); (X.C.)
| | - Shilong Cheng
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (Y.H.); (M.H.); (J.Z.); (S.C.); (X.C.)
| | - Xi Cheng
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (Y.H.); (M.H.); (J.Z.); (S.C.); (X.C.)
| | - Haoran Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangheng Wu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China;
| | - Fang Wang
- College of Food Science and Technology, Ningde Normal University, Ningde 352100, China;
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Wang D, Ke H, Wang H, Shen J, Jin Y, Lu B, Wang B, Li S, Li Y, Im WT, Siddiqi MZ, Zhu H. Green Synthesis of Silver Nanoparticles (CM-AgNPs) from the Root of Chuanminshen for Improving the Cytotoxicity Effect in Cancer Cells with Antibacterial and Antioxidant Activities. Molecules 2024; 29:5682. [PMID: 39683843 DOI: 10.3390/molecules29235682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The unique properties of silver nanoparticles (AgNPs), such as size, surface charge, and the ability to release silver ions, contribute to DNA damage, inducing of oxidative stress, and apoptosis in cancer cells. Thus, the potential application of AgNPs in the field of biomedicine, and cancer therapy are rapidly increasing day by day. Therefore, in this study, AgNPs were synthesized by extract of Chuanminshen violaceum, and then the synthesized CM-AgNPs were fully characterized. The biological activity of CM-AgNPs was investigated for antibacterial, antioxidant, and anticancer activities. The cytotoxic activity of CM-AgNPs was tested for various kinds of cancer cells including MKN45 gastric cancer cells, HCT116 human colon cancer cells, A549 human lung cancer cells, and HepG2 liver cancer cells. Among these cancer cells, the induced apoptosis activity of CM-AgNPs on HCT116 cancer cells was better and was used for further investigation. Besides, the CM-AgNPs exhibited great antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) with 50% free radical scavenging activity, and CM-AgNPs also showed a significant antibacterial activity against Escherichia coli and Staphylococcus aureus. Thus, our pilot data demonstrated that the green synthesis of CM-AgNPs would be considered a good candidate for the treatment of HCT116 cancer cells, with its strong antioxidant activity and antibacterial effects.
Collapse
Affiliation(s)
- Dandan Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Haijing Ke
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongtao Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jingyu Shen
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yan Jin
- School of Life Science, Nantong University, Nantong 226019, China
| | - Bo Lu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Bingju Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Shuang Li
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yao Li
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Wan Taek Im
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro, Anseong-si 17579, Gyeonggi-do, Republic of Korea
| | - Muhammad Zubair Siddiqi
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro, Anseong-si 17579, Gyeonggi-do, Republic of Korea
| | - Haibo Zhu
- School of Public Health and Management, Binzhou Medical University, Yantai 264005, China
| |
Collapse
|
6
|
Yang S, Li X, Zhang H. Ultrasound-assisted extraction and antioxidant activity of polysaccharides from Tenebrio molitor. Sci Rep 2024; 14:28526. [PMID: 39557986 PMCID: PMC11574054 DOI: 10.1038/s41598-024-79482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Tenebrio molitor, which is rich in various nutrients, and its polysaccharides, as significant bioactive substances, exhibit strong antioxidant effects. This study utilized defatted T. molitor as raw material and employed an ultrasound-assisted extraction method. The factors considered include extraction temperature, time, ultrasound power, and liquid-to-feed ratio, with the yield of T. molitor polysaccharides as the response value. Based on single-factor experiments and response surface methodology, the optimal extraction parameters for T. molitor polysaccharides were determined. Following purification, protein removal, and dialysis to eliminate impurities, the structure of the extracted polysaccharides was preliminarily investigated using infrared spectroscopy. Their antioxidant activities were explored by measuring their DPPH·, OH·, and ABTS+· radical scavenging abilities and Fe3+ reducing power. The results indicated that the optimal conditions for ultrasound-assisted extraction were an extraction temperature of 75 °C, an extraction time of 150 min, an ultrasound power of 270 W, and a liquid-to-feed ratio of 15:1 mL/g, yielding a polysaccharide extraction rate of 9.513%. Infrared spectroscopy analysis revealed the presence of pyranose sugars with main functional groups including C-O, C=O, and O-H. Antioxidant activity tests showed that within a certain concentration range, the higher the polysaccharide concentration, the stronger its radical scavenging abilities. Compared with Vitamin C(Vc), the polysaccharides had stronger scavenging abilities for DPPH· and OH·, some scavenging ability for ABTS+·, and Fe3+ reduction ability, and corresponding to IC50 values of 0.9625, 9.1909, and 235.69 mg/mL respectively. The Fe3+ reducing power reached a maximum absorbance of 0.38899 at a concentration of 1.6 mg/mL. T. molitor polysaccharides demonstrate promising antioxidant activity and potential as functional ingredients in food, health products, and pharmaceuticals, providing new technical references for the development and utilization of T. molitor resources.
Collapse
Affiliation(s)
- Shengru Yang
- Department of Hematology, The First Affiliated Hospital of Henan University, 357 Ximen Road, Kaifeng, 475000, Henan Province, People's Republic of China.
| | - Xu Li
- Department of Hematology, The First Affiliated Hospital of Henan University, 357 Ximen Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Hui Zhang
- Department of Hematology, The First Affiliated Hospital of Henan University, 357 Ximen Road, Kaifeng, 475000, Henan Province, People's Republic of China
| |
Collapse
|
7
|
Liu H, Zhang H, Chen Y, Zhang W, Su T, Wang J, Yin Z, Zhao X, Zhou X, Li L, Zou Y, Zhang Y, Song X. The growth-promoting effect of water extract of Chuanminshen violaceum stem and leaf on broilers. Poult Sci 2024; 103:104235. [PMID: 39241612 PMCID: PMC11405803 DOI: 10.1016/j.psj.2024.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024] Open
Abstract
Currently, developing nonantibiotic growth promoters is a broad consensus in broiler industry, which is one of the effective ways to reduce drug-resistant strains. Chuanminshen violaceum is a traditional Chinese medicinal herb that is commonly used for its roots, while the stems and leaves are often discarded, resulting in a huge amount of waste. This study optimized the preparation process of water extract of Chuanminshen violaceum stems and leaves (CVSLE) by response surface analysis based on the yields of polysaccharide and protein. The CVSLE and herbal powder (CVSL) were then processed into granules before being used as feed additives. The Macleaya cordata powder was used as positive control. The results showed that the addition of CVSLE (0.5% of the feed) showed the highest growth-promoting activity than other CVSLE groups (0.2% and 1%), 1% CVSL group and positive control (0.05%). CVSLE at the dosage of 0.5% could significantly increase the ADG and reduce the FCR from d 21 to 42, d 0 to 42. The HI antibody titers against Newcastle disease virus and avian influenza virus were significantly enhanced at 21, 28 and 42 d. CVSLE did not affect the slaughtering performances, but could significantly elevate the spleen, thymus and bursa of Fabricius indices and the transcriptional levels of IL-2, IL-4, IL-10 and IFN-γ in spleen. The intestinal barrier function of broilers was significantly enhanced by increased levels of immune barrier (sIgA), physical barrier (ZO-1, OCL and Muc-2) and flora barrier (Lactobacillus and Bifidobacterium). These results suggest that CVSLE was a promising herbal additive candidate for broilers.
Collapse
Affiliation(s)
- Haifeng Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenrui Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianli Su
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinhong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingying Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
JiZe XP, Fu YP, Li CY, Zhang CW, Zhao YZ, Kuang YC, Liu SQ, Huang C, Li LX, Tang HQ, Feng B, Chen XF, Zhao XH, Yin ZQ, Tian ML, Zou YF. Extraction, characterization and intestinal anti-inflammatory and anti-oxidative activities of polysaccharide from stems and leaves of Chuanminshen violaceum M. L. Sheh & R. H. Shan. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118357. [PMID: 38763374 DOI: 10.1016/j.jep.2024.118357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chuanminshen violaceum M. L. Sheh & R. H. Shan (CV) is used as a medicine with roots, which have the effects of benefiting the lungs, harmonizing the stomach, resolving phlegm and detoxifying. Polysaccharide is one of its main active components and has various pharmacological activities, but the structural characterization and pharmacological activities of polysaccharide from the stems and leaves parts of CV are still unclear. AIM OF THE STUDY The aim of this study was to investigate the optimal extraction conditions for ultrasound-assisted extraction of polysaccharide from CV stems and leaves, and to carry out preliminary structural analyses, anti-inflammatory and antioxidant effects of the obtained polysaccharide and to elucidate the underlying mechanisms. MATERIALS AND METHODS The ultrasonic-assisted extraction of CV stems and leaves polysaccharides was carried out, and the response surface methodology (RSM) was used to optimize the extraction process to obtain CV polysaccharides (CVP) under the optimal conditions. Subsequently, we isolated and purified CVP to obtain the homogeneous polysaccharide CVP-AP-I, and evaluated the composition, molecular weight, and structural features of CVP-AP-I using a variety of technical methods. Finally, we tested the pharmacological activity of CVP-AP-Ⅰ in an LPS-induced model of oxidative stress and inflammation in intestinal porcine epithelial cells (IPEC-J2) and explored its possible mechanism of action. RESULTS The crude polysaccharide was obtained under optimal extraction conditions and subsequently isolated and purified to obtain CVP-AP-Ⅰ (35.34 kDa), and the structural characterization indicated that CVP-AP-Ⅰ was mainly composed of galactose, galactose, rhamnose and glucose, which was a typical pectic polysaccharide. In addition, CVP-AP-Ⅰ attenuates LPS-induced inflammation and oxidative stress by inhibiting the expression of pro-inflammatory factor genes and proteins and up-regulating the expression of antioxidant enzyme-related genes and proteins in IPEC-J2, by a mechanism related to the activation of the Nrf2/Keap1 signaling pathway. CONCLUSION The results of this study suggest that the polysaccharide isolated from CV stems and leaves was a pectic polysaccharide with similar pharmacological activities as CV roots, exhibiting strong anti-inflammatory and antioxidant activities, suggesting that CV stems and leaves could possess the same traditional efficacy as CV roots, which is expected to be used in the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Xiao-Ping JiZe
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chao-Wen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Zhe Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Chao Kuang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Si-Qi Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Fu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
9
|
Zhao Y, Han C, Wu Y, Sun Q, Ma M, Xie Z, Sun R, Pei H. Extraction, structural characterization, and antioxidant activity of polysaccharides from three microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172567. [PMID: 38643871 DOI: 10.1016/j.scitotenv.2024.172567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microalgal polysaccharides have received much attention due to their potential value in preventing and regulating oxidative damage. This study aims to reveal the mechanisms of regulating oxidative stress and the differences in the yield, structure, and effect of polysaccharides extracted from three microalgae: Golenkinia sp. polysaccharides (GPS), Chlorella sorokiniana polysaccharides (CPS), and Spirulina subsalsa polysaccharides (SPS). Using the same extraction method, GPS, CPS, and SPS were all heteropoly- saccharides composed of small molecular fraction: the monosaccharides mainly comprised galactose (Gal). Among the three, SPS had a higher proportion of small molecular fraction, and a higher proportion of Gal; thus it had the highest yield and antioxidant activity. GPS, CPS, and SPS all showed strong antioxidant activity in vitro, and showed strong ability to regulate oxidative stress, among which SPS was slightly higher. From the analysis of gene expression, the Nrf2-ARE signalling pathway was an important pathway for GPS, CPS, and SPS to regulate cellular oxidative stress. This study provides a theoretical foundation for further research on the utilization of microalgae polysaccharides and product development.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chun Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yangyingdong Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qianchen Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rong Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| |
Collapse
|
10
|
Ma X, Niu Y, Nan S, Zhang W. Effect of Salvia sclarea L. extract on growth performance, antioxidant capacity, and immune function in lambs. Front Vet Sci 2024; 11:1367843. [PMID: 38659454 PMCID: PMC11039921 DOI: 10.3389/fvets.2024.1367843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
The aim of this experiment is to explore the effects of salvia sclarea extract on the growth performance, apparent nutrient digestibility, antioxidant capacity, and immune function of lambs. Sixty female lambs (Chinese Merino sheep) aged 2 months and weighing 20 ± 2 kg were selected and randomly divided into five groups of twelve lambs in each. While the control group (CK) received only basal feed, the experimental group was supplemented with different concentrations of salvia sclarea extract in the basal feed at 0.04 mL/kg (group CL1), 0.08 mL/kg (group CL2), 0.12 mL/kg (group CL3), and 0.16 mL/kg (group CL4). The feeding period was 85 days, including 15 days of pre-feeding and 70 days of regular feeding. Body weight and feed intake were recorded during the test period, and blood was collected at the end of the test for the determination of immune and antioxidant indices. The results showed that the average daily gain and average daily feed intake of lambs were significantly increased in CL3 group compared to CK group (p < 0.05). Also, the apparent nutrient digestibility of crude protein and neutral detergent fiber was significantly increased (p < 0.05). The Dry matter, acid detergent fiber and Ether extract were not significantly different (p > 0.05). The serum levels of superoxide dismutase, catalase, glutathione peroxidase, and antioxidant capacity were significantly higher in the CL2, CL3, and CL4 groups compared to CK group, while malondialdehyde levels were significantly lower (p < 0.05). The serum levels of immune globulin A, immune globulin G, immune globulin M, interferon-γ, and interleukin-10 were significantly higher and the levels of tumor necrosis factor-α and interleukin-1β were significantly lower in the CL2, CL3, and CL4 groups (p < 0.05). In conclusion, the addition of salvia sclarea extract to the ration promotes growth performance and nutrient digestion in lambs. Improvement of immune response by increasing immunoglobulin and cytokine concentrations. And it enhances the antioxidant status by increasing the antioxidant enzyme activity in lambs. Introduction This study aimed to explore the effects of Salvia sclarea extract on the growth performance, apparent nutrient digestibility, antioxidant capacity, and immune function of the lambs. Methods Sixty female lambs (Chinese Merino sheep) aged 2 months and weighing 20 ± 2 kg were selected and randomly divided into five groups of 12 lambs each. The control group (CK) received only basal feed, whereas the experimental group was supplemented with different concentrations of salvia sclarea extract in the basal feed at 0.04, 0.08, 0.12, and 0.16 mL/kg (CL1, CL2, CL3, and CL4, respectively). The feeding period was 85 days, including 15 days of pre-feeding and 70 days of regular feeding. Body weight and feed intake were recorded during the test period, and blood was collected at the end of the test to determine immune and antioxidant indices. Results The results showed that the average daily weight gain and feed intake of the lambs were significantly higher in the CL3 group than in the CK group (p < 0.05). In addition, the apparent nutrient digestibility of crude protein and neutral detergent fiber increased significantly (p < 0.05). The dry matter, acid detergent fiber, and ether extract were not significantly different (p > 0.05). Serum levels of superoxide dismutase, catalase, and glutathione peroxidase and antioxidant capacity were significantly higher in the CL2, CL3, and CL4 groups than in the CK group, whereas malondialdehyde levels were significantly lower (p < 0.05). The serum levels of immune globulin immune globulin A, immune globulin G, immune globulin M, interferon-γ, and interleukin-10 were significantly higher and the levels of tumor necrosis factor-α and interleukin-1β were significantly lower in the CL2, CL3, and CL4 groups (p < 0.05). Discussion In conclusion, the addition of the S. sclarea extract to the diet promoted growth performance and nutrient digestion in lambs. Immune response was improved by increasing Ig and cytokine concentrations. It enhances antioxidant status by increasing antioxidant enzyme activity in lambs.
Collapse
Affiliation(s)
| | | | | | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
11
|
Chen W, Zhang Y, Qiang Q, Zou L, Zou P, Xu Y. Pinobanksin from peony seed husk: A flavonoid with the potential to inhibit the proliferation of SH-SY5Y. Food Sci Nutr 2024; 12:815-829. [PMID: 38370064 PMCID: PMC10867468 DOI: 10.1002/fsn3.3786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 10/08/2023] [Indexed: 02/20/2024] Open
Abstract
Pinobanksin, as one of the flavonoids, has powerful biological activities but has been under-recognized. In this study, we optimized the extraction method of phragmites from peony seed shells by using organic solvent extraction. The yield of PSMS was 10.54 ± 0.13% under the conditions of ethanol volume fraction 70%, extraction temperature 70°C, material-liquid ratio 1:25 g/mL, and extraction time 60 min; the optimized PSMS could be effectively separated in S-8 macroporous resin coupled with C18. The relative content of PSMS was increased from 0.42% in PSMS to 92.53% after C18 purification; the antioxidant activity test revealed that pinobanksin could exert antioxidant ability by binding catalase (CAT) enzyme. Second, it was found that pinobanksin could effectively inhibit the proliferation of SH-SY5Y cells, mainly by binding to BCL2-associated X (BAX), B-cell lymphoma-2 (BCL-2), and cyclin-dependent Kinase 4/6 (CDK4/6) to produce more hydrogen bonds to inhibit their activities. This study confirms the medicinal potential of pinobanksin and provides the basis for the proper understanding of pinobanksin and the development of related products.
Collapse
Affiliation(s)
- Wen‐Tao Chen
- School of Biological and Food EngineeringChangzhou UniversityChangzhouJiangsuChina
| | - Ying‐Yang Zhang
- School of Biological and Food EngineeringChangzhou UniversityChangzhouJiangsuChina
| | - Qiang Qiang
- Changzhou Wujin No. 3 People's HospitalChangzhouJiangsuChina
| | - Lin‐Ling Zou
- School of Biological and Food EngineeringChangzhou UniversityChangzhouJiangsuChina
| | - Ping Zou
- School of Biological and Food EngineeringChangzhou UniversityChangzhouJiangsuChina
| | - Ying Xu
- School of Biological and Food EngineeringChangzhou UniversityChangzhouJiangsuChina
| |
Collapse
|
12
|
Liu J, Song J, Chen W, Sun L, Zhao Y, Zong Y, He Z, Du R. Assessment of cytotoxicity, acute, subacute toxicities and antioxidant activities (in vitro) of Sanghuangporus vaninii crude polysaccharide. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117284. [PMID: 37844741 DOI: 10.1016/j.jep.2023.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Sanghuangporus vaninii (S. vaninii), as a traditional large medicinal fungus, has a history of more than 2000 years in Chinese history and has been widely used to treat female diseases such as vaginal discharge, amenorrhea, and uterine bleeding, and recent pharmacological studies have also found that it has antioxidant, anti-inflammatory, and anti-tumor physiological activity, which has received more and more attention. AIM OF THE STUDY The objective was to evaluate cytotoxicity and the acute, subacute toxicity, and in vitro antioxidant activity of S. vaninii crude polysaccharide (SVP). MATERIALS AND METHODS The monosaccharide composition of SVP was determined by HPLC (high-performance liquid chromatography). The cytotoxicity of different concentrations of SVP on three types of cells (HT-22, Kupffer macrophages, HEK293) was assessed using CCk-8. The acute toxicity in vivo was evaluated for 14 days after the administration of SVP (2500,5000, or 10,000 mg/mL). For the evaluation of subacute toxicity, mice were daily treated for 28 days with SVP (2500,5000, or 10,000 mg/mL). In addition, DPPH, hydroxyl radical, and superoxide anion radical were used to evaluate the in vitro antioxidant activity of SVP. RESULTS SVP was not toxic in all three cell lines tested. In vitro antioxidant tests on the extracts showed that SVP possessed a strong antioxidant capacity in vitro. In the acute study, the no-observed-adverse-effect level (NOAEL) in male and female rats was 10,000 mg/kg body weight. There were also no deaths or severe toxicity associated with SVP in subacute studies. However, SVP treatment had a decreasing effect on body weight in mice of both sexes (2500, 5000, and 10000 mg/kg). At doses (5000 and 10,000 mg/kg), SVP had a reduced effect on food intake in both male and female mice. In addition, there were significant effects on organ coefficients of the liver, lung, and kidney. Hematological analysis showed significantly lower LYM (%) values in mice of both sexes, with significantly lower MCH (pg) values obtained in males (5000 mg/kg and 10000 mg/kg) and higher GRAN (%) values in females. In addition, the RDW-SD (fL) values were significantly lower in the male mice given the highest dose. Biochemical tests showed that there were no significant changes in ALT, AST, TP, and Cr levels after SVP treatment. In histopathological analysis, mild liver toxicity was observed in both female mice treated with 10,000 mg/kg SVP. CONCLUSION The extract of SVP showed a predominance of polysaccharide compounds, with non-toxic action in vivo. Our approach revealed SVP on the chemical composition and suggests a high margin of safety in the popular use of medicinal fungi. In conclusion, our results suggest that SVP is safe, and can be used as health care products and food.
Collapse
Affiliation(s)
- Jinze Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jinyue Song
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - WeiJia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Li Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China; China Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun, Jilin, 130118, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China; China Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun, Jilin, 130118, China
| |
Collapse
|
13
|
Xiao Z, Yan C, Jia C, Li Y, Li Y, Li J, Yang X, Zhan X, Ma C. Structural characterization of chia seed polysaccharides and evaluation of its immunomodulatory and antioxidant activities. Food Chem X 2023; 20:101011. [PMID: 38144771 PMCID: PMC10740084 DOI: 10.1016/j.fochx.2023.101011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
This study aims to extract an active heteropolysaccharide Chia seed polysaccharide (CSP-A) and further purified by DEAE Sepharose Fast Flow and Sepharose CL-6B chromatographic column, characterize its structure, and evaluate its antioxidant and immunomodulatory activities. Structural analysis revealed that CSP-A was composed of d-mannose, d-glucuronic acid and d-xylose in a molar ratio of 1:3:4 with molecular weight of 1.688 × 105 Da, owning 4 sugar residues of β-d-Manp-(1→, →4)-α-d-GlcpA-(1→, →2,4)-β-d-Xylp-(1→, and → 4)-β-d-Manp-(1 →. Congo red assay and microscopic characteristics showed that CSP-A in its solution may possess a helical conformation. In vitro experiments showed that CSP-A had moderate DPPH· and OH· scavenging activities. CSP-A also enhanced the phagocytosis ability of RAW 264.7 cells and prompted the release of NO, TNF-α, IL-6 and IL-1β from RAW 264.7 cells, which indicated CSP-A had immune regulation effect. This experiment provides scientific basis for further utilization and development of chia seeds, a kind of functional food.
Collapse
Affiliation(s)
- Zhijun Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changyang Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chunxue Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Li
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yuanlin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinxin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xueyan Zhan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhua Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
14
|
Li H, Liu Z, Liu Q, Zhang X, Li S, Tang F, Zhang L, Yang Q, Wang Q, Yang S, Huang L, Ba Y, Du X, Yang F, Feng H. Extraction of Polysaccharides from Root of Pseudostellaria heterophylla (Miq.) Pax. and the Effects of Ultrasound Treatment on Its Properties and Antioxidant and Immune Activities. Molecules 2023; 29:142. [PMID: 38202725 PMCID: PMC10779800 DOI: 10.3390/molecules29010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The hydrophilic polysaccharides (PS) were isolated and purified from the tuberous roots of Pseudostellaria heterophylla. The extraction process of PS from Pesudostellariae radix was optimized by single-factor experiments and orthogonal design. The extract was purified by DEAE cellulose column to obtain the pure polysaccharide PHP. Then PHP was treated with different intensities of sonication to study the effect of sonication on PHP's characteristics and its biological activity in vitro and in vivo. The results of this study revealed that ultrasound treatment did not significantly change the properties of PHP. Further, with the increase of ultrasound intensity, PHP enhanced the proliferation and phagocytosis of macrophage RAW264.7. Meanwhile, it could also significantly improve the body's antioxidant activity and immune function. The results of this study demonstrated that PHP has the potential as a food additive with enhanced antioxidant and immune functions, and its biological activities could be enhanced by sonication.
Collapse
Affiliation(s)
- Hangyu Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Ziwei Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qianqian Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Xinnan Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Sheng Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Feng Tang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Linzi Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qian Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qiran Wang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Shuyao Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Ling Huang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Yuwei Ba
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Xihui Du
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Falong Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (H.L.); (Z.L.); (Q.L.); (X.Z.); (S.L.); (F.T.); (L.Z.); (Q.Y.); (Q.W.); (S.Y.); (L.H.); (Y.B.); (X.D.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| |
Collapse
|
15
|
Song L, Zhang S. Anti-Aging Activity and Modes of Action of Compounds from Natural Food Sources. Biomolecules 2023; 13:1600. [PMID: 38002283 PMCID: PMC10669485 DOI: 10.3390/biom13111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a natural and inescapable phenomenon characterized by a progressive deterioration of physiological functions, leading to increased vulnerability to chronic diseases and death. With economic and medical development, the elderly population is gradually increasing, which poses a great burden to society, the economy and the medical field. Thus, healthy aging has now become a common aspiration among people over the world. Accumulating evidence indicates that substances that can mediate the deteriorated physiological processes are highly likely to have the potential to prolong lifespan and improve aging-associated diseases. Foods from natural sources are full of bioactive compounds, such as polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins. These bioactive compounds and their derivatives have been shown to be able to delay aging and/or improve aging-associated diseases, thereby prolonging lifespan, via regulation of various physiological processes. Here, we summarize the current understanding of the anti-aging activities of the compounds, polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins from natural food sources, and their modes of action in delaying aging and improving aging-associated diseases. This will certainly provide a reference for further research on the anti-aging effects of bioactive compounds from natural food sources.
Collapse
Affiliation(s)
- Lili Song
- Key Laboratory of Biomedical Materials of Zhangjiakou, College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China;
| | - Shicui Zhang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Xinjiang Key Laboratory of Biological Resources and Ecology of Pamirs Plateau, Kashi 844000, China
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
16
|
Li S, He Y, Zhong S, Li Y, Di Y, Wang Q, Ren D, Liu S, Li D, Cao F. Antioxidant and Anti-Aging Properties of Polyphenol-Polysaccharide Complex Extract from Hizikia fusiforme. Foods 2023; 12:3725. [PMID: 37893618 PMCID: PMC10606324 DOI: 10.3390/foods12203725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Hizikia fusiforme has a long history of consumption and medicinal use in China. It has been found that natural plants containing polyphenol-polysaccharide complexes have better activity compared with polyphenols and polysaccharides. Therefore, in this study on enzymatic hydrolysis and fractional alcohol precipitation, two kinds of polyphenol-polysaccharide complexes (PPC), PPC1 and PPC2, were initially obtained from Hizikia fusiforme, while the dephenolization of PPC1 and PPC2 produced PPC3 and PPC4. Through in vitro assays, PPC2 and PPC4 were found to have higher antioxidant activity, and thus were selected for testing the PPCs' anti-aging activity in a subsequent in vivo experiment with D-gal-induced aging in mice. The results indicated that PPCs could regulate the expressions of antioxidant enzymes and products of oxidation, elevate the expressions of genes and proteins related to the Nrf2 pathway in the mouse brain, enrich the gut microbiota species and increase the Bacteroidota-Firmicute (B/F) ratio. Above all, the Hizikia fusiforme polyphenol-polysaccharide complex has potential in the development of natural anti-aging drugs.
Collapse
Affiliation(s)
- Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yuan Di
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Di Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Fangjie Cao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
17
|
Zheng Q, Zheng Y, Jia RB, Luo D, Chen C, Zhao M. Fucus vesiculosus polysaccharide alleviates type 2 diabetes in rats via remodeling gut microbiota and regulating glycolipid metabolism-related gene expression. Int J Biol Macromol 2023; 248:126504. [PMID: 37625739 DOI: 10.1016/j.ijbiomac.2023.126504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The antidiabetic activity and underlying mechanisms of Fucus vesiculosus polysaccharide (FVP) were studied in type 2 diabetic rats. Our results exhibited that FVP intervention reversed body weight loss, alleviated hyperglycemia and insulin resistance in diabetic rats. FVP also had the potential to ameliorate dyslipidemia, liver and kidney dysfunction, decrease oxidative stress, promote glycogen synthesis, and boost short-chain fatty acid production and total bile acid excretion. 16S rRNA gene sequencing analysis suggested that FVP interfered with the gut microbiota in a beneficial manner. Moreover, RT-qPCR results demonstrated that the antidiabetic activity of FVP in connection with the acceleration of blood glucose absorption and glycogen synthesis, the inhibition of gluconeogenesis, and the regulation of lipid metabolism in the liver. These findings suggested that FVP had antidiabetic effects on high-fat diet and STZ-induced diabetic rats and could be a potential resource for treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Qianwen Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Yang Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rui-Bo Jia
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Donghui Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
18
|
Tian D, Qiao Y, Peng Q, Zhang Y, Gong Y, Shi L, Xiong X, He M, Xu X, Shi B. A Poly-D-Mannose Synthesized by a One-Pot Method Exhibits Anti-Biofilm, Antioxidant, and Anti-Inflammatory Properties In Vitro. Antioxidants (Basel) 2023; 12:1579. [PMID: 37627574 PMCID: PMC10451989 DOI: 10.3390/antiox12081579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/18/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, D-mannose was used to synthesize poly-D-mannose using a one-pot method. The molecular weight, degree of branching, monosaccharide composition, total sugar content, and infrared spectrum were determined. In addition, we evaluated the safety and bioactivity of poly-D-mannose including anti-pathogen biofilm, antioxidant, and anti-inflammatory activity. The results showed that poly-D-mannose was a mixture of four components with different molecular weights. The molecular weight of the first three components was larger than 410,000 Da, and that of the fourth was 3884 Da. The branching degree of poly-D-mannose was 0.53. The total sugar content was 97.70%, and the monosaccharide was composed only of mannose. The infrared spectra showed that poly-D-mannose possessed characteristic groups of polysaccharides. Poly-D-mannose showed no cytotoxicity or hemolytic activity at the concentration range from 0.125 mg/mL to 8 mg/mL. In addition, poly-D-mannose had the best inhibition effect on Salmonella typhimurium at the concentration of 2 mg/mL (68.0% ± 3.9%). The inhibition effect on Escherichia coli O157:H7 was not obvious, and the biofilm was reduced by 37.6% ± 2.9% at 2 mg/mL. For Staphylococcus aureus and Bacillus cereus, poly-D-mannose had no effect on biofilms at low concentration; however, 2 mg/mL of poly-D-mannose showed inhibition rates of 33.7% ± 6.4% and 47.5% ± 4%, respectively. Poly-D-mannose showed different scavenging ability on free radicals. It showed the best scavenging effect on DPPH, with the highest scavenging rate of 74.0% ± 2.8%, followed by hydroxyl radicals, with the scavenging rate of 36.5% ± 1.6%; the scavenging rates of superoxide anion radicals and ABTS radicals were the lowest, at only 10.1% ± 2.1% and 16.3% ± 0.9%, respectively. In lipopolysaccharide (LPS)-stimulated macrophages, poly-D-mannose decreased the secretion of nitric oxide (NO) and reactive oxygen species (ROS), and down-regulated the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Therefore, it can be concluded that poly-D-mannose prepared in this research is safe and has certain biological activity. Meanwhile, it provides a new idea for the development of novel prebiotics for food and feed industries or active ingredients used for pharmaceutical production in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaoqing Xu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.T.); (Y.Q.); (Q.P.); (Y.Z.); (Y.G.); (L.S.); (X.X.); (M.H.)
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.T.); (Y.Q.); (Q.P.); (Y.Z.); (Y.G.); (L.S.); (X.X.); (M.H.)
| |
Collapse
|
19
|
Li M, Li M, Wang L, Li M, Wei J. Apiaceae Medicinal Plants in China: A Review of Traditional Uses, Phytochemistry, Bolting and Flowering (BF), and BF Control Methods. Molecules 2023; 28:4384. [PMID: 37298861 PMCID: PMC10254214 DOI: 10.3390/molecules28114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Apiaceae plants have been widely used in traditional Chinese medicine (TCM) for the removing dampness, relieving superficies, and dispelling cold, etc. In order to exploit potential applications as well as improve the yield and quality of Apiaceae medicinal plants (AMPs), the traditional use, modern pharmacological use, phytochemistry, effect of bolting and flowering (BF), and approaches for controlling BF were summarized. Currently, about 228 AMPs have been recorded as TCMs, with 6 medicinal parts, 79 traditional uses, 62 modern pharmacological uses, and 5 main kinds of metabolites. Three different degrees (i.e., significantly affected, affected to some extent, and not significantly affected) could be classed based on the yield and quality. Although the BF of some plants (e.g., Angelica sinensis) could be effectively controlled by standard cultivation techniques, the mechanism of BF has not yet been systemically revealed. This review will provide useful references for the reasonable exploration and high-quality production of AMPs.
Collapse
Affiliation(s)
- Meiling Li
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.L.)
| | - Min Li
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.L.)
| | - Li Wang
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen 518120, China;
| | - Mengfei Li
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.L.)
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
20
|
Zou YF, JiZe XP, Li CY, Zhang CW, Fu YP, Yin ZQ, Li YP, Song X, Li LX, Zhao XH, Feng B, Huang C, Ye G, Tang HQ, Li NY, Chen J, Chen XF, Tian ML. Polysaccharide from aerial part of Chuanminshen violaceum alleviates oxidative stress and inflammatory response in aging mice through modulating intestinal microbiota. Front Immunol 2023; 14:1159291. [PMID: 37153605 PMCID: PMC10162438 DOI: 10.3389/fimmu.2023.1159291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Aging is a biological process of progressive deterioration of physiological functions, which poses a serious threat to individual health and a heavy burden on public health systems. As population aging continues, research into anti-aging drugs that prolong life and improve health is of particular importance. In this study, the polysaccharide from stems and leaves of Chuanminshen violaceum was obtained with water extraction and alcohol precipitation, and then separated and purified with DEAE anion exchange chromatography and gel filtration to obtain CVP-AP-I. We gavaged natural aging mice with CVP-AP-I and performed serum biochemical analysis, histological staining, quantitative real-time PCR (qRT-PCR) and ELISA kit assays to analyze inflammation and oxidative stress-related gene and protein expression in tissues, and 16SrRNA to analyze intestinal flora. We found that CVP-AP-I significantly improved oxidative stress and inflammatory responses of the intestine and liver, restored the intestinal immune barrier, and balanced the dysbiosis of intestinal flora. In addition, we revealed the potential mechanism behind CVP-AP-I to improve intestinal and liver function by regulating intestinal flora balance and repairing the intestinal immune barrier to regulate the intestinal-liver axis. Our results indicated that C. violaceum polysaccharides possessed favorable antioxidant, anti-inflammatory and potentially anti-aging effects in vivo.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Ping JiZe
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao-Wen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang-Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning-Yuan Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xing-Fu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
El-Gendi H, Abu-Serie MM, Kamoun EA, Saleh AK, El-Fakharany EM. Statistical optimization and characterization of fucose-rich polysaccharides extracted from pumpkin (Cucurbita maxima) along with antioxidant and antiviral activities. Int J Biol Macromol 2023; 232:123372. [PMID: 36706886 DOI: 10.1016/j.ijbiomac.2023.123372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Biologically active phytochemicals from pumpkin reveal versatile medical applications, though little is known about their antiviral activity. The fucose-rich polysaccharide extraction conditions were optimized through Box-Behnken design and purified by column chromatography. The purified fucose-rich polysaccharide was characterized through SEM, FT-IR, 1H NMR, XRD, TGA, and GS-MS. The analysis results revealed an irregular and porous surface of the purified polysaccharide with high fucose, rhamnose, galactose, and glucose contents. The tested fucose-rich polysaccharides revealed significant antioxidant and anti-inflammatory activity at very low concentrations. The purified fucose-rich polysaccharides exerted a broad-spectrum antiviral activity against both DNA and RNA viruses, accompanied by high safety toward normal cells, where the maximum safe doses (EC100) were estimated to be about 3-3.9 mg/mL for both Vero and PBMC cell lines. Treatment of HCV, ADV7, HSV1, and HIV viruses with the purified polysaccharides showed a potent dose-dependent inhibitory activity with IC50 values of 95.475, 20.96, 5.213, and 461.75 μg/mL, respectively. This activity was hypothesized to be through inhibiting the viral entry in HCV infection and inhibiting the reverse transcriptase activity in HIV. The current study firstly reported the antioxidant, anti-inflammatory, and antiviral activities of Cucurbita maxima fucose-rich polysaccharide against several viral infections.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Application (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt
| | - Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki, Giza, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.
| |
Collapse
|
22
|
Chen L, Hu T, Wu R, Wang H, Wu H, Wen P. In vivo antioxidant activity of Cinnamomum cassia leaf residues and their effect on gut microbiota of d-galactose-induced aging model mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:590-598. [PMID: 36054514 DOI: 10.1002/jsfa.12170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND To thoroughly explore the values of Cinnamomum cassia leaf residues (CcLR), their antioxidant activity in vivo and the relationship with gut microbiota were investigated using d-galactose-induced aging mice. RESULTS Results showed that CcLR extract treatment exerted antioxidant activity by increasing the levels of superoxide dismutase (P < 0.01) and glutathione peroxidase (P < 0.05), as well as inhibiting the formation of malondialdehyde (P < 0.01). Meanwhile, the inflammatory response was also alleviated as the ratio of pro-inflammatory tumor necrosis factor-α (P < 0.01) and interleukin-1β (P < 0.01))/anti-inflammatory cytokines (interleukin-10; P < 0.05) in serum was decreased and the contents of inflammatory markers (induced nitrogen monoxide synthase and nitric oxide) in brain and liver tissues (P < 0.01) were reduced. Moreover, through inhibiting acetylcholinesterase activity and improving choline acetyltransferase activity, the cholinergic system in aging mice recovered to levels comparable to the normal control group. In addition, 16S rRNA sequencing results demonstrated that CcLR extract promoted the growth of beneficial bacteria. In particular, Spearman correlation analysis revealed that the abundance of Colidextribacter was negatively correlated with serum superoxide dismutase (P < 0.05, R = -0.943), and Helicobacter displayed a positive correlation with the content of brain nitric oxide (P < 0.05, R = 0.899), suggesting that regulating gut microbiota might be one of the mechanisms for reducing oxidative stress, thus postponing the aging process. CONCLUSION It is suggested that CcLR extract could be used as a novel antioxidant and anti-aging resource in the pharmaceutical and food industries. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingqi Chen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, China
| | - Tenggen Hu
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Ruiqing Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Liu ST, Wang S, Han N, Li MY, Li J, Li YR, Jia SR, Han PP. Effects of H2O2 acclimation on the growth, polysaccharide production and tolerance performance of Nostoc flagelliforme. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Leng X, Miao W, Li J, Liu Y, Zhao W, Mu Q, Li Q. Physicochemical characteristics and biological activities of grape polysaccharides collected from different cultivars. Food Res Int 2023; 163:112161. [PMID: 36596110 DOI: 10.1016/j.foodres.2022.112161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
In this study, four wine grape polysaccharides were extracted and optimized by using an efficient ultrasound-assisted extraction. A three-level, three-factor Box Behnken Design (BBD) combining with response surface methodology (RSM) was employed to optimize the extraction conditions including ultrasonic power, ultrasonic time and liquid-to-solid ratio. Furthermore, their physicochemical structures, antioxidant and liver protective activity were investigated and compared. Results revealed that the functional groups and monosaccharide compositions of these grape polysaccharides collected from different varieties were similar. Nevertheless, their molecular weights, molar ratios of monosaccharide compositions and surface morphological features were different. And the antioxidant activities of these polysaccharides were screened by free radical scavenging test. 'Beichun' (BC) and 'Benni fuji' (BF) polysaccharides possessed better antioxidant function. Further, the in vivo evaluation indicated that the polysaccharides of BC and BF have a protective effect against myocardial I/R injury in mice by inhibiting myocardial necroptosis mediated by mitochondrial ROS generation. Therefore, BC and BF grapes have potential applications in the medical and food industries.
Collapse
Affiliation(s)
- Xiangpeng Leng
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), MARA, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenjun Miao
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jizhen Li
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), MARA, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanxia Liu
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, 308 Ningxiafrr Road, Qingdao, Shandong 266021, China
| | - Qian Mu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250110, China
| | - Qiu Li
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
25
|
Chen Z, Zhu Y, Lu M, Yu L, Tan S, Ren T. Effects of Rosa roxburghii Tratt glycosides and quercetin on D-galactose-induced aging mice model. J Food Biochem 2022; 46:e14425. [PMID: 36125966 DOI: 10.1111/jfbc.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
To investigate the effects of RRT (Rosa roxburghii Tratt) glucosides and quercetin on oxidative stress and chronic inflammation in D-galactose-induced aging mice, 90 mice (8 weeks old) were randomly divided into the normal group (NC), aging model group (D-gal), isoquercitrin group (D-gal+isoquercitrin), quercitrin group (D-gal+quercitrin), quercetin group (D-gal+quercetin) and positive control group (D-gal+Metformin). The aging model was established by subcutaneous injection of D-galactose (100 mg/kg). After 42 days of the administration, antioxidant and inflammatory indexes were measured, HE staining was used to investigate pathological changes in liver and brain tissue, and Western blot was used to determine the protein abundance of nuclear factor E2-related factor (Nrf2) and heme oxygenase (HO-1) in the brain. The results showed that, when compared to the NC group, the D-gal group had a significantly lower brain, liver, kidney, and spleen indexes; the contents of MDA, L-1β, IL-6, and TNF-α in serum, liver, and brain were significantly higher, but the levels of CAT, SOD, and GSH-Px were significantly lower. Isoquercitrin, quercitrin, and quercetin significantly increased organ indexes and activities of CAT, SOD, and GSH-Px while decreasing MDA, IL-1β, IL-6, and TNF-α levels in serum, liver, and brain tissues compared to the D-gal group. The morphological changes in the brain and liver tissue were significantly restored by glycosides and quercetin, as observed in HE staining. Furthermore, Western blot results revealed that glycosides and quercetin increased the protein levels of Nrf2, HO-1, and NQO1. Finally, the antioxidant and anti-inflammatory effects of RRT glycoside and quercetin in aging may be attributed to an activated Nrf2/HO-1 signaling pathway. PRACTICAL APPLICATIONS: Aging is characterized by physical changes and dysfunction of numerous biological systems caused by a variety of factors. The oxidative stress and inflammatory effects of RRT glycosides and quercetin on D-galactose-induced aging mice were investigated in this study. RRT glycosides and quercetin were found to protect organ atrophy, liver, and brain tissue in aging mice by regulating oxidative stress and chronic inflammation. It served as the theoretical foundation for the investigation of Rosa roxburghii Tratt as a health product and pharmaceutical raw material.
Collapse
Affiliation(s)
- Zhen Chen
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Yuping Zhu
- College of Basic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Mintao Lu
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Lu Yu
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Shuming Tan
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Tingyuan Ren
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
- Institute of Guizhou Distinctive Plant Resources Conservation, Guizhou Academy of Agricultural Science, Guiyang, P. R. China
| |
Collapse
|
26
|
Structural Characterization of Polysaccharide Derived from Gastrodia elata and Its Immunostimulatory Effect on RAW264.7 Cells. Molecules 2022; 27:molecules27228059. [PMID: 36432165 PMCID: PMC9694387 DOI: 10.3390/molecules27228059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
A polysaccharide from Gastrodia elata (named GEP-1) was isolated with a DEAE-52 column and Sephadex G-100 column. The structural characteristics showed that GEP-1 was mainly composed of glucose (92.04%), galactose (4.79%) and arabinose (2.19%) with a molecular weight of 76.444 kDa. The polydispersity (Mw/Mn) of GEP-1 was 1.25, indicating that the distribution of molar mass (Mw) was relatively narrow, which suggested that GEP-1 was a homogeneous polysaccharide. Moreover, the molecular conformation plot of the root mean square (RMS) radius (<rg2> 1/2) versus Mw yielded a line with a slope less than 0.33 (0.15 ± 0.02), displaying that GEP-1 is a compact and curly spherical molecule in NaNO3 aqueous solution. NMR and methylation analyses revealed that the main chain structure of GEP-1 was α-(1→4)-glucans. Furthermore, it was proven that GEP-1 possessed cytoproliferative and enhancing phagocytic activities and induced cytokine (TNF-α, IL1-β) and nitric oxide (NO) release in macrophages by upregulating the related gene expression. In addition, the RNA-seq results suggested that the GEP-1-induced immunomodulatory effect was mainly caused by activation of the NF-κB signaling pathway, which was further verified by NF-κB ELISA and pathway inhibition assays. As a result, GEP-1 exhibits the potential to be developed as a novel cheap immunostimulant without obvious toxicity.
Collapse
|
27
|
Ma Y, Xiu W, Wang X, Yu S, Luo Y, Gu X. Structural characterization and in vitro antioxidant and hypoglycemic activities of degraded polysaccharides from sweet corncob. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Jiang C, Dong Q, Xin X, Degen AA, Ding L. Effect of Chinese Herbs on Serum Biochemical Parameters, Immunity Indices, Antioxidant Capacity and Metabolomics in Early Weaned Yak Calves. Animals (Basel) 2022; 12:ani12172228. [PMID: 36077948 PMCID: PMC9455063 DOI: 10.3390/ani12172228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Chinese traditional herbs are used widely as feed supplements to improve the immune response and antioxidant capacity of livestock. Twenty early-weaned 4-month-old yak calves (72.3 ± 3.65 kg) were divided randomly into four groups (n = 5 per group); three groups were provided with supplementary 80 mL/kg DMI of the root water extracts of either Angelica sinensis, Codonopsis pilosula or Glycyrrhiza uralensis, and one group (control) was not provided with a supplement. Compared to control calves, calves consuming the three herbal extracts increased serum concentrations of albumin (ALB) and glutathione peroxidase (GSH-Px), but decreased serum concentrations of free fatty acids (FFAs) and malondialdehyde (MDA) (p < 0.05). Calves consuming A. sinensis decreased (p < 0.05) serum concentration of total cholesterol (TC), and increased (p < 0.05) serum concentration of total proteins (TP). Serum FFA concentrations increased (p = 0.004) linearly with time in the control group, but not in the groups consuming herbs. Serum metabolomic data demonstrated that A. sinensis and C. pilosula regulate mainly amino acid metabolism, while G. uralensis regulates mainly carbon and amino acid metabolism. It was concluded that the three herbal root extracts, as dietary supplements, improved energy and nitrogen metabolism, and enhanced the antioxidant capacity of yak calves.
Collapse
Affiliation(s)
- Cuixia Jiang
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Quanmin Dong
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining 810016, China
| | - Xiaoping Xin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luming Ding
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
29
|
He P, Zhang M, Zhao M, Zhang M, Ma B, Lv H, Han Y, Wu D, Zhong Z, Zhao W. A Novel Polysaccharide From Chuanminshen violaceum and Its Protective Effect Against Myocardial Injury. Front Nutr 2022; 9:961182. [PMID: 35911096 PMCID: PMC9330552 DOI: 10.3389/fnut.2022.961182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 12/17/2022] Open
Abstract
We isolated and purified a novel polysaccharide from the root of Chuanminshen violaceum, namely, Chuanminshen violaceumis polysaccharide (CVP) and confirmed its structure and molecular weight. Furthermore, in vivo experiment, CVP’s protective effect against myocardial ischemia-reperfusion (I/R) injury in mice was evidenced by significantly reducing I/R-induced myocardial infarction (MI) size, decreasing the secretion of heart damage biomarkers, and improving cardiac function. Then, the myocardial anoxia/reoxygenation (A/R) injury model was established to mimic reperfusion injury. Noticeably, ferroptosis was the major death manner for A/R-damaged H9c2 cells. Meanwhile, CVP significantly inhibited ferroptosis by decreasing intracellular Fe2+ level, enhancing GPX4 expression, and suppressing lipid peroxidation to confront A/R injury. In conclusion, CVP, with a clear structure, ameliorated I/R injury by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Peng He
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Mi Zhang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Meng Zhao
- School of Nursing, Qingdao University, Qingdao, China
| | - Mengyao Zhang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Benxu Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Hongyu Lv
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yantao Han
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macao SAR, China
- Zhangfeng Zhong,
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macao SAR, China
- *Correspondence: Wenwen Zhao,
| |
Collapse
|
30
|
Cai J, Bai J, Luo B, Ni Y, Tian F, Yan W. In vitro evaluation of probiotic properties and antioxidant activities of Bifidobacterium strains from infant feces in the Uyghur population of northwestern China. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01670-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Purpose
Bifidobacterium is an important probiotic used in food and medicine production. The probiotic properties of bifidobacteria are strain specific, so it is necessary to evaluate the probiotic properties of bifidobacteria isolated from specific populations, especially when developing products suitable for specific populations. The objective of this study was to evaluate the probiotic potential and safety of bifidobacteria isolated from healthy Uyghur infants from northwestern China.
Methods
In this study, antimicrobial activity, antibiotic sensitivity, hemolytic, acid and bile tolerance, hydrophobicity, co-aggregation, auto-aggregation, and antioxidant activity were evaluated.
Results
Based on antagonistic activity spectrum against seven intestinal pathogenic bacteria, 14 excellent strains were initially selected. Among 14 strains, four bifidobacteria strains (BF17-4, BF52-1, BF87-3, and BF88-5) were superior to strain Lactobacillus rhamnosus GG in cell surface hydrophobicity and auto-aggregation percentages and close to strain GG in co-aggregation with Escherichia coli EPEC O127: K63 (CICC 10411). The antioxidant activities of each of the 14 bifidobacteria strains varied with the cell components. Most of the strains were sensitive to all the antimicrobials tested, except kanamycin and amikacin.
Conclusion
BF17-4 and BF52-1 are good candidates for further in vivo studies and further used in functional foods.
Collapse
|
31
|
Han R, Khan A, Ling Z, Wu Y, Feng P, Zhou T, Salama ES, El-Dalatony MM, Tian X, Liu P, Li X. Feed-additive Limosilactobacillus fermentum GR-3 reduces arsenic accumulation in Procambarus clarkii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113216. [PMID: 35065503 DOI: 10.1016/j.ecoenv.2022.113216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Procambarus clarkii (crayfish) accumulates a high concentration of Arsenic (As) from the aquatic environment and causes considerable human health risks. In this study, Limosilactobacillus fermentum GR-3 strain was isolated from "Jiangshui" and applied for As(III) adsorption and antioxidant abilities. Strain GR-3 removed 50.67% of 50 mg/L As(III) and exhibited the high antioxidant potential of DPPH (1,1-Diphenyl-2-picrylhydrazyl) (87.63%) and hydroxyl radical (74.51%) scavenging rate in vitro. P. clarkii was feed with strain GR-3, the results showed that As(III) concentration reduced, and residual level in hepatopancreas was decreased by 36%, compared to As(III)-exposed group (control). Gut microbial sequencing showed that strain GR-3 restores gut microbiota dysbiosis caused by As(III) exposure. Further application in the field scale was performed and revealed a decrease in As(III) accumulation and increasing 50% aquaculture production of the total output. In summary, feed-additive probiotic is recommended as a novel strategy to minimize aquaculture foods toxicity and safe human health.
Collapse
Affiliation(s)
- Rong Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Ying Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Marwa M El-Dalatony
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xirong Tian
- Hubei Kewang Animal Husbandry Co., Ltd, Qianjiang, Hubei, People's Republic of China
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
32
|
Oxidative stress alleviating potential of galactan exopolysaccharide from Weissella confusa KR780676 in yeast model system. Sci Rep 2022; 12:1089. [PMID: 35058551 PMCID: PMC8776969 DOI: 10.1038/s41598-022-05190-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
In the present study, galactan exopolysaccharide (EPS) from Weissella confusa KR780676 was evaluated for its potential to alleviate oxidative stress using in vitro assays and in vivo studies in Saccharomyces cerevisiae (wild type) and its antioxidant (sod1∆, sod2∆, tsa1∆, cta2∆ and ctt1∆), anti-apoptotic (pep4∆ and fis1∆) and anti-aging (sod2∆, tsa1∆ and ctt1∆)) isogenic gene deletion mutants. Galactan exhibited strong DPPH and nitric oxide scavenging activity with an IC50 value of 450 and 138 µg/mL respectively. In the yeast mutant model, oxidative stress generated by H2O2 was extensively scavenged by galactan in the medium as confirmed using spot assays followed by fluorescencent DCF-DA staining and microscopic studies. Galactan treatment resulted in reduction in the ROS generated in the yeast mutant cells as demonstrated by decreased fluorescence intensity. Furthermore, galactan exhibited protection against oxidative damage through H2O2 -induced apoptosis inhibition in the yeast mutant strains (pep4∆ and fis1∆) leading to increased survival rate by neutralizing the oxidative stress. In the chronological life span assay, WT cells treated with galactan EPS showed 8% increase in viability whereas sod2∆ mutant showed 10–15% increase indicating pronounced anti-aging effects. Galactan from W. confusa KR780676 has immense potential to be used as a natural antioxidant for nutraceutical, pharmaceutical and food technological applications. As per our knowledge, this is the first report on in-depth assessment of in vivo antioxidant properties of a bacterial EPS in a yeast deletion model system.
Collapse
|
33
|
Zheng Q, Jia RB, Ou ZR, Li ZR, Zhao M, Luo D, Lin L. Comparative study on the structural characterization and α-glucosidase inhibitory activity of polysaccharide fractions extracted from Sargassum fusiforme at different pH conditions. Int J Biol Macromol 2022; 194:602-610. [PMID: 34808147 DOI: 10.1016/j.ijbiomac.2021.11.103] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 11/05/2022]
Abstract
Sargassum fusiforme polysaccharides (SFPs), including SFP-3-40, SFP-3-60, SFP-3-80, SFP-7-40, SFP-7-60, SFP-7-80, SFP-10-40, SFP-10-60, and SFP-10-80, were extracted at different pH (3, 7, and 10), and then precipitated with graded precipitation of 40%, 60% and 80% (v/v) ethanol solution, respectively. Their physicochemical properties and α-glucosidase inhibitory activity were determined. Results showed that SFPs significantly differed in the contents of total sugar, protein, uronic acid, sulfate, the zeta potential, and molecular weight distribution. SFPs, including SFP-10-40, SFP-10-60, and SFP-10-80, had bigger absolute zeta potential value and higher respective average molecular weight in the same ethanol concentration precipitate. All samples were mainly composed of fucose, glucuronic acid, and mannose with different molar ratios. The extraction pH and precipitation ethanol solution concentration caused little changes in functional groups, but significantly altered surface morphology of SFPs. Congo red test revealed that all polysaccharides were not helical polysaccharides. Rheological measurements indicated that SFPs were pseudoplastic fluids and showed elastic behavior of the gel. Except SFP-3-40 and SFP-3-60, all other samples had a stronger α-glucosidase inhibitory activity than that of acarbose. The inhibition type of SFPs against α-glucosidase varied owing to different extraction pH and precipitation ethyl concentration. This study shows that extraction pH can significantly affect the structure and hypoglycemic activity of SFPs and provide a data support for the scientific use of Sargassum fusiforme in industrial production.
Collapse
Affiliation(s)
- Qianwen Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Zhi-Rong Ou
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
34
|
Wang XL, Zhang LL, Chen N, Li J, Han CF, Wang S, Hao LM, Jia SR, Han PP. The effects of quorum sensing molecule farnesol on the yield and activity of extracellular polysaccharide from Grifola frondosa in liquid fermentation. Int J Biol Macromol 2021; 191:377-384. [PMID: 34560149 DOI: 10.1016/j.ijbiomac.2021.09.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
A strategy by exogenous addition of quorum sensing molecule farnesol to improve the production, antioxidant activity and antitumor activity of extracellular polysaccharide (EPS) of Grifola frondosa by liquid fermentation was proposed in the study. The highest yield of EPS induced by farnesol was 1.25 g/L, which was 150% higher than that of the control. Four polysaccharides including EPS-C-0M, EPS-C-0.2M, EPS-F-0M and EPS-F-0.2M were extracted and purified under the conditions of control and farnesol respectively. The physicochemical properties, antioxidant activities and antitumor activities were studied. Their chemical composition differed in sugar, protein and uronic acid contents, and they were composed of six constituent monosaccharides with different ratios, with the average molecular weights of 1.12 × 103, 1.89 × 103, 1.41 × 103 and 2.02 × 103 kDa, respectively. They presented similar FT-IR spectra, but different surface morphology. Antioxidant experiments showed that they had strong scavenging activities on ABTS+, hydroxyl radical, O2- and DPPH radical. Antitumor experiments showed that they had strong inhibitory effects on human cervical cancer (HeLa) cells and human liver cancer cells (HepG2) cells. Among the four polysaccharides, EPS-F-0.2M showed the highest antioxidant and antitumor activities, indicating that farnesol could regulate the biological activity of EPS by affecting structure and properties. These results demonstrated that appropriate adjustment of culture conditions had potential application in the development of polysaccharides with high antioxidant and antitumor activity. It provided a new strategy to enhance the production and bioactivity of edible and medicinal fungal polysaccharides by using quorum sensing molecules.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Le-le Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ni Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jian Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Cheng-Feng Han
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuai Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Li-Min Hao
- The Quartermaster Equipment Institute, Academy of Military Sciences PLA China, Beijing 100010, PR China
| | - Shi-Ru Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Pei-Pei Han
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
35
|
Zhang Q, Wang J, Sun Q, Zhang SM, Sun XY, Li CY, Zheng MX, Xiang WL, Tang J. Characterization and Antioxidant Activity of Released Exopolysaccharide from Potential Probiotic Leuconostoc mesenteroides LM187. J Microbiol Biotechnol 2021; 31:1144-1153. [PMID: 34226411 PMCID: PMC9705892 DOI: 10.4014/jmb.2103.03055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
A released exopolysaccharide (rEPS)-producing strain (LM187) with good acid resistance, bile salt resistance, and cholesterol-lowering properties was isolated from Sichuan paocai and identified as Leuconostoc mesenteroides subsp. mesenteroides. The purified rEPS, designated as rEPS414, had a uniform molecular weight of 7.757 × 105 Da. Analysis of the monosaccharide composition revealed that the molecule was mainly composed of glucose. The Fourier transform-infrared spectrum showed that rEPS414 contained both α-type and β-type glycosidic bonds. 1H and 13C nuclear magnetic resonance spectra analysis showed that the purified rEPS contained arabinose, galactose, and rhamnose, but less uronic acid. Scanning electron microscopy demonstrated that the exopolysaccharide displayed a large number of scattered, fluffy, porous cellular network flake structures. In addition, rEPS414 exhibited strong in vitro antioxidant activity. These results showed that strain LM187 and its rEPS are promising probiotics with broad prospects in industry.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China,Corresponding authors Q. Zhang Phone: +86-28-87720552 Fax: +86-28-87720552 E-mail:
| | - Jie Wang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Qing Sun
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Shu-Ming Zhang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Xiang-Yang Sun
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Chan-Yuan Li
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Miao-Xin Zheng
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Wen-Liang Xiang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Jie Tang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China,
J. Tang E-mail:
| |
Collapse
|
36
|
Cheng S, He F, Fu L, Zhang Y. Polysaccharide from rubescens: extraction, optimization, characterization and antioxidant activities. RSC Adv 2021; 11:18974-18983. [PMID: 35478623 PMCID: PMC9033498 DOI: 10.1039/d1ra01365c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
In this work, rubescens polysaccharide was extracted and extraction conditions were optimized with the response surface method (RSM). The extracted polysaccharide was structurally elucidated and its antioxidant activity was investigated. The best extraction conditions were as follows: the solvent-solid ratio was 33.33 : 1, the extraction temperature was 87.70 °C and the extraction time was 2.59 h. Under optimum conditions, the predicted yield of the polysaccharide was 11.92%. The preliminary structural characteristics were analyzed by HPLC, X-ray, and FT-IR. Results showed that the polysaccharide composition was mannose : glucose : galactose : xylose : arabinose = 2.27 : 4.65 : 2.57 : 1 : 1.85. In addition, the rubescens polysaccharide possessed typical characteristic absorption peaks of polysaccharides. During the antioxidant experiments, the rubescens polysaccharide showed great reducing capacity and strong antioxidant activities on DPPH, ABTS, and hydroxyl radicals. This proved that rubescens polysaccharide has the potential to be a resource for the development of natural antioxidants. Rubescens has become a research object highly valued by the international oncology community and by western institutions for the research and development of new drugs due to its excellent anti-tumor activity. The research on the extraction of polysaccharide from rubescens provides a technical reference for the further utilization of rubescens resources. Hot-water extraction has the advantages of simple operation, easy access to materials and mild extraction conditions, and it can better preserve the original biological activity of the polysaccharide. The research on the antioxidant activity of rubescens polysaccharide provides theoretical support for its use as a natural antioxidant. Rubescens polysaccharide was extracted and extraction conditions were optimized. Polysaccharide was structurally elucidated and its antioxidant activity was investigated. Rubescens polysaccharide has the potential for the natural antioxidants.![]()
Collapse
Affiliation(s)
- Shuang Cheng
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Fei He
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Longyang Fu
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Yadong Zhang
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 China.,Jiyuan Research Institute, Zhengzhou University Jiyuan 459000 China
| |
Collapse
|
37
|
Feng H, Tian L. Study on Extraction Process of Root of Henry Wood Betony Polysaccharides and Their Antitumor Activity against S180. Molecules 2021; 26:molecules26082359. [PMID: 33921554 PMCID: PMC8073743 DOI: 10.3390/molecules26082359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/03/2022] Open
Abstract
We optimized the hot water extraction of polysaccharides from the root of Henry wood betony (RHWPs) using a uniform test and explored their anti-tumor activities in vitro and in vivo. The optimal extraction conditions were as follows: 40 min extraction time, liquid/solid ratio 30 mL/g, 100 min soaking time, two extraction cycles, 100% ethanol concentration, and extraction temperature of 80 °C. The molecular weight distribution of RHWPs with MWs was 228,600 g/mol and 5001 g/mol. The IR spectrum further indicated that RHWPs are acidic polysaccharides containing pyranose and furan rings. The main monosaccharides found in RHWPs were mannose, ribose, l-rhamnose monohydrate, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose, and fucose. RHWPs inhibited the proliferation of S180 tumor cells and induced apoptosis in vitro. Oral administration of RHWPs to tumor-bearing mice significantly inhibited the growth of the S180 xenografts, accelerated apoptosis in tumor cells, and expanded the necrotic regions. Furthermore, RHWPs also markedly increased the levels of TNF-α, IFN-γ, and IL-2 in the sera of tumor-bearing mice, and activated immune cells such as lymphocytes, NK cells, and macrophages, thereby inducing tumor cell apoptosis. Taken together, RHWPs are a promising anti-tumor agent that ought to be explored further.
Collapse
Affiliation(s)
- Haibo Feng
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
- Correspondence: ; Tel./Fax: +86-28-85522310
| | - Lan Tian
- Department of Veterinary Medicine, Southwest University, Chongqing 402460, China;
| |
Collapse
|
38
|
Zhou X, Sun H, Tan F, Yi R, Zhou C, Deng Y, Mu J, Zhao X. Anti-aging effect of Lactobacillus plantarum HFY09-fermented soymilk on D-galactose-induced oxidative aging in mice through modulation of the Nrf2 signaling pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
39
|
Zheng L, Ma Y, Zhang Y, Meng Q, Yang J, Gong W, Liu Q, Cai L, Hao L, Wang B, Yang Y. Distribution of Zinc in Mycelial Cells and Antioxidant and Anti-Inflammatory Activities of Mycelia Zinc Polysaccharides from Thelephora ganbajun TG-01. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2308017. [PMID: 32655762 PMCID: PMC7317320 DOI: 10.1155/2020/2308017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
This study demonstrates that Thelephora ganbajun had a strong ability to absorb zinc, and zinc can be compartmentally stored in the small vesicles and mainly accumulated in the form of zinc-enriched polysaccharides (zinc content was 25.0 ± 1.27 mg/g). Mycelia zinc polysaccharides (MZPS) and its fractions were isolated. The main fraction (MZPS-2) with the highest antioxidant activity in vitro was composed of mannose : galacturonic acid : glucose : galactose in a molar ratio of 61.19 : 1 : 39.67 : 48.67, with a weight-averaged molecular weight of 5.118 × 105 Da. MZPS-2 had both α-pyranose and β-pyranose configuration and had a triple helical conformation. By establishing zebrafish models, we found that MZPS-2 can significantly scavenge free radicals, reduce the generation of reactive oxygen species caused by inflammation, and inhibit the recruitment of neutrophils toward the injury site. Therefore, MZPS-2 exhibited antioxidant and anti-inflammatory effects and can be used as a zinc supplement with specific biological activities to alleviate zinc deficiency complications, such as chronic oxidative stress or inflammation.
Collapse
Affiliation(s)
- Lan Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, China
| | - Yaohong Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, China
| | - Yunjuan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qingjun Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, China
| | - Junhui Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, China
| | - Weili Gong
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, China
| | - Qingai Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, China
| | - Lei Cai
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, China
| | - Lujiang Hao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Binglian Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, China
| | - Yan Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, China
| |
Collapse
|
40
|
Zhu Y, Yu X, Ge Q, Li J, Wang D, Wei Y, Ouyang Z. Antioxidant and anti-aging activities of polysaccharides from Cordyceps cicadae. Int J Biol Macromol 2020; 157:394-400. [PMID: 32339570 DOI: 10.1016/j.ijbiomac.2020.04.163] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Cordyceps cicadae is a traditional Chinese medicine with high nutritional value and biological activities. Previously, we reported on the antioxidant activity associated with the polysaccharides from Cordyceps cicadae (CP). To further explore which of the fraction of CP had the greatest potency, in here, the in vitro antioxidant and in vivo anti-aging activities of the fractions CP30-CP80 of CP were evaluated. The in vitro antioxidant activity results revealed that all the fractions (i.e. CP30-CP80) were potent with CP70 as the most potent. Notably, CP70 prolonged the lifespan of Drosophila (P < 0.05), increased the activities of catalase (CAT) and glutathione peroxidase (GSH-Px) (P < 0.01), and inhibited the formation of malondialdehyde (MDA) (P < 0.01). Additionally, CP70 upregulated the expression level of antioxidant-related genes CAT, SOD1 and MTH in Drosophila (P < 0.05). These results indicated that CP70 may prolong the lifespan of Drosophila through the up-regulation of the expression level of antioxidant-related genes CAT, SOD1 and MTH in Drosophila. Thus, polysaccharides from Cordyceps cicadae possess significant antioxidant and anti-aging activities, and could be explored as a new dietary supplement to slow down the aging process.
Collapse
Affiliation(s)
- Yiling Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaofeng Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Qi Ge
- Shanghai Zhongxi Sunve Pharmaceutical Co., Ltd, Shanghai 201800, PR China
| | - Jun Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
41
|
Yang J, Wang Y, Yin R, Pang J, Cong Y, Yang S. Water molecule attachment mode on the dried polysaccharide influences its free radical scavenging ability. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Reyes-Becerril M, Angulo M, Sanchez V, Guluarte C, Angulo C. β-D-glucan from marine yeast Debaryomyces hansenii BCS004 enhanced intestinal health and glucan-expressed receptor genes in Pacific red snapper Lutjanus peru. Microb Pathog 2020; 143:104141. [PMID: 32173493 DOI: 10.1016/j.micpath.2020.104141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
Previous studies have shown that marine yeast Debaryomyces hansenii BCS004 (also known as Dh004) has a potential biotechnological application. The aim of this study was to investigate the structural characterization, antioxidant properties and possible health inductor of dietary β-D-glucan BCS004. In this study, a glucan BCS004 was obtained containing (1-6)-branched (1-3)-β-D-glucan with low molecular weight and a high purity of 90 and 91.7% for one and 4 h, respectively. β-D-glucan BCS004 showed higher antioxidant activity, including DPPH radical and superoxide anion scavenging, β-carotene bleaching inhibition, and iron chelation activity. An in vitro study showed that β-D-glucan BCS004 was safe for peripheral blood leukocytes inducing proliferative effects. Moreover, in an in vivo study using β-D-glucan BCS004 no histopathological damages or intestinal inflammation were observed in fish. The gene expression analysis highlighted that dietary β-D-glucan BCS004 could also up-regulate glucan and macrophage receptor genes in intestine, such as C-type lectin (CTL) and macrophage mannose receptors (MMR). Overall, the results demonstrated that β-D-glucan from D. hansenii BCS004 could be an immunostimulant with antioxidant properties and beneficial effects on intestinal health in fish.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Veronica Sanchez
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Crystal Guluarte
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico.
| |
Collapse
|
43
|
Li YT, Huo YF, Wang F, Wang C, Zhu Q, Wang YB, Fu LL, Zhou T. Improved antioxidant and immunomodulatory activities of enzymatically degraded Porphyra haitanensis polysaccharides. J Food Biochem 2020; 44:e13189. [PMID: 32163602 DOI: 10.1111/jfbc.13189] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022]
Abstract
Porphyra haitanensis polysaccharide (CPH) was degraded by pectinase to improve its biological activities. Box-Behnken response surface design was used to optimize the hydrolysis conditions. The molecular weight of CPH and the degraded P. haitanensis polysaccharide (DCPH) were measured to be 524 and 217 kDa, respectively. GC-MS spectrometry results showed that CPH and DCPH were mainly composed of galactose. In vitro antioxidant assays indicated that DCPH possessed improved radical scavenging activity and ferric iron reducing power when compared to those of CPH. In H2 O2 -treated RAW264.7 cells, DCPH was also found to be more effective in reducing the generation of malondialdehyde and reactive oxygen species than CPH. The immunomodulatory assays demonstrated that DCPH possessed superior activities in enhancing the proliferation, phagocytosis, and NO secretion in a RAW264.7 macrophage cell model to those of CPH. PRACTICAL APPLICATIONS: Polysaccharide is the most abundant bioactive component of an edible red algae Porphyra haitanensis. However, the use of CPH is limited due to its relatively low biological activities. Thus, in order to fully utilize P. haitanensis, it is necessary to enhance the biological activities of CPH for its practical use. An efficient and practical method to enhance the bioactivities of P. haitanensis polysaccharide has been developed in the present work. The DCPH prepared in this work could have potential applications in food and medicinal areas.
Collapse
Affiliation(s)
- Yin-Ting Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yun-Feng Huo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Chong Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Qing Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Yan-Bo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Ling-Lin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
44
|
Lin S, Li HY, Yuan Q, Nie XR, Zhou J, Wei SY, Du G, Zhao L, Wang SP, Zhang Q, Chen H, Qin W, Wu DT. Structural characterization, antioxidant activity, and immunomodulatory activity of non-starch polysaccharides from Chuanminshen violaceum collected from different regions. Int J Biol Macromol 2019; 143:902-912. [PMID: 31715239 DOI: 10.1016/j.ijbiomac.2019.09.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/28/2019] [Accepted: 09/18/2019] [Indexed: 01/17/2023]
Abstract
Chuanminshen violaceum has been used as an important traditional Chinese medicine and a popular tonic food in China. Polysaccharides are considered the major bioactive components in C. violaceum. In this study, in order well understand the chemical structures and bioactivities of non-starch polysaccharides in C. violaceum (CVPs), the physicochemical structures, antioxidant activities, and immunomodulatory activities of CVPs in C. violaceum collected from different regions of China were investigated and compared. Results showed that the constituent monosaccharides and Fourier transform infrared spectra of CVPs in C. violaceum collected from different regions were similar. However, their molar ratios of constituent monosaccharides, molecular weights, and contents of uronic acids were different. Furthermore, CVPs exerted remarkable antioxidant activities (ABTS and nitric oxide radical scavenging capacities) and immunomodulatory activities (promoted production of nitric oxide, IL-6, and TNF-α from RAW 264.7 macrophages in vitro). Meanwhile, the antioxidant and immunomodulatory activities of CVPs extracted from C. violaceum also varied by cultivated regions. Moreover, results indicated that the antioxidant and immunomodulatory activities of CVPs were closely correlated to their α-1,4-d-galactosiduronic linkages. Results are helpful for better understanding of the structure-bioactivity relationships of CVPs, and beneficial for the improvement of their applications in pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Shang Lin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Hong-Yi Li
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Qin Yuan
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Xi-Rui Nie
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Jia Zhou
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Si-Yu Wei
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Gang Du
- Sichuan Provincial Institute for Food and Drug Control, Chengdu, Sichuan, China
| | - Li Zhao
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qing Zhang
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Hong Chen
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Wen Qin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
45
|
Chakraborty I, Sen IK, Mondal S, Rout D, Bhanja SK, Maity GN, Maity P. Bioactive polysaccharides from natural sources: A review on the antitumor and immunomodulating activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101425] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Lin S, Li HY, Wang ZY, Liu X, Yang Y, Cao ZW, Du G, Zhao L, Zhang Q, Wu DT, Qin W. Analysis of Methanolic Extracts and Crude Polysaccharides from the Leaves of Chuanminshen violaceum and Their Antioxidant Activities. Antioxidants (Basel) 2019; 8:E266. [PMID: 31375002 PMCID: PMC6720192 DOI: 10.3390/antiox8080266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
The root of Chuanminshen violaceum is used as an important edible and medicinal plant in China. However, its leaves are generally considered byproducts, and therefore do not have a use. Thus, the phenolic compounds in the methanolic extracts (CVLMs) and the chemical characteristics of crude polysaccharides (CVLPs) from the leaves of C. violaceum and their in vitro antioxidant activities were explored. The results showed that chlorogenic acid and rutin were the major individual phenolic compounds in the leaves, which ranged from 1.22 ± 0.03 to 2.87 ± 0.04 mg/g DW, and from 2.25 ± 0.04 to 4.03 ± 0.05 mg/g DW, respectively. Meanwhile, the extraction yields of CVLPs from the leaves ranged from 4.73% to 5.41%. The CVLPs consisted of mannose, rhamnose, galacturonic acid, glucose, galactose, and arabinose, suggesting the existence of pectic polysaccharides. Furthermore, both CVLMs and CVLPs exhibited strong antioxidant activities. Chlorogenic acid and rutin were major contributors to the antioxidant activities of CVLMs, and the antioxidant activities of CVLPs were closely correlated to their α-1,4-D-galactosiduronic linkages. The results are beneficial for understanding the chemical properties and in vitro antioxidant activities of CVLMs and CVLPs. The leaves of C. violaceum have potential to be developed as natural antioxidants.
Collapse
Affiliation(s)
- Shang Lin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hong-Yi Li
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zi-Ying Wang
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xin Liu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yang Yang
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zheng-Wen Cao
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Gang Du
- Sichuan Provincial Institute for Food and Drug Control, Chengdu 611730, China
| | - Li Zhao
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qing Zhang
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Wen Qin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
47
|
Chen J, Zhang X, Huo D, Cao C, Li Y, Liang Y, Li B, Li L. Preliminary characterization, antioxidant and α-glucosidase inhibitory activities of polysaccharides from Mallotus furetianus. Carbohydr Polym 2019; 215:307-315. [DOI: 10.1016/j.carbpol.2019.03.099] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/30/2022]
|
48
|
Maity GN, Maity P, Dasgupta A, Acharya K, Dalai S, Mondal S. Structural and antioxidant studies of a new arabinoxylan from green stem Andrographis paniculata (Kalmegh). Carbohydr Polym 2019; 212:297-303. [DOI: 10.1016/j.carbpol.2019.02.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
|
49
|
Zhang C, Zhao F, Li R, Wu Y, Liu S, Liang Q. Purification, characterization, antioxidant and moisture-preserving activities of polysaccharides from Rosa rugosa petals. Int J Biol Macromol 2019; 124:938-945. [DOI: 10.1016/j.ijbiomac.2018.11.275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 02/05/2023]
|
50
|
Polysaccharides with Antioxidative and Antiaging Activities from Enzymatic-Extractable Mycelium by Agrocybe aegerita (Brig.) Sing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1584647. [PMID: 30622588 PMCID: PMC6304491 DOI: 10.1155/2018/1584647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/25/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the antioxidant, antiaging, and organ protective effects of the water-extractable mycelium polysaccharides (MPS) and enzymic-extractable mycelium polysaccharides (En-MPS) by Agrocybe aegerita (Brig.) Sing in D-galactose-induced (D-gal-induced) aging mice. In in vitro assays, the En-MPS demonstrated stronger antioxidant activities in dose-dependent manners. The mice experiments revealed that both En-MPS and MPS had potential effects on antioxidation, antiaging, and organ protection mainly by improving the antioxidant enzyme activities, decreasing the lipid peroxidation, and remitting the lipid metabolism. Furthermore, chemical composition and monosaccharide composition of polysaccharides were also measured, and the results indicated that differences in biological activity of MPS and En-MPS samples showed a significant correlation to their purity. The findings demonstrated that the polysaccharides by A. aegerita (Brig.) Sing could be exploited as natural and functional foods for the prevention and alleviation of aging and its complications.
Collapse
|