1
|
Cai M, Wu P, Ni W, Huang D, Wang X. mTORC1 hyperactivation and resultant suppression of macroautophagy contribute to the induction of cardiomyocyte necroptosis by catecholamine surges. Physiol Rep 2024; 12:e15966. [PMID: 38444056 PMCID: PMC10915131 DOI: 10.14814/phy2.15966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Previous studies revealed a controversial role of mechanistic target of rapamycin complex 1 (mTORC1) and mTORC1-regulated macroautophagy in isoproterenol (ISO)-induced cardiac injury. Here we investigated the role of mTORC1 and potential underlying mechanisms in ISO-induced cardiomyocyte necrosis. Two consecutive daily injections of ISO (85 mg/kg, s.c.) or vehicle control (CTL) were administered to C57BL/6J mice with or without rapamycin (RAP, 5 mg/kg, i.p.) pretreatment. Western blot analyses showed that myocardial mTORC1 signaling and the RIPK1-RIPK3-MLKL necroptotic pathway were activated, mRNA expression analyses revealed downregulation of representative TFEB target genes, and Evan's blue dye uptake assays detected increased cardiomyocyte necrosis in ISO-treated mice. However, RAP pretreatment prevented or significantly attenuated the ISO-induced cardiomyocyte necrosis, myocardial inflammation, downregulation of TFEB target genes, and activation of the RIPK1-RIPK3-MLKL pathway. LC3-II flux assays confirmed the impairment of myocardial autophagic flux in the ISO-treated mice. In cultured neonatal rat cardiomyocytes, mTORC1 signaling was also activated by ISO, and inhibition of mTORC1 by RAP attenuated ISO-induced cytotoxicity. These findings suggest that mTORC1 hyperactivation and resultant suppression of macroautophagy play a major role in the induction of cardiomyocyte necroptosis by catecholamine surges, identifying mTORC1 inhibition as a potential strategy to treat heart diseases with catecholamine surges.
Collapse
Affiliation(s)
- Mingqi Cai
- Heart CenterShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Division of Basic Biomedical SciencesSanford School of Medicine of the University of South DakotaVermillionSouth DakotaUSA
| | - Penglong Wu
- Division of Basic Biomedical SciencesSanford School of Medicine of the University of South DakotaVermillionSouth DakotaUSA
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Wei Ni
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Dong Huang
- Heart CenterShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xuejun Wang
- Division of Basic Biomedical SciencesSanford School of Medicine of the University of South DakotaVermillionSouth DakotaUSA
| |
Collapse
|
2
|
Reverte-Salisa L, Siddig S, Hildebrand S, Yao X, Zurkovic J, Jaeckstein MY, Heeren J, Lezoualc'h F, Krahmer N, Pfeifer A. EPAC1 enhances brown fat growth and beige adipogenesis. Nat Cell Biol 2024; 26:113-123. [PMID: 38195707 PMCID: PMC10791580 DOI: 10.1038/s41556-023-01311-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Brown adipose tissue (BAT) is a central thermogenic organ that enhances energy expenditure and cardiometabolic health. However, regulators that specifically increase the number of thermogenic adipocytes are still an unmet need. Here, we show that the cAMP-binding protein EPAC1 is a central regulator of adaptive BAT growth. In vivo, selective pharmacological activation of EPAC1 increases BAT mass and browning of white fat, leading to higher energy expenditure and reduced diet-induced obesity. Mechanistically, EPAC1 coordinates a network of regulators for proliferation specifically in thermogenic adipocytes, but not in white adipocytes. We pinpoint the effects of EPAC1 to PDGFRα-positive preadipocytes, and the loss of EPAC1 in these cells impedes BAT growth and worsens diet-induced obesity. Importantly, EPAC1 activation enhances the proliferation and differentiation of human brown adipocytes and human brown fat organoids. Notably, a coding variant of RAPGEF3 (encoding EPAC1) that is positively correlated with body mass index abolishes noradrenaline-induced proliferation of brown adipocytes. Thus, EPAC1 might be an attractive target to enhance thermogenic adipocyte number and energy expenditure to combat metabolic diseases.
Collapse
Affiliation(s)
- Laia Reverte-Salisa
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Sana Siddig
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Xi Yao
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Jelena Zurkovic
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Michelle Y Jaeckstein
- Institute of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Institute of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Lezoualc'h
- Institute of Cardiovascular and Metabolic Diseases, Inserm UMR-1297, Université Toulouse -Paul Sabatier, Toulouse, France
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
- PharmaCenter Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Shi F, Collins S. Regulation of mTOR Signaling: Emerging Role of Cyclic Nucleotide-Dependent Protein Kinases and Implications for Cardiometabolic Disease. Int J Mol Sci 2023; 24:11497. [PMID: 37511253 PMCID: PMC10380887 DOI: 10.3390/ijms241411497] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) kinase is a central regulator of cell growth and metabolism. It is the catalytic subunit of two distinct large protein complexes, mTOR complex 1 (mTORC1) and mTORC2. mTOR activity is subjected to tight regulation in response to external nutrition and growth factor stimulation. As an important mechanism of signaling transduction, the 'second messenger' cyclic nucleotides including cAMP and cGMP and their associated cyclic nucleotide-dependent kinases, including protein kinase A (PKA) and protein kinase G (PKG), play essential roles in mediating the intracellular action of a variety of hormones and neurotransmitters. They have also emerged as important regulators of mTOR signaling in various physiological and disease conditions. However, the mechanism by which cAMP and cGMP regulate mTOR activity is not completely understood. In this review, we will summarize the earlier work establishing the ability of cAMP to dampen mTORC1 activation in response to insulin and growth factors and then discuss our recent findings demonstrating the regulation of mTOR signaling by the PKA- and PKG-dependent signaling pathways. This signaling framework represents a new non-canonical regulation of mTOR activity that is independent of AKT and could be a novel mechanism underpinning the action of a variety of G protein-coupled receptors that are linked to the mTOR signaling network. We will further review the implications of these signaling events in the context of cardiometabolic disease, such as obesity, non-alcoholic fatty liver disease, and cardiac remodeling. The metabolic and cardiac phenotypes of mouse models with targeted deletion of Raptor and Rictor, the two essential components for mTORC1 and mTORC2, will be summarized and discussed.
Collapse
Affiliation(s)
- Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Kitamura H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. Int J Mol Sci 2023; 24:3219. [PMID: 36834633 PMCID: PMC9966627 DOI: 10.3390/ijms24043219] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Ubiquitination and deubiquitination are reversible processes that modify the characteristics of target proteins, including stability, intracellular localization, and enzymatic activity. Ubiquitin-specific proteases (USPs) constitute the largest deubiquitinating enzyme family. To date, accumulating evidence indicates that several USPs positively and negatively affect metabolic diseases. USP22 in pancreatic β-cells, USP2 in adipose tissue macrophages, USP9X, 20, and 33 in myocytes, USP4, 7, 10, and 18 in hepatocytes, and USP2 in hypothalamus improve hyperglycemia, whereas USP19 in adipocytes, USP21 in myocytes, and USP2, 14, and 20 in hepatocytes promote hyperglycemia. In contrast, USP1, 5, 9X, 14, 15, 22, 36, and 48 modulate the progression of diabetic nephropathy, neuropathy, and/or retinopathy. USP4, 10, and 18 in hepatocytes ameliorates non-alcoholic fatty liver disease (NAFLD), while hepatic USP2, 11, 14, 19, and 20 exacerbate it. The roles of USP7 and 22 in hepatic disorders are controversial. USP9X, 14, 17, and 20 in vascular cells are postulated to be determinants of atherosclerosis. Moreover, mutations in the Usp8 and Usp48 loci in pituitary tumors cause Cushing syndrome. This review summarizes the current knowledge about the modulatory roles of USPs in energy metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Comparative Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| |
Collapse
|
5
|
Niu Y, Jiang H, Yin H, Wang F, Hu R, Hu X, Peng B, Shu Y, Li Z, Chen S, Guo F. Hepatokine ERAP1 Disturbs Skeletal Muscle Insulin Sensitivity Via Inhibiting USP33-Mediated ADRB2 Deubiquitination. Diabetes 2022; 71:921-933. [PMID: 35192681 DOI: 10.2337/db21-0857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Chronic inflammation in liver induces insulin resistance systemically and in other tissues, including the skeletal muscle (SM); however, the underlying mechanisms remain largely unknown. RNA sequencing of primary hepatocytes from wild-type mice fed long-term high-fat diet (HFD), which have severe chronic inflammation and insulin resistance revealed that the expression of hepatokine endoplasmic reticulum aminopeptidase 1 (ERAP1) was upregulated by a HFD. Increased ERAP1 levels were also observed in interferon-γ-treated primary hepatocytes. Furthermore, hepatic ERAP1 overexpression attenuated systemic and SM insulin sensitivity, whereas hepatic ERAP1 knockdown had the opposite effects, with corresponding changes in serum ERAP1 levels. Mechanistically, ERAP1 functions as an antagonist-like factor, which interacts with β2 adrenergic receptor (ADRB2) and reduces its expression by decreasing ubiquitin-specific peptidase 33-mediated deubiquitination and thereby interrupts ADRB2-stimulated insulin signaling in the SM. The findings of this study indicate ERAP1 is an inflammation-induced hepatokine that impairs SM insulin sensitivity. Its inhibition may provide a therapeutic strategy for insulin resistance-related diseases, such as type 2 diabetes.
Collapse
Affiliation(s)
- Yuguo Niu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haizhou Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hanrui Yin
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fenfen Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ronggui Hu
- Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Hu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bo Peng
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yousheng Shu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhigang Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shanghai Chen
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Feifan Guo
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
6
|
Lautherbach N, Gonçalves DAP, Silveira WA, Paula-Gomes S, Valentim RR, Zanon NM, Pereira MG, Miyabara EH, Navegantes LCC, Kettelhut IC. Urocortin 2 promotes hypertrophy and enhances skeletal muscle function through cAMP and insulin/IGF-1 signaling pathways. Mol Metab 2022; 60:101492. [PMID: 35390501 PMCID: PMC9035725 DOI: 10.1016/j.molmet.2022.101492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/27/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Although it is well established that urocortin 2 (Ucn2), a peptide member of the corticotrophin releasing factor (CRF) family, and its specific corticotrophin-releasing factor 2 receptor (CRF2R) are highly expressed in skeletal muscle, the role of this peptide in the regulation of skeletal muscle mass and protein metabolism remains elusive. Methods To elucidate the mechanisms how Ucn2 directly controls protein metabolism in skeletal muscles of normal mice, we carried out genetic tools, physiological and molecular analyses of muscles in vivo and in vitro. Results Here, we demonstrated that Ucn2 overexpression activated cAMP signaling and promoted an expressive muscle hypertrophy associated with higher rates of protein synthesis and activation of Akt/mTOR and ERK1/2 signaling pathways. Furthermore, Ucn2 induced a decrease in mRNA levels of atrogin-1 and in autophagic flux inferred by an increase in the protein content of LC3-I, LC3-II and p62. Accordingly, Ucn2 reduced both the transcriptional activity of FoxO in vivo and the overall protein degradation in vitro through an inhibition of lysosomal proteolytic activity. In addition, we demonstrated that Ucn2 induced a fast-to-slow fiber type shift and improved fatigue muscle resistance, an effect that was completely blocked in muscles co-transfected with mitogen-activated protein kinase phosphatase 1 (MKP-1), but not with dominant-negative Akt mutant (Aktmt). Conclusions These data suggest that Ucn2 triggers an anabolic and anti-catabolic response in skeletal muscle of normal mice probably through the activation of cAMP cascade and participation of Akt and ERK1/2 signaling. These findings open new perspectives in the development of therapeutic strategies to cope with the loss of muscle mass. Ucn2 overexpression promotes muscle growth due to an increase in protein synthesis. Ucn2 inhibits FoxO activity and autophagic-lysosomal system. Ucn2-induced skeletal muscle phenotype is dependent on Akt and ERK1/2. Ucn2 induces a fast-to-slow fiber type shift and improves fatigue resistance. The increase in muscle fatigue resistance is dependent on ERK1/2.
Collapse
Affiliation(s)
- Natalia Lautherbach
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Dawit A P Gonçalves
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Wilian A Silveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil.
| | - Sílvia Paula-Gomes
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - Rafael Rossi Valentim
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Neuza M Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Marcelo G Pereira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Isis C Kettelhut
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Melick CH, Jewell JL. Regulation of mTORC1 by Upstream Stimuli. Genes (Basel) 2020; 11:genes11090989. [PMID: 32854217 PMCID: PMC7565831 DOI: 10.3390/genes11090989] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionary conserved Ser/Thr protein kinase that senses multiple upstream stimuli to control cell growth, metabolism, and autophagy. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1). A significant amount of research has uncovered the signaling pathways regulated by mTORC1, and the involvement of these signaling cascades in human diseases like cancer, diabetes, and ageing. Here, we review advances in mTORC1 regulation by upstream stimuli. We specifically focus on how growth factors, amino acids, G-protein coupled receptors (GPCRs), phosphorylation, and small GTPases regulate mTORC1 activity and signaling.
Collapse
Affiliation(s)
- Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
8
|
Kodandaraman G, Bankoglu EE, Stopper H. Overlapping mechanism of the induction of genomic damage by insulin and adrenaline in human promyelocytic HL-60 cells. Toxicol In Vitro 2020; 66:104867. [PMID: 32305330 DOI: 10.1016/j.tiv.2020.104867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
Endogenous hormones systemically regulate the growth and metabolism and some prior studies have shown that their imbalance can have a potential to induce genomic damage in in vitro and animal models. Some conditions that are associated with elevated levels of endogenous hormones are hyperinsulinemia and intense exercise-induced stress causing increased adrenaline. In this study we test whether these two hormones, could cause an additive increase in genomic damage and whether they have an overlapping mechanism of action. For this, we use the human promyelocytic HL60 cells, as they express the receptors for both hormones. At doses taken from the saturation level of the individual dose response curves, no additivity in genomic damage was detected through micronucleus induction. This hints towards a common step in the pathway, which is under these conditions fully activated by each of the individual hormone. To investigate this further, individual and common parts in insulin and adrenaline signalling such as their respective hormone receptors, the downstream protein AKT and the involvement of mitochondria and NADPH oxidase (NOX) enzymes were studied. The results indicate no additive effect of high hormone concentrations in genomic damage in the in vitro model, which may be due to exhaustion of the NOX 2-mediated reactive oxygen production. It remains to be determined whether a similar situation may occur in in vivo situations.
Collapse
Affiliation(s)
- Geema Kodandaraman
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
9
|
Gurjar AA, Kushwaha S, Chattopadhyay S, Das N, Pal S, China SP, Kumar H, Trivedi AK, Guha R, Chattopadhyay N, Sanyal S. Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents. Metabolism 2020; 103:154044. [PMID: 31812628 DOI: 10.1016/j.metabol.2019.154044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/28/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Skeletal muscle atrophy is characterized by muscle wasting with partial or complete functional loss. Skeletal muscle atrophy severely affects the quality of life and currently, there is no available therapy except for spinal muscular atrophy. OBJECTIVE Drug repositioning is a promising strategy that reduces cost and time due to prior availability of safety and toxicity details. Here we investigated myogenic and anti-atrophy effects of glucagon-like peptide-1 (GLP-1) analog liraglutide. METHODS We used several in vitro atrophy models in C2C12 cells and in vivo models in Sprague Dawley rats to study Liraglutide's efficacy. Western blotting was used to assess cAMP-dependent signaling pathways specifically activated by liraglutide. Therapeutic efficacy of liraglutide was investigated by histological analysis of transverse muscle sections followed by morphometry. Myogenic capacity was investigated by immunoblotting for myogenic factors. RESULTS Liraglutide induced myogenesis in C2C12 myoblasts through GLP-1 receptor via a cAMP-dependent complex network of signaling events involving protein kinase A, phosphoinositide 3-kinase/protein kinase B, p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. Liraglutide imparted protection against freeze injury, denervation, and dexamethasone -induced skeletal muscle atrophy and improved muscular function in all these models. In a therapeutic model, liraglutide restored myofibrillar architecture in ovariectomy-induced atrophy. Anti-atrophy actions of liraglutide involved suppression of atrogene expression and enhancement in expression of myogenic factors. CONCLUSION Liraglutide imparted protection and restored myofibrillar architecture in diverse models of muscle atrophy. Given its potent anti-atrophy, and recently reported osteoanabolic effects, we propose liraglutide's clinical evaluation in skeletal muscle atrophy and musculoskeletal disorders associated with diverse pathologies.
Collapse
Affiliation(s)
- Anagha Ashok Gurjar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sapana Kushwaha
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nabanita Das
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shyamsundar Pal China
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Harish Kumar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Arun Kumar Trivedi
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; Laboratory Animals Facility CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
10
|
Yates DT, Camacho LE, Kelly AC, Steyn LV, Davis MA, Antolic AT, Anderson MJ, Goyal R, Allen RE, Papas KK, Hay WW, Limesand SW. Postnatal β2 adrenergic treatment improves insulin sensitivity in lambs with IUGR but not persistent defects in pancreatic islets or skeletal muscle. J Physiol 2019; 597:5835-5858. [PMID: 31665811 PMCID: PMC6911010 DOI: 10.1113/jp278726] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Key points Previous studies in fetuses with intrauterine growth restriction (IUGR) have shown that adrenergic dysregulation was associated with low insulin concentrations and greater insulin sensitivity. Although whole‐body glucose clearance is normal, 1‐month‐old lambs with IUGR at birth have higher rates of hindlimb glucose uptake, which may compensate for myocyte deficiencies in glucose oxidation. Impaired glucose‐stimulated insulin secretion in IUGR lambs is due to lower intra‐islet insulin availability and not from glucose sensing. We investigated adrenergic receptor (ADR) β2 desensitization by administering oral ADRβ modifiers for the first month after birth to activate ADRβ2 and antagonize ADRβ1/3. In IUGR lambs ADRβ2 activation increased whole‐body glucose utilization rates and insulin sensitivity but had no effect on isolated islet or myocyte deficiencies. IUGR establishes risk for developing diabetes. In IUGR lambs we identified disparities in key aspects of glucose‐stimulated insulin secretion and insulin‐stimulated glucose oxidation, providing new insights into potential mechanisms for this risk.
Abstract Placental insufficiency causes intrauterine growth restriction (IUGR) and disturbances in glucose homeostasis with associated β adrenergic receptor (ADRβ) desensitization. Our objectives were to measure insulin‐sensitive glucose metabolism in neonatal lambs with IUGR and to determine whether daily treatment with ADRβ2 agonist and ADRβ1/β3 antagonists for 1 month normalizes their glucose metabolism. Growth, glucose‐stimulated insulin secretion (GSIS) and glucose utilization rates (GURs) were measured in control lambs, IUGR lambs and IUGR lambs treated with adrenergic receptor modifiers: clenbuterol atenolol and SR59230A (IUGR‐AR). In IUGR lambs, islet insulin content and GSIS were less than in controls; however, insulin sensitivity and whole‐body GUR were not different from controls. Of importance, ADRβ2 stimulation with β1/β3 inhibition increases both insulin sensitivity and whole‐body glucose utilization in IUGR lambs. In IUGR and IUGR‐AR lambs, hindlimb GURs were greater but fractional glucose oxidation rates and ex vivo skeletal muscle glucose oxidation rates were lower than controls. Glucose transporter 4 (GLUT4) was lower in IUGR and IUGR‐AR skeletal muscle than in controls but GLUT1 was greater in IUGR‐AR. ADRβ2, insulin receptor, glycogen content and citrate synthase activity were similar among groups. In IUGR and IUGR‐AR lambs heart rates were greater, which was independent of cardiac ADRβ1 activation. We conclude that targeted ADRβ2 stimulation improved whole‐body insulin sensitivity but minimally affected defects in GSIS and skeletal muscle glucose oxidation. We show that risk factors for developing diabetes are independent of postnatal catch‐up growth in IUGR lambs as early as 1 month of age and are inherent to the islets and myocytes. Previous studies in fetuses with intrauterine growth restriction (IUGR) have shown that adrenergic dysregulation was associated with low insulin concentrations and greater insulin sensitivity. Although whole‐body glucose clearance is normal, 1‐month‐old lambs with IUGR at birth have higher rates of hindlimb glucose uptake, which may compensate for myocyte deficiencies in glucose oxidation. Impaired glucose‐stimulated insulin secretion in IUGR lambs is due to lower intra‐islet insulin availability and not from glucose sensing. We investigated adrenergic receptor (ADR) β2 desensitization by administering oral ADRβ modifiers for the first month after birth to activate ADRβ2 and antagonize ADRβ1/3. In IUGR lambs ADRβ2 activation increased whole‐body glucose utilization rates and insulin sensitivity but had no effect on isolated islet or myocyte deficiencies. IUGR establishes risk for developing diabetes. In IUGR lambs we identified disparities in key aspects of glucose‐stimulated insulin secretion and insulin‐stimulated glucose oxidation, providing new insights into potential mechanisms for this risk.
Collapse
Affiliation(s)
- Dustin T Yates
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Leticia E Camacho
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Leah V Steyn
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Andrew T Antolic
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Ravi Goyal
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Ronald E Allen
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Klearchos K Papas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - William W Hay
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
Wang JC, Geng Y, Han Y, Luo HN, Zhang YS. Dynamic expression of Epac and Rap1 in mouse oocytes and preimplantation embryos. Exp Ther Med 2018; 16:523-528. [PMID: 30116310 PMCID: PMC6090281 DOI: 10.3892/etm.2018.6253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is an important secondary messenger that has long been recognized to control the initiation of meiosis through the activation of protein kinase A (PKA) in mammalian oocytes. However, PKA is not the only target for cAMP. Recent studies on cAMP-dependent and PKA-independent pathways suggest that Ras-related protein-1 (Rap1) is activated through its cAMP-responsive guanine exchange factors (cAMP-GEFs), which comprises the involvement of exchange proteins directly activated by cAMP (Epac) in various cellular processes. The aim of the present study was to investigate the possible implication of a cAMP/Epac/Rap1 pathway in mouse oocytes and embryos. Reverse transcription polymerase chain reaction and immunohistochemistry assays demonstrated the expression of Epac and Rap1 in oocytes and embryos at different stages. Immunofluorescene demonstrated that Epac and Rap1 had different dynamic subcellular localizations and expression patterns in oocytes and embryos at different stages. It was therefore indicated that Epac and Rap1 may have multiple and specific functions during oocyte maturation and embryonic development.
Collapse
Affiliation(s)
- Jun-Chao Wang
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynaecology, Tianjin 300100, P.R. China
| | - Ying Geng
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynaecology, Tianjin 300100, P.R. China
| | - Ying Han
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynaecology, Tianjin 300100, P.R. China
| | - Hai-Ning Luo
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynaecology, Tianjin 300100, P.R. China
| | - Yun-Shan Zhang
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynaecology, Tianjin 300100, P.R. China
| |
Collapse
|
12
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
13
|
Arcaro CA, Assis RP, Zanon NM, Paula-Gomes S, Navegantes LCC, Kettelhut IC, Brunetti IL, Baviera AM. Involvement of cAMP/EPAC/Akt signaling in the antiproteolytic effects of pentoxifylline on skeletal muscles of diabetic rats. J Appl Physiol (1985) 2017; 124:704-716. [PMID: 29357512 DOI: 10.1152/japplphysiol.00499.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Advances in the knowledge of the mechanisms controlling protein breakdown in skeletal muscles have allowed the exploration of new options for treating muscle-wasting conditions. Pentoxifylline (PTX), a nonselective phosphodiesterase (PDE) inhibitor, attenuates the loss of muscle mass during catabolic conditions, mainly via inhibiting protein breakdown. The aim of this study was to explore the mechanisms by which PTX inhibits proteolysis in the soleus and extensor digitorum longus (EDL) muscles of streptozotocin-induced diabetic rats. The levels of atrogin-1 and muscle RING finger-1 were decreased, as were the activities of caspase-3 (EDL) and calpains (soleus and EDL), in diabetic rats treated with PTX, which at least partly explains the drop in the ubiquitin conjugate (EDL) levels and in proteasome activity (soleus and EDL). Treatment with PTX decreased PDE activity and increased cAMP content in muscles of diabetic rats; moreover, it also increased both the protein levels of exchange protein directly activated by cAMP (EPAC, a cAMP effector) and the phosphorylation of Akt. The loss of muscle mass was practically prevented in diabetic rats treated with PTX. These findings advance our understanding of the mechanisms underlying the antiproteolytic effects of PTX and suggest the use of PDE inhibitors as a strategy to activate cAMP signaling, which is emerging as a promising target for treating muscle mass loss during atrophic conditions. NEW & NOTEWORTHY cAMP signaling has been explored as a strategy to attenuate skeletal muscle atrophies. Therefore, in addition to β2AR agonists, phosphodiesterase inhibitors such as pentoxifylline (PTX) can be an interesting option. This study advances the understanding of the mechanisms related to the antiproteolytic effects of PTX on skeletal muscles of diabetic rats, which involve the activation of both exchange protein directly activated by cAMP and Akt effectors, inhibiting the expression of atrogenes and calpain/caspase-3-proteolytic machinery.
Collapse
Affiliation(s)
- Carlos Alberto Arcaro
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| | - Renata Pires Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| | - Neusa Maria Zanon
- Department of Physiology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil
| | - Silvia Paula-Gomes
- Department of Biochemistry/Immunology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil
| | | | - Isis Carmo Kettelhut
- Department of Physiology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil.,Department of Biochemistry/Immunology, University of São Paulo, Ribeirão Preto Medical School , Ribeirão Preto, São Paulo , Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
14
|
Ifegwu OC, Awale G, Rajpura K, Lo KWH, Laurencin CT. Harnessing cAMP signaling in musculoskeletal regenerative engineering. Drug Discov Today 2017; 22:1027-1044. [PMID: 28359841 PMCID: PMC7440772 DOI: 10.1016/j.drudis.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 01/28/2023]
Abstract
This paper reviews the most recent findings in the search for small molecule cyclic AMP analogues regarding their potential use in musculoskeletal regenerative engineering.
Collapse
Affiliation(s)
- Okechukwu Clinton Ifegwu
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guleid Awale
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, School of Engineering, Storrs, CT 06030, USA
| | - Komal Rajpura
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| |
Collapse
|
15
|
Modulation of hepatic copper-ATPase activity by insulin and glucagon involves protein kinase A (PKA) signaling pathway. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2086-2097. [DOI: 10.1016/j.bbadis.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/25/2016] [Accepted: 08/09/2016] [Indexed: 11/23/2022]
|
16
|
Almahariq M, Mei FC, Cheng X. The pleiotropic role of exchange protein directly activated by cAMP 1 (EPAC1) in cancer: implications for therapeutic intervention. Acta Biochim Biophys Sin (Shanghai) 2016; 48:75-81. [PMID: 26525949 DOI: 10.1093/abbs/gmv115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/30/2015] [Indexed: 01/03/2023] Open
Abstract
The pleiotropic second messenger adenosine 3',5'-cyclic monophosphate (cAMP) regulates a myriad of biological processes under both physiological and pathophysiological conditions. Exchange protein directly activated by cAMP 1 (EPAC1) mediates the intracellular functions of cAMP by acting as a guanine nucleotide exchange factor for the Ras-like Rap small GTPases. Recent studies suggest that EPAC1 plays important roles in immunomodulation, cancer cell migration/metastasis, and metabolism. These results, coupled with the successful development of EPAC-specific small molecule inhibitors, identify EPAC1 as a promising therapeutic target for cancer treatments.
Collapse
Affiliation(s)
- Muayad Almahariq
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
17
|
Calejo AI, Taskén K. Targeting protein-protein interactions in complexes organized by A kinase anchoring proteins. Front Pharmacol 2015; 6:192. [PMID: 26441649 PMCID: PMC4562273 DOI: 10.3389/fphar.2015.00192] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/24/2015] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP is a ubiquitous intracellular second messenger involved in the regulation of a wide variety of cellular processes, a majority of which act through the cAMP – protein kinase A (PKA) signaling pathway and involve PKA phosphorylation of specific substrates. PKA phosphorylation events are typically spatially restricted and temporally well controlled. A-kinase anchoring proteins (AKAPs) directly bind PKA and recruit it to specific subcellular loci targeting the kinase activity toward particular substrates, and thereby provide discrete spatiotemporal control of downstream phosphorylation events. AKAPs also scaffold other signaling molecules into multi-protein complexes that function as crossroads between different signaling pathways. Targeting AKAP coordinated protein complexes with high-affinity peptidomimetics or small molecules to tease apart distinct protein–protein interactions (PPIs) therefore offers important means to disrupt binding of specific components of the complex to better understand the molecular mechanisms involved in the function of individual signalosomes and their pathophysiological role. Furthermore, development of novel classes of small molecules involved in displacement of AKAP-bound signal molecules is now emerging. Here, we will focus on mechanisms for targeting PPI, disruptors that modulate downstream cAMP signaling and their role, especially in the heart.
Collapse
Affiliation(s)
- Ana I Calejo
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Kjetil Taskén
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| |
Collapse
|
18
|
Dutt V, Gupta S, Dabur R, Injeti E, Mittal A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacol Res 2015; 99:86-100. [DOI: 10.1016/j.phrs.2015.05.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/24/2015] [Accepted: 05/24/2015] [Indexed: 12/11/2022]
|
19
|
Ohnuki Y, Umeki D, Mototani Y, Jin H, Cai W, Shiozawa K, Suita K, Saeki Y, Fujita T, Ishikawa Y, Okumura S. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation. J Physiol 2014; 592:5461-75. [PMID: 25344550 DOI: 10.1113/jphysiol.2014.282996] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling.
Collapse
Affiliation(s)
- Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Daisuke Umeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Huiling Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yasutake Saeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| |
Collapse
|
20
|
Joshi R, Kadeer N, Sheriff S, Friend LA, James JH, Balasubramaniam A. Phosphodiesterase (PDE) inhibitor torbafylline (HWA 448) attenuates burn-induced rat skeletal muscle proteolysis through the PDE4/cAMP/EPAC/PI3K/Akt pathway. Mol Cell Endocrinol 2014; 393:152-63. [PMID: 24973766 DOI: 10.1016/j.mce.2014.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/02/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
Treatment of rats after burn-injury with the cyclic AMP phosphodiesterase (PDE) inhibitor, torbafylline (also known as HWA 448) significantly reversed changes in rat skeletal muscle proteolysis, PDE4 activity, cAMP concentrations and mRNA expression of TNFα, IL-6, ubiquitin and E3 ligases. Torbafylline also attenuated muscle proteolysis during in vitro incubation, and this effect was blocked by the inhibitor Rp-cAMPS. Moreover, torbafylline significantly increased phospho-Akt levels, and normalized downregulated phospho-FOXO1 and phospho-4E-BP1 in muscle of burn rats. Similarly, torbafylline also normalized phosphorylation levels of Akt and its downstream elements in TNFα+IFNγ treated C2C12 myotubes. Torbafylline enhanced protein levels of exchange protein directly activated by cAMP (Epac) both in skeletal muscle of burn rats and in TNFα+IFNγ treated C2C12 myotubes. Pretreatment with a specific antagonist of PI3K or Epac significantly reversed the inhibitory effects of torbafylline on TNFα+IFNγ-induced MAFbx mRNA expression and protein breakdown in C2C12 myotubes. Torbafylline inhibits burn-induced muscle proteolysis by activating multiple pathways through PDE4/cAMP/Epac/PI3K/Akt.
Collapse
Affiliation(s)
- Rashika Joshi
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Shriners Hospital for Children, 3229 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nijiati Kadeer
- Shriners Hospital for Children, 3229 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sulaiman Sheriff
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Lou Ann Friend
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Shriners Hospital for Children, 3229 Burnet Avenue, Cincinnati, OH 45229, USA
| | - J Howard James
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Shriners Hospital for Children, 3229 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ambikaipakan Balasubramaniam
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Shriners Hospital for Children, 3229 Burnet Avenue, Cincinnati, OH 45229, USA; Cincinnati Veterans Affairs Medical Center, 3200 Vine Street, Cincinnati, OH 45220, USA.
| |
Collapse
|
21
|
Silveira WA, Gonçalves DA, Graça FA, Andrade-Lopes AL, Bergantin LB, Zanon NM, Godinho RO, Kettelhut IC, Navegantes LCC. Activating cAMP/PKA signaling in skeletal muscle suppresses the ubiquitin-proteasome-dependent proteolysis: implications for sympathetic regulation. J Appl Physiol (1985) 2014; 117:11-19. [PMID: 24833777 DOI: 10.1152/japplphysiol.01055.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although we have recently demonstrated that plasma catecholamines induce antiproteolytic effects on skeletal muscle (Graça FA, Gonçalves DAP, Silveira WA, Lira EC, Chaves VE, Zanon NM, Garófalo MAR, Kettelhut IC, Navegantes LCC. Am J Physiol Endocrinol Metab. 305: E1483-E1494, 2013), the role of the muscle sympathetic innervation and, more specifically, norepinephrine (NE) in regulating the ubiquitin (Ub)-proteasome system (UPS) remains unknown. Based on previous findings that chemical sympathectomy acutely reduces UPS activity, we hypothesized that muscle NE depletion induces adrenergic supersensitivity in rat skeletal muscles. We report that surgical sympathetic denervation (SDEN), a condition in which only muscle NE from both hindlimbs is depleted, transiently reduced the overall proteolysis and the UPS activity (∼25%) in both soleus and extensor digitorum longus muscles. This antiproteolytic response was accompanied by increased activity of adenylyl cyclase (112%), levels of cyclic adenosine monophosphate (cAMP; 191%), and the serine phosphorylation of cAMP response element-binding protein (32%). In extensor digitorum longus from normal rats, NE (10(-4) M) in vitro increased the levels of cAMP (115%) and the serine phosphorylation of both cAMP response element-binding protein (2.7-fold) and forkhead box class O1 transcription factor. Similar effects were observed in C2C12 cells incubated with forskolin (10 μM). In parallel, NE significantly reduced the basal UPS (21%) activity and the mRNA levels of atrophy-related Ub-ligases. Similar responses were observed in isolated muscles exposed to 6-BNZ-cAMP (500 μM), a specific PKA activator. The phosphorylation levels of Akt were not altered by SDEN, NE, forskolin or 6-BNZ-cAMP. Our results demonstrate that SDEN induces muscle adrenergic supersensitivity for cAMP leading to the suppression of UPS, and that the suppressive effects of NE on UPS activity and expression of Ub-ligases can be mediated by the activation of cAMP/PKA signaling, with the inhibition of forkhead box class O1 transcription factor.
Collapse
Affiliation(s)
- W A Silveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - D A Gonçalves
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - F A Graça
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - A L Andrade-Lopes
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - L B Bergantin
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - N M Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - R O Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - I C Kettelhut
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; and
| | - L C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil;
| |
Collapse
|
22
|
Vitali E, Peverelli E, Giardino E, Locatelli M, Lasio GB, Beck-Peccoz P, Spada A, Lania AG, Mantovani G. Cyclic adenosine 3'-5'-monophosphate (cAMP) exerts proliferative and anti-proliferative effects in pituitary cells of different types by activating both cAMP-dependent protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac). Mol Cell Endocrinol 2014; 383:193-202. [PMID: 24373949 DOI: 10.1016/j.mce.2013.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
In the pituitary the activation of cyclic adenosine 3'-5'-monophosphate (cAMP) dependent pathways generates proliferative signals in somatotrophs, whereas in pituitary cells of other lineages its effect remains uncertain. Moreover, the specific role of the two main cAMP effectors, protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), has not been defined. Aim of this study was to investigate the effect of cAMP on pituitary adenomatous cells proliferation and to identify PKA and Epac differential involvement. We found that cAMP increased DNA synthesis and cyclin D1 expression in somatotropinomas, whereas it reduced both parameters in prolactinomas and nonfunctioning adenomas, these effects being replicated in corresponding cell lines. Moreover, the divergent cAMP effects were mimicked by Epac and PKA analogs, which activated Rap1 and CREB, respectively. In conclusion, we demonstrated that cAMP exerted opposite effects on different pituitary cell types proliferation, these effects being mediated by both Epac and PKA.
Collapse
Affiliation(s)
- E Vitali
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - E Peverelli
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - E Giardino
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - M Locatelli
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G B Lasio
- Neurosurgery Unit, IRCCS Humanitas Clinical Institute, Rozzano, Italy
| | - P Beck-Peccoz
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - A Spada
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - A G Lania
- Endocrine Unit, IRCCS Humanitas Clinical Institute, University of Milan, Rozzano, Italy.
| | - G Mantovani
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| |
Collapse
|
23
|
Almahariq M, Mei FC, Cheng X. Cyclic AMP sensor EPAC proteins and energy homeostasis. Trends Endocrinol Metab 2014; 25:60-71. [PMID: 24231725 PMCID: PMC3946731 DOI: 10.1016/j.tem.2013.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/30/2013] [Accepted: 10/11/2013] [Indexed: 12/16/2022]
Abstract
The pleiotropic second-messenger cAMP plays a crucial role in mediating the effects of various hormones on metabolism. The major intracellular functions of cAMP are transduced by protein kinase A (PKA) and by exchange proteins directly activated by cAMP (EPACs). The latter act as guanine-nucleotide exchange factors for the RAS-like small G proteins Rap1 and Rap2. Although the role of PKA in regulating energy balance has been extensively studied, the impact of EPACs remains relatively enigmatic. This review summarizes recent genetic and pharmacological studies concerning EPAC involvement in glucose homeostasis and energy balance via the regulation of leptin and insulin signaling pathways. In addition, the development of small-molecule EPAC-specific modulators and their therapeutic potential for the treatment of diabetes and obesity are discussed.
Collapse
Affiliation(s)
- Muayad Almahariq
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-0615, USA
| | - Fang C Mei
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-0615, USA; Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Xiaodong Cheng
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-0615, USA; Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas 77030, USA.
| |
Collapse
|
24
|
Joassard OR, Amirouche A, Gallot YS, Desgeorges MM, Castells J, Durieux AC, Berthon P, Freyssenet DG. Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle. Int J Biochem Cell Biol 2013; 45:2444-55. [PMID: 23916784 DOI: 10.1016/j.biocel.2013.07.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/10/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Administration of β2-agonists triggers skeletal muscle anabolism and hypertrophy. We investigated the time course of the molecular events responsible for rat skeletal muscle hypertrophy in response to 1, 3 and 10 days of formoterol administration (i.p. 2000μg/kg/day). A marked hypertrophy of rat tibialis anterior muscle culminated at day 10. Phosphorylation of Akt, ribosomal protein S6, 4E-BP1 and ERK1/2 was increased at day 3, but returned to control level at day 10. This could lead to a transient increase in protein translation and could explain previous studies that reported increase in protein synthesis following β2-agonist administration. Formoterol administration was also associated with a significant reduction in MAFbx/atrogin-1 mRNA level (day 3), suggesting that formoterol can also affect protein degradation of MAFbx/atrogin1 targeted substrates, including MyoD and eukaryotic initiation factor-3f (eIF3-f). Surprisingly, mRNA level of autophagy-related genes, light chain 3 beta (LC3b) and gamma-aminobutyric acid receptor-associated protein-like 1 (Gabarapl1), as well as lysosomal hydrolases, cathepsin B and cathepsin L, was significantly and transiently increased after 1 and/or 3 days, suggesting that autophagosome formation would be increased in response to formoterol administration. However, this has to be relativized since the mRNA level of Unc-51-like kinase1 (Ulk1), BCL2/adenovirus E1B interacting protein3 (Bnip3), and transcription factor EB (TFEB), as well as the protein content of Ulk1, Atg13, Atg5-Atg12 complex and p62/Sqstm1 remained unchanged or was even decreased in response to formoterol administration. These results demonstrate that the effects of formoterol are mediated, in part, through the activation of Akt-mTOR pathway and that other signaling pathways become more important in the regulation of skeletal muscle mass with chronic administration of β2-agonists.
Collapse
Affiliation(s)
- Olivier Roger Joassard
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, F-42023 Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Joassard OR, Durieux AC, Freyssenet DG. β2-Adrenergic agonists and the treatment of skeletal muscle wasting disorders. Int J Biochem Cell Biol 2013; 45:2309-21. [PMID: 23845739 DOI: 10.1016/j.biocel.2013.06.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 02/04/2023]
Abstract
β2-Agonists are traditionally used for the treatment of bronchospasm associated with asthma and the treatment of symptomatic patients with COPD. However, β2-agonists are also powerful anabolic agents that trigger skeletal muscle hypertrophy. Investigating the effects of β2-agonists in skeletal muscle over the past 30 years in different animal models has led to the identification of potential therapeutic applications in several muscle wasting disorders, including neuromuscular diseases, cancer cachexia, sepsis or thermal injury. In these conditions, numerous studies indicate that β2-agonists can attenuate and/or reverse the decrease in skeletal muscle mass and associated weakness in animal models of muscle wasting but also in human patients. The purpose of this review is to present the biological and clinical significance of β2-agonists for the treatment of skeletal muscle wasting. After the description of the molecular mechanisms involved in the hypertrophy and anti-atrophy effect of β2-agonists, we will review the anti-atrophy effects of β2-agonist administration in several animal models and human pathologies associated with or leading to skeletal muscle wasting. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Olivier R Joassard
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, F-42023 Saint-Etienne, France
| | | | | |
Collapse
|
26
|
Kuznetsova LA, Plesneva SA, Sharova TS, Pertseva MN, Shpakov AO. Regulation of adenylyl cyclase signaling system by insulin, biogenic amines and glucagon at their separate and combined action in muscle membranes of mollusc Anodonta cygnea. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013020035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Almahariq M, Tsalkova T, Mei FC, Chen H, Zhou J, Sastry SK, Schwede F, Cheng X. A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol Pharmacol 2013; 83:122-8. [PMID: 23066090 PMCID: PMC3533471 DOI: 10.1124/mol.112.080689] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 10/11/2012] [Indexed: 01/23/2023] Open
Abstract
Exchange protein directly activated by cAMP (EPAC) and cAMP-dependent protein kinase (PKA) are two intracellular receptors that mediate the effects of the prototypic second messenger cAMP. Identifying pharmacological probes for selectively modulating EPAC activity represents a significant unmet need within the research field. Herein, we report the identification and characterization of 3-(5-tert-butyl-isoxazol-3-yl)-2-[(3-chloro-phenyl)-hydrazono]-3-oxo-propionitrile (ESI-09), a novel noncyclic nucleotide EPAC antagonist that is capable of specifically blocking intracellular EPAC-mediated Rap1 activation and Akt phosphorylation, as well as EPAC-mediated insulin secretion in pancreatic β cells. Using this novel EPAC-specific inhibitor, we have probed the functional roles of overexpression of EPAC1 in pancreatic cancer cells. Our studies show that EPAC1 plays an important role in pancreatic cancer cell migration and invasion, and thus represents a potential target for developing novel therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Muayad Almahariq
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0615, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jang MW, Yun SP, Park JH, Ryu JM, Lee JH, Han HJ. Cooperation of Epac1/Rap1/Akt and PKA in prostaglandin E(2) -induced proliferation of human umbilical cord blood derived mesenchymal stem cells: involvement of c-Myc and VEGF expression. J Cell Physiol 2012; 227:3756-67. [PMID: 22378492 DOI: 10.1002/jcp.24084] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prostaglandin E(2) (PGE(2)) is well known to regulate cell functions through cAMP; however, the role of exchange protein directly activated by cAMP (Epac1) and protein kinase A (PKA) in modulating such functions is unknown in human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). Therefore, we investigated the relationship between Epac1 and PKA during PGE(2)-induced hUCB-MSC proliferation and its related signaling pathways. PGE(2) increased cell proliferation, and E-type prostaglandin (EP) 2 receptor mRNA expression level and activated cAMP generation, which were blocked by EP2 receptor selective antagonist AH 6809. PGE(2) increased Epac1 expression, Ras-related protein 1 (Rap1) activation level, and Akt phosphorylation, which were inhibited by AH 6809, adenylyl cyclase inhibitor SQ 22536, and Epac1/Rap1-specific siRNA. Also, PGE(2) increased PKA activity, which was inhibited by AH 6809, SQ 22536, and PKA inhibitor PKI. HUCB-MSCs were incubated with the Epac agonist 8-pCPT-cAMP or the PKA agonist 6-phe-cAMP to examine whether Epac1/Rap1/Akt activation was independent of PKA activation. 8-pCPT-cAMP increased Akt phosphorylation but not PKA activity. 6-Phe-cAMP increased PKA activity, but not Akt phosphorylation. Additionally, an Akt inhibitor or PKA inhibitor (PKI) did not block the PGE(2) -induced increase in PKA activity or Akt phosphorylation, respectively. Moreover, PGE(2) increased glycogen synthase kinase (GSK)-3β phosphorylation and nuclear translocation of active-β-catenin, which were inhibited by Akt inhibitor or/and PKI. PGE(2) increased c-Myc and vascular endothelial growth factor (VEGF) expression levels, which were blocked by β-catenin siRNA. In conclusion, PGE(2) stimulated hUCB-MSC proliferation through β-catenin-mediated c-Myc and VEGF expression via Epac/Rap1/Akt and PKA cooperation.
Collapse
Affiliation(s)
- Min Woo Jang
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Berdeaux R, Stewart R. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration. Am J Physiol Endocrinol Metab 2012; 303:E1-17. [PMID: 22354781 PMCID: PMC3404564 DOI: 10.1152/ajpendo.00555.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/09/2012] [Indexed: 12/11/2022]
Abstract
Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3',5'-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets.
Collapse
Affiliation(s)
- Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | | |
Collapse
|
30
|
Lin FC, Bolling A, Stuenæs JT, Cumming KT, Ingvaldsen A, Lai YC, Ivy JL, Jensen J. Effect of insulin and contraction on glycogen synthase phosphorylation and kinetic properties in epitrochlearis muscles from lean and obese Zucker rats. Am J Physiol Cell Physiol 2012; 302:C1539-47. [PMID: 22403789 DOI: 10.1152/ajpcell.00430.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the effects of insulin and contraction on glycogen synthase (GS) kinetic properties and phosphorylation were investigated in epitrochlearis muscles from lean and obese Zucker rats. Total GS activity and protein expression were ~15% lower in epitrochlearis from obese rats compared with lean rats. Insulin-stimulated GS fractional activity and affinity for UDP-glucose were lower (higher K(m)) in muscles from obese rats. GS Ser(641) and Ser(645,649,653,657) phosphorylation was higher in insulin-stimulated muscles from obese rats, which agreed with lower GS activation. Contraction-mediated GS dephosphorylation of Ser(641), Ser(641+645), Ser(645,649,653,657), and Ser(7+10) was normal in muscles from obese Zucker rats, and GS fractional activity increased to similar levels in epitrochlearis muscles from lean and obese rats. GS affinity for UDP glucose was ~0.8, ~0.4, and ~0.1 mM with assay buffers containing 0, 0.17, and 12 mM glucose 6-phosphate, respectively. Contraction increased affinity for UDP-glucose (reduced K(m)) at a physiological concentration of glucose 6-phosphate (0.17 mM) to ~0.2 mM in muscles from both lean and obese rats. Interestingly, in the absence of glucose 6-phosphate in the assay buffer, contraction (and insulin) did not influence GS affinity for UDP-glucose, indicating that affinity is regulated by sensitivity for glucose 6-phosphate. In conclusion, contraction-mediated activation and dephosphorylation of GS were normal in muscles from obese Zucker rats, whereas insulin-mediated GS activation and dephosphorylation were impaired.
Collapse
Affiliation(s)
- Fang Chin Lin
- Department of Physical Performance, Norwegian School of Sport Sciences, P. O. Box 4014 Ullevål Stadion, N-0806 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Shirshev SV. Role of Epac proteins in mechanisms of cAMP-dependent immunoregulation. BIOCHEMISTRY (MOSCOW) 2012; 76:981-98. [PMID: 22082266 DOI: 10.1134/s000629791109001x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents observations on the role of Epac proteins (exchange protein directly activated by cAMP) in immunoregulation mechanisms. Signaling pathways that involve Epac proteins and their domain organization and functions are considered. The role of Epac1 protein expressed in the immune system cells is especially emphasized. Molecular mechanisms of the cAMP-dependent signal via Epac1 are analyzed in monocytes/macrophages, T-cells, and B-lymphocytes. The role of Epac1 is shown in the regulation of adhesion, leukocyte chemotaxis, as well as in phagocytosis and bacterial killing. The molecular cascade initiated by Epac1 is examined under conditions of antigen activation of T-cells and immature B-lymphocytes.
Collapse
Affiliation(s)
- S V Shirshev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia.
| |
Collapse
|
32
|
Otani M, Kogo M, Furukawa S, Wakisaka S, Maeda T. The adiponectin paralog C1q/TNF-related protein 3 (CTRP3) stimulates testosterone production through the cAMP/PKA signaling pathway. Cytokine 2012; 58:238-44. [PMID: 22342437 DOI: 10.1016/j.cyto.2012.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/19/2012] [Accepted: 01/27/2012] [Indexed: 12/14/2022]
Abstract
CTRP3, a paralog of adiponectin, is a member of the C1q and tumor necrosis factor (TNF)-related protein (CTRP) superfamily. It is expressed at high levels in adipose tissue and has recently emerged as a novel adipokine. In the present study, we provide the first evidence for a physiological role of the new adipokine, CTRP3, in the reproductive system. CTRP3 was specifically expressed in interstitial Leydig cells, where testosterone is produced, in the adult mouse testis. CTRP3 increased testosterone production by TM3 mouse Leydig cells in a dose-dependent manner. The increased testosterone production was linked to upregulation of steroidogenic proteins expression, such as steroidogenic acute regulatory (StAR) protein and cholesterol side-chain cleavage cytochrome P450 (P450scc). Moreover, increases in intracellular cyclic AMP (cAMP) concentrations and the phosphorylation of cAMP-response element binding protein (CREB) in CTRP3-stimulated TM3 Leydig cells were observed. Inhibition of this signaling pathway by a specific protein kinase A (PKA) inhibitor, H89, blocked testosterone production in CTRP3-stimulated Leydig cells, suggesting that the stimulatory effect of CTRP3 on testosterone production is associated with activation of the cAMP/PKA signaling pathway. Thus, our results demonstrate a physiological role for CTRP3 in testicular steroidogenesis and provide novel insights in the intracellular mechanisms activated by this protein.
Collapse
Affiliation(s)
- Masataka Otani
- Department of Anatomy and Cell Biology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
33
|
Cahova M, Palenickova E, Papackova Z, Dankova H, Skop V, Kazdova L. Epinephrine-dependent control of glucose metabolism in white adipose tissue: the role of α- and β-adrenergic signalling. Exp Biol Med (Maywood) 2012; 237:211-8. [PMID: 22302710 DOI: 10.1258/ebm.2011.011189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epinephrine controls many important and sometimes opposite processes. This pleiotropic effect is achieved via coupling to different receptor/effector systems. In epididymal white adipose tissue (EWAT) of Wistar rats, we showed that epinephrine stimulated protein kinase B (PKB) phosphorylation on Ser(473). Epinephrine further increased the glucose incorporation into glyceride-glycerol without decreasing glucose availability for other metabolic pathways (i.e. lactate production). Wortmannin (phosphatidylinositol 3-kinase inhibitor) treatment significantly decreased glucose incorporation into glyceride-glycerol and elevated the epinephrine-induced release of free fatty acids (FFA) from the adipose tissue without any change in the intensity of lipolysis measured as glycerol release. Using specific cyclic adenosine monophosphate (cAMP) analogs we demonstrated that cAMP-protein kinase A (PKA) signalling resulted in a strong PKB dephosphorylation and significantly lowered the glucose availability in EWAT. Specific activation of the Epac (exchange protein activated by cAMP)-dependent pathway had only a moderately negative effect on PKB phosphorylation and glucose metabolism. In contrast, α(1) agonist methoxamine increased PKB phosphorylation and lactate production. This effect of methoxamine was additive to the effect of insulin and it was abolished by wortmannin treatment. In EWAT of spontaneously dyslipidemic hereditary hypertriglyceridemic (HHTg) rats, we demonstrated significantly lower epinephrine-induced glucose utilization but higher sensitivity to its lipolytic effect. We conclude that in EWAT, epinephrine controls two opposite processes (FFA release and FFA retention) via two different effector systems. The impairment of α(1)-dependent, epinephrine-stimulated, glycolysis-dependent FFA esterification may contribute to the establishment of dyslipidemia in insulin resistance.
Collapse
Affiliation(s)
- Monika Cahova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 4, Czech Republic.
| | | | | | | | | | | |
Collapse
|
34
|
Larrayoz IM, Ochoa-Callejero L, García-Sanmartín J, Vicario-Abejón C, Martínez A. Role of adrenomedullin in the growth and differentiation of stem and progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:175-234. [PMID: 22608560 DOI: 10.1016/b978-0-12-394308-8.00005-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells have captured the imagination of the general public by their potential as new therapeutic tools in the fight against degenerative diseases. This potential is based on their capability for self-renewal and at the same time for producing progenitor cells that will eventually provide the building blocks for tissue and organ regeneration. These processes are carefully orchestrated in the organism by means of a series of molecular cues. An emerging molecule which is responsible for some of these physiological responses is adrenomedullin, a 52-amino acid regulatory peptide which increases proliferation and regulates cell fate of stem cells of different origins. Adrenomedullin binds to specific membrane receptors in stem cells and induces several intracellular pathways such as those involving cAMP, Akt, or MAPK. Regulation of adrenomedullin levels may help in directing the growth and differentiation of stem cells for applications (e.g., cell therapy) both in vitro and in vivo.
Collapse
Affiliation(s)
- Ignacio M Larrayoz
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | | | | | | | | |
Collapse
|
35
|
Xie J, Ponuwei GA, Moore CE, Willars GB, Tee AR, Herbert TP. cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity. Cell Signal 2011; 23:1927-35. [PMID: 21763421 PMCID: PMC3189512 DOI: 10.1016/j.cellsig.2011.06.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/27/2011] [Indexed: 12/13/2022]
Abstract
cAMP and mTOR signalling pathways control a number of critical cellular processes including metabolism, protein synthesis, proliferation and cell survival and therefore understanding the signalling events which integrate these two signalling pathways is of particular interest. In this study, we show that the pharmacological elevation of [cAMP](i) in mouse embryonic fibroblasts (MEFs) and human embryonic kidney 293 (HEK293) cells inhibits mTORC1 activation via a PKA-dependent mechanism. Although the inhibitory effect of cAMP on mTOR could be mediated by impinging on signalling cascades (i.e. PKB, MAPK and AMPK) that inhibit TSC1/2, an upstream negative regulator of mTORC1, we show that cAMP inhibits mTORC1 in TSC2 knockout (TSC2(-/-)) MEFs. We also show that cAMP inhibits insulin and amino acid-stimulated mTORC1 activation independently of Rheb, Rag GTPases, TSC2, PKB, MAPK and AMPK, indicating that cAMP may act independently of known regulatory inputs into mTOR. Moreover, we show that the prolonged elevation in [cAMP](i) can also inhibit mTORC2. We provide evidence that this cAMP-dependent inhibition of mTORC1/2 is caused by the dissociation of mTORC1 and 2 and a reduction in mTOR catalytic activity, as determined by its auto-phosphorylation on Ser2481. Taken together, these results provide an important insight into how cAMP signals to mTOR and down-regulates its activity, which may lead to the identification of novel drug targets to inhibit mTOR that could be used for the treatment and prevention of human diseases such as cancer.
Collapse
Affiliation(s)
- Jianling Xie
- Department of Cell Physiology and Pharmacology, University of Leicester, The Henry Wellcome Building, University Road, Leicester LE1 9HN, UK
| | - Godwin A. Ponuwei
- Department of Cell Physiology and Pharmacology, University of Leicester, The Henry Wellcome Building, University Road, Leicester LE1 9HN, UK
| | - Claire E. Moore
- Department of Cell Physiology and Pharmacology, University of Leicester, The Henry Wellcome Building, University Road, Leicester LE1 9HN, UK
| | - Gary B. Willars
- Department of Cell Physiology and Pharmacology, University of Leicester, The Henry Wellcome Building, University Road, Leicester LE1 9HN, UK
| | - Andrew R. Tee
- Institute of Medical Genetics, School of Medicine, Cardiff University, Institute of Medical Genetics Building, Heath Park, Cardiff CF14 4XN, UK
| | - Terence P. Herbert
- Department of Cell Physiology and Pharmacology, University of Leicester, The Henry Wellcome Building, University Road, Leicester LE1 9HN, UK
| |
Collapse
|
36
|
Magro CM, Crowson AN, Desman G, Zippin JH. Soluble adenylyl cyclase antibody profile as a diagnostic adjunct in the assessment of pigmented lesions. ACTA ACUST UNITED AC 2011; 148:335-44. [PMID: 22105816 DOI: 10.1001/archdermatol.2011.338] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To investigate the usefulness of a novel marker for melanocytic proliferations. DESIGN Using a novel monoclonal antibody against soluble adenylyl cyclase (sAC), various benign and malignant melanocytic proliferations were immunostained. SETTING Weill Medical College of Cornell University dermatopathology laboratory. MAIN OUTCOME MEASURES The results were qualitative, not quantifiable. RESULTS The sAC immunostaining produced distinctive patterns that paralleled melanomagenesis. At one pole of the spectrum were benign nevi, including atypical nevi of special sites and recurrent nevi showing a distinct pattern of dotlike Golgi staining, while at the opposite pole was melanoma, in which many cells demonstrated an intense pannuclear expression pattern, often accompanied by loss of the Golgi expression pattern. Melanomas of lentigo maligna and acral lentiginous subtypes exhibited the most striking pannuclear expression, while nodular melanomas showed the least, although with supervening enhanced diffuse cytoplasmic expression. Loss of the Golgi expression pattern was a feature of malignant melanoma. CONCLUSION The sAC expression pattern is complex but seems discriminatory, with distinctive and variable staining patterns according to the nature of the lesion biopsied.
Collapse
Affiliation(s)
- Cynthia M Magro
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
37
|
Lira EC, Gonçalves DA, Parreiras-E-Silva LT, Zanon NM, Kettelhut IC, Navegantes LC. Phosphodiesterase-4 inhibition reduces proteolysis and atrogenes expression in rat skeletal muscles. Muscle Nerve 2011; 44:371-81. [DOI: 10.1002/mus.22066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Rap-linked cAMP signaling Epac proteins: Compartmentation, functioning and disease implications. Cell Signal 2011; 23:1257-66. [DOI: 10.1016/j.cellsig.2011.03.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/04/2011] [Accepted: 03/04/2011] [Indexed: 12/14/2022]
|
39
|
Schultze SM, Jensen J, Hemmings BA, Tschopp O, Niessen M. Promiscuous affairs of PKB/AKT isoforms in metabolism. Arch Physiol Biochem 2011; 117:70-7. [PMID: 21214427 DOI: 10.3109/13813455.2010.539236] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The protein kinase B (PKB) family encompasses three isoforms; PKBα (AKT1), PKBβ (AKT2) and PKBγ (AKT3). PKBα and PKBβ but not PKBγ, are prominently expressed in classical insulin-sensitive tissues like liver, muscle and fat. Transgenic mice deficient for PKBα, PKBβ or PKBγ have been analysed to study the roles of PKB isoforms in metabolic regulation. Until recently, only loss of PKBβ was reported to result in metabolic disorders, especially insulin resistance, in humans and mice. However, a new study has shown that PKBα-deficient mice can show enhanced glucose tolerance accompanied by improved β-cell function and higher insulin sensitivity in adipocytes. These findings prompted us to review the relevant literature on the regulation of glucose metabolism by PKB isoforms in liver, skeletal muscle, adipocytes and pancreas.
Collapse
Affiliation(s)
- Simon M Schultze
- Endocrinology, Diabetology & Clinical Nutrition, University Hospital of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Jensen J, Ruge T, Lai YC, Svensson MK, Eriksson JW. Effects of adrenaline on whole-body glucose metabolism and insulin-mediated regulation of glycogen synthase and PKB phosphorylation in human skeletal muscle. Metabolism 2011; 60:215-26. [PMID: 20153492 DOI: 10.1016/j.metabol.2009.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/23/2009] [Accepted: 12/28/2009] [Indexed: 11/20/2022]
Abstract
In the present study, we investigated the effect of adrenaline on insulin-mediated regulation of glucose and fat metabolism with focus on regulation of skeletal muscle PKB, GSK-3, and glycogen synthase (GS) phosphorylation. Ten healthy subjects (5 men and 5 women) received a 240-minute intravenous infusion of adrenaline (0.05 μg/[kg min]) or saline; after 120 minutes, a hyperinsulinemic-euglycemic clamp was added. Adrenaline infusion increased blood glucose concentration by approximately 50%, but the hyperinsulinemic clamp normalized blood glucose within 30 minutes. Glucose infusion rate during the last hour was approximately 60% lower during adrenaline infusion compared with saline (4.3 ± 0.5 vs 11.2 ± 0.6 mg/kg lean body mass per minute). Insulin increased PKB Ser⁴⁷³, PKB Thr³⁰⁸, and GSK-3β Ser⁹ phosphorylation in skeletal muscles; coinfusion of adrenaline did not influence insulin-stimulated PKB and GSK-3 phosphorylation. Adrenaline alone did not influence phosphorylation of PKB and GSK-3β. Insulin increased GS fractional activity and decreased GS Ser⁶⁴¹ and Ser⁶⁴⁵,⁶⁴⁹,⁶⁵³,⁶⁵⁷ phosphorylation. In the presence of adrenaline, insulin did neither activate GS nor dephosphorylate GS Ser⁶⁴¹. Surprisingly, GS Ser⁷ phosphorylation was not influenced by adrenaline. Adrenaline increased plasma lactate concentration; and muscle glycogen content was reduced in skeletal muscle the day after adrenaline infusion, supporting that insulin does not stimulate glycogen synthesis in skeletal muscles when adrenaline is present. In conclusion, adrenaline did not influence basal or insulin-stimulated PKB and GSK-3β phosphorylation in muscles, but completely blocked insulin-mediated GS activation and Ser⁶⁴¹ dephosphorylation. Still, insulin normalized adrenaline-mediated hyperglycemia.
Collapse
Affiliation(s)
- Jørgen Jensen
- Department of Physiology, National Institute of Occupational Health, P.O. Box 8149 Dep, N-0033 Oslo, Norway.
| | | | | | | | | |
Collapse
|
41
|
Kreft M, Prebil M, Chowdhury HH, Grilc S, Jensen J, Zorec R. Analysis of confocal images using variable-width line profiles. PROTOPLASMA 2010; 246:73-80. [PMID: 20229327 DOI: 10.1007/s00709-010-0127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/19/2010] [Indexed: 05/28/2023]
Abstract
A line profile of fluorescent intensities in confocal images is frequently examined. We have developed the computer software tool to analyse the profiles of intensities of fluorescent probes in confocal images. The software averages neighbouring pixels, adjacent to the central line, without reducing the spatial resolution of the image. As an experimental model, we have used the skeletal muscle fibre isolated from the rat skeletal muscle extensor digitorum brevis. As a marker of myofibrils' structure, we have used phalloidin-rhodamine staining and the anti-TIM antibody to label mitochondria. We also tested the distribution of the protein kinase B/Akt. Since signalling is ordered in modules and large protein complexes appear to direct signalling to organelles and regulate specific physiological functions, a software tool to analyse such complexes in fluorescent confocal images is required. The software displays the image, and the user defines the line for analysis. The image is rotated by the angle of the line. The line profile is calculated by averaging one dimension of the cropped rotated image matrix. The spatial resolution in averaged line profile is not decreased compared with single-pixel line profile, which was confirmed by the discrete Fourier transform computed with a fast Fourier transform algorithm. We conclude that the custom software tool presented here is a useful tool to analyse line profiles of fluorescence intensities in confocal images.
Collapse
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
42
|
Kolnes AJ, Ingvaldsen A, Bolling A, Stuenaes JT, Kreft M, Zorec R, Shepherd PR, Jensen J. Caffeine and theophylline block insulin-stimulated glucose uptake and PKB phosphorylation in rat skeletal muscles. Acta Physiol (Oxf) 2010; 200:65-74. [PMID: 20180783 DOI: 10.1111/j.1748-1716.2010.02103.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Caffeine and theophylline inhibit phosphatidylinositol 3-kinase (PI3-kinase) activity and insulin-stimulated protein kinase B (PKB) phosphorylation. Insulin-stimulated glucose uptake involves PI3-kinase/PKB, and the aim of the present study was to test the hypothesis that caffeine and theophylline inhibit insulin-stimulated glucose uptake in skeletal muscles. METHODS Rat epitrochlearis muscles and soleus strips were incubated with insulin and different concentrations of caffeine and theophylline for measurement of glucose uptake, force development and PKB phosphorylation. The effect of caffeine was also investigated in muscles stimulated electrically. RESULTS Caffeine and theophylline completely blocked insulin-stimulated glucose uptake in both soleus and epitrochlearis muscles at 10 mm. Furthermore, insulin-stimulated PKB Ser(473) and Thr(308) and GSK-3beta Ser(9) phosphorylation were blocked by caffeine and theophylline. Caffeine reduced and theophylline blocked insulin-stimulated glycogen synthase activation. Caffeine stimulates Ca(2+) release and force development increased rapidly to 10-20% of maximal tetanic contraction. Dantrolene (25 microm), a well-known inhibitor of Ca(2+)-release, prevented caffeine-induced force development, but caffeine inhibited insulin-stimulated glucose uptake in the presence of dantrolene. Contraction, like insulin, stimulates glucose uptake via translocation of glucose transporter-4 (GLUT4). Caffeine and theophylline reduced contraction-stimulated glucose uptake by about 50%, whereas contraction-stimulated glycogen breakdown was normal. CONCLUSION Caffeine and theophylline block insulin-stimulated glucose uptake independently of Ca(2+) release, and the likely mechanism is via blockade of insulin-stimulated PI3-kinase/PKB activation. Caffeine and theophylline also reduced contraction-stimulated glucose uptake, which occurs independently of PI3-kinase/PKB, and we hypothesize that caffeine and theophylline also inhibit glucose uptake in skeletal muscles via an additional and hitherto unknown molecule involved in GLUT4 translocation.
Collapse
Affiliation(s)
- A J Kolnes
- Department of Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Stuenaes JT, Bolling A, Ingvaldsen A, Rommundstad C, Sudar E, Lin FC, Lai YC, Jensen J. Beta-adrenoceptor stimulation potentiates insulin-stimulated PKB phosphorylation in rat cardiomyocytes via cAMP and PKA. Br J Pharmacol 2010; 160:116-29. [PMID: 20412069 DOI: 10.1111/j.1476-5381.2010.00677.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Genetic approaches have documented protein kinase B (PKB) as a pivotal regulator of heart function. Insulin strongly activates PKB, whereas adrenaline is not considered a major physiological regulator of PKB in heart. In skeletal muscles, however, adrenaline potentiates insulin-stimulated PKB activation without having effect in the absence of insulin. The purpose of the present study was to investigate the interaction between insulin and beta-adrenergic stimulation in regulation of PKB phosphorylation. EXPERIMENTAL APPROACH Cardiomyocytes were isolated from adult rats by collagenase, and incubated with insulin, isoprenaline, and other compounds. Protein phosphorylation was evaluated by Western blot and phospho-specific antibodies. KEY RESULTS Isoprenaline increased insulin-stimulated PKB Ser(473) and Thr(308) phosphorylation more than threefold in cardiomyocytes. Isoprenaline alone did not increase PKB phosphorylation. Isoprenaline also increased insulin-stimulated GSK-3beta Ser(9) phosphorylation approximately twofold, supporting that PKB phosphorylation increased kinase activity. Dobutamine (beta(1)-agonist) increased insulin-stimulated PKB phosphorylation as effectively as isoprenaline (more than threefold), whereas salbutamol (beta(2)-agonist) only potentiated insulin-stimulated PKB phosphorylation by approximately 80%. Dobutamine, but not salbutamol, increased phospholamban Ser(16) phosphorylation and glycogen phosphorylase activation (PKA-mediated effects). Furthermore, the cAMP analogue that activates PKA (dibutyryl-cAMP and N(6)-benzoyl-cAMP) increased insulin-stimulated PKB phosphorylation by more than threefold without effect alone. The Epac-specific activator 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (007) increased insulin-stimulated PKB phosphorylation by approximately 50%. Db-cAMP and N(6)-benzoyl-cAMP, but not 007, increased phospholamban Ser(16) phosphorylation. CONCLUSIONS AND IMPLICATIONS beta-adrenoceptors are strong regulators of PKB phosphorylation via cAMP and PKA when insulin is present. We hypothesize that PKB mediates important signalling in the heart during beta-adrenergic receptors stimulation.
Collapse
Affiliation(s)
- Jorid T Stuenaes
- Department of Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Madsen L, Kristiansen K. The importance of dietary modulation of cAMP and insulin signaling in adipose tissue and the development of obesity. Ann N Y Acad Sci 2010; 1190:1-14. [PMID: 20388132 DOI: 10.1111/j.1749-6632.2009.05262.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adipose tissue plays a pivotal role in whole body energy homeostasis. In this review, we summarize knowledge of the seemingly paradoxical roles of insulin and cyclic adenosine monophosphate (cAMP) signaling in adipocyte differentiation and function, emphasizing the interplay between the two branches of cAMP signaling, the canonical protein kinase A-dependent pathways and the novel exchange protein activated by cAMP (Epac)-dependent pathways, and insulin signaling. We discuss how macronutrients via changes in the balance between insulin- and cAMP-dependent signaling can affect the development of obesity by changing energy expenditure and/or feed efficiency. We review results demonstrating how the balance between different classes of carbohydrates and proteins modulates the obesigenic action of saturated as well as unsaturated fatty acids pointing to insulin as a key determinant in the regulation of the metabolic/regulatory action of both n-3 and n-6 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Lise Madsen
- National Institute of Nutrition and Seafood Research, Bergen, Norway.
| | | |
Collapse
|
45
|
RGS2 inhibits beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Cell Signal 2010; 22:1231-9. [PMID: 20362664 DOI: 10.1016/j.cellsig.2010.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 02/26/2010] [Accepted: 03/25/2010] [Indexed: 11/21/2022]
Abstract
The chronic stimulation of certain G protein-coupled receptors promotes cardiomyocyte hypertrophy and thus plays a pivotal role in the development of human heart failure. The beta-adrenergic receptors (beta-AR) are unique among these in that they signal via Gs, whereas others, such as the alpha1-adrenergic (alpha1-AR) and endothelin-1 (ET-1) receptors, predominantly act through Gq. In this study, we investigated the potential role of regulator of G protein signalling 2 (RGS2) in modulating the hypertrophic effects of the beta-AR agonist isoproterenol (ISO) in rat neonatal ventricular cardiomyocytes. We found that ISO-induced hypertrophy in rat neonatal ventricular myocytes was accompanied by the selective upregulation of RGS2 mRNA, with little or no change in RGS1, RGS3, RGS4 or RGS5. The adenylyl cyclase activator forskolin had a similar effect suggesting that it was mediated through cAMP production. To study the role of RGS2 upregulation in beta-AR-dependent hypertrophy, cardiomyocytes were infected with adenovirus encoding RGS2 and assayed for cell growth, markers of hypertrophy, and beta-AR signalling. ISO-induced increases in cell surface area were virtually eliminated by the overexpression of RGS2, as were increases in alpha-skeletal actin and atrial natriuretic peptide. RGS2 overexpression also significantly attenuated ISO-induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Akt activation, which may account for, or contribute to, its observed antihypertrophic effects. In contrast, RGS2 overexpression significantly activated JNK MAP kinase, while decreasing the potency but not the maximal effect of ISO on cAMP accumulation. In conclusion, the present results suggest that RGS2 negatively regulates hypertrophy induced by beta-AR activation and thus may play a protective role in cardiac hypertrophy.
Collapse
|
46
|
Baviera AM, Zanon NM, Navegantes LCC, Kettelhut IC. Involvement of cAMP/Epac/PI3K-dependent pathway in the antiproteolytic effect of epinephrine on rat skeletal muscle. Mol Cell Endocrinol 2010; 315:104-12. [PMID: 19804812 DOI: 10.1016/j.mce.2009.09.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 09/14/2009] [Accepted: 09/28/2009] [Indexed: 02/04/2023]
Abstract
Very little is known about the signaling pathways by which catecholamines exert anabolic effects on muscle protein metabolism, stimulating protein synthesis and suppressing proteolysis. The present work tested the hypothesis that epinephrine-induced inhibition of muscle proteolysis is mediated through the cAMP/Epac/PI3K-dependent pathway with the involvement of AKT and Foxo. The incubation of extensor digitorum longus (EDL) muscles from rats with epinephrine and/or insulin increased the phosphorylation of AKT and its downstream target Foxo3a, a well-known effect that prevents Foxo translocation to the nucleus and the activation of proteolysis. Similar effects on AKT/Foxo signaling were observed in muscles incubated with DBcAMP (cAMP analog). The stimulatory effect of epinephrine on AKT phosphorylation was completely blocked by wortmannin (selective PI3K inhibitor), suggesting that the epinephrine-induced activation of AKT is mediated through PI3K. As for epinephrine and DBcAMP, the incubation of muscles with 8CPT-2Me-cAMP (selective Epac agonist) reduced rates of proteolysis and increased phosphorylation levels of AKT and Foxo3a. The specific PKA agonist (N6BZ-cAMP) inhibited proteolysis and abolished the epinephrine-induced AKT and Foxo3a phosphorylation. On the other hand, inhibition of PKA by H89 further increased the phosphorylation levels of AKT and Foxo3a induced by epinephrine, DBcAMP or 8CPT-2Me-cAMP. These findings suggest that the antiproteolytic effect of the epinephrine on isolated skeletal muscle may occur through a cAMP/Epac/PI3K-dependent pathway, which leads to the phosphorylation of AKT and Foxo3a. The parallel activation of PKA-dependent pathway also inhibits proteolysis and seems to limit the stimulatory effect of cAMP on AKT/Foxo3a signaling.
Collapse
Affiliation(s)
- Amanda Martins Baviera
- Department of Chemistry, Federal University of Mato Grosso, 78060-900 Cuiabá, MT, Brazil
| | | | | | | |
Collapse
|
47
|
Calvo N, de Boland AR, Gentili C. PTH inactivates the AKT survival pathway in the colonic cell line Caco-2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:343-51. [PMID: 20005908 DOI: 10.1016/j.bbamcr.2009.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/25/2009] [Accepted: 11/30/2009] [Indexed: 12/28/2022]
Abstract
In previous works, we found that PTH promotes the apoptosis of human Caco-2 intestinal cells, through the mitochondrial pathway. This study was conducted to investigate the modulation of different players implicated in the AKT survival pathway in PTH-induced intestinal cell apoptosis. We demonstrate, for the first time, that PTH modulates AKT phosphorylation in response to apoptosis via the serine/threonine phosphatase PP2A. PTH treatment induces an association of AKT with the catalytic subunit of PP2A and increases its phosphatase activity. PTH also promotes the translocation of PP2Ac from the cytosol to the mitochondria. Furthermore, our results suggest that PP2A plays a role in hormone-dependent Caco-2 cells viability and in the cleavage of caspase-3 and its substrate PARP. The cAMP pathway also contributes to PTH-mediated AKT dephosphorylation while PKC and p38 MAPK do not participate in this event. Finally, we show that PTH induces the dissociation between 14-3-3 and AKT, but the significance of this response remains unknown. In correlation with PTH-induced Bad dephosphorylation, the hormone also decreases the basal association of 14-3-3 and Bad. Overall, our data suggest that in Caco-2 cells, PP2A and the cAMP pathway act in concert to inactivate the AKT survival pathway in PTH-induced intestinal cell apoptosis.
Collapse
Affiliation(s)
- Natalia Calvo
- Department Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina
| | | | | |
Collapse
|
48
|
Gonçalves DAP, Lira EC, Baviera AM, Cao P, Zanon NM, Arany Z, Bedard N, Tanksale P, Wing SS, Lecker SH, Kettelhut IC, Navegantes LCC. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle. Endocrinology 2009; 150:5395-404. [PMID: 19837877 DOI: 10.1210/en.2009-0428] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- Adrenergic beta-2 Receptor Agonists
- Animals
- Blotting, Western
- Cell Line
- Clenbuterol/pharmacology
- Cyclic AMP/metabolism
- Dexamethasone/pharmacology
- Forkhead Box Protein O3
- Forkhead Transcription Factors/metabolism
- In Vitro Techniques
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phosphodiesterase Inhibitors/pharmacology
- Phosphorylation/drug effects
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- SKP Cullin F-Box Protein Ligases/genetics
- SKP Cullin F-Box Protein Ligases/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- Tripartite Motif Proteins
- Ubiquitin/genetics
- Ubiquitin/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Dawit A P Gonçalves
- Departments of Physiology and Biochemistry & Immunology, School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Navegantes LCC, Baviera AM, Kettelhut IC. The inhibitory role of sympathetic nervous system in the Ca2+-dependent proteolysis of skeletal muscle. Braz J Med Biol Res 2009; 42:21-8. [PMID: 19219294 DOI: 10.1590/s0100-879x2009000100005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 12/04/2008] [Indexed: 02/04/2023] Open
Abstract
Mammalian cells contain several proteolytic systems to carry out the degradative processes and complex regulatory mechanisms to prevent excessive protein breakdown. Among these systems, the Ca2+-activated proteolytic system involves the cysteine proteases denoted calpains, and their inhibitor, calpastatin. Despite the rapid progress in molecular research on calpains and calpastatin, the physiological role and regulatory mechanisms of these proteins remain obscure. Interest in the adrenergic effect on Ca2+-dependent proteolysis has been stimulated by the finding that the administration of beta2-agonists induces muscle hypertrophy and prevents the loss of muscle mass in a variety of pathologic conditions in which calpains are activated. This review summarizes evidence indicating that the sympathetic nervous system produces anabolic, protein-sparing effects on skeletal muscle protein metabolism. Studies are reviewed, which indicate that epinephrine secreted by the adrenal medulla and norepinephrine released from adrenergic terminals have inhibitory effects on Ca2+-dependent protein degradation, mainly in oxidative muscles, by increasing calpastatin levels. Evidence is also presented that this antiproteolytic effect, which occurs under both basal conditions and in stress situations, seems to be mediated by beta2- and beta3-adrenoceptors and cAMP-dependent pathways. The understanding of the precise mechanisms by which catecholamines promote muscle anabolic effects may have therapeutic value for the treatment of muscle-wasting conditions and may enhance muscle growth in farm species for economic and nutritional purposes.
Collapse
Affiliation(s)
- L C C Navegantes
- Departamento de Fisiologia, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil.
| | | | | |
Collapse
|
50
|
Baljinnyam E, Iwatsubo K, Kurotani R, Wang X, Ulucan C, Iwatsubo M, Lagunoff D, Ishikawa Y. Epac increases melanoma cell migration by a heparan sulfate-related mechanism. Am J Physiol Cell Physiol 2009; 297:C802-13. [PMID: 19657062 DOI: 10.1152/ajpcell.00129.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Melanoma, the most malignant form of human skin cancer, has a poor prognosis due to its strong metastatic ability. It was recently demonstrated that Epac, an effector molecule of cAMP, is involved in regulating cell migration; however, the role of Epac in melanoma cell migration remains unclear. We thus examined whether Epac regulates cell migration and metastasis of melanoma. Epac activation, by either specific agonist or overexpression of Epac, increased melanoma cell migration. Deletion of endogenous Epac with small interfering RNA decreased basal melanoma cell migration. These data suggested a major role of Epac in melanoma cell migration. Epac-induced cell migration was mediated by translocation of syndecan-2, a cell-surface heparan sulfate proteoglycan, to lipid rafts. This syndecan-2 translocation was regulated by tubulin polymerization via the Epac/phosphoinositol-3 kinase pathway. Epac-induced cell migration was also regulated by the production of heparan sulfate, a major extracellular matrix. Epac-induced heparan sulfate production was attributable to the increased expression of N-deacetylase/N-sulfotransferase-1 (NDST-1) accompanied by an increased NDST-1 translation rate. Finally, Epac overexpression enhanced lung colonization of melanoma cells in mice. Taken together, these data indicate that Epac regulates melanoma cell migration/metastasis mostly via syndecan-2 translocation and heparan sulfate production.
Collapse
Affiliation(s)
- Erdene Baljinnyam
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School-University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | | | | | | | | | |
Collapse
|