1
|
Introna M, Juárez-Facio AT, Srikanth Vallabani NV, Tu MH, Heikkilä P, Colombo A, Liboni V, Tsyupa B, Mancini A, Keskinen J, Olofsson U, Steimer SS, Karlsson HL, Elihn K. Toxicity of real-world PM 2.5 road tunnel emissions using a mobile Air-Liquid Interface system and submerged exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126486. [PMID: 40403919 DOI: 10.1016/j.envpol.2025.126486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/30/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Traffic-related air pollution is a major public health concern, contributing to respiratory and cardiovascular diseases worldwide. The aim of this study was to investigate the feasibility of using a mobile Air-Liquid Interface (ALI) system to assess the cytotoxicity and inflammatory potential of freshly generated PM2.5 (particle matter with aerodynamic diameter <2.5 μm) in a road tunnel in Stockholm. We hypothesized that cellular effects would be detectable at lower doses compared to submerged exposures. The mean particle dose in ALI was 1.4±0.8 μg/cm2, whereas a wide range of doses was used for submerged exposures. ALI and submerged results showed that PM2.5 from the road tunnel did not affect the viability of A549 cells, whereas a significant and dose-dependent decrease in viability of dTHP-1 (in submerged exposure) was observed. Furthermore, in A549 in ALI a slight increase in inflammatory response (IL-8, IL-6, and IL-1β) was observed. In submerged exposure, the inflammatory response was clearer, particularly in the dTHP-1 cells. In conclusion, this study presents the first successfully conducted in situ ALI exposure in a road tunnel. The results demonstrate that dTHP-1 cells exhibit clear cytotoxic and inflammatory responses, while A549 show only weak effects. These findings suggest that co-cultures of A549 and dTHP-1 may be valuable in future ALI studies.
Collapse
Affiliation(s)
- Micol Introna
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden.
| | | | | | - Ming Hui Tu
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paavo Heikkilä
- Aerosol physics laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland
| | - Andrea Colombo
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri"- IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Valentina Liboni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri"- IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Bozhena Tsyupa
- Materials Engineering & Laboratories, GCF R&D, Brembo NV, 24040 Stezzano (BG), Italy
| | - Alessandro Mancini
- Materials Engineering & Laboratories, GCF R&D, Brembo NV, 24040 Stezzano (BG), Italy
| | - Jorma Keskinen
- Aerosol physics laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Hanna Lovisa Karlsson
- Institute of Environmental Medicine, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
2
|
Ekdahl KN, Monie L, Juárez-Facio AT, Olofsson U, Mancini A, Tsyupa B, Elihn K, Nilsson B, Fromell K. The blood response to subway-derived iron nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104717. [PMID: 40378944 DOI: 10.1016/j.etap.2025.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
In this study, we investigated the impact of iron-rich nanoparticles derived from different locations in the subway on the innate immune system in blood. Nanoparticles were generated from Third Rail, Rail, and Wheel materials and characterized using several techniques. The response in a human whole-blood model was analyzed using ELISA and capillary immunoelectrophoresis. All nanoparticles were iron oxides, but Third Rail nanoparticles also contained Silicon and were highly thrombo-inflammatory, activating Factor XI-induced coagulation and pro-inflammatory kallikrein/kinin pathways. Wheel and Rail nanoparticles were less reactive, mainly activating the kallikrein/kinin pathway, leading to milder inflammatory reactions. The strong thrombo-inflammatory properties of Third Rail nanoparticles are attributed to their high Silicon content. None of the nanoparticles significantly activated the complement system. In conclusion, we found that the elemental composition of nanoparticles is crucial in determining whether activation leads to kallikrein/kinin system activation and bradykinin release or Factor XI activation and thrombosis.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden; Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden.
| | - Lisa Monie
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden.
| | - Ana T Juárez-Facio
- Department of Environmental Science, Stockholm University, Stockholm 10691, Sweden.
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
| | - Alessandro Mancini
- Materials Engineering & Laboratories, Research & Development Department, Brembo N.V., Stezzano, BG 24040, Italy.
| | - Bozhena Tsyupa
- Materials Engineering & Laboratories, Research & Development Department, Brembo N.V., Stezzano, BG 24040, Italy.
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, Stockholm 10691, Sweden.
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden.
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden.
| |
Collapse
|
3
|
Kuhn J, Vallabani NVS, Montes AM, Juárez-Facio AT, Introna M, Steimer SS, Patel A, Manem DB, Tsyupa B, Mancini A, Olofsson U, Elihn K, Karlsson HL. Unraveling toxicity of nanoparticles from different subway materials in lung epithelial cells and macrophages. ENVIRONMENTAL RESEARCH 2025; 271:121027. [PMID: 39909088 DOI: 10.1016/j.envres.2025.121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/15/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Nanoparticles (ultrafine particles) are prevalent in various environments and raise concerns due to their potential health effects. In this study, we aimed to enhance the understanding of the toxicity associated with nanoparticles generated within subway systems. Specifically, we investigated nanoparticles produced using spark discharge from electrodes made of the same material as the third rail (which provides electric power), rail, and wheel components in the Stockholm subway system. Characterization revealed that the generated nanoparticles typically had a primary size of 6-10 nm and exhibited high agglomeration. They consisted mainly of iron, along with varying amounts of manganese and silicon. Despite having low oxidative potential, they showed some cytotoxicity and clearly induced DNA strand breaks in both dTHP-1 cells (monocyte-derived macrophages) and A549 cells (lung epithelial cells). In addition, gene expression analysis showed an upregulation of the cytokine IL-8 in dTHP-1 cells. No increased release of IL-1β, IL-8, IL-6, and TNF-a was noted. Consistent differences in toxicity between the nanoparticles from different materials were not observed. In conclusion, the results show that subway-related nanoparticles can cause DNA damage in cultured lung cells, but the inflammatory potential in terms of cytokine release was limited.
Collapse
Affiliation(s)
- Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | - Andrea Montano Montes
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ana T Juárez-Facio
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Micol Introna
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Anil Patel
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Divya Bharathi Manem
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Bozhena Tsyupa
- Brembo N.V., Materials Engineering & Laboratories, R&D, Stezzano, Bergamo, 24040, Italy
| | - Alessandro Mancini
- Brembo N.V., Materials Engineering & Laboratories, R&D, Stezzano, Bergamo, 24040, Italy
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
4
|
Shahryari H, Sourinejad I, Gholamhosseini A, Banaee M. Sub-lethal toxicity effects of iron oxide nanoparticles (IONPs) on the biochemical, oxidative biomarkers, and metabolic profile in Caridina fossarum. J Trace Elem Med Biol 2025; 88:127613. [PMID: 39908738 DOI: 10.1016/j.jtemb.2025.127613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/09/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUNDS This study aimed to assess the toxicity effect of iron oxide nanoparticles (IONPs) on the biochemical and oxidative markers in freshwater miniature shrimp (Caridina fossarum). MATERIALS AND METHODS Based on the pre-test results, 540 shrimp were distributed into six trial groups in triplicate and exposed to sub-lethal concentrations of Fe3O4 nanoparticles at 0.0, 40, 80, 120, 160, and 320 µg L-1 for 14 days. Next, biochemical parameters and oxidative biomarkers were measured. RESULTS The results showed that exposure to 120 µg L⁻¹ ≤ of IONPs significantly increased aspartate aminotransferase activity in C. fossarum. Alanine aminotransferase activity showed a significant increase at 320 µg L⁻¹ . Similarly, alkaline phosphatase activity was meaningfully elevated at 160 and 320 µg L⁻¹ . Lactate dehydrogenase activity notably increased at 120 and 320 µg L⁻¹ of IONPs. IONPs at ≥ 80 µg L⁻¹ significantly reduced gamma-glutamyl transpeptidase and butyrylcholinesterase activities. Cholesterol and triglyceride levels significantly increased at 320 µg L⁻¹ . Exposure to 80 µg L⁻¹ ≤ of IONPs significantly increased superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase activities in C. fossarum. Moreover, total antioxidant capacity and malondialdehyde content increased considerably in shrimp exposed to different concentrations of IONPs. Exposure to IONPs could induce oxidative stress, disrupt protein structures, oxidize sulfur-containing and essential aromatic and aliphatic amino acids, impair nucleic acid stability, and change lipid metabolism and membrane integrity. CONCLUSION In conclusion, significant changes in biochemical parameters, oxidative biomarkers, and metabolic profile disruptions in C. fossarum exposed to sub-lethal concentrations of IONPs indicated cellular damage and oxidative stress.
Collapse
Affiliation(s)
- Hamidreza Shahryari
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Iman Sourinejad
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| |
Collapse
|
5
|
Ali I, Adil M, Imran M, Qureshi SA, Qureshi S, Hasan N, Ahmad FJ. Nanotechnology in Parkinson's Disease: overcoming drug delivery challenges and enhancing therapeutic outcomes. Drug Deliv Transl Res 2025:10.1007/s13346-025-01799-8. [PMID: 39878857 DOI: 10.1007/s13346-025-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development. Moreover, early and precise PD diagnosis remains elusive, relying on clinical assessments, neuroimaging techniques, and emerging biomarkers. Conventional management of PD involves dopaminergic medications and surgical interventions, but these treatments often become less effective over time and do not address disease treatment. Challenges persist due to the blood-brain barrier's (BBB) impermeability, hindering drug delivery. Recent advancements in nanotechnology offer promising novel approaches for PD management. Various drug delivery systems (DDS), including nanosized polymers, lipid-based carriers, and nanoparticles (such as metal/metal oxide, protein, and carbonaceous particles), aim to enhance drug and gene delivery. These modifications seek to improve BBB permeability, ultimately benefiting PD patients. This review underscores the critical role of ageing in PD development and explores how age-related neuronal decline contributes to substantia nigra loss and PD manifestation in susceptible individuals. The review also highlights the advancements and ongoing challenges in nanotechnology-based therapies for PD.
Collapse
Affiliation(s)
- Irfan Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Adil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, 4102, Australia
| | - Saba Asif Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
6
|
Wang S, Gong X, Yuan J, Huang J, Zhao R, Ji J, Wang M, Shi X, Xin W, Zhong Y, Zheng Y, Jiang Q. Iron-doped diesel exhaust early-in-life inhalation-induced cardiopulmonary toxicity in chicken embryo: Roles of ferroptosis and acyl hydrocarbon signaling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125085. [PMID: 39374763 DOI: 10.1016/j.envpol.2024.125085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/14/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Diesel exhaust (DE) is a major contributor to air pollution. Iron-doping could improve diesel burning efficacy and decrease emission, however, it will also change the composition of DE, potentially enhancing the toxicities. This study is aimed to assess iron-doped DE-induced cardiopulmonary toxicity in an established in ovo early-in-life inhalation exposure chicken embryo model, and to explore potential mechanisms. Ferrocene (205, 410, 820,1640 mg/L, equivalent to 75, 150, 300, 600 ppm iron mass) was added to diesel fuel, DE was collected from a diesel generator, and then exposed to embryonic day 18-19 chicken embryo via in ovo inhalation. Hatched chickens were kept for 0, 1, or 3 months, and then sacrificed. Histopathology, electrocardiography along with biochemical methods were used to assess cardiopulmonary toxicities. For mechanistic investigation, inhibitor for ferroptosis (ferrostatin-1) or Acyl hydrocarbon receptor (PDM2) were administered before DE (with or without iron-doping), and the cardiopulmonary toxicities were compared. Characterization of DE particles indicated that addition of ferrocene significantly elevated iron content. Additionally, the contents of major toxic polycyclic aromatic hydrocarbons decreased following addition of 820 mg/L ferrocene, but increased at other doses. Remarkable cardiopulmonary toxicities, in the manifestation of elevated heart rates, cardiac remodeling and cardiac/pulmonary fibrosis were observed in animals exposed to iron-doped DEs, in which the addition of ferrocene significantly enhanced the toxicities. Both ferrostatin-1 and PDM2 pretreatment could effectively alleviate the observed effects in animals exposed to iron-doped DE. Inhibition of AhR signaling seems to be capable of alleviating changes to ferroptosis related molecules following exposure to iron-doped DE, while inhibition of ferroptosis does not seem to affect AhR signaling molecules. In summary, iron-doping with ferrocene to diesel enhanced DE-induced cardiopulmonary toxicities in chicken embryos. Ferroptosis and AhR signaling both seem to participate in this process, in which AhR signaling seems to affect ferroptosis.
Collapse
Affiliation(s)
- Siyi Wang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Xinxian Gong
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Jing Huang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Rui Zhao
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Meinan Wang
- Qingdao Product Quality Testing Research Institute, 77 Keyuanweisi Road, Qingdao, China
| | - Xiaoyu Shi
- Qingdao Product Quality Testing Research Institute, 77 Keyuanweisi Road, Qingdao, China
| | - Wenya Xin
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China.
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
7
|
Rajsiglova L, Babic M, Krausova K, Lukac P, Kalkusova K, Taborska P, Sojka L, Bartunkova J, Stakheev D, Vannucci L, Smrz D. Immunogenic properties of nickel-doped maghemite nanoparticles and the implication for cancer immunotherapy. J Immunotoxicol 2024; 21:2416988. [PMID: 39484726 DOI: 10.1080/1547691x.2024.2416988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
Nanoparticles are commonly used in diagnostics and therapy. They are also increasingly being implemented in cancer immunotherapy because of their ability to deliver drugs and modulate the immune system. However, the effect of nanoparticles on immune cells involved in the anti-tumor immune response is not well understood. The study reported here showed that nickel-doped maghemite nanoparticles (FN NP) are differentially cytotoxic to cultured mouse and human cancer cell lines, causing their death without negatively impacting the subsequent anticancer immune response. It also found that FN NP induced cell death in the mouse colorectal cancer cell line CT26 and human prostate cancer cell line PC-3, but not in the human prostate cancer cell line LNCaP. The induced cancer cell death did not affect the phenotype and responsivity of the isolated mouse peritoneal macrophages, or ex vivo-generated mouse bone marrow-derived, or human monocyte-derived dendritic cells. Additionally, the induced cancer cell death did not prevent the ex vivo-generated mouse or human dendritic cells from stimulating lymphocytes and enriching cell cultures with cancer cell-reactive T-cells. In conclusion, this study shows that FN NP could be a valuable platform for targeting cancer cells without causing immunosuppressive effects on the subsequent anticancer immune response.
Collapse
Affiliation(s)
- Lenka Rajsiglova
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Babic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Krausova
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavol Lukac
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ludek Sojka
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Technical Operations, SOTIO, a.s., Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Dmitry Stakheev
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
| | - Daniel Smrz
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
8
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
9
|
Abd El-Aziz YM, Alaryani FS, Aljahdali N, Majrashi KA, Albaqami NM, Khattab MS, Eissa ESH, Kari ZA, Abu Almaaty AH. Impact of Punica granatum seeds extract (PSE) on renal and testicular tissues toxicity in mice exposed to iron oxide nanoparticles (IONPs). Sci Rep 2024; 14:26067. [PMID: 39478001 PMCID: PMC11525657 DOI: 10.1038/s41598-024-74410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Recently, nano-manufactured materials have been used to treat many diseases, such as healing wounds and other modern biological applications. This study investigates the positive effect of Punica granatum seeds extract on kidney and testicular toxicities induced by iron oxide nanoparticles. Forty mice were randomly divided into four groups; the 1st group was the control group. The 2nd group was dosed daily with PSE at 100 g per kg. The 3rd group was dosed with 10 doses of iron oxide nanoparticles at 30 mg/kg b.wt of a mouse per day, 10 times only, then this toxic substance was withdrawn for the rest of the experimental period (30 days). The 4th group was dosed with the same doses as the second and third groups. In this research, we focused on the possibility of using the positive curative effects of PSE, which were estimated at the level of blood chemistry biomarkers, as well as histological and histochemical examinations for the kidney and testis after exposure of mice to iron oxide nanoparticles. These aim to clarify the effect of iron oxide nanoparticles on kidney and testicular morphology and their functions, as well as the potential ameliorative effects of PSE.
Collapse
Affiliation(s)
- Yasmin M Abd El-Aziz
- Department of Zoology, Faculty of Science, Port Said University, Port Said, 42526, Egypt.
| | - Fatima S Alaryani
- College of Science, Department of Biological Sciences, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Nesreen Aljahdali
- Department of Biological Science, College of Science, King Abdulaziz University, 42742 University Avenues, 21551, Jeddah, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, 21911, Rabigh, Saudi Arabia
| | - Najah M Albaqami
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Environmental Agricultural Sciences, Arish University, El- Arish, Egypt.
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Ali H Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| |
Collapse
|
10
|
Bhushan D, Shoran S, Kumar R, Gupta R. Plant biomass-based nanoparticles for remediation of contaminants from water ecosystems: Recent trends, challenges, and future perspectives. CHEMOSPHERE 2024; 365:143340. [PMID: 39278321 DOI: 10.1016/j.chemosphere.2024.143340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Green nanomaterials can mitigate ecological concerns by minimizing the impact of toxic contaminants on human and environmental health. Biosynthesis seems to be drawing unequivocal attention as the traditional methods of producing nanoparticles through chemical and physical routes are not sustainable. In order to utilize plant biomass, the current review outlines a sustainable method for producing non-toxic plant biomass-based nanoparticles and discusses their applications as well as recent trends involved in the remediation of contaminants, like organic/inorganic pollutants, pharmaceuticals, and radioactive pollutants from aquatic ecosystems. Plant biomass-based nanoparticles have been synthesized using various vegetal components, such as leaves, roots, flowers, stems, seeds, tuber, and bark, for applications in water purification. Phyto-mediated green nanoparticles are effectively utilized to treat contaminated water and reduce harmful substances. Effectiveness of adsorption has also been studied using variable parameters, e.g., pH, initial contaminant concentration, contact time, adsorbent dose, and temperature. Removal of environmental contaminants through reduction, photocatalytic degradation, and surface adsorption mechanisms, such as physical adsorption, precipitation, complexation, and ion exchange, primarily due to varying pH solutions and complex functional groups. In the case of organic pollutants, most of the contaminants have been treated by catalytic reduction and photodegradation involving the formation of NaBH4, H2O2, or both. Whereas electrostatic interaction, metal complexation, H-bonding, π- π associations, and chelation along with reduction have played a major role in the adsorption of heavy metals, pharmaceuticals, radioactive, and other inorganic pollutants. This review also highlights several challenges, like particle size, toxicity, stability, functional groups, cost of nanoparticle production, nanomaterial dynamics, and biological interactions, along with renewability and recycling of nanoparticles. Lastly, this review concluded that plant-biomass-based nanoparticles provide a sustainable, eco-friendly remediation method, utilizing the unique properties of nanomaterials and minimizing chemical synthesis risks.
Collapse
Affiliation(s)
- Divya Bhushan
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Sachin Shoran
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Renuka Gupta
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India.
| |
Collapse
|
11
|
Coward B, Wang J, Kysela B. Synthesis of trimetallic iron-boron core and gold shell nanoparticles for experimental cancer radiotherapy. Front Bioeng Biotechnol 2024; 12:1448081. [PMID: 39323763 PMCID: PMC11422082 DOI: 10.3389/fbioe.2024.1448081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cancer is a significant and constantly growing clinical problem all over the word. For many types of cancer there has been little change in mortality rate of CRC in the past decades and treatment options are limited. A striking example is malignant Glioblastoma (GBM) which exhibits a high degree of infiltration of surrounding healthy brain tissue, extremely high mortality rate, morbidity and most life-years lost of any cancer. Considerable research efforts in the last several decades have failed to improve these outcomes. Boron Capture Neutron Therapy (BNCT) is an experimental radiotherapy (RT) that shows the best hope for the patients for whom all current therapies fail. BNCT involves the intracellular release of alpha and Li-ion particles from boron in response to neutron beam and therefore its success is critically dependent on achieving high intracellular concentrations of boron atoms within the cancerous cells. Boron phenylalanine (BPA) is the most used compound to deliver boron atoms, but achieving high intracellular concentration of BPA is difficult with this small molecule compound and is an absolute limiting factor for the better outcome of BNCT. Our approach focused on a delivery of a high and stable concentration of boron atoms in a form of novel trimetallic core-shell nanoparticles, combining boron for BNCT and iron for magnetic targeting in the core, and a gold shell for stability and attachment of targeting therapeutic peptides. The research was targeted towards comparing different synthesis variables to form these core-shell particles and incorporate as much boron into the core as possible via redox-transmetalation. Partial gold shells were formed around the core via island growth with a molar ratio of Fe/B of 0.64 and high incorporation of boron.
Collapse
Affiliation(s)
- Brad Coward
- Chemistry Laboratory, Chemical Engineering and Applied Science, Engineering and Physical Science, Aston University, Birmingham, United Kingdom
| | - Jiawei Wang
- Chemistry Laboratory, Chemical Engineering and Applied Science, Engineering and Physical Science, Aston University, Birmingham, United Kingdom
| | - Boris Kysela
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
12
|
Aguilar-Ávila DS, Reyes-Becerril M, Velázquez-Carriles CA, Hinojosa-Ventura G, Macías-Rodríguez ME, Angulo C, Silva-Jara JM. Biogenic Ag 2O nanoparticles with "Hoja Santa" (Piper auritum) extract: characterization and biological capabilities. Biometals 2024; 37:971-982. [PMID: 38409305 DOI: 10.1007/s10534-024-00589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
The 'sacred leaf' or "Hoja Santa" (Piper auritum Kunth) has a great value for Mexican culture and has gained popularity worldwide for its excellent properties from culinary to remedies. To contribute to its heritage, in this project we proposed the green synthesis of silver oxide nanoparticles (Ag2O NPs) using an extract of "Hoja Santa" (Piper auritum) as a reducing and stabilizing agent. The synthesized Ag2O NPs were characterized by UV-Visible spectroscopy (plasmon located at 405 nm), X-ray diffraction (XRD) (particle size diameter of 10 nm), scanning electron microscopy (SEM) (particle size diameter of 13.62 ± 4.61 nm), and Fourier-transform infrared spectroscopy (FTIR) (functional groups from "Hoja Santa" attached to nanoparticles). Antioxidant capacity was evaluated using DPPH, ABTS and FRAP methods. Furthermore, the antimicrobial activity of NPs against a panel of clinically relevant bacterial strains, including both Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Salmonella Enteritidis and Escherichia coli O157:H7), was over 90% at concentrations of 200 µg/mL. Additionally, we assessed the antibiofilm activity of the NPs against Pseudomonas aeruginosa (reaching 98% of biofilm destruction at 800 µg/mL), as biofilm formation plays a crucial role in bacterial resistance and chronic infections. Moreover, we investigated the impact of Ag2O NPs on immune cell viability, respiratory burst, and phagocytic activity to understand their effects on the immune system.
Collapse
Affiliation(s)
- Dalia S Aguilar-Ávila
- Chemical Engineering Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
| | - M Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), Av. Instituto Politecnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, BCS, Mexico
| | - Carlos A Velázquez-Carriles
- Pharmacobiology Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
- Biological, Synthetic and Materials Engineering Department, Universidad de Guadalajara, CUTlajomulco, Carretera Tlajomulco - Santa Fé km 3.5, 595, Lomas de Tejeda, 45641, Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Gabriela Hinojosa-Ventura
- Chemical Engineering Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
| | - María E Macías-Rodríguez
- Pharmacobiology Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), Av. Instituto Politecnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, BCS, Mexico
| | - Jorge M Silva-Jara
- Pharmacobiology Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
13
|
Abdel Halim AS, Ali MAM, Inam F, Alhalwan AM, Daoush WM. Fe 3O 4-Coated CNTs-Gum Arabic Nano-Hybrid Composites Exhibit Enhanced Anti-Leukemia Potency Against AML Cells via ROS-Mediated Signaling. Int J Nanomedicine 2024; 19:7323-7352. [PMID: 39055376 PMCID: PMC11269411 DOI: 10.2147/ijn.s467733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background Prior studies on magnetite (Fe3O4) NPs and carbon nanotubes (CNTs) cytotoxic effects against acute myeloid leukemia (AML) are inconclusive rather than definitive. Purpose Investigation of the effects of Gum Arabic (GA)-stabilized/destabilized Fe3O4 NPs and CNTs, alone or in combination, on AML cell proliferation. Methods Hybrid NPs were synthesized, characterized, and assessed for their cytotoxicity against Kasumi-1, HL-60, and THP-1 in comparison to normal primary bone marrow CD34+ cells. The molecular pathways of nanostructures' cytotoxicity were also investigated. Results The Fe3O4 NPs were effectively synthesized and attached to the surface of the CNTs, resulting in the formation of a novel hybrid through their interaction with the GA colloidal solution in an aqueous media. Although the evaluated nanostructured nanoparticles had significant growth suppression ability against the leukemia cell lines, with IC50 values ranging from 42.437 to 189.842 μg/mL, they exhibited comparatively modest toxicity towards normal hematopoietic cells (IC50: 113.529‒162.656 μg/mL). The incorporation of Fe3O4 NPs with CNTs in a hybrid nanocomposite significantly improved their effectiveness against leukemia cells, with the extent of improvement varying depending on the specific cell type. The nanostructured particles were stabilized by GA, which enhances their ability to inhibit cell proliferation in a manner that depends on the specific cell type. Also, nanoparticles exhibit cytotoxicity due to their capacity to stimulate the production of intracellular ROS, halt the cell cycle at the G1 phase, and induce apoptosis. This is supported by the activation of p53, BAX, cytochrome C, and caspase-3, which are triggered by ROS. The nanostructures lead to an increase in the expression of genes encoding proteins related to oxidative stress (SIRT1, FOXO3, NFE2L2, and MAP3K5) and cyclin-dependent kinase inhibitors (CDKN1A and CDKN1B) in response to ROS. Conclusion We provide an effective Fe3O4 NPs/CNTs nano-hybrid composite that induces apoptosis and has strong anti-leukemic capabilities. This hybrid nanocomposite is promising for in vivo testing and validation.
Collapse
Affiliation(s)
- Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Kingdom of Saudi Arabia
| | - Fawad Inam
- Department of Engineering and Computing, School of Architecture, Computing and Engineering, University of East London, London, UK
- Executive Principal Office, Oxford Business College, Oxford, OX1 2EP, UK
| | - Abdulrahman M Alhalwan
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia
| | - Walid M Daoush
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia
- Department of Production Technology, Faculty of Technology and Education, Helwan University, Cairo, 11281, Egypt
| |
Collapse
|
14
|
Mahdavi Niyaki Z, Salehzadeh A, Peymani M, Zaefizadeh M. Exploring the Therapeutic Potential of Fe 3O 4@Glu-Oleuropein Nanoparticles in Targeting KRAS Pathway-Regulating lncRNAs in Colorectal Cancer Cells. Biol Trace Elem Res 2024; 202:3073-3085. [PMID: 37792268 DOI: 10.1007/s12011-023-03892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Cancer, the leading cause of death worldwide, has witnessed significant advancements in treatment through targeted therapies. Among the proto-oncogenes prevalent in human cancers, KRAS stands out, and recent research has focused on long noncoding RNAs (lncRNAs) as regulators of miRNAs targeting the KRAS oncogene. This study specifically explores lncRNAs involved in the KRAS pathway in colorectal cancer (CRC). To investigate this, researchers employed iron oxide nanoparticles coated with glucose and conjugated with Oleuropein (Fe3O4@Glu-Oleuropein NPs) to evaluate their impact on candidate lncRNAs associated with KRAS pathway deregulation. The study utilized TCGA data to identify genes affected by KRAS mutation and lncRNAs linked to KRAS in CRC. Enrichr and MsigDB databases helped identify relevant pathways. Genes with a correlation coefficient above 0.5 and a P-value less than 0.01 with candidate lncRNAs were selected. MTT and flow cytometry assays determined the anti-proliferative and apoptotic effects of Fe3O4@Glu-Oleuropein NPs on CRC cells (SW480) and normal cells (HEK293). The findings showed that increased expression of FEZF1-AS1, GAS6-AS1, and LINC00920 correlated with mutated KRAS, and co-expressed genes were significantly involved in hypoxia, KRAS signaling, DNA repair, and IL-2/STAT5 signaling pathways. Fe3O4@Glu-Oleuropein NPs exhibited higher toxicity toward cancer cells, with IC50 values of 92 μg/ml for SW480 and 281 μg/ml for HEK293. Flow cytometry analysis revealed a substantial increase in necrotic and apoptotic cells when treated with Fe3O4@Glu-Oleuropein, along with down-regulation of GAS6-AS1, LINC00920, and FEZF1-AS1 lncRNAs in treated cells. In conclusion, this study highlights the therapeutic potential of Fe3O4@Glu-Oleuropein on colon cancer cells in vitro. The identification of lncRNAs involved in the KRAS pathway provides insights into the underlying mechanisms and offers avenues for further research in targeted cancer therapies.
Collapse
Affiliation(s)
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Zaefizadeh
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
15
|
Kumawat A, Dave S, Varghese S, Patel B, Ghoroi C. Iron Nano Biocomposite-Infused Biopolymeric Films: A Multifunctional Approach for Robust Skin Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30819-30832. [PMID: 38845592 DOI: 10.1021/acsami.4c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Sodium alginate (SA) biopolymeric films have various limitations such as poor mechanical properties, high vapor permeability, lack of antibacterial activity, excessive burst release, and weak cell adhesion. To overcome these limitations, a strategy involving the integration of nanofillers into an SA film matrix is explored. In this context, a cost-effective iron-containing carbon nano biocomposite (FeCNB) nanofiller is developed using a solvent-free technique. This nanocomposite is successfully incorporated into the alginate film matrix at varying concentrations (0.05, 0.1, and 0.15%) aimed at enhancing its physicochemical and biological properties for biomedical applications. Characterization through FESEM and BET analyses confirms the porous nature of the FeCNB. EDX shows the FeCNB's uniform distribution upon its integration into the film matrix, albeit without strong chemical interaction with SA. Instead, hydrogen bonding interactions become apparent in the FTIR spectra. By incorporating the FeCNB, the mechanical attributes of the films are improved and the water vapor permeability approaches the desired range (2000-2500 g/m2day). The film's swelling ratio reduction contributes to a decrease in water permeability. The antibacterial activity and sustained release property of the FeCNB-incorporated film are established using tetracycline hydrochloride (TCl), a model drug. The drug release profile resembled Korsmeyer-Peppas's release pattern. In vitro assessments via the MTT assay and scratch assay on NIH-3T3 cells reveal that FeCNB has no adverse effects on the biocompatibility of alginate films. The cell proliferation and adhesion to the SA film are significantly enhanced after infusion of the FeCNB. The in vivo study performed on the rat model demonstrates improved wound healing by FeCNB-impregnated films. Based on the comprehensive findings, the proposed FeCNB-incorporated alginate films prove to be a promising candidate for robust skin repair.
Collapse
Affiliation(s)
- Akshant Kumawat
- DryProTech Lab, Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Srusti Dave
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat 382007, India
| | - Sophia Varghese
- DryProTech Lab, Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Bhoomika Patel
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat 382007, India
| | - Chinmay Ghoroi
- DryProTech Lab, Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
16
|
da Silva Gomes B, Cláudia Paiva-Santos A, Veiga F, Mascarenhas-Melo F. Beyond the adverse effects of the systemic route: Exploiting nanocarriers for the topical treatment of skin cancers. Adv Drug Deliv Rev 2024; 207:115197. [PMID: 38342240 DOI: 10.1016/j.addr.2024.115197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Skin cancer is a heterogeneous disease that can be divided into two main groups, melanoma and nonmelanoma skin cancers. Conventional therapies for skin cancer have numerous systemic side effects and a high recurrence rate. Topical treatment is an alternative approach, but drug permeability remains a challenge. Therefore, nanocarriers appear as important nanotechnology tools that reduces both the side effects and improves clinical outcomes. This is why they are attracting growing interest. In this review, scientific articles on the use of nanocarriers for the topical treatment of skin cancer were collected. Despite the promising results of the presented nanocarriers and considering that some of them are already on the market, there is an urgent need for investment in the development of manufacturing methods, as well as of suitable toxicological and regulatory evaluations, since the conventional methods currently used to develop these nanocarriers-based products are more time-consuming and expensive than conventional products.
Collapse
Affiliation(s)
- Beatriz da Silva Gomes
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Francisco Veiga
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Filipa Mascarenhas-Melo
- University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300 - 307 Guarda, Portugal.
| |
Collapse
|
17
|
El-Samad LM, Bakr NR, Abouzid M, Shedid ES, Giesy JP, Khalifa SAM, El-Seedi HR, El Wakil A, Al Naggar Y. Nanoparticles-mediated entomotoxicology: lessons from biologica. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:305-324. [PMID: 38446268 DOI: 10.1007/s10646-024-02745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Nanotechnology has grown in importance in medicine, manufacturing, and consumer products. Nanoparticles (NPs) are also widely used in the field of insect pest management, where they show a variety of toxicological effects on insects. As a result, the primary goal of this review is to compile and evaluate available information on effects of NPs on insects, by use of a timely, bibliometric analysis. We also discussed the manufacturing capacity of NPs from insect tissues and the toxic effects of NPs on insects. To do so, we searched the Web of Science database for literature from 1995 to 2023 and ran bibliometric analyses with CiteSpace© and Bibliometrix©. The analyses covered 614 journals and identified 1763 relevant documents. We found that accumulation of NPs was one of the top trending topics. China, India, and USA had the most published papers. The most overall reported models of insects were those of Aedes aegypti (yellow fever mosquito), Culex quinquefasciatus (southern house mosquito), Bombyx mori (silk moth), and Anopheles stephensi (Asian malaria mosquito). The application and methods of fabrication of NPs using insect tissues, as well as the mechanism of toxicity of NPs on insects, were also reported. A uniform legal framework is required to allow nanotechnology to fully realize its potential while minimizing harm to living organisms and reducing the release of toxic metalloid nanoparticles into the environment.
Collapse
Affiliation(s)
- Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nahed R Bakr
- Department of Zoology, Faculty of Science, Damanhour University, Damanhur, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Eslam S Shedid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512, Egypt
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Shaden A M Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing, 210024, China
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt.
| | - Yahya Al Naggar
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
18
|
Farooq A, Khan I, Shehzad J, Hasan M, Mustafa G. Proteomic insights to decipher nanoparticle uptake, translocation, and intercellular mechanisms in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18313-18339. [PMID: 38347361 DOI: 10.1007/s11356-024-32121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Advent of proteomic techniques has made it possible to identify a broad spectrum of proteins in living systems. Studying the impact of nanoparticle (NP)-mediated plant protein responses is an emerging field. NPs are continuously being released into the environment and directly or indirectly affect plant's biochemistry. Exposure of plants to NPs, especially crops, poses a significant risk to the food chain, leading to changes in underlying metabolic processes. Once absorbed by plants, NPs interact with cellular proteins, thereby inducing changes in plant protein patterns. Based on the reactivity, properties, and translocation of nanoparticles, NPs can interfere with proteins involved in various cellular processes in plants such as energy regulation, redox metabolism, and cytotoxicity. Such interactions of NPs at the subcellular level enhance ROS scavenging activity, especially under stress conditions. Although higher concentrations of NPs induce ROS production and hinder oxidative mechanisms under stress conditions, NPs also mediate metabolic changes from fermentation to normal cellular processes. Although there has been lots of work conducted to understand the different effects of NPs on plants, the knowledge of proteomic responses of plants toward NPs is still very limited. This review has focused on the multi-omic analysis of NP interaction mechanisms with crop plants mainly centering on the proteomic perspective in response to both stress and non-stressed conditions. Furthermore, NP-specific interaction mechanisms with the biological pathways are discussed in detail.
Collapse
Affiliation(s)
- Atikah Farooq
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Junaid Shehzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, China.
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
20
|
Thirumurugan S, Dash P, Lin YC, Sakthivel R, Sun YS, Lin CP, Wang AN, Liu X, Dhawan U, Tung CW, Chung RJ. Synergistic effect of photothermal and magnetic hyperthermia for in situ activation of Fenton reaction in tumor microenvironment for chemodynamic therapy. BIOMATERIALS ADVANCES 2024; 157:213724. [PMID: 38134729 DOI: 10.1016/j.bioadv.2023.213724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Traditional cancer treatments are ineffective and cause severe adverse effects. Thus, the development of chemodynamic therapy (CDT) has the potential for in situ catalysis of endogenous molecules into highly toxic species, which would then effectively destroy cancer cells. However, the shortage of high-performance nanomaterials hinders the broad clinical application of this approach. In present study, an effective therapeutic platform was developed using a simple hydrothermal method for the in-situ activation of the Fenton reaction within the tumor microenvironment (TME) to generate substantial quantities of •OH and ultimately destroy cancer cells, which could be further synergistically increased by photothermal therapy (PHT) and magnetic hyperthermia (MHT) aided by FeMoO4 nanorods (NRs). The produced FeMoO4 NRs were used as MHT/PHT and Fenton catalysts. The photothermal conversion efficiency of the FeMoO4 NRs was 31.75 %. In vitro and \ experiments demonstrated that the synergistic combination of MHT/PHT/CDT notably improved anticancer efficacy. This work reveals the significant efficacy of CDT aided by both photothermal and magnetic hyperthermia and offers a feasible strategy for the use of iron-based nanoparticles in the field of biomedical applications.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Ying-Sui Sun
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | | | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen 518060, China; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Ching-Wei Tung
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan.
| |
Collapse
|
21
|
Xu S, Zhang G, Zhang J, Liu W, Wang Y, Fu X. Advances in Brain Tumor Therapy Based on the Magnetic Nanoparticles. Int J Nanomedicine 2023; 18:7803-7823. [PMID: 38144513 PMCID: PMC10749175 DOI: 10.2147/ijn.s444319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023] Open
Abstract
Brain tumors, including primary gliomas and brain metastases, are one of the deadliest tumors because effective macromolecular antitumor drugs cannot easily penetrate the blood-brain barrier (BBB) and blood-brain tumor barrier (BTB). Magnetic nanoparticles (MNPs) are considered the most suitable nanocarriers for the delivery of brain tumor drugs because of their unique properties compared to other nanoparticles. Numerous preclinical and clinical studies have demonstrated the potential of these nanoparticles in magnetic targeting, nuclear magnetic resonance, magnetic thermal therapy, and ultrasonic hyperthermia. To further develop and optimize MNPs for the diagnosis and treatment of brain tumors, we attempt to outline recent advances in the use of MNPs to deliver drugs, with a particular focus on their efficacy in the delivery of anti-brain tumor drugs based on magnetic targeting and low-intensity focused ultrasound, magnetic resonance imaging for surgical real-time guidance, and magnetothermal and ultrasonic hyperthermia therapy. Furthermore, we summarize recent findings on the clinical application of MNPs and the research limitations that need to be addressed in clinical translation.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Guangxin Zhang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiaomei Zhang
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Wei Liu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yicun Wang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiying Fu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
22
|
Afifi MM, El-Gebaly RH, Abdelrahman IY, Rageh MM. Efficacy of iron-silver bimetallic nanoparticles to enhance radiotherapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3647-3657. [PMID: 37289284 PMCID: PMC10643307 DOI: 10.1007/s00210-023-02556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Radiotherapy (RT) is one of the primary cancer treatment methods. Radiosensitizers are used to enhance RT and protect healthy tissue. Heavy metals have been studied as radiosensitizers. Thus, iron oxide and iron oxide/silver nanoparticles have been the main subjects of this investigation. A simple honey-based synthesis of iron (IONPs) and iron-silver bimetallic nanoparticles (IO@AgNPs) were prepared followed by characterization with transmission electron microscope (TEM), absorption spectra, vibrating sample magnetometer (VSM), and X-ray diffraction (XRD). Additionally, Ehrlich carcinoma was induced in 30 adult BALB/c mice and divided into 6 groups. Mice of group G1 were not treated with nanoparticles or exposed to irradiation (control group), and group G2 and G3 were treated with IONPs and IO@AgNPs respectively. Mice of group G4 were exposed to a high dose of gamma radiation (HRD) (12 Gy). Groups G5 and G6 were treated with IONPs and IO@AgNPs followed by exposure to a low dose of gamma radiation (LRD) (6 Gy) respectively. The impact of NP on the treatment protocol was evaluated by checking tumor growth, DNA damage, and level of oxidative stress in addition to investigating tumor histopathology. Additional research on the toxicity of this protocol was also evaluated by looking at the liver's cytotoxicity. When compared to HRD therapy, combination therapy (bimetallic NPs and LRD) significantly increased DNA damage by about 75% while having a stronger efficacy in slowing Ehrlich tumor growth (at the end of treatment protocol) by about 45%. Regarding the biosafety concern, mice treated with combination therapy showed lower alanine aminotransferase (ALT) levels in their liver tissues by about half the value of HRD. IO@AgNPs enhanced the therapeutic effect of low-dose radiation and increased the efficacy of treating Ehrlich tumors with the least amount of harm to normal tissues as compared to high radiation dosage therapy.
Collapse
Affiliation(s)
- Marwa M Afifi
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Reem H El-Gebaly
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ibrahim Y Abdelrahman
- Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Monira M Rageh
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Wahab S, Salman A, Khan Z, Khan S, Krishnaraj C, Yun SI. Metallic Nanoparticles: A Promising Arsenal against Antimicrobial Resistance-Unraveling Mechanisms and Enhancing Medication Efficacy. Int J Mol Sci 2023; 24:14897. [PMID: 37834344 PMCID: PMC10573543 DOI: 10.3390/ijms241914897] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The misuse of antibiotics and antimycotics accelerates the emergence of antimicrobial resistance, prompting the need for novel strategies to combat this global issue. Metallic nanoparticles have emerged as effective tools for combating various resistant microbes. Numerous studies have highlighted their potential in addressing antibiotic-resistant fungi and bacterial strains. Understanding the mechanisms of action of these nanoparticles, including iron-oxide, gold, zinc oxide, and silver is a central focus of research within the life science community. Various hypotheses have been proposed regarding how nanoparticles exert their effects. Some suggest direct targeting of microbial cell membranes, while others emphasize the release of ions from nanoparticles. The most compelling proposed antimicrobial mechanism of nanoparticles involves oxidative damage caused by nanoparticles-generated reactive oxygen species. This review aims to consolidate knowledge, discuss the properties and mechanisms of action of metallic nanoparticles, and underscore their potential as alternatives to enhance the efficacy of existing medications against infections caused by antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Shahid Wahab
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Alishba Salman
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Zaryab Khan
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Sadia Khan
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
24
|
Qiao D, Zhang T, Tang M. Autophagy regulation by inorganic, organic, and organic/inorganic hybrid nanoparticles: Organelle damage, regulation factors, and potential pathways. J Biochem Mol Toxicol 2023; 37:e23429. [PMID: 37409715 DOI: 10.1002/jbt.23429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.
Collapse
Affiliation(s)
- Dong Qiao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Marino A, Battaglini M, Carmignani A, Pignatelli F, De Pasquale D, Tricinci O, Ciofani G. Magnetic self-assembly of 3D multicellular microscaffolds: A biomimetic brain tumor-on-a-chip for drug delivery and selectivity testing. APL Bioeng 2023; 7:036103. [PMID: 37521177 PMCID: PMC10375466 DOI: 10.1063/5.0155037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
In recent years, the need for highly predictive brain cancer models to test new anticancer compounds and experimental therapeutic approaches has significantly increased. Realistic in vitro brain tumor-on-a-chip platforms would allow a more accurate selection of valid candidate drugs and nanomedicines, therefore alleviating the economic and ethical issues of unsuccessful studies in vivo. Here, we present a multi-functional self-assembled brain tumor-on-a-chip model characterized by 3D glioma cultures interfaced both to nonmalignant brain cells of the peritumoral niche and to a 3D-real-scale blood-brain barrier (BBB) microfluidic system. This platform allowed us to screen multiple features, such as BBB crossing capabilities, apoptotic efficacy against GBM cells, and side effects on nonmalignant brain cells of a promising anticancer drug, nutlin-3a, which is fundamental for the treatment of brain cancer.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | | | - Francesca Pignatelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Omar Tricinci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
26
|
Bouchab H, Essadek S, El Kamouni S, Moustaid K, Essamadi A, Andreoletti P, Cherkaoui-Malki M, El Kebbaj R, Nasser B. Antioxidant Effects of Argan Oil and Olive Oil against Iron-Induced Oxidative Stress: In Vivo and In Vitro Approaches. Molecules 2023; 28:5924. [PMID: 37570894 PMCID: PMC10420636 DOI: 10.3390/molecules28155924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023] Open
Abstract
Recently, the study of the protective powers of medicinal plants has become the focus of several studies. Attention has been focused on the identification of new molecules with antioxidant and chelating properties to counter reactive oxygen species (ROS) involved as key elements in several pathologies. Considerable attention is given to argan oil (AO) and olive oil (OO) due to their particular composition and preventive properties. Our study aimed to determine the content of AO and OO on phenolic compounds, chlorophylls, and carotenoid pigments and their antioxidant potential by FRAP and DPPH tests. Thus, several metallic elements can induce oxidative stress, as a consequence of the formation of ROS. Iron is one of these metal ions, which participates in the generation of free radicals, especially OH from H2O2 via the Fenton reaction, initiating oxidative stress. To study the antioxidant potential of AO and OO, we evaluated their preventives effects against oxidative stress induced by ferrous sulfate (FeSO4) in the protozoan Tetrahymena pyriformis and mice. Then, we evaluated the activities of the enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GPx)) and metabolite markers (lipid peroxidation (MDA) and glutathione (GSH)) of the antioxidant balance. The results of the antioxidant compounds show that both oils contain phenolic compounds and pigments. Moreover, AO and OO exhibit antioxidant potential across FRAP and DPPH assays. On the other hand, the results in Tetrahymena pyriformis and mice show a variation in the level of iron-changed SOD and GPx activities and MDA and GSH levels. By contrast, treating Tetrahymena pyriformis and mice with argan and olive oils shows significant prevention in the SOD and GPx activities. These results reveal that the iron-changed ROS imbalance can be counteracted by AO and OO, which is probably related to their composition, especially their high content of polyphenols, sterols, and tocopherols, which is underlined by their antioxidant activities.
Collapse
Affiliation(s)
- Habiba Bouchab
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Soukaina Essadek
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Soufiane El Kamouni
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| | - Khadija Moustaid
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco;
| | - Abdelkhalid Essamadi
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| |
Collapse
|
27
|
Eigenfeld M, Wittmann L, Kerpes R, Schwaminger S, Becker T. Quantification methods of determining brewer's and pharmaceutical yeast cell viability: accuracy and impact of nanoparticles. Anal Bioanal Chem 2023; 415:3201-3213. [PMID: 37083758 PMCID: PMC10287788 DOI: 10.1007/s00216-023-04676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
For industrial processes, a fast, precise, and reliable method of determining the physiological state of yeast cells, especially viability, is essential. However, an increasing number of processes use magnetic nanoparticles (MNPs) for yeast cell manipulation, but their impact on yeast cell viability and the assay itself is unclear. This study tested the viability of Saccharomyces pastorianus ssp. carlsbergensis and Pichia pastoris by comparing traditional colourimetric, high-throughput, and growth assays with membrane fluidity. Results showed that methylene blue staining is only reliable for S. pastorianus cells with good viability, being erroneous in low viability (R2 = 0.945; [Formula: see text] = 5.78%). In comparison, the fluorescence microscopy-based assay of S. pastorianus demonstrated a coefficient of determination of R2 = 0.991 at [Formula: see text] ([Formula: see text] = 2.50%) and flow cytometric viability determination using carboxyfluorescein diacetate (CFDA), enabling high-throughput analysis of representative cell numbers; R2 = 0.972 ([Formula: see text]; [Formula: see text] = 3.89%). Membrane fluidity resulted in a non-linear relationship with the viability of the yeast cells ([Formula: see text]). We also determined similar results using P. pastoris yeast. In addition, we demonstrated that MNPs affected methylene blue staining by overestimating viability. The random forest model has been shown to be a precise method for classifying nanoparticles and yeast cells and viability differentiation in flow cytometry by using CFDA. Moreover, CFDA and membrane fluidity revealed precise results for both yeasts, also in the presence of nanoparticles, enabling fast and reliable determination of viability in many experiments using MNPs for yeast cell manipulation or separation.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Leonie Wittmann
- Chair of Bioseparation Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstr. 15, 85748 Garching, Germany
| | - Roland Kerpes
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Sebastian Schwaminger
- Chair of Bioseparation Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstr. 15, 85748 Garching, Germany
- Division of Medicinal Chemistry, Medical University of Graz, Otto-Loewi Research Center, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Thomas Becker
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| |
Collapse
|
28
|
Kaur R, Kaur K, Alyami MH, Lang DK, Saini B, Bayan MF, Chandrasekaran B. Combating Microbial Infections Using Metal-Based Nanoparticles as Potential Therapeutic Alternatives. Antibiotics (Basel) 2023; 12:antibiotics12050909. [PMID: 37237812 DOI: 10.3390/antibiotics12050909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The nature of microorganisms and the efficiency of antimicrobials have witnessed a huge co-dependent change in their dynamics over the last few decades. On the other side, metals and metallic compounds have gained popularity owing to their effectiveness against various microbial strains. A structured search of both research and review papers was conducted via different electronic databases, such as PubMed, Bentham, Springer, and Science Direct, among others, for the present review. Along with these, marketed products, patents, and Clinicaltrials.gov were also referred to for our review. Different microbes such as bacteria, fungi, etc., and their diverse species and strains have been reviewed and found to be sensitive to metal-carrying formulations. The products are observed to restrict growth, multiplication, and biofilm formation effectively and adequately. Silver has an apt use in this area of treatment and recovery, and other metals like copper, gold, iron, and gallium have also been observed to generate antimicrobial activity. The present review identified membrane disruption, oxidative stress, and interaction with proteins and enzymes to be the primary microbicidal processes. Elaborating the action, nanoparticles and nanosystems are shown to work in our favor in well excelled and rational ways.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Kirandeep Kaur
- Department of Clinical Safety and Pharmacovigilance, Soterius India Private Limited, Nehru Place, Delhi 110019, India
| | - Mohammad H Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | | | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Mohammad F Bayan
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| | | |
Collapse
|
29
|
Radoń A, Włodarczyk A, Sieroń Ł, Rost-Roszkowska M, Chajec Ł, Łukowiec D, Ciuraszkiewicz A, Gębara P, Wacławek S, Kolano-Burian A. Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles. Sci Rep 2023; 13:7860. [PMID: 37188707 DOI: 10.1038/s41598-023-34738-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023] Open
Abstract
Magnetite nanoparticles (Fe3O4 NPs) are widely tested in various biomedical applications, including magnetically induced hyperthermia. In this study, the influence of the modifiers, i.e., urotropine, polyethylene glycol, and NH4HCO3, on the size, morphology, magnetically induced hyperthermia effect, and biocompatibility were tested for Fe3O4 NPs synthesized by polyol method. The nanoparticles were characterized by a spherical shape and similar size of around 10 nm. At the same time, their surface is functionalized by triethylene glycol or polyethylene glycol, depending on the modifiers. The Fe3O4 NPs synthesized in the presence of urotropine had the highest colloidal stability related to the high positive value of zeta potential (26.03 ± 0.55 mV) but were characterized by the lowest specific absorption rate (SAR) and intrinsic loss power (ILP). The highest potential in the hyperthermia applications have NPs synthesized using NH4HCO3, for which SAR and ILP were equal to 69.6 ± 5.2 W/g and 0.613 ± 0.051 nHm2/kg, respectively. Their application possibility was confirmed for a wide range of magnetic fields and by cytotoxicity tests. The absence of differences in toxicity to dermal fibroblasts between all studied NPs was confirmed. Additionally, no significant changes in the ultrastructure of fibroblast cells were observed apart from the gradual increase in the number of autophagous structures.
Collapse
Affiliation(s)
- Adrian Radoń
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland.
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland.
| | - Agnieszka Włodarczyk
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Łukasz Sieroń
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Łukasz Chajec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland
| | - Agnieszka Ciuraszkiewicz
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| | - Piotr Gębara
- Department of Physics, Częstochowa University of Technology, Armii Krajowej 19, 42-200, Czestochowa, Poland
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Aleksandra Kolano-Burian
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| |
Collapse
|
30
|
Cifuentes J, Cifuentes-Almanza S, Ruiz Puentes P, Quezada V, González Barrios AF, Calderón-Peláez MA, Velandia-Romero ML, Rafat M, Muñoz-Camargo C, Albarracín SL, Cruz JC. Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of Parkinson's disease. Front Bioeng Biotechnol 2023; 11:1181842. [PMID: 37214285 PMCID: PMC10196638 DOI: 10.3389/fbioe.2023.1181842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Therefore, development of novel technologies and strategies to treat PD is a global health priority. Current treatments include administration of Levodopa, monoamine oxidase inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic drugs. However, the effective release of these molecules, due to the limited bioavailability, is a major challenge for the treatment of PD. As a strategy to solve this challenge, in this study we developed a novel multifunctional magnetic and redox-stimuli responsive drug delivery system, based on the magnetite nanoparticles functionalized with the high-performance translocating protein OmpA and encapsulated into soy lecithin liposomes. The obtained multifunctional magnetoliposomes (MLPs) were tested in neuroblastoma, glioblastoma, primary human and rat astrocytes, blood brain barrier rat endothelial cells, primary mouse microvascular endothelial cells, and in a PD-induced cellular model. MLPs demonstrated excellent performance in biocompatibility assays, including hemocompatibility (hemolysis percentages below 1%), platelet aggregation, cytocompatibility (cell viability above 80% in all tested cell lines), mitochondrial membrane potential (non-observed alterations) and intracellular ROS production (negligible impact compared to controls). Additionally, the nanovehicles showed acceptable cell internalization (covered area close to 100% at 30 min and 4 h) and endosomal escape abilities (significant decrease in lysosomal colocalization after 4 h of exposure). Moreover, molecular dynamics simulations were employed to better understand the underlying translocating mechanism of the OmpA protein, showing key findings regarding specific interactions with phospholipids. Overall, the versatility and the notable in vitro performance of this novel nanovehicle make it a suitable and promising drug delivery technology for the potential treatment of PD.
Collapse
Affiliation(s)
- Javier Cifuentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | | | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
31
|
Bhattu M, Singh J. Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. CHEMOSPHERE 2023; 321:138072. [PMID: 36773680 DOI: 10.1016/j.chemosphere.2023.138072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Emerging organic pollutants (EOPs) are a category of pollutants that are relatively new to the environment and recently garnered a lot of attention. The majority of EOPs includes endocrine-disrupting chemicals (EDCs), antibiotic resistance genes (ARGs), pesticides, dyes and pharmaceutical and personal care products (PPCPs). Exposure to contaminated water has been linked to an increase in incidences of malnutrition, intrauterine growth retardation, respiratory illnesses, liver malfunctions, eye and skin diseases, and fatalities. Consequently, there is a critical need for wastewater remediation technologies which are effective, reliable, and economical. Conventional wastewater treatment methods have several shortcomings that can be addressed with the help of nanotechnology. Unique characteristics of nanomaterials (NMs) make them intriguing and efficient alternative in wastewater treatment strategies. This review emphasis on the occurrence of divers emerging organic pollutants (EOPs) in water and their effective elimination via different NMs based methods with in-depth mechanisms. Furthermore, it also delves the toxicity assessment of NMs and critical challenges, which are crucial steps for practical implementations.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
32
|
Chircov C, Mincă MA, Serban AB, Bîrcă AC, Dolete G, Ene VL, Andronescu E, Holban AM. Zinc/Cerium-Substituted Magnetite Nanoparticles for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24076249. [PMID: 37047223 PMCID: PMC10093860 DOI: 10.3390/ijms24076249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Numerous studies have reported the possibility of enhancing the properties of materials by incorporating foreign elements within their crystal lattice. In this context, while magnetite has widely known properties that have been used for various biomedical applications, the introduction of other metals within its structure could prospectively enhance its effectiveness. Specifically, zinc and cerium have demonstrated their biomedical potential through significant antioxidant, anticancer, and antimicrobial features. Therefore, the aim of the present study was to develop a series of zinc and/or cerium-substituted magnetite nanoparticles that could further be used in the medical sector. The nanostructures were synthesized through the co-precipitation method and their morpho-structural characteristics were evaluated through X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) analyses. Furthermore, the nanostructures were subjected to a ROS-Glo H2O2 assay for assessing their antioxidant potential, MTT assay for determining their anticancer effects, and antimicrobial testing against S. aureus, P. aeruginosa, and C. albicans strains. Results have proven promising for future biomedical applications, as the nanostructures inhibit oxidative stress in normal cells, with between two- and three-fold reduction and cell proliferation in tumor cells; a two-fold decrease in cell viability and microbial growth; an inhibition zone diameter of 4–6 mm and minimum inhibitory concentration (MIC) of 1–2 mg/mL.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Maria-Andreea Mincă
- Faculty of Medical Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andreea Bianca Serban
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Horia Hulubei National R&D Institute for Physics and Nuclear Engineering, Reactorului Street No. 30, 077125 Magurele, Romania
- Doctoral School in Engineering and Applications of Lasers and Accelerators, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Vladimir-Lucian Ene
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Correspondence:
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Spl. Independentei, 050045 Bucharest, Romania
| | - Alina-Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, 060101 Bucharest, Romania
| |
Collapse
|
33
|
Boztepe T, Scioli-Montoto S, Gambaro RC, Ruiz ME, Cabrera S, Alemán J, Islan GA, Castro GR, León IE. Design, Synthesis, Characterization, and Evaluation of the Anti-HT-29 Colorectal Cell Line Activity of Novel 8-Oxyquinolinate-Platinum(II)-Loaded Nanostructured Lipid Carriers Targeted with Riboflavin. Pharmaceutics 2023; 15:pharmaceutics15031021. [PMID: 36986881 PMCID: PMC10056074 DOI: 10.3390/pharmaceutics15031021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Colorectal cancer is occasionally called colon or rectal cancer, depending on where cancer begins to form, and is the second leading cause of cancer death among both men and women. The platinum-based [PtCl(8-O-quinolinate)(dmso)] (8-QO-Pt) compound has demonstrated encouraging anticancer activity. Three different systems of 8-QO-Pt-encapsulated nanostructured lipid carriers (NLCs) with riboflavin (RFV) were investigated. NLCs of myristyl myristate were synthesized by ultrasonication in the presence of RFV. RFV-decorated nanoparticles displayed a spherical shape and a narrow size dispersion in the range of 144-175 nm mean particle diameter. The 8-QO-Pt-loaded formulations of NLC/RFV with more than 70% encapsulation efficiency showed sustained in vitro release for 24 h. Cytotoxicity, cell uptake, and apoptosis were evaluated in the HT-29 human colorectal adenocarcinoma cell line. The results revealed that 8-QO-Pt-loaded formulations of NLC/RFV showed higher cytotoxicity than the free 8-QO-Pt compound at 5.0 µM. All three systems exhibited different levels of cellular internalization. Moreover, the hemotoxicity assay showed the safety profile of the formulations (less than 3.7%). Taken together, RFV-targeted NLC systems for drug delivery have been investigated for the first time in our study and the results are promising for the future of chemotherapy in colon cancer treatment.
Collapse
Affiliation(s)
- Tugce Boztepe
- Laboratorio de Nanobiomateriales, CINDEFI-Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, La Plata B1900, Argentina
| | - Sebastián Scioli-Montoto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata B1904, Argentina
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Rocio C Gambaro
- Instituto de Genética Veterinaria (IGEVET, UNLP-CONICET La Plata), Facultad de Ciencias Veterinarias Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - María Esperanza Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata B1904, Argentina
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Silvia Cabrera
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Germán A Islan
- Laboratorio de Nanobiomateriales, CINDEFI-Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, La Plata B1900, Argentina
| | - Guillermo R Castro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Rosario S2000, Argentina
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
| |
Collapse
|
34
|
Chakraborty R, Mukhopadhyay A, Paul S, Sarkar S, Mukhopadhyay R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160859. [PMID: 36526196 DOI: 10.1016/j.scitotenv.2022.160859] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Fertilizers are indispensable agri-inputs to accomplish the growing food demand. The injudicious use of conventional fertilizer products has resulted in several environmental and human health complications. To mitigate these problems, nanocomposite-based fertilizers are viable alternative options. Nanocomposites, a novel class of materials having improved mechanical strength, barrier properties, and mechanical and thermal stability, are suitable candidates to develop eco-friendly slow/controlled release fertilizer formulations. In this review, the use of different nanocomposite materials developed for nutrient management in agriculture has been summarized with a major focus on their synthesis and characterization techniques, and application aspects in plant nutrition, along with addressing constraints and future opportunities of this domain. Further detailed studies on nanocomposite-based fertilizers are required to evaluate the cost-effective synthesis methods, in-depth field efficacy, environmental fate, stability, etc. before commercialization in the field of agriculture. The present review is expected to help the policy makers and all the stakeholders in the large-scale commercialization and application of nanocomposite-based smart fertilizer products with greater societal acceptance and environmental sustainability in near future.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Arkadeb Mukhopadhyay
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhadip Paul
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhasis Sarkar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
35
|
Bhattarai MK, Ashie MD, Dugu S, Subedi K, Bastakoti BP, Morell G, Katiyar RS. Block Copolymer-Assisted Synthesis of Iron Oxide Nanoparticles for Effective Removal of Congo Red. Molecules 2023; 28:molecules28041914. [PMID: 36838902 PMCID: PMC9964741 DOI: 10.3390/molecules28041914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) were synthesized via a block copolymer-assisted hydrothermal method and the phase purity and the crystal structure were investigated by X-ray diffraction. The Rietveld analysis of X-ray diffractometer spectra shows the hexagonal phase symmetry of α-Fe2O3. Further, the vibrational study suggests Raman active modes: 2A1g + 5Eg associated with α-Fe2O3, which corroborates the Rietveld analysis and orbital analysis of 2PFe. The superparamagnetic behavior is confirmed by magnetic measurements performed by the physical properties measurement system. The systematic study of the Congo red (CR) interaction with IONPs using a UV-visible spectrophotometer and a liquid chromatography-tandem mass spectrometry system equipped with a triple quadrupole mass analyzer and an electrospray ionization interface shows effective adsorption. In visible light, the Fe2O3 nanoparticles get easily excited and generate electrons and holes. The photogenerated electrons reduce the Fe3+ ions to Fe2+ ions. The Fe2+/H2O2 oxidizes CR by the Fenton mechanism. The strong adsorption ability of prepared nanoparticles towards dyes attributes the potential candidates for wastewater treatment and other catalytic applications.
Collapse
Affiliation(s)
- Mohan K. Bhattarai
- Department of Physics, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA
- Correspondence: (M.K.B.); (B.P.B.)
| | - Moses D. Ashie
- Department of Chemistry, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - Sita Dugu
- Department of Physics, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA
| | - Kiran Subedi
- Analytical Services Laboratory, College of Agriculture and Environmental Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - Bishnu P. Bastakoti
- Department of Chemistry, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
- Correspondence: (M.K.B.); (B.P.B.)
| | - Gerardo Morell
- Department of Physics, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA
| | - Ram S. Katiyar
- Department of Physics, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA
| |
Collapse
|
36
|
Zia-Ur-Rehman M, Anayatullah S, Irfan E, Hussain SM, Rizwan M, Sohail MI, Jafir M, Ahmad T, Usman M, Alharby HF. Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in plants under salt stress: A review. CHEMOSPHERE 2023; 314:137649. [PMID: 36587917 DOI: 10.1016/j.chemosphere.2022.137649] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The global biomass production from agricultural farmlands is facing severe constraints from abiotic stresses like soil salinization. Salinity-mediated stress triggered the overproduction of reactive oxygen species (ROS) that may result in oxidative burst in cell organelles and cause cell death in plants. ROS production is regulated by the redox homeostasis that helps in the readjustment of the cellular redox and energy state in plants. All these cellular redox related functions may play a decisive role in adaptation and acclimation to salinity stress in plants. The use of nanotechnology like nanoparticles (NPs) in plant physiology has become the new area of interest as they have potential to trigger the various enzymatic and non-enzymatic antioxidant capabilities of plants under varying salinity levels. Moreover, NPs application under salinity is also being favored due to their unique characteristics compared to traditional phytohormones, amino acids, nutrients, and organic osmolytes. Therefore, this article emphasized the core response of plants to acclimate the challenges of salt stress through auxiliary functions of ROS, antioxidant defense system and redox homeostasis. Furthermore, the role of different types of NPs mediated changes in biochemical, proteomic, and genetic expressions of plants under salt stress have been discussed. This article also discussed the potential limitations of NPs adoption in crop production especially under environmental stresses.
Collapse
Affiliation(s)
- Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan.
| | - Sidra Anayatullah
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Effa Irfan
- Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Irfan Sohail
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan; Department of Environmental Sciences, Faculty of Life Sciences, University of Okara, 56300, Pakistan
| | - Muhammad Jafir
- Department of Entomology, University of Agriculture Faisalabad Pakistan, 38040, Pakistan
| | - Tanveer Ahmad
- Department of Horticulture, MNS University of Agriculture Multan, 60000, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
37
|
Alijagic A, Scherbak N, Kotlyar O, Karlsson P, Wang X, Odnevall I, Benada O, Amiryousefi A, Andersson L, Persson A, Felth J, Andersson H, Larsson M, Hedbrant A, Salihovic S, Hyötyläinen T, Repsilber D, Särndahl E, Engwall M. A Novel Nanosafety Approach Using Cell Painting, Metabolomics, and Lipidomics Captures the Cellular and Molecular Phenotypes Induced by the Unintentionally Formed Metal-Based (Nano)Particles. Cells 2023; 12:281. [PMID: 36672217 PMCID: PMC9856453 DOI: 10.3390/cells12020281] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Additive manufacturing (AM) or industrial 3D printing uses cutting-edge technologies and materials to produce a variety of complex products. However, the effects of the unintentionally emitted AM (nano)particles (AMPs) on human cells following inhalation, require further investigations. The physicochemical characterization of the AMPs, extracted from the filter of a Laser Powder Bed Fusion (L-PBF) 3D printer of iron-based materials, disclosed their complexity, in terms of size, shape, and chemistry. Cell Painting, a high-content screening (HCS) assay, was used to detect the subtle morphological changes elicited by the AMPs at the single cell resolution. The profiling of the cell morphological phenotypes, disclosed prominent concentration-dependent effects on the cytoskeleton, mitochondria, and the membranous structures of the cell. Furthermore, lipidomics confirmed that the AMPs induced the extensive membrane remodeling in the lung epithelial and macrophage co-culture cell model. To further elucidate the biological mechanisms of action, the targeted metabolomics unveiled several inflammation-related metabolites regulating the cell response to the AMP exposure. Overall, the AMP exposure led to the internalization, oxidative stress, cytoskeleton disruption, mitochondrial activation, membrane remodeling, and metabolic reprogramming of the lung epithelial cells and macrophages. We propose the approach of integrating Cell Painting with metabolomics and lipidomics, as an advanced nanosafety methodology, increasing the ability to capture the cellular and molecular phenotypes and the relevant biological mechanisms to the (nano)particle exposure.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, SE-701 82 Örebro, Sweden
| | - Xuying Wang
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Inger Odnevall
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
- AIMES—Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, 140 00 Prague, Czech Republic
| | - Ali Amiryousefi
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Lena Andersson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | | | | | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Samira Salihovic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
38
|
Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010463. [PMID: 36615655 PMCID: PMC9823860 DOI: 10.3390/molecules28010463] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.
Collapse
|
39
|
Kirthi AV, Kumar G, Pant G, Pant M, Hossain K, Ahmad A, Alshammari MB. Toxicity of Nanoscaled Zero-Valent Iron Particles on Tilapia, Oreochromis mossambicus. ACS OMEGA 2022; 7:47869-47879. [PMID: 36591132 PMCID: PMC9798762 DOI: 10.1021/acsomega.2c05696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
This research effort aims to evaluate the hazardous potential of the redox state (OH-) of zero-valent iron nanoparticles (nZVI) and its histopathological and oxidative stress toward Mozambique tilapia, Oreochromis mossambicus. X-ray powder diffraction (XRD) validated the nZVI nanoparticles' chemical composition, while transmission electron microscopy (TEM) revealed that their physical form is round and oval. The exposure to 10 g/mL of nZVI induced the activation of the cellular superoxide dismutase (SOD) activity. Dose-dependent testing of O. mossambicus had a reduction in SOD and an increase in malondialdehyde (MDA) levels, suggesting that nZVI caused oxidative damage. At a concentration of 100 g/mL, the catalase (CAT) and peroxidase (POD) activities of diverse tissues exhibited a gradual decrease after 2 days of exposure and a fast increase until day 6. The scavenging of reactive oxygen species (ROS) in the epidermis, liver, and gills of O. mossambicus deteriorated and accumulated gradually. MDA levels in the skin, gill, and liver tissues were substantially higher after 8 days of exposure to 100 and 200 g/mL nZVI compared to those of the control group and those exposed to 10 and 50 g/mL nZVI for 2 days. Extreme histological and morphological abnormalities were seen in the skin, gill, and liver tissues of experimental animals, demonstrating that the damage resulted from direct contact with nZVI in water. A one-way ANOVA followed by Dunnett's post-test was performed to investigate significant differences.
Collapse
Affiliation(s)
- Arivarasan Vishnu Kirthi
- Department
of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Kumar
- Department
of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Pant
- Department
of Life Sciences, Graphic Era (Deemed to
be University), Dehradun 248002, Uttarakhand, India
| | - Manu Pant
- Department
of Life Sciences, Graphic Era (Deemed to
be University), Dehradun 248002, Uttarakhand, India
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College, University of Calcutta, 92, Shyama Prasad Mukherjee Rd, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
40
|
Macko M, Antoš J, Božek F, Konečný J, Huzlík J, Hegrová J, Kuřitka I. Development of New Health Risk Assessment of Nanoparticles: EPA Health Risk Assessment Revised. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:20. [PMID: 36615930 PMCID: PMC9823543 DOI: 10.3390/nano13010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The concentration of nanoparticles in the ambient air can lead to induced toxicities; however, it appears that nanoparticles’ unique properties are completely omitted when assessing health risks. This paper aims to enhance the EPA health risk assessment by incorporating two new variables that consider the size of nanoparticles: the toxicity multiplier and the size multiplier. The former considers the qualitative aspect of the size of particles within a concentration, whilst the latter takes into account the effects associated with the number of particles of the specific i-th size distribution interval. To observe the impact of the new variables, a case study was performed. The studied element was cadmium, which was measured using ICP-MS to discover concentrations of size fractions, ranging from <15.1 to <9830 nm. Next, the cadmium concentration is assessed using both the current state-of-the-art method and the proposed method with adjustments. Based on the new approach, the final risk was 1.1 × 10−5, which was almost 24 times higher compared with the current method. The contribution of nanoparticles to the risk value grew from barely 6% to an alarming 88%. Therefore, the enhanced method can lead to more realistic results when assessing the health risks of nanoparticles.
Collapse
Affiliation(s)
- Michal Macko
- Centre of Polymer Systems, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Jan Antoš
- Centre of Polymer Systems, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - František Božek
- Faculty of Logistics and Crisis Management, Tomas Bata University in Zlin, Studentské nám. 1532, 686 01 Uherské Hradiště, Czech Republic
| | - Jiří Konečný
- Faculty of Logistics and Crisis Management, Tomas Bata University in Zlin, Studentské nám. 1532, 686 01 Uherské Hradiště, Czech Republic
| | - Jiří Huzlík
- Transport Research Centre, Division of Sustainable Transport and Transport Structures Diagnostics, Líšeňská 33a, 619 00 Brno, Czech Republic
| | - Jitka Hegrová
- Transport Research Centre, Division of Sustainable Transport and Transport Structures Diagnostics, Líšeňská 33a, 619 00 Brno, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| |
Collapse
|
41
|
Sun X, Tan A, Boyd BJ. Magnetically‐activated lipid nanocarriers in biomedical applications: A review of current status and perspective. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1863. [PMID: 36428234 DOI: 10.1002/wnan.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/28/2022]
Abstract
Magnetically-activated lipid nanocarriers have become a research hotspot in the field of biomedicine. Liposomes and other lipid-based carriers possess good biocompatibility as well as the ability to carrying therapeutic cargo with a range of physicochemical properties. Previous studies have demonstrated that magnetic materials have potential wide applications in clinical diagnosis and therapy, such as in MRI as contrast agents and in hyperthermic obliteration of cancer tissues. More recently magneto-thermal activation of lipid carriers to stimulate drug release has extended the range of further therapeutic benefits. Here, an overview of the current development of magnetically-activated lipid nanocarriers in the field of biomedicine is provided, including the methods of fabrication of the nanocarriers and their in vitro and in vivo performance. A discussion of the current barriers to translation of these materials as medicines is provided in the context of clinical and regulatory complexities of using magnetically responsive materials in therapeutic applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Xiaohan Sun
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
| | - Angel Tan
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
| | - Ben J. Boyd
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- Department of Pharmacy University of Copenhagen Copenhagen Denmark
| |
Collapse
|
42
|
Faramarzi H, Department of Community Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Iran, Chaleshtori S, Zolghadri S, Beheshtroo M, Faramarzi A, Shafiee SM, Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran;, Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran;, Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran;, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran;, Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran;, Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz Iran;. Ferric oxide nanoparticles administration suppresses isoniazid induced oxidative stress in the rat brain tissue. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Naghdi M, Ghovvati M, Rabiee N, Ahmadi S, Abbariki N, Sojdeh S, Ojaghi A, Bagherzadeh M, Akhavan O, Sharifi E, Rabiee M, Saeb MR, Bolouri K, Webster TJ, Zare EN, Zarrabi A. Magnetic nanocomposites for biomedical applications. Adv Colloid Interface Sci 2022; 308:102771. [PMID: 36113311 DOI: 10.1016/j.cis.2022.102771] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mina Naghdi
- Department of Chemistry, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Keivan Bolouri
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
44
|
Ucar A, Parlak V, Ozgeris FB, Yeltekin AC, Arslan ME, Alak G, Turkez H, Kocaman EM, Atamanalp M. Magnetic nanoparticles-induced neurotoxicity and oxidative stress in brain of rainbow trout: Mitigation by ulexite through modulation of antioxidant, anti-inflammatory, and antiapoptotic activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155718. [PMID: 35525350 DOI: 10.1016/j.scitotenv.2022.155718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The prevalent exposition of metallic nanoparticles (MNPs) to the aquatic medium and their negative influence on human life is one of the major concerns global. Stress mechanization, as a non-specific and pervasive response, involves all physiological systems, particularly the closely interconnected neuroendocrine and immune systems. In this study, which was designed to obtain more data on the biological effects of ulexit, which prevents oxidative DNA damage by protecting against toxicity damage and offers new antioxidant roles. The concomitant use of ulexite (UX, as 18.75 mg/l) as a natural therapeutic agent against exposure to magnetic nanoparticles (Fe3O4-MNPs/0.013 ml/l) on Oncorhynchus mykiss was investigated for 96 h. The brain tissues were taken at the 48th and 96th hours of the trial period, the effects on neurotoxic, pro-inflammatory cytokine genes, antioxidant immune system, DNA and apoptosis mechanisms were analyzed. In the present study, it was determined that AChE activity and BDNF level in the brain tissue decreased over time in the Fe3O4-MNPs group compared to the control, and UX tried to depress this inhibition. While inhibition was determined in antioxidant system biomarkers (SOD, CAT, GPx, and GSH values), an induction was observed in lipid peroxidation indicators (MDA and MPO values) in Fe3O4-MNPs applied group. The same group data showed that TNF-α, IL-6, 8-OHdG and caspase-3 levels were increased, but Nrf-2 levels were decreased. The alterations in all biomarkers were found to be significant at the p < 0.05 level. In general, it was determined that Fe3O4-MNPs caused stress in O. mykiss and UX exhibited a positive effect on this stress management.
Collapse
Affiliation(s)
- Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Fatma Betul Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | | | - Mehmet Enes Arslan
- Erzurum Technical University, Faculty of Science, Department of Molecular Biology and Genetics, Erzurum, Turkey
| | - Gonca Alak
- Department of Sea Food Processing, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
45
|
Yu J, Wang B, Lu Q, Xiao L, Ma X, Feng Y, Qian Y. Fabrication of Fe3O4 nanoparticles by using cathode glow discharge electrolysis plasma and its electrochemical properties. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Vatan Ö. Evaluation of In Vitro Cytotoxic, Genotoxic, Apoptotic, and Cell Cycle Arrest Potential of Iron-Nickel Alloy Nanoparticles. TOXICS 2022; 10:492. [PMID: 36136457 PMCID: PMC9506547 DOI: 10.3390/toxics10090492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
The use of iron-nickel alloy nanoparticles (Fe-Ni ANPs) is increasing daily in various fields. People are increasingly exposed to these nanoparticles for occupational and environmental reasons. Our study determined some of the effects of Fe-Ni ANP exposure and impacts on human health at the cellular level. The cytotoxic and genotoxic potentials of Fe-Ni ANPs were investigated by XTT, clonogenic, comet, and GammaH2AX analyses using Beas-2B cells. Annexin V, multicaspase, and cell cycle arrest methods were used to understand the apoptotic mechanism of action. The intracellular ROS method was used to determine the primary mechanism that leads to cytotoxic and genotoxic activity. The Fe-Ni ANPs showed cytotoxic activity with the XTT and clonogenic methods: they had genotoxic potential, as demonstrated via genotoxicity methods. It was determined that the cytotoxic effect was realized by the caspase-dependent apoptotic pathway, and the cells were stopped at the G0/G1 stage by Fe-Ni ANPs. Increased intracellular ROS due to Fe-Ni ANPs led to cytotoxic, genotoxic, and apoptotic activity. Potential risks to human health due to Fe-Ni ANPs were then demonstrated at the cellular level.
Collapse
Affiliation(s)
- Özgür Vatan
- Department of Biology, Faculty of Arts and Science, Görükle Campus, Bursa Uludağ University, 16059 Nilüfer, Bursa, Turkey
| |
Collapse
|
47
|
Alves Feitosa K, de Oliveira Correia R, Maragno Fattori AC, Albuquerque YR, Brassolatti P, Flores Luna G, de Almeida Rodolpho JM, T Nogueira C, Cancino Bernardi J, Speglich C, de Freitas Anibal F. Toxicological effects of the mixed iron oxide nanoparticle (Fe 3O 4 NP) on murine fibroblasts LA-9. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:649-670. [PMID: 35469539 DOI: 10.1080/15287394.2022.2068711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increase in large-scale production of magnetic nanoparticles (NP) associated with the incomplete comprehensive knowledge regarding the potential risks of their use on environmental and human health makes it necessary to study the biological effects of these particles on organisms at the cellular level. The aim of this study to examine the cellular effects on fibroblast lineage LA-9 after exposure to mixed iron oxide NP (Fe3O4 NP). The following analyses were performed: field emission gun-scanning electron microscopy (SEM-FEG), dynamic light scattering (DLS), zeta potential, ultraviolet/visible region spectroscopy (UV/VIS), and attenuated total reactance-Fourier transform infrared (ATR-FTIR) spectroscopy analyses for characterization of the NP. The assays included cell viability, morphology, clonogenic potential, oxidative stress as measurement of reactive oxygen species (ROS) and nitric oxide (NO) levels, cytokines quantification interleukin 6 (IL-6) and tumor necrosis factor (TNF), NP uptake, and cell death. The size of Fe3O4 NP was 26.3 nm when evaluated in water through DLS. Fe3O4 NP did not reduce fibroblast cell viability until the highest concentration tested (250 µg/ml), which showed a decrease in clonogenic potential as well as small morphological changes after exposure for 48 and 72 hr. The NP concentration of 250 µg/ml induced enhanced ROS and NO production after 24 hr treatment. The uptake assay exhibited time-dependent Fe3O4 NP internalization at all concentrations tested with no significant cell death. Hence, exposure of fibroblasts to Fe3O4 NP-induced oxidative stress but not reduced cell viability or death. However, the decrease in the clonogenic potential at the highest concentration demonstrates cytotoxic effects attributed to Fe3O4 NP which occurred on the 7th day after exposure.
Collapse
Affiliation(s)
- Karina Alves Feitosa
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Ricardo de Oliveira Correia
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Ana Carolina Maragno Fattori
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Yulli Roxenne Albuquerque
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Patricia Brassolatti
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Genoveva Flores Luna
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Joice Margareth de Almeida Rodolpho
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | | | - Juliana Cancino Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Carlos Speglich
- Leopoldo Américo Miguez de Mello Research Center CENPES/Petrobras, Rio de Janeiro, Brazil
| | - Fernanda de Freitas Anibal
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
48
|
Repar N, Jovičić EJ, Kump A, Birarda G, Vaccari L, Erman A, Kralj S, Nemec S, Petan T, Drobne D. Oleic Acid Protects Endothelial Cells from Silica-Coated Superparamagnetic Iron Oxide Nanoparticles (SPIONs)-Induced Oxidative Stress and Cell Death. Int J Mol Sci 2022; 23:ijms23136972. [PMID: 35806014 PMCID: PMC9267005 DOI: 10.3390/ijms23136972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have great potential for use in medicine, but they may cause side effects due to oxidative stress. In our study, we investigated the effects of silica-coated SPIONs on endothelial cells and whether oleic acid (OA) can protect the cells from their harmful effects. We used viability assays, flow cytometry, infrared spectroscopy, fluorescence microscopy, and transmission electron microscopy. Our results show that silica-coated SPIONs are internalized by endothelial cells, where they increase the amount of reactive oxygen species (ROS) and cause cell death. Exposure to silica-coated SPIONs induced accumulation of lipid droplets (LD) that was not dependent on diacylglycerol acyltransferase (DGAT)-mediated LD biogenesis, suggesting that silica-coated SPIONs suppress LD degradation. Addition of exogenous OA promoted LD biogenesis and reduced SPION-dependent increases in oxidative stress and cell death. However, exogenous OA protected cells from SPION-induced cell damage even in the presence of DGAT inhibitors, implying that LDs are not required for the protective effect of exogenous OA. The molecular phenotype of the cells determined by Fourier transform infrared spectroscopy confirmed the destructive effect of silica-coated SPIONs and the ameliorative role of OA in the case of oxidative stress. Thus, exogenous OA protects endothelial cells from SPION-induced oxidative stress and cell death independent of its incorporation into triglycerides.
Collapse
Affiliation(s)
- Neža Repar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (N.R.); (D.D.)
| | - Eva Jarc Jovičić
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (E.J.J.); (A.K.); (T.P.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Ana Kump
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (E.J.J.); (A.K.); (T.P.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Giovanni Birarda
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (G.B.); (L.V.)
| | - Lisa Vaccari
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (G.B.); (L.V.)
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (S.N.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sebastjan Nemec
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (S.N.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (E.J.J.); (A.K.); (T.P.)
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (N.R.); (D.D.)
| |
Collapse
|
49
|
Abid R, Shahzad MK, Sulaman SM, Faheem M, Naeem M, Khan R, Khalil AAK, Haider A, Ahmad B, Gul R, Bukhari N, Jamal SB. Therapeutic significance of nano- and biosensor technology in combating SARS-CoV-2: a review. APPLIED NANOSCIENCE 2022; 12:3127-3140. [PMID: 35677529 PMCID: PMC9162894 DOI: 10.1007/s13204-022-02465-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/12/2022] [Indexed: 02/08/2023]
Abstract
The diagnosis of novel coronavirus (COVID-19) has gained the spotlight of the world's scientific community since December 2019 and it remains an important issue due to the emergence of novel variants around the globe. Early diagnosis of coronavirus is captious to prevent and hard to control. This pandemic can be eradicated by implementing suppressing strategies which can lead to better outcomes and more lives being saved. Therefore, the analysis showed that COVID-19 can only be managed by adopting public health measures, such as testing, isolation and social distancing. Much work has been done to diagnose coronavirus. Various testing technologies have been developed, opted and modified for rapid and accurate detection. The advanced molecular diagnosis relies on the detection of SARS-CoV-2 as it has been considered the main causative agent of this pandemic. Studies have shown that several molecular tests are considered essential for the confirmation of coronavirus infection. Various serology-based tests are also used in the detection and diagnosis of coronavirus including point-of-care assays and high-throughput enzyme immunoassays that aid in the diagnosis of COVID-19. Both these assays are time-consuming and have less diagnostic accuracy. Nanotechnology has the potential to develop new strategies to combat COVID-19 by developing diagnostics and therapeutics. In this review, we have focused on the nanotechnology-based detection techniques including nanoparticles and biosensors to obstruct the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot, Punjab Pakistan
| | | | | | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Bilal Ahmad
- College of Biology, Hunan University, Changsha, Hunan 410082 People’s Republic of China
| | - Rukhsana Gul
- Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK Pakistan
| | - Nausheen Bukhari
- Mohammad College of Medicine, Budni Road, Yaseen Abad, Peshawar, KPK Pakistan
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
50
|
Pantic I, Paunovic J, Pejic S, Drakulic D, Todorovic A, Stankovic S, Vucevic D, Cumic J, Radosavljevic T. Artificial intelligence approaches to the biochemistry of oxidative stress: Current state of the art. Chem Biol Interact 2022; 358:109888. [PMID: 35296431 DOI: 10.1016/j.cbi.2022.109888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023]
Abstract
Artificial intelligence (AI) and machine learning models are today frequently used for classification and prediction of various biochemical processes and phenomena. In recent years, numerous research efforts have been focused on developing such models for assessment, categorization, and prediction of oxidative stress. Supervised machine learning can successfully automate the process of evaluation and quantification of oxidative damage in biological samples, as well as extract useful data from the abundance of experimental results. In this concise review, we cover the possible applications of neural networks, decision trees and regression analysis as three common strategies in machine learning. We also review recent works on the various weaknesses and limitations of artificial intelligence in biochemistry and related scientific areas. Finally, we discuss future innovative approaches on the ways how AI can contribute to the automation of oxidative stress measurement and diagnosis of diseases associated with oxidative damage.
Collapse
Affiliation(s)
- Igor Pantic
- University of Belgrade, Faculty of Medicine, Institute of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, RS-11129, Belgrade, Serbia; University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa, IL, 3498838, Israel; Ben-Gurion University of the Negev, Faculty of Health Sciences, Department of Physiology and Cell Biology, 84105 Be'er Sheva, Israel.
| | - Jovana Paunovic
- University of Belgrade, Faculty of Medicine, Institute of Pathological Physiology, Dr Subotica 9, RS-11129, Belgrade, Serbia
| | - Snezana Pejic
- University of Belgrade, Vinca Institute of Nuclear Sciences, Department of Molecular Biology and Endocrinology, Mike Petrovica Alasa 12-14, RS-11351, Belgrade, Serbia
| | - Dunja Drakulic
- University of Belgrade, Vinca Institute of Nuclear Sciences, Department of Molecular Biology and Endocrinology, Mike Petrovica Alasa 12-14, RS-11351, Belgrade, Serbia
| | - Ana Todorovic
- University of Belgrade, Vinca Institute of Nuclear Sciences, Department of Molecular Biology and Endocrinology, Mike Petrovica Alasa 12-14, RS-11351, Belgrade, Serbia
| | - Sanja Stankovic
- University Clinical Centre of Serbia, Centre for Medical Biochemistry, Visegradska 26, RS-11000, Belgrade, Serbia; University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, RS-34000, Kragujevac, Serbia
| | - Danijela Vucevic
- University of Belgrade, Faculty of Medicine, Institute of Pathological Physiology, Dr Subotica 9, RS-11129, Belgrade, Serbia
| | - Jelena Cumic
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Dr. Koste Todorovića 8, RS-11129, Belgrade, Serbia
| | - Tatjana Radosavljevic
- University of Belgrade, Faculty of Medicine, Institute of Pathological Physiology, Dr Subotica 9, RS-11129, Belgrade, Serbia
| |
Collapse
|