1
|
Sigal A, Neher RA, Lessells RJ. The consequences of SARS-CoV-2 within-host persistence. Nat Rev Microbiol 2025; 23:288-302. [PMID: 39587352 DOI: 10.1038/s41579-024-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
SARS-CoV-2 causes an acute respiratory tract infection that resolves in most people in less than a month. Yet some people with severely weakened immune systems fail to clear the virus, leading to persistent infections with high viral titres in the respiratory tract. In a subset of cases, persistent SARS-CoV-2 replication results in an accelerated accumulation of adaptive mutations that confer escape from neutralizing antibodies and enhance cellular infection. This may lead to the evolution of extensively mutated SARS-CoV-2 variants and introduce an element of chance into the timing of variant evolution, as variant formation may depend on evolution in a single person. Whether long COVID is also caused by persistence of replicating SARS-CoV-2 is controversial. One line of evidence is detection of SARS-CoV-2 RNA and proteins in different body compartments long after SARS-CoV-2 infection has cleared from the upper respiratory tract. However, thus far, no replication competent virus has been cultured from individuals with long COVID who are immunocompetent. In this Review, we consider mechanisms of viral persistence, intra-host evolution in persistent infections, the connection of persistent infections with SARS-CoV-2 variants and the possible role of SARS-CoV-2 persistence in long COVID. Understanding persistent infections may therefore resolve much of what is still unclear in COVID-19 pathophysiology, with possible implications for other emerging viruses.
Collapse
Affiliation(s)
- Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation & Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
2
|
Zhang E, Luo S, Xu X, Wang Q, Liu J, Gao P, Duan L. Molecular mechanistic exploration of conformational shifts induced by class IV anti-RBD antibody IY2A. Int J Biol Macromol 2025; 306:141417. [PMID: 39993688 DOI: 10.1016/j.ijbiomac.2025.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The SARS-CoV-2 virus mutates rapidly, reducing the effectiveness of antibodies. The novel Class IV antibody IY2A partially unfolds the receptor-binding domain (RBD), allowing tolerance of antigenic variations and effectively neutralizing Omicron variants. In this study, we used molecular dynamics simulations and alanine scanning combined with interaction entropy method to elucidate how IY2A maintains its binding affinity across Omicron variants. We compared IY2A with EY6A and evaluated how mutations affect IY2A inhibition. The findings revealed that the IY2A adopted a closer conformation when binding to Omicron variants than to the WT. Energy calculations indicate that van der Waals interactions primarily drive IY2A binding to the RBD. Following unfolding, IY2A interacts with the RBD via interatomic hydrogen bonds and hydrophobic contacts involving LEU368, PHE377, LYS378, and SER383. This study provides theoretical insights to guide the development of Class IV antibodies against emerging and future Omicron variants.
Collapse
Affiliation(s)
- Enhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Qihang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jinxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Pengfei Gao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
3
|
Rao Y, Qin C, Espinosa B, Wang TY, Feng S, Savas AC, Henley J, Comai L, Zhang C, Feng P. Targeting CTP synthetase 1 to restore interferon induction and impede nucleotide synthesis in SARS-CoV-2 infection. mBio 2025:e0064925. [PMID: 40298378 DOI: 10.1128/mbio.00649-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Despite the global impact caused by the most recent SARS-CoV-2 pandemic, our knowledge of the molecular underpinnings of its highly infectious nature remains incomplete. We report here that SARS-CoV-2 exploits cellular CTP synthetase 1 (CTPS1) to promote CTP synthesis and suppress interferon (IFN) induction. In addition to catalyzing CTP synthesis, CTPS1 also deamidates interferon regulatory factor 3 (IRF3) to dampen interferon induction. Screening a SARS-CoV-2 expression library, we identified several viral proteins that interact with CTPS1. Functional analyses demonstrate that ORF8 and Nsp8 activate CTPS1 to deamidate IRF3 and negate IFN induction, whereas ORF7b and ORF8 activate CTPS1 to promote CTP synthesis. These results highlight CTPS1 as a signaling node that integrates cellular metabolism and innate immune response. Indeed, small-molecule inhibitors of CTPS1 deplete CTP and boost IFN induction in SARS-CoV-2-infected cells, thus effectively impeding SARS-CoV-2 replication and pathogenesis in mouse models. Our work uncovers an intricate mechanism by which a viral pathogen couples immune evasion to metabolic activation to fuel viral replication. Inhibition of the cellular CTPS1 offers an attractive means to develop antiviral therapy against highly mutagenic viruses.IMPORTANCEOur understanding of the underpinnings of highly infectious SARS-CoV-2 is rudimentary at best. We report here that SARS-CoV-2 activates CTPS1 to promote CTP synthesis and suppress IFN induction, thus coupling immune evasion to activated nucleotide synthesis. Inhibition of the key metabolic enzyme not only depletes the nucleotide pool but also boosts host antiviral defense, thereby impeding SARS-CoV-2 replication. Targeting cellular enzymes presents a strategy to counter the rapidly evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Bianca Espinosa
- Department of Chemistry, Dornsife College of Arts, Letters and Sciences, University of Southern California, Los Angeles, California, USA
| | - Ting-Yu Wang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Shu Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jill Henley
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Chao Zhang
- Department of Chemistry, Dornsife College of Arts, Letters and Sciences, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Qian B, Luo R, Shen B, Fan L, Zhang J, Zhang S, Sun Y, Deng X, Pang X, Zhong W, Gao Y. EIDD-2801 resists to infection and co-infection of SARS-CoV-2 and influenza virus. Virol J 2025; 22:126. [PMID: 40296172 PMCID: PMC12039283 DOI: 10.1186/s12985-025-02755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has exerted a catastrophic impact on public health. Meanwhile, the seasonal influenza outbreak overlaps with the current pandemic wave. There is still an urgent need to develop effective therapeutic agents for the treatment of co-infection of multiple respiratory viruses. This study aimed to investigate antiviral effects of EIDD-2801, an orally bioavailable ribonucleoside analog, and its potent therapeutic effects in co-infection of multiple respiratory viruses. METHODS BALB/c mice and hamsters were infected with IFV or SARS-CoV-2, then were dosed orally with EIDD-2801 to measure the antiviral effects of EIDD-2801. Viral replication and mRNA transcription were evaluated by quantitative polymerase chain reaction (qPCR) and protein expression by Western Blot. Influenza viral titer was assessed using EID50 assay. RESULTS EIDD-2801 was found to be significantly effective against influenza A virus and influenza B virus. The antiviral activity against SARS-CoV-2 and further co-infection with influenza virus was also distinct. EIDD-2801 had potent antiviral effects against multiple respiratory viruses both in vitro and in vivo. CONCLUSION This study demonstrated that the small-molecule compound EIDD-2801, an orally available broad-spectrum antiviral agent, significantly inhibited the infection of influenza virus and SARS-CoV-2 and effectively protected animals from lethal influenza virus co-infection.
Collapse
Affiliation(s)
- Bingshuo Qian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Rongbo Luo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Beilei Shen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Lingjun Fan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Junkui Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Shijun Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yan Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiuwen Deng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
5
|
Peixoto de Miranda ÉJF, Calado RT, Boulos FC, de Sousa Moreira JA, Machado FF, Almeida MAALDS, Da Rocha MCO, Infante V, Mercer LD, Hjorth R, Scharf R, White J, Polyak C, Raghunandan R, García-Sastre A, Sun W, Palese P, Krammer F, Innis B, Pereira CG, Kallas EG. Safety and immunogenicity of an inactivated recombinant Newcastle disease virus vaccine expressing SARS-CoV-2 spike: Results of a randomized vaccine-controlled phase I ADAPTCOV trial in Brazil. Vaccine 2025; 52:126680. [PMID: 40037239 DOI: 10.1016/j.vaccine.2024.126680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 03/06/2025]
Abstract
COVID-19 continues to be a health issue, mainly due to virus circulation and the emergence of new variants of concern and interest. This is a single-center, randomized, double-blind, active-controlled dose-escalating phase I clinical trial to evaluate the immunogenicity and safety of NDV-HXP-S (1 μg, 3 μg, and 10 μg), an inactivated COVID-19 vectored-vaccine virus using the Newcastle Disease Virus (NDV) expressing stabilized pre-fusion S protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Healthy SARS-CoV-2-naïve participants aged 18 to 59 years were randomized in a 3:3:3:1 ratio to receive two equal shots of 1 μg, 3 μg or 10 μg of NDV-HXP-S formulations or placebo/CoronaVac intramuscular 28 days apart, respectively. Primary endpoints were solicited adverse events (AEs) determined within 7 days after each dose (safety) and proportion of seroconversion and geometric mean of 50 % neutralizing titer ratios against SARS-CoV-2 Wuhan-hu-1, Beta, and Gamma strains, measured on Day 42 after the first dose (immunogenicity). Follow-up occurred for 12 months for safety and immunogenicity evaluation. This study had substantial protocol amendments, the last one for early terminating the recruitment, as well as unblinding on Day 42. We included 311 subjects were in the safety population and 301 of them (97 %) received the second dose. More frequent solicited AEs were pain at the application site (<89 %), headache (<69 %), fatigue (<68 %), and myalgia (<61 %); most were classified as mild or moderate. There was no vaccine-related serious or grade-4 solicited AE. The proportion of participants reporting a vaccine-related unsolicited AE within 28 days after each dose ranged from 30 % to 33 % after the first dose and 14 % and 18 % after the second in NDV-HXP-S, comparable to the control group. The 10 μg NDV-HXP-S formulation was the one that elicited the higher seroconversion values and neutralizing antibodies on Day 42 against SARS-CoV-2 strains. Up to 1-year follow-up, levels of bind antibodies remains about 2 log10 BAU/mL and no vaccine-related serious adverse event was reported. Two NDV-HXP-S shots at 10 μg elicited the higher seroconversion and neutralizing antibody titers against the SARS-CoV-2. The vaccine also displayed a very favorable safety profile. ClinicalTrials.gov,NCT04993209.
Collapse
MESH Headings
- Humans
- Adult
- Male
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/administration & dosage
- Female
- Newcastle disease virus/genetics
- Newcastle disease virus/immunology
- Middle Aged
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Brazil
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Double-Blind Method
- Young Adult
- Adolescent
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/adverse effects
- Immunogenicity, Vaccine
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
| | - Rodrigo T Calado
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Fernanda Castro Boulos
- Center of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | | | | | - Vanessa Infante
- Center of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | | | | | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA; The Icahn Genomics Center, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Florian Krammer
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | | | | | - Esper Georges Kallas
- Center of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Zhang S, Huang Y, Wang G, Zhang X, Xia L, Cao Y, Mou C, Chen Z, Bao W. Capsaicin inhibits porcine enteric coronaviruses replication through blocking TRPV4-mediated calcium ion influx. Int J Biol Macromol 2025; 302:140495. [PMID: 39894121 DOI: 10.1016/j.ijbiomac.2025.140495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/10/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Porcine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), have caused enormous economic losses to the global pig industry. Unfortunately, new variants emerge of these viruses will make it difficult for pigs vaccinated with the appropriate vaccine to develop protective immunity. Hence, it is urgent to explore effective therapeutic agents and targets against these viruses. Capsaicin is an active compound found in plants of the Capsicum genus (prevention and/or treatment of pain, hypertension and inflammation), but little is known about its effects on enterovirus infections. Herein, we used porcine enteric coronavirus TGEV as a model to evaluate the antiviral activity of capsaicin and discovered that capsaicin inhibited the replication phase of TGEV. Mechanistically, calcium signaling pathway participates in the capsaicin-mediated antiviral function. Importantly, capsaicin treatment impaired the viral replication by attenuating cytosolic calcium, and supplementation with CaCl2 reduced the inhibitory effect of capsaicin on TGEV infection. Finally, we revealed that TRPV4 plays an essential role in modulating calcium ion influx in IPEC-J2 cells, and capsaicin inhibits TGEV replication by decreasing calcium ion influx through inhibition of TRPV4. Overall, our data suggest that capsaicin is a promising small molecular drug candidate for strengthening host resistance to porcine enteric coronavirus infection.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yanjie Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guangzheng Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xueli Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liangxing Xia
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yanan Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Luo S, Yin L, Liu X, Wang X. Advances in Virus Biorecognition and Detection Techniques for the Surveillance and Prevention of Infectious Diseases. BIOSENSORS 2025; 15:198. [PMID: 40136995 PMCID: PMC11940537 DOI: 10.3390/bios15030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Viral infectious diseases pose a serious threat to global public health due to their high transmissibility, rapid mutation rates, and limited treatment options. Recent outbreaks of diseases such as plague, monkeypox, avian influenza, and coronavirus disease 2019 (COVID-19) have underscored the urgent need for efficient diagnostic and surveillance technologies. Focusing on viral infectious diseases that seriously threaten human health, this review summarizes and analyzes detection techniques from the perspective of combining viral surveillance and prevention advice, and discusses applications in improving diagnostic sensitivity and specificity. One of the major innovations of this review is the systematic integration of advanced biorecognition and detection technologies, such as bionanosensors, rapid detection test strips, and microfluidic platforms, along with the exploration of artificial intelligence in virus detection. These technologies address the limitations of traditional methods and enable the real-time monitoring and early warning of viral outbreaks. By analyzing the application of these technologies in the detection of pathogens, new insights are provided for the development of next-generation diagnostic tools to address emerging and re-emerging viral threats. In addition, we analyze the current progress of developed vaccines, combining virus surveillance with vaccine research to provide new ideas for future viral disease prevention and control and vaccine development, and call for global attention and the development of new disease prevention and detection technologies.
Collapse
Affiliation(s)
- Shuwen Luo
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
| |
Collapse
|
8
|
Frigori RB. Evolution and pathogenicity of SARS-CoVs: A microcanonical analysis of receptor-binding motifs. Phys Rev E 2025; 111:034401. [PMID: 40247563 DOI: 10.1103/physreve.111.034401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/07/2025] [Indexed: 04/19/2025]
Abstract
The rapid evolution and global impact of coronaviruses, notably SARS-CoV-1 and SARS-CoV-2, underscore the importance of understanding their molecular mechanisms in detail. This study focuses on the receptor-binding motif (RBM) within the spike protein of these viruses, a critical element for viral entry through interaction with the ACE2 receptor. We investigate the sequence variations in the RBM across SARS-CoV-1, SARS-CoV-2, and its early variants of concern (VOCs). Utilizing multicanonical simulations and microcanonical analysis, we examine how these variations influence the folding dynamics, thermostability, and solubility of the RBMs. Our methodology includes calculating the density of states (DoS) to identify structural phase transitions and assess thermodynamic properties. Furthermore, we solve the Poisson-Boltzmann equation to model the solubility of the RBMs in aqueous environments. This methodology is expected to elucidate structural and functional differences in viral evolution and pathogenicity, likely improving targeted treatments and vaccines.
Collapse
Affiliation(s)
- Rafael B Frigori
- Universidade Tecnológica Federal do Paraná, Rua Cristo Rei 19, CEP 85902-490, Toledo (PR), Brazil
| |
Collapse
|
9
|
Hu H, Leng C, Shu Y, Peng L, Wu F, Liu J, Zhang X, Zhou W, Xiao Q, Li Y, Wu B, Shen J, Li J, Gong R, Yan B, Deng F, Hu Z, Cao S, Wang M. Structural insights into hybridoma-derived neutralizing monoclonal antibodies against Omicron BA.5 and XBB.1.16 variants of SARS-CoV-2. J Virol 2025; 99:e0130724. [PMID: 39772622 PMCID: PMC11852929 DOI: 10.1128/jvi.01307-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025] Open
Abstract
The emergence of novel variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to pose an ongoing challenge for global public health services, highlighting the urgent need for effective therapeutic interventions. Neutralizing monoclonal antibodies (mAbs) are a major therapeutic strategy for the treatment of COVID-19 and other viral diseases. In this study, we employed hybridoma technology to generate mAbs that target the BA.5 receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Through a comprehensive screening process, we identified four mAbs capable of effectively neutralizing BA.5, XBB.1.16, and related variant infections in vitro, among which ORB10 was found to neutralize BA.5 variants with a plaque reduction neutralization test (PRNT50) of 8.7 ng/mL. Additionally, competitive binding assays, sequencing of heavy and light chain variable regions, and binding kinetics characterization provided insights into the epitopes and binding affinities of the identified mAbs. Moreover, in vivo experiments in the K18-hACE2 mouse model demonstrated the protective efficacy of ORB10 against both BA.5 and XBB.1.16 variants. Finally, cryo-electron microscopy structural analysis of the ORB10-RBD complex identified key residues involved in the antibody-antigen interactions, providing insights into the molecular mechanisms of neutralization and immune escape of SARS-CoV-2 Omicron variants from mAbs. IMPORTANCE The ongoing evolution of SARS-CoV-2 has led to the emergence of variants capable of evading immune responses elicited by natural infection and vaccination, especially the highly transmissible and immune-evasive Omicron variants. This study generated and characterized a panel of monoclonal antibodies (mAbs) specifically targeting the RBD of the Omicron BA.5 variant, of which the ORB10 showed efficacy against Omicron BA.5 and XBB.1.16 variants both in vitro and in vivo. Cryo-EM structural analysis further elucidated the binding epitope interactions and neutralization mechanism between ORB10 and the BA.5 RBD protein. This study enhances our understanding of antibody-mediated neutralization of SARS-CoV-2 and provides valuable insights into the development of effective therapeutic strategies to combat ongoing SARS-CoV-2 variant infections.
Collapse
Affiliation(s)
- Hengrui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Chao Leng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Yanni Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Lu Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Fan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Jia Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Xiaolu Zhang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Wei Zhou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Qinghong Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Yufeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Bihao Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Jiamei Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Jiang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Rui Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Bing Yan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Sheng Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
10
|
Wang E, Cohen AA, Caldera LF, Keeffe JR, Rorick AV, Adia YM, Gnanapragasam PNP, Bjorkman PJ, Chakraborty AK. Designed mosaic nanoparticles enhance cross-reactive immune responses in mice. Cell 2025; 188:1036-1050.e11. [PMID: 39855201 PMCID: PMC11845252 DOI: 10.1016/j.cell.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/27/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Nanoparticle vaccines displaying combinations of SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs) could protect against SARS-CoV-2 variants and spillover of zoonotic sarbecoviruses into humans. Using a computational approach, we designed variants of SARS-CoV-2 RBDs and selected 7 natural sarbecovirus RBDs, each predicted to fold properly and abrogate antibody responses to variable epitopes. RBDs were attached to 60-mer nanoparticles to make immunogens displaying two (mosaic-2COMs), five (mosaic-5COM), or seven (mosaic-7COM) different RBDs for comparisons with mosaic-8b, which elicited cross-reactive antibodies and protected animals from sarbecovirus challenges. Naive and COVID-19 pre-vaccinated mice immunized with mosaic-7COM elicited antibodies targeting conserved RBD epitopes, and their sera exhibited higher binding and neutralization titers against sarbecoviruses than mosaic-8b. Mosaic-2COMs and mosaic-5COM elicited higher antibody potencies against some SARS-CoV-2 variants than mosaic-7COM. However, mosaic-7COM elicited more potent responses against zoonotic sarbecoviruses and highly mutated Omicrons, supporting its use to protect against SARS-CoV-2 variants and zoonotic sarbecoviruses.
Collapse
Affiliation(s)
- Eric Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luis F Caldera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yusuf M Adia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Arup K Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Hromić-Jahjefendić A, Aljabali AAA. Analysis of the immune response in COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:31-71. [PMID: 40246347 DOI: 10.1016/bs.pmbts.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The COVID-19 pandemic, instigated by the novel coronavirus SARS-CoV-2, has emerged as a significant global health challenge, demanding a profound grasp of the immune response. The innate immune system, a multifaceted network encompassing pattern recognition receptors (PRRs) and effector cells, assumes a pivotal function in detecting and countering this viral assailant. Toll-like receptors (TLRs), situated on immune cell surfaces and within endosomes, play a central role in recognizing SARS-CoV-2. TLR-2 and TLR-4 discern specific viral constituents, such as the spike (S) protein, setting off inflammatory signaling cascades and catalyzing the generation of type I interferons. Intracellular PRRs, including the RIG-I-like receptors (RLRs), RIG-I and MDA5, detect viral RNA within the cytoplasm of infected cells, provoking antiviral responses by initiating the synthesis of type I interferons. The equilibrium between interferons and pro-inflammatory cytokines dictates the outcomes of the disease. Interferons play an indispensable role in governing viral replication, while unregulated cytokine production can result in tissue harm and inflammation. This intricate dynamic underpins therapeutic strategies aimed at regulating immune responses in individuals grappling with COVID-19. Natural killer (NK) cells, with their capacity to recognize infected cells through the "missing self" phenomenon and activating receptors, make significant contributions to the defense against SARS-CoV-2. NK cells play a pivotal role in eliminating infected cells and boosting immune responses through antibody-dependent cell-mediated cytotoxicity (ADCC). In conclusion, comprehending the interplay among PRRs, interferons, and NK cells within innate immunity is paramount for discerning and combatting SARS-CoV-2. This comprehension illuminates therapeutic interventions and vaccine development, casting light on our endeavors to confront this worldwide health crisis.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| |
Collapse
|
12
|
Roederer AL, Cao Y, St Denis K, Sheehan ML, Li CJ, Lam EC, Gregory DJ, Poznansky MC, Iafrate AJ, Canaday DH, Gravenstein S, Garcia-Beltran WF, Balazs AB. Ongoing evolution of SARS-CoV-2 drives escape from mRNA vaccine-induced humoral immunity. Cell Rep Med 2024; 5:101850. [PMID: 39657661 PMCID: PMC11722104 DOI: 10.1016/j.xcrm.2024.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
With the onset of the COVID-19 pandemic 4 years ago, viral sequencing continues to document numerous individual mutations in the viral spike protein across many variants. To determine the ability of vaccine-mediated humoral immunity to combat continued SARS-CoV-2 evolution, we construct a comprehensive panel of pseudoviruses harboring each individual mutation spanning 4 years of the pandemic to understand the fitness cost and resistance benefits of each. These efforts identify numerous mutations that escape from vaccine-induced humoral immunity. Across 50 variants and 131 mutants we construct, we observe progressive loss of neutralization across variants, irrespective of vaccine doses, as well as increasing infectivity and ACE2 binding. Importantly, the recent XBB.1.5 booster significantly increases titers against most variants but not JN.1, KP.2, or KP.3. These findings demonstrate that variants continue to evade updated mRNA vaccines, highlighting the need for different approaches to control SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Alex L Roederer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kerri St Denis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Maegan L Sheehan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Chia Jung Li
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Evan C Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - David J Gregory
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Pediatric Infectious Disease, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David H Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH, USA; Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Stefan Gravenstein
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, RI, USA; Division of Geriatrics and Palliative Medicine, Alpert Medical School of Brown University, Providence, RI, USA; Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, RI, USA
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
13
|
Tang X, Chen J, Zhang L, Liu T, Ding M, Zheng YW, Zhang Y. Interfacial subregions of SARS-CoV-2 spike RBD to hACE2 affect intermolecular affinity by their distinct roles played in association and dissociation kinetics. Commun Biol 2024; 7:1621. [PMID: 39638851 PMCID: PMC11621773 DOI: 10.1038/s42003-024-07081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
SARS-CoV-2's rapid global transmission depends on spike RBD's strong affinity to hACE2. In the context of binding hot spots well defined, the work investigated how interfacial subregions of SARS-CoV-2 spike RBD to hACE2 affect intermolecular affinity and their potential distinct roles involved in association and dissociation kinetics due to their local structural characteristics. Three spatially consecutive subregions of SARS-CoV-2 RBD were structurally partitioned across RBD's receptor binding motif (RBM). Their impacts on binding affinity and kinetics were differentiated through a comprehensive SPR measurement of hACE2 binding by chimeric swap mutants of respective subdomains from SARS-CoV-2 VOCs & phylogenetically close sarbecoviruses, and further compared with those of included single mutations across RBM and around the RBD core. The data supports that the intermediate interfacial subregion of RBD involving key residue at 417 is the rate-limiting effector of association kinetics and the subregion encompassing residues at 501/498/449 is the key binding energy contributor dictating dissociation kinetics, both of which relate to SARS-CoV-2's adaptive mutational evolution and host tropism closely. The kinetic data and structural analysis of local mutations' impact on spike RBD's binding and thermal stability provide a new perspective in evaluating SARS-CoV-2 evolution and other sarbecoviruses' evolvable binding to hACE2. The inherent binding mode offers direct clues of valid epitope in designing new antibodies that the coronavirus can't elude.
Collapse
Affiliation(s)
- Xiangwu Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Jingxian Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Tao Liu
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Min Ding
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Medical and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yinghui Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China.
| |
Collapse
|
14
|
Sun H, Xia L, Li J, Zhang Y, Zhang G, Huang P, Wang X, Cui Y, Fang T, Fan P, Zhou Q, Chi X, Yu C. A novel bispecific antibody targeting two overlapping epitopes in RBD improves neutralizing potency and breadth against SARS-CoV-2. Emerg Microbes Infect 2024; 13:2373307. [PMID: 38953857 PMCID: PMC11249148 DOI: 10.1080/22221751.2024.2373307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
SARS-CoV-2 has been evolving into a large number of variants, including the highly pathogenic Delta variant, and the currently prevalent Omicron subvariants with extensive evasion capability, which raises an urgent need to develop new broad-spectrum neutralizing antibodies. Herein, we engineer two IgG-(scFv)2 form bispecific antibodies with overlapping epitopes (bsAb1) or non-overlapping epitopes (bsAb2). Both bsAbs are significantly superior to the parental monoclonal antibodies in terms of their antigen-binding and virus-neutralizing activities against all tested circulating SARS-CoV-2 variants including currently dominant JN.1. The bsAb1 can efficiently neutralize all variants insensitive to parental monoclonal antibodies or the cocktail with IC50 lower than 20 ng/mL, even slightly better than bsAb2. Furthermore, the cryo-EM structures of bsAb1 in complex with the Omicron spike protein revealed that bsAb1 with overlapping epitopes effectively locked the S protein, which accounts for its conserved neutralization against Omicron variants. The bispecific antibody strategy engineered from overlapping epitopes provides a novel solution for dealing with viral immune evasion.
Collapse
MESH Headings
- Antibodies, Bispecific/biosynthesis
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/metabolism
- Antibodies, Bispecific/ultrastructure
- Protein Domains
- Epitopes/metabolism
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/ultrastructure
- SARS-CoV-2/immunology
- Immune Evasion
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/chemistry
- Antibodies, Viral/metabolism
- Antibodies, Viral/ultrastructure
- Neutralization Tests
- Antigens, Viral/metabolism
- Cryoelectron Microscopy
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Spike Glycoprotein, Coronavirus/ultrastructure
- Models, Molecular
- Protein Structure, Quaternary
- Mutation
- Humans
Collapse
Affiliation(s)
- Hancong Sun
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Lingyun Xia
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianhua Li
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Guanying Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ping Huang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Xingxing Wang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yue Cui
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ting Fang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Pengfei Fan
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Qiang Zhou
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiangyang Chi
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Changming Yu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Barghash RF, Gemmati D, Awad AM, Elbakry MMM, Tisato V, Awad K, Singh AV. Navigating the COVID-19 Therapeutic Landscape: Unveiling Novel Perspectives on FDA-Approved Medications, Vaccination Targets, and Emerging Novel Strategies. Molecules 2024; 29:5564. [PMID: 39683724 PMCID: PMC11643501 DOI: 10.3390/molecules29235564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Amidst the ongoing global challenge of the SARS-CoV-2 pandemic, the quest for effective antiviral medications remains paramount. This comprehensive review delves into the dynamic landscape of FDA-approved medications repurposed for COVID-19, categorized as antiviral and non-antiviral agents. Our focus extends beyond conventional narratives, encompassing vaccination targets, repurposing efficacy, clinical studies, innovative treatment modalities, and future outlooks. Unveiling the genomic intricacies of SARS-CoV-2 variants, including the WHO-designated Omicron variant, we explore diverse antiviral categories such as fusion inhibitors, protease inhibitors, transcription inhibitors, neuraminidase inhibitors, nucleoside reverse transcriptase, and non-antiviral interventions like importin α/β1-mediated nuclear import inhibitors, neutralizing antibodies, and convalescent plasma. Notably, Molnupiravir emerges as a pivotal player, now licensed in the UK. This review offers a fresh perspective on the historical evolution of COVID-19 therapeutics, from repurposing endeavors to the latest developments in oral anti-SARS-CoV-2 treatments, ushering in a new era of hope in the battle against the pandemic.
Collapse
Affiliation(s)
- Reham F. Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Cairo 12622, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ahmed M. Awad
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Mustafa M. M. Elbakry
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Veronica Tisato
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Kareem Awad
- Institute of Pharmaceutical and Drug Industries Research, National Research Center, Dokki, Cairo 12622, Egypt;
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
16
|
Yang YF, Lin YJ, You SH, Lu TH, Chen CY, Wang WM, Ling MP, Chen SC, Liao CM. A Regional-Scale Assessment-Based SARS-CoV-2 Variants Control Modeling with Implications for Infection Risk Characterization. Infect Drug Resist 2024; 17:4791-4805. [PMID: 39498414 PMCID: PMC11533883 DOI: 10.2147/idr.s480086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024] Open
Abstract
Background The emergence and progression of highly divergent SARS-CoV-2 variants have posed increased risks to global public health, triggering the significant impacts on countermeasures since 2020. However, in addition to vaccination, the effectiveness of non-pharmaceutical interventions, such as social distancing, masking, or hand washing, on different variants of concern (VOC) remains largely unknown. Objective This study provides a mechanistic approach by implementing a control measure model and a risk assessment framework to quantify the impacts of control measure combinations on the transmissions of five VOC (Alpha, Beta, Delta, Gamma, and Omicron), along with a different perspective of risk assessment application. Materials and Methods We applied uncontrollable ratios as an indicator by adopting basic reproduction number (R 0) data collected from a regional-scale survey. A risk assessment strategy was established by constructing VOC-specific dose-response profiles to implicate practical uses in risk characterization when exposure data are available. Results We found that social distancing alone was ineffective without vaccination in almost all countries and VOC when the median R 0 was greater than two. Our results indicated that Omicron could not be contained, even when all control measure combinations were applied, due to its low threshold of infectivity (~3×10-4 plague-forming unit (PFU) mL-1). Conclusion To facilitate better decision-making in future interventions, we provide a comprehensive evaluation of how combined control measures impact on different countries and various VOC. Our findings indicate the potential application of threshold estimates of infectivity in the context of risk communication and policymaking for controlling future emerging SARS-CoV-2 variant infections.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11230, Taiwan
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Tien-Hsuan Lu
- Department of Science Education and Application, National Taichung University of Education, Taichung, 403514, Taiwan
| | - Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32608, USA
| | - Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Min-Pei Ling
- Department of Food Science, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
17
|
Katzmarzyk M, Naughton R, Sitaras I, Jacobsen H, Higdon MM, Deloria Knoll M. Evaluating the Quality of Studies Assessing COVID-19 Vaccine Neutralizing Antibody Immunogenicity. Vaccines (Basel) 2024; 12:1238. [PMID: 39591141 PMCID: PMC11598362 DOI: 10.3390/vaccines12111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Objective: COVID-19 vaccine-neutralizing antibodies provide early data on potential vaccine effectiveness, but their usefulness depends on study reliability and reporting quality. Methods: We systematically evaluated 50 published post-vaccination neutralizing antibody studies for key parameters that determine study and data quality regarding sample size, SARS-CoV-2 infection, vaccination regimen, sample collection period, demographic characterization, clinical characterization, experimental protocol, live virus and pseudo-virus details, assay standardization, and data reporting. Each category was scored from very high to low or unclear quality, with the lowest score determining the overall study quality score. Results: None of the studies attained an overall high or very high score, 8% (n = 4) attained moderate, 42% (n = 21) low, and 50% (n = 25) unclear. The categories with the fewest studies assessed as ≥ high quality were SARS-CoV-2 infection (42%), sample size (30%), and assay standardization (14%). Overall quality was similar over time. No association between journal impact factor and quality score was found. Conclusions: We found that reporting in neutralization studies is widely incomplete, limiting their usefulness for downstream analyses.
Collapse
Affiliation(s)
- Maeva Katzmarzyk
- Department of Viral Immunology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | | | - Ioannis Sitaras
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Henning Jacobsen
- Department of Viral Immunology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Melissa M. Higdon
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Maria Deloria Knoll
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Cimen AN, Torabfam GC, Tok YT, Yucebag E, Arslan N, Saribal D, Esken G, Dogan O, Kuskucu MA, Mete B, Aygun G, Tabak F, Can F, Ergonul O, Midilli K, Kutlu O, Cetinel S. Development of pseudotyped VSV-SARS-CoV-2 spike variants for the assessment of neutralizing antibodies. Bioanalysis 2024; 16:1167-1177. [PMID: 39411978 PMCID: PMC11583609 DOI: 10.1080/17576180.2024.2411920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/30/2024] [Indexed: 11/22/2024] Open
Abstract
Aim: Serological studies with pseudotyped viruses offer a safer alternative to live SARS-CoV-2 in evaluating neutralizing antibodies, enabling research in standard labs.Methods: The SARS-CoV-2 Spike pseudotyped vesicular stomatitis virus (VSV) pseudoviruses were generated using Spike of Wuhan strain and two variants (B.1.1.7, B.1.351) and utilized to evaluate the serum neutralizing activity of human plasma samples of vaccinated (n = 13) and healthy people (n = 2) compared with a plaque assay with authentic virus.Results: Neutralizing titer of convalescent plasma resulted with a good correlation (R2 = 0.7).Conclusion: We evaluated a safe and reliable pseudotyped virus system that effectively mimics authentic virus and correlates well with traditional assays. The developed system allows easier testing of variants and has the potential to improve vaccine development.
Collapse
Affiliation(s)
- Atike Nur Cimen
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Istanbul, 34956, Turkey
- Faculty of Engineering & Natural Sciences, Molecular Biology, Genetics & Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Gizem Celebi Torabfam
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Istanbul, 34956, Turkey
- Faculty of Engineering & Natural Sciences, Molecular Biology, Genetics & Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Yesim Tuyji Tok
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
- Department of Medical Microbiology, Medical Faculty of Izmir Katip Celebi University, Istanbul, 35610, Turkey
| | - Ebru Yucebag
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Nese Arslan
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Devrim Saribal
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul Univesirty-Cerrahpasa, Istanbul, 34098, Turkey
| | - Gulen Esken
- Koc University IsBank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Ozlem Dogan
- Koc University IsBank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Mert Ahmet Kuskucu
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Bilgul Mete
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Gokhan Aygun
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Fehmi Tabak
- Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Fusun Can
- Koc University IsBank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Onder Ergonul
- Koc University IsBank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Kenan Midilli
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Ozlem Kutlu
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Istanbul, 34956, Turkey
- Faculty of Engineering & Natural Sciences, Molecular Biology, Genetics & Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Sibel Cetinel
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Istanbul, 34956, Turkey
- Faculty of Engineering & Natural Sciences, Molecular Biology, Genetics & Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
19
|
Poli ANR, Tietjen I, Nandwana NK, Cassel J, Messick TE, Register ET, Keeney F, Rajaiah R, Verma AK, Pandey K, Acharya A, Byrareddy SN, Montaner LJ, Salvino JM. Design of novel and highly selective SARS-CoV-2 main protease inhibitors. Antimicrob Agents Chemother 2024; 68:e0056224. [PMID: 39225484 PMCID: PMC11459967 DOI: 10.1128/aac.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
We have synthesized a novel and highly selective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease peptide mimetic inhibitor mimicking the replicase 1ab recognition sequence -Val-Leu-Gln- and utilizing a cysteine selective acyloxymethyl ketone as the electrophilic warhead to target the active site Cys145. Utilizing a constrained cyclic peptide that locks the conformation between the P3 (Val) and P2 (Leu) residues, we identified a highly selective inhibitor that fills the P2 pocket occupied by the leucine residue sidechain of PF-00835231 and the dimethyl-3-azabicyclo-hexane motif in nirmatrelvir (PF-07321332). This strategy resulted in potent and highly selective Mpro inhibitors without inhibiting essential host cathepsin cysteine or serine proteases. The lead prototype compound 1 (MPro IC50 = 230 ± 18 nM) also inhibits the replication of multiple SARS-CoV-2 variants in vitro, including SARS-CoV-2 variants of concern, and can synergize at lower concentrations with the viral RNA polymerase inhibitor, remdesivir, to inhibit replication. It also reduces SARS-CoV-2 replication in SARS-CoV-2 Omicron-infected Syrian golden hamsters without obvious toxicities, demonstrating in vivo efficacy. This novel lead structure provides the basis for optimization of improved agents targeting evolving SARS-CoV-2 drug resistance that can selectively act on Mpro versus host proteases and are less likely to have off-target effects due to non-specific targeting. Developing inhibitors against the active site of the main protease (Mpro), which is highly conserved across coronaviruses, is expected to impart a higher genetic barrier to evolving SARS-CoV-2 drug resistance. Drugs that selectively inhibit the viral Mpro are less likely to have off-target effects warranting efforts to improve this therapy.
Collapse
Affiliation(s)
- Adi N. R. Poli
- Medicinal Chemistry, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ian Tietjen
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nitesh K. Nandwana
- Medicinal Chemistry, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Joel Cassel
- The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Emery T. Register
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Frederick Keeney
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Rajesh Rajaiah
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Atul K. Verma
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kabita Pandey
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Arpan Acharya
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luis J. Montaner
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Joseph M. Salvino
- Medicinal Chemistry, The Wistar Institute, Philadelphia, Pennsylvania, USA
- The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Miranda MC, Kepl E, Navarro MJ, Chen C, Johnson M, Sprouse KR, Stewart C, Palser A, Valdez A, Pettie D, Sydeman C, Ogohara C, Kraft JC, Pham M, Murphy M, Wrenn S, Fiala B, Ravichandran R, Ellis D, Carter L, Corti D, Kellam P, Lee K, Walls AC, Veesler D, King NP. Potent neutralization of SARS-CoV-2 variants by RBD nanoparticle and prefusion-stabilized spike immunogens. NPJ Vaccines 2024; 9:184. [PMID: 39379400 PMCID: PMC11461925 DOI: 10.1038/s41541-024-00982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
We previously described a two-component protein nanoparticle vaccine platform that displays 60 copies of the SARS-CoV-2 spike protein RBD (RBD-NP). The vaccine, when adjuvanted with AS03, was shown to elicit robust neutralizing antibody and CD4 T cell responses in Phase I/II clinical trials, met its primary co-endpoints in a Phase III trial, and has been licensed by multiple regulatory authorities under the brand name SKYCovioneTM. Here we characterize the biophysical properties, stability, antigenicity, and immunogenicity of RBD-NP immunogens incorporating mutations from the B.1.351 (β) and P.1 (γ) variants of concern (VOCs) that emerged in 2020. We also show that the RBD-NP platform can be adapted to the Omicron strains BA.5 and XBB.1.5. We compare β and γ variant and E484K point mutant nanoparticle immunogens to the nanoparticle displaying the Wu-1 RBD, as well as to soluble prefusion-stabilized (HexaPro) spike trimers harboring VOC-derived mutations. We find the properties of immunogens based on different SARS-CoV-2 variants can differ substantially, which could affect the viability of variant vaccine development. Introducing stabilizing mutations in the linoleic acid binding site of the RBD-NPs resulted in increased physical stability compared to versions lacking the stabilizing mutations without deleteriously affecting immunogenicity. The RBD-NP immunogens and HexaPro trimers, as well as combinations of VOC-based immunogens, elicited comparable levels of neutralizing antibodies against distinct VOCs. Our results demonstrate that RBD-NP-based vaccines can elicit neutralizing antibody responses against SARS-CoV-2 variants and can be rapidly designed and stabilized, demonstrating the potential of two-component RBD-NPs as a platform for the development of broadly protective coronavirus vaccines.
Collapse
Affiliation(s)
- Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA, USA
| | - Max Johnson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anne Palser
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Adian Valdez
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Minh Pham
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sam Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Daniel Ellis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
- Department of Infectious Disease, Imperial College, London, UK
| | - Kelly Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
21
|
Djorwé S, Malki A, Nzoyikorera N, Nyandwi J, Zebsoubo SP, Bellamine K, Bousfiha A. Genetic diversity and genomic epidemiology of SARS-CoV-2 during the first 3 years of the pandemic in Morocco: comprehensive sequence analysis, including the unique lineage B.1.528 in Morocco. Access Microbiol 2024; 6:000853.v4. [PMID: 39376591 PMCID: PMC11457919 DOI: 10.1099/acmi.0.000853.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
During the 3 years following the emergence of the COVID-19 pandemic, the African continent, like other regions of the world, was substantially impacted by COVID-19. In Morocco, the COVID-19 pandemic has been marked by the emergence and spread of several SARS-CoV-2 variants, leading to a substantial increase in the incidence of infections and deaths. Nevertheless, the comprehensive understanding of the genetic diversity, evolution, and epidemiology of several viral lineages remained limited in Morocco. This study sought to deepen the understanding of the genomic epidemiology of SARS-CoV-2 through a retrospective analysis. The main objective of this study was to analyse the genetic diversity of SARS-CoV-2 and identify distinct lineages, as well as assess their evolution during the pandemic in Morocco, using genomic epidemiology approaches. Furthermore, several key mutations in the functional proteins across different viral lineages were highlighted along with an analysis of the genetic relationships amongst these strains to better understand their evolutionary pathways. A total of 2274 genomic sequences of SARS-CoV-2 isolated in Morocco during the period of 2020 to 2023, were extracted from the GISAID EpiCoV database and subjected to analysis. Lineages and clades were classified according to the nomenclature of GISAID, Nextstrain, and Pangolin. The study was conducted and reported in accordance with STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. An exhaustive analysis of 2274 genomic sequences led to the identification of 157 PANGO lineages, including notable lineages such as B.1, B.1.1, B.1.528, and B.1.177, as well as variants such as B.1.1.7, B.1.621, B.1.525, B.1.351, B.1.617.1, B.1.617.2, and its notable sublineages AY.33, AY.72, AY.112, AY.121 that evolved over time before being supplanted by Omicron in December 2021. Among the 2274 sequences analysed, Omicron and its subvariants had a prevalence of 59.5%. The most predominant clades were 21K, 21L, and 22B, which are respectively related phylogenetically to BA.1, BA.2, and BA.5. In June 2022, Morocco rapidly observed a recrudescence of cases of infection, with the emergence and concurrent coexistence of subvariants from clade 22B such as BA.5.2.20, BA.5, BA.5.1, BA.5.2.1, and BF.5, supplanting the subvariants BA.1 (clade display 21K) and BA.2 (clade display 21L), which became marginal. However, XBB (clade 22F) and its progeny such XBB.1.5(23A), XBB.1.16(23B), CH.1.1(23C), XBB.1.9(23D), XBB.2.3(23E), EG.5.1(23F), and XBB.1.5.70(23G) have evolved sporadically. Furthermore, several notable mutations, such as H69del/V70del, G142D, K417N, T478K, E484K, E484A, L452R, F486P, N501Y, Q613H, D614G, and P681H/R, have been identified. Some of these SARS-CoV-2 mutations are known to be involved in increasing transmissibility, virulence, and antibody escape. This study has identified several distinct lineages and mutations involved in the genetic diversity of Moroccan isolates, as well as the analysis of their evolutionary trends. These findings provide a robust basis for better understanding the distinct mutations and their roles in the variation of transmissibility, pathogenicity, and antigenicity (immune evasion/reinfection). Furthermore, the noteworthy number of distinct lineages identified in Morocco highlights the importance of maintaining continuous surveillance of COVID-19. Moreover, expanding vaccination coverage would also help protect patients against more severe clinical disease.
Collapse
Affiliation(s)
- Soulandi Djorwé
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca (Morocco), Avenue Cdt Driss El Harti, PB 7955 Sidi Othman, Casablanca, Morocco
- Bourgogne Laboratory of Medical and Scientific Analysis, 136, residence belhcen, Bd Bourgogne, Casablanca, Morocco
| | - Abderrahim Malki
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca (Morocco), Avenue Cdt Driss El Harti, PB 7955 Sidi Othman, Casablanca, Morocco
| | - Néhémie Nzoyikorera
- National Reference Laboratory, National Institute of Public Health, Bujumbura, Burundi
- Higher Institute of Biosciences and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Laboratory of Microbial Biotechnology and Infectiology Research, Mohammed VI Center for Research & Innovation, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Joseph Nyandwi
- Département de Médecine, Faculté de Médecine, Université du Burundi, Bujumbura, Burundi
- Ministère de la Santé Publique et de la Lutte contre le Sida, Institut National de Santé Publique de Bujumbura, Bujumbura, Burundi
| | - Samuel Privat Zebsoubo
- School of Advanced Studies in Biotechnology and Private Health (EHEB), 183 Bd de la Resistance, Casablanca 20250, Morocco
| | - Kawthar Bellamine
- Bourgogne Laboratory of Medical and Scientific Analysis, 136, residence belhcen, Bd Bourgogne, Casablanca, Morocco
| | - Amale Bousfiha
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca (Morocco), Avenue Cdt Driss El Harti, PB 7955 Sidi Othman, Casablanca, Morocco
| |
Collapse
|
22
|
Duyvesteyn HME, Dijokaite-Guraliuc A, Liu C, Supasa P, Kronsteiner B, Jeffery K, Stafford L, Klenerman P, Dunachie SJ, Mongkolsapaya J, Fry EE, Ren J, Stuart DI, Screaton GR. Concerted deletions eliminate a neutralizing supersite in SARS-CoV-2 BA.2.87.1 spike. Structure 2024; 32:1594-1602.e6. [PMID: 39173622 DOI: 10.1016/j.str.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
BA.2.87.1 represents a major shift in the BA.2 lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is unusual in having two lengthy deletions of polypeptide in the spike (S) protein, one of which removes a beta-strand. Here we investigate its neutralization by a variety of sera from infected and vaccinated individuals and determine its spike (S) ectodomain structure. The BA.2.87.1 receptor binding domain (RBD) is structurally conserved and the RBDs are tightly packed in an "all-down" conformation with a small rotation relative to the trimer axis as compared to the closest previously observed conformation. The N-terminal domain (NTD) maintains a remarkably similar structure overall; however, the rearrangements resulting from the deletions essentially destroy the so-called supersite epitope and eliminate one glycan site, while a mutation creates an additional glycan site, effectively shielding another NTD epitope. BA.2.87.1 is relatively easily neutralized but acquisition of additional mutations in the RBD could increase antibody escape allowing it to become a dominant sub-lineage.
Collapse
Affiliation(s)
- Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK
| | - Aiste Dijokaite-Guraliuc
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Piyada Supasa
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Barbara Kronsteiner
- NDM Centre For Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lizzie Stafford
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Marques BDC, Banho CA, Sacchetto L, Negri A, Vasilakis N, Nogueira ML. Impact of Vaccination on Intra-Host Genetic Diversity of Patients Infected with SARS-CoV-2 Gamma Lineage. Viruses 2024; 16:1524. [PMID: 39459859 PMCID: PMC11512383 DOI: 10.3390/v16101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high transmissibility, rapid evolution, and immune escape of SARS-CoV-2 variants can influence the course of infection and, in turn, morbidity and mortality in COVID-19, posing a challenge in controlling transmission rates and contributing to the emergence and spread of new variants. Understanding the factors that shape viral genetic variation is essential for comprehending the evolution and transmission of SARS-CoV-2, especially in vaccinated individuals where immune response plays a role in the progression and spread of this disease. In this context, we evaluated the impact of immunity induced by the CoronaVac vaccine (Butantan/Sinovac) on intra-host genetic diversity, analyzing 118 whole-genome sequences of SARS-CoV-2 from unvaccinated and vaccinated patients infected with the Gamma variant. Vaccination with CoronaVac favors negative selection at the intra-host level in different genomic regions. It prevents greater genetic diversity of SARS-CoV-2, reinforcing the importance of vaccination in reducing the emergence of new mutations and virus transmission.
Collapse
Affiliation(s)
- Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil; (B.d.C.M.); (C.A.B.); (L.S.)
| | - Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil; (B.d.C.M.); (C.A.B.); (L.S.)
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil; (B.d.C.M.); (C.A.B.); (L.S.)
| | - Andreia Negri
- Vigilância Epidemiológica, Secretaria de Saúde de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil;
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil; (B.d.C.M.); (C.A.B.); (L.S.)
- Vigilância Epidemiológica, Secretaria de Saúde de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil;
| |
Collapse
|
24
|
Muraoka D, Moi ML, Muto O, Nakatsukasa T, Deng S, Takashima C, Yamaguchi R, Sawada SI, Hayakawa H, Nguyen TTN, Haseda Y, Soga T, Matsushita H, Ikeda H, Akiyoshi K, Harada N. Low-frequency CD8 + T cells induced by SIGN-R1 + macrophage-targeted vaccine confer SARS-CoV-2 clearance in mice. NPJ Vaccines 2024; 9:173. [PMID: 39294173 PMCID: PMC11411095 DOI: 10.1038/s41541-024-00961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2024] [Indexed: 09/20/2024] Open
Abstract
Vaccine-induced T cells and neutralizing antibodies are essential for protection against SARS-CoV-2. Previously, we demonstrated that an antigen delivery system, pullulan nanogel (PNG), delivers vaccine antigen to lymph node medullary macrophages and thereby enhances the induction of specific CD8+ T cells. In this study, we revealed that medullary macrophage-selective delivery by PNG depends on its binding to a C-type lectin SIGN-R1. In a K18-hACE2 mouse model of SARS-CoV-2 infection, vaccination with a PNG-encapsulated receptor-binding domain of spike protein decreased the viral load and prolonged the survival in the CD8+ T cell- and B cell-dependent manners. T cell receptor repertoire analysis revealed that although the vaccine induced T cells at various frequencies, low-frequency specific T cells mainly promoted virus clearance. Thus, the induction of specific CD8+ T cells that respond quickly to viral infection, even at low frequencies, is important for vaccine efficacy and can be achieved by SIGN-R1+ medullary macrophage-targeted antigen delivery.
Collapse
Affiliation(s)
- Daisuke Muraoka
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Osamu Muto
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Nakatsukasa
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Situo Deng
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chieko Takashima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shin-Ichi Sawada
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Haruka Hayakawa
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | | | | | | | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
25
|
Garcia-Carretero R, Ordoñez-Garcia M, Gil-Prieto R, Gil-de-Miguel A. Outcomes and Patterns of Evolution of Patients with Hematological Malignancies during the COVID-19 Pandemic: A Nationwide Study (2020-2022). J Clin Med 2024; 13:5400. [PMID: 39336888 PMCID: PMC11431878 DOI: 10.3390/jcm13185400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Early reports suggest that hematological malignancy (HM) is a relevant risk factor for morbidity and mortality in COVID-19. We investigated the characteristics, outcomes, and risk factors for mortality in patients hospitalized with HM and COVID-19. Methods: We conducted a retrospective, nationwide study using data from hospitalized patients that were provided by the Spanish Ministry of Health including all patients admitted to a Spanish hospital from 2020 to 2022 with a COVID-19 diagnosis. A descriptive analysis and correlational analyses were conducted. Logistic regression was used to assess mortality in these patients and to calculate odds ratios (ORs). Results: We collected data on 1.2 million patients with COVID-19, including 34,962 patients with HMs. The incidence of hospitalization for patients with HMs was 5.8%, and the overall mortality rate was higher than for patients without HMs (19.8% versus 12.7%, p = 0.001). Mortality rates were higher for patients with lymphomas, multiple myelomas, and leukemias than for those with myeloproliferative disorders. Having HMs was a risk factor for mortality, with OR = 1.7 (95% CI 1.66-1.75, p = 0.001). By subtype, non-Hodgkin lymphomas were the highest risk factor for mortality (OR = 1.7), followed by leukemias (OR = 1.6), Hodgkin lymphomas (OR = 1.58), and plasma cell dyscrasias (OR = 1.24). Conclusions: This study identifies the different clinical profiles of patients with HMs who are at a high risk for mortality when hospitalized with COVID-19. As members of a vulnerable population, these patients deserve special prophylactic and therapeutic measures to minimize the effects of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rafael Garcia-Carretero
- Internal Medicine Department, Mostoles University Hospital, Rey Juan Carlos University, 29835 Mostoles, Spain
| | - Maria Ordoñez-Garcia
- Hematology Department, Mostoles University Hospital, Rey Juan Carlos University, 29835 Mostoles, Spain
| | - Ruth Gil-Prieto
- Department of Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Angel Gil-de-Miguel
- Department of Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Alcorcón, Spain
| |
Collapse
|
26
|
Wouters C, Sachithanandham J, Akin E, Pieterse L, Fall A, Truong TT, Bard JD, Yee R, Sullivan DJ, Mostafa HH, Pekosz A. SARS-CoV-2 Variants from Long-Term, Persistently Infected Immunocompromised Patients Have Altered Syncytia Formation, Temperature-Dependent Replication, and Serum Neutralizing Antibody Escape. Viruses 2024; 16:1436. [PMID: 39339912 PMCID: PMC11437501 DOI: 10.3390/v16091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
SARS-CoV-2 infection of immunocompromised individuals often leads to prolonged detection of viral RNA and infectious virus in nasal specimens, presumably due to the lack of induction of an appropriate adaptive immune response. Mutations identified in virus sequences obtained from persistently infected patients bear signatures of immune evasion and have some overlap with sequences present in variants of concern. We characterized virus isolates obtained greater than 100 days after the initial COVID-19 diagnosis from two COVID-19 patients undergoing immunosuppressive cancer therapy, wand compared them to an isolate from the start of the infection. Isolates from an individual who never mounted an antibody response specific to SARS-CoV-2 despite the administration of convalescent plasma showed slight reductions in plaque size and some showed temperature-dependent replication attenuation on human nasal epithelial cell culture compared to the virus that initiated infection. An isolate from another patient-who did mount a SARS-CoV-2 IgM response-showed temperature-dependent changes in plaque size as well as increased syncytia formation and escape from serum-neutralizing antibodies. Our results indicate that not all virus isolates from immunocompromised COVID-19 patients display clear signs of phenotypic change, but increased attention should be paid to monitoring virus evolution in this patient population.
Collapse
Affiliation(s)
- Camille Wouters
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Elgin Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Amary Fall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thao T. Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rebecca Yee
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Heba H. Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| |
Collapse
|
27
|
Ulzurrun E, Grande-Pérez A, del Hoyo D, Guevara C, Gil C, Sorzano CO, Campillo NE. Unlocking the puzzle: non-defining mutations in SARS-CoV-2 proteome may affect vaccine effectiveness. Front Public Health 2024; 12:1386596. [PMID: 39228849 PMCID: PMC11369981 DOI: 10.3389/fpubh.2024.1386596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction SARS-CoV-2 variants are defined by specific genome-wide mutations compared to the Wuhan genome. However, non-clade-defining mutations may also impact protein structure and function, potentially leading to reduced vaccine effectiveness. Our objective is to identify mutations across the entire viral genome rather than focus on individual mutations that may be associated with vaccine failure and to examine the physicochemical properties of the resulting amino acid changes. Materials and methods Whole-genome consensus sequences of SARS-CoV-2 from COVID-19 patients were retrieved from the GISAID database. Analysis focused on Dataset_1 (7,154 genomes from Italy) and Dataset_2 (8,819 sequences from Spain). Bioinformatic tools identified amino acid changes resulting from codon mutations with frequencies of 10% or higher, and sequences were organized into sets based on identical amino acid combinations. Results Non-defining mutations in SARS-CoV-2 genomes belonging to clades 21 L (Omicron), 22B/22E (Omicron), 22F/23A (Omicron) and 21J (Delta) were associated with vaccine failure. Four sets of sequences from Dataset_1 were significantly linked to low vaccine coverage: one from clade 21L with mutations L3201F (ORF1a), A27- (S) and G30- (N); two sets shared by clades 22B and 22E with changes A27- (S), I68- (S), R346T (S) and G30- (N); and one set shared by clades 22F and 23A containing changes A27- (S), F486P (S) and G30- (N). Booster doses showed a slight improvement in protection against Omicron clades. Regarding 21J (Delta) two sets of sequences from Dataset_2 exhibited the combination of non-clade mutations P2046L (ORF1a), P2287S (ORF1a), L829I (ORF1b), T95I (S), Y145H (S), R158- (S) and Q9L (N), that was associated with vaccine failure. Discussion Vaccine coverage associations appear to be influenced by the mutations harbored by marketed vaccines. An analysis of the physicochemical properties of amino acid revealed that primarily hydrophobic and polar amino acid substitutions occurred. Our results suggest that non-defining mutations across the proteome of SARS-CoV-2 variants could affect the extent of protection of the COVID-19 vaccine. In addition, alteration of the physicochemical characteristics of viral amino acids could potentially disrupt protein structure or function or both.
Collapse
Affiliation(s)
- Eugenia Ulzurrun
- Center for Biological Research Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain
- National Center for Biotechnology, Spanish National Research Council (CSIC), Madrid, Spain
- Institute of Mathematical Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Ana Grande-Pérez
- Department of Cellular Biology, Genetics, and Physiology, University of Malaga, Málaga, Spain
| | - Daniel del Hoyo
- National Center for Biotechnology, Spanish National Research Council (CSIC), Madrid, Spain
| | - Cesar Guevara
- Mechatronics and Interactive Systems - MIST Research Center, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Carmen Gil
- Center for Biological Research Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Carlos Oscar Sorzano
- National Center for Biotechnology, Spanish National Research Council (CSIC), Madrid, Spain
| | - Nuria E. Campillo
- Center for Biological Research Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
28
|
Banho CA, de Carvalho Marques B, Sacchetto L, Lima AKS, Parra MCP, Lima ARJ, Ribeiro G, Martins AJ, Barros CRDS, Elias MC, Sampaio SC, Slavov SN, Rodrigues ES, Santos EV, Covas DT, Kashima S, Brassaloti RA, Petry B, Clemente LG, Coutinho LL, Assato PA, da Silva da Costa FA, Grotto RMT, Poleti MD, Lesbon JCC, Mattos EC, Fukumasu H, Giovanetti M, Alcantara LCJ, Souza-Neto JA, Rahal P, Araújo JP, Spilki FR, Althouse BM, Vasilakis N, Nogueira ML. Dynamic clade transitions and the influence of vaccination on the spatiotemporal circulation of SARS-CoV-2 variants. NPJ Vaccines 2024; 9:145. [PMID: 39127725 DOI: 10.1038/s41541-024-00933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Since 2021, the emergence of variants of concern (VOC) has led Brazil to experience record numbers of in COVID-19 cases and deaths. The expanded spread of the SARS-CoV-2 combined with a low vaccination rate has contributed to the emergence of new mutations that may enhance viral fitness, leading to the persistence of the disease. Due to limitations in the real-time genomic monitoring of new variants in some Brazilian states, we aimed to investigate whether genomic surveillance, coupled with epidemiological data and SARS-CoV-2 variants spatiotemporal spread in a smaller region, can reflect the pandemic progression at a national level. Our findings revealed three SARS-CoV-2 variant replacements from 2021 to early 2022, corresponding to the introduction and increase in the frequency of Gamma, Delta, and Omicron variants, as indicated by peaks of the Effective Reproductive Number (Reff). These distinct clade replacements triggered two waves of COVID-19 cases, influenced by the increasing vaccine uptake over time. Our results indicated that the effectiveness of vaccination in preventing new cases during the Delta and Omicron circulations was six and eleven times higher, respectively, than during the period when Gamma was predominant, and it was highly efficient in reducing the number of deaths. Furthermore, we demonstrated that genomic monitoring at a local level can reflect the national trends in the spread and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Ana Karoline Sepedro Lima
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Maisa Carla Pereira Parra
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Alex Ranieri Jeronimo Lima
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Gabriela Ribeiro
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Antonio Jorge Martins
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | | | - Maria Carolina Elias
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Evandra Strazza Rodrigues
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Elaine Vieira Santos
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Simone Kashima
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Bruna Petry
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Patricia Akemi Assato
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Rejane Maria Tommasini Grotto
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Brazil
- Molecular Biology Laboratory, Applied Biotechnology Laboratory, Clinical Hospital of the Botucatu Medical School, Botucatu, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Jessika Cristina Chagas Lesbon
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Elisangela Chicaroni Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marta Giovanetti
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Rio de Janeiro, Brazil
- Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Selcetta, Italy
| | - Luiz Carlos Junior Alcantara
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Rio de Janeiro, Brazil
| | - Jayme A Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas StateUniversity, Manhattan, KS, USA
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - João Pessoa Araújo
- Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Botucatu, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
- Information School, University of Washington, Seattle, WA, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
29
|
He L, Wu Q, Zhang Z, Chen L, Yu K, Li L, Jia Q, Wang Y, Ni J, Wang C, Li Q, Zhai X, Zhao J, Liu Y, Fan R, Li YP. Development of Broad-Spectrum Nanobodies for the Therapy and Diagnosis of SARS-CoV-2 and Its Multiple Variants. Mol Pharm 2024; 21:3866-3879. [PMID: 38920116 DOI: 10.1021/acs.molpharmaceut.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evaded the efficacy of previously developed antibodies and vaccines, thus remaining a significant global public health threat. Therefore, it is imperative to develop additional antibodies that are capable of neutralizing emerging variants. Nanobodies, as the smallest functional single-domain antibodies, exhibit enhanced stability and penetration ability, enabling them to recognize numerous concealed epitopes that are inaccessible to conventional antibodies. Herein, we constructed an immune library based on the immunization of alpaca with the S1 subunit of the SARS-CoV-2 spike protein, from which two nanobodies, Nb1 and Nb2, were selected using phage display technology for further characterization. Both nanobodies, with the binding residues residing within the receptor-binding domain (RBD) region of the spike, exhibited high affinity toward the S1 subunit. Moreover, they displayed cross-neutralizing activity against both wild-type SARS-CoV-2 and 10 ο variants, including BA.1, BA.2, BA.3, BA.5, BA.2.75, BF.7, BQ.1, EG.5.1, XBB.1.5, and JN.1. Molecular modeling and dynamics simulations predicted that both nanobodies interacted with the viral RBD through their complementarity determining region 1 (CDR1) and CDR2. These two nanobodies are novel tools for the development of therapeutic and diagnostic countermeasures targeting SARS-CoV-2 variants and potentially emerging coronaviruses.
Collapse
Affiliation(s)
- Lei He
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Qian Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Lingling Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Kuai Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Leibin Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Qiong Jia
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jianqiang Ni
- China Animal Disease Control Center, Beijing 102618, China
| | - Chuanbin Wang
- China Animal Disease Control Center, Beijing 102618, China
| | - Qi Li
- China Animal Disease Control Center, Beijing 102618, China
| | - Xinyan Zhai
- China Animal Disease Control Center, Beijing 102618, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuliang Liu
- China Animal Disease Control Center, Beijing 102618, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Yi-Ping Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
30
|
Erster O, Bar-Or I, Azar R, Assraf H, Kabat A, Mannasse B, Moshayoff V, Fleishon S, Preis SA, Yishai R, Teijman-Yarden N, Aguvaev I, Matar R, Aydenzon A, Mandelboim M, Zuckerman NS, Sofer D, Lustig Y. Incursion of SARS-CoV-2 BA.2.86.1 variant into Israel: National-scale wastewater surveillance using a novel quantitative real-time PCR assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173164. [PMID: 38735317 DOI: 10.1016/j.scitotenv.2024.173164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
The emergence of the SARS-CoV-2 variant BA.2.86.1 raised a considerable concern, due to the large number of potentially virulent mutations. In this study, we developed a novel assay that specifically detects variant BA.2.86.1, and used it to screen environmental samples from wastewater treatment sites across Israel. By using a multiplex assay that included a general SARS-CoV-2 reaction, together with the BA.2.86.1-specific reaction and a control reaction, we quantified the absolute number of viral copies in each sample and its relative abundance, compared with the total copy number of circulating SARS-CoV-2. Evaluation of the new reactions showed that they are both sensitive and specific, detecting down to four copies per reaction, and maintain specificity in the presence of Omicron variants BA.1, 2 and 4 RNA. Examination of 279 samples from 30 wastewater collection sites during August-September 2023 showed that 35 samples (12.5 %) were positive, from 18 sites. Quantitative analysis of the samples showed that the relative abundance of variant BA.2.86.1 with respect to the total viral load of SARS-CoV-2 was very low and consisted between 0.01 % and 0.6 % of the total SARS-CoV-2 circulation. This study demonstrates the importance of combining wastewater surveillance with the development of specialized diagnostic assays, when clinical testing is insufficient. This approach may be useful for timely response by public health authorities in future outbreaks.
Collapse
Affiliation(s)
- Oran Erster
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel.
| | - Itay Bar-Or
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Roberto Azar
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Hadar Assraf
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Areej Kabat
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Batya Mannasse
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Vardit Moshayoff
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Shay Fleishon
- Public Health Services, Ministry of Health, Jerusalem, Israel
| | | | - Ruth Yishai
- Public Health Services, Ministry of Health, Jerusalem, Israel
| | | | - Irina Aguvaev
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Roaa Matar
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Alex Aydenzon
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel; School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Neta S Zuckerman
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel; School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
31
|
Yang J, Fan H, Yang A, Wang W, Wan X, Lin F, Yang D, Wu J, Wang K, Li W, Cai Q, You L, Pang D, Lu J, Guo C, Shi J, Sun Y, Li X, Duan K, Shen S, Meng S, Guo J, Wang Z. The Protective Efficacy of a SARS-CoV-2 Vaccine Candidate B.1.351V against Several Variant Challenges in K18-hACE2 Mice. Vaccines (Basel) 2024; 12:742. [PMID: 39066379 PMCID: PMC11281458 DOI: 10.3390/vaccines12070742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOCs) with increased transmissibility and partial resistance to neutralization by antibodies has been observed globally. There is an urgent need for an effective vaccine to combat these variants. Our study demonstrated that the B.1.351 variant inactivated vaccine candidate (B.1.351V) generated strong binding and neutralizing antibody responses in BALB/c mice against the B.1.351 virus and other SARS-CoV-2 variants after two doses within 28 days. Immunized K18-hACE2 mice also exhibited elevated levels of live virus-neutralizing antibodies against various SARS-CoV-2 viruses. Following infection with these viruses, K18-hACE2 mice displayed a stable body weight, a high survival rate, minimal virus copies in lung tissue, and no lung damage compared to the control group. These findings indicate that B.1.351V offered protection against infection with multiple SARS-CoV-2 variants in mice, providing insights for the development of a vaccine targeting SARS-CoV-2 VOCs for human use.
Collapse
Affiliation(s)
- Jie Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Huifen Fan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Anna Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Wenhui Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Xin Wan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Fengjie Lin
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Dongsheng Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Jie Wu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Kaiwen Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Wei Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Qian Cai
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Lei You
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Deqin Pang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Jia Lu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Changfu Guo
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Jinrong Shi
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China;
| | - Xinguo Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Kai Duan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Shengli Meng
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Jing Guo
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| |
Collapse
|
32
|
Wei H, Zhao Y, Rui J, Li K, Abudunaibi B, Zhao Z, Song W, Wang Y, Chen Q, Liu H, Zhang S, Li X, Luo K, Gavotte L, Frutos R, Chen T. Transmissibility of the variant of concern for SARS-CoV-2 in six regions. Heliyon 2024; 10:e32164. [PMID: 38868071 PMCID: PMC11168441 DOI: 10.1016/j.heliyon.2024.e32164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Differences in transmissibility of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) in different districts are hard to assess. To address this, our study focused on calculating the Real-time reproduction number (R t ) for these variants in different regions. Methods According to the criteria defined by the World Health Organization (WHO), the global landscape was categorized into six distinct regions. In each region, the predominant SARS-CoV-2 variant was first identified based on the proportion of variant sequencing analysis results. Then, using serial interval (SI) parameters, we calculated R t for the relevant Variant of Concern (VOC) in each region. This approach enabled us to compare the R t values of the same variant across different regions and analyze the transmissibility of each region's variant in relation to the overall situation in that region. Results The progression of VOC for SARS-CoV-2 shows regional variations. However, a common sequence of evolution is observed: Wild-type → Alpha → Beta → Delta → Omicron. Moreover, an increasing trend is discerned within diverse regions where the shift in R t of distinct VOC corresponds with the overarching R t route of SARS-CoV-2 in specific regions. Conclusion As the COVID-19 pandemic advances, regional epidemiological trends are aligning, likely due to similar virus mutations and shared public health strategies, suggesting opportunities for standardized global responses.
Collapse
Affiliation(s)
- Hongjie Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yunkang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- CIRAD, Intertryp, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Kangguo Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Buasiyamu Abudunaibi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Wentao Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Qiuping Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- CIRAD, Intertryp, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Hong Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Shuo Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xiaojun Li
- Hunan Provincial Center for Disease Control and Prevention, China
| | - Kaiwei Luo
- Hunan Provincial Center for Disease Control and Prevention, China
| | | | | | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
33
|
Machado LC, Dezordi FZ, de Lima GB, de Lima RE, Silva LCA, Pereira LDM, da Silva AF, da Silva Neto AM, de Oliveira ALS, Armstrong ADC, Pessoa-e-Silva R, Loyo RM, Silva BDO, de Almeida AR, da Rocha Pitta MG, Santos FDADS, Mendonça Siqueira M, Resende PC, Delatorre E, Naveca FG, Miyajima F, Gräf T, do Carmo RF, Pereira MC, Campos TDL, Bezerra MF, Paiva MHS, Wallau GDL. Spatiotemporal transmission of SARS-CoV-2 lineages during 2020-2021 in Pernambuco-Brazil. Microbiol Spectr 2024; 12:e0421823. [PMID: 38651879 PMCID: PMC11237429 DOI: 10.1128/spectrum.04218-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
SARS-CoV-2 virus emerged as a new threat to humans and spread around the world, leaving a large death toll. As of January 2023, Brazil is among the countries with the highest number of registered deaths. Nonpharmacological and pharmacological interventions have been heterogeneously implemented in the country, which, associated with large socioeconomic differences between the country regions, has led to distinct virus spread dynamics. Here, we investigate the spatiotemporal dispersion of SARS-CoV-2 lineages in the Pernambuco state (Northeast Brazil) throughout the distinct epidemiological scenarios that unfolded in the first 2 years of the pandemic. We generated a total of 1,389 new SARS-CoV-2 genomes from June 2020 to August 2021. This sampling captured the arrival, communitary transmission, and the circulation of the B1.1, B.1.1.28, and B.1.1.33 lineages; the emergence of the former variant of interest P.2; and the emergence and fast replacement of all previous variants by the more transmissible variant of concern P.1 (Gamma). Based on the incidence and lineage spread pattern, we observed an East-to-West to inner state pattern of transmission, which is in agreement with the transmission of more populous metropolitan areas to medium- and small-size country-side cities in the state. Such transmission patterns may be partially explained by the main routes of traffic across municipalities in the state. Our results highlight that the fine-grained intrastate analysis of lineages and incidence spread can provide actionable insights for planning future nonpharmacological intervention for air-borne transmissible human pathogens.IMPORTANCEDuring the COVID-19 pandemic, Brazil was one of the most affected countries, mainly due its continental-size, socioeconomic differences among regions, and heterogeneous implementation of intervention methods. In order to investigate SARS-CoV-2 dynamics in the state of Pernambuco, we conducted a spatiotemporal dispersion study, covering the period from June 2020 to August 2021, to comprehend the dynamics of viral transmission during the first 2 years of the pandemic. Throughout this study, we were able to track three significant epidemiological waves of transmission caused by B1.1, B.1.1.28, B.1.1.33, P.2, and P.1 lineages. These analyses provided valuable insights into the evolution of the epidemiological landscape, contributing to a deeper understanding of the dynamics of virus transmission during the early years of the pandemic in the state of Pernambuco.
Collapse
Affiliation(s)
- Lais Ceschini Machado
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
| | - Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Gustavo Barbosa de Lima
- Núcleo de Plataformas Tecnológicas (NPT), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Emídio de Lima
- Núcleo de Plataformas Tecnológicas (NPT), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Lilian Caroliny Amorim Silva
- Núcleo de Plataformas Tecnológicas (NPT), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Leandro de Mattos Pereira
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Alexandre Freitas da Silva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | | | - André Luiz Sá de Oliveira
- Núcleo de Estatística e Geoprocessamento, Instituto Aggeu Magalhães (IAM)- Fundação Oswaldo Cruz Pernambuco- FIOCRUZ-PE, Recife, Brazil
| | | | - Rômulo Pessoa-e-Silva
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Rodrigo Moraes Loyo
- Departamento de Parasitologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Barbara de Oliveira Silva
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Anderson Rodrigues de Almeida
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Maira Galdino da Rocha Pitta
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edson Delatorre
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Instituto Leônidas e Maria Deane, FIOCRUZ-Amazonas, Manaus, Amazonas, Brazil
| | - Fabio Miyajima
- Analytical Competence Molecular Epidemiology Laboratory (ACME), FIOCRUZ-Ceará, Fortaleza, Ceará, Brazil
| | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | | | - Michelly Cristiny Pereira
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Tulio de Lima Campos
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Matheus Filgueira Bezerra
- Departamento de Microbiologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
- Núcleo de Ciências da Vida, Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste, Caruaru, Brazil
| | - Gabriel da Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| | - On behalf of Fiocruz COVID-19 Genomic Network
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Núcleo de Plataformas Tecnológicas (NPT), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Núcleo de Estatística e Geoprocessamento, Instituto Aggeu Magalhães (IAM)- Fundação Oswaldo Cruz Pernambuco- FIOCRUZ-PE, Recife, Brazil
- Colegiado de Medicina, Universidade Federal do Vale do São Francisco, Petrolina, Brazil
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Departamento de Parasitologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Núcleo de Ciências da Vida, Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste, Caruaru, Brazil
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Instituto Leônidas e Maria Deane, FIOCRUZ-Amazonas, Manaus, Amazonas, Brazil
- Analytical Competence Molecular Epidemiology Laboratory (ACME), FIOCRUZ-Ceará, Fortaleza, Ceará, Brazil
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale do São Francisco, Petrolina, Brazil
- Departamento de Microbiologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| |
Collapse
|
34
|
Lee Y, Lee K, Lee H, Park J, Cho S, Park J, Mun J, Park S, Lee C, Lee J, Seo J, Kim Y, Kim S, Chung Y. Genomic Analysis and Tracking of SARS-CoV-2 Variants in Gwangju, South Korea, From 2020 to 2022. Influenza Other Respir Viruses 2024; 18:e13350. [PMID: 38923353 PMCID: PMC11196956 DOI: 10.1111/irv.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, in December 2019, it has spread rapidly, and many coronavirus disease (COVID-19) cases have occurred in Gwangju, South Korea. Viral mutations following the COVID-19 epidemic have increased interest in the characteristics of epidemics in this region, and pathogen genetic analysis is required for infection control and prevention. METHODS In this study, SARS-CoV-2 whole-genome analysis was performed on samples from patients with COVID-19 in Gwangju from 2020 to 2022 to identify the trends in COVID-19 prevalence and to analyze the phylogenetic relationships of dominant variants. B.41 and B.1.497 prevailed in 2020, the early stage of the COVID-19 outbreak; then, B.1.619.1 mainly occurred until June 2021. B.1.617.2, classified as sublineages AY.69 and AY.122, occurred continuously from July to December 2021. Since strict measures to strengthen national quarantine management had been implemented in South Korea until this time, the analysis of mutations was also able to infer the epidemiological relationship between infection transmission routes. Since the first identification of the Omicron variant in late December 2021, the spread of infection has been very rapid, and weekly whole-genome analysis of specimens has enabled us to monitor new Omicron sublineages occurring in Gwangju. CONCLUSIONS Our study suggests that conducting regional surveillance in addition to nation-level genomic surveillance will enable more rapid and detailed variant surveillance, which will be helpful in the overall prevention and management of infectious diseases.
Collapse
Affiliation(s)
- Yeong‐Un Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Kwangho Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Hongsu Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Jung Wook Park
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Sun‐Ju Cho
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Ji‐Su Park
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Jeongeun Mun
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Sujung Park
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Cheong‐mi Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Juhye Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Jinjong Seo
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Yonghwan Kim
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Sun‐Hee Kim
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Yoon‐Seok Chung
- Division of High‐Risk Pathogens, Bureau of Infectious Diseases Diagnosis ControlKorea Disease Control and Prevention Agency (KDCA)CheongjuRepublic of Korea
| |
Collapse
|
35
|
Mathew JK, Radhakrishnan C, K AB, Philomina BJ, K TN, Dhanasooraj D. Temporal Trends in SARS-CoV-2 Antibody Levels Among COVID-19 Patients in Kerala During the First Wave and Pre-vaccination Period. Cureus 2024; 16:e61650. [PMID: 38966433 PMCID: PMC11223736 DOI: 10.7759/cureus.61650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND The SARS-CoV-2 virus interacts with host cells through the S1 domain of its spike protein. This study measures the IgG immune response to this domain in COVID-19 patients from Kerala, India, and explores its association with various health factors. METHODS A cohort of 258 COVID-19 patients was analyzed for IgG antibodies targeting the S1 spike protein domain. The temporal pattern of the IgG response and its correlation with hospitalization needs, intensive care, and pre-existing conditions such as diabetes, hypertension, and coronary artery disease were assessed. RESULTS A significant IgG response (76.4%) was detected, indicating robust immune activation post-infection. The IgG levels peaked between two to four and four to eight weeks post-infection, with a notable increase at 12 weeks, hinting at possible secondary exposure or an immune memory response. No correlation was found between IgG levels and the presence of diabetes mellitus, hypertension, or coronary artery disease. However, higher IgG responses correlated with the severity of the infection, as seen in patients requiring hospitalization or intensive care. CONCLUSIONS The IgG response to the S1 spike protein domain serves as a potential marker of immune activation in COVID-19. It reflects the body's defense mechanism against the virus and may predict disease severity and outcomes. The findings suggest that IgG levels could be indicative of the viral load, inflammatory response, and possibly the likelihood of protection against reinfection.
Collapse
Affiliation(s)
- Jithu K Mathew
- Microbiology, Government Medical College, Kottayam, Kottayam, IND
| | - Chandni Radhakrishnan
- Internal Medicine, Government Medical College, Kozhikode, Kozhikode, IND
- Medical Education, Kerala University of Health Sciences, Thrissur, IND
| | - Ajitha B K
- Statistics, Government Medical College, Thrissur, Thrissur, IND
| | | | | | - Dhananjayan Dhanasooraj
- Molecular Biology, Multidisciplinary Research Unit, Government Medical College, Kozhikode, Kozhikode, IND
| |
Collapse
|
36
|
Cornish K, Huo J, Jones L, Sharma P, Thrush JW, Abdelkarim S, Kipar A, Ramadurai S, Weckener M, Mikolajek H, Liu S, Buckle I, Bentley E, Kirby A, Han X, Laidlaw SM, Hill M, Eyssen L, Norman C, Le Bas A, Clarke J, James W, Stewart JP, Carroll M, Naismith JH, Owens RJ. Structural and functional characterization of nanobodies that neutralize Omicron variants of SARS-CoV-2. Open Biol 2024; 14:230252. [PMID: 38835241 PMCID: PMC11285730 DOI: 10.1098/rsob.230252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/30/2023] [Accepted: 03/22/2024] [Indexed: 06/06/2024] Open
Abstract
The Omicron strains of SARS-CoV-2 pose a significant challenge to the development of effective antibody-based treatments as immune evasion has compromised most available immune therapeutics. Therefore, in the 'arms race' with the virus, there is a continuing need to identify new biologics for the prevention or treatment of SARS-CoV-2 infections. Here, we report the isolation of nanobodies that bind to the Omicron BA.1 spike protein by screening nanobody phage display libraries previously generated from llamas immunized with either the Wuhan or Beta spike proteins. The structure and binding properties of three of these nanobodies (A8, H6 and B5-5) have been characterized in detail providing insight into their binding epitopes on the Omicron spike protein. Trimeric versions of H6 and B5-5 neutralized the SARS-CoV-2 variant of concern BA.5 both in vitro and in the hamster model of COVID-19 following nasal administration. Thus, either alone or in combination could serve as starting points for the development of new anti-viral immunotherapeutics.
Collapse
Affiliation(s)
- Katy Cornish
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luke Jones
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joseph W. Thrush
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Sahar Abdelkarim
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Vetsuisse Faculty, Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Siva Ramadurai
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Miriam Weckener
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | | | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Imogen Buckle
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Eleanor Bentley
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adam Kirby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Ximeng Han
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Stephen M. Laidlaw
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Michelle Hill
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lauren Eyssen
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Chelsea Norman
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Audrey Le Bas
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - John Clarke
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - William James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Carroll
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - James H. Naismith
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Raymond J. Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Pourhoseingholi MA, Looha MA, Ilkhani S, Hatamabadi H, Sadeghi A, Safavi-Naini SAA, Heidari K, Taraghikhah N, Fallah MM, Kalantar R, Naderi N, Esbati R, Ebrahimi N, Solhpour A, Jamialahmadi T, Sahebkar A. Assessing the effect of remdesivir alone and in combination with corticosteroids on time to death in COVID-19: A propensity score-matched analysis. JOURNAL OF CLINICAL VIROLOGY PLUS 2024; 4:100180. [DOI: 10.1016/j.jcvp.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
|
38
|
Xue S, Han Y, Wu F, Wang Q. Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein Cell 2024; 15:403-418. [PMID: 38442025 PMCID: PMC11131022 DOI: 10.1093/procel/pwae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Intensive selection pressure constrains the evolutionary trajectory of SARS-CoV-2 genomes and results in various novel variants with distinct mutation profiles. Point mutations, particularly those within the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein, lead to the functional alteration in both receptor engagement and monoclonal antibody (mAb) recognition. Here, we review the data of the RBD point mutations possessed by major SARS-CoV-2 variants and discuss their individual effects on ACE2 affinity and immune evasion. Many single amino acid substitutions within RBD epitopes crucial for the antibody evasion capacity may conversely weaken ACE2 binding affinity. However, this weakened effect could be largely compensated by specific epistatic mutations, such as N501Y, thus maintaining the overall ACE2 affinity for the spike protein of all major variants. The predominant direction of SARS-CoV-2 evolution lies neither in promoting ACE2 affinity nor evading mAb neutralization but in maintaining a delicate balance between these two dimensions. Together, this review interprets how RBD mutations efficiently resist antibody neutralization and meanwhile how the affinity between ACE2 and spike protein is maintained, emphasizing the significance of comprehensive assessment of spike mutations.
Collapse
Affiliation(s)
- Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
39
|
Liu C, Zhou D, Dijokaite-Guraliuc A, Supasa P, Duyvesteyn HME, Ginn HM, Selvaraj M, Mentzer AJ, Das R, de Silva TI, Ritter TG, Plowright M, Newman TAH, Stafford L, Kronsteiner B, Temperton N, Lui Y, Fellermeyer M, Goulder P, Klenerman P, Dunachie SJ, Barton MI, Kutuzov MA, Dushek O, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. A structure-function analysis shows SARS-CoV-2 BA.2.86 balances antibody escape and ACE2 affinity. Cell Rep Med 2024; 5:101553. [PMID: 38723626 PMCID: PMC11148769 DOI: 10.1016/j.xcrm.2024.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
BA.2.86, a recently described sublineage of SARS-CoV-2 Omicron, contains many mutations in the spike gene. It appears to have originated from BA.2 and is distinct from the XBB variants responsible for many infections in 2023. The global spread and plethora of mutations in BA.2.86 has caused concern that it may possess greater immune-evasive potential, leading to a new wave of infection. Here, we examine the ability of BA.2.86 to evade the antibody response to infection using a panel of vaccinated or naturally infected sera and find that it shows marginally less immune evasion than XBB.1.5. We locate BA.2.86 in the antigenic landscape of recent variants and look at its ability to escape panels of potent monoclonal antibodies generated against contemporary SARS-CoV-2 infections. We demonstrate, and provide a structural explanation for, increased affinity of BA.2.86 to ACE2, which may increase transmissibility.
Collapse
Affiliation(s)
- Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daming Zhou
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
| | | | - Piyada Supasa
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
| | - Helen M Ginn
- Centre for Free Electron Laser Science, Hamburg, Germany
| | - Muneeswaran Selvaraj
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Raksha Das
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Thushan I de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thomas G Ritter
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Lizzie Stafford
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Barbara Kronsteiner
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich Chatham Maritime, Kent ME4 4TB, UK
| | - Yuan Lui
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Martin Fellermeyer
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Michael I Barton
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Mikhail A Kutuzov
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Omer Dushek
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK; Sir William Dunn School of Pathology, Oxford, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Girl P, von Buttlar H, Mantel E, Antwerpen MH, Wölfel R, Müller K. Comparative Analysis of Vaccine-Induced Neutralizing Antibodies against the Alpha, Beta, Delta, and Omicron Variants of SARS-CoV-2. Vaccines (Basel) 2024; 12:515. [PMID: 38793766 PMCID: PMC11126034 DOI: 10.3390/vaccines12050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The SARS-CoV-2 virus has infected more than 660 million people and caused nearly seven million deaths worldwide. During the pandemic, a number of SARS-CoV-2 vaccines were rapidly developed, and several are currently licensed for use in Europe. However, the optimization of vaccination regimens is still ongoing, particularly with regard to booster vaccinations. At the same time, the emergence of new virus variants poses an ongoing challenge to vaccine efficacy. In this study, we focused on a comparative analysis of the neutralization capacity of vaccine-induced antibodies against four different variants of concern (i.e., Alpha, Beta, Delta, and Omicron) after two and three doses of COVID-19 vaccine. We were able to show that both two (prime/boost) and three (prime/boost/boost) vaccinations elicit highly variable levels of neutralizing antibodies. In addition, we did not observe a significant difference in antibody levels after two and three vaccinations. We also observed a significant decrease in the neutralization susceptibility of all but one SARS-CoV-2 variants to vaccine-induced antibodies. In contrast, a SARS-CoV-2 breakthrough infection between the second and third vaccination results in overall higher levels of neutralizing antibodies with a concomitant improved neutralization of all virus variants. Titer levels remained highly variable across the cohort but a common trend was observed. This may be due to the fact that at the time of this study, all licensed vaccines were still based exclusively on wild-type SARS-CoV-2, whereas infections were caused by virus variants. Overall, our data demonstrate the importance of (booster) vaccinations, but at the same time emphasize the need for the continued adaptation of vaccines to induce a protective immune response against virus variants in order to be prepared for future (seasonal) SARS-CoV-2 outbreaks.
Collapse
Affiliation(s)
- Philipp Girl
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (H.v.B.); (E.M.); (M.H.A.); (R.W.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
- Central Institute of the Bundeswehr Medical Service Munich, 85784 Garching, Germany
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Heiner von Buttlar
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (H.v.B.); (E.M.); (M.H.A.); (R.W.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
| | - Enrico Mantel
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (H.v.B.); (E.M.); (M.H.A.); (R.W.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
| | - Markus H. Antwerpen
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (H.v.B.); (E.M.); (M.H.A.); (R.W.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (H.v.B.); (E.M.); (M.H.A.); (R.W.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
| | - Katharina Müller
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (H.v.B.); (E.M.); (M.H.A.); (R.W.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
| |
Collapse
|
41
|
Saraf A, Gurjar R, Kaviraj S, Kulkarni A, Kumar D, Kulkarni R, Virkar R, Krishnan J, Yadav A, Baranwal E, Singh A, Raghuwanshi A, Agarwal P, Savergave L, Singh S. An Omicron-specific, self-amplifying mRNA booster vaccine for COVID-19: a phase 2/3 randomized trial. Nat Med 2024; 30:1363-1372. [PMID: 38637636 PMCID: PMC11108772 DOI: 10.1038/s41591-024-02955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Here we conducted a multicenter open-label, randomized phase 2 and 3 study to assess the safety and immunogenicity of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron-specific (BA.1/B.1.1.529), monovalent, thermostable, self-amplifying mRNA vaccine, GEMCOVAC-OM, when administered intradermally as a booster in healthy adults who had received two doses of BBV152 or ChAdOx1 nCoV-19. GEMCOVAC-OM was well tolerated with no related serious adverse events in both phase 2 and phase 3. In phase 2, the safety and immunogenicity of GEMCOVAC-OM was compared with our prototype mRNA vaccine GEMCOVAC-19 (D614G variant-specific) in 140 participants. At day 29 after vaccination, there was a significant rise in anti-spike (BA.1) IgG antibodies with GEMCOVAC-OM (P < 0.0001) and GEMCOVAC-19 (P < 0.0001). However, the IgG titers (primary endpoint) and seroconversion were higher with GEMCOVAC-OM (P < 0.0001). In phase 3, GEMCOVAC-OM was compared with ChAdOx1 nCoV-19 in 3,140 participants (safety cohort), which included an immunogenicity cohort of 420 participants. At day 29, neutralizing antibody titers against the BA.1 variant of SARS-CoV-2 were significantly higher than baseline in the GEMCOVAC-OM arm (P < 0.0001), but not in the ChAdOx1 nCoV-19 arm (P = 0.1490). GEMCOVAC-OM was noninferior (primary endpoint) and superior to ChAdOx1 nCoV-19 in terms of neutralizing antibody titers and seroconversion rate (lower bound 95% confidence interval of least square geometric mean ratio >1 and difference in seroconversion >0% for superiority). At day 29, anti-spike IgG antibodies and seroconversion (secondary endpoints) were significantly higher with GEMCOVAC-OM (P < 0.0001). These results demonstrate that GEMCOVAC-OM is safe and boosts immune responses against the B.1.1.529 variant. Clinical Trial Registry India identifier: CTRI/2022/10/046475 .
Collapse
Affiliation(s)
- Amit Saraf
- Gennova Biopharmaceuticals Limited, Pune, India
| | | | | | | | | | - Ruta Kulkarni
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to Be University), Pune, India
| | - Rashmi Virkar
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to Be University), Pune, India
| | | | | | - Ekta Baranwal
- JSS Medical Research, Haryana, India
- Cytel, Pune, India
| | - Ajay Singh
- Gennova Biopharmaceuticals Limited, Pune, India
| | | | | | | | - Sanjay Singh
- Gennova Biopharmaceuticals Limited, Pune, India.
| |
Collapse
|
42
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
43
|
Zhang Q, Tiwari S, Wen J, Wang S, Wang L, Li W, Zhang L, Rawling S, Cheng Y, Jokerst J, Rana TM. Induction of neutralizing antibodies against SARS-CoV-2 variants by a multivalent mRNA-lipid nanoparticle vaccine encoding SARS-CoV-2/SARS-CoV Spike protein receptor-binding domains in mice. PLoS One 2024; 19:e0300524. [PMID: 38635805 PMCID: PMC11025929 DOI: 10.1371/journal.pone.0300524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
To address the need for multivalent vaccines against Coronaviridae that can be rapidly developed and manufactured, we compared antibody responses against SARS-CoV, SARS-CoV-2, and several variants of concern in mice immunized with mRNA-lipid nanoparticle vaccines encoding homodimers or heterodimers of SARS-CoV/SARS-CoV-2 receptor-binding domains. All vaccine constructs induced robust anti-RBD antibody responses, and the heterodimeric vaccine elicited an IgG response capable of cross-neutralizing SARS-CoV, SARS-CoV-2 Wuhan-Hu-1, B.1.351 (beta), and B.1.617.2 (delta) variants.
Collapse
Affiliation(s)
- Qiong Zhang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, UCSD Center for AIDS Research, University of California San Diego, La Jolla, California, United States of America
| | - Shashi Tiwari
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, UCSD Center for AIDS Research, University of California San Diego, La Jolla, California, United States of America
| | - Jing Wen
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, UCSD Center for AIDS Research, University of California San Diego, La Jolla, California, United States of America
| | - Shaobo Wang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, UCSD Center for AIDS Research, University of California San Diego, La Jolla, California, United States of America
| | - Lingling Wang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, UCSD Center for AIDS Research, University of California San Diego, La Jolla, California, United States of America
| | - Wanyu Li
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, UCSD Center for AIDS Research, University of California San Diego, La Jolla, California, United States of America
| | - Lingzhi Zhang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, UCSD Center for AIDS Research, University of California San Diego, La Jolla, California, United States of America
| | - Stephen Rawling
- Division of Infectious Diseases, Department of Medicine, UCSD Center for AIDS Research, University of California San Diego, La Jolla, California, United States of America
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, United States of America
| | - Jesse Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, United States of America
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, Institute for Genomic Medicine, UCSD Center for AIDS Research, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
44
|
Liu C, Das R, Dijokaite-Guraliuc A, Zhou D, Mentzer AJ, Supasa P, Selvaraj M, Duyvesteyn HME, Ritter TG, Temperton N, Klenerman P, Dunachie SJ, Paterson NG, Williams MA, Hall DR, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. Emerging variants develop total escape from potent monoclonal antibodies induced by BA.4/5 infection. Nat Commun 2024; 15:3284. [PMID: 38627386 PMCID: PMC11021415 DOI: 10.1038/s41467-024-47393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of high levels of immunity. Here, we isolate spike (S) binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. Twenty eight potent antibodies are isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5, SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called 'FLip' mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.
Collapse
Affiliation(s)
- Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Raksha Das
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Daming Zhou
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Alexander J Mentzer
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Piyada Supasa
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Muneeswaran Selvaraj
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Thomas G Ritter
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich Chatham Maritime, Kent, ME4 4TB, UK
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susanna J Dunachie
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, Oxford, UK
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Neil G Paterson
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Mark A Williams
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - David R Hall
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
45
|
Park SY, Faraci G, Ward P, Lee HY. Utilizing cost-effective portable equipment to enhance COVID-19 variant tracking both on-site and at a large scale. J Clin Microbiol 2024; 62:e0155823. [PMID: 38415638 PMCID: PMC11005371 DOI: 10.1128/jcm.01558-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Despite optimistic predictions on the eventual end of COVID-19 (Coronavirus Disease 2019), caution is necessary regarding the emergence of new variants to sustain a positive outlook and effectively address any potential future outbreaks. However, ongoing efforts to track COVID-19 variants are concentrated in developed countries and unique social practices and remote habitats of indigenous peoples present additional challenges. By combining small-sized equipment that is easily accessible and inexpensive, we performed SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) whole genome sequencing and measured the sample-to-answer time and accuracy of this portable variant tracking tool. Our portable design determined the variant of SARS-CoV-2 in an infected individual within 9 hours and 15 minutes without external power or internet connection, surpassing the speed of previous portable tools. It took only 16 minutes to complete sequencing run, whole genome assembly, and lineage determination using a single standalone laptop. We then demonstrated the capability to produce 289 SARS-CoV-2 whole genome sequences in a single portable sequencing run, representing a significant improvement over an existing throughput of 96 sequences per run. We verified the accuracy of portable sequencing by comparison with two other independent sequencing methods. We showed that our high-throughput data consistently represented the circulating variants in Los Angeles, United States, when compared with publicly available sequences. Our scheme is designed to be flexible, rapid, and accurate, making it a valuable tool for large-scale surveillance operations in low- and middle-income countries as well as targeted surveys for vulnerable populations in remote locations.IMPORTANCEThere have been significant efforts to track COVID-19 (Coronavirus Disease 2019) variants, accumulating over 15 million SARS-CoV-2 sequences as of 2023. However, the distribution of global survey data is highly skewed, with nearly half of all countries having inadequate or low levels of genomic surveillance. In addition, indigenous peoples face more severe threats from COVID-19, due to their generally remote residence and unique social practices. Cost-effective portable sequencing tools have been used to investigate Ebola and Zika outbreaks. However, these tools have a sample-to-answer time of around 24 hours and require an internet connection for data transfer to an off-site cloud server. In our study, we rapidly determined COVID-19 variants using only small and inexpensive equipment, with a completion time of 9 hours and 15 minutes. Furthermore, we produced 289 near-full-length SARS-CoV-2 genome sequences from a single portable Nanopore sequencing run, representing a threefold increase in throughput compared with existing Nanopore sequencing methods.
Collapse
Affiliation(s)
- Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gina Faraci
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Pamela Ward
- Department of Clinical Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ha Youn Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
46
|
Haque A, Pant AB. The coevolution of Covid-19 and host immunity. EXPLORATION OF MEDICINE 2024:167-184. [DOI: 10.37349/emed.2024.00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/15/2024] [Indexed: 01/05/2025] Open
Abstract
The dynamic of the virus-host interaction is subject to constant
evolution, which makes it difficult to predict when the SARS-CoV-2 pandemic
will become endemic. Vaccines in conjunction with efforts around masking and
social distancing have reduced SARS-CoV-2 infection rates, however, there
are still significant challenges to contend with before the pandemic shifts
to endemic, such as the coronavirus acquiring mutations that allow the virus
to dodge the immunity acquired by hosts. SARS-CoV-2 variants deploy
convergent evolutionary mechanisms to sharpen their ability to impede the
host’s innate immune response. The continued emergence of variants and
sub-variants poses a significant hurdle to reaching endemicity. This
underscores the importance of continued public health measures to control
SARS-CoV-2 transmission and the need to develop better second-generation
vaccines and effective treatments that would tackle current and future
variants. We hypothesize that the hosts’ immunity to the virus is also
evolving, which is likely to abet the process of reaching
endemicity.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Geisel School of
Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | |
Collapse
|
47
|
Hannula L, Kuivanen S, Lasham J, Kant R, Kareinen L, Bogacheva M, Strandin T, Sironen T, Hepojoki J, Sharma V, Saviranta P, Kipar A, Vapalahti O, Huiskonen JT, Rissanen I. Nanobody engineering for SARS-CoV-2 neutralization and detection. Microbiol Spectr 2024; 12:e0419922. [PMID: 38363137 PMCID: PMC10986514 DOI: 10.1128/spectrum.04199-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2024] [Indexed: 02/17/2024] Open
Abstract
In response to the ongoing COVID-19 pandemic, the quest for coronavirus inhibitors has inspired research on a variety of small proteins beyond conventional antibodies, including robust single-domain antibody fragments, i.e., "nanobodies." Here, we explore the potential of nanobody engineering in the development of antivirals and diagnostic tools. Through fusion of nanobody domains that target distinct binding sites, we engineered multimodular nanobody constructs that neutralize wild-type SARS-CoV-2 and the Alpha and Delta variants at high potency, with IC50 values as low as 50 pM. Despite simultaneous binding to distinct epitopes, Beta and Omicron variants were more resistant to neutralization by the multimodular nanobodies, which highlights the importance of accounting for antigenic drift in the design of biologics. To further explore the applications of nanobody engineering in outbreak management, we present an assay based on fusions of nanobodies with fragments of NanoLuc luciferase that can detect sub-nanomolar quantities of the SARS-CoV-2 spike protein in a single step. Our work showcases the potential of nanobody engineering to combat emerging infectious diseases. IMPORTANCE Nanobodies, small protein binders derived from the camelid antibody, are highly potent inhibitors of respiratory viruses that offer several advantages over conventional antibodies as candidates for specific therapies, including high stability and low production costs. In this work, we leverage the unique properties of nanobodies and apply them as building blocks for new therapeutic and diagnostic tools. We report ultra-potent SARS-CoV-2 inhibition by engineered nanobodies comprising multiple modules in structure-guided combinations and develop nanobodies that carry signal molecules, allowing rapid detection of the SARS-CoV-2 spike protein. Our results highlight the potential of engineered nanobodies in the development of effective countermeasures, both therapeutic and diagnostic, to manage outbreaks of emerging viruses.
Collapse
Affiliation(s)
- Liina Hannula
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdynia, Poland
| | - Lauri Kareinen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Mariia Bogacheva
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Petri Saviranta
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Anja Kipar
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Olli Vapalahti
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Juha T. Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Scovino AM, Dahab EC, Diniz-Lima I, de Senna Silveira E, Barroso SPC, Cardoso KM, Nico D, Makhoul GJ, da Silva-Junior EB, Freire-de-Lima CG, Freire-de-Lima L, da Fonseca LM, Valente N, Nacife V, Machado A, Araújo M, Vieira GF, Pauvolid-Corrêa A, Siqueira M, Morrot A. A Comparative Analysis of Innate Immune Responses and the Structural Characterization of Spike from SARS-CoV-2 Gamma Variants and Subvariants. Microorganisms 2024; 12:720. [PMID: 38674664 PMCID: PMC11052025 DOI: 10.3390/microorganisms12040720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 04/28/2024] Open
Abstract
The SARS-CoV-2 P.1 variant, responsible for an outbreak in Manaus, Brazil, is distinguished by 12 amino acid differences in the S protein, potentially increasing its ACE-2 affinity and immune evasion capability. We investigated the innate immune response of this variant compared to the original B.1 strain, particularly concerning cytokine production. Blood samples from three severe COVID-19 patients were analyzed post-infection with both strains. Results showed no significant difference in cytokine production of mononuclear cells and neutrophils for either variant. While B.1 had higher cytopathogenicity, neither showed viral replication in mononuclear cells. Structural analyses of the S protein highlighted physicochemical variations, which might be linked to the differences in infectivity between the strains. Our studies point to the increased infectivity of P.1 could stem from altered immunogenicity and receptor-binding affinity.
Collapse
Affiliation(s)
- Aline Miranda Scovino
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil (E.C.D.); (D.N.)
- Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil
| | - Elizabeth Chen Dahab
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil (E.C.D.); (D.N.)
- Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil
| | - Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
| | - Etiele de Senna Silveira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil; (E.d.S.S.)
| | - Shana Priscila Coutinho Barroso
- Laboratório de Biologia Molecular, Instituto de Pesquisa Biomédica, Hospital Naval Marcílio Dias, Marinha do Brazil, Rio de Janeiro 20725-090, Brazil; (S.P.C.B.); (K.M.C.)
- Biomanguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Karina Martins Cardoso
- Laboratório de Biologia Molecular, Instituto de Pesquisa Biomédica, Hospital Naval Marcílio Dias, Marinha do Brazil, Rio de Janeiro 20725-090, Brazil; (S.P.C.B.); (K.M.C.)
| | - Dirlei Nico
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil (E.C.D.); (D.N.)
| | - Gustavo José Makhoul
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
| | - Elias Barbosa da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
| | - Leonardo Marques da Fonseca
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (I.D.-L.); (G.J.M.); (E.B.d.S.-J.); (C.G.F.-d.-L.); (L.F.-d.-L.)
- Curso de Medicina, Universidade Castelo Branco (UCB), Rio de Janeiro 21710-255, Brazil
| | - Natalia Valente
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
| | - Valeria Nacife
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
| | - Ana Machado
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
| | - Mia Araújo
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
| | - Gustavo Fioravanti Vieira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil; (E.d.S.S.)
- PPGSDH—Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas 92010-000, Brazil
| | - Alex Pauvolid-Corrêa
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Laboratório de Virologia Veterinária de Viçosa, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Marilda Siqueira
- Laboratório de Vírus Respiratórios e Sarampo, COVID-19 National Reference Laboratory of Brazil and World Health Organization COVID-19 Reference Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (N.V.); (V.N.); (A.M.); (A.P.-C.)
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil
- Escola de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
49
|
Li Z, Zhang Z, Rosen ST, Feng M. Function and mechanism of bispecific antibodies targeting SARS-CoV-2. CELL INSIGHT 2024; 3:100150. [PMID: 38374826 PMCID: PMC10875118 DOI: 10.1016/j.cellin.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
As the dynamic evolution of SARS-CoV-2 led to reduced efficacy in monoclonal neutralizing antibodies and emergence of immune escape, the role of bispecific antibodies becomes crucial in bolstering antiviral activity and suppressing immune evasion. This review extensively assesses a spectrum of representative bispecific antibodies targeting SARS-CoV-2, delving into their characteristics, design formats, mechanisms of action, and associated advantages and limitations. The analysis encompasses factors influencing the selection of parental antibodies and strategies for incorporating added benefits in bispecific antibody design. Furthermore, how different classes of parental antibodies contribute to augmenting the broad-spectrum neutralization capability within bispecific antibodies is discussed. In summary, this review presents analyses and discussions aimed at offering valuable insights for shaping future strategies in bispecific antibody design to effectively confront the challenges posed by SARS-CoV-2 and propel advancements in antiviral therapeutic development.
Collapse
Affiliation(s)
- Zhaohui Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zengyuan Zhang
- Department of Molecular Microbiology & Immunology, University of Southern California, CA, USA
| | - Steven T. Rosen
- Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
50
|
Zhou D, Supasa P, Liu C, Dijokaite-Guraliuc A, Duyvesteyn HME, Selvaraj M, Mentzer AJ, Das R, Dejnirattisai W, Temperton N, Klenerman P, Dunachie SJ, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. The SARS-CoV-2 neutralizing antibody response to SD1 and its evasion by BA.2.86. Nat Commun 2024; 15:2734. [PMID: 38548763 PMCID: PMC10978878 DOI: 10.1038/s41467-024-46982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Under pressure from neutralising antibodies induced by vaccination or infection the SARS-CoV-2 spike gene has become a hotspot for evolutionary change, leading to the failure of all mAbs developed for clinical use. Most potent antibodies bind to the receptor binding domain which has become heavily mutated. Here we study responses to a conserved epitope in sub-domain-1 (SD1) of spike which have become more prominent because of mutational escape from antibodies directed to the receptor binding domain. Some SD1 reactive mAbs show potent and broad neutralization of SARS-CoV-2 variants. We structurally map the dominant SD1 epitope and provide a mechanism of action by blocking interaction with ACE2. Mutations in SD1 have not been sustained to date, but one, E554K, leads to escape from mAbs. This mutation has now emerged in several sublineages including BA.2.86, reflecting selection pressure on the virus exerted by the increasing prominence of the anti-SD1 response.
Collapse
Affiliation(s)
- Daming Zhou
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Piyada Supasa
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
| | - Muneeswaran Selvaraj
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Raksha Das
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-Noi, Bangkok, 10700, Thailand
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich Chatham Maritime, Kent, ME4 4TB, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NDM Centre For Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|