1
|
Cao J, Hu D, Yu H, Xie Y, Mi L, Ye Y, Deng M, Zhang W, Li M, Wang D, Qi F, Wu J, Song Y, Zhu J, Ding N. Interleukin-2-inducible T-cell kinase inhibition to block NF-κB signaling exerts anti-tumor effects and enhances chemotherapy in NK/T-cell lymphoma. Cancer Lett 2025; 618:217602. [PMID: 40054659 DOI: 10.1016/j.canlet.2025.217602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/24/2025]
Abstract
Natural killer/T-cell lymphoma (NKTCL) is a highly aggressive non-Hodgkin lymphoma. Relapsed/refractory (R/R) NKTCL patients have dismal prognosis and lack effective treatments, novel therapeutics are urgently needed. Here we found interleukin-2-inducible T-cell kinase (ITK) expression was elevated in NKTCL cells and patient tumors. And higher ITK expression was associated with worse clinical outcomes. In vitro ITK knockdown inhibited NKTCL cell growth, induced apoptosis, cell cycle arrest and impaired its colony-forming ability while ITK overexpression accelerated cell proliferation. In vivo ITK knockdown greatly impeded lymphoma growth in mouse model, indicating it as a potential therapeutic target. Mechanistically, ITK knockdown inhibited NKTCL cell growth by attenuating oncogenic NF-κB signaling, which is revealed by transcriptomic profiling and further validated by in vitro assays and in vivo NKTCL models. Additionally, we showed that ITK inhibitors could inhibit NKTCL cell proliferation, promote apoptosis and suppressed tumor progression in NKTCL cell line-derived xenograft (CDX) model. Furthermore, we established a patient-derived xenograft (PDX) model from a NKTCL patient refractory to prior anti-PD-1 and asparaginase containing therapy. The primary cells from this patient highly expressed ITK and were responsive to ITK inhibitor. And ITK inhibitor effectively repressed tumor progression in PDX model. Finally, we found ITK inhibition improved the response of NKTCL cell lines to chemotherapy and overcome chemotherapy resistance in primary cells. Collectively, our results demonstrated that ITK served as an oncogene in NKTCL and represented a novel therapeutic vulnerability to be targeted or in combination with chemotherapy drugs for this disease.
Collapse
Affiliation(s)
- Jiaowu Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dingyao Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hui Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yan Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yingying Ye
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Mi Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Miaomiao Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dedao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Fei Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiajin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Ning Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Lymphoma Translational Research, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
2
|
Sabzevari A, Ung J, Craig JW, Jayappa KD, Pal I, Feith DJ, Loughran TP, O'Connor OA. Management of T-cell malignancies: Bench-to-bedside targeting of epigenetic biology. CA Cancer J Clin 2025. [PMID: 40232267 DOI: 10.3322/caac.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 04/16/2025] Open
Abstract
The peripheral T-cell lymphomas (PTCL) are the only disease for which four histone deacetylase (HDAC) inhibitors have been approved globally as single agents. Although it is not clear why the PTCL exhibit such a vulnerability to these drugs, understanding the biological basis for this activity is essential. Many lines of data have established that the PTCL exhibit marked sensitivity to other epigenetically targeted drugs, including EZH2 and DNMT3 (DNA-methyltransferase 3) inhibitors. Even more compelling is the finding that combinations of drugs targeting the epigenetic biology of PTCL are beginning to produce provocative data, leading some to wonder if these agents can replace historical chemotherapy regimens routinely used for patients with the disease. Simultaneously, the field has identified a spectrum of mutations in genes governing epigenetic biology in many subtypes of PTCL, although the T follicular helper lymphomas, including angioimmunoblastic T-cell lymphoma, appear to be particularly enriched for these genetic features. While the direct relationship between the presence of any one of these mutations and responsiveness to a particular epigenetic drug has yet to be established, it is increasingly accepted that the PTCL may be the prototypical epigenetic disease as no other form of cancer has exhibited such a vulnerability to this diversity of epigenetically targeted agents. Herein, we comprehensively review this esoteric and rapidly evolving field to identify themes and lessons from these experiences that may guide efforts to improve outcomes of patients with T-cell neoplasms. Furthermore, we will discuss how these concepts might be applied to the broader field of cancer medicine.
Collapse
Affiliation(s)
- Ariana Sabzevari
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
| | - Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Medical Center, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
| | - Kallesh D Jayappa
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ipsita Pal
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
| | - David J Feith
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas P Loughran
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Owen A O'Connor
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Attygalle AD, Karube K, Jeon YK, Cheuk W, Bhagat G, Chan JKC, Naresh KN. The fifth edition of the WHO classification of mature T cell, NK cell and stroma-derived neoplasms. J Clin Pathol 2025; 78:217-232. [PMID: 39965886 DOI: 10.1136/jcp-2025-210074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
The fifth edition of the WHO Classification of Haematolymphoid Tumors (WHO-HAEM5) introduces significant advancements in the understanding and diagnosis of mature T cell and NK cell, and stroma-derived neoplasms, and incorporates molecular and genetic data/findings accrued over the past years. The classification has been reorganised using a hierarchical system, employed across the fifth edition of the WHO classification of tumours of all organ systems. This review highlights recent developments, evolving concepts, and key updates since the revised fourth edition (WHO-HAEM4R). It enumerates the minimal/essential criteria necessary for diagnosis and classification, constituting not only the importance of clonality analysis in the workup of certain T cell neoplasms and the detection of infectious agents and specific genetic alterations in a subset of entities but also the applicability of these criteria in resource-constrained settings. 'Stroma-derived neoplasms of lymphoid tissues discussed in this review is a new category introduced in HAEM5 that encompasses mesenchymal tumours occurring exclusively in lymph nodes and spleen and mesenchymal dendritic cell neoplasms previously classified as 'histiocytic/dendritic cell neoplasms'.
Collapse
Affiliation(s)
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Aichi Prefecture, Japan
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
- Seoul National University Cancer Research Institute, Seoul, Korea (the Republic of)
| | - Wah Cheuk
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Govind Bhagat
- Department of Pathology and Cell Biology, NewYork-Presbyterian Hospital, New York, New York, USA
| | - John K C Chan
- Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Kikkeri N Naresh
- Pathology/Cancer Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
4
|
Lu X, Han Q, Li P, Huang K, Ji X, Chen S, Lin R, Wang X. Detection of the 30-bp deletion and protein expression of Epstein-Barr virus latent membrane protein 1 in extranodal NK/T cell lymphoma and its clinicopathological significance. Diagn Pathol 2025; 20:18. [PMID: 39948602 PMCID: PMC11823043 DOI: 10.1186/s13000-025-01607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Extranodal natural killer/T-cell lymphoma (ENKTCL) is strongly associated with Epstein-Barr virus (EBV) infection. A 30-base-pair deletion in latent membrane protein 1 (del-LMP1) represents the most common variant in the EBV genome, but its clinicopathological significance in ENKTCL remains poorly elucidated. Some scholars suggested that the LMP1 protein product carrying the deletion gene reduced immunogenicity, allowed it to escape immune surveillance in immunocompetent hosts and confer a survival advantage. Therefore, simultaneous assessment of del-LMP1 and LMP1 protein expression may provide deeper insights into the potential role of LMP1 in ENKTCL tumorigenesis and progression. This study aimed to investigate the impact of del-LMP1 and LMP1 protein expression on the clinicopathological manifestations and prognosis of ENKTCL patients in Wenzhou. METHODS The clinical and histological characteristics of 42 ENKTCL cases were retrospectively evaluated. Del-LMP1 was detected using a nested polymerase chain reaction and Sanger sequencing, while LMP1 protein expression was assessed via immunohistochemistry. Overall survival (OS) was analyzed. RESULTS The LMP1 gene was identified in 37/42 ENKTCL cases, including 2 wild-type (wt-LMP1), 35 del-LMP1 cases. LMP1 protein expression was positive in 21/42 cases. In the control group, the LMP1 gene was detected in 6/10 cases, all of which were del-LMP1, and the LMP1 protein was positive in 4/10 cases. Fisher's exact test revealed no significant differences between the two groups in the LMP1 gene, del-LMP1, or LMP1 protein expression. Additionally, there was no significant correlation between del-LMP1 and LMP1 protein expression and clinical characteristics such as age, gender, or vascular invasion. However, LMP1 protein expression was significantly higher in necrotic tissues (p = 0.030) and younger patients with del-LMP1 (p = 0.004). Survival analysis showed no significant difference in OS between wt-LMP1 and del-LMP1 patients (p = 0.331) or between LMP1-positive and -negative cases (p = 0.592). CONCLUSION In this retrospective cohort, we demonstrated that del-LMP1 might be the predominant variant rather than a phenotype-associated polymorphism in ENKTCL from a molecular epidemiological perspective. Moreover, LMP1 protein expression was associated with necrotic tissue and younger patients with del-LMP1, possibly due to the enhanced pathogenic effect of the mutated LMP1 isolate protein.
Collapse
Affiliation(s)
- Xingmei Lu
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Qingsong Han
- Department of Animal Science, Wenzhou Vocational College of Scienc & Technology, Wenzhou, Zhejiang, 325006, China
| | - Peng Li
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kate Huang
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiuhuan Ji
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Suidan Chen
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Rixu Lin
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaoyu Wang
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
5
|
Zhong LY, Xie C, Zhang LL, Yang YL, Liu YT, Zhao GX, Bu GL, Tian XS, Jiang ZY, Yuan BY, Li PL, Wu PH, Jia WH, Münz C, Gewurz BE, Zhong Q, Sun C, Zeng MS. Research landmarks on the 60th anniversary of Epstein-Barr virus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:354-380. [PMID: 39505801 DOI: 10.1007/s11427-024-2766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 11/08/2024]
Abstract
Epstein-Barr virus (EBV), the first human oncovirus discovered in 1964, has become a focal point in virology, immunology, and oncology because of its unique biological characteristics and significant role in human diseases. As we commemorate the 60th anniversary of EBV's discovery, it is an opportune moment to reflect on the major advancements in our understanding of this complex virus. In this review, we highlight key milestones in EBV research, including its virion structure and life cycle, interactions with the host immune system, association with EBV-associated diseases, and targeted intervention strategies.
Collapse
Affiliation(s)
- Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Le-Le Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Lin Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xian-Shu Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zi-Ying Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bo-Yu Yuan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng-Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pei-Huang Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, 8092, Switzerland
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Ye L, Long C, Xu B, Yao X, Yu J, Luo Y, Xu Y, Jiang Z, Nian Z, Zheng Y, Cai Y, Xue X, Guo G. Multi‑omics identification of a novel signature for serous ovarian carcinoma in the context of 3P medicine and based on twelve programmed cell death patterns: a multi-cohort machine learning study. Mol Med 2025; 31:5. [PMID: 39773329 PMCID: PMC11707953 DOI: 10.1186/s10020-024-01036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Predictive, preventive, and personalized medicine (PPPM/3PM) is a strategy aimed at improving the prognosis of cancer, and programmed cell death (PCD) is increasingly recognized as a potential target in cancer therapy and prognosis. However, a PCD-based predictive model for serous ovarian carcinoma (SOC) is lacking. In the present study, we aimed to establish a cell death index (CDI)-based model using PCD-related genes. METHODS We included 1254 genes from 12 PCD patterns in our analysis. Differentially expressed genes (DEGs) from the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were screened. Subsequently, 14 PCD-related genes were included in the PCD-gene-based CDI model. Genomics, single-cell transcriptomes, bulk transcriptomes, spatial transcriptomes, and clinical information from TCGA-OV, GSE26193, GSE63885, and GSE140082 were collected and analyzed to verify the prediction model. RESULTS The CDI was recognized as an independent prognostic risk factor for patients with SOC. Patients with SOC and a high CDI had lower survival rates and poorer prognoses than those with a low CDI. Specific clinical parameters and the CDI were combined to establish a nomogram that accurately assessed patient survival. We used the PCD-genes model to observe differences between high and low CDI groups. The results showed that patients with SOC and a high CDI showed immunosuppression and hardly benefited from immunotherapy; therefore, trametinib_1372 and BMS-754807 may be potential therapeutic agents for these patients. CONCLUSIONS The CDI-based model, which was established using 14 PCD-related genes, accurately predicted the tumor microenvironment, immunotherapy response, and drug sensitivity of patients with SOC. Thus this model may help improve the diagnostic and therapeutic efficacy of PPPM.
Collapse
Affiliation(s)
- Lele Ye
- Department of Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunhao Long
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Binbing Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuyang Yao
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaye Yu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunhui Luo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Xu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuofeng Jiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zekai Nian
- Second Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yawen Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yaoyao Cai
- Department of Obstetrics, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Gangqiang Guo
- Department of Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Fang X, Zhou F, Ye S, Zhang H, Guo H, Chen X, Liang C, Pu X, Cao Y, Ren Q, Li X, Zhai L, Huang H, Hong H. A prognostic index for advanced-stage extranodal natural killer/T-cell lymphoma: A multicenter study. Ann Hematol 2025; 104:445-455. [PMID: 39774927 DOI: 10.1007/s00277-024-06160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Advanced-stage extranodal natural killer/T-cell lymphoma (ENKTL) is a highly heterogeneous disease with very poor prognosis. All commonly utilized prognostic models incorporated both early-stage and advanced-stage patients in the modeling process. This study aim to design a prognostic model specifically for advanced-stage ENKTL, providing risk stratification in affected patients. We analyzed 291 patients with stage III/IV ENKTL receiving asparaginase-based chemotherapy from 8 institutions to develop a new prognostic model and validate it in an independent cohort consisted of 221 patients from 4 additional hospitals. The prognostic model included three independent variables based on a multivariate analysis for overall survival (OS): age, bone marrow invasiveness and visceral organ involvement. We identified three different risk groups: group 1, no adverse factors; group 2, one factor; and group 3, two or three factors, which were associated with 5-year OS rates of 66.0%, 32.3%, and 20.0%, respectively (P < 0.001). The prognostic index of natural killer lymphoma (PINK) and nomogram-revised risk index (NRI) were unsatisfactory for stratifying these patients. These results were validated and confirmed in an independent cohort. This newly proposed model can be used to guide risk-adapted treatment for advanced stage ENKTL.
Collapse
Affiliation(s)
- Xiaojie Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fenglan Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610042, China
| | - Sheng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Medical Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hongqiang Guo
- Department of Medical Oncology, He Nan Cancer Hospital, Zhengzhou, China
| | - Xinggui Chen
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaoyong Liang
- Department of Medical Oncology, Guangxi Cancer Hospital, Nanning, China
| | - Xingxiang Pu
- Department of Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Yabing Cao
- Department of Medical Oncology, Kiang Wu Hospital, Macau, China
| | - Quanguang Ren
- Department of Medical Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Li
- Department of Medical Oncology, Shandong Cancer Hospital, Jinan, China
| | - Linzhu Zhai
- Department of Medical Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - He Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610042, China.
| |
Collapse
|
8
|
Feng Y, Liu X, Yu J, Song Z, Li L, Qiu L, Zhou S, Qian Z, Wang X, Zhang H. An evaluation of sugemalimab for the treatment of relapsed or refractory extranodal natural killer T-cell lymphoma. Expert Opin Biol Ther 2025; 25:9-14. [PMID: 39702924 DOI: 10.1080/14712598.2024.2444400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION Relapsed or refractory extranodal natural killer/T-cell lymphoma (R/R ENKTL) is a rare and aggressive subtype arising from natural killer or cytotoxic T-cells, predominantly affecting the nasal cavity and paranasal sinuses, lacking a standardized therapeutic approach. Sugemalimab, a fully human, full-length anti-PD-L1 immunoglobulin G4 (IgG4) monoclonal antibody (mAb), has been investigated in a Single-Arm, Multicenter, Phase II Study (GEMSTONE-201). The results demonstrated significant efficacy, favorable tolerability, and manageable adverse reactions of sugemalimab in R/R ENKTL. This study summarizes and compares the efficacy and safety profile of sugemalimab with several other PD-1/PD-L1 inhibitors in R/R ENKTL patients. AREA COVERED We included a Phase II study (GEMSTONE-201) of sugemalimab in R/R ENKTL. EXPERT OPINION The clinical trials have demonstrated superior efficacy of sugemalimab, evidenced by a complete response rate (CRR) of 35.9% and an overall response rate (ORR) of 44.9%. In comparison with other immune checkpoint inhibitors (ICIs), sugemalimab shows a notably higher CRR. Additionally, sugemalimab exhibits a manageable safety profile. Further evaluation of sugemalimab is required based on its efficacy and safety in real-world patient populations. Should sugemalimab be included in medical insurance in the future, it could potentially benefit a larger number of patients with R/R ENKTL.
Collapse
Affiliation(s)
- Yingfang Feng
- Department of Lymphoma/National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xia Liu
- Department of Lymphoma/National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Jingwei Yu
- Department of Lymphoma/National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zheng Song
- Department of Lymphoma/National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lanfang Li
- Department of Lymphoma/National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lihua Qiu
- Department of Lymphoma/National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Shiyong Zhou
- Department of Lymphoma/National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zhengzi Qian
- Department of Lymphoma/National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xianhuo Wang
- Department of Lymphoma/National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Huilai Zhang
- Department of Lymphoma/National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| |
Collapse
|
9
|
Pichler AS, Amador C, Fujimoto A, Takeuchi K, de Jong D, Iqbal J, Staber PB. Advances in peripheral T cell lymphomas: pathogenesis, genetic landscapes and emerging therapeutic targets. Histopathology 2025; 86:119-133. [PMID: 39679758 DOI: 10.1111/his.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Peripheral T cell lymphomas (PTCLs) are a biologically diverse and aggressive group of non-Hodgkin lymphomas that originate from mature T cells, often presenting with complex clinical and morphological features. This review explores the challenges in diagnosing and classifying PTCLs, focusing on the intricate biology of the more common nodal entities. Advances in molecular diagnostics, such as mutational and gene expression profiling, have improved our understanding. However, the rarity and morphological variability of PTCLs continue to complicate the definition of biologically and clinically meaningful entities, as well as the application of current diagnoses in daily practice; these advancements have not yet translated into improved clinical outcomes. Standard therapies fail in most cases and lead to poor prognoses, highlighting the urgent need for improved therapeutic strategies. Precise characterisation of PTCL advances refined classification and supports the development of more targeted and effective treatments. Recent approaches have focused on biology-based risk stratification, either within specific entities or in an entity-agnostic manner. This development aims for improved treatment selection or even personalised treatment based on genetic, epigenetic and functional profiles.
Collapse
Affiliation(s)
- Alexander S Pichler
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Catalina Amador
- Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida, USA
| | - Ayumi Fujimoto
- Division of Pathology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Daphne de Jong
- Department of Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Javeed Iqbal
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Philipp B Staber
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Liu Y, Lui KS, Ye Z, Chen L, Cheung AKL. Epstein-Barr Virus BRRF1 Induces Butyrophilin 2A1 in Nasopharyngeal Carcinoma NPC43 Cells via the IL-22/JAK3-STAT3 Pathway. Int J Mol Sci 2024; 25:13452. [PMID: 39769218 PMCID: PMC11677325 DOI: 10.3390/ijms252413452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Epstein-Barr virus is highly associated with nasopharyngeal carcinoma (NPC) with genes expressed for tumor transformation or maintenance of viral latency, but there are certain genes that can modulate immune molecules. Butyrophilin 2A1 (BTN2A1) is an important activating protein for presenting phosphoantigens for recognition by Vγ9Vδ2 T cells to achieve antitumor activities. We have previously shown that Vγ9Vδ2 T cells achieve efficacy against NPC when BTN2A1 and BTN3A1 are upregulated by stimulating EBV gene expression, particularly LMP1. While BTN3A1 can be induced by the LMP1-mediated IFN-γ/JNK/NLRC5 pathway, the viral gene that can regulate BTN2A1 remains elusive. We showed that BTN2A1 expression is directly mediated by EBV BRRF1, which can trigger the BTN2A1 promoter and downstream JAK3-STAT3 pathway in NPC43 cells, as shown by RNA-seq data and verified via inhibitor experiments. Furthermore, BRRF1 downregulated IL-22 binding protein (IL-22RA2) to complement the EBNA1-targeting probe (P4)-induced IL-22 expression. Therefore, this study elucidated a new mechanism of stimulating BTN2A1 expression in NPC cells via the EBV gene BRRF1. The JAK3-STAT3 pathway could act in concordance with IL-22 to enhance the expression of BTN2A1, which likely leads to increased tumor cell killing by Vγ9Vδ2 T cells for enhanced potential as immunotherapy against the cancer.
Collapse
Affiliation(s)
- Yue Liu
- Medical School, Fuyang Normal University, Fuyang 236000, China;
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Ka Sin Lui
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Zuodong Ye
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Luo Chen
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China;
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| |
Collapse
|
11
|
Mijiti M, Wang C, Tian W, Shi Q, Zhang F, Abulaiti R, Qi X, Kou Z, Liu C, Wang Z, Zhai S, An L, Huang Q, Shao Y, Wufuer G, Li Y. Association between low incidence of TP53 mutations and reduced early relapse rates in Uygur DLBCL. Ann Hematol 2024; 103:5627-5638. [PMID: 39187692 DOI: 10.1007/s00277-024-05961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) demonstrates significant heterogeneity, investigations into the distinctions in clinical and molecular characteristics between Chinese Uygur and Han DLBCL patients remain unexplored. We retrospectively reviewed 279 DLBCL patients (105 Uygur and 174 Han patients), of which 155 patients underwent genetic profiling by NGS. Compared with Han patient, Uygur patients have better clinical prognostic indicators, including a higher proportion of patients with 0-1 extranodal involvement and I/II Ann Arbor staging. Consistently, Uygur patients were significantly associated with lower risk of relapse (P = 0.06), with a one-year relapse rate of 5% vs 17% and two-year relapse rate of 19% vs 36% compared to Han patients. At the molecular level, TP53 (21.3%) was among the top frequently altered gene in the cohort. Notably, the Uygur patients exhibited a significantly lower frequency of TP53 alterations and higher frequency of ASXL3 alterations. Logistic regression analysis showed that the lowered frequency of TP53 and enrichment of ASXL3 in the Uygur patients were independent of other factors. However, only patients with TP53 mutations had higher relapse rate than those with wild type TP53 (one-year, 20% vs 10%; two-year, 51% vs 21%). Our findings highlight the notable contribution of a low TP53 mutation frequency in Uygur patients as a pivotal factor associated with the favorable prognosis of this population.
Collapse
Affiliation(s)
- Mutibaier Mijiti
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Chun Wang
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Wenxin Tian
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Qiping Shi
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Fang Zhang
- Department of Hematology, Chongzhou People's Hospital, Chengdu, Sichuan, China
| | - Renaguli Abulaiti
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Xiaolong Qi
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Zhen Kou
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Cuicui Liu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Zengsheng Wang
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Shunsheng Zhai
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Li An
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Qin Huang
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Guzailinuer Wufuer
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Yan Li
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
12
|
Pölöske D, Sorger H, Schönbichler A, de Araujo ED, Neubauer HA, Orlova A, Timonen SH, Abdallah DI, Ianevski A, Kuusanmäki H, Surbek M, Heyes E, Eder T, Wagner C, Suske T, Metzelder ML, Bergmann M, Dahlhoff M, Grebien F, Fleck R, Pirker C, Berger W, Hadzijusufovic E, Sperr WR, Kenner L, Valent P, Aittokallio T, Herling M, Mustjoki S, Gunning PT, Moriggl R. Dual specific STAT3/5 degraders effectively block acute myeloid leukemia and natural killer/T cell lymphoma. Hemasphere 2024; 8:e70001. [PMID: 39619245 PMCID: PMC11603092 DOI: 10.1002/hem3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2024] [Accepted: 07/04/2024] [Indexed: 02/13/2025] Open
Abstract
The transcription factors STAT3, STAT5A, and STAT5B steer hematopoiesis and immunity, but their enhanced expression and activation promote acute myeloid leukemia (AML) or natural killer/T cell lymphoma (NKCL). Current therapeutic strategies focus on blocking upstream tyrosine kinases to inhibit STAT3/5, but these kinase blockers are not selective against STAT3/5 activation and frequent resistance causes relapse, emphasizing the need for targeted drugs. We evaluated the efficacy of JPX-0700 and JPX-0750 as dual STAT3/5 binding inhibitors promoting protein degradation. JPX-0700/-0750 decreased the mRNA and protein levels of STAT3/5 targets involved in cancer survival, metabolism, and cell cycle progression, exhibiting nanomolar to low micromolar efficacy. They induced cell death and growth arrest in both AML/NKCL cell lines and primary AML patient blasts. We found that both AML/NKCL cells hijack STAT3/5 signaling through either upstream activating mutations in kinases, activating mutations in STAT3, mutational loss of negative STAT regulators, or genetic gains in anti-apoptotic, pro-proliferative, or epigenetic-modifying STAT3/5 targets. This emphasizes a vicious cycle for proliferation and survival through STAT3/5. Both JPX-0700/-0750 treatment reduced leukemic cell growth in human AML or NKCL xenograft mouse models significantly, being well tolerated by mice. Synergistic cell death was induced upon combinatorial use with approved chemotherapeutics in AML/NKCL cells.
Collapse
Affiliation(s)
- Daniel Pölöske
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and Genetics, University of Veterinary MedicineViennaAustria
- Department of Pathology, Vienna General HospitalMedical University of ViennaViennaAustria
- Department of Biomedical Imaging and Image‐Guided TherapyChristian Doppler Laboratory for Applied Metabolomics, Division of Nuclear MedicineViennaAustria
| | - Helena Sorger
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and Genetics, University of Veterinary MedicineViennaAustria
- Department of Pediatric and Adolescent Surgery, Vienna General HospitalMedical University of ViennaViennaAustria
| | - Anna Schönbichler
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and Genetics, University of Veterinary MedicineViennaAustria
| | - Elvin D. de Araujo
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Heidi A. Neubauer
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and Genetics, University of Veterinary MedicineViennaAustria
| | - Anna Orlova
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and Genetics, University of Veterinary MedicineViennaAustria
| | - Sanna H. Timonen
- Hematology Research Unit HelsinkiUniversity of Helsinki and Helsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- Translational Immunology Research Program and Department of Clinical Chemistry and HematologyUniversity of HelsinkiHelsinkiFinland
| | - Diaaeldin I. Abdallah
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of HelsinkiHelsinkiFinland
| | - Heikki Kuusanmäki
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of HelsinkiHelsinkiFinland
- Biotech Research and Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
- Foundation for the Finnish Cancer InstituteHelsinkiFinland
| | - Marta Surbek
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and Genetics, University of Veterinary MedicineViennaAustria
| | - Elisabeth Heyes
- Institute of Medical Biochemistry, University of Veterinary MedicineViennaAustria
| | - Thomas Eder
- Institute of Medical Biochemistry, University of Veterinary MedicineViennaAustria
| | - Christina Wagner
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and Genetics, University of Veterinary MedicineViennaAustria
| | - Tobias Suske
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and Genetics, University of Veterinary MedicineViennaAustria
| | - Martin L. Metzelder
- Department of Pediatric and Adolescent Surgery, Vienna General HospitalMedical University of ViennaViennaAustria
| | - Michael Bergmann
- Department of General Surgery, Vienna General HospitalMedical University of ViennaViennaAustria
| | - Maik Dahlhoff
- Institute of In‐Vivo and In‐Vitro Models, University of Veterinary MedicineViennaAustria
| | - Florian Grebien
- Institute of Medical Biochemistry, University of Veterinary MedicineViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | | | - Christine Pirker
- Center for Cancer Research, Medical University of ViennaViennaAustria
| | - Walter Berger
- Center for Cancer Research, Medical University of ViennaViennaAustria
| | - Emir Hadzijusufovic
- Department of Medicine I, Division of Hematology and Hemostaseology, Vienna General HospitalMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaViennaAustria
- Clinic for Companion Animals and Horses, University Clinic for Small Animals, Internal Medicine Small Animals, University of Veterinary MedicineViennaAustria
| | - Wolfgang R. Sperr
- Department of Medicine I, Division of Hematology and Hemostaseology, Vienna General HospitalMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaViennaAustria
| | - Lukas Kenner
- Department of Pathology, Vienna General HospitalMedical University of ViennaViennaAustria
- Department of Biomedical Imaging and Image‐Guided TherapyChristian Doppler Laboratory for Applied Metabolomics, Division of Nuclear MedicineViennaAustria
- Comprehensive Cancer Center, Medical University of ViennaViennaAustria
- Unit of Laboratory Animal Pathology, University of Veterinary MedicineViennaAustria
- Department of Molecular BiologyUmeå UniversityUmeåSweden
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Peter Valent
- Department of Medicine I, Division of Hematology and Hemostaseology, Vienna General HospitalMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaViennaAustria
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of HelsinkiHelsinkiFinland
- Department of Cancer GeneticsInstitute for Cancer ResearchOsloNorway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of OsloOsloNorway
- iCAN Digital Precision Cancer Medicine Platform, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Marco Herling
- Department of Medicine I, CIO‐ABCDCECAD and CMMC Cologne UniversityCologneGermany
- Department of Hematology, Cellular Therapy, and HemostaseologyUniversity of LeipzigLeipzigGermany
| | - Satu Mustjoki
- Hematology Research Unit HelsinkiUniversity of Helsinki and Helsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- Translational Immunology Research Program and Department of Clinical Chemistry and HematologyUniversity of HelsinkiHelsinkiFinland
- iCAN Digital Precision Cancer Medicine Platform, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Patrick T. Gunning
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaOntarioCanada
- Janpix, a Centessa CompanyLondonUK
| | - Richard Moriggl
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and Genetics, University of Veterinary MedicineViennaAustria
- Department of Biosciences and Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|
13
|
Yoon SE, Kim WS. New insights on Epstein-Barr virus-induced lymphomagenesis. Sci Bull (Beijing) 2024; 69:3478-3479. [PMID: 39370357 DOI: 10.1016/j.scib.2024.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| |
Collapse
|
14
|
Lee J, Yoon SE, Kim SJ, Kim WS, Cho J. Mutational characteristics of extranodal NK/T-cell lymphoma analyzed in relation to clinical prognostic indices. Ann Hematol 2024:10.1007/s00277-024-06035-w. [PMID: 39589496 DOI: 10.1007/s00277-024-06035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/02/2024] [Indexed: 11/27/2024]
Abstract
Extranodal NK/T-cell lymphoma (ENKTL) is a malignant lymphoma that is associated with Epstein-Barr virus (EBV) infection and poor prognosis. Several clinical risk stratification tools for ENKTL patients have been developed; however, their relationship with molecular alterations of tumor is unclear. We performed panel-based next generation sequencing (NGS) on formalin-fixed paraffin-embedded tissue of 40 ENKTL patients and analyzed them with the clinicopathological features. Patients with over 60 years of age, non-nasal type, stage III-IV, and distant lymph node involvement were 14 (35.0%), 11 (27.5%), 13 (32.5%), and 11 (27.5%), respectively. EBV DNA was detected in the blood of 30 patients (75.0%). In the NGS analysis, mutations involving the JAK/STAT pathway were the most common (n = 17, 42.5%), followed by epigenetic modifier (n = 12, 30.3%), NF-κB pathway (n = 11, 27.5%), tumor suppressor (n = 10, 25.5%), and RAS/MAPK pathway (n = 9, 22.5%). Among these, alterations involving tumor suppressor (P = 0.022) and RAS/MAPK pathway (P = 0.008) were statistically significant poor prognostic factors. Tumor suppressor gene mutations were statistically significantly related to stage III-IV (P = 0.006), distant lymph node involvement (P = 0.002), and prognostic index for natural killer cell lymphoma-EBV (PINK-E) high risk group (P = 0.017). However, alterations involving RAS/MAPK pathway did not significantly correlated with PINK-E or its components. Alterations involving tumor suppressor genes and RAS/MAPK pathway are associated with poor prognosis in ENKTL patients. Tumor suppressor gene mutations are generally correlated with previously known risk factors; however, RAS/MAPK pathway alterations are not.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irown-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irown-ro, Gangnam-gu, Seoul, 06351, Korea.
| |
Collapse
|
15
|
Ma L, Wang TM, He YQ, Liao Y, Yan X, Yang DW, Wang RH, Li FJ, Jia WH, Feng L. Multiplex assays reveal anti-EBV antibody profile and its implication in detection and diagnosis of nasopharyngeal carcinoma. Int J Cancer 2024; 155:1874-1885. [PMID: 38894502 DOI: 10.1002/ijc.35061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Epstein-Barr virus (EBV) is detected in nearly 100% of nonkeratinizing nasopharyngeal carcinoma (NPC) and EBV-based biomarkers are used for NPC screening in endemic regions. Immunoglobulin A (IgA) against EBV nuclear antigen 1 (EBNA1) and viral capsid antigen (VCA), and recently identified anti-BNLF2b antibodies have been shown to be the most effective screening tool; however, the screening efficacy still needs to be improved. This study developed a multiplex serological assay by testing IgA and immunoglobulin G (IgG) antibodies against representative EBV antigens that are highly transcribed in NPC and/or function crucially in viral reactivation, including BALFs, BNLF2a/b, LF1, LF2, and Zta (BZLF1). Among them, BNLF2b-IgG had the best performance distinguishing NPC patients from controls (area under the curve: 0.951, 95% confidence interval [CI]: 0.913-0.990). Antibodies to lytic antigens BALF2 and VCA were significantly higher in advanced-stage than in early-stage tumors; in contrast, antibodies to latent protein EBNA1 and early lytic antigen BNLF2b were not correlated with tumor progression. Accordingly, a novel strategy combining EBNA1-IgA and BNLF2b-IgG was proposed and validated improving the integrated discrimination by 15.8% (95% CI: 9.8%-21.7%, p < .0001) compared with the two-antibody method. Furthermore, we found EBV antibody profile in patients was more complicated compared with that in healthy carriers, in which stronger correlations between antibodies against different phases of antigens were observed. Overall, our serological assay indicated that aberrant latent infection of EBV in nasopharyngeal epithelial cells was probably a key step in NPC initiation, while more lytic protein expression might be involved in NPC progression.
Collapse
Affiliation(s)
- Lin Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rui-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fa-Jun Li
- Guangdong Key Laboratory of Human Evolution and Archaeometry, Department of Anthropology, School of Sociology and Anthropology, Sun Yat-sen University, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Xie F, Luo S, Liu D, Lu X, Wang M, Liu X, Jia F, Pang Y, Shen Y, Zeng C, Ma X, Tang D, Tu L, Yang L, Cheng Y, Luo Y, Xie F, Hou H, Huang T, Ni B, Zhuang C, Zhao W, Li K, Zheng X, Bi W, Jia X, He Y, Wang S, Cao H, Wu K, Wang Y. Genomic and transcriptomic landscape of human gastrointestinal stromal tumors. Nat Commun 2024; 15:9495. [PMID: 39489749 PMCID: PMC11532483 DOI: 10.1038/s41467-024-53821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Gastrointestinal stromal tumor (GISTs) are clinically heterogenous exhibiting varying degrees of disease aggressiveness in individual patients. We comprehensively describe the genomic and transcriptomic landscape of a cohort of 117 GISTs including 31 low-risk, 18 intermediate-risk, 29 high-risk, 34 metastatic and 5 neoadjuvant GISTs from 105 patients. GISTs have notably low tumor mutation burden but widespread copy number variations. Aggressive GISTs harbor remarkably more genomic aberrations than low-/intermediate-risk GISTs. Complex genomic alterations, chromothripsis and kataegis, occur selectively in aggressive GISTs. Despite the paucity of mutations, recurrent inactivating YLPM1 mutations are identified (10.3%, 7 of 68 patients), enriched in high-risk/metastatic GIST and functional study further demonstrates YLPM1 inactivation promotes GIST proliferation, growth and oxidative phosphorylation. Spatially and temporally separated GISTs from individual patients demonstrate complex tumor heterogeneity in metastatic GISTs. Finally, four prominent subtypes are proposed with different genomic features, expression profiles, immune characteristics, clinical characteristics and subtype-specific treatment strategies. This large-scale analysis depicts the landscape and provides further insights into GIST pathogenesis and precise treatment.
Collapse
Affiliation(s)
- Feifei Xie
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shuzhen Luo
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China
| | - Dongbing Liu
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China
| | - Xiaojing Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Disease, 200030, Shanghai, China
| | - Ming Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fujian Jia
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China
| | - Yuzhi Pang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanying Shen
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Chunling Zeng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xinli Ma
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Daoqiang Tang
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Lin Tu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Linxi Yang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yumei Cheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuxiang Luo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fanfan Xie
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China
| | - Hao Hou
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Huang
- Bioinformatics Core, Shanghai Institute of Nutrition and Health, 200031, Shanghai, China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Chun Zhuang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Wenyi Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Ke Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xufen Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Wenbo Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaona Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yi He
- Department of Urology, No.1 Hospital of Jiaxing, 314000, Jiaxing, China
| | - Simin Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Hui Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Kui Wu
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, 518083, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, 518083, Shenzhen, China.
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
17
|
Iqbal J, Inghirami G, Chan WC. New insights into the biology of T-cell lymphomas. Blood 2024; 144:1873-1886. [PMID: 39213420 PMCID: PMC11551850 DOI: 10.1182/blood.2023021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Peripheral T-cell lymphomas (PTCLs) encompass a heterogeneous group of postthymic T-cell lymphomas with >30 distinct subtypes associated with varied clinicopathological features. Unfortunately, the overall survival of the major PTCL subtypes is dismal and has not improved for decades; thus, there is an urgent unmet clinical need to improve diagnosis, therapies, and clinical outcomes. The diagnosis is often challenging, requiring a combinatorial evaluation of clinical, morphologic, and immunophenotypic features. PTCL pathobiology is difficult to investigate due to enormous intertumor and intratumor heterogeneity, limited tissue availability, and the paucity of authentic T-cell lymphoma cell lines or genetically faithful animal models. The application of transcriptomic profiling and genomic sequencing has markedly accelerated the discovery of new biomarkers, molecular signatures, and genetic lesions, and some of the discoveries have been included in the revised World Health Organization or International Consensus Classification. Genome-wide investigations have revealed the mutational landscape and transcriptomic profiles of PTCL entities, defined the cell of origin as a major determinant of T-cell lymphoma biology, and allowed for the refinement of biologically and clinically meaningful entities for precision therapy. In this review, we prioritize the discussion on common nodal PTCL subtypes together with 2 virus-associated T-cell and natural killer cell lymphomas. We succinctly review normal T-cell development, differentiation, and T-cell receptor signaling as they relate to PTCL pathogenesis and biology. This review will facilitate a better biological understanding of the different PTCL entities and their stratification for additional studies and target-directed clinical trials.
Collapse
Affiliation(s)
- Javeed Iqbal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
18
|
Koya J, Tanigawa T, Mizuno K, Kim H, Ito Y, Yuasa M, Yamaguchi K, Kogure Y, Saito Y, Shingaki S, Tabata M, Murakami K, Chiba K, Okada A, Shiraishi Y, Marouf A, Liévin R, Chaubard S, Jaccard A, Hermine O, de Leval L, Tournilhac O, Damaj G, Gaulard P, Couronné L, Yasui T, Nakashima K, Miyoshi H, Ohshima K, Kataoka K. Modeling NK-cell lymphoma in mice reveals its cell-of-origin and microenvironmental changes and identifies therapeutic targets. Nat Commun 2024; 15:9106. [PMID: 39438472 PMCID: PMC11496546 DOI: 10.1038/s41467-024-53376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Extranodal NK/T-cell lymphoma (ENKTCL) is an Epstein-Barr virus (EBV)-related neoplasm preferentially involving the upper aerodigestive tract. Here we show that NK-cell-specific Trp53 disruption in mice leads to the development of NK-cell lymphomas after long latency, which involve not only the hematopoietic system but also the salivary glands. Before tumor onset, Trp53 knockout causes extensive gene expression changes, resulting in immature NK-cell expansion, exclusively in the salivary glands. Both human and murine NK-cell lymphomas express tissue-resident markers, suggesting tissue-resident NK cells as their cell-of-origin. Murine NK-cell lymphomas show recurrent Myc amplifications and upregulation of MYC target gene signatures. EBV-encoded latent membrane protein 1 expression accelerates NK-cell lymphomagenesis and causes diverse microenvironmental changes, particularly myeloid propagation, through interferon-γ signaling. In turn, myeloid cells support tumor cells via CXCL16-CXCR6 signaling and its inhibition is effective against NK-cell tumors in vivo. Remarkably, KLRG1-expressing cells expand in the tumor and are capable of repopulating tumors in secondary recipients. Furthermore, targeting KLRG1 alone or combined with MYC inhibition using an eIF4 inhibitor is effective against NK-cell tumors. Therefore, our observations provide insights into the pathogenesis and highlight potential therapeutic targets, including CXCL16, KLRG1, and MYC, in ENKTCL, which can help improve its diagnostic and therapeutic strategies.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Tumor Microenvironment/immunology
- Lymphoma, Extranodal NK-T-Cell/genetics
- Lymphoma, Extranodal NK-T-Cell/metabolism
- Lymphoma, Extranodal NK-T-Cell/virology
- Lymphoma, Extranodal NK-T-Cell/pathology
- Humans
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Mice, Knockout
- Disease Models, Animal
- Interferon-gamma/metabolism
- Receptors, CXCR6/metabolism
- Receptors, CXCR6/genetics
- Chemokine CXCL16/metabolism
- Chemokine CXCL16/genetics
- Herpesvirus 4, Human
- Gene Expression Regulation, Neoplastic
- Signal Transduction
- Salivary Glands/pathology
- Salivary Glands/metabolism
- Myeloid Cells/metabolism
- Cell Line, Tumor
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Junji Koya
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiko Tanigawa
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kota Mizuno
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Haryoon Kim
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Ito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Yuasa
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Yamaguchi
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Saito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Sumito Shingaki
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Mariko Tabata
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koichi Murakami
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Amira Marouf
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Raphaël Liévin
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Sammara Chaubard
- Hematology department, Limoges University Hospital, Limoges, France
| | - Arnaud Jaccard
- Hematology department, Limoges University Hospital, Limoges, France
| | - Olivier Hermine
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
- Hematology Department, Necker Children's Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Olivier Tournilhac
- Department of Hematology, Clermont-Ferrand University Hospital, Clermont Auvergne University, Clermont-Ferrand, France
| | - Gandhi Damaj
- Department of Hematology, Caen University Hospital, Normandy University, Caen, France
| | - Philippe Gaulard
- University Paris Est Créteil, INSERMU955, IMRB, Créteil, France
- Pathology Department, Henri Mondor University Hospital, Assistance Publique -Hôpitaux de Paris (APHP), Créteil, France
| | - Lucile Couronné
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM UMR_S 1163, Imagine Institute, Université Paris Cité, Paris, France
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique -Hôpitaux de Paris (APHP), Paris, France
| | - Teruhito Yasui
- Laboratory of Infectious Diseases and Immunity, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Japan
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | - Koichi Ohshima
- Division of Pathology, Kurume University, Fukuoka, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan.
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
19
|
Wang C, Wang L. Resistance mechanisms and potential therapeutic strategies in relapsed or refractory natural killer/T cell lymphoma. Chin Med J (Engl) 2024; 137:2308-2324. [PMID: 39175124 PMCID: PMC11441923 DOI: 10.1097/cm9.0000000000003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Natural killer/T cell lymphoma (NKTCL) is a malignant tumor originating from NK or T cells, characterized by its highly aggressive and heterogeneous nature. NKTCL is predominantly associated with Epstein-Barr virus infection, disproportionately affecting Asian and Latin American populations. Owing to the application of asparaginase and immunotherapy, clinical outcomes have improved significantly. However, for patients in whom first-line treatment fails, the prognosis is exceedingly poor. Overexpression of multidrug resistance genes, abnormal signaling pathways, epigenetic modifications and active Epstein-Barr virus infection may be responsible for resistance. This review summarized the mechanisms of resistance for NKTCL and proposed potential therapeutic approaches.
Collapse
Affiliation(s)
- Chengji Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
20
|
Zhang X, Liang K, Chen H, Liu L, Liu R, Wang C, Zhang C. Genomic analysis reveals molecular characterization of CD30 + and CD30 - extranodal natural killer/T-cell lymphomas (ENKTLs). Hum Pathol 2024; 152:105650. [PMID: 39187207 DOI: 10.1016/j.humpath.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Extranodal natural killer (NK)/T-cell lymphoma (ENKTL) is prevalent in the Asian population; however, little is known about its molecular characteristics. In this study, we examined the CD30 expression in ENKTLs and then performed whole exome sequencing on ten CD30+ ENKTL and CD30- ENKTL paired samples. CD30 was positive in 55.74% of the ENKTLs. Single nucleotide and insertion/deletion polymorphism analyses revealed that 53.41% of the somatic mutations in CD30+ ENKTLs were shared with CD30- ENKTLs, including mutations in SERPINA9, MEGF6, MUC6, and KDM5A. Frequently mutated genes were primarily associated with cell proliferation and migration, the tumor microenvironment, energy and metabolism, epigenetic modulators, vascular remodeling, and neurological function. PI3K-AKT, cAMP, cGMP-PKG, and AMPK pathways were enriched in both CD30+ and CD30- ENKTLs. Copy number variation analysis identified a unique set of genes in CD30+ ENKTLs, including T-cell receptor genes (TRBV6-1 and TRBV8), cell cycle-related genes (MYC and CCND3), immune-related genes (GPS2, IFNA14, TTC38, and CTSV), and a large number of ubiquitination-related genes (USP32, TRIM23, TRIM2, DUSP7, and UBE2QL1). BCL10 mutation was identified in 6/10 CD30+ ENKTLs and 7/10 CD30- ENKTLs. Immunohistochemical analysis revealed that the expression pattern of BCL10 in normal lymphoid tissues was similar to that of BCL2; however, its expression in ENKTL cells was significantly higher (67.92% vs. 16.98%), implying the potential application of BCL10 inhibitors for treating ENKTLs. These results provide new insights into the genetic characteristics of CD30+ and CD30- ENKTLs, and could facilitate the clinical development of novel therapies for ENKTL.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China; Department of Pathology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Ke Liang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China
| | - Haiyan Chen
- Department of Pathology, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Long Liu
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China
| | - Ruirui Liu
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China
| | - Chunxue Wang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China; Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Cuijuan Zhang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
21
|
Ng CS. From the midfacial destructive drama to the unfolding EBV story: a short history of EBV-positive NK-cell and T-cell lymphoproliferative diseases. Pathology 2024; 56:773-785. [PMID: 39127542 DOI: 10.1016/j.pathol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that has been related to oncogenesis of lymphoid and epithelial malignancies. Although the mechanism of EBV infection of NK and T cells remains enigmatic, it plays a pathogenic role in various EBV+ NK-cell and T-cell lymphoproliferative diseases (LPDs), through promotion of cell activation pathways, inhibition of cell apoptotic pathways, behaving as oncogenes, interacting with host oncogenes or acting epigenetically. The study of NK-cell LPDs, previously hampered by the lack of immunophenotypical and genotypical criteria of NK cells, has become feasible with the recently accepted criteria. EBV+ NK- and T-cell LPDs are mostly of poor prognosis. This review delivers a short history from primeval to recent EBV+ NK- and T-cell LPDs in non-immunocompromised subjects, coupled with increasing interest, and work on the biological and oncogenic roles of EBV.
Collapse
Affiliation(s)
- Chi Sing Ng
- Department of Pathology, Caritas Medical Center, Shamshuipo, Kowloon, Hong Kong.
| |
Collapse
|
22
|
Wu S, Wang H, Yang Q, Liu Z, Du J, Wang L, Chen S, Lu Q, Yang DH. METTL3 regulates M6A methylation-modified EBV-pri-miR-BART3-3p to promote NK/T cell lymphoma growth. Cancer Lett 2024; 597:217058. [PMID: 38880226 DOI: 10.1016/j.canlet.2024.217058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/20/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE N6-methyladenosine (M6A) is the most prevalent epigenetic alteration. Methyltransferase-like 3 (METTL3) is a key player in the control of M6A modification. Methyltransferase promote the processing of mature miRNA in an M6A-dependent manner, thereby participating in disease occurrence and development. However, the regulatory mechanism of M6A in NK/T cell lymphoma (NKTCL) remains unclear. PATIENTS AND METHODS We determined the expression of METTL3 and its correlation with clinicopathological features using qRT-PCR and immunohistochemistry. We evaluated the effects of METTL3 on NKTCL cells using dot blot assay, CCK8 assay and subcutaneous xenograft experiment. We then applied M6A sequencing combined with gene expression omnibus data to screen candidate targets of METTL3. Finally, we investigated the regulatory mechanism of METTL3 in NKTCL by methylated RNA immunoprecipitation and RNA immunoprecipitation (RIP) assays. RESULTS We demonstrated that METTL3 was highly expressed in NKTCL cells and tissues and indicated poor prognosis. The METTL3 expression was associated with NKTCL survival. Functionally, METTL3 promoted the proliferation capability of NKTCL cells in vitro and in vivo. Furthermore, EBV-miR-BART3-3p was identified as the downstream effector of METTL3, and silencing EBV-miR-BART3-3p inhibited the proliferation of NKTCL. Finally, we confirmed that PLCG2 as a target gene of EBVmiR-BART3-3p by relative assays. CONCLUSIONS We identified that METTL3 is significantly up-regulated in NKTCL and promotes NKTCL development. M6A modification contributes to the progression of NKTCL via the METTL3/EBV-miR-BART3-3p/PLCG2 axis. Our study is the first to report that M6A methylation has a critical role in NKTCL oncogenesis, and could be a potential target for NKTCL treatment.
Collapse
Affiliation(s)
- Shaojie Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Hua Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Qixuan Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Zhengyun Liu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Jingwen Du
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Lei Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Shuaijun Chen
- Department of ENT&HN Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Qisi Lu
- Department of Hematology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 515500, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, United States.
| |
Collapse
|
23
|
Wu C, Shi L, Shi K, Wang Z, Zhang Y. A Case Report of Extranodal NK/T-Cell Lymphoma Misdiagnosed as Meibomitis. Ocul Immunol Inflamm 2024; 32:1124-1127. [PMID: 37186811 DOI: 10.1080/09273948.2023.2201326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Extranodal natural killer/T-cell lymphoma (ENKTL) is a rare type of non-Hodgkin's lymphoma. This report presents a patient with the right lower eyelid ENKTL misdiagnosed as meibomitis repeatedly. CASE PRESENTATION A 48-year-old woman developed recurrent redness and swelling in right eyelid for 2 years. Three eyelid mass removal operations were performed in local hospitals, and the pathological examination suggested meibomitis. Physical examination showed an induration in the lateral lower eyelid of the right eye, local defect of the eyelid margin, mild entropion, redness and swelling of the surrounding tissues, and temporal bulbar conjunctiva hyperemia. The eyelid lesion was resected and ENKTL was diagnosed by specific immunohistochemical staining and in situ hybridization. The lymphoma resolved with chemotherapy and radiotherapy. The patient was still alive forty-one months after the last operation. CONCLUSION Our report demonstrates that recurrent eyelid redness and swelling might be a malignant tumor, and clinicians should be vigilant.
Collapse
Affiliation(s)
- Chao Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lu Shi
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ke Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhiqiang Wang
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yulan Zhang
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Miranda RN, Amador C, Chan JKC, Guitart J, Rech KL, Medeiros LJ, Naresh KN. Fifth Edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues: Mature T-Cell, NK-Cell, and Stroma-Derived Neoplasms of Lymphoid Tissues. Mod Pathol 2024; 37:100512. [PMID: 38734236 DOI: 10.1016/j.modpat.2024.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This review focuses on mature T cells, natural killer (NK) cells, and stroma-derived neoplasms in the fifth edition of the World Health Organization classification of hematolymphoid tumors, including changes from the revised fourth edition. Overall, information has expanded, primarily due to advancements in genomic understanding. The updated classification adopts a hierarchical format. The updated classification relies on a multidisciplinary approach, incorporating insights from a diverse group of pathologists, clinicians, and geneticists. Indolent NK-cell lymphoproliferative disorder of the gastrointestinal tract, Epstein-Barr virus-positive nodal T- and NK-cell lymphoma, and several stroma-derived neoplasms of lymphoid tissues have been newly introduced or included. The review also provides guidance on how the fifth edition of the World Health Organization classification of hematolymphoid tumors can be applied in routine clinical practice.
Collapse
Affiliation(s)
- Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Catalina Amador
- Department of Pathology, University of Miami, Miami, Florida
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Joan Guitart
- Department of Dermatology, Northwestern University Feinberg Medical School, Chicago, Illinois
| | - Karen L Rech
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
25
|
Chang YC, Tsai HJ, Huang TY, Su NW, Su YW, Chang YF, Chen CGS, Lin J, Chang MC, Chen SJ, Chen HC, Lim KH, Chang KC, Kuo SH. Analysis of mutation profiles in extranodal NK/T-cell lymphoma: clinical and prognostic correlations. Ann Hematol 2024; 103:2917-2930. [PMID: 38671297 DOI: 10.1007/s00277-024-05698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/03/2024] [Indexed: 04/28/2024]
Abstract
The molecular pathogenesis of extranodal NK/T-cell lymphoma (NKTCL) remains obscured despite the next-generation sequencing (NGS) studies explored on ever larger cohorts in the last decade. We addressed the highly variable mutation frequencies reported among previous studies with comprehensive amplicon coverage and enhanced sequencing depth to achieve higher genomic resolution for novel genetic discovery and comparative mutational profiling of the oncogenesis of NKTCL. Targeted exome sequencing was conducted to interrogate 415 cancer-related genes in a cohort of 36 patients with NKTCL, and a total of 548 single nucleotide variants (SNVs) and 600 Copy number variances (CNVs) were identified. Recurrent amplification of the MCL1 (67%) and PIM1 (56%) genes was detected in a dominant majority of patients in our cohort. Functional mapping of genetic aberrations revealed that an enrichment of mutations in the JAK-STAT signaling pathway, including the cytokine receptor LIFR (copy number loss) upstream of JAK3, STAT3 (activating SNVs), and downstream effectors of MYC, PIM1 and MCL1 (copy number gains). RNA in situ hybridization showed the significant consistence of MCL1 RNA level and copy number of MCL1 gene. We further correlated molecular and clinical parameters with overall survival (OS) of these patients. When correlations were analyzed by univariate followed by multivariate modelling, only copy number loss of LIFR gene and stage (III-IV) were independent prognostic factors of reduced OS. Our findings identified that novel loss of LIFR gene significantly correlated with the adverse clinical outcome of NKTCL patients and provided therapeutic opportunities for this disease through manipulating LIFR.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Oncology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - To-Yu Huang
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Nai-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Ying-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
- Department of Nursing, Nursing, and Management, MacKay Junior College of Medicine, New Taipei City, Taiwan
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Caleb Gon-Shen Chen
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
- Department of Nursing, Nursing, and Management, MacKay Junior College of Medicine, New Taipei City, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Johnson Lin
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
| | - Ming-Chih Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | | | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.
| | - Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| | - Sung-Hsin Kuo
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
26
|
Briercheck EL, Ravishankar S, Ahmed EH, Carías Alvarado CC, Barrios Menéndez JC, Silva O, Solórzano-Ortiz E, Siliézar Tala MM, Stevenson P, Xu Y, Wohns AW, Enriquez-Vera D, Barrionuevo C, Yu SC, Freud AG, Oakes C, Weigel C, Weinstock DM, Klimaszewski HL, Ngankeu A, Mutalima N, Samayoa-Reyes G, Newton R, Rochford R, Valvert F, Natkunam Y, Shustov A, Baiocchi RA, Warren EH. Geographic EBV variants confound disease-specific variant interpretation and predict variable immune therapy responses. Blood Adv 2024; 8:3731-3744. [PMID: 38815238 PMCID: PMC11296253 DOI: 10.1182/bloodadvances.2023012461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
ABSTRACT Epstein-Barr virus (EBV) is a potent carcinogen linked to hematologic and solid malignancies and causes significant global morbidity and mortality. Therapy using allogeneic EBV-specific lymphocytes shows promise in certain populations, but the impact of EBV genome variation on these strategies remains unexplored. To address this, we sequenced 217 EBV genomes, including hematologic malignancies from Guatemala, Peru, Malawi, and Taiwan, and analyzed them alongside 1307 publicly available EBV genomes from cancer, nonmalignant diseases, and healthy individuals across Africa, Asia, Europe, North America, and South America. These included, to our knowledge, the first natural killer (NK)/T-cell lymphoma (NKTCL) EBV genomes reported outside of East Asia. Our findings indicate that previously proposed EBV genome variants specific to certain cancer types are more closely tied to geographic origin than to cancer histology. This included variants previously reported to be specific to NKTCL but were prevalent in EBV genomes from other cancer types and healthy individuals in East Asia. After controlling for geographic region, we did identify multiple NKTCL-specific variants associated with a 7.8-fold to 21.9-fold increased risk. We also observed frequent variations in EBV genomes that affected peptide sequences previously reported to bind common major histocompatibility complex alleles. Finally, we found several nonsynonymous variants spanning the coding sequences of current vaccine targets BALF4, BKRF2, BLLF1, BXLF2, BZLF1, and BZLF2. These results highlight the need to consider geographic variation in EBV genomes when devising strategies for exploiting adaptive immune responses against EBV-related cancers, ensuring greater global effectiveness and equity in prevention and treatment.
Collapse
Affiliation(s)
- Edward L. Briercheck
- Division of Hematology and Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Shashidhar Ravishankar
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Elshafa Hassan Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - César Camilo Carías Alvarado
- Laboratorio de Investigación Biológica en Cáncer, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
| | - Juan Carlos Barrios Menéndez
- Laboratorio de Investigación Biológica en Cáncer, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
| | - Oscar Silva
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford University School of Medicine, Stanford, CA
| | - Elizabeth Solórzano-Ortiz
- Laboratorio de Investigación Biológica en Cáncer, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
| | - Marcos Mauricio Siliézar Tala
- Laboratorio de Investigación Biológica en Cáncer, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
| | - Philip Stevenson
- Division of Clinical Biostatistics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Yuexin Xu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Daniel Enriquez-Vera
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Shan-Chi Yu
- Department of Pathology at National Taiwan University Hospital, Taipei, Taiwan
| | - Aharon G. Freud
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Department of Pathology Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Christopher Oakes
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Christoph Weigel
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Apollinaire Ngankeu
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Nora Mutalima
- Epidemiology and Genetics Unit, Department of Health Sciences, University of York, York, United Kingdom
| | - Gabriela Samayoa-Reyes
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Robert Newton
- Epidemiology and Genetics Unit, Department of Health Sciences, University of York, York, United Kingdom
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Fabiola Valvert
- Laboratorio de Investigación Biológica en Cáncer, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford University School of Medicine, Stanford, CA
| | - Andrei Shustov
- Division of Hematology and Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Robert A. Baiocchi
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Edus H. Warren
- Division of Hematology and Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
27
|
Fan S, Zhou Q, Zhou Z, Wang D, Lin S, Bi H, Wang H, Min H. Acute myeloid leukemia following remission of AIDS-associated extra-nodal NK/T-cell lymphoma. Heliyon 2024; 10:e33622. [PMID: 39091951 PMCID: PMC11292489 DOI: 10.1016/j.heliyon.2024.e33622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Background AIDS-related NK/T-cell lymphoma is a rare subtype of AIDS-related lymphomas, characterized by a poor prognosis and lack of standardized treatment protocols. To date, there have been no reported cases of AIDS-associated NK/T-cell lymphoma in remission followed by treatment-related acute myeloid leukemia (t-AML), where both the lymphoma and AML achieved remission and long-term survival through chemotherapy alone. Case presentation We report a case of a patient diagnosed with AIDS-related extra-nodal NK/T-cell lymphoma (ENKTCL). The patient achieved complete remission after receiving six cycles of chemotherapy, local radiotherapy, and combination antiretroviral therapy (cART). Throughout the follow-up period, the patient continued cART treatment, maintaining an HIV-RNA level below the lower limit of detection. However, 70 months later, the patient developed new symptoms and was subsequently diagnosed with acute myeloid leukemia (AML) M4 subtype. Following the completion of 10 cycles of chemotherapy and ongoing cART, the patient achieved complete remission of AML, with an overall survival time exceeding 103 months from the initial ENKTCL diagnosis. Conclusions This case highlights the effectiveness of chemotherapy combined with cART in the treatment of AIDS-associated NK/T-cell lymphoma and secondary treatment-related leukemia. This approach may serve as a viable option for patients who are not candidates for bone marrow transplantation. Furthermore, this case underscores the importance of long-term follow-up in the management of AIDS-associated malignancies.
Collapse
Affiliation(s)
- Shanshan Fan
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, 650301, China
| | - Qiwen Zhou
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, 650301, China
| | - Zeping Zhou
- Department of Hematology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Danqing Wang
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, 650301, China
| | - Sen Lin
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, 650301, China
| | - Hui Bi
- Department of Hematology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Honghui Wang
- Department of Hematology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Haiyan Min
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, 650301, China
| |
Collapse
|
28
|
Xiang C, Gao L, Tao Q, Chen Z, Zhao S, Liu W. TET2 regulates extranodal NK/T cell lymphoma progression through regulation of DNA methylation. Hematol Oncol 2024; 42:e3295. [PMID: 38979860 DOI: 10.1002/hon.3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024]
Abstract
The biological role of Ten-11 translocation 2 (TET2) and the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in the development of extra-nodal natural killer/T-cell lymphoma (ENKTL) remains unclear. The level of 5mC and 5hmC was detected in 112 cases of ENKTL tissue specimens by immunohistochemical (IHC) staining. Subsequently, TET2 knockdown and the overexpression cell models were constructed in ENKTL cell lines. Biochemical analyses were used to assess proliferation, apoptosis, cell cycle and monoclonal formation in cells treated or untreated with L-Ascorbic acid sodium salt (LAASS). Dot-Blots were used to detect levels of genome 5mC and 5hmC. Additionally, the ILLUMINA 850k methylation chip was used to analyze the changes of TET2 regulatory genes. RNA-Seq was used to profile differentially expressed genes regulated by TET2. The global level of 5hmC was significantly decreased, while 5mC was highly expressed in ENKTL tissue. TET2 protein expression was negatively correlated with the ratio of 5mC/5hmC (p < 0.0001). The 5mC/5hmC status were related to the site of disease, clinical stage, PINK score and Ki-67 index, as well as the 5-year OS. TET2 knockdown prolonged the DNA synthesis period, increased the cloning ability of tumor cells, increased the level of 5mC and decreased the level of 5hmC in ENKTL cells. While overexpression of TET2 presented the opposite effect. Furthermore, treatment of ENKTL cells with LAASS significantly induced ENKTL cell apoptosis. These results suggest that TET2 plays an important role in ENKTL development via regulation of 5mC and 5hmC and may serve as a novel therapeutic target for ENKTL.
Collapse
Affiliation(s)
- Chunxiang Xiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Limin Gao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Tao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zihang Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Klein K, Kollmann S, Hiesinger A, List J, Kendler J, Klampfl T, Rhandawa M, Trifinopoulos J, Maurer B, Grausenburger R, Betram CA, Moriggl R, Rülicke T, Mullighan CG, Witalisz-Siepracka A, Walter W, Hoermann G, Sexl V, Gotthardt D. A lineage-specific STAT5BN642H mouse model to study NK-cell leukemia. Blood 2024; 143:2474-2489. [PMID: 38498036 PMCID: PMC11208297 DOI: 10.1182/blood.2023022655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.
Collapse
Affiliation(s)
- Klara Klein
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Kollmann
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angela Hiesinger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia List
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jonatan Kendler
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thorsten Klampfl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mehak Rhandawa
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Maurer
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christof A. Betram
- Department for Biological Sciences and Pathobiology, Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, Unit for Functional Cancer Genomics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Department for Biological Sciences and Pathobiology and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charles G. Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| | - Agnieszka Witalisz-Siepracka
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | | | | | - Veronika Sexl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Dagmar Gotthardt
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
30
|
Xu L, Xie Z, Jiang H, Wang E, Hu M, Huang Q, Hao X. Identification and evaluation of a six-lncRNA prognostic signature for multiple myeloma. Discov Oncol 2024; 15:204. [PMID: 38831187 PMCID: PMC11147969 DOI: 10.1007/s12672-024-01064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
PURPOSE Multiple myeloma (MM) is the second most common hematologic malignancy, and there is no cure for this disease. This study aimed to explore the prognostic value of long noncoding RNAs (lncRNAs) in MM and to reveal related immune and chemotherapy resistance mechanisms. METHODS In this study, lncRNA profiles from the Multiple Myeloma Research Foundation (MMRF) and Gene Expression Omnibus (GEO) databases were analyzed to identify lncRNAs linked to MM patient survival. A risk assessment model stratified patients into high- and low-risk groups, and survival was evaluated. Additionally, a triple-ceRNA (lncRNA-miRNA-mRNA) network was constructed, and functional analysis was performed. The research also involved immune function analysis and chemotherapy drug sensitivity assessment using oncoPredict and the GDSC dataset. RESULTS We identified 422 lncRNAs significantly associated with overall survival in MM patients and ultimately focused on the 6 with the highest prognostic value. These lncRNAs were used to develop a risk score formula that stratified patients into high- and low-risk groups. Kaplan-Meier analysis revealed shorter survival in high-risk patients. We integrated this lncRNA signature with clinical parameters to construct a nomogram for predicting MM prognosis. Additionally, a triple-ceRNA network was constructed to reveal potential miRNA targets, coding genes related to these lncRNAs and significantly enriched pathways. Immune checkpoint gene expression and immune cell composition were also analyzed in relation to the lncRNA risk score. Finally, using the oncoPredict tool, we observed that high-risk patients exhibited decreased sensitivity to key MM chemotherapeutics, suggesting that lncRNA profiles are linked to chemotherapy resistance.
Collapse
Affiliation(s)
- Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China.
- Tsinghua University, School of Medicine, Beijing, 100084, China.
- Department of Hematology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Zhihao Xie
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China
| | | | - Erpeng Wang
- Nanfang Medical University, Guangzhou, 510515, China
| | - Min Hu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China
| | - Qianlei Huang
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China
| | - Xinbao Hao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China.
- Tsinghua University, School of Medicine, Beijing, 100084, China.
| |
Collapse
|
31
|
Gao Y, He H, Li X, Zhang L, Xu W, Feng R, Li W, Xiao Y, Liu X, Chen Y, Wang X, Bai B, Wu H, Cai Q, Li Z, Li J, Lin S, He Y, Ping L, Huang C, Mao J, Chen X, Zhao B, Huang H. Sintilimab (anti-PD-1 antibody) plus chidamide (histone deacetylase inhibitor) in relapsed or refractory extranodal natural killer T-cell lymphoma (SCENT): a phase Ib/II study. Signal Transduct Target Ther 2024; 9:121. [PMID: 38755119 PMCID: PMC11099117 DOI: 10.1038/s41392-024-01825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Anti-PD-1 antibodies are a favorable treatment for relapsed or refractory extranodal natural killer T cell lymphoma (RR-ENKTL), however, the complete response (CR) rate and the duration of response (DOR) need to be improved. This phase 1b/2 study investigated the safety and efficacy of sintilimab, a fully human anti-PD-1 antibody, plus chidamide, an oral subtype-selective histone deacetylase inhibitor in 38 patients with RR-ENKTL. Expected objective response rate (ORR) of combination treatment was 80%. Patients received escalating doses of chidamide, administered concomitantly with fixed-dose sintilimab in 21-days cycles up to 12 months. No dose-limiting events were observed, RP2D of chidamide was 30 mg twice a week. Twenty-nine patients were enrolled in phase 2. In the intention-to-treat population (n = 37), overall response rate was 59.5% with a complete remission rate of 48.6%. The median DOR, progression-free survival (PFS), and overall survival (OS) were 25.3, 23.2, and 32.9 months, respectively. The most common grade 3 or higher treatment-emergent adverse events (AEs) were neutropenia (28.9%) and thrombocytopenia (10.5%), immune-related AEs were reported in 18 (47.3%) patients. Exploratory biomarker assessment suggested that a combination of dynamic plasma ctDNA and EBV-DNA played a vital prognostic role. STAT3 mutation shows an unfavorable prognosis. Although outcome of anticipate ORR was not achieved, sintilimab plus chidamide was shown to have a manageable safety profile and yielded encouraging CR rate and DOR in RR-ENKTL for the first time. It is a promising therapeutic option for this population.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haixia He
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueping Li
- Department of Hematology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liling Zhang
- Cancer Center, Union Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenyu Li
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yin Xiao
- Cancer Center, Union Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinxiu Liu
- Cancer Center, Union Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yu Chen
- Department of pathology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoxiao Wang
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bing Bai
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huijing Wu
- Department of Medical Oncology, Hubei Cancer Center, Wuhan, China
| | - Qingqing Cai
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhiming Li
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jibin Li
- Department of Clinical Research, Sun Yat-sen University Cancer Center, Guanzhou, China
| | - Suxia Lin
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanxia He
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liqin Ping
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng Huang
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaying Mao
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiujin Chen
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Baitian Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, Guanzhou, China
| | - Huiqiang Huang
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
32
|
Chen G, Zhang L, Wang R, Xie Z. Histone methylation in Epstein-Barr virus-associated diseases. Epigenomics 2024; 16:865-877. [PMID: 38869454 PMCID: PMC11370928 DOI: 10.1080/17501911.2024.2345040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
Epstein-Barr virus (EBV) infection is linked to various human diseases, including both noncancerous conditions like infectious mononucleosis and cancerous diseases such as lymphoma and nasopharyngeal carcinoma. After the initial infection, EBV establishes a lifelong presence and remains latent in specific cells. This latent infection causes changes in the epigenetic marks known as histone methylation. Many studies have examined the role of histone methylation in different EBV-associated diseases, and understanding how EBV affects histone methylation can help us identify potential targets for epigenetic therapies. This review focuses on the research progress made in understanding histone methylation in well-studied EBV-associated diseases, intending to provide insights into potential strategies based on histone methylation to combat EBV-related ailments.
Collapse
Affiliation(s)
- Guanglian Chen
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| |
Collapse
|
33
|
Tralongo P, Bakacs A, Larocca LM. EBV-Related Lymphoproliferative Diseases: A Review in Light of New Classifications. Mediterr J Hematol Infect Dis 2024; 16:e2024042. [PMID: 38882456 PMCID: PMC11178045 DOI: 10.4084/mjhid.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 06/18/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent virus that can be detected in the vast majority of the population. Most people are asymptomatic and remain chronically infected throughout their lifetimes. However, in some populations, EBV has been linked to a variety of B-cell lymphoproliferative disorders (LPDs), such as Burkitt lymphoma, classic Hodgkin lymphoma, and other LPDs. T-cell LPDs have been linked to EBV in part of peripheral T-cell lymphomas, angioimmunoblastic T-cell lymphomas, extranodal nasal natural killer/T-cell lymphomas, and other uncommon histotypes. This article summarizes the current evidence for EBV-associated LPDs in light of the upcoming World Health Organization classification and the 2022 ICC classification.
Collapse
Affiliation(s)
- Pietro Tralongo
- Division of Anatomic Pathology and Histology - Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Arianna Bakacs
- Division of Anatomic Pathology and Histology - Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Luigi Maria Larocca
- Division of Anatomic Pathology and Histology - Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| |
Collapse
|
34
|
Qi SN, Li YX. First-line immunochemotherapy for extranodal natural killer/T cell lymphoma. Lancet Haematol 2024; 11:e311-e313. [PMID: 38554718 DOI: 10.1016/s2352-3026(24)00071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Shu-Nan Qi
- Department of Radiation Oncology, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ye-Xiong Li
- Department of Radiation Oncology, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
35
|
Chen J, Zhou J, Cheng F, Chen D, Guan F, Zhang E, He J, Cai Z, Zhao Y. Role of plasma EBV-DNA load and EBER status on newly diagnosed peripheral T-cell lymphoma. J Cancer Res Clin Oncol 2024; 150:181. [PMID: 38587664 PMCID: PMC11001675 DOI: 10.1007/s00432-024-05702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE To explore the prognostic and therapeutic role of Epstein-Barr Virus (EBV) on peripheral T-cell lymphoma (PTCL). METHODS Totally 262 newly diagnosed PTCL patients who were hospitalized from January 2014 to December 2022 were retrospectively enrolled. Molecular analysis included 31 eligible patients. EBV-encoded RNA (EBER) presence in tumor tissue and EBV DNA levels in patients at baseline (DNA1) and after 4 cycles of chemotherapy (DNA4) were assessed. RESULTS Our findings revealed that the EBER-positive cohort exhibited significant differences compared to counterparts in overall survival (OS, P = 0.047) and progression-free survival (PFS, P = 0.009). Both DNA1 and DNA4 were significantly associated with inferior OS. Multivariate analysis demonstrated that DNA4 independently affected PTCL prognosis for OS (hazard ratio = 5.1617; 95% confidence interval 1.1017-24.1831; P = 0.037). Treatment with the cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) plus azacytidine regimen showed a better OS compared to CHOP or CHOP plus etoposide for patients with partially positive EBER and EBER positive statuses (P = 0.192), although the improvement was not statistically significant. This study delineated the genetic paradigm of PTCL, comparing genetic differences by EBV status and found that EBER partially positive plus positive patients were more likely to have DNMT3A (P = 0.002), RHOAG17V (P = 0.023), and TET2 mutations (P = 0.032). CONCLUSION EBER, DNA1, and DNA4 emerged as sensitive markers for prognosis. CHOP plus azacytidine might present a preferable option for PTCL patients with DNA methylation due to EBV infection.
Collapse
Affiliation(s)
- Jing Chen
- Bone Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jie Zhou
- Bone Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fei Cheng
- Pathology Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Donghe Chen
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fangshu Guan
- Bone Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Enfan Zhang
- Bone Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jingsong He
- Bone Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhen Cai
- Bone Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yi Zhao
- Bone Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
36
|
Chen Z, Huang H, Hong H, Huang H, Weng H, Yu L, Xiao J, Wang Z, Fang X, Yao Y, Yue JX, Lin T. Full-spectral genome analysis of natural killer/T cell lymphoma highlights impacts of genome instability in driving its progression. Genome Med 2024; 16:48. [PMID: 38566223 PMCID: PMC10986005 DOI: 10.1186/s13073-024-01324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Natural killer/T cell lymphoma (NKTCL) is a clinically and genetically heterogeneous disease with poor prognosis. Genome sequencing and mutation characterization provides a powerful approach for patient stratification, treatment target discovery, and etiology identification. However, previous studies mostly concentrated on base-level mutations in primary NKTCL, whereas the large-scale genomic alterations in NKTCL and the mutational landscapes in relapsed/refractory NKTCL remain largely unexplored. METHODS Here, we assembled whole-genome sequencing and whole-exome sequencing data from 163 patients with primary or relapsed/refractory NKTCL and compared their somatic mutational landscapes at both nucleotide and structure levels. RESULTS Our study not only confirmed previously reported common NKTCL mutational targets like STAT3, TP53, and DDX3X but also unveiled several novel high-frequency mutational targets such as PRDM9, DST, and RBMX. In terms of the overall mutational landscape, we observed striking differences between primary and relapsed/refractory NKTCL patient groups, with the latter exhibits higher levels of tumor mutation burden, copy number variants (CNVs), and structural variants (SVs), indicating a strong signal of genomic instability. Complex structural rearrangements such as chromothripsis and focal amplification are also significantly enriched in relapsed/refractory NKTCL patients, exerting a substantial impact on prognosis. Accordingly, we devised a novel molecular subtyping system (i.e., C0-C4) with distinct prognosis by integrating potential driver mutations at both nucleotide and structural levels, which further provides an informative guidance for novel treatments that target these specific driver mutations and genome instability as a whole. CONCLUSIONS The striking differences underlying the mutational landscapes between the primary and relapsed/refractory NKTCL patients highlight the importance of genomic instability in driving the progression of NKTCL. Our newly proposed molecular subtyping system is valuable in assisting patient stratification and novel treatment design towards a better prognosis in the age of precision medicine.
Collapse
Affiliation(s)
- Zegeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - He Huang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Huageng Huang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Huawei Weng
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Le Yu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Zhao Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaojie Fang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuyi Yao
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Tongyu Lin
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
37
|
Chen Z, Huang H, Huang H, Yu L, Weng H, Xiao J, Zou L, Zhang H, Liang C, Zhou H, Guo H, Wang Z, Li Z, Wu T, Zhang H, Wu H, Peng Z, Zhai L, Chen X, Liang Y, Hong H, Lin T. Genomic features reveal potential benefit of adding anti-PD-1 immunotherapy to treat non-upper aerodigestive tract natural killer/T-cell lymphoma. Leukemia 2024; 38:829-839. [PMID: 38378844 DOI: 10.1038/s41375-024-02171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Natural killer/T-cell lymphoma (NKTCL) is a highly heterogeneous disease with a poor prognosis. However, the genomic characteristics and proper treatment strategies for non-upper aerodigestive tract NKTCL (NUAT-NKTCL), a rare subtype of NKTCL, remain largely unexplored. In this study, 1589 patients newly diagnosed with NKTCL at 14 hospitals were assessed, 196 (12.3%) of whom had NUAT-NKTCL with adverse clinical characteristics and an inferior prognosis. By using whole-genome sequencing (WGS) and whole-exome sequencing (WES) data, we found strikingly different mutation profiles between upper aerodigestive tract (UAT)- and NUAT-NKTCL patients, with the latter group exhibiting significantly higher genomic instability. In the NUAT-NKTCL cohort, 128 patients received frontline P-GEMOX chemotherapy, 37 of whom also received anti-PD-1 immunotherapy. The application of anti-PD-1 significantly improved progression-free survival (3-year PFS rate 53.9% versus 17.0%, P = 0.009) and overall survival (3-year OS rate 63.7% versus 29.2%, P = 0.01) in the matched NUAT-NKTCL cohort. WES revealed frequent mutations involving immune regulation and genomic instability in immunochemotherapy responders. Our study showed distinct clinical characteristics and mutational profiles in NUAT-NKTCL compared with UAT patients and suggested adding anti-PD-1 immunotherapy in front-line treatment of NUAT-NKTCL. Further studies are needed to validate the efficacy and related biomarkers for immunochemotherapy proposed in this study.
Collapse
Affiliation(s)
- Zegeng Chen
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - He Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huageng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Le Yu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Huawei Weng
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jian Xiao
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Liqun Zou
- Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huilai Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chaoyong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Hui Zhou
- Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, China
| | - Hongqiang Guo
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Zhao Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhiming Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tao Wu
- The Affiliated Hospital of Guizhou Medical University, Guizhou Cancer Hospital, Guiyang, 550004, China
| | - Hongyu Zhang
- Department of Oncology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, China
| | - Huijing Wu
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Zhigang Peng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Linzhu Zhai
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xinggui Chen
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Tongyu Lin
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
38
|
Attygalle AD, Chan JKC, Coupland SE, Du MQ, Ferry JA, Jong DD, Gratzinger D, Lim MS, Naresh KN, Nicolae A, Ott G, Rosenwald A, Schuh A, Siebert R. The 5th edition of the World Health Organization Classification of mature lymphoid and stromal tumors - an overview and update. Leuk Lymphoma 2024; 65:413-429. [PMID: 38189838 DOI: 10.1080/10428194.2023.2297939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 01/09/2024]
Abstract
The purpose of this review is to give an overview on the conceptual framework and major developments of the upcoming 5th edition of the World Health Organization (WHO) Classification of Haematolymphoid tumours (WHO-HAEM5) and to highlight the most significant changes made in WHO-HAEM5 compared with the revised 4th edition (WHO-HAEM4R) of lymphoid and stromal neoplasms. The changes from the revised 4th edition include the reorganization of entities by means of a hierarchical system that is realized throughout the 5th edition of the WHO classification of tumors of all organ systems, a modification of nomenclature for some entities, the refinement of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities. For the first time, tumor-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms are included in the classification.
Collapse
Affiliation(s)
- Ayoma D Attygalle
- Department of Histopathology, The Royal Marsden Hospital, London, UK
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR China
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, ISMIB, University of Liverpool, Liverpool, UK
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Ming-Qing Du
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Judith A Ferry
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daphne de Jong
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, USA
| | - Megan S Lim
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Kikkeri N Naresh
- Fred Hutchinson Cancer Center, University of Washington, Seattle, USA
| | - Alina Nicolae
- Department of Pathology, University Hospital of Strasbourg, Strasbourg, France
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-UniversitätWürzburg, and Cancer Center Mainfranken, Würzburg, Germany
| | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
39
|
Maeda R, Minowa T, Kato J, Horimoto K, Sato S, Hirohashi Y, Torigoe T, Uhara H. Analysis of the immune microenvironment in the indolent form of primary cutaneous extranodal natural killer/T-cell lymphoma: A case report. J Dermatol 2024; 51:e137-e138. [PMID: 37997464 DOI: 10.1111/1346-8138.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Risako Maeda
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoyuki Minowa
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junji Kato
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohei Horimoto
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sayuri Sato
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
40
|
Xiong J, Cheng S, Gao X, Yu SH, Dai YT, Huang XY, Zhong HJ, Wang CF, Yi HM, Zhang H, Cao WG, Li R, Tang W, Zhao Y, Xu PP, Wang L, Zhao WL. Anti-metabolic agent pegaspargase plus PD-1 antibody sintilimab for first-line treatment in advanced natural killer T cell lymphoma. Signal Transduct Target Ther 2024; 9:62. [PMID: 38448403 PMCID: PMC10917752 DOI: 10.1038/s41392-024-01782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
Natural killer T cell lymphoma (NKTCL) is highly aggressive, with advanced stage patients poorly responding to intensive chemotherapy. To explore effective and safe treatment for newly diagnosed advanced stage NKTCL, we conducted a phase II study of anti-metabolic agent pegaspargase plus PD-1 antibody sintilimab (NCT04096690). Twenty-two patients with a median age of 51 years (range, 24-74) were enrolled and treated with induction treatment of pegaspargase 2500 IU/m2 intramuscularly on day 1 and sintilimab 200 mg intravenously on day 2 for 6 cycles of 21 days, followed by maintenance treatment of sintilimab 200 mg for 28 cycles of 21 days. The complete response and overall response rate after induction treatment were 59% (95%CI, 43-79%) and 68% (95%CI, 47-84%), respectively. With a median follow-up of 30 months, the 2 year progression-free and overall survival rates were 68% (95%CI, 45-83%) and 86% (95%CI, 63-95%), respectively. The most frequently grade 3/4 adverse events were neutropenia (32%, n = 7) and hypofibrinogenemia (18%, n = 4), which were manageable and led to no discontinuation of treatment. Tumor proportion score of PD-L1, peripheral blood high-density lipoprotein cholesterol, and apolipoprotein A-I correlated with good response, while PD-1 on tumor infiltrating lymphocytes and peripheral Treg cells with poor response to pegaspargase plus sintilimab treatment. In conclusion, the chemo-free regimen pegaspargase plus sintilimab was effective and safe in newly diagnosed, advanced stage NKTCL. Dysregulated lipid profile and immunosuppressive signature contributed to treatment resistance, providing an alternative therapeutic approach dual targeting fatty acid metabolism and CTLA-4 in NKTCL.
Collapse
Affiliation(s)
- Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Yun Huang
- Department of Nuclear Medicine, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Juan Zhong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao-Fu Wang
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Mei Yi
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Otolaryngology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guo Cao
- Department of Radiation, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Li
- Department of Hematology, Navy Medical Center of PLA, Shanghai, China
| | - Wei Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
41
|
Ong SY, Zain JM. Aggressive T-cell lymphomas: 2024: Updates on diagnosis, risk stratification, and management. Am J Hematol 2024; 99:439-456. [PMID: 38304959 DOI: 10.1002/ajh.27165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 11/05/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Aggressive T-cell lymphomas continue to have a poor prognosis. There are over 30 different subtypes of peripheral T-cell lymphoma (PTCL), and we are now beginning to understand the differences between the various subtypes beyond histologic variations. MOLECULAR PATHOGENESIS OF VARIOUS SUBTYPES OF PTCL Gene expression profiling and other molecular techniques have enabled deeper understanding of differences in various subtypes as reflected in the latest 5th WHO classification of PTCL. It is becoming increasingly clear that therapeutic approaches that target specific cellular pathways are needed to improve the clinical outcomes of PTCL. TARGETED THERAPIES There are many targeted agents currently in various stages of clinical trials for PTCL that take advantage of the differential expression of specific proteins or receptors in PTCL tumors. This includes the CD30 directed antibody drug conjugate brentuximab vedotin. Other notable targets are phosphatidylinositol 3-kinase inhibitors, histone deacetylase inhibitors, CD25, and chemokine receptor 4. Anaplastic lymphoma kinase (ALK) inhibitors are promising for ALK expressing tumors. IMMUNOTHERAPIES Allogeneic stem cell transplant continues to be the curative therapy for most aggressive subtypes of PTCL. The use of checkpoint inhibitors in the treatment of PTCL is still controversial, with best results seen in cases of extranodal natural killer cell/T-cell lymphoma. Bispecific antibody-based treatments and chimeric antigen receptor cell-based therapies are in clinical trials.
Collapse
Affiliation(s)
- Shin Yeu Ong
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California, USA
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Jasmine M Zain
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California, USA
| |
Collapse
|
42
|
Loap P, Kirova Y, Dendale R. Primary ophthalmic natural killer/T-cell lymphoma: A population-based study. Bull Cancer 2024; 111:310-313. [PMID: 38199833 DOI: 10.1016/j.bulcan.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Ophthalmic lymphomas, a subgroup of extra-nodal lymphomas, have seen an increase in incidence in recent decades. Of these, the NK/T-cell lymphoma (NKTL) subtype is particularly aggressive. Though prevalent mostly in Asian patients, data on ophthalmic NKTL is still limited, especially in the western population. This study aimed to provide an additional analysis of primary ophthalmic NKTL using the Surveillance, Epidemiology, and End Results (SEER) database. METHODS A retrospective analysis was performed on the SEER database covering records from 2000 to 2020. Patients diagnosed with extranodal NKTL originating primarily from an ophthalmic structure were identified. RESULTS Out of 4540 ophthalmic lymphomas registered in the SEER database between 2000 and 2020, 9 cases (0.2%) corresponded to ophthalmic NKTL, occurring in patients with a median age of 67 years. The majority of these patients underwent chemotherapy (88.8%) and radiotherapy (66.6%). The 6-month overall survival (OS) and cancer-specific survival (CSS) were both at 50.8%, dropping significantly at the 2-year follow-up. CONCLUSION Primary orbital NKTL has a notably severe prognosis. An early diagnosis is important due to the aggressive nature of NKTL.
Collapse
Affiliation(s)
- Pierre Loap
- Institut Curie, département d'oncologie radiothérapie, Paris, France.
| | - Youlia Kirova
- Institut Curie, département d'oncologie radiothérapie, Paris, France
| | - Rémi Dendale
- Institut Curie, département d'oncologie radiothérapie, Paris, France
| |
Collapse
|
43
|
Zhang YH, Tao Q, Zhang WY, Zhao S, Liu WP, Gao LM. Histone methyltransferase KMT2D inhibits ENKTL carcinogenesis by epigenetically activating SGK1 and SOCS1. Genes Genomics 2024; 46:203-212. [PMID: 37523130 DOI: 10.1007/s13258-023-01434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Epigenetic alteration plays an essential role in the occurrence and development of extranodal natural killer/T cell lymphoma (ENKTL). Histone methyltransferase (HMT) KMT2D is an epigenetic regulator that plays different roles in different tumors, but its role and mechanism in ENKTL are still unclear. METHODS We performed immunohistochemical staining of 112 ENKTL formalin-fixed paraffin-embedded (FFPE) samples. Then, we constructed KMT2D knockdown cell lines and conducted research on cell biological behavior. Finally, to further investigate KMT2D-mediated downstream genes, ChIP-seq and ChIP -qPCR was performed. RESULTS The low expression of KMT2D was related to a decreased abundance in histone H3 lysine 4 mono- and trimethylation (H3K4me1/3). In KMT2D knockdown YT and NK-YS cells, cell proliferation was faster (P < 0.05), apoptosis was decreased (P < 0.05), the abundance of S phase cells was increased (P < 0.05), and the level of H3K4me1 was decreased. Notably, ChIP-seq revealed two crucial genes and pathways downregulated by KMT2D. CONCLUSIONS KMT2D is a tumor suppressor gene that mediates H3K4me1 and influences ENKTL proliferation and apoptosis by regulating the cell cycle. Moreover, in ENKTL, serum- and glucocorticoid-inducible kinase-1 (SGK1) and suppressor of cytokine signaling-1 (SOCS1) are downstream genes of KMT2D.
Collapse
Affiliation(s)
- Yue-Hua Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qing Tao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wen-Yan Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Sha Zhao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei-Ping Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.
| | - Li-Min Gao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
44
|
Sato S, Ishii M, Tachibana K, Furukawa Y, Toyota T, Kinoshita S, Azusawa Y, Ando J, Ando M. Establishment of ganglioside GD2-expressing extranodal NK/T-cell lymphoma cell line with scRNA-seq analysis. Exp Hematol 2024; 130:104132. [PMID: 38029851 DOI: 10.1016/j.exphem.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Extranodal natural killer (NK)/T-cell lymphoma, nasal type (ENKL), is characterized by Epstein-Barr virus infection and poor prognosis. We established a novel cell line, ENKL-J1, from bone marrow cells of an ENKL patient. We found that ENKL-J1 cells express the ganglioside GD2 (GD2) and that GD2-directed chimeric antigen receptor T cells exhibit cytotoxicity against ENKL-J1 cells, indicating that GD2 would be a suitable target of GD2-expressing ENKL cells. Targeted next-generation sequencing revealed TP53 and TET2 variants in ENKL-J1 cells. Furthermore, single-cell RNA sequencing in ENKL-J1 cells showed high gene-expression levels in the oncogenic signaling pathways JAK-STAT, NF-κB, and MAPK. Genes related to multidrug resistance (ABCC1), tumor suppression (ATG5, CRYBG1, FOXO3, TP53, MGA), anti-apoptosis (BCL2, BCL2L1), immune checkpoints (CD274, CD47), and epigenetic regulation (DDX3X, EZH2, HDAC2/3) also were expressed at high levels. The molecular targeting agents eprenetapopt, tazemetostat, and vorinostat efficiently induced apoptosis in ENKL-J1 cells in vitro. Furthermore, GD2-directed chimeric antigen receptor T cells showed cytotoxicity against ENKL-J1 cells in vivo. These findings not only contribute to understanding the molecular and genomic characteristics of ENKL; they also suggest new treatment options for patients with advanced or relapsed ENKL.
Collapse
Affiliation(s)
- Shoko Sato
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kota Tachibana
- Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiki Furukawa
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tokuko Toyota
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shintaro Kinoshita
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoko Azusawa
- Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan; Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
45
|
Bednarska K, Chowdhury R, Tobin JWD, Swain F, Keane C, Boyle S, Khanna R, Gandhi MK. Epstein-Barr virus-associated lymphomas decoded. Br J Haematol 2024; 204:415-433. [PMID: 38155519 DOI: 10.1111/bjh.19255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Epstein-Barr virus (EBV)-associated lymphomas cover a range of histological B- and T-cell non-Hodgkin and Hodgkin lymphoma subtypes. The role of EBV on B-cell malignant pathogenesis and its impact on the tumour microenvironment are intriguing but incompletely understood. Both the International Consensus Classification (ICC) and 5th Edition of the World Health Organization (WHO-HAEM5) proposals give prominence to the distinct clinical, prognostic, genetic and tumour microenvironmental features of EBV in lymphoproliferative disorders. There have been major advances in our biological understanding, in how to harness features of EBV and its host immune response for targeted therapy, and in using EBV as a method to monitor disease response. In this article, we showcase the latest developments and how they may be integrated to stimulate new and innovative approaches for further lines of investigation and therapy.
Collapse
Affiliation(s)
- Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rakin Chowdhury
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Joshua W D Tobin
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Fiona Swain
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Colm Keane
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Stephen Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maher K Gandhi
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
46
|
Tang CL, Li XZ, Zhou T, Deng CM, Jiang CT, Zhang YM, Liao Y, Wang TM, He YQ, Xue WQ, Jia WH, Zheng XH. EBV DNA methylation profiles and its application in distinguishing nasopharyngeal carcinoma and nasal NK/T-cell lymphoma. Clin Epigenetics 2024; 16:11. [PMID: 38212818 PMCID: PMC10785554 DOI: 10.1186/s13148-024-01624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND As an oncovirus, EBV is associated with multiple cancers, including solid tumors and hematological malignancies. EBV methylation plays an important role in regulating tumor occurrence. However, the EBV methylation profiles in EBV-associated tumor tissues are poorly understood. RESULTS In this study, EBV methylation capture sequencing was conducted in several different tumor tissue samples, including NPC, EBVaGC, lung LELC and parotid LELC. Besides, EBV capture sequencing and following qMSP were performed on nasopharyngeal brushing samples from NPC and nasal NKTCL patients. Our results showed that the EBV genome among different types of tumors displayed specific methylation patterns. Among the four types of tumors from epithelial origin (NPC, EBVaGC, lung LELC and parotid LELC), the most significant differences were found between EBVaGC and the others. For example, in EBVaGC, all CpG sites within 1,44,189-1,45,136 bp of the EBV genome sequence on gene RPMS1 were hyper-methylated compared to the others. Differently, significant differences of EBV CpG sites, particularly those located on gene BILF2, were observed between NPC and nasal NKTCL patients in nasopharyngeal brushing samples. Further, the methylated level of BILF2 was further detected using qMSP, and a diagnostic model distinguishing NPC and nasal NKTCL was established. The AUC of the model was 0.9801 (95% CI 0.9524-1.0000), with the sensitivity and specificity of 98.81% (95% CI 93.63-99.94%) and 76.92% (95% CI 49.74-91.82%), respectively. CONCLUSIONS Our study reveals more clues for further understanding the pathogenesis of EBV, and provides a possibility for distinguishing EBV-related tumor by detecting specific EBV CpG sites.
Collapse
Affiliation(s)
- Cao-Li Tang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Cheng-Tao Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yu-Meng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China.
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, People's Republic of China.
| |
Collapse
|
47
|
Luan Y, Li X, Luan Y, Luo J, Dong Q, Ye S, Li Y, Li Y, Jia L, Yang J, Yang DH. Therapeutic challenges in peripheral T-cell lymphoma. Mol Cancer 2024; 23:2. [PMID: 38178117 PMCID: PMC10765866 DOI: 10.1186/s12943-023-01904-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of hematological malignancies. Compared to our knowledge of B-cell tumors, our understanding of T-cell leukemia and lymphoma remains less advanced, and a significant number of patients are diagnosed with advanced stages of the disease. Unfortunately, the development of drug resistance in tumors leads to relapsed or refractory peripheral T-Cell Lymphomas (r/r PTCL), resulting in highly unsatisfactory treatment outcomes for these patients. This review provides an overview of potential mechanisms contributing to PTCL treatment resistance, encompassing aspects such as tumor heterogeneity, tumor microenvironment, and abnormal signaling pathways in PTCL development. The existing drugs aimed at overcoming PTCL resistance and their potential resistance mechanisms are also discussed. Furthermore, a summary of ongoing clinical trials related to PTCL is presented, with the aim of aiding clinicians in making informed treatment decisions.
Collapse
Affiliation(s)
- Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| | - Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Yunqi Luan
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drugs, Beijing Key Laboratory of Analysis and Evaluation On Chinese Medicine, Beijing Institute for Drug Control, Beijing, 102206, China
| | - Junyu Luo
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Qinzuo Dong
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Shili Ye
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Yuejin Li
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yanmei Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Lu Jia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Jun Yang
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, 200 Old Country Rd, Suite 500, Mineola, NY, 11501, USA.
| |
Collapse
|
48
|
Le MK, Oishi N, Satou A, Miyaoka M, Kawashima I, Mochizuki K, Kirito K, Feldman AL, Nakamura N, Kondo T. Molecular and clinicopathological features of granzyme B-negative extranodal NK/T-cell lymphoma. Hum Pathol 2024; 143:10-16. [PMID: 38000677 DOI: 10.1016/j.humpath.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Extranodal NK/T-cell lymphoma (ENKTL) generally expresses cytotoxic molecules, including granzyme B (GZMB), T-cell-restricted intracellular antigen-1 (TIA-1), and perforin; however, the expression of these molecules varies across cases. We performed gene expression profiling and identified unique biological and clinicopathological features of GZMB-negative ENKTL. We reviewed the clinicopathological characteristics of 71 ENKTL samples. Gene expression profiling on nine ENKTLs using multiplexed, direct, and digital mRNA quantification divided ENKTLs into Groups A (n = 7) and B (n = 2) through hierarchical clustering and t-distributed stochastic neighbor embedding. Group B was characterized by downregulation of genes associated with IL6-JAK-STAT3 signaling and inflammatory responses. GZMB mRNA expression was significantly downregulated in Group B. GZMB protein expression was evaluated with immunohistochemistry in all 71 ENKTLs, and expression data of Tyr705-phosphorylated STAT3 (pSTAT3) and MYC from our previous study was utilized. T-cell receptor gamma (TRG) gene rearrangement in the selected samples was also assessed using PCR. GZMB expression was higher in pSTAT3-positive (p = 0.028) and MYC-positive (p = 0.014) ENKTLs. Eighteen percent (13/71) of all ENKTLs were negative for GZMB (defined by positivity <10 %); patients with GZMB-negative ENKTLs were often in a higher clinical stage (p = 0.016). We observed no other correlations with clinical parameters or TRG rearrangement and no significant association between GZMB expression and survival. In conclusion, GZMB expression is highly heterogeneous in ENKTLs and is associated with the activation of the JAK-STAT3 pathway and higher MYC expression. GZMB-negative ENKTLs correlate with an advanced clinical stage, suggesting the potential utility of GZMB immunohistochemistry as a biomarker of ENKTL.
Collapse
Affiliation(s)
- Minh-Khang Le
- Department of Pathology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Naoki Oishi
- Department of Pathology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Masashi Miyaoka
- Department of Pathology, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Ichiro Kawashima
- Department of Hematology and Oncology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Kunio Mochizuki
- Department of Pathology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Keita Kirito
- Department of Hematology and Oncology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Naoya Nakamura
- Department of Pathology, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
49
|
Oishi N, Ahmed R, Feldman AL. Updates in the Classification of T-cell Lymphomas and Lymphoproliferative Disorders. Curr Hematol Malig Rep 2023; 18:252-263. [PMID: 37870698 PMCID: PMC10834031 DOI: 10.1007/s11899-023-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE OF REVIEW Mature T/NK-cell neoplasms comprise a heterogeneous group of diseases with diverse clinical, histopathologic, immunophenotypic, and molecular features. A clinically relevant, comprehensive, and reproducible classification system for T/NK-cell neoplasms is essential for optimal management, risk stratification, and advancing understanding of these diseases. Two classification systems for lymphoid neoplasms were recently introduced: the 5th edition of World Health Organization classification (WHO-HAEM5) and the 2022 International Consensus Classification (ICC). In this review, we summarize the basic framework and updates in the classification of mature T/NK-cell neoplasms. RECENT FINDINGS WHO-HAEM5 and ICC share basic concepts in classification of T/NK-cell neoplasms, emphasizing integration of clinical presentation, pathology, immunophenotype, and genetics. Major updates in both classifications include unifying nodal T-follicular helper-cell lymphomas into a single entity and establishing EBV-positive nodal T/NK-cell lymphoma as a distinct entity. However, some differences exist in taxonomy, terminology, and disease definitions. The recent classifications of mature T/NK-cell neoplasms are largely similar and provide new insights into taxonomy based on integrated clinicopathologic features.
Collapse
Affiliation(s)
- Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Reham Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
50
|
Xu T, Li Y, Liu Y, Ning B, Wu H, Wei Y. Clinical and prognostic role of sarcopenia based on masticatory muscle index on MR images in patients with extranodal natural killer/T cell lymphoma, nasal type. Ann Hematol 2023; 102:3521-3532. [PMID: 37702822 DOI: 10.1007/s00277-023-05436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Sarcopenia is known to be associated with an increased risk of adverse outcomes in a variety of malignancies, but its impact in extranodal natural killer/T cell lymphoma, nasal type (ENKTL-NT) is unknown. The aim of this study was to explore the prognostic relevance of sarcopenia defined by MRI-based masticatory muscle index in ENKTL-NT patients. A total of 112 patients with newly diagnosed ENKTL-NT who underwent cranial magnetic resonance imaging (MRI) were enrolled. The masticatory skeletal muscle index (M-SMI) was measured based on T2-weighted MR images and sarcopenia was defined by M-SMI<5.5 cm2/ m2. The median M-SMI was 5.47 (4.91-5.96) cm2/m2; 58 were identified with sarcopenia in this cohort. On multivariate analyses, sarcopenia was the only independently risk factor predicting overall survival (HR, 4.590; 95% CI, 1.657-12.715; p = 0.003), progression-free survival (HR, 3.048; 95% CI, 1.515-6.130; p = 0.002), and treatment response (HR, 0.112; 95% CI, 0.042-0.301; p < 0.001). In addition, we found that integrating sarcopenia into prognostic indices could improve the discriminative power of the corresponding original model. Stratification analysis showed that sarcopenia was able to further identify survival differences in patients that could not be distinguished by prognostic models. In summary, our study suggests that sarcopenia defined by MRI-based M-SMI represents a new and routinely applicable prognostic indicator of clinical outcome or predictor of treatment response in ENKTL-NT patients, and may aid in risk stratification and treatment decisions.
Collapse
Affiliation(s)
- Tianzi Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Biao Ning
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Huijing Wu
- Department of Lymphoma Medicine (Breast Cancer & Soft Tissue Tumor Medicine), Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China.
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|