1
|
Chung J, Pierce J, Franklin C, Olson RM, Morrison AR, Amos-Landgraf J. Translating animal models of SARS-CoV-2 infection to vascular, neurological and gastrointestinal manifestations of COVID-19. Dis Model Mech 2025; 18:dmm052086. [PMID: 40195851 PMCID: PMC12010913 DOI: 10.1242/dmm.052086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initiated a global pandemic resulting in an estimated 775 million infections with over 7 million deaths, it has become evident that COVID-19 is not solely a pulmonary disease. Emerging evidence has shown that, in a subset of patients, certain symptoms - including chest pain, stroke, anosmia, dysgeusia, diarrhea and abdominal pain - all indicate a role of vascular, neurological and gastrointestinal (GI) pathology in the disease process. Many of these disease processes persist long after the acute disease has been resolved, resulting in 'long COVID' or post-acute sequelae of COVID-19 (PASC). The molecular mechanisms underlying the acute and systemic conditions associated with COVID-19 remain incompletely defined. Appropriate animal models provide a method of understanding underlying disease mechanisms at the system level through the study of disease progression, tissue pathology, immune system response to the pathogen and behavioral responses. However, very few studies have addressed PASC and whether existing models hold promise for studying this challenging problem. Here, we review the current literature on cardiovascular, neurological and GI pathobiology caused by COVID-19 in patients, along with established animal models of the acute disease manifestations and their prospects for use in PASC studies. Our aim is to provide guidance for the selection of appropriate models in order to recapitulate certain aspects of the disease to enhance the translatability of mechanistic studies.
Collapse
Affiliation(s)
- James Chung
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Julia Pierce
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Department of Research, Ocean State Research Institute, Inc., Providence, RI 02908-4734, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02908, USA
| | - Craig Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Rachel M. Olson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Department of Research, Ocean State Research Institute, Inc., Providence, RI 02908-4734, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02908, USA
| | - James Amos-Landgraf
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Ito T, Suzuki T, Sakai Y, Nishioka K, Itoh Y, Sakamoto K, Ikemura N, Matoba S, Kanda Y, Takagi J, Okamoto T, Tahara K, Hoshino A. Engineered ACE2 decoy in dry powder form for inhalation: A novel therapy for SARS-CoV-2 variants. Mol Ther Methods Clin Dev 2025; 33:101459. [PMID: 40276779 PMCID: PMC12019485 DOI: 10.1016/j.omtm.2025.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
The persistent threat of SARS-CoV-2 and the emergence of new variants has prompted the development of a novel, easily administered modality that can overcome viral mutations. The engineered ACE2 decoy shows neutralizing activity comparable to monoclonal antibodies and is broadly effective against SARS-CoV-2 variants and ACE2-utilizing sarbecoviruses. In addition to intravenous administration, this decoy has shown antiviral efficacy through nebulized aerosol inhalation in murine and primate models, offering a dose-sparing advantage. Clinically, dry powder formulation is ideal for convenience and storage but poses challenges for protein biologics. This study developed a freeze-dried spray formulation of the ACE2 decoy for inhalation. The trehalose and leucine-based excipient maintained neutralizing activity and prevented aggregate formation. The dry powder showed aerodynamic distribution from bronchi to alveoli, aiding protection against SARS-CoV-2 infections. Neutralizing activity, structural stability, and powder dispersibility were preserved after 6 months of storage. In a mouse model of SARS-CoV-2 infection, significant reductions in viral replication and lung pathology were observed with intratracheal administration 24 h post-infection. The ACE2 decoy retained activity against recent JN.1 and current KP.3 strains, confirming its robust efficacy against viral mutations. This ACE2 decoy powder inhalant is a self-administered, next-generation treatment addressing the ongoing immune-evading evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Takaaki Ito
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Tatsuya Suzuki
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Keisuke Nishioka
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yumi Itoh
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kentarou Sakamoto
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Nariko Ikemura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Toru Okamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Laboratory of Nanofiber Technology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
3
|
Chakraborty C, Lo YH, Bhattacharya M, Das A, Wen ZH. Looking beyond the origin of SARS-CoV-2: Significant strategic aspects during the five-year journey of COVID-19 vaccine development. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102527. [PMID: 40291378 PMCID: PMC12032352 DOI: 10.1016/j.omtn.2025.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
It has been five years since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we are also approaching the five-year mark of the COVID-19 pandemic. The vaccine is a significant weapon in combating infectious diseases like SARS-CoV-2. Several vaccines were developed against SARS-CoV-2, and they demonstrated efficacy and safety during these five years. The rapid development of multiple next-generation vaccine candidates in different platforms with very little time is the success story of the vaccine development endeavor. This remarkable success of rapid vaccine development is a new paradigm for fast vaccine development that might help develop infectious diseases and fight against the pandemic. With the completion of five years since the beginning of SARS-CoV-2 origin, we are looking back on the five years and reviewing the milestones, vaccine platforms, animal models, clinical trials, successful collaborations, vaccine safety, real-world effectiveness, and challenges. Lessons learned during these five years will help us respond to public health emergencies and to fight the battle against future pandemics.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan
- Department of Nursing, Meiho University, Neipu Township, Pingtung County 91200, Taiwan
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Arpita Das
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, #70 Lien-Hai Road, Kaohsiung 804201, Taiwan
- National Museum of Marine Biology & Aquarium, # 2 Houwan Road, Checheng, Pingtung 94450, Taiwan
| |
Collapse
|
4
|
Barthez M, Xue B, Zheng J, Wang Y, Song Z, Mu WC, Wang CL, Guo J, Yang F, Ma Y, Wei X, Ye C, Sims N, Martinez-Sobrido L, Perlman S, Chen D. SIRT2 suppresses aging-associated cGAS activation and protects aged mice from severe COVID-19. Cell Rep 2025; 44:115562. [PMID: 40220296 DOI: 10.1016/j.celrep.2025.115562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/11/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Aging-associated vulnerability to coronavirus disease 2019 (COVID-19) remains poorly understood. Here, we show that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected aged mice lacking SIRT2, a cytosolic NAD+-dependent deacetylase, develop more severe disease and show increased mortality, while treatment with an NAD+ booster, 78c, protects aged mice from lethal infection. Mechanistically, we demonstrate that SIRT2 modulates the acetylation of cyclic GMP-AMP synthase (cGAS), an immune sensor for cytosolic DNA, and suppresses aging-associated cGAS activation and inflammation. Furthermore, we show that SARS-CoV-2 infection-induced inflammation is mediated at least in part by ORF3a, which triggers mtDNA release and cGAS activation. Collectively, our study reveals a molecular basis for aging-associated susceptibility to COVID-19 and suggests therapeutic approaches to protect aged populations from severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marine Barthez
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Biyun Xue
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Yifei Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zehan Song
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei-Chieh Mu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chih-Ling Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiayue Guo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fanghan Yang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuze Ma
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xuetong Wei
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nicholas Sims
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Yeung ST, Damani-Yokota P, Thannickal SA, Bartnicki E, Bernier ED, Barnett CR, Khairallah C, Duerr R, Noval MG, Segal LN, Stapleford KA, Khanna KM. Nerve- and airway-associated interstitial macrophages mitigate SARS-CoV-2 pathogenesis via type I interferon signaling. Immunity 2025:S1074-7613(25)00164-5. [PMID: 40286790 DOI: 10.1016/j.immuni.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/27/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Despite vaccines, rapidly mutating viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to threaten human health due to an impaired immunoregulatory pathway and a hyperactive immune response. Our understanding of the local immune mechanisms used by tissue-resident macrophages to safeguard the host from excessive inflammation during SARS-CoV-2 infection remains limited. Here, we found that nerve- and airway-associated interstitial macrophages (NAMs) are required to control mouse-adapted SARS-CoV-2 (MA-10) infection. Control mice restricted lung viral distribution and survived infection, whereas NAM depletion enhanced viral spread and inflammation and led to 100% mortality. Mechanistically, type I interferon receptor (IFNAR) signaling by NAMs was critical for limiting inflammation and viral spread, and IFNAR deficiency in CD169+ macrophages mirrored NAM-depleted outcomes and abrogated their expansion. These findings highlight the essential protective role of NAMs in regulating viral spread and inflammation, offering insights into SARS-CoV-2 pathogenesis and underscoring the importance of NAMs in mediating host immunity and disease tolerance.
Collapse
Affiliation(s)
- Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Payal Damani-Yokota
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sara A Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eric Bartnicki
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eduardo D Bernier
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Clea R Barnett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Camille Khairallah
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ralf Duerr
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, Vaccine Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maria G Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Leopoldo N Segal
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
6
|
Gheeraert A, Leroux V, Mias-Lucquin D, Karami Y, Vuillon L, Chauvot de Beauchêne I, Devignes MD, Rivalta I, Maigret B, Chaloin L. Subtle Changes at the RBD/hACE2 Interface During SARS-CoV-2 Variant Evolution: A Molecular Dynamics Study. Biomolecules 2025; 15:541. [PMID: 40305276 PMCID: PMC12024731 DOI: 10.3390/biom15040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
The SARS-CoV-2 Omicron variants show different behavior compared to the previous variants, especially with respect to the Delta variant, which promotes a lower morbidity despite being much more contagious. In this perspective, we performed molecular dynamics (MD) simulations of the different spike RBD/hACE2 complexes corresponding to the WT, Delta and four Omicron variants. Carrying out a comprehensive analysis of residue interactions within and between the two partners allowed us to draw the profile of each variant by using complementary methods (PairInt, hydrophobic potential, contact PCA). PairInt calculations highlighted the residues most involved in electrostatic interactions, which make a strong contribution to the binding with highly stable interactions between spike RBD and hACE2. Apolar contacts made a substantial and complementary contribution in Omicron with the detection of two hydrophobic patches. Contact networks and cross-correlation matrices were able to detect subtle changes at point mutations as the S375F mutation occurring in all Omicron variants, which is likely to confer an advantage in binding stability. This study brings new highlights on the dynamic binding of spike RBD to hACE2, which may explain the final persistence of Omicron over Delta.
Collapse
Affiliation(s)
- Aria Gheeraert
- Laboratory of Mathematics (LAMA), CNRS, University of Savoie Mont Blanc, 73370 Le Bourget-du-Lac, France; (A.G.); (L.V.)
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 40129 Bologna, Italy;
| | - Vincent Leroux
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Dominique Mias-Lucquin
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Yasaman Karami
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Laurent Vuillon
- Laboratory of Mathematics (LAMA), CNRS, University of Savoie Mont Blanc, 73370 Le Bourget-du-Lac, France; (A.G.); (L.V.)
| | - Isaure Chauvot de Beauchêne
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Marie-Dominique Devignes
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 40129 Bologna, Italy;
- ENS, CNRS, Laboratoire de Chimie UMR 5182, 69364 Lyon, France
| | - Bernard Maigret
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
7
|
M Bader S, Calleja DJ, Devine SM, Kuchel NW, Lu BGC, Wu X, Birkinshaw RW, Bhandari R, Loi K, Volpe R, Khakham Y, Au AE, Blackmore TR, Mackiewicz L, Dayton M, Schaefer J, Scherer L, Stock AT, Cooney JP, Schoffer K, Maluenda A, Kleeman EA, Davidson KC, Allison CC, Ebert G, Chen G, Katneni K, Klemm TA, Nachbur U, Georgy SR, Czabotar PE, Hannan AJ, Putoczki TL, Tanzer M, Pellegrini M, Lechtenberg BC, Charman SA, Call MJ, Mitchell JP, Lowes KN, Lessene G, Doerflinger M, Komander D. A novel PLpro inhibitor improves outcomes in a pre-clinical model of long COVID. Nat Commun 2025; 16:2900. [PMID: 40180914 PMCID: PMC11969009 DOI: 10.1038/s41467-025-57905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has highlighted the vulnerability of a globally connected population to zoonotic viruses. The FDA-approved coronavirus antiviral Paxlovid targets the essential SARS-CoV-2 main protease, Mpro. Whilst effective in the acute phase of a COVID infection, Paxlovid cannot be used by all patients, can lead to viral recurrence, and does not protect against post-acute sequelae of COVID-19 (PASC), commonly known as long COVID, an emerging significant health burden that remains poorly understood and untreated. Alternative antivirals that are addressing broader patient needs are urgently required. We here report our drug discovery efforts to target PLpro, a further essential coronaviral protease, for which we report a novel chemical scaffold that targets SARS-CoV-2 PLpro with low nanomolar activity, and which exhibits activity against PLpro of other pathogenic coronaviruses. Our lead compound shows excellent in vivo efficacy in a mouse model of severe acute disease. Importantly, our mouse model recapitulates long-term pathologies matching closely those seen in PASC patients. Our lead compound offers protection against a range of PASC symptoms in this model, prevents lung pathology and reduces brain dysfunction. This provides proof-of-principle that PLpro inhibition may have clinical relevance for PASC prevention and treatment going forward.
Collapse
Affiliation(s)
- Stefanie M Bader
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Dale J Calleja
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Shane M Devine
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| | - Nathan W Kuchel
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Bernadine G C Lu
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Xinyu Wu
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Richard W Birkinshaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Reet Bhandari
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Katie Loi
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Rohan Volpe
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Yelena Khakham
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Amanda E Au
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Timothy R Blackmore
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Merle Dayton
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jan Schaefer
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Lena Scherer
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Angus T Stock
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - James P Cooney
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Kael Schoffer
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ana Maluenda
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Elizabeth A Kleeman
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Kathryn C Davidson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Cody C Allison
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Gregor Ebert
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Theresa A Klemm
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ueli Nachbur
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Smitha Rose Georgy
- Anatomic Pathology - Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Maria Tanzer
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW, Australia
| | - Bernhard C Lechtenberg
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Melissa J Call
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Jeffrey P Mitchell
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Kym N Lowes
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Guillaume Lessene
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Australia.
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia.
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| | - David Komander
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
8
|
Hashimoto S, Hirai T, Ueda K, Kakihara M, Tokunoh N, Ono C, Matsuura Y, Takayama K, Yoshioka Y. Hypertonic intranasal vaccines gain nasal epithelia access to exert strong immunogenicity. Mucosal Immunol 2025:S1933-0219(25)00032-7. [PMID: 40180151 DOI: 10.1016/j.mucimm.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/27/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Intranasal vaccines potentially offer superior protection against viral infections compared with injectable vaccines. The immunogenicity of intranasal vaccines including adenovirus vector (AdV), has room for improvement, while few options are available for safe execution. In this study, we demonstrate that modifying a basic parameter of vaccine formulation, i.e., osmolarity, can significantly enhance the immunogenicity of intranasal vaccines. Addition of glycerol to AdV intranasal vaccine solutions, unlike other viscous additives, enhanced systemic and mucosal antibodies as well as resident memory T cells in the nasal tissues, which could protect nasal tissue and the lungs against influenza virus. While viscous glycerol could not prolong intranasal retention of solutes, it promoted AdV infection of nasal epithelial cells by facilitating AdV access to the nasal epithelial cell. The enhanced immunogenicity was induced by the hypertonicity of vaccine preparations and sodium chloride, glucose, and mannitol demonstrated the capacity to enhance immunogenicity. Moreover, hypertonic glycerol enhanced the immunogenicity of adjuvanted subunit intranasal vaccines, but not subunit vaccines without adjuvant or injectable vaccines. Overall, the delivery of intranasal vaccines to nasal epithelial cells could be improved through a simple approach, potentially resulting in stronger immunogenicity for certain vaccines.
Collapse
Affiliation(s)
- Soichiro Hashimoto
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, The University of Osaka, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, The University of Osaka, Osaka, Japan
| | - Toshiro Hirai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, The University of Osaka, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, The University of Osaka, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Osaka, Japan; Center for Advanced Modalities and DDS, The University of Osaka, Osaka, Japan.
| | - Koki Ueda
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, The University of Osaka, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, The University of Osaka, Osaka, Japan
| | - Mako Kakihara
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, The University of Osaka, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, The University of Osaka, Osaka, Japan
| | - Nagisa Tokunoh
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, The University of Osaka, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research, The University of Osaka, Osaka, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, The University of Osaka, Osaka, Japan
| | - Yoshiharu Matsuura
- Center for Advanced Modalities and DDS, The University of Osaka, Osaka, Japan; Center for Infectious Disease Education and Research, The University of Osaka, Osaka, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, The University of Osaka, Osaka, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, The University of Osaka, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, The University of Osaka, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Osaka, Japan; Center for Advanced Modalities and DDS, The University of Osaka, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, The University of Osaka, Osaka, Japan; Global Center for Medical Engineering and Informatics, The University of Osaka, Osaka, Japan.
| |
Collapse
|
9
|
Liu H, Ramirez BM, Wong TS, Weiss CM, Lloyd KCK, Gong Q, Coffey LL. Severe Acute Respiratory Syndrome Coronavirus 2 Variant Infection Dynamics and Pathogenesis in Transgenic K18-h ACE2 and Inbred Immunocompetent C57BL/6J Mice. Viruses 2025; 17:500. [PMID: 40284943 PMCID: PMC12031173 DOI: 10.3390/v17040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
The global impact of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), persists in part due to the emergence of new variants. Understanding variant-specific infection dynamics and pathogenesis in murine models is crucial for identifying phenotypic changes and guiding the development of countermeasures. To address the limitations of earlier studies that investigated only a few variants or used small sample sizes, we evaluated clinical disease, infection kinetics, viral titers, cellular localization, and histopathologic changes in the lungs and brains of transgenic B6.Cg-Tg(K18-ACE2)2Prlmn/J ("K18") and corresponding genetic control (C57BL/6J) mice expressing human angiotensin-converting enzyme 2 (hACE2). Six SARS-CoV-2 variants were assessed: B.1 (WA1-like), alpha, beta, delta, omicron, and omicron XBB.1.5, using cohorts of ≥18 mice. Following intranasal inoculation with B.1, alpha, beta, or delta variants, K18 mice experienced rapid weight loss and reached euthanasia criteria by 5-6 days post-inoculation (dpi). In contrast, K18 mice inoculated with both omicron variants recovered to their starting weight within 4-6 dpi. Infectious SARS-CoV-2 was detected in the oropharynx at 1 and2 dpi, in the lungs at 2, 4, and 6 dpi, and in the brain at 4 and 6 dpi for all variants except omicron. SARS-CoV-2 nucleoprotein was detected, and interstitial pneumonia of varying severity was observed in K18 mice infected with all variants. Brain lesions were identified in mice infected with the B.1, beta, and delta variants 6 dpi. As K18 mice express hACE2 in the brain-a feature not present in humans-we also compared infection dynamics of three variants to those of a mouse-adapted WA1 strain in C57BL/6J mice lacking the human ACE2 gene. C57BL/6J mice did not experience lethal disease, exhibited milder pneumonia, and had no evidence of neuroinvasion despite similar infection kinetics to K18 mice. These findings demonstrate contrasting phenotypes across the two models and reduced tropism and pathology of omicron compared to earlier variants in both models. This comprehensive analysis of SARS-CoV-2 variants in two mouse models provides valuable insights for model and variant selection for future studies.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Brianna M. Ramirez
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA; (B.M.R.); (Q.G.)
| | - Talia S. Wong
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Christopher M. Weiss
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Kevin C. K. Lloyd
- Mouse Biology Program, University of California, Davis, CA 95616, USA
- Department of Surgery, School of Medicine, University of California, Davis, CA 95616, USA
| | - Qizhi Gong
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA; (B.M.R.); (Q.G.)
| | - Lark L. Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
10
|
Abbad A, Yueh J, Yellin T, Singh G, Carreño JM, Clark JJ, Muramatsu H, Tiwari S, Bhavsar D, Alzua GP, Pardi N, Simon V, Krammer F. Co-administration of seasonal quadrivalent influenza and COVID-19 vaccines leads to enhanced immune responses to influenza virus and reduced immune responses to SARS-CoV-2 in naive mice. Vaccine 2025; 50:126825. [PMID: 39921982 DOI: 10.1016/j.vaccine.2025.126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
The ongoing co-circulation of influenza viruses and severe acute respiratory disease coronavirus 2 (SARS-CoV-2) presents significant public health challenges. Vaccination is a pivotal tool to tackle infections and severe disease. Administering both the influenza and coronavirus disease 2019 (COVID-19) vaccines simultaneously could simplify vaccine delivery and is already practice in several countries. In this study, we assessed the protective efficacy and humoral immune responses elicited by concomitant administration of a quadrivalent influenza vaccine (QIV) and the Pfizer-BioNTech mRNA COVID-19 vaccine (BNT162b2) in naïve BALB/c mice. We included three ways of co-administration: a) both vaccines at contralateral limbs, b) both vaccines at ipsilateral limbs and c) admixture of the two vaccines before administration. The last regimen was included since it has been shown that the lipid nanoparticles used for mRNA vaccines can also have an adjuvant effect on protein-based antigens. Notably, co-administration of QIV and COVID-19 mRNA vaccine led to significantly higher hemagglutinin inhibiting (HAI) and binding antibody titers compared to QIV only vaccination, especially in the ipsilateral and admixed groups. Conversely, ipsilateral administration and administration of an admixed vaccine had a slightly negative impact on SARS-CoV-2 binding and neutralization titers. These findings support the hypothesis that the co-administration of QIV and COVID-19 mRNA vaccines can induce robust antibody responses, which are indicative of protective immune responses against both infectious agents.
Collapse
Affiliation(s)
- Anass Abbad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Yueh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Temima Yellin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordan J Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sachchidanand Tiwari
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Disha Bhavsar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Garazi Peña Alzua
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Majumdar S, Weaver JD, Pontejo SM, Minai M, Lu X, Gao JL, Holmes G, Johnson R, Zhang H, Kelsall BL, Farber JM, Alves DA, Murphy PM. Cxcl10 is protective during mouse-adapted SARS-CoV-2 infection. J Leukoc Biol 2025; 117:qiae252. [PMID: 39607906 PMCID: PMC11953068 DOI: 10.1093/jleuko/qiae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 11/30/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, remains endemic worldwide. Circulating levels of the chemokine CXCL10 are strongly positively associated with poor outcome; however, its precise role in SARS-CoV-2 pathogenesis and its suitability as a therapeutic target have remained undefined. Here, we challenged mice genetically deficient in Cxcl10 with a mouse-adapted strain of SARS-CoV-2. Infected male, but not female, Cxcl10-/- mice displayed increased mortality compared to wild type controls. Histopathological damage, inflammatory gene induction, and virus load in the lungs of male mice were not broadly influenced by Cxcl10 deficiency. However, accumulation of B and T lymphocytes in the lung parenchyma of infected mice was reduced in the absence of Cxcl10. Thus, during acute SARS-CoV-2 infection, Cxcl10 regulates lymphocyte infiltration in lung and confers protection against mortality. Our preclinical model results do not support targeting CXCL10 therapeutically in severe COVID-19.
Collapse
Affiliation(s)
- Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Joseph D Weaver
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sergio M Pontejo
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, United States
| | - Xinping Lu
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Gibran Holmes
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Reed Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Hongwei Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Brian L Kelsall
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Joshua M Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Derron A Alves
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, United States
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
12
|
Suzuki Y, Miyazaki T, Ida Y, Suzuki T, Itoh Y, Nakao S, Kondo K, Kubara K, Nishioka K, Muto H, Watari R, Hirayama T, Kakiuchi D, Sato S, Inoue S, Uemoto Y, Mukai Y, Hoshino A, Okamoto T, Matsui J. In vivo production of engineered ACE2 decoy protects lungs from SARS-CoV-2 infection. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102467. [PMID: 40027884 PMCID: PMC11869860 DOI: 10.1016/j.omtn.2025.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants repeatedly evade the immune system within short periods. Thus, next-generation therapeutics that are resistant to mutations and can be rapidly supplied to individuals in an emergency are required. Here, we designed an mRNA encoding an engineered angiotensin-converting enzyme 2 (ACE2) decoy, 3N39v4, composed of high-affinity ACE2 and a human immunoglobulin G Fc domain. The 3N39v4-encoded mRNA was encapsulated in lipid nanoparticles for efficient in vivo delivery. Systemic delivery of mRNA in mice resulted in a dose-dependent expression of 3N39v4 in plasma (20-261 μg/mL at 1-10 mg/kg) with sufficient tolerability. An improved pharmacokinetic profile of the produced protein was compared to injection of the 3N39v4 protein. In vivo-expressed 3N39v4 exhibited broad neutralization against nine SARS-CoV-2 variants and other sarbecoviruses, including the currently circulating Omicron subvariants JN.1 and BA.2.86. A single intravenous injection of 3N39v4-encoded mRNA resulted in a robust, dose-dependent improvement in the outcomes of mice infected with SARS-CoV-2. The mRNA treatment in monkeys produced 3N39v4 in sera, which inhibited the replication of the authentic viruses. The rapid development of mRNA drugs highlights the potential of mRNA-encoded ACE2 decoys in emergencies to combat diverse SARS-CoV-2 variants, including future variants.
Collapse
Affiliation(s)
- Yuta Suzuki
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Takayuki Miyazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Yoko Ida
- Kobe Research Laboratories, Eisai Co., Ltd., Kobe 650-0047, Japan
| | - Tatsuya Suzuki
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yumi Itoh
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shuto Nakao
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Keita Kondo
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Keisuke Nishioka
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroki Muto
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Ryuji Watari
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | | | - Dai Kakiuchi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Shinya Sato
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Satoshi Inoue
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Yoshifumi Uemoto
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Yohei Mukai
- Kobe Research Laboratories, Eisai Co., Ltd., Kobe 650-0047, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toru Okamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Junji Matsui
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| |
Collapse
|
13
|
Thieulent CJ, Balasuriya UBR, Tseng A, Crossland NA, Stephens JM, Dittmar W, Staszkiewicz J, Richt JA, Carossino M. Diabetes exacerbates SARS-CoV-2 replication through ineffective pulmonary interferon responses, delayed cell-mediated immunity, and disruption of leptin signaling. Front Cell Infect Microbiol 2025; 15:1513687. [PMID: 40125513 PMCID: PMC11925909 DOI: 10.3389/fcimb.2025.1513687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 03/25/2025] Open
Abstract
Comorbidities, including obesity and type 2 diabetes mellitus (T2DM), are associated with increased disease severity and mortality following SARS-CoV-2 infection. Here, we investigated virus-host interactions under the effects of these comorbidities in diet-induced obesity (DIO) and leptin receptor-deficient (T2DM) mice following infection with SARS-CoV-2. DIO mice, as well as their lean counterparts, showed limited susceptibility to SARS-CoV-2 infection. In contrast, T2DM mice showed exacerbated pulmonary SARS-CoV-2 replication and delayed viral clearance associated with down-regulation of innate and adaptative immune gene signatures, ineffective type I interferon response, and delayed SARS-CoV-2-specific cell-mediated immune responses. While T2DM mice showed higher and prolonged SARS-CoV-2-specific immunoglobulin isotype responses compared to their lean counterparts, neutralizing antibody levels were equivalent. By silencing the leptin receptor in vitro using a human alveolar epithelial cell line, we observed an increase in SARS-CoV-2 replication and type I interferons. Altogether, our data provides for the first time evidence that disruption of leptin receptor signaling leading to obesity and T2DM induces altered type I interferon and cell-mediated responses against SARS-CoV-2, mediating increased viral replication and delayed clearance. These data shed light on the alteration of the innate immune pathway in the lung using in-depth transcriptomic analysis and on adaptive immune responses to SARS-CoV-2 under T2DM conditions. Finally, this study provides further insight into this risk factor aggravating SARS-CoV-2 infection and understanding the underlying cellular mechanisms that could help identify potential intervention points for this at-risk population.
Collapse
MESH Headings
- Animals
- COVID-19/immunology
- COVID-19/virology
- COVID-19/metabolism
- Mice
- Virus Replication
- Receptors, Leptin/metabolism
- Receptors, Leptin/genetics
- SARS-CoV-2/immunology
- Signal Transduction
- Humans
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Obesity/immunology
- Leptin/metabolism
- Lung/immunology
- Lung/virology
- Immunity, Cellular
- Interferon Type I/metabolism
- Antibodies, Neutralizing/immunology
- Disease Models, Animal
- Mice, Inbred C57BL
- Male
- Immunity, Innate
- Mice, Knockout
Collapse
Affiliation(s)
- Côme J. Thieulent
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Anna Tseng
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Nicholas A. Crossland
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Wellesley Dittmar
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jaroslaw Staszkiewicz
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
14
|
Smith S, Rayner JO, Kim JH. Fluorofurimazine, a novel NanoLuc substrate, enhances real-time tracking of influenza A virus infection without altering pathogenicity in mice. Microbiol Spectr 2025; 13:e0268924. [PMID: 39868868 PMCID: PMC11878008 DOI: 10.1128/spectrum.02689-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity. In this study, we assessed fluorofurimazine (FFz), a novel substrate with improved water solubility and bioavailability, for tracking influenza A virus (IAV) replication in mice. Our findings demonstrate that FFz substantially enhances detection sensitivity in both respiratory organs and brain tissue without increasing toxicity, enabling more precise and sustained monitoring of IAV replication. In vitro, FFz generated higher photon flux at lower concentrations compared to furimazine, translating into superior in vivo sensitivity with reduced toxicity. Crucially, FFz did not alter the pathogenicity of IAV in mice, even at sublethal infectious doses, reinforcing its suitability for use in BLI-based viral pathogenicity studies. These results suggest that combining FFz with NanoLuc provides a more effective and less toxic approach for real-time tracking of viral infections in preclinical models. IMPORTANCE Monitoring viral infections in living animals is a valuable approach for understanding how viruses replicate and cause disease. This study focuses on bioluminescent influenza A virus infection in a mouse model and evaluates fluorofurimazine, a new substrate that enhances bioluminescence imaging. Fluorofurimazine allows researchers to monitor viral spread more effectively than the traditional substrate, furimazine, which is often toxic and less reliable. It offers better sensitivity and lower toxicity, enabling longer and more accurate tracking of viral replication in the lungs and even the brain. Importantly, fluorofurimazine does not alter the pathogenicity of the virus, providing an unaltered representation of the infection process. This advancement has the potential to significantly improve how scientists study bioluminescent viral infections and evaluate antiviral drugs and vaccines, making it a valuable tool for research on influenza and other respiratory viruses.
Collapse
Affiliation(s)
- Steven Smith
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Jonathan O. Rayner
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Jin H. Kim
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
15
|
Baazim H, Koyuncu E, Tuncman G, Burak MF, Merkel L, Bahour N, Karabulut ES, Lee GY, Hanifehnezhad A, Karagoz ZF, Földes K, Engin I, Erman AG, Oztop S, Filazi N, Gul B, Ceylan A, Cinar OO, Can F, Kim H, Al-Hakeem A, Li H, Semerci F, Lin X, Yilmaz E, Ergonul O, Ozkul A, Hotamisligil GS. FABP4 as a therapeutic host target controlling SARS-CoV-2 infection. EMBO Mol Med 2025; 17:414-440. [PMID: 39843629 PMCID: PMC11904229 DOI: 10.1038/s44321-024-00188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Host metabolic fitness is a critical determinant of infectious disease outcomes. Obesity, aging, and other related metabolic disorders are recognized as high-risk disease modifiers for respiratory infections, including coronavirus infections, though the underlying mechanisms remain unknown. Our study highlights fatty acid-binding protein 4 (FABP4), a key regulator of metabolic dysfunction and inflammation, as a modulator of SARS-CoV-2 pathogenesis, correlating strongly with disease severity in COVID-19 patients. We demonstrate that loss of FABP4 function, by genetic or pharmacological means, reduces SARS-CoV-2 replication and disrupts the formation of viral replication organelles in adipocytes and airway epithelial cells. Importantly, FABP4 inhibitor treatment of infected hamsters diminished lung viral titers, alleviated lung damage and reduced collagen deposition. These findings highlight the therapeutic potential of targeting host metabolism in limiting coronavirus replication and mitigating the pathogenesis of infection.
Collapse
Affiliation(s)
- Hatoon Baazim
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Gürol Tuncman
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - M Furkan Burak
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lea Merkel
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nadine Bahour
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ezgi Simay Karabulut
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Grace Yankun Lee
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alireza Hanifehnezhad
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara, Türkiye
| | | | | | - Ilayda Engin
- Ankara University, Biotechnology Institute, Ankara, Türkiye
| | | | - Sidika Oztop
- Ankara Medipol University, School of Medicine, Department of Medical Biology, Ankara, Türkiye
| | - Nazlican Filazi
- Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Virology, Hatay, Türkiye
| | - Buket Gul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara, Türkiye
| | - Ahmet Ceylan
- Ankara University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Ankara, Türkiye
| | - Ozge Ozgenc Cinar
- Ankara University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Ankara, Türkiye
| | - Fusun Can
- Koç University, School of Medicine, Department of Infectious Diseases, Istanbul, Türkiye
| | - Hahn Kim
- Crescenta Biosciences Inc, Irvine, CA, USA
- Princeton University Small Molecule Screening Center, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Hui Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Erkan Yilmaz
- Ankara University, Biotechnology Institute, Ankara, Türkiye
| | - Onder Ergonul
- Koç University, School of Medicine, Department of Infectious Diseases, Istanbul, Türkiye
| | - Aykut Ozkul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara, Türkiye.
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard-MIT Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
16
|
Heydemann L, Ciurkiewicz M, Störk T, Zdora I, Hülskötter K, Gregor KM, Michaely LM, Reineking W, Schreiner T, Beythien G, Volz A, Tuchel T, Meyer Zu Natrup C, Schünemann LM, Clever S, Henneck T, von Köckritz-Blickwede M, Schaudien D, Rohn K, Schughart K, Geffers R, Kaneko MK, Kato Y, Gross C, Amanakis G, Pavlou A, Baumgärtner W, Armando F. Respiratory long COVID in aged hamsters features impaired lung function post-exercise with bronchiolization and fibrosis. Nat Commun 2025; 16:2080. [PMID: 40021627 PMCID: PMC11871369 DOI: 10.1038/s41467-025-57267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Long-term consequences of SARS-CoV-2 infection affect millions of people and strain public health systems. The underlying pathomechanisms remain unclear, necessitating further research in appropriate animal models. This study aimed to characterize the trajectory of lung regeneration over 112 days in the male hamster model by combining morphological, transcriptomic and functional readouts. We demonstrate that in the acute phase, SARS-CoV-2 Delta-infected, male, aged hamsters show a severe impairment of lung function at rest. In the chronic phase, similar impairments persisted up to 7 weeks post-infection but were only evident after exercise on a rodent treadmill. The male hamster model recapitulates chronic pulmonary fibrotic changes observed in many patients with respiratory long COVID, but lacks extra-pulmonary long-term lesions. We show that sub-pleural and interstitial pulmonary fibrosis as well as alveolar bronchiolization persist until 112 dpi. Interestingly, CK8+ alveolar differentiation intermediate (ADI) cells are becoming less prominent in the alveolar proliferation areas from 28 dpi on. Instead, CK14+ airway basal cells and SCGB1A1+ club cells, expressing cell proliferation markers, mainly populate alveolar bronchiolization areas at later time-points. We postulate that pulmonary fibrosis and SCGB1A1+ club cell-rich areas of alveolar bronchiolization represent potential risk factors for other diseases in long-COVID survivors.
Collapse
Affiliation(s)
- Laura Heydemann
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | | | - Theresa Störk
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | | | | | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Asisa Volz
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Tamara Tuchel
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Christian Meyer Zu Natrup
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Lisa-Marie Schünemann
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Sabrina Clever
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Timo Henneck
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
- Department of Biochemistry, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
- Department of Biochemistry, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Data Management, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute of Virology Münster, University of Münster, Münster, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research (HZI), Brunswick, Germany
| | - Mika K Kaneko
- Department of antibody drug development, Tohoku University, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of antibody drug development, Tohoku University, Sendai, Miyagi, Japan
| | - Carina Gross
- Department of Cardiology and Angiology, Hanover Medical School (MHH), Hanover, Germany
| | - Georgios Amanakis
- Department of Cardiology and Angiology, Hanover Medical School (MHH), Hanover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany.
| | - Federico Armando
- Pathology Unit, Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
17
|
Sims AC, Schäfer A, Okuda K, Leist SR, Kocher JF, Cockrell AS, Hawkins PE, Furusho M, Jensen KL, Kyle JE, Burnum-Johnson KE, Stratton KG, Lamar NC, Niccora CD, Weitz KK, Smith RD, Metz TO, Waters KM, Boucher RC, Montgomery SA, Baric RS, Sheahan TP. Dysregulation of lung epithelial cell homeostasis and immunity contributes to Middle East respiratory syndrome coronavirus disease severity. mSphere 2025; 10:e0095124. [PMID: 39882872 PMCID: PMC11853001 DOI: 10.1128/msphere.00951-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Coronaviruses (CoV) emerge suddenly from animal reservoirs to cause novel diseases in new hosts. Discovered in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in camels in the Middle East and is continually causing local outbreaks and epidemics. While all three newly emerging human CoVs from the past 20 years (SARS-CoV, SARS-CoV-2, and MERS-CoV) cause respiratory disease, each CoV has unique host interactions that drive differential pathogeneses. To better understand the virus and host interactions driving lethal MERS-CoV infection, we performed a longitudinal multi-omics analysis of sublethal and lethal MERS-CoV infection in mice. Significant differences were observed in body weight loss, virus titers, and acute lung injury among lethal and sub-lethal virus doses. Virus-induced apoptosis of type I and II alveolar epithelial cells suggests that loss or dysregulation of these key cell populations was a major driver of severe disease. Omics analysis suggested differential pathogenesis was multi-factorial with clear differences among innate and adaptive immune pathways as well as those that regulate lung epithelial homeostasis. Infection of mice lacking functional T and B cells showed that adaptive immunity was important in controlling viral replication but also increased pathogenesis. In summary, we provide a high-resolution host response atlas for MERS-CoV infection and disease severity. Multi-omics studies of viral pathogenesis offer a unique opportunity to not only better understand the molecular mechanisms of disease but also to identify genes and pathways that can be exploited for therapeutic intervention all of which is important for our future pandemic preparedness.IMPORTANCEEmerging coronaviruses like SARS-CoV, SARS-CoV-2, and MERS-CoV cause a range of disease outcomes in humans from an asymptomatic, moderate, and severe respiratory disease that can progress to death but the factors causing these disparate outcomes remain unclear. Understanding host responses to mild and life-threatening infections provides insight into virus-host networks within and across organ systems that contribute to disease outcomes. We used multi-omics approaches to comprehensively define the host response to moderate and severe MERS-CoV infection. Severe respiratory disease was associated with dysregulation of the immune response. Key lung epithelial cell populations that are essential for lung function get infected and die. Mice lacking key immune cell populations experienced greater virus replication but decreased disease severity implicating the immune system in both protective and pathogenic roles in response to MERS-CoV. These data could be utilized to design new therapeutic strategies targeting specific pathways that contribute to severe disease.
Collapse
Affiliation(s)
- Amy C. Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jacob F. Kocher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adam S. Cockrell
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Padraig E. Hawkins
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Minako Furusho
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kara L. Jensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer E. Kyle
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | | | - Kelly G. Stratton
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Natalie C. Lamar
- AI & Data Analytics Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Carrie D. Niccora
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Karl K. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie A. Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Lee C, Khan R, Mantsounga CS, Sharma S, Pierce J, Amelotte E, Butler CA, Farinha A, Parry C, Caballero O, Morrison JA, Uppuluri S, Whyte JJ, Kennedy JL, Zhang X, Choudhary G, Olson RM, Morrison AR. IL-1β-driven NF-κB transcription of ACE2 as a Mechanism of Macrophage Infection by SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.24.630260. [PMID: 39763770 PMCID: PMC11703209 DOI: 10.1101/2024.12.24.630260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Coronavirus disease 2019 (COVID-19), caused by infection with the enveloped RNA betacoronavirus, SARS-CoV-2, led to a global pandemic involving over 7 million deaths. Macrophage inflammatory responses impact COVID-19 severity; however, it is unclear whether macrophages are infected by SARS-CoV-2. We sought to identify mechanisms regulating macrophage expression of ACE2, the primary receptor for SARS-CoV-2, and to determine if macrophages are susceptible to productive infection. We developed a humanized ACE2 (hACE2) mouse whereby hACE2 cDNA was cloned into the mouse ACE2 locus under control of the native promoter. We validated the susceptibility of hACE2 mice to SARS-CoV-2 infection relative to wild-type mice and an established K18-hACE2 model of acute fulminating disease. Intranasal exposure to SARS-CoV-2 led to pulmonary consolidations with cellular infiltrate, edema, and hemorrhage, consistent with pneumonia, yet unlike the K18-hACE2 model, hACE2 mice survived and maintained stable weight. Infected hACE2 mice also exhibited a unique plasma chemokine, cytokine, and growth factor inflammatory signature relative to K18-hACE2 mice. Infected hACE2 mice demonstrated evidence of viral replication in infiltrating lung macrophages, and infection of macrophages in vitro revealed a transcriptional profile indicative of altered RNA and ribosomal processing machinery as well as activated cellular antiviral defense. Macrophage IL-1β-driven NF-κB transcription of ACE2 was an important mechanism of dynamic ACE2 upregulation, promoting macrophage susceptibility to infection. Experimental models of COVID-19 that make use of native hACE2 expression will allow for mechanistic insight into factors that can either promote host resilience or increase susceptibility to worsening severity of infection.
Collapse
Affiliation(s)
- Cadence Lee
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Rachel Khan
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Chris S. Mantsounga
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Sheila Sharma
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Julia Pierce
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Elizabeth Amelotte
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Celia A. Butler
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Andrew Farinha
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Crystal Parry
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Olivya Caballero
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Jeremi A. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Saketh Uppuluri
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Jeffrey J. Whyte
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri Division of Research, Innovation and Impact, Columbia, Missouri, USA
| | - Joshua L. Kennedy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
- Cardiovascular Research Center, Lifespan Cardiovascular Research Institute, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Rachel M. Olson
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri Division of Research, Innovation and Impact, Columbia, Missouri, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
- Lead contact and corresponding author
| |
Collapse
|
19
|
Zhang Y, Chen H, Li Y, Luo C, Zhu Y, Zhou X, Wang R, He J, Guo H, Xu X, Qiu M, Li J. Animal Models for Long COVID: Current Advances, Limitations, and Future Directions. J Med Virol 2025; 97:e70237. [PMID: 39981885 DOI: 10.1002/jmv.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
Long COVID (LC) represents a chronic, systemic, and often disabling condition that poses a significant ongoing threat to public health. Foundational scientific studies are needed to unravel the underlying mechanisms, with the ultimate goal of developing effective preventative and therapeutic strategies. Therefore, there is an urgent demand for animal models that can accurately replicate the clinical features of LC. This review integrates clinical epidemiological data to summarize the pathological changes in extrapulmonary systems involved in LC. Additionally, it critically examines the capacity of existing animal models, including nonhuman primates, genetically modified mice, and Syrian hamsters, to exhibit enduring postinfection symptoms that align with human clinical manifestations, and identifies key areas requiring further development. The objective is to offer insights that will aid in the development of next-generation animal models, thereby accelerating our understanding of how acute respiratory viral infections transition into chronic conditions, and ensuring preparedness for future pandemics.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Huan Chen
- Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Yumeng Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Chenxi Luo
- The Fifth Camp of Cadet Brigade, School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunkai Zhu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiaoyang Zhou
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Ruixuan Wang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Jiuxiang He
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Hongxia Guo
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiaofeng Xu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Minyue Qiu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Denz PJ, Papa JL, McFadden MI, Rao PR, Roettger J, Forero A, Yount JS. Accelerated Adaptation of SARS-CoV-2 Variants in Mice Lacking IFITM3 Preserves Distinct Tropism and Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635150. [PMID: 39975176 PMCID: PMC11838348 DOI: 10.1101/2025.01.27.635150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Here we investigated whether interferon induced transmembrane protein 3 (IFITM3), a key antiviral protein deficient in certain human populations, affects interspecies adaptation of SARS-CoV-2. We found that SARS-CoV-2 Beta and Omicron variants passaged through IFITM3-deficient versus wild type mice exhibit enhanced replication and pathogenesis in this new host species. Enhancements associated with amino acid substitutions in the viral genome, suggesting that IFITM3 limits accumulation of adaptive mutations. Mouse-adapted viruses enabled comparative studies of variants in mice. Beta caused lung dysfunction and altered cilia-associated gene programs, consistent with broad viral antigen distribution in lungs. Omicron, which shows low pathogenicity and upper respiratory tract preference in humans, replicated to high nasal titers while showing restrained spatial distribution in lungs and diminished lung inflammatory responses compared to Beta. Our findings demonstrate that IFITM3 deficiency accelerates coronavirus adaptation and reveal that intrinsic SARS-CoV-2 variant traits shape tropism, immunity, and pathogenesis across hosts. HIGHLIGHTS IFITM3 is a critical barrier to SARS-CoV-2 adaptation in new host speciesMouse-adapted SARS-CoV-2 strains enable comparative pathologyOmicron favors nose and large airways, leading to mild lung pathologyBeta exhibits broad lung replication, driving severe inflammation and dysfunction.
Collapse
|
21
|
Dunai C, Iyer SS, Murphy WJ. Editorial: Immune studies of SARS-CoV2 and vaccines using preclinical modeling. Front Immunol 2025; 15:1548624. [PMID: 39885992 PMCID: PMC11779612 DOI: 10.3389/fimmu.2024.1548624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025] Open
Affiliation(s)
- Cordelia Dunai
- Department of Dermatology, University of California, Davis, Davis, CA, United States
- Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom
| | - Smita S. Iyer
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- California National Primate Research Center, University of California, Davis (UC), Davis, CA, United States
| | - William J. Murphy
- Department of Dermatology, University of California, Davis, Davis, CA, United States
- Department of Internal Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
22
|
Stegeman SK, Kourko O, Amsden H, Pellizzari Delano IE, Mamatis JE, Roth M, Colpitts CC, Gee K. RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm? J Innate Immun 2025; 17:126-153. [PMID: 39820070 PMCID: PMC11845175 DOI: 10.1159/000543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs. BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs.
Collapse
Affiliation(s)
- Sophia K Stegeman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Heather Amsden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madison Roth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
23
|
Vanderheiden A, Diamond MS. Animal Models of Non-Respiratory, Post-Acute Sequelae of COVID-19. Viruses 2025; 17:98. [PMID: 39861887 PMCID: PMC11768974 DOI: 10.3390/v17010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Post-acute sequelae of COVID-19 (PASC) are a diverse set of symptoms and syndromes driven by dysfunction of multiple organ systems that can persist for years and negatively impact the quality of life for millions of individuals. We currently lack specific therapeutics for patients with PASC, due in part to an incomplete understanding of its pathogenesis, especially for non-pulmonary sequelae. Here, we discuss three animal models that have been utilized to investigate PASC: non-human primates (NHPs), hamsters, and mice. We focus on neurological, gastrointestinal, and cardiovascular PASC and highlight advances in mechanistic insight that have been made using these animal models, as well as discussing the sequelae that warrant continued and intensive research.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Xiao F, Hu J, Xu M, Wang D, Shen X, Zhang H, Miao J, Cai H, Wang J, Liu Y, Xiao S, Zhu L. Animal Models for Human-Pathogenic Coronavirus and Animal Coronavirus Research. Viruses 2025; 17:100. [PMID: 39861889 PMCID: PMC11768759 DOI: 10.3390/v17010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Coronavirus epidemics have posed a serious threat to both human and animal health. To combat emerging infectious diseases caused by coronaviruses, various animal infection models have been developed and applied in research, including non-human primate models, ferret models, hamster models, mouse models, and others. Moreover, new approaches have been utilized to develop animal models that are more susceptible to infection. These approaches include using viral delivery methods to induce the expression of viral receptors in mouse tissues and employing gene-editing techniques to create genetically modified mice. This has led to the successful establishment of infection models for multiple coronaviruses, significantly advancing related research. In contrast, livestock and pets that can be infected by animal coronaviruses provide valuable insights when used as infection models, enabling the collection of accurate clinical data through the analysis of post-infection pathological features. However, despite the potential insights, there is a paucity of research data pertaining to these infection models. In this review, we provide a detailed overview of recent progress in the development of animal models for coronaviruses that cause diseases in both humans and animals and suggest ways in which animal models can be adapted to further enhance their value in research.
Collapse
Affiliation(s)
- Fenglian Xiao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
- Traditional Chinese Medicine and Health School, Nanfang College, Guangzhou 510970, China
| | - Jincheng Hu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Minsheng Xu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Di Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Xiaoyan Shen
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Hua Zhang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Jie Miao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Haodong Cai
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Jihui Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Yaqing Liu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Shan Xiao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
| | - Longchao Zhu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; (F.X.); (J.H.); (M.X.); (D.W.); (X.S.); (H.Z.); (J.M.); (H.C.); (J.W.); (Y.L.)
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
25
|
Grin PM, Baid K, de Jesus HCR, Kozarac N, Bell PA, Jiang SZ, Kappelhoff R, Butler GS, Leborgne NGF, Pan C, Pablos I, Machado Y, Vederas JC, Kim H, Benarafa C, Banerjee A, Overall CM. SARS-CoV-2 3CL pro (main protease) regulates caspase activation of gasdermin-D/E pores leading to secretion and extracellular activity of 3CL pro. Cell Rep 2024; 43:115080. [PMID: 39673710 DOI: 10.1016/j.celrep.2024.115080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/27/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024] Open
Abstract
SARS-CoV-2 3C-like protease (3CLpro or Mpro) cleaves the SARS-CoV-2 polyprotein and >300 intracellular host proteins to enhance viral replication. By lytic cell death following gasdermin (GSDM) pore formation in cell membranes, antiviral pyroptosis decreases 3CLpro expression and viral replication. Unexpectedly, 3CLpro and nucleocapsid proteins undergo unconventional secretion from infected cells via caspase-activated GSDMD/E pores in the absence of cell lysis. Bronchoalveolar lavage fluid of wild-type SARS-CoV-2-infected mice contains 3CLpro, which decreases in Gsdmd-/-Gsdme-/- mice. We identify new 3CLpro cut-sites in GSDMD at LQ29↓30SS, which blocks pore formation by 3CLpro cleavage at LH270↓N lying adjacent to the caspase activation site (NFLTD275↓G). Cleavage inactivation of GSDMD prevents excessive pore formation, thus countering antiviral pyroptosis and increasing 3CLpro secretion. Extracellular 3CLpro retains activity in serum, dampens platelet activation and aggregation, and inactivates antiviral interferon-λ1. Thus, in countering gasdermin pore formation and pyroptosis in SARS-CoV-2 infection, 3CLpro is secreted with extracellular pathological sequelae.
Collapse
Affiliation(s)
- Peter M Grin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kaushal Baid
- Vaccine and Infectious Diseases Organization, Department of Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Hugo C R de Jesus
- Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nedim Kozarac
- Institute for Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathology, Vetsuisse Faculty, University of Bern, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Peter A Bell
- Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Steven Z Jiang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Reinhild Kappelhoff
- Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Georgina S Butler
- Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nathan G F Leborgne
- Institute for Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathology, Vetsuisse Faculty, University of Bern, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - Christina Pan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Isabel Pablos
- Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Yoan Machado
- Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr. NW, Edmonton, AB T6G 2N4, Canada
| | - Hugh Kim
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Charaf Benarafa
- Department of Infectious Diseases and Pathology, Vetsuisse Faculty, University of Bern, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
| | - Arinjay Banerjee
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Vaccine and Infectious Diseases Organization, Department of Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Simcoe Hall, 1 King's College Cir., Toronto, ON M5S 1A8, Canada.
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Yonsei Frontier Lab, Yonsei University, 50 Yonsei-ro, Sudaemoon-ku, Seoul 03722, Republic of Korea.
| |
Collapse
|
26
|
Takahashi T, Amarbayasgalan S, Ueno S, Sugiura Y, Dorjsuren E, Shimizu K, Kamitani W. Lethal model for respiratory syncytial virus infection using C57BL/6 mice. J Virol 2024; 98:e0177224. [PMID: 39498987 DOI: 10.1128/jvi.01772-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/07/2024] Open
Abstract
Respiratory syncytial virus (RSV) infection is a major infectious disease affecting public health. Infants and elderly infected with RSV can develop severe respiratory symptoms. A mouse model mimicking human RSV infection could be useful in elucidating the pathogenesis of RSV. However, previous mouse models did not adequately mimic the pathophysiology of human patients. We attempted to establish a new mouse-adapted RSV strain via serial passaging of mice. We rescued the MP11 virus (which had one non-synonymous substitution in each of the F, G, and L genes) through serial passaging in mice. The MP11 virus was inoculated into mice to evaluate whether it had adapted to the mouse. Viral RNA levels in the lungs of 25-week-old mice infected with MP11 virus were higher than those in the lungs of mice infected with A2 virus. There was a high infiltration of inflammatory cells and high expression of several inflammatory cytokines (IFN-γ, CCL2, TNF-α, and IL-6) in the MP11 virus-infected lungs. Furthermore, the MP11 virus can also cause lethal pneumonia in mice via high-concentration inoculation. These results indicated that the MP11 virus is a more mouse-adapted strain than the A2 virus. We generated a recombinant MP11 virus (rMP11) using reverse genetics. The rMP11 virus could grow in the lungs of mice, similar to the parent MP11 virus. In conclusion, we successfully established a new mouse-adapted strain, MP11, and reverse genetics for this strain. These MP11 and rMP11 viruses could contribute to mouse experiments aimed at elucidating RSV pathogenesis. IMPORTANCE A mouse model of respiratory syncytial virus (RSV) infection is useful for fundamental research aimed at developing antiviral drugs. Previous mouse models of RSV infection were unable to adequately mimic the pathophysiology of human patients due to the low amplification efficiency of this virus in the mouse lung. Furthermore, mice other than BALB/C mice are difficult to use for the RSV infectious model. We established a new mouse-adapted RSV strain, MP11. The MP11 virus can cause severe pneumonia in C57BL/6 mice and efficiently replicate and induce inflammation in the lung. Therefore, C57BL/6 mice can be used for RSV infection experiments using MP11 virus. We established a reverse genetics system for the MP11 virus using our mouse model. This system enables detailed analyses of the MP11 virus, such as functional analysis of each viral protein. Our study provides techniques that can advance fundamental research in elucidating the pathogenesis of RSV infections.
Collapse
Affiliation(s)
- Tatsuki Takahashi
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi-shi, Gunma, Japan
| | - Sodbayasgalan Amarbayasgalan
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi-shi, Gunma, Japan
| | - Shiori Ueno
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi-shi, Gunma, Japan
| | - Yoshiro Sugiura
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi-shi, Gunma, Japan
| | - Enkhjin Dorjsuren
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi-shi, Gunma, Japan
| | - Kenta Shimizu
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi-shi, Gunma, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi-shi, Gunma, Japan
| |
Collapse
|
27
|
Topper MJ, Guarnieri JW, Haltom JA, Chadburn A, Cope H, Frere J, An J, Borczuk A, Sinha S, Kim J, Park J, Butler D, Meydan C, Foox J, Bram Y, Richard SA, Epsi NJ, Agan B, Chenoweth JG, Simons MP, Tribble D, Burgess T, Dalgard C, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Beigel K, Widjaja GA, Janssen KA, Lie T, Murdock DG, Angelin A, Soto Albrecht YE, Olali AZ, Cen Z, Dybas J, Priebe W, Emmett MR, Best SM, Kelsey Johnson M, Trovao NS, Clark KB, Zaksas V, Meller R, Grabham P, Schisler JC, Moraes-Vieira PM, Pollett S, Mason CE, Syrkin Wurtele E, Taylor D, Schwartz RE, Beheshti A, Wallace DC, Baylin SB. Lethal COVID-19 associates with RAAS-induced inflammation for multiple organ damage including mediastinal lymph nodes. Proc Natl Acad Sci U S A 2024; 121:e2401968121. [PMID: 39602262 PMCID: PMC11626201 DOI: 10.1073/pnas.2401968121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Lethal COVID-19 outcomes are attributed to classic cytokine storm. We revisit this using RNA sequencing of nasopharyngeal and 40 autopsy samples from patients dying of SARS-CoV-2. Subsets of the 100 top-upregulated genes in nasal swabs are upregulated in the heart, lung, kidney, and liver, but not mediastinal lymph nodes. Twenty-two of these are "noncanonical" immune genes, which we link to components of the renin-angiotensin-activation-system that manifest as increased fibrin deposition, leaky vessels, thrombotic tendency, PANoptosis, and mitochondrial dysfunction. Immunohistochemistry of mediastinal lymph nodes reveals altered architecture, excess collagen deposition, and pathogenic fibroblast infiltration. Many of the above findings are paralleled in animal models of SARS-CoV-2 infection and human peripheral blood mononuclear and whole blood samples from individuals with early and later SARS-CoV-2 variants. We then redefine cytokine storm in lethal COVID-19 as driven by upstream immune gene and mitochondrial signaling producing downstream RAAS (renin-angiotensin-aldosterone system) overactivation and organ damage, including compromised mediastinal lymph node function.
Collapse
Affiliation(s)
- Michael J. Topper
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Joseph W. Guarnieri
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Jeffrey A. Haltom
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Amy Chadburn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Henry Cope
- School of Medicine, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Justin Frere
- Icahn School of Medicine, Mount Sinai, New York, NY10023
| | - Julia An
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | | | | | | | | | | | - Cem Meydan
- Weill Cornell Medicine, New York, NY10065
| | | | - Yaron Bram
- Weill Cornell Medicine, New York, NY10065
| | - Stephanie A. Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Nusrat J. Epsi
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Brian Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Josh G. Chenoweth
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Mark P. Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Timothy Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD20814
| | | | | | | | | | | | | | | | | | - Katherine Beigel
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Gabrielle A. Widjaja
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kevin A. Janssen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Timothy Lie
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Alessia Angelin
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Yentli E. Soto Albrecht
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The University of Pennsylvania, Philadelphia, PA19104
| | - Arnold Z. Olali
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Zimu Cen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Joseph Dybas
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Waldemar Priebe
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Monroe Dunaway Anderson Cancer Center, Houston, TX77030
| | - Mark R. Emmett
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Medical Branch, Galveston, TX77555
| | - Sonja M. Best
- COVID-19 International Research Team, Medford, MA02155
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT59840
| | - Maya Kelsey Johnson
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Nidia S. Trovao
- COVID-19 International Research Team, Medford, MA02155
- Fogarty International Center, NIH, Bethesda, MD20892
| | - Kevin B. Clark
- COVID-19 International Research Team, Medford, MA02155
- Cures Within Reach, Chicago, IL60602
- Champions Service, Computational Sciences Support Network, Multi-Tier Assistance, Training, and Computational Help Track, NSF's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA02155
- Center for Translational Data Science, University of Chicago, Chicago, IL60615
- Clever Research Lab, Springfield, IL62704
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA02155
- Morehouse School of Medicine, Atlanta, GA30310
| | - Peter Grabham
- COVID-19 International Research Team, Medford, MA02155
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY19103
| | - Jonathan C. Schisler
- COVID-19 International Research Team, Medford, MA02155
- University of North Carolina, Chapel Hill, NC27599
| | - Pedro M. Moraes-Vieira
- COVID-19 International Research Team, Medford, MA02155
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil13083-862
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Christopher E. Mason
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
- New York Genome Center, New York, NY10013
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA02155
- Center for Metabolic Biology, Bioinformatics and Computational Biology, and Genetics Development, and Cell Biology, Iowa State University, Ames, IA50011
- Center for Bioinformatics and Computational Biology Iowa State University, Ames, IA50011
- Center for Genetics Development, and Cell Biology Iowa State University, Ames, IA50011
| | - Deanne Taylor
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Robert E. Schwartz
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA02155
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Blue Marble Space Institute of Science, Seattle, WA98104
- McGowan Institute for Regenerative Medicine and Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA15219
| | - Douglas C. Wallace
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA19104
| | - Stephen B. Baylin
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Van Andel Institute, Grand Rapids, MI49503
| |
Collapse
|
28
|
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence 2024; 15:2316438. [PMID: 38362881 PMCID: PMC10878030 DOI: 10.1080/21505594.2024.2316438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
29
|
Zhang Z, Zhou L, Liu Q, Zheng Y, Tan X, Huang Z, Guo M, Wang X, Chen X, Liang S, Li W, Song K, Yan K, Li J, Li Q, Zhang Y, Yang S, Cai Z, Dai M, Xian Q, Shi ZL, Xu K, Lan K, Chen Y. The lethal K18-hACE2 knock-in mouse model mimicking the severe pneumonia of COVID-19 is practicable for antiviral development. Emerg Microbes Infect 2024; 13:2353302. [PMID: 38753462 PMCID: PMC11132709 DOI: 10.1080/22221751.2024.2353302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Animal models of COVID-19 facilitate the development of vaccines and antivirals against SARS-CoV-2. The efficacy of antivirals or vaccines may differ in different animal models with varied degrees of disease. Here, we introduce a mouse model expressing human angiotensin-converting enzyme 2 (ACE2). In this model, ACE2 with the human cytokeratin 18 promoter was knocked into the Hipp11 locus of C57BL/6J mouse by CRISPR - Cas9 (K18-hACE2 KI). Upon intranasal inoculation with high (3 × 105 PFU) or low (2.5 × 102 PFU) dose of SARS-CoV-2 wildtype (WT), Delta, Omicron BA.1, or Omicron BA.2 variants, all mice showed obvious infection symptoms, including weight loss, high viral loads in the lung, and interstitial pneumonia. 100% lethality was observed in K18-hACE2 KI mice infected by variants with a delay of endpoint for Delta and BA.1, and a significantly attenuated pathogenicity was observed for BA.2. The pneumonia of infected mice was accompanied by the infiltration of neutrophils and pulmonary fibrosis in the lung. Compared with K18-hACE2 Tg mice and HFH4-hACE2 Tg mice, K18-hACE2 KI mice are more susceptible to SARS-CoV-2. In the antivirals test, REGN10933 and Remdesivir had limited antiviral efficacies in K18-hACE2 KI mice upon the challenge of SARS-CoV-2 infections, while Nirmatrelvir, monoclonal antibody 4G4, and mRNA vaccines potently protected the mice from death. Our results suggest that the K18-hACE2 KI mouse model is lethal and stable for SARS-CoV-2 infection, and is practicable and stringent to antiviral development.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Yucheng Zheng
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Xue Tan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Zhixiang Huang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Ming Guo
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Xin Wang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Xianying Chen
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Simeng Liang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Wenkang Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Kun Song
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Kun Yan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Jiali Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Qiaohong Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Yuzhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Shimin Yang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Zeng Cai
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Ming Dai
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Qiaoyang Xian
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| |
Collapse
|
30
|
Kobayashi M, Kobayashi N, Deguchi K, Omori S, Nagai M, Fukui R, Song I, Fukuda S, Miyake K, Ichinohe T. TNF-α exacerbates SARS-CoV-2 infection by stimulating CXCL1 production from macrophages. PLoS Pathog 2024; 20:e1012776. [PMID: 39652608 DOI: 10.1371/journal.ppat.1012776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/19/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Since most genetically modified mice are C57BL/6 background, a mouse-adapted SARS-CoV-2 that causes lethal infection in young C57BL/6 mice is useful for studying innate immune protection against SARS-CoV-2 infection. Here, we established two mouse-adapted SARS-CoV-2, ancestral and Delta variants, by serial passaging 80 times in C57BL/6 mice. Although young C57BL/6 mice were resistant to infection with the mouse-adapted ancestral SARS-CoV-2, the mouse-adapted SARS-CoV-2 Delta variant caused lethal infection in young C57BL/6 mice. In contrast, MyD88 and IFNAR1 KO mice exhibited resistance to lethal infection with the mouse-adapted SARS-CoV-2 Delta variant. Treatment with recombinant IFN-α/β at the time of infection protected mice from lethal infection with the mouse-adapted SARS-CoV-2 Delta variant, but intranasal administration of recombinant IFN-α/β at 2 days post infection exacerbated the disease severity following the mouse-adapted ancestral SARS-CoV-2 infection. Moreover, we showed that TNF-α amplified by type I IFN signals exacerbated the SARS-CoV-2 infection by stimulating CXCL1 production from macrophages and neutrophil recruitment into the lung tissue. Finally, we showed that intravenous administration to mice or hamsters with TNF protease inhibitor 2 alleviated the severity of SARS-CoV-2 and influenza virus infection. Our results uncover an unexpected mechanism by which type I interferon-mediated TNF-α signaling exacerbates the disease severity and will aid in the development of novel therapeutic strategies to treat respiratory virus infection and associated diseases such as influenza and COVID-19.
Collapse
Affiliation(s)
- Moe Kobayashi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nene Kobayashi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyoka Deguchi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seira Omori
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Minami Nagai
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Isaiah Song
- Institute for Advanced Biosciences, Keio University, Mizukami, Kakuganji, Tsuruoka, Yamagata, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Mizukami, Kakuganji, Tsuruoka, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology,Tonomachi, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Fleming C, McSorley HJ, Allen JE, Petri WA. The IL-33/ST2 signaling axis drives pathogenesis in acute SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625579. [PMID: 39651252 PMCID: PMC11623585 DOI: 10.1101/2024.11.27.625579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remains a significant threat to global public health. Immunopathological damage plays a role in driving pneumonia, acute respiratory distress syndrome (ARDS), and multiorgan failure in severe COVID-19. Therefore, dissecting the pulmonary immune response to SARS-CoV-2 infection is critical to understand disease pathogenesis and identify immune pathways targetable by therapeutic intervention. Considering that the type 2 cytokine IL-13 enhances COVID-19 disease severity, therapeutic targeting of upstream signals that drive type 2 immunity may confer further protection. In this study, we investigate the role of the IL-33/ST2 signaling axis, a potent inducer of type 2 immunity in the lung, in a mouse model of COVID-19. Upon infection with mouse-adapted SARS-CoV-2 MA10, ST2 -/- mice had significantly improved weight loss and survival (69.2% vs 13.3% survival; P = 0.0005), as compared to wild-type mice. In a complementary pharmacologic approach, IL-33/ST2 signaling was inhibited using HpBARI_Hom2, a helminth derived protein that binds to mouse ST2 and blocks IL-33 signaling. In SARS-CoV-2 MA10 infection, HpBARI_Hom2-treated mice had significantly improved weight loss and survival (60% vs 10% survival; P = 0.0035), as compared to inert control-treated mice. These data demonstrate that loss of IL-33/ST2 signaling confers protection during acute SARS-CoV-2 MA10 infection, implicating the IL-33/ST2 signaling axis as an enhancer of COVID-19 disease severity. The protection conferred by pharmacologic blockade of IL-33/ST2 signaling was independent of viral control, as HpBARI_Hom2-treated mice had no reduction in viral titers. This finding suggests an immunopathogenic role for IL-33/ST2 signaling. One potential mechanism through which IL-33/ST2 signaling may drive severe disease is through enhancement of type 2 immune pathways including IL-5 production, as pulmonary IL-5 concentrations were found to depend on IL-33/ST2 signaling in acute SARS-CoV-2 MA10 infection.
Collapse
|
32
|
Zhou NE, Tang S, Bian X, Parai MK, Krieger IV, Flores A, Jaiswal PK, Bam R, Wood JL, Shi Z, Stevens LJ, Scobey T, Diefenbacher MV, Moreira FR, Baric TJ, Acharya A, Shin J, Rathi MM, Wolff KC, Riva L, Bakowski MA, McNamara CW, Catanzaro NJ, Graham RL, Schultz DC, Cherry S, Kawaoka Y, Halfmann PJ, Baric RS, Denison MR, Sheahan TP, Sacchettini JC. An oral non-covalent non-peptidic inhibitor of SARS-CoV-2 Mpro ameliorates viral replication and pathogenesis in vivo. Cell Rep 2024; 43:114929. [PMID: 39504242 DOI: 10.1016/j.celrep.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Safe, effective, and low-cost oral antiviral therapies are needed to treat those at high risk for developing severe COVID-19. To that end, we performed a high-throughput screen to identify non-peptidic, non-covalent inhibitors of the SARS-CoV-2 main protease (Mpro), an essential enzyme in viral replication. NZ-804 was developed from a screening hit through iterative rounds of structure-guided medicinal chemistry. NZ-804 potently inhibits SARS-CoV-2 Mpro (0.009 μM IC50) as well as SARS-CoV-2 replication in human lung cell lines (0.008 μM EC50) and primary human airway epithelial cell cultures. Antiviral activity is maintained against distantly related sarbecoviruses and endemic human CoV OC43. In SARS-CoV-2 mouse and hamster disease models, NZ-804 therapy given once or twice daily significantly diminished SARS-CoV-2 replication and pathogenesis. NZ-804 synthesis is low cost and uncomplicated, simplifying global production and access. These data support the exploration of NZ-804 as a therapy for COVID-19 and future emerging sarbecovirus infections.
Collapse
Affiliation(s)
- Nian E Zhou
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Su Tang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Xuelin Bian
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Maloy K Parai
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Inna V Krieger
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Armando Flores
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Pradeep K Jaiswal
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Radha Bam
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Jeremy L Wood
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Zhe Shi
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Laura J Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meghan V Diefenbacher
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fernando R Moreira
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas J Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arjun Acharya
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Joonyoung Shin
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Manish M Rathi
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA
| | - Karen C Wolff
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Laura Riva
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Malina A Bakowski
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Case W McNamara
- Calibr-Skaggs Institute for Innovative Medicine, La Jolla, CA 92037, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel L Graham
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark R Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - James C Sacchettini
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77840, USA.
| |
Collapse
|
33
|
Clark JJ, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, Krammer F. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination. Cell Rep 2024; 43:114922. [PMID: 39504245 PMCID: PMC11804229 DOI: 10.1016/j.celrep.2024.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Neutralizing antibodies correlate with protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection against disease progression. Non-neutralizing antibodies cannot directly protect against infection but may recruit effector cells and thus contribute to the clearance of infected cells. Additionally, they often bind conserved epitopes across multiple variants. Here, we characterize 42 human monoclonal antibodies (mAbs) from coronavirus disease 2019 (COVID-19)-vaccinated individuals. Most of these antibodies exhibit no neutralizing activity in vitro, but several non-neutralizing antibodies provide protection against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs shows a clear dependence on Fc-mediated effector functions. We have determined the structures of three non-neutralizing antibodies, with two targeting the receptor-binding domain and one that binds the subdomain 1 region. Our data confirm the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
Collapse
Affiliation(s)
- Jordan J Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel C Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Iden A Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Andreata-Santos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Retrovirology Laboratory, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP 04023-062, Brazil
| | - Jeremy S Yong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Julia E Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
34
|
Tan W, Qi L, Tan Z. Animal models of infection-induced acute lung injury. Exp Lung Res 2024; 50:221-241. [PMID: 39558475 DOI: 10.1080/01902148.2024.2428939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
Aim: Acute lung injury (ALI) is characterized by severe hypoxemia, reduced lung elasticity, and notable pulmonary edema, often caused by infections and potentially progressing to ARDS. This article explores animal models of ALI and clarifies its main pathogenic mechanisms. Materials and Methods: we reviewed 20 years of ALI animal model advancements via PubMed, assessing clinical symptoms, histopathology, and reproducibility, and provided guidance on selecting models aligned with ALI pathogenesis. Results: key proinflammatory mediators and interleukins play a significant role in ALI development, though their interactions are not fully understood. Preclinical models are essential for investigating ALI causes and testing treatments. Animal models mimic ALI from sources such as infections, drugs, and I/R events, but differences between mouse and human lungs necessitate careful validation of these findings. Conclusions: A comprehensive strategy is essential to address clinical treatment and drug R&D challenges to prevent severe complications and reduce mortality rates.
Collapse
Affiliation(s)
- Wanying Tan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingjun Qi
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan academy of Chinese Medicine Sciences, Chengdu, China
| | - Zhenghuai Tan
- Affiliated Sichuan Gem Flower Hospital of North Sichuan Medical College, Chengdu, China
| |
Collapse
|
35
|
Schäfer A, Leist SR, Powers JM, Baric RS. Animal models of Long Covid: A hit-and-run disease. Sci Transl Med 2024; 16:eado2104. [PMID: 39536118 DOI: 10.1126/scitranslmed.ado2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) pandemic has caused more than 7 million deaths globally. Despite the presence of infection- and vaccine-induced immunity, SARS-CoV-2 infections remain a major global health concern because of the emergence of SARS-CoV-2 variants that can cause severe acute coronavirus disease 2019 (COVID-19) or enhance Long Covid disease phenotypes. About 5 to 10% of SARS-CoV-2-infected individuals develop Long Covid, which, similar to acute COVID 19, often affects the lung. However, Long Covid can also affect other peripheral organs, especially the brain. The causal relationships between acute disease phenotypes, long-term symptoms, and involvement of multiple organ systems remain elusive, and animal model systems mimicking both acute and post-acute phases are imperative. Here, we review the current state of Long Covid animal models, including current and possible future applications.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
36
|
Lercher A, Cheong JG, Bale MJ, Jiang C, Hoffmann HH, Ashbrook AW, Lewy T, Yin YS, Quirk C, DeGrace EJ, Chiriboga L, Rosenberg BR, Josefowicz SZ, Rice CM. Antiviral innate immune memory in alveolar macrophages following SARS-CoV-2 infection ameliorates secondary influenza A virus disease. Immunity 2024; 57:2530-2546.e13. [PMID: 39353439 PMCID: PMC11563926 DOI: 10.1016/j.immuni.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Pathogen encounter can result in epigenetic remodeling that shapes disease caused by heterologous pathogens. Here, we examined innate immune memory in the context of commonly circulating respiratory viruses. Single-cell analyses of airway-resident immune cells in a disease-relevant murine model of SARS-CoV-2 recovery revealed epigenetic reprogramming in alveolar macrophages following infection. Post-COVID-19 human monocytes exhibited similar epigenetic signatures. In airway-resident macrophages, past SARS-CoV-2 infection increased activity of type I interferon (IFN-I)-related transcription factors and epigenetic poising of antiviral genes. Viral pattern recognition and canonical IFN-I signaling were required for the establishment of this innate immune memory and augmented secondary antiviral responses. Antiviral innate immune memory mounted by airway-resident macrophages post-SARS-CoV-2 was necessary and sufficient to ameliorate secondary disease caused by influenza A virus and curtailed hyperinflammatory dysregulation and mortality. Our findings provide insights into antiviral innate immune memory in the airway that may facilitate the development of broadly effective therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Lercher
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - Jin-Gyu Cheong
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael J Bale
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chenyang Jiang
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yue S Yin
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Emma J DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA; Center for Biospecimen Research and Development, New York, NY 10016, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
37
|
Johnson NV, Wall SC, Kramer KJ, Holt CM, Periasamy S, Richardson SI, Manamela NP, Suryadevara N, Andreano E, Paciello I, Pierleoni G, Piccini G, Huang Y, Ge P, Allen JD, Uno N, Shiakolas AR, Pilewski KA, Nargi RS, Sutton RE, Abu-Shmais AA, Parks R, Haynes BF, Carnahan RH, Crowe JE, Montomoli E, Rappuoli R, Bukreyev A, Ross TM, Sautto GA, McLellan JS, Georgiev IS. Discovery and characterization of a pan-betacoronavirus S2-binding antibody. Structure 2024; 32:1893-1909.e11. [PMID: 39326419 PMCID: PMC11560675 DOI: 10.1016/j.str.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The continued emergence of deadly human coronaviruses from animal reservoirs highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq), we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryoelectron microscopy (cryo-EM) structure of 54043-5 bound to the prefusion S2 subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses in vitro, including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.
Collapse
MESH Headings
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Animals
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibodies, Viral/chemistry
- Mice
- COVID-19/immunology
- COVID-19/virology
- Cryoelectron Microscopy
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Models, Molecular
- Protein Binding
- Epitopes/immunology
- Epitopes/chemistry
- Antibody-Dependent Cell Cytotoxicity
Collapse
Affiliation(s)
- Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kevin J Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | | | - Ying Huang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Pan Ge
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - James D Allen
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Naoko Uno
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kelsey A Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexandria A Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emanuele Montomoli
- VisMederi Research S.r.l., 53100 Siena, Italy; VisMederi S.r.l, 53100 Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ted M Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA.
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
38
|
Kang A, Ye G, Afkhami S, Aleithan F, Singh K, Dvorkin-Gheva A, Berg T, Miller MS, Jeyanathan M, Xing Z. LPS-induced lung tissue-resident trained innate immunity provides differential protection against pneumococci and SARS-CoV-2. Cell Rep 2024; 43:114849. [PMID: 39383035 DOI: 10.1016/j.celrep.2024.114849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/24/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Recent evidence indicates that tissue-resident innate immune memory and trained innate immunity (TII) can be induced centrally in myeloid cells within the bone marrow and locally in tissue-resident macrophages in respiratory mucosal tissues. However, it remains unclear whether acute exposure to airborne microbial components like lipopolysaccharide (LPS) induces lasting innate immune memory in airway macrophages and TII capable of protection against heterologous pathogens. Using a murine model, we demonstrate that acute LPS exposure leads to dynamic changes in the immune phenotype of airway macrophages that persist long after the acute inflammatory response has subsided. The original airway-resident alveolar macrophage pool remains stable in size despite these changes and the earlier transient acute inflammatory responses, including monocytic recruitment in the lung. We further demonstrate that the induction of innate immune memory in airway macrophages is accompanied by TII capable of robust protection against acute pneumococcal infection, whereas it provides minimal protection against acute SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alisha Kang
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Gluke Ye
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Fatemah Aleithan
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Kanwaldeep Singh
- Department of Oncology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Tobias Berg
- Department of Oncology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
39
|
Catala A, Davenport BJ, Morrison TE, Catalano CE. Second-Generation Phage Lambda Platform Employing SARS-CoV-2 Fusion Proteins as a Vaccine Candidate. Vaccines (Basel) 2024; 12:1201. [PMID: 39591104 PMCID: PMC11598875 DOI: 10.3390/vaccines12111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
The recent SARS-CoV-2 (COVID-19) pandemic exemplifies how newly emerging and reemerging viruses can quickly overwhelm and cripple global infrastructures. Coupled with synergistic factors such as increasing population densities, the constant and massive mobility of people across geographical areas and substantial changes to ecosystems worldwide, these pathogens pose serious health concerns on a global scale. Vaccines form an indispensable defense, serving to control and mitigate the impact of devastating outbreaks and pandemics. Towards these efforts, we developed a tunable vaccine platform that can be engineered to simultaneously display multiple viral antigens. Here, we describe a second-generation version wherein chimeric proteins derived from SARS-CoV-2 and bacteriophage lambda are engineered and used to decorate phage-like particles with defined surface densities and retention of antigenicity. This streamlines the engineering of particle decoration, thus improving the overall manufacturing potential of the system. In a prime-boost regimen, mice immunized with particles containing as little as 42 copies of the chimeric protein on their surface develop potent neutralizing antibody responses, and immunization protects mice against virulent SARS-CoV-2 challenge. The platform is highly versatile, making it a promising strategy to rapidly develop vaccines against a potentially broad range of infectious diseases.
Collapse
Affiliation(s)
- Alexis Catala
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (B.J.D.); (T.E.M.)
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (B.J.D.); (T.E.M.)
| | - Carlos E. Catalano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
40
|
Dunai C, Hetherington C, Boardman SA, Clark JJ, Sharma P, Subramaniam K, Tharmaratnam K, Needham EJ, Williams R, Huang Y, Wood GK, Collie C, Fower A, Fox H, Ellul MA, Held M, Egbe FN, Griffiths M, Solomon T, Breen G, Kipar A, Cavanagh J, Irani SR, Vincent A, Stewart JP, Taams LS, Menon DK, Michael BD. Pulmonary SARS-CoV-2 infection leads to para-infectious immune activation in the brain. Front Immunol 2024; 15:1440324. [PMID: 39474424 PMCID: PMC11519853 DOI: 10.3389/fimmu.2024.1440324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024] Open
Abstract
Neurological complications, including encephalopathy and stroke, occur in a significant proportion of COVID-19 cases but viral protein is seldom detected in the brain parenchyma. To model this situation, we developed a novel low-inoculum K18-hACE2 mouse model of SARS-CoV-2 infection during which active viral replication was consistently seen in mouse lungs but not in the brain. We found that several mediators previously associated with encephalopathy in clinical samples were upregulated in the lung, including CCL2, and IL-6. In addition, several inflammatory mediations, including CCL4, IFNγ, IL-17A, were upregulated in the brain, associated with microglial reactivity. Parallel in vitro experiments demonstrated that the filtered supernatant from SARS-CoV-2 virion exposed brain endothelial cells induced activation of uninfected microglia. This model successfully recreates SARS-CoV-2 virus-associated para-infectious brain inflammation which can be used to study the pathophysiology of the neurological complications and the identification of potential immune targets for treatment.
Collapse
Affiliation(s)
- Cordelia Dunai
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Claire Hetherington
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sarah A. Boardman
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jordan J. Clark
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Krishanthi Subramaniam
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kukatharmini Tharmaratnam
- Department of Health Data Science, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Edward J. Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Robyn Williams
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Yun Huang
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Greta K. Wood
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ceryce Collie
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Fower
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Hannah Fox
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Mark A. Ellul
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marie Held
- Centre for Cell Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Franklyn N. Egbe
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael Griffiths
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Tom Solomon
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Gerome Breen
- Department of Social, Genetic & Developmental Psychiatry Centre, School of Mental Health & Psychological Sciences, King’s College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, King’s College London, London, United Kingdom
| | - Anja Kipar
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jonathan Cavanagh
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarosh R. Irani
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leonie S. Taams
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Benedict D. Michael
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
41
|
Narasimhan H, Cheon IS, Qian W, Hu SS, Parimon T, Li C, Goplen N, Wu Y, Wei X, Son YM, Fink E, de Almeida Santos G, Tang J, Yao C, Muehling L, Canderan G, Kadl A, Cannon A, Young S, Hannan R, Bingham G, Arish M, Sen Chaudhari A, Im JS, Mattingly CLR, Pramoonjago P, Marchesvsky A, Sturek J, Kohlmeier JE, Shim YM, Woodfolk J, Zang C, Chen P, Sun J. An aberrant immune-epithelial progenitor niche drives viral lung sequelae. Nature 2024; 634:961-969. [PMID: 39232171 DOI: 10.1038/s41586-024-07926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
The long-term physiological consequences of respiratory viral infections, particularly in the aftermath of the COVID-19 pandemic-termed post-acute sequelae of SARS-CoV-2 (PASC)-are rapidly evolving into a major public health concern1-3. While the cellular and molecular aetiologies of these sequelae are poorly defined, increasing evidence implicates abnormal immune responses3-6 and/or impaired organ recovery7-9 after infection. However, the precise mechanisms that link these processes in the context of PASC remain unclear. Here, with insights from three cohorts of patients with respiratory PASC, we established a mouse model of post-viral lung disease and identified an aberrant immune-epithelial progenitor niche unique to fibroproliferation in respiratory PASC. Using spatial transcriptomics and imaging, we found a central role for lung-resident CD8+ T cell-macrophage interactions in impairing alveolar regeneration and driving fibrotic sequelae after acute viral pneumonia. Specifically, IFNγ and TNF derived from CD8+ T cells stimulated local macrophages to chronically release IL-1β, resulting in the long-term maintenance of dysplastic epithelial progenitors and lung fibrosis. Notably, therapeutic neutralization of IFNγ + TNF or IL-1β markedly improved alveolar regeneration and pulmonary function. In contrast to other approaches, which require early intervention10, we highlight therapeutic strategies to rescue fibrotic disease after the resolution of acute disease, addressing a current unmet need in the clinical management of PASC and post-viral disease.
Collapse
Affiliation(s)
- Harish Narasimhan
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - In Su Cheon
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Wei Qian
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Sheng'en Shawn Hu
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tanyalak Parimon
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chaofan Li
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Nick Goplen
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Yue Wu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xiaoqin Wei
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Elizabeth Fink
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Gislane de Almeida Santos
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jinyi Tang
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Changfu Yao
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lyndsey Muehling
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Glenda Canderan
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Alexandra Kadl
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Abigail Cannon
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Samuel Young
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Riley Hannan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Grace Bingham
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Mohammed Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Arka Sen Chaudhari
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jun Sub Im
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Cameron L R Mattingly
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response, Atlanta, GA, USA
| | | | | | - Jeffrey Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response, Atlanta, GA, USA
| | - Yun Michael Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Judith Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Peter Chen
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
42
|
Majumdar S, Weaver JD, Pontejo SM, Minai M, Lu X, Gao JL, Holmes G, Johnson R, Zhang H, Kelsall BL, Farber JM, Alves DA, Murphy PM. Cxcl10 is required for survival during SARS-CoV-2 infection in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.613319. [PMID: 39803542 PMCID: PMC11722219 DOI: 10.1101/2024.09.30.613319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, remains endemic worldwide ~5 years since the first documented case. Severe COVID-19 is widely considered to be caused by a dysregulated immune response to SARS-CoV-2 within the respiratory tract. Circulating levels of the chemokine CXCL10 are strongly positively associated with poor outcome; however, its precise role in pathogenesis and its suitability as a therapeutic target have remained undefined. Here, we challenged 4-6 month old C57BL/6 mice genetically deficient in Cxcl10 with a mouse-adapted strain of SARS-CoV-2. Infected male, but not female, Cxcl10 -/- mice displayed increased mortality compared to wild type controls. Histopathological damage, inflammatory gene induction and virus load in the lungs of male mice 4 days post infection and before death were not broadly influenced by Cxcl10 deficiency. However, accumulation of B cells and both CD4+ and CD8+ T cells in the lung parenchyma of infected mice was reduced in the absence of Cxcl10. Thus, during acute SARS-CoV-2 infection, Cxcl10 regulates lymphocyte infiltration in the lung and confers protection against mortality. Our preclinical model results do not support targeting CXCL10 therapeutically in severe COVID-19.
Collapse
Affiliation(s)
- Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph D. Weaver
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sergio M. Pontejo
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xinping Lu
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gibran Holmes
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reed Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongwei Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian L. Kelsall
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua M. Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Derron A. Alves
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Moussavi-Harami SF, Cleary SJ, Magnen M, Seo Y, Conrad C, English BC, Qiu L, Wang KM, Abram CL, Lowell CA, Looney MR. Neutrophil-specific Shp1 loss results in lethal pulmonary hemorrhage in mouse models of acute lung injury. J Clin Invest 2024; 134:e183161. [PMID: 39352872 PMCID: PMC11645157 DOI: 10.1172/jci183161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with significant morbidity and mortality, and neutrophils are critical to its pathogenesis. Neutrophil activation is closely regulated by inhibitory tyrosine phosphatases including Src homology region 2 domain-containing phosphatase-1 (Shp1). Here, we report that loss of neutrophil Shp1 in mice produced hyperinflammation and lethal pulmonary hemorrhage in sterile inflammation and pathogen-induced models of acute lung injury (ALI) through a Syk kinase-dependent mechanism. We observed large intravascular neutrophil clusters, perivascular inflammation, and excessive neutrophil extracellular traps in neutrophil-specific Shp1-KO mice, suggesting an underlying mechanism for the observed pulmonary hemorrhage. Targeted immunomodulation through the administration of a Shp1 activator (SC43) reduced agonist-induced reactive oxygen species in vitro and ameliorated ALI-induced alveolar neutrophilia and NETs in vivo. We propose that the pharmacologic activation of Shp1 has the potential to fine tune neutrophil hyperinflammation that is central to the pathogenesis of ARDS.
Collapse
Affiliation(s)
- S. Farshid Moussavi-Harami
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
- Division of Pediatric Critical Care Medicine, Department of Pediatrics
| | - Simon J Cleary
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Mélia Magnen
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Yurim Seo
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Catharina Conrad
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | | | - Longhui Qiu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Kristin M. Wang
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Clare L. Abram
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | | | - Mark R. Looney
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
44
|
Verma SK, Ana-Sosa-Batiz F, Timis J, Shafee N, Maule E, Pinto PBA, Conner C, Valentine KM, Cowley DO, Miller R, Elong Ngono A, Tran L, Varghese K, Dos Santos Alves RP, Hastie KM, Saphire EO, Webb DR, Jarnagin K, Kim K, Shresta S. Influence of Th1 versus Th2 immune bias on viral, pathological, and immunological dynamics in SARS-CoV-2 variant-infected human ACE2 knock-in mice. EBioMedicine 2024; 108:105361. [PMID: 39353281 PMCID: PMC11472634 DOI: 10.1016/j.ebiom.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mouse models that recapitulate key features of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection are important tools for understanding complex interactions between host genetics, immune responses, and SARS-CoV-2 pathogenesis. Little is known about how predominantly cellular (Th1 type) versus humoral (Th2 type) immune responses influence SARS-CoV-2 dynamics, including infectivity and disease course. METHODS We generated knock-in (KI) mice expressing human ACE2 (hACE2) and/or human TMPRSS2 (hTMPRSS2) on Th1-biased (C57BL/6; B6) and Th2-biased (BALB/c) genetic backgrounds. Mice were infected intranasally with SARS-CoV-2 Delta (B.1.617.2) or Omicron BA.1 (B.1.1.529) variants, followed by assessment of disease course, respiratory tract infection, lung histopathology, and humoral and cellular immune responses. FINDINGS In both B6 and BALB/c mice, hACE2 expression was required for infection of the lungs with Delta, but not Omicron BA.1. Disease severity was greater in Omicron BA.1-infected hTMPRSS2-KI and double-KI BALB/c mice compared with B6 mice, and in Delta-infected double-KI B6 and BALB/c mice compared with hACE2-KI mice. hACE2-KI B6 mice developed more severe lung pathology and more robust SARS-CoV-2-specific splenic CD8 T cell responses compared with hACE2-KI BALB/c mice. There were no notable differences between the two genetic backgrounds in plasma cell, germinal center B cell, or antibody responses to SARS-CoV-2. INTERPRETATION SARS-CoV-2 Delta and Omicron BA.1 infection, disease course, and CD8 T cell response are influenced by the host genetic background. These humanized mice hold promise as important tools for investigating the mechanisms underlying the heterogeneity of SARS-CoV-2-induced pathogenesis and immune response. FUNDING This work was funded by NIH U19 AI142790-02S1, the GHR Foundation, the Arvin Gottleib Foundation, and the Overton family (to SS and EOS); Prebys Foundation (to SS); NIH R44 AI157900 (to KJ); and by an American Association of Immunologists Career Reentry Fellowship (FASB).
Collapse
Affiliation(s)
- Shailendra Kumar Verma
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Chris Conner
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kristen M Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Dale O Cowley
- TransViragen Inc., 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Robyn Miller
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Linda Tran
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Krithik Varghese
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - David R Webb
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kurt Jarnagin
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
45
|
Saenkham-Huntsinger P, Drelich AK, Huang P, Peng BH, Tseng CTK. BALB/c mice challenged with SARS-CoV-2 B.1.351 β variant cause pathophysiological and neurological changes within the lungs and brains. J Gen Virol 2024; 105:002039. [PMID: 39475775 PMCID: PMC11524415 DOI: 10.1099/jgv.0.002039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Up to one-third of individuals suffering from acute SARS-CoV-2 infection with the onset of severe-to-mild diseases could develop several symptoms of neurological disorders, which could last long after resolving the infection, known as neuro-COVID. Effective therapeutic treatments for neuro-COVID remain unavailable, in part, due to the absence of animal models for studying its underlying mechanisms and developing medical countermeasures against it. Here, we explored the impact of SARS-CoV-2 infection on the well-being of respiratory and neurological functions of BALB/c mice by using a clinical isolate of β-variant, i.e. B.1.351. We found that this β-variant of SARS-CoV-2 primarily infected the lungs, causing tissue damage, profound inflammatory responses, altered respiratory functions and transient but significant hypoxia. Although live progeny viruses could not be isolated, viral RNAs were detected across many anatomical regions of the brains in most challenged mice and triggered activation of genes encoding for NF-kB, IL-6, IP-10 and RANTES and microglial cells. We noted that the significantly activated IL-6-encoded gene persisted at 4 weeks after infection. Together, these results suggest that this B.1.351/BALB/c model of SARS-CoV-2 infection warrants further studies to establish it as a desirable model for studies of neuropathogenesis and the development of effective therapeutics of neuro-COVID.
Collapse
Affiliation(s)
| | - Aleksandra K. Drelich
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pinghan Huang
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bi-Hung Peng
- Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chien-Te K. Tseng
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
46
|
Green AL, De Bellis D, Cowell E, Lenchine RV, Penn T, Kris LP, McEvoy-May J, Bihari S, Dixon DL, Carr JM. The Y498T499-SARS-CoV-2 spike (S) protein interacts poorly with rat ACE2 and does not affect the rat lung. Access Microbiol 2024; 6:000839.v3. [PMID: 39346684 PMCID: PMC11432600 DOI: 10.1099/acmi.0.000839.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
The rat is a useful laboratory model for respiratory diseases. SARS-CoV-2 proteins, such as the spike (S) protein, can induce inflammation. This study has investigated the ability of the Q498Y, P499T (QP-YT) amino acid change, described in the S-protein of the mouse-adapted laboratory SARS-CoV-2 MA strain, to interact with rat angiotensin converting enzyme-2 (ACE2) and stimulate responses in rat lungs. A real-time S-ACE2 quantitative fusion assay shows that ancestral and L452R S-proteins fuse with human but not rat ACE2 expressed on HEK293 (human embryonic kidney-293) cells. The QP-YT S-protein retains the ability to fuse with human ACE2 and increases the binding to rat ACE2. Although lower lung of the rat contains both ACE2 and TMPRSS2 (transmembrane serine protease 2) target cells, intratracheal delivery of ancestral or QP-YT S-protein pseudotyped lentivirus did not induce measurable respiratory changes, inflammatory infiltration or innate mRNA responses. Isolation of primary cells from rat alveoli demonstrated the presence of cells expressing ACE2 and TMPRSS2. Infection of these cells, however, with ancestral or QP-YT S-protein pseudotyped lentivirus was not observed, and the QP-YT S-protein pseudotyped lentivirus poorly infected HEK293 cells expressing rat ACE2. Analysis of the amino acid changes across the S-ACE2 interface highlights not only the Y498 interaction with H353 as a likely facilitator of binding to rat ACE2 but also other amino acids that could improve this interaction. Thus, rat lungs contain cells expressing receptors for SARS-CoV-2, and the QP-YT S-protein variant can bind to rat ACE2, but this does not result in infection or stimulate responses in the lung. Further, amino acid changes in S-protein may enhance this interaction to improve the utility of the rat model for defining the role of the S-protein in driving lung inflammation.
Collapse
Affiliation(s)
- Amy L Green
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Dylan De Bellis
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Evangeline Cowell
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Roman V Lenchine
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Timothy Penn
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Luke P Kris
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - James McEvoy-May
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Shailesh Bihari
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Dani-Louise Dixon
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Jillian M Carr
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
47
|
Dmytrenko O, Das S, Kovacs A, Cicka M, Liu M, Scheaffer SM, Bredemeyer A, Mack M, Diamond MS, Lavine KJ. Infiltrating monocytes drive cardiac dysfunction in a cardiomyocyte-restricted mouse model of SARS-CoV-2 infection. J Virol 2024; 98:e0117924. [PMID: 39207134 PMCID: PMC11406924 DOI: 10.1128/jvi.01179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.
Collapse
Affiliation(s)
- Oleksandr Dmytrenko
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Attila Kovacs
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Markus Cicka
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Meizi Liu
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne M. Scheaffer
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Bredemeyer
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthias Mack
- Department of Internal Medicine II, Division of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Michael S. Diamond
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
48
|
Ni J, Chen X, Chen N, Yan Y, Wu Y, Li B, Huang H, Tong H, Liu Y, Dai N. Erianin alleviates LPS-induced acute lung injury via antagonizing P-selectin-mediated neutrophil adhesion function. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118336. [PMID: 38750983 DOI: 10.1016/j.jep.2024.118336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium officinale Kimura et Migo, known as "Tiepi Shihu" in traditional Chinese medicine, boasts an extensive history of medicinal use documented in the Chinese Pharmacopoeia. "Shen Nong Ben Cao Jing" records D. officinale as a superior herbal medicine for fortifying "Yin" and invigorating the five viscera. Erianin, a benzidine compound, emerges as a prominent active constituent derived from D. officinale, with the pharmacological efficacy of D. officinale closely linked to the anti-inflammatory properties of erianin. AIM OF THE STUDY Acute lung injury (ALI) is a substantial threat to global public health, while P-selectin stands out as a promising novel target for treating acute inflammatory conditions. This investigation aims to explore the therapeutic potential of erianin in ALI treatment and elucidate the underlying mechanisms. EXPERIMENTAL DESIGN The effectiveness of erianin in conferring protection against ALI was investigated through comprehensive histopathological and biochemical analyses of lung tissues and bronchoalveolar lavage fluid (BALF) in an in vivo model of LPS-induced ALI in mice. The impact of erianin on fMLP-induced neutrophil chemotaxis was quantitatively assessed using the Transwell and Zigmond chamber, respectively. To determine the therapeutic target of erianin and elucidate their binding capability, a series of sophisticated assays were employed, including drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and molecular docking analyses. RESULTS Erianin demonstrated a significant alleviation of LPS-induced acute lung injury, characterized by reduced total cell and neutrophil counts and diminished total protein contents in BALF. Moreover, erianin exhibited a capacity to decrease proinflammatory cytokine production in both lung tissues and BALF. Notably, erianin effectively suppressed the activation of NF-κB signaling in the lung tissues of LPS- challenged mice; however, it did not exhibit in vitro inhibitory effects on inflammation in LPS-induced human pulmonary microvascular endothelial cells (HPMECs). Additionally, erianin blocked the adhesion and rolling of neutrophils on HPMECs. While erianin did not influence endothelial P-selectin expression or cytomembrane translocation, it significantly reduced the ligand affinity between P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1). CONCLUSIONS Erianin inhibits P-selectin-mediated neutrophil adhesion to activated endothelium, thereby alleviating ALI. The present study highlights the potential of erianin as a promising lead for ALI treatment.
Collapse
Affiliation(s)
- Jiangwei Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xiaohai Chen
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China
| | - Nengfu Chen
- Department of Thoracic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, 325800, PR China
| | - Yawei Yan
- College of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, PR China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, PR China
| | - Hui Huang
- Department of Pharmacy, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, PR China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, PR China.
| | - Yu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Ningfeng Dai
- Department of Thoracic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, 325800, PR China.
| |
Collapse
|
49
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
50
|
Ong HW, Yang X, Smith JL, Taft-Benz S, Howell S, Dickmander RJ, Havener TM, Sanders MK, Brown JW, Couñago RM, Chang E, Krämer A, Moorman NJ, Heise M, Axtman AD, Drewry DH, Willson TM. Strategic Fluorination to Achieve a Potent, Selective, Metabolically Stable, and Orally Bioavailable Inhibitor of CSNK2. Molecules 2024; 29:4158. [PMID: 39275006 PMCID: PMC11397024 DOI: 10.3390/molecules29174158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The host kinase casein kinase 2 (CSNK2) has been proposed to be an antiviral target against β-coronaviral infection. To pharmacologically validate CSNK2 as a drug target in vivo, potent and selective CSNK2 inhibitors with good pharmacokinetic properties are required. Inhibitors based on the pyrazolo[1,5-a]pyrimidine scaffold possess outstanding potency and selectivity for CSNK2, but bioavailability and metabolic stability are often challenging. By strategically installing a fluorine atom on an electron-rich phenyl ring of a previously characterized inhibitor 1, we discovered compound 2 as a promising lead compound with improved in vivo metabolic stability. Compound 2 maintained excellent cellular potency against CSNK2, submicromolar antiviral potency, and favorable solubility, and was remarkably selective for CSNK2 when screened against 192 kinases across the human kinome. We additionally present a co-crystal structure to support its on-target binding mode. In vivo, compound 2 was orally bioavailable, and demonstrated modest and transient inhibition of CSNK2, although antiviral activity was not observed, possibly attributed to its lack of prolonged CSNK2 inhibition.
Collapse
Affiliation(s)
- Han Wee Ong
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA (T.M.W.)
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xuan Yang
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA (T.M.W.)
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L. Smith
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon Taft-Benz
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA (T.M.W.)
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stefanie Howell
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebekah J. Dickmander
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA (T.M.W.)
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tammy M. Havener
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marcia K. Sanders
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA (T.M.W.)
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason W. Brown
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Rafael M. Couñago
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), University of Campinas, Campinas 13083-886, SP, Brazil
| | - Edcon Chang
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Andreas Krämer
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Nathaniel J. Moorman
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA (T.M.W.)
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Heise
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA (T.M.W.)
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alison D. Axtman
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA (T.M.W.)
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David H. Drewry
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA (T.M.W.)
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy M. Willson
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA (T.M.W.)
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|