1
|
Gilglioni EH, Bansal M, St-Pierre-Wijckmans W, Talamantes S, Kasarinaite A, Hay DC, Gurzov EN. Therapeutic potential of stem cell-derived somatic cells to treat metabolic dysfunction-associated steatotic liver disease and diabetes. Obes Rev 2025; 26:e13899. [PMID: 39861937 DOI: 10.1111/obr.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/22/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025]
Abstract
Developments in basic stem cell biology have paved the way for technology translation in human medicine. An exciting prospective use of stem cells is the ex vivo generation of hepatic and pancreatic endocrine cells for biomedical applications. This includes creating novel models 'in a dish' and developing therapeutic strategies for complex diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetes. In this review, we explore recent advances in the generation of stem cell-derived hepatocyte-like cells and insulin-producing β-like cells. We cover the different differentiation strategies, new discoveries, and the caveats that still exist regarding their routine use. Finally, we discuss the challenges and limitations of stem cell-derived therapies as a clinical strategy to manage metabolic diseases in humans.
Collapse
Affiliation(s)
- Eduardo H Gilglioni
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Mayank Bansal
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | | | - Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Alvile Kasarinaite
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - David C Hay
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Zhu L, Liu S, Wang Z, Yang Y, Han P, Tong W, Zhao T, Wang L, Cui T, Yang L, Zhang Y. Modeling hepatic steatosis with human adult stem cell-derived liver organoids. iScience 2025; 28:112344. [PMID: 40276762 PMCID: PMC12019286 DOI: 10.1016/j.isci.2025.112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/05/2024] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) remains the most common chronic liver disease worldwide, and appropriate in vitro models are of great significance for investigating pathogenesis and drug screening of MASLD. In this study, human expandable cholangiocyte organoids were derived from adult stem cells of normal liver tissue. After differentiation, liver organoids (LOs) exhibited the functional characteristics and genomic features of mature hepatocytes. To induce steatosis, LOs were incubated with a gradient concentration oleic acid, and it was found that the model could recapitulate the development of lipid accumulation and inflammation. In addition, the drug sensitivity of the hepatic steatosis model was further verified through anti-steatosis drug testing. In summary, LOs have great potential for disease modeling, and the results indicate that the hepatic steatosis model may serve as a useful tool for exploring the molecular mechanisms and drug screening of MASLD.
Collapse
Affiliation(s)
- Liuyang Zhu
- First Central Clinical College of Tianjin Medical University, Tianjin 300070, China
| | - Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ze Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300000, China
| | - Yueyue Yang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Pinsheng Han
- Nankai University of Medicine College, Tianjin 300071, China
| | - Wen Tong
- First Central Clinical College of Tianjin Medical University, Tianjin 300070, China
| | - Tianyu Zhao
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300000, China
| | - Libo Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300000, China
| | - Tao Cui
- Tianhui Biotechnology Co., Ltd., Hefei 230000, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
3
|
Reza HA, Santangelo C, Iwasawa K, Reza AA, Sekiya S, Glaser K, Bondoc A, Merola J, Takebe T. Multi-zonal liver organoids from human pluripotent stem cells. Nature 2025:10.1038/s41586-025-08850-1. [PMID: 40240593 DOI: 10.1038/s41586-025-08850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/27/2025] [Indexed: 04/18/2025]
Abstract
Distinct hepatocyte subpopulations are spatially segregated along the portal-central axis and are critical to understanding metabolic homeostasis and injury in the liver1. Although several bioactive molecules, including ascorbate and bilirubin, have been described as having a role in directing zonal fates, zonal liver architecture has not yet been replicated in vitro2,3. Here, to evaluate hepatic zonal polarity, we developed a self-assembling zone-specific liver organoid by co-culturing ascorbate- and bilirubin-enriched hepatic progenitors derived from human induced pluripotent stem cells. We found that preconditioned hepatocyte-like cells exhibited zone-specific functions associated with the urea cycle, glutathione synthesis and glutamate synthesis. Single-nucleus RNA-sequencing analysis of these zonally patterned organoids identifies a hepatoblast differentiation trajectory that dictates periportal, interzonal and pericentral human hepatocytes. Epigenetic and transcriptomic analysis showed that zonal identity is orchestrated by ascorbate- or bilirubin-dependent binding of EP300 to TET1 or HIF1α. Transplantation of the self-assembled zonally patterned human organoids improved survival of immunodeficient rats who underwent bile duct ligation by ameliorating the hyperammonaemia and hyperbilirubinaemia. Overall, this multi-zonal organoid system serves as an in vitro human model to better recapitulate hepatic architecture relevant to liver development and disease.
Collapse
Affiliation(s)
- Hasan Al Reza
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Connie Santangelo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kentaro Iwasawa
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Abid Al Reza
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sachiko Sekiya
- Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Jonathan Merola
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Department of Genome Biology, Graduate School of Medicine, The University of Osaka, Suita, Japan.
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
4
|
Yi F, Yuan J, Han F, Somekh J, Peleg M, Wu F, Jia Z, Zhu YC, Huang Z. Machine learning reveals connections between preclinical type 2 diabetes subtypes and brain health. Brain 2025; 148:1389-1404. [PMID: 39932872 DOI: 10.1093/brain/awaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/28/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Previous research has established type 2 diabetes mellitus as a significant risk factor for various disorders, adversely impacting human health. While evidence increasingly links type 2 diabetes to cognitive impairment and brain disorders, understanding the causal effects of its preclinical stage on brain health is yet to be fully known. This knowledge gap hinders advancements in screening and preventing neurological and psychiatric diseases. To address this gap, we employed a robust machine learning algorithm (Subtype and Stage Inference, SuStaIn) with cross-sectional clinical data from the UK Biobank (20 277 preclinical type 2 diabetes participants and 20 277 controls) to identify underlying subtypes and stages for preclinical type 2 diabetes. Our analysis revealed one subtype distinguished by elevated circulating leptin levels and decreased leptin receptor levels, coupled with increased body mass index, diminished lipid metabolism, and heightened susceptibility to psychiatric conditions such as anxiety disorder, depression disorder, and bipolar disorder. Conversely, individuals in the second subtype manifested typical abnormalities in glucose metabolism, including rising glucose and haemoglobin A1c levels, with observed correlations with neurodegenerative disorders. A >10-year follow-up of these individuals revealed differential declines in brain health and significant clinical outcome disparities between subtypes. The first subtype exhibited faster progression and higher risk for psychiatric conditions, while the second subtype was associated with more severe progression of Alzheimer's disease and Parkinson's disease and faster progression to type 2 diabetes. Our findings highlight that monitoring and addressing the brain health needs of individuals in the preclinical stage of type 2 diabetes is imperative.
Collapse
Affiliation(s)
- Fan Yi
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310008, China
| | - Jing Yuan
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Judith Somekh
- Department of Information Systems, University of Haifa, Haifa 3303219, Israel
| | - Mor Peleg
- Department of Information Systems, University of Haifa, Haifa 3303219, Israel
| | - Fei Wu
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310008, China
| | - Zhilong Jia
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhengxing Huang
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310008, China
| |
Collapse
|
5
|
Aylar D, Karatug Kacar A. Studies on Treatment Within the Scope of Medical Biotechnology for Pancreatic Diseases. Mol Biotechnol 2025; 67:1321-1335. [PMID: 38627328 DOI: 10.1007/s12033-024-01142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2025]
Abstract
The pancreas is made of two compartments: the exocrine pancreas, a source of digestive enzymes, and the endocrine islets which produce vital hormones. Distinct diseases could arise in the pancreas such as diabetes, neuroendocrine tumors, pancreatitis, and pancreatic cancers. Various treatment methods are being researched against these diseases. Treatment with recombinant proteins, therapeutic antibodies, vaccination, gene therapy, tissue engineering, and stem cell treatment are treatment methods. Furthermore, biomarkers are important for both treatment and diagnosis. However, some of the treatment methods mentioned above have not yet been applied to some pancreatic diseases. This review provides insights into the latest advancements in diagnosis and treatment for pancreatic diseases within the scope of medical biotechnology. In addition, some methods that are not yet used for treatment purposes for pancreatic diseases but are used in other diseases that occur in different organs due to similar reasons have been investigated. In this context, possible diagnosis and treatment methods for pancreatic diseases are interpreted. The first aim of this review is to bring together and present the current diagnosis and treatment methods for pancreatic diseases. The second aim is to highlight methods that may have treatment potential by comparing pancreatic diseases that cannot be treated with similar diseases.
Collapse
Affiliation(s)
- Dilara Aylar
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Ayse Karatug Kacar
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey.
| |
Collapse
|
6
|
Yang Q, Li M, Xiao Z, Feng Y, Lei L, Li S. A New Perspective on Precision Medicine: The Power of Digital Organoids. Biomater Res 2025; 29:0171. [PMID: 40129676 PMCID: PMC11931648 DOI: 10.34133/bmr.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
Precision medicine is a personalized medical model based on the individual's genome, phenotype, and lifestyle that provides tailored treatment plans for patients. In this context, tumor organoids, a 3-dimensional preclinical model based on patient-derived tumor cell self-organization, combined with digital analysis methods, such as high-throughput sequencing and image processing technology, can be used to analyze the genome, transcriptome, and cellular heterogeneity of tumors, so as to accurately track and assess the growth process, genetic characteristics, and drug responsiveness of tumor organoids, thereby facilitating the implementation of precision medicine. This interdisciplinary approach is expected to promote the innovation of cancer diagnosis and enhance personalized treatment. In this review, the characteristics and culture methods of tumor organoids are summarized, and the application of multi-omics, such as bioinformatics and artificial intelligence, and the digital methods of organoids in precision medicine research are discussed. Finally, this review explores the main causes and potential solutions for the bottleneck in the clinical translation of digital tumor organoids, proposes the prospects of multidisciplinary cooperation and clinical transformation to narrow the gap between laboratory and clinical settings, and provides references for research and development in this field.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Yekai Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
7
|
Codotto G, Blarasin B, Tiribelli C, Bellarosa C, Licastro D. Decoding Liver Fibrosis: How Omics Technologies and Innovative Modeling Can Guide Precision Medicine. Int J Mol Sci 2025; 26:2658. [PMID: 40141300 PMCID: PMC11942424 DOI: 10.3390/ijms26062658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The burden of chronic liver disease (CLD) is dramatically increasing. It is estimated that 20-30% of the population worldwide is affected by CLD. Hepatic fibrosis is a symptom common to all CLDs. Although it affects liver functional activities, it is a reversible stage if diagnosed at an early stage, but no resolutive therapy to contrast liver fibrosis is currently available. Therefore, efforts are needed to study the molecular insights of the disease. Emerging cutting-edge fields in cellular and molecular biology are introducing innovative strategies. Spatial and single-cell resolution approaches are paving the way for a more detailed understanding of the mechanisms underlying liver fibrosis. Cellular models have been generated to recapitulate the in-a-dish pathophysiology of liver fibrosis, yielding remarkable results that not only uncover the underlying molecular mechanisms but also serve as patient-specific avatars for precision medicine. Induced pluripotent stem cells (iPSC) and organoids are incredible tools to reshape the modeling of liver diseases, describe their architecture, and study the residents of hepatic tissue and their heterogeneous population. The present work aims to give an overview of innovative omics technologies revolutionizing liver fibrosis research and the current tools to model this disease.
Collapse
Affiliation(s)
- Gabriele Codotto
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
- AREA Science Park, 34149 Trieste, Italy
| | - Benedetta Blarasin
- Department of Life Science, University of Trieste, 34127 Trieste, Italy;
- Fondazione Italiana Fegato ONLUS—Italian Liver Foundation NPO, 34149 Trieste, Italy;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS—Italian Liver Foundation NPO, 34149 Trieste, Italy;
| | - Cristina Bellarosa
- Fondazione Italiana Fegato ONLUS—Italian Liver Foundation NPO, 34149 Trieste, Italy;
| | | |
Collapse
|
8
|
Lee JY, Kim HE, Lee ST, Park J, Nam KH, Park JY, Choi JK. The Repurposing of Nitazoxanide for Psoriasis Treatment Exerts Therapeutic Effects through Skin Metabolic Reprogramming. J Invest Dermatol 2025:S0022-202X(25)00298-2. [PMID: 40043790 DOI: 10.1016/j.jid.2025.02.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
Nitazoxanide (NTZ), a Food and Drug Administration-approved drug, was originally developed for the treatment of parasitic infections. Recent studies have revealed that NTZ may also be effective in treating other diseases, including inflammatory diseases, cancer, and bacterial and viral infections. Therefore, we investigated whether NTZ could inhibit specific inflammatory pathways and reprogram metabolic processes in psoriasis to regulate inflammation. To investigate the symptom-alleviating effects of NTZ on psoriasis and its underlying mechanisms, we used an imiquimod-induced psoriatic-like skin inflammation mouse model and IL-17-stimulated human keratinocytes. NTZ inhibited the transition of metabolic programs induced by IL-17-mediated inflammation in human keratinocytes. In particular, NTZ suppressed glucose uptake and the associated actions stimulated by IL-17 and reduced enhanced oxidative phosphorylation. NTZ inhibited the mTOR signaling pathway by inducing AMP-activated protein kinase and prevented the development of dysfunctional mitochondria characterized by high mitochondrial mass and high levels of ROS. Moreover, the administration of NTZ in a mouse model of psoriasis, an IL-17-mediated skin disease, inhibited the accumulation of damaged mitochondria and suppressed T helper 17-mediated inflammatory responses. These findings provide preclinical evidence that NTZ may be effective in treating psoriasis and suggest that targeting the energy metabolic pathways in the skin could be beneficial for the treatment and prevention of psoriasis.
Collapse
Affiliation(s)
- Jong Yeong Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ha Eun Kim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seung Taek Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jin Park
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea; Biomedical Research Institute of Jeonbuk National University Hospital, Institute for Medical Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyung-Hwa Nam
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea; Biomedical Research Institute of Jeonbuk National University Hospital, Institute for Medical Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jun-Young Park
- Department of Biochemistry, Chungbuk National University, Cheongju, Republic of Korea.
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea; Biomedical Research Institute of Jeonbuk National University Hospital, Institute for Medical Sciences, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
9
|
Dwyer BJ, Tirnitz-Parker JEE. Patient-derived organoid models to decode liver pathophysiology. Trends Endocrinol Metab 2025; 36:235-248. [PMID: 39191607 DOI: 10.1016/j.tem.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer. Improved understanding of liver microenvironments, innovative biomaterials, and advanced imaging techniques now facilitate comprehensive and unbiased data analysis, paving the way for personalised medicine. In this review, we discuss state-of-the-art patient-derived liver organoid models, recent technological advancements, and strategies to enhance their clinical impact.
Collapse
Affiliation(s)
- Benjamin J Dwyer
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| | - Janina E E Tirnitz-Parker
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| |
Collapse
|
10
|
Klompstra TM, Yoon KJ, Koo BK. Evolution of organoid genetics. Eur J Cell Biol 2025; 104:151481. [PMID: 40056574 DOI: 10.1016/j.ejcb.2025.151481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/01/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025] Open
Abstract
Organoids have revolutionized in vitro research by offering three-dimensional, multicellular systems that recapitulate the structure, function, and genetics of human tissues. Initially developed from both pluripotent stem cells (PSCs) and adult stem cells (AdSCs), organoids have expanded to model nearly every major human organ, significantly advancing developmental biology, disease modeling, and therapeutic screening. This review highlights the progression of organoid technologies, emphasizing the integration of genetic tools, including CRISPR-Cas9, prime editing, and lineage tracing. These advancements have facilitated precise modeling of human-specific pathologies and drug responses, often surpassing traditional 2D cultures and animal models in accuracy. Emerging technologies, such as organoid fusion, xenografting, and optogenetics, are expected to further enhance our understanding of cellular interactions and microenvironmental dynamics. As organoid complexity and genetic engineering methods continue to evolve, they will become increasingly indispensable for personalized medicine and translational research, bridging gaps between in vitro and in vivo systems.
Collapse
Affiliation(s)
- Thomas M Klompstra
- Center for Genome Engineering, Institute for Basic Sciences (IBS), Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea; Graduate School of Stem Cell and Regenerative Biology, KAIST, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, KAIST, Daejeon 34141, Republic of Korea
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Sciences (IBS), Republic of Korea; Graduate School of Stem Cell and Regenerative Biology, KAIST, Daejeon 34141, Republic of Korea; Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Republic of Korea.
| |
Collapse
|
11
|
Artegiani B, Hendriks D. Organoids from pluripotent stem cells and human tissues: When two cultures meet each other. Dev Cell 2025; 60:493-511. [PMID: 39999776 DOI: 10.1016/j.devcel.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Human organoids are a widely used tool in cell biology to study homeostatic processes, disease, and development. The term organoids covers a plethora of model systems from different cellular origins that each have unique features and applications but bring their own challenges. This review discusses the basic principles underlying organoids generated from pluripotent stem cells (PSCs) as well as those derived from tissue stem cells (TSCs). We consider how well PSC- and TSC-organoids mimic the different intended organs in terms of cellular complexity, maturity, functionality, and the ongoing efforts to constitute predictive complex models of in vivo situations. We discuss the advantages and limitations associated with each system to answer different biological questions including in the field of cancer and developmental biology, and with respect to implementing emerging advanced technologies, such as (spatial) -omics analyses, CRISPR screens, and high-content imaging screens. We postulate how the two fields may move forward together, integrating advantages of one to the other.
Collapse
Affiliation(s)
| | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Zou RQ, Dai YS, Liu F, Yang SQ, Hu HJ, Li FY. Hepatobiliary organoid research: the progress and applications. Front Pharmacol 2025; 16:1473863. [PMID: 40008122 PMCID: PMC11850396 DOI: 10.3389/fphar.2025.1473863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Organoid culture has emerged as a forefront technology in the life sciences field. As "in vitro micro-organs", organoids can faithfully recapitulate the organogenesis process, and conserve the key structure, physiological function and pathological state of the original tissue or organ. Consequently, it is widely used in basic and clinical studies, becoming important preclinical models for studying diseases and developing therapies. Here, we introduced the definition and advantages of organoids and described the development and advances in hepatobiliary organoids research. We focus on applying hepatobiliary organoids in benign and malignant diseases of the liver and biliary tract, drug research, and regenerative medicine to provide valuable reference information for the application of hepatobiliary organoids. Despite advances in research and treatment, hepatobiliary diseases including carcinoma, viral hepatitis, fatty liver and bile duct defects have still been conundrums of the hepatobiliary field. It is necessary and crucial to study disease mechanisms, establish efficient and accurate research models and find effective treatment strategies. The organoid culture technology shed new light on solving these issues. However, the technology is not yet mature, and many hurdles still exist that need to be overcome. The combination with new technologies such as CRISPR-HOT, organ-on-a-chip may inject new vitality into future development.
Collapse
Affiliation(s)
- Rui-Qi Zou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Shi Dai
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Si-Qi Yang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Jie Hu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fu-Yu Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Jurickova I, Dreskin BW, Angerman E, Bonkowski E, Nguyen J, Villarreal R, Tominaga K, Iwasawa K, Braun T, Takebe T, Helmrath MA, Haberman Y, Wells JM, Denson LA. Eicosatetraynoic Acid Regulates Profibrotic Pathways in an Induced Pluripotent Stem Cell-Derived Macrophage-Human Intestinal Organoid Model of Crohn's Disease. J Crohns Colitis 2025; 19:jjae139. [PMID: 39212594 PMCID: PMC11836882 DOI: 10.1093/ecco-jcc/jjae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS We previously identified small molecules predicted to reverse an ileal gene signature for future Crohn's Disease (CD) strictures. Here we used a new human intestinal organoid (HIO) model system containing macrophages to test a lead candidate, eicosatetraynoic acid (ETYA). METHODS Induced pluripotent stem cell lines (iPSC) were derived from CD patients and differentiated into macrophages and HIOs. Macrophages and macrophage-HIO cocultures were exposed to lipopolysaccharide (LPS) with and without ETYA pretreatment. Cytospin and flow cytometry characterized macrophage morphology and activation markers, and RNA sequencing defined the global pattern of macrophage gene expression. TaqMan low-density array, Luminex multiplex assay, immunohistologic staining, and sirius red polarized light microscopy were performed to measure macrophage cytokine production and HIO profibrotic gene expression and collagen content. RESULTS Induced PSC-derived macrophages exhibited morphology similar to primary macrophages and expressed inflammatory macrophage cell surface markers including CD64 and CD68. LPS-stimulated macrophages expressed a global pattern of gene expression enriched in CD ileal inflammatory macrophages and matrisome-secreted products and produced cytokines and chemokines including CCL2, IL1B, and OSM implicated in refractory disease. ETYA suppressed CD64 abundance and profibrotic gene expression pathways in LPS-stimulated macrophages. Coculture of LPS-primed macrophages with HIO led to upregulation of fibroblast activation genes including ACTA2 and COL1A1, and an increase in HIO collagen content. ETYA pretreatment prevented profibrotic effects of LPS-primed macrophages. CONCLUSIONS ETYA inhibits profibrotic effects of LPS-primed macrophages upon cocultured HIO. This model may be used in future untargeted screens for small molecules to treat refractory CD.
Collapse
Affiliation(s)
- Ingrid Jurickova
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Benjamin W Dreskin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elizabeth Angerman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Erin Bonkowski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jack Nguyen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard Villarreal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kentaro Tominaga
- Division of Gastroenterology and Hepatology, Niigata University, Niigata, Japan
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tzipi Braun
- Department of Pediatrics, Sheba Medical Center, Tel-HaShomer, Affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka, Japan
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael A Helmrath
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pediatric General and Thoracic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yael Haberman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Sheba Medical Center, Tel-HaShomer, Affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - James M Wells
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
14
|
Liu YJ, Kimura M, Li X, Sulc J, Wang Q, Rodríguez-López S, Scantlebery AML, Strotjohann K, Gallart-Ayala H, Vijayakumar A, Myers RP, Ivanisevic J, Houtkooper RH, Subramanian GM, Takebe T, Auwerx J. ACMSD inhibition corrects fibrosis, inflammation, and DNA damage in MASLD/MASH. J Hepatol 2025; 82:174-188. [PMID: 39181211 PMCID: PMC11741923 DOI: 10.1016/j.jhep.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS Recent findings reveal the importance of tryptophan-initiated de novo nicotinamide adenine dinucleotide (NAD+) synthesis in the liver, a process previously considered secondary to biosynthesis from nicotinamide. The enzyme α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), primarily expressed in the liver and kidney, acts as a modulator of de novo NAD+ synthesis. Boosting NAD+ levels has previously demonstrated remarkable metabolic benefits in mouse models. In this study, we aimed to investigate the therapeutic implications of ACMSD inhibition in the treatment of metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH). METHODS In vitro experiments were conducted in primary rodent hepatocytes, Huh7 human liver carcinoma cells and induced pluripotent stem cell-derived human liver organoids (HLOs). C57BL/6J male mice were fed a western-style diet and housed at thermoneutrality to recapitulate key aspects of MASLD/MASH. Pharmacological ACMSD inhibition was given therapeutically, following disease onset. HLO models of steatohepatitis were used to assess the DNA damage responses to ACMSD inhibition in human contexts. RESULTS Inhibiting ACMSD with a novel specific pharmacological inhibitor promotes de novo NAD+ synthesis and reduces DNA damage ex vivo, in vivo, and in HLO models. In mouse models of MASLD/MASH, de novo NAD+ biosynthesis is suppressed, and transcriptomic DNA damage signatures correlate with disease severity; in humans, Mendelian randomization-based genetic analysis suggests a notable impact of genomic stress on liver disease susceptibility. Therapeutic inhibition of ACMSD in mice increases liver NAD+ and reverses MASLD/MASH, mitigating fibrosis, inflammation, and DNA damage, as observed in HLO models of steatohepatitis. CONCLUSIONS Our findings highlight the benefits of ACMSD inhibition in enhancing hepatic NAD+ levels and enabling genomic protection, underscoring its therapeutic potential in MASLD/MASH. IMPACT AND IMPLICATIONS Enhancing NAD+ levels has been shown to induce remarkable health benefits in mouse models of metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), yet liver-specific NAD+ boosting strategies remain underexplored. Here, we present a novel pharmacological approach to enhance de novo synthesis of NAD+ in the liver by inhibiting α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), an enzyme highly expressed in the liver. Inhibiting ACMSD increases NAD+ levels, enhances mitochondrial respiration, and maintains genomic stability in hepatocytes ex vivo and in vivo. These molecular benefits prevent disease progression in both mouse and human liver organoid models of steatohepatitis. Our preclinical study identifies ACMSD as a promising target for MASLD/MASH management and lays the groundwork for developing ACMSD inhibitors as a clinical treatment.
Collapse
Affiliation(s)
- Yasmine J Liu
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Keno Strotjohann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism institute, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences institute, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Kim Y, Kang M, Mamo MG, Adisasmita M, Huch M, Choi D. Liver organoids: Current advances and future applications for hepatology. Clin Mol Hepatol 2025; 31:S327-S348. [PMID: 39722609 PMCID: PMC11925438 DOI: 10.3350/cmh.2024.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
Collapse
Affiliation(s)
- Yohan Kim
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Korea
| | - Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Michael Girma Mamo
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Michael Adisasmita
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
16
|
Zhang X, Chang KM, Yu J, Loomba R. Unraveling Mechanisms of Genetic Risks in Metabolic Dysfunction-Associated Steatotic Liver Diseases: A Pathway to Precision Medicine. ANNUAL REVIEW OF PATHOLOGY 2025; 20:375-403. [PMID: 39854186 DOI: 10.1146/annurev-pathmechdis-111523-023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
17
|
Zhang Q, He J, Zhu D, Chen Y, Fu M, Lu S, Qiu Y, Zhou G, Yang G, Jiang Z. Genetically modified organoids for tissue engineering and regenerative medicine. Adv Colloid Interface Sci 2025; 335:103337. [PMID: 39547125 DOI: 10.1016/j.cis.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
To date, genetically modified organoids are emerging as a promising 3D modeling tool aimed at solving genetically relevant clinical and biomedical problems for regenerative medicine and tissue engineering. As an optimal vehicle for gene delivery, genetically modified organoids can enhance or reduce the expression of target genes through virus and non-virus-based gene transfection methods to achieve tissue regeneration. Animal experiments and preclinical studies have demonstrated the beneficial role of genetically modified organoids in various aspects of organ regeneration, including thymus, lacrimal glands, brain, lung, kidney, photoreceptors, etc. Furthermore, the technology offers a potential treatment option for various diseases, such as Fabry disease, non-alcoholic steatohepatitis, and Lynch syndrome. Nevertheless, the uncertain safety of genetic modification, the risk of organoid application, and bionics of current genetically modified organoids are still challenging. This review summarizes the researches on genetically modified organoids in recent years, and describes the transfection methods and functions of genetically modified organoids, then introduced their applications at length. Also, the limitations and future development directions of genetically modified organoids are included.
Collapse
Affiliation(s)
- Qinmeng Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yunxuan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Shifan Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yuesheng Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guodong Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
18
|
Brenner DA. Alternatives to animal testing to assess MASH drugs and hepatotoxicity. Hepatology 2025; 81:304-311. [PMID: 37934631 PMCID: PMC11070445 DOI: 10.1097/hep.0000000000000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
The Food and Drug Administration (FDA) Modernization Act 2.0 "allows for alternatives to animal testing for purposes of drug and biological product applications." This provides an opportunity to develop and improve alternatives to animal studies to assess drugs in the liver. Two-dimensional cultures of liver cells fail to maintain their differentiated state and fail to reproduce liver disease phenotypes. Therefore, several platforms using human liver cells are being developed either to (1) assess hepatotoxicity of drugs or (2) create "diseases in a dish" to assess the effectiveness of drugs in treating liver diseases, primarily focused on treating MASH. The technological approaches include precision cut liver slices, human liver spheroids, human liver organoids, bioprinted human liver tissues, and microphysiological systems. This review evaluates each of these technologies and their role in providing alternatives to testing in animals.
Collapse
Affiliation(s)
- David A Brenner
- Sanford Burnham Prebys and UC San Diego, La Jolla, California, USA
| |
Collapse
|
19
|
Chang CW, Chen YS, Huang CH, Lin CH, Ng WV, Chu LJ, Trépo E, Zucman-Rossi J, Siao K, Maher JJ, Chiew MY, Chou CH, Huang HD, Teo WH, Lee IS, Lo JF, Wang XW. A genetic basis of mitochondrial DNAJA3 in nonalcoholic steatohepatitis-related hepatocellular carcinoma. Hepatology 2025; 81:60-76. [PMID: 37870291 PMCID: PMC11035488 DOI: 10.1097/hep.0000000000000637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND AND AIMS NAFLD is the most common form of liver disease worldwide, but only a subset of individuals with NAFLD may progress to NASH. While NASH is an important etiology of HCC, the underlying mechanisms responsible for the conversion of NAFLD to NASH and then to HCC are poorly understood. We aimed to identify genetic risk genes that drive NASH and NASH-related HCC. APPROACH AND RESULTS We searched genetic alleles among the 24 most significant alleles associated with body fat distribution from a genome-wide association study of 344,369 individuals and validated the top allele in 3 independent cohorts of American and European patients (N=1380) with NAFLD/NASH/HCC. We identified an rs3747579-TT variant significantly associated with NASH-related HCC and demonstrated that rs3747579 is expression quantitative trait loci of a mitochondrial DnaJ Heat Shock Protein Family (Hsp40) Member A3 ( DNAJA3 ). We also found that rs3747579-TT and a previously identified PNPLA3 as a functional variant of NAFLD to have significant additional interactions with NASH/HCC risk. Patients with HCC with rs3747579-TT had a reduced expression of DNAJA3 and had an unfavorable prognosis. Furthermore, mice with hepatocyte-specific Dnaja3 depletion developed NASH-dependent HCC either spontaneously under a normal diet or enhanced by diethylnitrosamine. Dnaja3 -deficient mice developed NASH/HCC characterized by significant mitochondrial dysfunction, which was accompanied by excessive lipid accumulation and inflammatory responses. The molecular features of NASH/HCC in the Dnaja3 -deficient mice were closely associated with human NASH/HCC. CONCLUSIONS We uncovered a genetic basis of DNAJA3 as a key player of NASH-related HCC.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Syuan Chen
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chen-Hua Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wailap Victor Ng
- Department of Biotechnology and Lab Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Lichieh Julie Chu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Eric Trépo
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Kevin Siao
- Liver Center and Department of Medicine, University of California, San Francisco, CA 94143
| | - Jacquelyn J. Maher
- Liver Center and Department of Medicine, University of California, San Francisco, CA 94143
| | - Men Yee Chiew
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
| | - Chih-Hung Chou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
| | - Hsien-Da Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172
| | - Wan-Huai Teo
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - I-Shan Lee
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Dentistry, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
20
|
Du X, Chang Y, Song J. Use of Brain Death Recipients in Xenotransplantation: A Double-Edged Sword. Xenotransplantation 2025; 32:e70010. [PMID: 39825621 DOI: 10.1111/xen.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025]
Abstract
Organ transplants are used to treat many end-stage diseases, but a shortage of donors means many patients cannot be treated. Xenogeneic organs have become an important part of filling the donor gap. Many current studies of kidney, heart, and liver xenotransplantation have used gene-edited pig organs on brain-dead recipients. However, the endocrine system, immune system, and nervous system of brain-dead people are changed, which are different from that of real patients transplanted, and the current research results of brain death (BD) recipients are also different. So there are drawbacks to using brain-dead people for xenotransplantation. In addition, although the policy requires the use of non-human primate (NHP) experiments as the research standard for xenotransplantation, there are still differences between NHP and humans in terms of immunity. Therefore, to better study xenotransplantation, new models may be needed in addition to NHP and brain-dead individuals. Humanized animal models or organoids may be able to fill this gap.
Collapse
Affiliation(s)
- Xingchao Du
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
21
|
Zhang S, Liu L, Li X, Zhou T, Shi Q, Li D, Ju X. Transcriptomic and proteomic sequencing unveils the role of vitamin D and metabolic flux shifts in the induction of human hepatic organoids. Stem Cell Res Ther 2024; 15:478. [PMID: 39696644 DOI: 10.1186/s13287-024-04101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Hepatic organoids (HOs), validated through comparative sequencing with human liver tissues, are reliable models for liver research. Comprehensive transcriptomic and proteomic sequencing of HOs throughout their induction period will enhance the platform's utility, aiding in the elucidation of liver development's molecular mechanisms. METHODS We developed hepatic organoids (HOs) from embryonic stem cells (ESCs) through a de novo induction protocol, mimicking the stages of fetal liver development: ESCs to definitive endoderm (DE), then to foregut (FG), hepatoblasts (HB), and finally to HOs stage 1 (HO1), culminating in self-organizing HOs stage 2 (HO2) via dissociation and re-inoculation. The successful establishment of HOs was validated by immunofluorescence staining and RT-qPCR for specific markers. Comprehensive transcriptomic and proteomic sequencing and analysis were conducted on FG, HB, HO1, and HO2. RESULTS Our data suggest that several transcription factors (TFs) activated during the HB stage share overlapping target genes with the vitamin D receptor (VDR). Calcitriol, a direct activator of VDR, notably facilitated the FG to HB stage transition by activating VDR and enhancing key TFs, thereby promoting hepatic progenitor cell maturation. Furthermore, our findings revealed a significant transition towards glycolytic energy metabolism at the HO2 stage, characterized by increased glycolytic flux and reduced oxidative phosphorylation. Inhibition of glycolysis using 2-deoxy-D-glucose (2-DG) led to suppressed growth and differentiation at the HO2 stage. Analysis of signaling pathways indicated upregulation of the HIF-1 pathway, which is associated with glycolysis activation, as well as the MAPK and PI3K-AKT pathways, which regulate HIF-1α protein translation. CONCLUSIONS We elucidated a pivotal role for calcitriol in facilitating the transition from FG to HB by activating VDR and augmenting the expression of critical transcription factors (TFs). Besides, our research underscores a shift in metabolic pathways toward glycolytic energy metabolism in HO2 organoids. Overall, our multiomics approach reveals the intricate molecular regulation during the development of HOs.
Collapse
Affiliation(s)
- Shule Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, Shandong, P.R. China
| | - Linghong Liu
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, China
| | - Xianyu Li
- Experimental Research Center, Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tiancheng Zhou
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, China.
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, Shandong, P.R. China.
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, China.
| |
Collapse
|
22
|
Kuzinska MZ, Lin SYY, Klämbt V, Bufler P, Rezvani M. Ciliopathy organoid models: a comprehensive review. Am J Physiol Cell Physiol 2024; 327:C1604-C1625. [PMID: 39495251 DOI: 10.1152/ajpcell.00343.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Cilia are membrane-bound organelles found on the surface of most mammalian cell types and play numerous roles in human physiology and development, including osmo- and mechanosensation, as well as signal transduction. Ciliopathies are a large group of, usually rare, genetic disorders resulting from abnormal ciliary structure or ciliary dysfunction that have a high collective prevalence. Autosomal dominant or recessive polycystic kidney disease (ADPKD/ARPKD), Bardet-Biedl-Syndrome, and primary ciliary dyskinesia (PCD) are the most frequent etiologies. Rodent and zebrafish models have improved the understanding of ciliopathy pathophysiology. Yet, the limitations of these genetically modified animal strains include the inability to fully replicate the phenotypic heterogeneity found in humans, including variable multiorgan involvement. Organoids, self-assembled three-dimensional cell-based models derived from human induced pluripotent stem cells (iPSCs) or primary tissues, can recapitulate certain aspects of the development, architecture, and function of the target organ "in the dish." The potential of organoids to model patient-specific genotype-phenotype correlations has increased their popularity in ciliopathy research and led to the first preclinical organoid-based ciliopathy drug screens. This review comprehensively summarizes and evaluates current ciliopathy organoid models, focusing on kidney, airway, liver, and retinal organoids, as well as the specific methodologies used for their cultivation and for interrogating ciliary dysfunction.
Collapse
Affiliation(s)
- Matylda Zofia Kuzinska
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- Berlin School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Sally Yuan-Yin Lin
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
| | - Verena Klämbt
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Milad Rezvani
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Berlin Institute of Health, Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
23
|
Mendoza YP, Tsouka S, Semmler G, Seubnooch P, Freiburghaus K, Mandorfer M, Bosch J, Masoodi M, Berzigotti A. Metabolic phenotyping of patients with advanced chronic liver disease for better characterization of cirrhosis regression. J Hepatol 2024; 81:983-994. [PMID: 38944391 DOI: 10.1016/j.jhep.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND & AIMS Regression of cirrhosis has been observed in patients with viral and non-viral etiologies of liver disease in whom the underlying cause of liver injury was effectively suppressed. However, the understanding of the factors contributing to reversibility of fibrosis and cirrhosis is limited. Our aims were to assess clinical factors, perform genotyping of known variants, and comprehensive metabolic phenotyping to characterize the regression of fibrosis in patients with compensated advanced chronic liver disease (cACLD). METHODS In a case-control pilot study of 81 patients with cACLD, we compared individuals exhibiting histological or clinical evidence of cACLD regression ("regressors"; n = 44) with those showing no improvement ("non-regressors"; n = 37) after a minimum of 24 months of successful treatment of the cause of liver disease. Data were validated using an external validation cohort (n = 30). RESULTS Regardless of the cause of cACLD, the presence of obesity (odds ratio [OR] 0.267 95% CI 0.072-0.882; p = 0.049), high liver stiffness (OR 0.960, 95% CI 0.925-0.995; p = 0.032), and carriage of GCKR variant rs1260326 (OR 0.148, 95% CI 0.030-0.773; p = 0.019) are associated with a reduced likelihood of fibrosis regression in a subgroup of 60 patients with ACLD genotyped for known genetic variants. Using liver tissue transcriptomics, we identified metabolic pathways differentiating regressors from non-regressors, with top pathways associated with lipid metabolism - especially fatty acids, bile acids, phospholipids, triacylglycerides (biosynthesis), and the carnitine shuttle. In the entire discovery cohort, we further measured metabolites within the defined pathways, which led to the identification of 33 circulating markers differentiating regressors from non-regressors after etiological therapy. The validation cohort confirmed 14 of the differentially expressed markers. CONCLUSIONS We identified and validated a group of lipid biomarkers associated with regression of fibrosis that could be used as non-invasive biomarkers for detecting regression of fibrosis in cACLD. IMPACT AND IMPLICATIONS Regression of cirrhosis/advanced chronic liver disease (ACLD) after removal of the underlying cause of liver injury has been observed in human cirrhosis. However, detailed characterization of ACLD regression remains an unmet need. In this study, we provide a comprehensive phenotyping of individuals likely to experience ACLD regression. While obesity, carriage of GCKR variant rs1260326 and high liver stiffness were associated with lower likelihood of regression of ACLD, a signature of circulating lipid metabolites enabled differentiation of regressors from non-regressors after effective etiologic therapy. The lipid signature we discovered and externally validated could be used as non-invasive biomarker to detect regression of fibrosis in patients with compensated ACLD.
Collapse
Affiliation(s)
- Yuly P Mendoza
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland; Graduate School for Health Sciences (GHS), University of Bern, Switzerland
| | - Sofia Tsouka
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Patcharamon Seubnooch
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katrin Freiburghaus
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jaime Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland.
| |
Collapse
|
24
|
Ford BE, Chachra SS, Alshawi A, Oakley F, Fairclough RJ, Smith DM, Tiniakos D, Agius L. Compromised chronic efficacy of a glucokinase activator AZD1656 in mouse models for common human GCKR variants. Biochem Pharmacol 2024; 229:116499. [PMID: 39173844 DOI: 10.1016/j.bcp.2024.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Glucokinase activators (GKAs) have been developed as blood glucose lowering drugs for type 2 diabetes. Despite good short-term efficacy, several GKAs showed a decline in efficacy chronically during clinical trials. The underlying mechanisms remain incompletely understood. We tested the hypothesis that deficiency in the liver glucokinase regulatory protein (GKRP) as occurs with common human GCKR variants affects chronic GKA efficacy. We used a Gckr-P446L mouse model for the GCKR exonic rs1260326 (P446L) variant and the Gckr-del/wt mouse to model transcriptional deficiency to test for chronic efficacy of the GKA, AZD1656 in GKRP-deficient states. In the Gckr-P446L mouse, the blood glucose lowering efficacy of AZD1656 (3 mg/kg body wt) after 2 weeks was independent of genotype. However after 19 weeks, efficacy was maintained in wild-type but declined in the LL genotype, in conjunction with raised hepatic glucokinase activity and without raised liver lipids. Sustained blood glucose lowering efficacy in wild-type mice was associated with qualitatively similar but more modest changes in the liver transcriptome compared with the P446L genotype, consistent with GKA therapy representing a more modest glucokinase excess than the P446L genotype. Chronic treatment with AZD1656 in the Gckr-del/wt mouse was associated with raised liver triglyceride and hepatocyte microvesicular steatosis. The results show that in mouse models of liver GKRP deficiency in conjunction with functional liver glucokinase excess as occurs in association with common human GCKR variants, GKRP-deficiency predisposes to declining efficacy of the GKA in lowering blood glucose and to GKA induced elevation in liver lipids.
Collapse
Affiliation(s)
- Brian E Ford
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Shruti S Chachra
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ahmed Alshawi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Medical Laboratory Technique Department, Kufa Institute, Al-Furat Al-Awsat Technical University, Kufa, Iraq
| | - Fiona Oakley
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rebecca J Fairclough
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David M Smith
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Dept of Pathology, Aretaieion Hospital Medical School, National and Kapodistrian University of Athens, Greece
| | - Loranne Agius
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
25
|
Wu X, Swanson K, Yildirim Z, Liu W, Liao R, Wu JC. Clinical trials in-a-dish for cardiovascular medicine. Eur Heart J 2024; 45:4275-4290. [PMID: 39270727 PMCID: PMC11491156 DOI: 10.1093/eurheartj/ehae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases persist as a global health challenge that requires methodological innovation for effective drug development. Conventional pipelines relying on animal models suffer from high failure rates due to significant interspecies variation between humans and animal models. In response, the recently enacted Food and Drug Administration Modernization Act 2.0 encourages alternative approaches including induced pluripotent stem cells (iPSCs). Human iPSCs provide a patient-specific, precise, and screenable platform for drug testing, paving the way for cardiovascular precision medicine. This review discusses milestones in iPSC differentiation and their applications from disease modelling to drug discovery in cardiovascular medicine. It then explores challenges and emerging opportunities for the implementation of 'clinical trials in-a-dish'. Concluding, this review proposes a framework for future clinical trial design with strategic incorporations of iPSC technology, microphysiological systems, clinical pan-omics, and artificial intelligence to improve success rates and advance cardiovascular healthcare.
Collapse
Affiliation(s)
- Xuekun Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle Swanson
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Greenstone Biosciences, Palo Alto, CA, USA
| | - Zehra Yildirim
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenqiang Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
27
|
Yamazaki M, Yamada H, Munetsuna E, Ando Y, Mizuno G, Teshigawara A, Ichikawa H, Nouchi Y, Kageyama I, Wakasugi T, Ishikawa H, Ohgami N, Suzuki K, Ohashi K. Approaches to nutritional research using organoids; fructose treatment induces epigenetic changes in liver organoids. J Nutr Biochem 2024; 131:109671. [PMID: 38768870 DOI: 10.1016/j.jnutbio.2024.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Nutritional researches have successfully used animal models to gain new insights into nutrient action. However, comprehensive descriptions of their molecular mechanisms of action remain elusive as appropriate in vitro evaluation systems are lacking. Organoid models can mimic physiological structures and reproduce in vivo functions, making them increasingly utilized in biomedical research for a better understand physiological and pathological phenomena. Therefore, organoid modeling can be a powerful approach for to understand the molecular mechanisms of nutrient action. The present study aims to demonstrate the utility of organoids in nutritional research by further investigating the molecular mechanisms responsible for the negative effects of fructose intake using liver organoids. Here, we treated liver organoids with fructose and analyzed their gene expression profiles and DNA methylation levels. Microarray analysis demonstrated that fructose-treated organoids exhibited increased selenoprotein p (Sepp1) gene expression, whereas pyrosequencing assays revealed reduced DNA methylation levels in the Sepp1 region. These results were consistent with observations using hepatic tissues from fructose-fed rats. Conversely, no differences in Sepp1 mRNA and DNA methylation levels were observed in two-dimensional cells. These results suggest that organoids serve as an ideal in vitro model to recapitulate in vivo tissue responses and help to validate the molecular mechanisms of nutrient action compared to conventional cellular models.
Collapse
Affiliation(s)
- Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan; Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Eiji Munetsuna
- Department of Animal Science and Biotechnology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, Ota, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hayato Ichikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Takuya Wakasugi
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Nobutaka Ohgami
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
28
|
Gopallawa I, Gupta C, Jawa R, Cyril A, Jawa V, Chirmule N, Gujar V. Applications of Organoids in Advancing Drug Discovery and Development. J Pharm Sci 2024; 113:2659-2667. [PMID: 39002723 DOI: 10.1016/j.xphs.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/15/2024]
Abstract
Organoids are small, self-organizing three-dimensional cell cultures that are derived from stem cells or primary organs. These cultures replicate the complexity of an organ, which cannot be achieved by single-cell culture systems. Organoids can be used in testing of new drugs instead of animals. Development and validation of organoids is thus important to reduce the reliance on animals for drug testing. In this review, we have discussed the developmental and regulatory aspects of organoids and highlighted their importance in drug development. We have first summarized different types of culture-based organoid systems such as submerged Matrigel, micro-fluidic 3D cultures, inducible pluripotent stem cells, and air-liquid interface cultures. These systems help us understand the intricate interplay between cells and their surrounding milieu for identifying functions of target receptors, soluble factors, and spatial interactions. Further, we have discussed the advances in humanized severe-combined immunodeficiency mouse models and their applications in the pharmacology of immune-oncology. Since regulatory aspects are important in using organoids for drug development, we have summarized FDA and EMA regulations on organoid research to support pre-clinical studies. Finally, we have included some unique studies highlighting the use of organoids in studying infectious diseases, cancer, and fundamental biology. These studies also exemplify the latest technological advances in organoid development resulting in improved efficiency. Overall, this review comprehensively summarizes the applications of organoids in early drug development during discovery and pre-clinical studies.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | | | - Rayan Jawa
- University of Pennsylvania, Philadelphia, PA, USA
| | - Arya Cyril
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrenceville, NY, USA.
| | | | - Vikramsingh Gujar
- Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| |
Collapse
|
29
|
Correia de Sousa M, Delangre E, Berthou F, El Harane S, Maeder C, Fournier M, Krause KH, Gjorgjieva M, Foti M. Hepatic miR-149-5p upregulation fosters steatosis, inflammation and fibrosis development in mice and in human liver organoids. JHEP Rep 2024; 6:101126. [PMID: 39263327 PMCID: PMC11388170 DOI: 10.1016/j.jhepr.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 09/13/2024] Open
Abstract
Background & Aims The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. Alterations of hepatic microRNA (miRNA) expression/activity significantly contribute to the development and progression of MASLD. Genetic polymorphisms of miR-149 are associated with an increased susceptibility to MASLD development in humans. Aberrant expression of miR-149 was also associated with metabolic alterations in several organs, but the impact of hepatic miR-149-5p deregulation in MASLD remains poorly characterized. Methods MiR-149-5p was downregulated in the livers of mice by in vivo transduction with hepatotropic adeno-associated virus 8 harboring short-hairpin RNAs (shRNAs) specific for miR-149-5p (shmiR149) or scrambled shRNAs (shCTL). MASLD was then induced with a methionine/choline-deficient (MCD, n = 7 per group) diet or a fructose/palmitate/cholesterol-enriched (FPC, n = 8-12 per group, per protocol) diet. The impact of miR-149-5p modulation on MASLD development was assessed in vivo and in vitro using multi-lineage 3D human liver organoids (HLOs) and Huh7 cells. Results MiR-149-5p expression was strongly upregulated in mouse livers from different models of MASLD (2-4-fold increase in ob/ob, db/db mice, high-fat and FPC-fed mice). In vivo downregulation of miR-149-5p led to an amelioration of diet-induced hepatic steatosis, inflammation/fibrosis, and to increased whole-body fatty acid consumption. In HLOs, miR-149-5p overexpression promoted lipid accumulation, inflammation and fibrosis. In vitro analyses of human Huh7 cells overexpressing miR-149-5p indicated that glycolysis and intracellular lipid accumulation was promoted, while mitochondrial respiration was impaired. Translatomic analyses highlighted deregulation of multiple potential miR-149-5p targets in hepatocytes involved in MASLD development. Conclusions MiR-149-5p upregulation contributes to MASLD development by affecting multiple metabolic/inflammatory/fibrotic pathways in hepatocytes. Our results further demonstrate that HLOs are a relevant 3D in vitro model to investigate hepatic steatosis and inflammation/fibrosis development. Impact and implications Our research shows compelling evidence that miR-149-5p plays a pivotal role in the development and progression of MASLD. By employing in vivo and innovative in vitro models using multi-lineage human liver organoids, we demonstrate that miR-149-5p upregulation significantly impacts hepatocyte energy metabolism, exacerbating hepatic steatosis and inflammation/fibrosis by modulating a wide network of target genes. These findings not only shed light on the intricate miR-149-5p-dependent molecular mechanisms underlying MASLD, but also underscore the importance of human liver organoids as valuable 3D in vitro models for studying the disease's pathogenesis.
Collapse
Affiliation(s)
- Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Flavien Berthou
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sanae El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Al Reza H, Santangelo C, Al Reza A, Iwasawa K, Sachiko S, Glaser K, Bondoc A, Merola J, Takebe T. Self-Assembled Generation of Multi-zonal Liver Organoids from Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610426. [PMID: 39257824 PMCID: PMC11384014 DOI: 10.1101/2024.08.30.610426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Distinct hepatocyte subpopulations are spatially segregated along the portal-central axis and critical to understanding metabolic homeostasis and liver injury. While several bioactive molecules have been described to play a role in directing zonal fates, including ascorbate and bilirubin, in vitro replication of zonal liver architecture has not been achieved to date. In order to evaluate hepatic zonal polarity, we developed a self-assembling zone-specific liver organoid culture by co-culturing ascorbate and bilirubin enriched hepatic progenitors derived from human induced pluripotent stem cells. We found that preconditioned hepatocyte-like cells exhibited zone-specific functions associated with urea cycle, glutathione synthesis and glutamate synthesis. Single nucleus RNA sequencing analysis of these zonally patterned organoids identifies hepatoblast differentiation trajectory that mimics periportal-, interzonal-, and pericentral human hepatocytes. Epigenetic and transcriptomic analysis showed that zonal identity is orchestrated by ascorbate or bilirubin dependent binding of histone acetyltransferase p300 (EP300) to methylcytosine dioxygenase TET1 or hypoxia-inducible factor 1-alpha (HIF1α). Transplantation of the self-assembled zonally patterned human organoids improved survival of immunodeficient rats who underwent bile duct ligation by ameliorating the hyperammonemia and hyperbilirubinemia. Overall, this multi-zonal organoid system serves as an in vitro human model to better recapitulate hepatic architecture relevant to liver development and disease.
Collapse
Affiliation(s)
- Hasan Al Reza
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Connie Santangelo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Abid Al Reza
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Kentaro Iwasawa
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Sachiko Sachiko
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Jonathan Merola
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Communication Design Center, Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Japan
| |
Collapse
|
31
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
32
|
Kimura M, Takebe T. Cellotype-phenotype associations using 'organoid villages'. Trends Endocrinol Metab 2024; 35:462-465. [PMID: 38575442 PMCID: PMC11752945 DOI: 10.1016/j.tem.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
En masse phenotyping technology, using massively mosaic donor-derived cells and organoids, can offer enriched insights for cellotype-phenotype association in a cell-type-specific regulatory context. This emerging approach will help to discover biomarkers, inform genetic-epigenetic interactions and identify personalized therapeutic targets, offering hope for precision medicine against highly heterogeneous metabolic diseases.
Collapse
Affiliation(s)
- Masaki Kimura
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan.
| |
Collapse
|
33
|
Xiang D, He A, Zhou R, Wang Y, Xiao X, Gong T, Kang W, Lin X, Wang X, Liu L, Chen YG, Gao S, Liu Y. Building consensus on the application of organoid-based drug sensitivity testing in cancer precision medicine and drug development. Theranostics 2024; 14:3300-3316. [PMID: 38855182 PMCID: PMC11155402 DOI: 10.7150/thno.96027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Patient-derived organoids (PDOs) have emerged as a promising platform for clinical and translational studies. A strong correlation exists between clinical outcomes and the use of PDOs to predict the efficacy of chemotherapy and/or radiotherapy. To standardize interpretation and enhance scientific communication in the field of cancer precision medicine, we revisit the concept of PDO-based drug sensitivity testing (DST). We present an expert consensus-driven approach for medication selection aimed at predicting patient responses. To further standardize PDO-based DST, we propose guidelines for clarification and characterization. Additionally, we identify several major challenges in clinical prediction when utilizing PDOs.
Collapse
Affiliation(s)
- Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200125, PRC
- National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, PRC
| | - Yonggang Wang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Ting Gong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin 300052, PRC
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, PRC
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Boao Research Hospital), Hainan 571434, PRC
| | - Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, PRC
| | | | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, PRC
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui 230001, PRC
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100190, PRC
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, PRC
- Frontier Science Center for Stem Cell Research, Tongji University, 1239 Siping Road, Shanghai 200092, PRC
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PRC
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| |
Collapse
|
34
|
Maurotti S, Geirola N, Frosina M, Mirarchi A, Scionti F, Mare R, Montalcini T, Pujia A, Tirinato L. Exploring the impact of lipid droplets on the evolution and progress of hepatocarcinoma. Front Cell Dev Biol 2024; 12:1404006. [PMID: 38818407 PMCID: PMC11137176 DOI: 10.3389/fcell.2024.1404006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Over the past 10 years, the biological role of lipid droplets (LDs) has gained significant attention in the context of both physiological and pathological conditions. Considerable progress has been made in elucidating key aspects of these organelles, yet much remains to be accomplished to fully comprehend the myriad functions they serve in the progression of hepatic tumors. Our current perception is that LDs are complex and active structures managed by a distinct set of cellular processes. This understanding represents a significant paradigm shift from earlier perspectives. In this review, we aim to recapitulate the function of LDs within the liver, highlighting their pivotal role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) (Hsu and Loomba, 2024) and their contribution to the progression towards more advanced pathological stages up to hepatocellular carcinoma (HC) (Farese and Walther, 2009). We are aware of the molecular complexity and changes occurring in the neoplastic evolution of the liver. Our attempt, however, is to summarize the most important and recent roles of LDs across both healthy and all pathological liver states, up to hepatocarcinoma. For more detailed insights, we direct readers to some of the many excellent reviews already available in the literature (Gluchowski et al., 2017; Hu et al., 2020; Seebacher et al., 2020; Paul et al., 2022).
Collapse
Affiliation(s)
- Samantha Maurotti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Nadia Geirola
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Miriam Frosina
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Angela Mirarchi
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Scionti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Rosario Mare
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Luca Tirinato
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
35
|
Liu Y, Zhou Y, Ahodantin J, Jin Y, Zhu J, Sun Z, Wu X, Su L, Yang Y. Generation and characterization of mature hepatocyte organoids for liver metabolic studies. J Cell Sci 2024; 137:jcs261961. [PMID: 38700490 PMCID: PMC11166457 DOI: 10.1242/jcs.261961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Hepatocyte organoids (HOs) generated in vitro are powerful tools for liver regeneration. However, previously reported HOs have mostly been fetal in nature with low expression levels of metabolic genes characteristic of adult liver functions, hampering their application in studies of metabolic regulation and therapeutic testing for liver disorders. Here, we report development of novel culture conditions that combine optimized levels of triiodothyronine (T3) with the removal of growth factors to enable successful generation of mature hepatocyte organoids (MHOs) of both mouse and human origin with metabolic functions characteristic of adult livers. We show that the MHOs can be used to study various metabolic functions including bile and urea production, zonal metabolic gene expression, and metabolic alterations in both alcoholic liver disease and non-alcoholic fatty liver disease, as well as hepatocyte proliferation, injury and cell fate changes. Notably, MHOs derived from human fetal hepatocytes also show improved hepatitis B virus infection. Therefore, these MHOs provide a powerful in vitro model for studies of human liver physiology and diseases. The human MHOs are potentially also a robust research tool for therapeutic development.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - Yaxing Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - James Ahodantin
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yu Jin
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - Juanjuan Zhu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, 188 Longwood Ave, Boston, MA 02115, USA
- Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, 188 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
36
|
Osonoi S, Takebe T. Organoid-guided precision hepatology for metabolic liver disease. J Hepatol 2024; 80:805-821. [PMID: 38237864 PMCID: PMC11828489 DOI: 10.1016/j.jhep.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease affects millions of people worldwide. Progress towards a definitive cure has been incremental and treatment is currently limited to lifestyle modification. Hepatocyte-specific lipid accumulation is the main trigger of lipotoxic events, driving inflammation and fibrosis. The underlying pathology is extraordinarily heterogenous, and the manifestations of steatohepatitis are markedly influenced by metabolic communications across non-hepatic organs. Synthetic human tissue models have emerged as powerful platforms to better capture the mechanistic diversity in disease progression, while preserving person-specific genetic traits. In this review, we will outline current research efforts focused on integrating multiple synthetic tissue models of key metabolic organs, with an emphasis on organoid-based systems. By combining functional genomics and population-scale en masse profiling methodologies, human tissues derived from patients can provide insights into personalised genetic, transcriptional, biochemical, and metabolic states. These collective efforts will advance our understanding of steatohepatitis and guide the development of rational solutions for mechanism-directed diagnostic and therapeutic investigation.
Collapse
Affiliation(s)
- Sho Osonoi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; WPI Premium Institute for Human Metaverse Medicine (WPI-PRIMe) and Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
37
|
Farbehi N, Neavin DR, Cuomo ASE, Studer L, MacArthur DG, Powell JE. Integrating population genetics, stem cell biology and cellular genomics to study complex human diseases. Nat Genet 2024; 56:758-766. [PMID: 38741017 DOI: 10.1038/s41588-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
Human pluripotent stem (hPS) cells can, in theory, be differentiated into any cell type, making them a powerful in vitro model for human biology. Recent technological advances have facilitated large-scale hPS cell studies that allow investigation of the genetic regulation of molecular phenotypes and their contribution to high-order phenotypes such as human disease. Integrating hPS cells with single-cell sequencing makes identifying context-dependent genetic effects during cell development or upon experimental manipulation possible. Here we discuss how the intersection of stem cell biology, population genetics and cellular genomics can help resolve the functional consequences of human genetic variation. We examine the critical challenges of integrating these fields and approaches to scaling them cost-effectively and practically. We highlight two areas of human biology that can particularly benefit from population-scale hPS cell studies, elucidating mechanisms underlying complex disease risk loci and evaluating relationships between common genetic variation and pharmacotherapeutic phenotypes.
Collapse
Affiliation(s)
- Nona Farbehi
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Drew R Neavin
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Anna S E Cuomo
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Lorenz Studer
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joseph E Powell
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
38
|
Kodama T, Takehara T. Molecular Genealogy of Metabolic-associated Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:147-158. [PMID: 38499207 PMCID: PMC11245329 DOI: 10.1055/a-2289-2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
This review examines the latest epidemiological and molecular pathogenic findings of metabolic-associated hepatocellular carcinoma (HCC). Its increasing prevalence is a significant concern and reflects the growing burden of obesity and metabolic diseases, including metabolic dysfunction-associated steatotic liver disease, formerly known as nonalcoholic fatty liver disease, and type 2 diabetes. Metabolic-associated HCC has unique molecular abnormality and distinctive gene expression patterns implicating aberrations in bile acid, fatty acid metabolism, oxidative stress, and proinflammatory pathways. Furthermore, a notable frequency of single nucleotide polymorphisms in genes such as patatin-like phospholipase domain-containing 3, transmembrane 6 superfamily member 2, glucokinase regulator, and membrane-bound O-acyltransferase domain-containing 7 has been observed. The tumor immune microenvironment of metabolic-associated HCC is characterized by unique phenotypes of macrophages, neutrophils, and T lymphocytes. Additionally, the pathogenesis of metabolic-associated HCC is influenced by abnormal lipid metabolism, insulin resistance, and dysbiosis. In conclusion, deciphering the intricate interactions among metabolic processes, genetic predispositions, inflammatory responses, immune regulation, and microbial ecology is imperative for the development of novel therapeutic and preventative measures against metabolic-associated HCC.
Collapse
Affiliation(s)
- Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
39
|
Aizenshtadt A, Wang C, Abadpour S, Menezes PD, Wilhelmsen I, Dalmao‐Fernandez A, Stokowiec J, Golovin A, Johnsen M, Combriat TMD, Røberg‐Larsen H, Gadegaard N, Scholz H, Busek M, Krauss SJK. Pump-Less, Recirculating Organ-on-Chip (rOoC) Platform to Model the Metabolic Crosstalk between Islets and Liver. Adv Healthc Mater 2024; 13:e2303785. [PMID: 38221504 PMCID: PMC11468483 DOI: 10.1002/adhm.202303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented. The platform reproduces key aspects of the metabolic cross-talk between both organs, including glucose levels and selected hormones, and supports the viability and functionality of both sc-islet and sc-liver organoids while preserving a reduced release of pro-inflammatory cytokines. In a model of metabolic disruption in response to treatment with high lipids and fructose, sc-liver organoids exhibit hallmarks of steatosis and insulin resistance, while sc-islets produce pro-inflammatory cytokines on-chip. Finally, the platform reproduces known effects of anti-diabetic drugs on-chip. Taken together, the platform provides a basis for functional studies of obesity, T2DM, and MASLD on-chip, as well as for testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Chencheng Wang
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Shadab Abadpour
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
- Institute for Surgical ResearchOslo University HospitalOsloNorway
| | - Pedro Duarte Menezes
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Ingrid Wilhelmsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Andrea Dalmao‐Fernandez
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Department of PharmacyFaculty of Mathematics and Natural SciencesUniversity of OsloP.O. Box 1083Oslo0316Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Alexey Golovin
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mads Johnsen
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Thomas M. D. Combriat
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
| | - Hanne Røberg‐Larsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Nikolaj Gadegaard
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Hanne Scholz
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mathias Busek
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Stefan J. K. Krauss
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| |
Collapse
|
40
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
41
|
Marx V. Closing in on cancer heterogeneity with organoids. Nat Methods 2024; 21:551-554. [PMID: 38528185 DOI: 10.1038/s41592-024-02231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
42
|
Bonanini F, Singh M, Yang H, Kurek D, Harms AC, Mardinoglu A, Hankemeier T. A comparison between different human hepatocyte models reveals profound differences in net glucose production, lipid composition and metabolism in vitro. Exp Cell Res 2024; 437:114008. [PMID: 38499143 DOI: 10.1016/j.yexcr.2024.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Hepatocytes are responsible for maintaining a stable blood glucose concentration during periods of nutrient scarcity. The breakdown of glycogen and de novo synthesis of glucose are crucial metabolic pathways deeply interlinked with lipid metabolism. Alterations in these pathways are often associated with metabolic diseases with serious clinical implications. Studying energy metabolism in human cells is challenging. Primary hepatocytes are still considered the golden standard for in vitro studies and have been instrumental in elucidating key aspects of energy metabolism found in vivo. As a result of several limitations posed by using primary cells, a multitude of alternative hepatocyte cellular models emerged as potential substitutes. Yet, there remains a lack of clarity regarding the precise applications for which these models accurately reflect the metabolic competence of primary hepatocytes. In this study, we compared primary hepatocytes, stem cell-derived hepatocytes, adult donor-derived liver organoids, immortalized Upcyte-hepatocytes and the hepatoma cell line HepG2s in their response to a glucose production challenge. We observed the highest net glucose production in primary hepatocytes, followed by organoids, stem-cell derived hepatocytes, Upcyte-hepatocytes and HepG2s. Glucogenic gene induction was observed in all tested models, as indicated by an increase in G6PC and PCK1 expression. Lipidomic analysis revealed considerable differences across the models, with organoids showing the closest similarity to primary hepatocytes in the common lipidome, comprising 347 lipid species across 19 classes. Changes in lipid profiles as a result of the glucose production challenge showed a variety of, and in some cases opposite, trends when compared to primary hepatocytes.
Collapse
Affiliation(s)
| | - Madhulika Singh
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | | | - Amy C Harms
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Thomas Hankemeier
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, Netherlands.
| |
Collapse
|
43
|
Chen J, Zhou Y, Liu Z, Lu Y, Jiang Y, Cao K, Zhou N, Wang D, Zhang C, Zhou N, Shi K, Zhang L, Zhou L, Wang Z, Zhang H, Tang K, Ma J, Lv J, Huang B. Hepatic glycogenesis antagonizes lipogenesis by blocking S1P via UDPG. Science 2024; 383:eadi3332. [PMID: 38359126 DOI: 10.1126/science.adi3332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
The identification of mechanisms to store glucose carbon in the form of glycogen rather than fat in hepatocytes has important implications for the prevention of nonalcoholic fatty liver disease (NAFLD) and other chronic metabolic diseases. In this work, we show that glycogenesis uses its intermediate metabolite uridine diphosphate glucose (UDPG) to antagonize lipogenesis, thus steering both mouse and human hepatocytes toward storing glucose carbon as glycogen. The underlying mechanism involves transport of UDPG to the Golgi apparatus, where it binds to site-1 protease (S1P) and inhibits S1P-mediated cleavage of sterol regulatory element-binding proteins (SREBPs), thereby inhibiting lipogenesis in hepatocytes. Consistent with this mechanism, UDPG administration is effective at treating NAFLD in a mouse model and human organoids. These findings indicate a potential opportunity to ameliorate disordered fat metabolism in the liver.
Collapse
Affiliation(s)
- Jie Chen
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yabo Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhuohang Liu
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yishen Jiang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Kexin Cao
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Nannan Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Dianheng Wang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chaoqi Zhang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Zhou
- Department of Pathology, Sichuan Mianyang 404 Hospital, Sichuan 621000, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Lu Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Li Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhenfeng Wang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
44
|
Chen W, Lin F, Feng X, Yao Q, Yu Y, Gao F, Zhou J, Pan Q, Wu J, Yang J, Yu J, Cao H, Li L. MSC-derived exosomes attenuate hepatic fibrosis in primary sclerosing cholangitis through inhibition of Th17 differentiation. Asian J Pharm Sci 2024; 19:100889. [PMID: 38419761 PMCID: PMC10900800 DOI: 10.1016/j.ajps.2024.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis, with no curative treatment available, and liver transplantation is inevitable for end-stage patients. Human placental mesenchymal stem cell (hpMSC)-derived exosomes have demonstrated the ability to prevent fibrosis, inhibit collagen production and possess immunomodulatory properties in autoimmune liver disease. Here, we prepared hpMSC-derived exosomes (ExoMSC) and further investigated the anti-fibrotic effects and detailed mechanism on PSC based on Mdr2-/- mice and multicellular organoids established from PSC patients. The results showed that ExoMSC ameliorated liver fibrosis in Mdr2-/- mice with significant collagen reduction in the preductal area where Th17 differentiation was inhibited as demonstrated by RNAseq analysis, and the percentage of CD4+IL-17A+T cells was reduced both in ExoMSC-treated Mdr2-/- mice (Mdr2-/--Exo) in vivo and ExoMSC-treated Th17 differentiation progressed in vitro. Furthermore, ExoMSC improved the hypersecretory phenotype and intercellular interactions in the hepatic Th17 microenvironment by regulating PERK/CHOP signaling as supported by multicellular organoids. Thus, our data demonstrate the anti-fibrosis effect of ExoMSC in PSC disease by inhibiting Th17 differentiation, and ameliorating the Th17-induced microenvironment, indicating the promising potential therapeutic role of ExoMSC in liver fibrosis of PSC or Th17-related diseases.
Collapse
Affiliation(s)
- Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feiyan Lin
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
45
|
Jurickova I, Dreskin BW, Angerman E, Bonkowski E, Tominaga K, Iwasawa K, Braun T, Takebe T, Helmrath MA, Haberman Y, Wells JM, Denson LA. Eicosatetraynoic Acid Regulates Pro-Fibrotic Pathways in an Induced Pluripotent Stem Cell Derived Macrophage:Human Intestinal Organoid Model of Crohn's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577959. [PMID: 38352573 PMCID: PMC10862816 DOI: 10.1101/2024.01.30.577959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Background and Aims We previously identified small molecules predicted to reverse an ileal gene signature for future Crohn's Disease (CD) strictures. Here we used a new human intestinal organoid (HIO) model system containing macrophages to test a lead candidate, eicosatetraynoic acid (ETYA). Methods Induced pluripotent stem cell lines (iPSC) were derived from CD patients and differentiated into macrophages and HIOs. Macrophages and macrophage:HIO co-cultures were exposed to lipopolysaccharide (LPS) with and without ETYA pre-treatment. Cytospin and flow cytometry characterized macrophage morphology and activation markers, and RNA sequencing defined the global pattern of macrophage gene expression. TaqMan Low Density Array, Luminex multiplex assay, immunohistologic staining, and sirius red polarized light microscopy were performed to measure macrophage cytokine production and HIO pro-fibrotic gene expression and collagen content. Results iPSC-derived macrophages exhibited morphology similar to primary macrophages and expressed inflammatory macrophage cell surface markers including CD64 and CD68. LPS-stimulated macrophages expressed a global pattern of gene expression enriched in CD ileal inflammatory macrophages and matrisome secreted products, and produced cytokines and chemokines including CCL2, IL1B, and OSM implicated in refractory disease. ETYA suppressed CD64 abundance and pro-fibrotic gene expression pathways in LPS stimulated macrophages. Co-culture of LPS-primed macrophages with HIO led to up-regulation of fibroblast activation genes including ACTA2 and COL1A1 , and an increase in HIO collagen content. ETYA pre-treatment prevented pro-fibrotic effects of LPS-primed macrophages. Conclusions ETYA inhibits pro-fibrotic effects of LPS-primed macrophages upon co-cultured HIO. This model may be used in future untargeted screens for small molecules to treat refractory CD.
Collapse
|
46
|
Singh C, Jin B, Shrestha N, Markhard AL, Panda A, Calvo SE, Deik A, Pan X, Zuckerman AL, Ben Saad A, Corey KE, Sjoquist J, Osganian S, AminiTabrizi R, Rhee EP, Shah H, Goldberger O, Mullen AC, Cracan V, Clish CB, Mootha VK, Goodman RP. ChREBP is activated by reductive stress and mediates GCKR-associated metabolic traits. Cell Metab 2024; 36:144-158.e7. [PMID: 38101397 PMCID: PMC10842884 DOI: 10.1016/j.cmet.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/24/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Common genetic variants in glucokinase regulator (GCKR), which encodes GKRP, a regulator of hepatic glucokinase (GCK), influence multiple metabolic traits in genome-wide association studies (GWASs), making GCKR one of the most pleiotropic GWAS loci in the genome. It is unclear why. Prior work has demonstrated that GCKR influences the hepatic cytosolic NADH/NAD+ ratio, also referred to as reductive stress. Here, we demonstrate that reductive stress is sufficient to activate the transcription factor ChREBP and necessary for its activation by the GKRP-GCK interaction, glucose, and ethanol. We show that hepatic reductive stress induces GCKR GWAS traits such as increased hepatic fat, circulating FGF21, and circulating acylglycerol species, which are also influenced by ChREBP. We define the transcriptional signature of hepatic reductive stress and show its upregulation in fatty liver disease and downregulation after bariatric surgery in humans. These findings highlight how a GCKR-reductive stress-ChREBP axis influences multiple human metabolic traits.
Collapse
Affiliation(s)
- Charandeep Singh
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Byungchang Jin
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nirajan Shrestha
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew L Markhard
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Apekshya Panda
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Calvo
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xingxiu Pan
- The Scintillon Institute, San Diego, CA 92121, USA
| | - Austin L Zuckerman
- The Scintillon Institute, San Diego, CA 92121, USA; Program in Mathematics and Science Education, University of California, San Diego, La Jolla, CA 92093; Program in Mathematics and Science Education, San Diego State University, San Diego, CA 92120
| | - Amel Ben Saad
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kathleen E Corey
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia Sjoquist
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephanie Osganian
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Roya AminiTabrizi
- Metabolomics Platform, Comprehensive Cancer Center, the University of Chicago, Chicago, IL 60637, USA
| | - Eugene P Rhee
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, the University of Chicago, Chicago, IL 60637, USA
| | - Olga Goldberger
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alan C Mullen
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Valentin Cracan
- The Scintillon Institute, San Diego, CA 92121, USA; Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Russell P Goodman
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
47
|
Reza HA, Farooqui Z, Reza AA, Conroy C, Iwasawa K, Ogura Y, Okita K, Osafune K, Takebe T. Synthetic augmentation of bilirubin metabolism in human pluripotent stem cell-derived liver organoids. Stem Cell Reports 2023; 18:2071-2083. [PMID: 37832542 PMCID: PMC10679658 DOI: 10.1016/j.stemcr.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
UGT1A1 (UDP glucuronosyltransferase family 1 member A1) is the primary enzyme required for bilirubin conjugation, which is essential for preventing hyperbilirubinemia. Animal models lack key human organic anion transporting polypeptides with distinct epigenetic control over bilirubin metabolism, necessitating a human model to interrogate the regulatory mechanism behind UGT1A1 function. Here, we use induced pluripotent stem cells to develop human liver organoids that can emulate conjugation failure phenotype. Bilirubin conjugation assays, chromatin immunoprecipitation, and transcriptome analysis elucidated the role of glucocorticoid antagonism in UGT1A1 activation. This antagonism prevents the binding of transcriptional repressor MECP2 at the expense of NRF2 with associated off-target effects. Therefore, we introduced functional GULO (L-gulonolactone oxidase) in human organoids to augment intracellular ascorbate for NRF2 reactivation. This engineered organoid conjugated more bilirubin and protected against hyperbilirubinemia when transplanted in immunosuppressed Crigler-Najjar syndrome rat model. Collectively, we demonstrate that our organoid system serves as a manipulatable model for interrogating hyperbilirubinemia and potential therapeutic development.
Collapse
Affiliation(s)
- Hasan Al Reza
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zishaan Farooqui
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Abid Al Reza
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Callen Conroy
- College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yasuhiro Ogura
- Department of Transplantation Surgery, Nagoya University Hospital, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
48
|
Tian Y, Wang B. Unraveling the pathogenesis of non-alcoholic fatty liver diseases through genome-wide association studies. J Gastroenterol Hepatol 2023; 38:1877-1885. [PMID: 37592846 PMCID: PMC10693931 DOI: 10.1111/jgh.16330] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant health burden around the world, affecting approximately 25% of the population. Recent advances in human genetic databases have allowed for the identification of various single nucleotide polymorphisms associated with NAFLD-related traits. Investigating the functions of these genetic factors provides insight into the pathogenesis of NAFLD and potentially identifies novel therapeutic targets for NAFLD. In this review, we summarized current research on genes with NAFLD-associated mutations, highlighting phospholipid remodeling and spatially clustered loci as common pathological and genetic features of these mutations. These features suggest a complex yet intriguing mechanism of dissociated steatosis and insulin resistance, which is observed in a subset of patients and may lead to more precise therapy against NAFLD in the future.
Collapse
Affiliation(s)
- Ye Tian
- Department of Comparative Biosciences, College of Veterinary Medicine
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary Medicine
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
49
|
Kawakami E, Saiki N, Yoneyama Y, Moriya C, Maezawa M, Kawamura S, Kinebuchi A, Kono T, Funata M, Sakoda A, Kondo S, Ebihara T, Matsumoto H, Togami Y, Ogura H, Sugihara F, Okuzaki D, Kojima T, Deguchi S, Vallee S, McQuade S, Islam R, Natarajan M, Ishigaki H, Nakayama M, Nguyen CT, Kitagawa Y, Wu Y, Mori K, Hishiki T, Takasaki T, Itoh Y, Takayama K, Nio Y, Takebe T. Complement factor D targeting protects endotheliopathy in organoid and monkey models of COVID-19. Cell Stem Cell 2023; 30:1315-1330.e10. [PMID: 37802037 PMCID: PMC10575686 DOI: 10.1016/j.stem.2023.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/04/2023] [Accepted: 09/01/2023] [Indexed: 10/08/2023]
Abstract
COVID-19 is linked to endotheliopathy and coagulopathy, which can result in multi-organ failure. The mechanisms causing endothelial damage due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain elusive. Here, we developed an infection-competent human vascular organoid from pluripotent stem cells for modeling endotheliopathy. Longitudinal serum proteome analysis identified aberrant complement signature in critically ill patients driven by the amplification cycle regulated by complement factor B and D (CFD). This deviant complement pattern initiates endothelial damage, neutrophil activation, and thrombosis specific to organoid-derived human blood vessels, as verified through intravital imaging. We examined a new long-acting, pH-sensitive (acid-switched) antibody targeting CFD. In both human and macaque COVID-19 models, this long-acting anti-CFD monoclonal antibody mitigated abnormal complement activation, protected endothelial cells, and curtailed the innate immune response post-viral exposure. Collectively, our findings suggest that the complement alternative pathway exacerbates endothelial injury and inflammation. This underscores the potential of CFD-targeted therapeutics against severe viral-induced inflammathrombotic outcomes.
Collapse
Affiliation(s)
- Eri Kawakami
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Norikazu Saiki
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Chiharu Moriya
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mari Maezawa
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shuntaro Kawamura
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Akiko Kinebuchi
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tamaki Kono
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaaki Funata
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Ayaka Sakoda
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Shigeru Kondo
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, 3-3-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Disease, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takashi Kojima
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Sebastien Vallee
- Rare Disease DDU, Takeda Pharmaceutical Company Ltd, 125 Binney Street, Cambridge, MA 02139, USA
| | - Susan McQuade
- Rare Disease DDU, Takeda Pharmaceutical Company Ltd, 125 Binney Street, Cambridge, MA 02139, USA; BPS Biosciences Inc., 6405 Mira Mesa Blvd. Suite 100, San Diego, CA 92121, USA
| | - Rizwana Islam
- Rare Disease DDU, Takeda Pharmaceutical Company Ltd, 125 Binney Street, Cambridge, MA 02139, USA
| | - Madhusudan Natarajan
- Rare Disease DDU, Takeda Pharmaceutical Company Ltd, 125 Binney Street, Cambridge, MA 02139, USA
| | - Hirohito Ishigaki
- Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Misako Nakayama
- Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Cong Thanh Nguyen
- Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Yoshinori Kitagawa
- Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Yunheng Wu
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kensaku Mori
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Information Technology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Research Center for Medical Bigdata, National Institute of Informatics, Tokyo 100-0003, Japan
| | - Takayuki Hishiki
- Kanagawa Prefectural Institute of Public Health, 1-3-1, Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomohiko Takasaki
- Kanagawa Prefectural Institute of Public Health, 1-3-1, Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan; Advanced Technology and Development Division, BML, INC, 1361-1, Matoba, Kawagoe-shi, Saitama 350-1101, Japan
| | - Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasunori Nio
- T-CiRA Discovery & Innovation, Takeda Pharmaceutical Company Ltd, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan.
| | - Takanori Takebe
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Organoid Medicine Project, T-CiRA Joint Program, 2-26-1, Muraoka-higashi, Fujisawa, Kanagawa 251-8555, Japan; Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; The Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe) and Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
50
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|