1
|
Newport ME, Wilson P, Lowes S, Behrends M, Coons A, Bowman J, Bates HE. Photoperiod influences visceral adiposity and the adipose molecular clock independent of temperature in wild-derived Peromyscus leucopus. FASEB Bioadv 2025; 7:e70006. [PMID: 40330430 PMCID: PMC12050962 DOI: 10.1096/fba.2024-00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 05/08/2025] Open
Abstract
Physiology is closely synchronized to daily and seasonal light/dark cycles. Humans artificially extend daylight and experience irregular light schedules, resulting in dysregulation of metabolism and body mass. In rodents, winter-like conditions (cold and short photoperiod) can alter energy balance and adipose tissue mass. To determine if photoperiod alone, independent of temperature, is a strong enough signal to regulate adiposity, we compared the effects of long and short photoperiod at thermoneutrality on adiposity and WAT gene expression in photoperiod-sensitive, F1 generation wild-derived adult male white-footed mice (Peromyscus leucopus). Mice were housed in long-day (16:8 light:dark) or short-day (8:16 light:dark) photoperiod conditions at thermoneutrality (27°C) for 4 weeks with the extended light being provided through artificial lighting. Photoperiod did not impact body weight or calorie consumption. However, mice housed in long photoperiod with extended artificial light selectively developed greater visceral WAT mass without changing subcutaneous WAT or interscapular BAT mass. This was accompanied by a decrease in Adrβ3 and Ucp1 mRNA expression in visceral WAT with no change in Pgc1a, Lpl, or Hsl. Expression of Per1, Per2, and Nr1d1 mRNA in visceral WAT differed between long and short photoperiods over time when aligned to circadian time but not onset of darkness, indicating alterations in clock gene expression with photoperiod. These findings suggest that extended photoperiod through artificial light can promote visceral fat accumulation alone, independent of temperature, supporting that artificial light may play a role in obesity.
Collapse
Affiliation(s)
| | - Paul Wilson
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Shanna Lowes
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Marthe Behrends
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Alexis Coons
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Jeff Bowman
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
- Wildlife Research and Monitoring SectionOntario Ministry of Natural ResourcesPeterboroughOntarioCanada
| | - Holly E. Bates
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| |
Collapse
|
2
|
Gopalsamy RG, Antony PJ, Athesh K, Hillary VE, Montalvão MM, Hariharan G, Santana LADM, Borges LP, Gurgel RQ. Dietary essential oil components: A systematic review of preclinical studies on the management of gastrointestinal diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156630. [PMID: 40085990 DOI: 10.1016/j.phymed.2025.156630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The gut is responsible for the digestion and absorption of nutrients, immune regulation, and barrier function. However, factors like poor diet, stress, and infection, can disrupt the balance of the gut microbiota and lead to intestinal inflammation and dysfunction. PURPOSE This systematic review aims to evaluate the effects of dietary plants-derived essential oil components on gut health and intestinal functions in animal models. METHODS The literature was gathered from the Scopus, Web of Science, PubMed, and Embase databases by using related search terms, such as "dietary plants", "dietary sources", "essential oils", "gut health", "intestine", "anti-inflammatory", "antioxidant", and "gut microbiota". RESULTS The results indicate that plant-derived dietary essential oil components, such as butyrolactone-I, carvacrol, cinnamaldehyde, citral, D-limonene, eugenol, farnesol, geraniol, indole, nerolidol, oleic acid, thymol, trans-anethole, vanillin, α-bisabolol, α-linolenic acid, α-pinene, α-terpineol, β-carotene, β-caryophyllene, and β-myrcene have been found to regulate gut health by influencing vital signalling pathways associated with inflammation. Dietary essential oil components modulate the expression of tumor necrosis factor alpha, interleukin 1 beta (IL-1β), interleukin (IL)-6, IL-10, inducible nitric oxide synthase, cyclooxygenase-2, toll-like receptor-4, matrix metalloproteinase, and interferon gamma in mitigating gut inflammation. The primary signalling molecules controlled by these molecules were AMP-activated protein kinase (AMPK), protein kinase B, extracellular signal-regulated kinase, c-Jun N-terminal kinase, mitogen-activated protein kinase, myeloid differentiation primary response 88, nuclear factor erythroid-2-related factor-2, and phosphoinositide 3-kinase (PI3K). Moreover, these phytochemicals have been shown to improve glucose homeostasis by regulating glucose transporter 4, glucagon-like peptide-1, peroxisome proliferator-activated receptor gamma, nuclear factor kappa B, AMPK, PI3K, and uncoupling protein-1. They can also reduce thiobarbituric acid reactive substance, malondialdehyde, and oxidative stress and enhance superoxide dismutase, catalase, and glutathione peroxidase levels. CONCLUSION In conclusion, dietary plants-derived essential oil components have the potential to mitigate inflammation and oxidative stress in the gut. However, additional clinical investigations are necessary to confirm their complete potential in improving human gut health functions.
Collapse
Affiliation(s)
- Rajiv Gandhi Gopalsamy
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India; Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil
| | - Poovathumkal James Antony
- Department of Microbiology, North Bengal University, St. Joseph's College, Darjeeling, West Bengal, India
| | - Kumaraswamy Athesh
- School of Sciences, Bharata Mata College (Autonomous), Kochi, Kerala, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India
| | | | | | | | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Ricardo Queiroz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil.
| |
Collapse
|
3
|
Duan H, Gong M, Yuan G, Wang Z. Sex Hormone: A Potential Target at Treating Female Metabolic Dysfunction-Associated Steatotic Liver Disease? J Clin Exp Hepatol 2025; 15:102459. [PMID: 39722783 PMCID: PMC11667709 DOI: 10.1016/j.jceh.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising due to rapid lifestyle changes. Although females may be less prone to MASLD than males, specific studies on MASLD in females should still be conducted. Previous research has shown that sex hormone levels are strongly linked to MASLD in females. By reviewing a large number of experimental and clinical studies, we summarized the pathophysiological mechanisms of estrogen, androgen, sex hormone-binding globulin, follicle-stimulating hormone, and prolactin involved in the development of MASLD. We also analyzed the role of these hormones in female MASLD patients with polycystic ovarian syndrome or menopause, and explored the potential of targeting sex hormones for the treatment of MASLD. We hope this will provide a reference for further exploration of mechanisms and treatments for female MASLD from the perspective of sex hormones.
Collapse
Affiliation(s)
- Huiyan Duan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Hurtado-Carneiro V, Juan-Arevalo Y, Flores CN, Herrero-De-Dios C, Perez-Garcia A, Contreras C, Lopez M, Alvarez E, Sanz C. Enhanced thermogenesis in PAS Kinase-deficient male mice. Biochem Pharmacol 2025; 233:116757. [PMID: 39824466 DOI: 10.1016/j.bcp.2025.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/15/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity. This has prompted an investigation into the potential role of PASK on energy expenditure through thermogenesis in adipose tissue. Our results indicate that PASK-deficient male mice exhibited higher brown adipose tissue (BAT) thermogenic activity and heat production. The inhibition of PASK function induces the expression of Uncoupling Protein 1 (UCP1) and the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARγ) in BAT. In addition, PASK deficiency promotes the expression of UCP1 and other browning markers such as PR/SET Domain 16 (PRDM16) in inguinal white adipose tissue (WAT). PASK-deficient mice record an enhanced thermogenic response, even under stimuli such as β-3adrenergic receptor agonist or cold. This evidence reveals PASK as a new mechanism modulating BAT thermogenesis.
Collapse
Affiliation(s)
- Veronica Hurtado-Carneiro
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Spain; Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
| | - Yolanda Juan-Arevalo
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Spain; Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain
| | - Cinthya N Flores
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Spain; Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain
| | - Carmen Herrero-De-Dios
- Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain
| | - Ana Perez-Garcia
- Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain
| | - Cristina Contreras
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid, Spain; NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Lopez
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elvira Alvarez
- Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain
| | - Carmen Sanz
- Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain
| |
Collapse
|
5
|
Li W, Shi J, Wu X, Qiu H, Liu C. Regulatory effects of yam (Dioscorea opposita Thunb.) glycoprotein on energy metabolism in C2C12 and 3T3-L1 cells and on crosstalk between these two cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119013. [PMID: 39481620 DOI: 10.1016/j.jep.2024.119013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Controlling energy and regulating metabolism have been key strategies in the treatment of metabolic disorders such as obesity. Yam glycoprotein (Y-Gly) is a polysaccharide-protein complex extracted from Chinese yam that has beneficial effects on glucose and lipid metabolism. This study aimed to investigate the role of Y-Gly in regulating energy metabolism in C2C12 and 3T3-L1 cells. MATERIALS AND METHODS Y-Gly was subjected to extraction and chemo-profiling. Staining methods, assay kits, Western Blot and transcriptomics were mainly used to determine the role of Y-Gly. Additionally, the study sought to examine the impact of Y-Gly on white adipose browning in 3T3-L1 cells, employing a cell co-culture technique. RESULTS Y-Gly promoted myotube differentiation in C2C12 myoblasts, increased cellular glucose consumption, promoted ATP synthesis and mitochondrial biogenesis, and played an active role in energy expenditure and glycolipid metabolism related pathways such as AMPK and MAPK. The introduction of Y-Gly inhibited lipid accumulation after lipogenesis in 3T3-L1 cells, facilitated induction of white adipose browning related proteins such as PPARγ and UCP1 expression, and the effect was more significant after cell co-culture. CONCLUSIONS Y-Gly regulates glucose and lipid metabolism by activating the key proteins in the aforementioned pathways, and plays a role in energy metabolism regulation through crosstalk between muscle and adipose tissues. This suggests a possible role of Y-Gly in metabolism-related diseases.
Collapse
Affiliation(s)
- Weiye Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Jian Shi
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Xueping Wu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Hongyong Qiu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Lee MJ. Vitamin D Enhancement of Adipose Biology: Implications on Obesity-Associated Cardiometabolic Diseases. Nutrients 2025; 17:586. [PMID: 39940444 PMCID: PMC11820181 DOI: 10.3390/nu17030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Vitamin D is activated into 1α,25(OH)2D through two hydroxylation steps that are primarily catalyzed by 25-hydroxylase in the liver and 1α-hydroxylase in the kidneys. The active form of vitamin D regulates myriads of cellular functions through its nuclear receptor, vitamin D receptor (VDR). Vitamin D metabolizing enzymes and VDR are expressed in adipose tissues and vitamin D regulates multiple aspects of adipose biology including the recruitment and differentiation of adipose stem cells into adipocytes and metabolic, endocrine, and immune properties. Obesity is associated with low vitamin D status, which is thought to be explained by its sequestration in large mass of adipose tissues as well as dysregulated vitamin D metabolism. Low vitamin D status in obesity may negatively impact adipose biology leading to adipose tissue dysfunctions, the major pathological factors for cardiometabolic diseases in obesity. In this review, the current understanding of vitamin D metabolism and its molecular mechanisms of actions, focusing on vitamin D-VDR regulation of adipose biology with their implications on obesity-associated diseases, is discussed. Whether improving vitamin D status leads to reductions in adiposity and risks for cardiometabolic diseases is also discussed.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
7
|
Yildiz R, Ganbold K, Sparman NZR, Rajbhandari P. Immune Regulatory Crosstalk in Adipose Tissue Thermogenesis. Compr Physiol 2025; 15:e70001. [PMID: 39921241 DOI: 10.1002/cph4.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Brown adipose tissue (BAT) and thermogenic beige fat within white adipose tissue (WAT), collectively known as adaptive thermogenic fat, dissipate energy as heat, offering promising therapeutic potential to combat obesity and metabolic disorders. The specific biological functions of these fat depots are determined by their unique interaction with the microenvironments, composed of immune cells, endothelial cells, pericytes, and nerve fibers. Immune cells residing in these depots play a key role in regulating energy expenditure and systemic energy homeostasis. The dynamic microenvironment of thermogenic fat depots is essential for maintaining tissue health and function. Immune cells infiltrate both BAT and beige WAT, contributing to their homeostasis and activation through intricate cellular communications. Emerging evidence underscores the importance of various immune cell populations in regulating thermogenic adipose tissue, though many remain undercharacterized. This review provides a comprehensive overview of the immune cells that regulate adaptive thermogenesis and their complex interactions within the adipose niche, highlighting their potential to influence metabolic health and contribute to therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ramazan Yildiz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Khatanzul Ganbold
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Njeri Z R Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
Dos Santos BG, Brisnovali NF, Goedeke L. Biochemical basis and therapeutic potential of mitochondrial uncoupling in cardiometabolic syndrome. Biochem J 2024; 481:1831-1854. [PMID: 39630236 DOI: 10.1042/bcj20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria, allowing for adjustments in cellular energy metabolism to maintain metabolic homeostasis. Small molecule uncouplers have been extensively studied for their potential to increase metabolic rate, and recent research has focused on developing safe and effective mitochondrial uncoupling agents for the treatment of obesity and cardiometabolic syndrome (CMS). Here, we provide a brief overview of CMS and cover the recent mechanisms by which chemical uncouplers regulate CMS-associated risk-factors and comorbidities, including dyslipidemia, insulin resistance, steatotic liver disease, type 2 diabetes, and atherosclerosis. Additionally, we review the current landscape of uncoupling agents, focusing on repurposed FDA-approved drugs and compounds in advanced preclinical or early-stage clinical development. Lastly, we discuss recent molecular insights by which chemical uncouplers enhance cellular energy expenditure, highlighting their potential as a new addition to the current CMS drug landscape, and outline several limitations that need to be addressed before these agents can successfully be introduced into clinical practice.
Collapse
Affiliation(s)
- Bernardo Gindri Dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Niki F Brisnovali
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| |
Collapse
|
9
|
Taghizadeh-Hesary F. Is Chronic Ice Water Ingestion a Risk Factor for Gastric Cancer Development? An Evidence-Based Hypothesis Focusing on East Asian Populations. Oncol Ther 2024; 12:629-646. [PMID: 39231856 PMCID: PMC11573998 DOI: 10.1007/s40487-024-00299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
This article introduces a novel risk factor for gastric cancer (GC) by analyzing available epidemiological data from East Asian populations. A significantly higher age-standardized GC rate was observed in Japanese and Korean populations than in Chinese populations, despite nearly identical ethnicity, food habits, obesity rates, and alcohol consumption. Given the pivotal role of environmental factors in GC development, particularly for the intestinal type, a thorough evaluation of the lifestyles of these three populations was conducted to identify commonalities and disparities. It was observed that Japanese and Korean individuals prefer consuming ice water, while Chinese individuals tend to drink warm water, potentially influenced by traditional Chinese medicine disciplines. Considering the key features of GC development, a literature review was conducted to investigate the mechanisms through which the consumption of ice water might contribute to GC initiation and progression. Mechanistically, exposing gastric cells to hypothermia can increase the risk of carcinogenesis through multiple pathways. This includes the promotion of Helicobacter pylori colonization, prolonged gastric inflammation, and mitochondrial dysfunction in gastric cells. Furthermore, drinking ice water can enhance the survival, proliferation, and invasion of GC cells by releasing cold shock proteins, increasing gastric acid secretion, and delaying gastric emptying. Additionally, hypothermia can boost the immune evasion of cancer cells by weakening the antitumor immune system and activating different components of the tumor microenvironment. This paper also explores the association between exposure of GC cells to hypothermia and current insights into cancer hallmarks. These findings may partially elucidate the higher incidence of GC in Japanese and Korean populations and provide a clue for future experimental studies.Graphical abstract available for this article.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Radiation Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Blaszkiewicz M, Johnson CP, Willows JW, Gardner ML, Taplin DR, Freitas MA, Townsend KL. The early transition to cold-induced browning in mouse subcutaneous white adipose tissue (scWAT) involves proteins related to nerve remodeling, cytoskeleton, mitochondria, and immune cells. Adipocyte 2024; 13:2428938. [PMID: 39641403 PMCID: PMC11633174 DOI: 10.1080/21623945.2024.2428938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
White adipose tissue (WAT) is a dynamic organ capable of remodelling in response to metabolic state. For example, in response to stimuli such as cold exposure, WAT can develop inducible brown adipocytes ('browning') capable of non-shivering thermogenesis, through concurrent changes to mitochondrial content and function. This is aided by increased neurite outgrowth and angiogenesis across the tissue, providing the needed neurovascular supply for uncoupling protein 1 activation. While several RNA-sequencing studies have been performed in WAT, including newer single cell and single nuclei studies, little work has been done to investigate changes to the adipose proteome, particularly during dynamic periods of tissue remodelling such as cold stimulation. Here, we conducted a comprehensive proteomic analysis of inguinal subcutaneous (sc) WAT during the initial 'browning' period of 24 or 72hrs of cold exposure in mice. We identified four significant pathways impacted by cold stimulation that are involved in tissue remodelling, which included mitochondrial function and metabolism, cytoskeletal remodelling, the immune response, and the nervous system. Taken together, we found that early changes in the proteome of WAT with cold stimulation predicted later structural and functional changes in the tissue that are important for tissue and whole-body remodelling to meet energetic and metabolic needs.
Collapse
Affiliation(s)
| | - Cory P. Johnson
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Jake W. Willows
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Miranda L. Gardner
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Dylan R. Taplin
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Michael A. Freitas
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Kristy L. Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
11
|
Li Q, Liu Y, Wang Y, Zhang Q, Zhang N, Song D, Wang F, Gao Q, Chen Y, Zhang G, Wen J, Zhao G, Chen L, Gao Y. Spop deficiency impairs adipogenesis and promotes thermogenic capacity in mice. PLoS Genet 2024; 20:e1011514. [PMID: 39680603 PMCID: PMC11684654 DOI: 10.1371/journal.pgen.1011514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/30/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As the adaptor protein that determines substrate specificity of the Cul3-SPOP-Rbx1 E3 ligase complex, SPOP is involved in numerous biological processes. However, its physiological connections with adipogenesis and thermogenesis remain poorly understood. In the current study, we report that the conditional knockout of Spop in mice results in substantial changes in protein expression, including the upregulation of a critical factor associated with thermogenesis, UCP1. Loss of SPOP also led to defects in body weight gain. In addition, conditional knockout mice exhibited resistance to high-fat-diet-induced obesity. Proteomics analysis found that proteins upregulated in the knockout mice are primarily enriched for functions in glycolysis/gluconeogenesis, oxidative phosphorylation, and thermogenesis. Furthermore, Spop knockout mice were more resilient during cold tolerance assay compared with the wild-type controls. Finally, the knockout of SPOP efficiently impaired adipogenesis in primary preadipocytes and the expression of associated genes. Collectively, these findings demonstrate the critical roles of SPOP in regulating adipogenesis and thermogenic capacity in mice.
Collapse
Affiliation(s)
- Qinghe Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuhong Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuanyuan Wang
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| | - Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Na Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Danli Song
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qianmei Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuxin Chen
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| | - Gaomeng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jie Wen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Guiping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Li Chen
- Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Yu Gao
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| |
Collapse
|
12
|
Kral M, van der Vorst EPC, Weber C, Döring Y. (Multi-) omics studies of ILC2s in inflammation and metabolic diseases. Front Cell Dev Biol 2024; 12:1473616. [PMID: 39529633 PMCID: PMC11551558 DOI: 10.3389/fcell.2024.1473616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) have emerged as pivotal regulators in the pathogenesis of diseases, with their roles in inflammation, metabolism, and tissue homeostasis becoming increasingly recognized. This review provides an overview of the current understanding of ILC2s in inflammation and metabolic disorders, including their functional contributions. Moreover, we will discuss how these cells adapt their metabolic processes to support their function and survival and how their metabolic requirements change under different physiological and pathological conditions. Lastly, we will review recent omics studies that have provided insights into the molecular and cellular characteristics of ILC2s. This includes transcriptomic, proteomic, and metabolomic analyses that have elucidated the gene expression profiles, protein interactions, and metabolic networks, respectively, associated with ILC2s. These studies have advanced our understanding of the functional diversity of ILC2s and their involvement in metabolic disease.
Collapse
Affiliation(s)
- Maria Kral
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Emiel P. C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
14
|
Yilmaz U, Tanbek K. Intracerebroventricular prokineticin 2 infusion may play a role on the hypothalamus-pituitary-thyroid axis and energy metabolism. Physiol Behav 2024; 283:114601. [PMID: 38838800 DOI: 10.1016/j.physbeh.2024.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
AIM The hypothesis of this study is to determine the effects of intracerebroventricular (icv) prokineticin 2 infusion on food consumption and body weight and to elucidate whether it has effects on energy expenditure via the hypothalamus-pituitary-thyroid (HPT) axis in adipose tissue. MATERIAL AND METHODS A total of 40 rats were used in the study and 4 groups were established: Control, Sham, Prokineticin 1.5 and Prokineticin 4.5 (n=10). Except for the Control group, rats were treated intracerebroventricularly via osmotic minipumps, the Sham group was infused with aCSF (vehicle), and the Prokineticin 1.5 and Prokineticin 4.5 groups were infused with 1.5 nMol and 4.5 nMol prokineticin 2, respectively. Food and water consumption and body weight were monitored during 7-day infusion in all groups. At the end of the infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined by ELISA. In addition, PGC-1α and UCP1 gene expression levels in white adipose tissue (WAT) and brown adipose tissue (BAT), TRH from rat hypothalamic tissue were determined by real-time PCR. RESULTS Icv prokineticin 2 (4.5 nMol) infusion had no effect on water consumption but reduced daily food consumption and body weight (p<0.05). Icv prokineticin 2 (4.5 nMol) infusion significantly increased serum TSH, fT4 and fT3 levels when compared to Control and Sham groups (p<0.05). Also, icv prokineticin 2 (4.5 nMol) infusion increased the expression of TRH in the hypothalamus tissue and expression of PGC-1α UCP1 in the WAT and BAT (p<0.05). CONCLUSION Icv prokineticin 2 (4.5 nMol) infusion may suppress food consumption via its receptors in the hypothalamus and reduce body weight by stimulating energy expenditure and thermogenesis in adipose tissue through the HPT axis.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Kevser Tanbek
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
15
|
Bardova K, Janovska P, Vavrova A, Kopecky J, Zouhar P. Adaptive Induction of Nonshivering Thermogenesis in Muscle Rather Than Brown Fat Could Counteract Obesity. Physiol Res 2024; 73:S279-S294. [PMID: 38752772 PMCID: PMC11412341 DOI: 10.33549/physiolres.935361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Warm-blooded animals such as birds and mammals are able to protect stable body temperature due to various thermogenic mechanisms. These processes can be facultative (occurring only under specific conditions, such as acute cold) and adaptive (adjusting their capacity according to long-term needs). They can represent a substantial part of overall energy expenditure and, therefore, affect energy balance. Classical mechanisms of facultative thermogenesis include shivering of skeletal muscles and (in mammals) non-shivering thermogenesis (NST) in brown adipose tissue (BAT), which depends on uncoupling protein 1 (UCP1). Existence of several alternative thermogenic mechanisms has been suggested. However, their relative contribution to overall heat production and the extent to which they are adaptive and facultative still needs to be better defined. Here we focus on comparison of NST in BAT with thermogenesis in skeletal muscles, including shivering and NST. We present indications that muscle NST may be adaptive but not facultative, unlike UCP1-dependent NST. Due to its slow regulation and low energy efficiency, reflecting in part the anatomical location, induction of muscle NST may counteract development of obesity more effectively than UCP1-dependent thermogenesis in BAT.
Collapse
Affiliation(s)
- K Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic. or
| | | | | | | | | |
Collapse
|
16
|
Weijie Z, Meng Z, Chunxiao W, Lingjie M, Anguo Z, Yan Z, Xinran C, Yanjiao X, Li S. Obesity-induced chronic low-grade inflammation in adipose tissue: A pathway to Alzheimer's disease. Ageing Res Rev 2024; 99:102402. [PMID: 38977081 DOI: 10.1016/j.arr.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive impairment worldwide. Overweight and obesity are strongly associated with comorbidities, such as hypertension, diabetes, and insulin resistance (IR), which contribute substantially to the development of AD and subsequent morbidity and mortality. Adipose tissue (AT) is a highly dynamic organ composed of a diverse array of cell types, which can be classified based on their anatomic localization or cellular composition. The expansion and remodeling of AT in the context of obesity involves immunometabolic and functional shifts steered by the intertwined actions of multiple immune cells and cytokine signaling within AT, which contribute to the development of metabolic disorders, IR, and systemic markers of chronic low-grade inflammation. Chronic low-grade inflammation, a prolonged, low-dose stimulation by specific immunogens that can progress from localized sites and affect multiple organs throughout the body, leads to neurodystrophy, increased apoptosis, and disruption of homeostasis, manifesting as brain atrophy and AD-related pathology. In this review, we sought to elucidate the mechanisms by which AT contributes to the onset and progression of AD in obesity through the mediation of chronic low-grade inflammation, particularly focusing on the roles of adipokines and AT-resident immune cells.
Collapse
Affiliation(s)
- Zhai Weijie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wei Chunxiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Lingjie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Anguo
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000 China
| | - Zhang Yan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Cui Xinran
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xu Yanjiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Sun Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
17
|
Chang SH, Song D, Oh S, Han SA, Jung JM, Song NJ, Kang H, Lee S, Ahn JY, Ahn S, Na YR, Yeom CH, Park KW, Ku JM. Butein derivatives prevent obesity and improve insulin resistance through the induction of energy expenditure in high-fat diet-fed obese mice. Eur J Pharm Sci 2024; 199:106820. [PMID: 38821248 DOI: 10.1016/j.ejps.2024.106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Obesity is a global public health problem and is related with fatal diseases such as cancer and cardiovascular and metabolic diseases. Medical and lifestyle-related strategies to combat obesity have their limitations. White adipose tissue (WAT) browning is a promising strategy for increasing energy expenditure in individuals with obesity. Uncoupling protein 1 (UCP1) drives WAT browning. We previously screened natural products that enable induction of Ucp1 and demonstrated that these natural products induced WAT browning and increased energy expenditure in mice with diet-induced obesity. In this study, we aimed to extensively optimise the structure of compound 1, previously shown to promote WAT browning. Compound 3 s exhibited a significantly higher ability to induce Ucp1 in white and brown adipocytes than did compound 1. A daily injection of compound 3 s at 5 mg/kg prevented weight gain by 13.6 % in high-fat diet-fed mice without any toxicological observation. In addition, compound 3 s significantly improved glucose homeostasis, decreased serum triacylglycerol levels, and reduced total cholesterol and LDL cholesterol levels, without altering dietary intake or physical activity. Pharmaceutical properties such as solubility, lipophilicity, and membrane permeability as well as metabolic stability, half-life (T1/2), and blood exposure ratio of i.p to i.v were significantly improved in compound 3 s when compared with those in compound 1. Regarding the mode of action of WAT browning, the induction of Ucp1 and Prdm4 by compounds 1 and 3 s was dependent on Akt1 in mouse embryonic fibroblasts. Therefore, this study suggests the potential of compound 3 s as a therapeutic agent for individuals with obesity and related metabolic diseases, which acts through the induction of WAT browning as well as brown adipose tissue activation.
Collapse
Affiliation(s)
- Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Dawoon Song
- Natural Biomaterials team, Gyeonggido Business and Science Accelerator, Suwon 443-270, Republic of Korea
| | - Seungjun Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Saro-Areum Han
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Ji-Man Jung
- Natural Biomaterials team, Gyeonggido Business and Science Accelerator, Suwon 443-270, Republic of Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hee Kang
- Humanitas College Kyung Hee University1732 Deogyeongdae-ro, Yongin 17104, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | | | - Yu-Ran Na
- Rappeler Company, Anyang, 14118, Republic of Korea
| | | | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Jin-Mo Ku
- Natural Biomaterials team, Gyeonggido Business and Science Accelerator, Suwon 443-270, Republic of Korea.
| |
Collapse
|
18
|
Shafiei-Jahani P, Yan S, Kazemi MH, Li X, Akbari A, Sakano K, Sakano Y, Hurrell BP, Akbari O. CB2 stimulation of adipose resident ILC2s orchestrates immune balance and ameliorates type 2 diabetes mellitus. Cell Rep 2024; 43:114434. [PMID: 38963763 PMCID: PMC11317174 DOI: 10.1016/j.celrep.2024.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
Development of type 2 diabetes mellitus (T2DM) is associated with low-grade chronic type 2 inflammation and disturbance of glucose homeostasis. Group 2 innate lymphoid cells (ILC2s) play a critical role in maintaining adipose homeostasis via the production of type 2 cytokines. Here, we demonstrate that CB2, a G-protein-coupled receptor (GPCR) and member of the endocannabinoid system, is expressed on both visceral adipose tissue (VAT)-derived murine and human ILC2s. Moreover, we utilize a combination of ex vivo and in vivo approaches to explore the functional and therapeutic impacts of CB2 engagement on VAT ILC2s in a T2DM model. Our results show that CB2 stimulation of ILC2s protects against insulin-resistance onset, ameliorates glucose tolerance, and reverses established insulin resistance. Our mechanistic studies reveal that the therapeutic effects of CB2 are mediated through activation of the AKT, ERK1/2, and CREB pathways on ILC2s. The results reveal that the CB2 agonist can serve as a candidate for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shi Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mohammad H Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amitis Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
19
|
Gao J, Zhang M, Zhang L, Wang N, Zhao Y, Ren D, Yang X. Dietary Pectin from Premna microphylla Turcz Leaves Prevents Obesity by Regulating Gut Microbiota and Lipid Metabolism in Mice Fed High-Fat Diet. Foods 2024; 13:2248. [PMID: 39063332 PMCID: PMC11275460 DOI: 10.3390/foods13142248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The present study was designed to investigate the protective effects of pectin extracted from Premna microphylla Turcz leaves (PTP) against high-fat-diet (HFD)-induced lipid metabolism disorders and gut microbiota dysbiosis in obese mice. PTP was made using the acid extraction method, and it was found to be an acidic pectin that had relative mole percentages of 32.1%, 29.2%, and 26.2% for galacturonic acid, arabinose, and galactose, respectively. The administration of PTP in C57BL/6J mice inhibited the HFD-induced abnormal weight gain, visceral obesity, and dyslipidemia, and also improved insulin sensitivity, as revealed by the improved insulin tolerance and the decreased glucose levels during an insulin sensitivity test. These effects were linked to increased energy expenditure, as demonstrated by the upregulation of thermogenesis-related protein UCP1 expression in the brown adipose tissue (BAT) of PTP-treated mice. 16S rRNA gene sequencing revealed that PTP dramatically improved the HFD-induced gut dysbiosis by lowering the ratio of Firmicutes to Bacteroidetes and the quantity of potentially harmful bacteria. These findings may provide a theoretical basis for us to understand the functions and usages of PTP in alleviating obesity.
Collapse
Affiliation(s)
- Jiaobei Gao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (J.G.); (D.R.)
| | - Mengxue Zhang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.Z.); (L.Z.); (N.W.); (Y.Z.)
| | - Li Zhang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.Z.); (L.Z.); (N.W.); (Y.Z.)
| | - Nan Wang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.Z.); (L.Z.); (N.W.); (Y.Z.)
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.Z.); (L.Z.); (N.W.); (Y.Z.)
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (J.G.); (D.R.)
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (J.G.); (D.R.)
| |
Collapse
|
20
|
Lu Z, Ding L, Jiang X, Zhang S, Yan M, Yang G, Tian X, Wang Q. Single-nucleus RNA transcriptome profiling reveals murine adipose tissue endothelial cell proliferation gene networks involved in obesity development. Arch Biochem Biophys 2024; 757:110029. [PMID: 38729594 DOI: 10.1016/j.abb.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Endothelial cells play an important role in the metabolism of adipose tissue (AT). This study aimed to analyze the changes that adipose tissue in AT endothelial cells undergo during the development of obesity, using single-nucleus RNA sequence (snRNA-seq). Mouse paraepididymal AT cells were subjected to snRNA-seq with the 10X Genomics platform. The cell types were then clustered using t-distributed stochastic neighbor embedding and unbiased computational informatics analyses. Protein-protein interactions network was established using the STRING database and visualized using Cytoscape. The dataset was subjected to differential gene enrichment analysis. In total, 21,333 cells acquired from 24 mouse paraepididymal AT samples were analyzed using snRNA-seq. This study identified 18 distinct clusters and annotated macrophages, fibroblasts, epithelial cells, T cells, endothelial cells, stem cells, neutrophil cells, and neutrophil cell types based on representative markers. Cluster 12 was defined as endothelial cells. The proportion of endothelial cells decreased with the development of obesity. Inflammatory factors, such as Vegfa and Prdm16 were upregulated in the medium obesity group but downregulated in the obesity group. Genes, such as Prox1, Erg, Flt4, Kdr, Flt1, and Pecam1 promoted the proliferation of AT endothelial cells and maintained the internal environment of AT. This study established a reference model and general framework for studying the mechanisms, biomarkers, and therapeutic targets of endothelial cell dysfunction-related diseases at the single-cell level.
Collapse
Affiliation(s)
- Zhimin Lu
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Ling Ding
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Xing Jiang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Sen Zhang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Min Yan
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Guangxin Yang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Xuewen Tian
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China.
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China.
| |
Collapse
|
21
|
Sahin C, Melanson JR, Le Billan F, Magomedova L, Ferreira TAM, Oliveira AS, Pollock-Tahari E, Saikali MF, Cash SB, Woo M, Romeiro LAS, Cummins CL. A novel fatty acid mimetic with pan-PPAR partial agonist activity inhibits diet-induced obesity and metabolic dysfunction-associated steatotic liver disease. Mol Metab 2024; 85:101958. [PMID: 38763495 PMCID: PMC11170206 DOI: 10.1016/j.molmet.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVE The prevalence of metabolic diseases is increasing globally at an alarming rate; thus, it is essential that effective, accessible, low-cost therapeutics are developed. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that tightly regulate glucose homeostasis and lipid metabolism and are important drug targets for the treatment of type 2 diabetes and dyslipidemia. We previously identified LDT409, a fatty acid-like compound derived from cashew nut shell liquid, as a novel pan-active PPARα/γ/δ compound. Herein, we aimed to assess the efficacy of LDT409 in vivo and investigate the molecular mechanisms governing the actions of the fatty acid mimetic LDT409 in diet-induced obese mice. METHODS C57Bl/6 mice (6-11-month-old) were fed a chow or high fat diet (HFD) for 4 weeks; mice thereafter received once daily intraperitoneal injections of vehicle, 10 mg/kg Rosiglitazone, 40 mg/kg WY14643, or 40 mg/kg LDT409 for 18 days while continuing the HFD. During treatments, body weight, food intake, glucose and insulin tolerance, energy expenditure, and intestinal lipid absorption were measured. On day 18 of treatment, tissues and plasma were collected for histological, molecular, and biochemical analysis. RESULTS We found that treatment with LDT409 was effective at reversing HFD-induced obesity and associated metabolic abnormalities in mice. LDT409 lowered food intake and hyperlipidemia, while improving insulin tolerance. Despite being a substrate of both PPARα and PPARγ, LDT409 was crucial for promoting hepatic fatty acid oxidation and reducing hepatic steatosis in HFD-fed mice. We also highlighted a role for LDT409 in white and brown adipocytes in vitro and in vivo where it decreased fat accumulation, increased lipolysis, induced browning of WAT, and upregulated thermogenic gene Ucp1. Remarkably, LDT409 reversed HFD-induced weight gain back to chow-fed control levels. We determined that the LDT409-induced weight-loss was associated with a combination of increased energy expenditure (detectable before weight loss was apparent), decreased food intake, increased systemic fat utilization, and increased fecal lipid excretion in HFD-fed mice. CONCLUSIONS Collectively, LDT409 represents a fatty acid mimetic that generates a uniquely favorable metabolic response for the treatment of multiple abnormalities including obesity, dyslipidemia, metabolic dysfunction-associated steatotic liver disease, and diabetes. LDT409 is derived from a highly abundant natural product-based starting material and its development could be pursued as a therapeutic solution to the global metabolic health crisis.
Collapse
Affiliation(s)
- Cigdem Sahin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jenna-Rose Melanson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Florian Le Billan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Thais A M Ferreira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Andressa S Oliveira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Evan Pollock-Tahari
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Sarah B Cash
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Banting and Best Diabetes Centre, Toronto, ON, M5G 2C4, Canada
| | - Luiz A S Romeiro
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Banting and Best Diabetes Centre, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
22
|
Alonso-García M, Gutiérrez-Gil B, Pelayo R, Fonseca PAS, Marina H, Arranz JJ, Suárez-Vega A. A meta-analysis approach for annotation and identification of lncRNAs controlling perirenal fat deposition in suckling lambs. Anim Biotechnol 2024; 35:2374328. [PMID: 39003576 DOI: 10.1080/10495398.2024.2374328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Long non-coding RNAs (lncRNAs) are being studied in farm animals due to their association with traits of economic interest, such as fat deposition. Based on the analysis of perirenal fat transcriptomes, this research explored the relevance of these regulatory elements to fat deposition in suckling lambs. To that end, meta-analysis techniques have been implemented to efficiently characterize and detect differentially expressed transcripts from two different RNA-seq datasets, one including samples of two sheep breeds that differ in fat deposition features, Churra and Assaf (n = 14), and one generated from Assaf suckling lambs with different fat deposition levels (n = 8). The joint analysis of the 22 perirenal fat RNA-seq samples with the FEELnc software allowed the detection of 3953 novel lncRNAs. After the meta-analysis, 251 differentially expressed genes were identified, 21 of which were novel lncRNAs. Additionally, a co-expression analysis revealed that, in suckling lambs, lncRNAs may play a role in controlling angiogenesis and thermogenesis, processes highlighted in relation to high and low fat deposition levels, respectively. Overall, while providing information that could be applied for the improvement of suckling lamb carcass traits, this study offers insights into the biology of perirenal fat deposition regulation in mammals.
Collapse
Affiliation(s)
- María Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rocío Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Héctor Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
23
|
Davidsen LI, Hagberg CE, Goitea V, Lundby SM, Larsen S, Ebbesen MF, Stanic N, Topel H, Kornfeld JW. Mouse vascularized adipose spheroids: an organotypic model for thermogenic adipocytes. Front Endocrinol (Lausanne) 2024; 15:1396965. [PMID: 38982992 PMCID: PMC11231189 DOI: 10.3389/fendo.2024.1396965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues' thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by environmental factors like cold exposure or by pharmacology, share metabolic mechanisms that drive non-shivering thermogenesis. Understanding these two cell types requires advanced, yet broadly applicable in vitro models that reflect the complex microenvironment and vasculature of adipose tissues. Here we present mouse vascularized adipose spheroids of the stromal vascular microenvironment from inguinal white adipose tissue, a tissue with 'beiging' capacity in mice and humans. We show that adding a scaffold improves vascular sprouting, enhances spheroid growth, and upregulates adipogenic markers, thus reflecting increased adipocyte maturity. Transcriptional profiling via RNA sequencing revealed distinct metabolic pathways upregulated in our vascularized adipose spheroids, with increased expression of genes involved in glucose metabolism, lipid metabolism, and thermogenesis. Functional assessment demonstrated increased oxygen consumption in vascularized adipose spheroids compared to classical 2D cultures, which was enhanced by β-adrenergic receptor stimulation correlating with elevated β-adrenergic receptor expression. Moreover, stimulation with the naturally occurring adipokine, FGF21, induced Ucp1 mRNA expression in the vascularized adipose spheroids. In conclusion, vascularized inguinal white adipose tissue spheroids provide a physiologically relevant platform to study how the stromal vascular microenvironment shapes adipocyte responses and influence activated thermogenesis in beige adipocytes.
Collapse
Affiliation(s)
- Laura Ingeborg Davidsen
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Carolina E. Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Victor Goitea
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| | - Stine Meinild Lundby
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Frendø Ebbesen
- Danish Molecular Biomedical Imaging Center (DaMBIC), Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Natasha Stanic
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Hande Topel
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| | - Jan-Wilhelm Kornfeld
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
Amri EZ. Beige or brite adipocytes of the adipose organ: Link with white and brown adipocytes. ANNALES D'ENDOCRINOLOGIE 2024; 85:253-254. [PMID: 38871507 DOI: 10.1016/j.ando.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
MESH Headings
- Animals
- Humans
- Adipocytes/physiology
- Adipocytes, Beige/physiology
- Adipocytes, Beige/metabolism
- Adipocytes, Beige/cytology
- Adipocytes, Brown/physiology
- Adipocytes, White/physiology
- Adipocytes, White/cytology
- Adipocytes, White/metabolism
- Adipose Tissue/physiology
- Adipose Tissue/metabolism
- Adipose Tissue/cytology
- Adipose Tissue, Brown/physiology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/physiology
- Adipose Tissue, White/cytology
- Obesity/pathology
Collapse
Affiliation(s)
- Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, Adipocible, Nice, France.
| |
Collapse
|
25
|
Carpentier AC, Blondin DP. Is stimulation of browning of human adipose tissue a relevant therapeutic target? ANNALES D'ENDOCRINOLOGIE 2024; 85:184-189. [PMID: 38871497 DOI: 10.1016/j.ando.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Brown adipose tissue (BAT) and beige adipose tissues are important contributors to cold-induced whole body thermogenesis in rodents. The documentation in humans of cold- and ß-adrenergic receptor agonist-stimulated BAT glucose uptake using positron emission tomography (PET) and of a decrease of this response in individuals with cardiometabolic disorders led to the suggestion that BAT/beige adipose tissues could be relevant targets for prevention and treatment of these conditions. In this brief review, we will critically assess this question by first describing the basic rationale for this affirmation, second by examining the evidence in human studies, and third by discussing the possible means to activate the thermogenic response of these tissues in humans.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada.
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
26
|
Wen X, Song Y, Zhang M, Kang Y, Chen D, Ma H, Nan F, Duan Y, Li J. Polyphenol Compound 18a Modulates UCP1-Dependent Thermogenesis to Counteract Obesity. Biomolecules 2024; 14:618. [PMID: 38927022 PMCID: PMC11201655 DOI: 10.3390/biom14060618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies increasingly suggest that targeting brown/beige adipose tissues to enhance energy expenditure offers a novel therapeutic approach for treating metabolic diseases. Brown/beige adipocytes exhibit elevated expression of uncoupling protein 1 (UCP1), which is a thermogenic protein that efficiently converts energy into heat, particularly in response to cold stimulation. Polyphenols possess potential anti-obesity properties, but their pharmacological effects are limited by their bioavailability and distribution within tissue. This study discovered 18a, a polyphenol compound with a favorable distribution within adipose tissues, which transcriptionally activates UCP1, thereby promoting thermogenesis and enhancing mitochondrial respiration in brown adipocytes. Furthermore, in vivo studies demonstrated that 18a prevents high-fat-diet-induced weight gain and improves insulin sensitivity. Our research provides strong mechanistic evidence that UCP1 is a complex mediator of 18a-induced thermogenesis, which is a critical process in obesity mitigation. Brown adipose thermogenesis is triggered by 18a via the AMPK-PGC-1α pathway. As a result, our research highlights a thermogenic controlled polyphenol compound 18a and clarifies its underlying mechanisms, thus offering a potential strategy for the thermogenic targeting of adipose tissue to reduce the incidence of obesity and its related metabolic problems.
Collapse
Affiliation(s)
- Xueping Wen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufei Song
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yiping Kang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Dandan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Hui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Fajun Nan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yanan Duan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| |
Collapse
|
27
|
Sun JY, Su Z, Yang J, Sun W, Kong X. The potential mechanisms underlying the modulating effect of perirenal adipose tissue on hypertension: Physical compression, paracrine, and neurogenic regulation. Life Sci 2024; 342:122511. [PMID: 38387699 DOI: 10.1016/j.lfs.2024.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Hypertension, a prevalent global cardiovascular disease, affects approximately 45.4 % of adults worldwide. Despite advances in therapy, hypertension continues to pose a significant health risk due to inadequate management. It has been established that excessive adiposity contributes majorly to hypertension, accounting for 65 to 75 % of primary cases. Fat depots can be categorised into subcutaneous and visceral adipose tissue based on anatomical and physiological characteristics. The metabolic impact and the risk of hypertension are determined more significantly by visceral fat. Perirenal adipose tissue (PRAT), a viscera enveloping the kidney, is known for its superior vascularisation and abundant innervation. Although traditionally deemed as a mechanical support tissue, recent studies have indicated its contributing potential to hypertension. Hypertensive patients tend to have increased PRAT thickness compared to those without, and there is a positive correlation between PRAT thickness and elevated systolic blood pressure. This review encapsulates the anatomical characteristics and biogenesis of PRAT. We provide an overview of the potential mechanisms where PRAT may modulate blood pressure, including physical compression, paracrine effects, and neurogenic regulation. PRAT has become a promising target for hypertension management, and continuous effort is required to further explore the underlying mechanisms.
Collapse
Affiliation(s)
- Jin-Yu Sun
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Zhenyang Su
- Medical School of Southeast University, Nanjing 21000, China
| | - Jiaming Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Wei Sun
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.
| | - Xiangqing Kong
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.
| |
Collapse
|
28
|
Kowald A, Palmer D, Secci R, Fuellen G. Healthy Aging in Times of Extreme Temperatures: Biomedical Approaches. Aging Dis 2024; 15:601-611. [PMID: 37450930 PMCID: PMC10917539 DOI: 10.14336/ad.2023.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Climate extremes and rising energy prices present interconnected global health risks. Technical solutions can be supplemented with biomedical approaches to promote healthy longevity in hot and cold conditions. In summer, reducing basal metabolic rate through mild caloric restriction or CR mimetics, such as resveratrol, can potentially be used to lower body temperature. In winter, activating brown adipose tissue (BAT) for non-shivering thermogenesis and improved metabolic health can help adaptation to colder environments. Catechins found in green tea and in other food could be alternatives to drugs for these purposes. This review examines and discusses the biomedical evidence supporting the use of CR mimetics and BAT activators for health benefits amid increasingly extreme temperatures.
Collapse
Affiliation(s)
- Axel Kowald
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Daniel Palmer
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Riccardo Secci
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Georg Fuellen
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
- Interdisziplinäre Fakultät, Department AGIS (Altern des Individuums und der Gesellschaft), Universität Rostock, Germany.
- School of Medicine, University College Dublin, Ireland.
| |
Collapse
|
29
|
Hu Q, Xu Y, Xiao T, Peng R, Li Z, Xu G, Yu B, Li J, Li ZY, Hou H, Lin Y, Cao J, Liu N, Zha ZG, Gui T, Zhang HT, Cai Y. Trim21 Regulates the Postnatal Development and Thermogenesis of Brown Adipose Tissue. Adv Biol (Weinh) 2024; 8:e2300510. [PMID: 38085135 DOI: 10.1002/adbi.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Indexed: 03/16/2024]
Abstract
Brown adipose tissue undergoes rapid postnatal development to mature and plays a crucial role in thermoregulation and energy expenditure, which protects against cold and obesity. Herein, it is shown that the expression of Trim21 mRNA level of interscapular brown adipose tissue elevates after birth, and peaks at P14 (postnatal day 14). Trim21 depletion severely impairs the maturation of interscapular brown adipose tissue, decreases the expression of a series of thermogenic genes, and reduces energy expenditure. Consistently, the loss of Trim21 also leads to a suppression of white adipose tissue "browning", in response to cold exposure and a β-adrenergic agonist, CL316,243. In addition, Trim21-/- mice are more prone to high-fat diet-induced obesity compared with the control littermates. Taken together, the study for the first time reveals a critical role of Trim21 in regulating iBAT postnatal development and thermogenesis.
Collapse
Affiliation(s)
- Qinxiao Hu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yidi Xu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Teng Xiao
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Rui Peng
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Zhenwei Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
- Department of Orthopedics, the Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233002, China
| | - Guisheng Xu
- Department of Joint and Sports Medicine, The First People's Hospital of Zhaoqing, Zhaoqing, Guangdong, 526000, China
| | - Bo Yu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Jianping Li
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Huige Hou
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yuning Lin
- Department of Joint and Sports Medicine, The First People's Hospital of Zhaoqing, Zhaoqing, Guangdong, 526000, China
| | - Jiahui Cao
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ning Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Tao Gui
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yuebo Cai
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education of Jinan University, Guangzhou, Guangdong, 510630, China
- Department of Orthopedics, the Affiliated Shunde Hospital of Jinan University, Shunde, Guangdong, 528300, China
| |
Collapse
|
30
|
Mota CMD, Madden CJ. Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands. Nat Rev Neurosci 2024; 25:143-158. [PMID: 38316956 DOI: 10.1038/s41583-023-00785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/07/2024]
Abstract
The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
31
|
Naren Q, Lindsund E, Bokhari MH, Pang W, Petrovic N. Differential responses to UCP1 ablation in classical brown versus beige fat, despite a parallel increase in sympathetic innervation. J Biol Chem 2024; 300:105760. [PMID: 38367663 PMCID: PMC10944106 DOI: 10.1016/j.jbc.2024.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.
Collapse
Affiliation(s)
- Qimuge Naren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Erik Lindsund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Muhammad Hamza Bokhari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
32
|
Panda SS, Behera B, Ghosh R, Bagh B, Aich P. Antibiotic induced adipose tissue browning in C57BL/6 mice: An association with the metabolic profile and the gut microbiota. Life Sci 2024; 340:122473. [PMID: 38290571 DOI: 10.1016/j.lfs.2024.122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
AIMS The use of antibiotics affects health. The gut microbial dysbiosis by antibiotics is thought to be an essential pathway to influence health. It is important to have optimized energy utilization, in which adipose tissues (AT) play crucial roles in maintaining health. Adipocytes regulate the balance between energy expenditure and storage. While it is known that white adipose tissue (WAT) stores energy and brown adipose tissue (BAT) produces energy by thermogenesis, the role of an intermediate AT plays an important role in balancing host internal energy. In the current study, we tried to understand how treating an antibiotic cocktail transforms WAT into BAT or, more precisely, into beige adipose tissue (BeAT). METHODS Since antibiotic treatment perturbs the host microbiota, we wanted to understand the role of gut microbial dysbiosis in transforming WAT into BeAT in C57BL/6 mice. We further correlated the metabolic profile at the systemic level with this BeAT transformation and gut microbiota profile. KEY FINDINGS In the present study, we have reported that the antibiotic cocktail treatment increases the Proteobacteria and Actinobacteria while reducing the Bacteroidetes phylum. We observed that prolonged antibiotic treatment could induce the formation of BeAT in the inguinal and perigonadal AT. The correlation analysis showed an association between the gut microbiota phyla, beige adipose tissue markers, and serum metabolites. SIGNIFICANCE Our study revealed that the gut microbiota has a significant role in regulating the metabolic health of the host via microbiota-adipose axis communication.
Collapse
Affiliation(s)
- Swati Sagarika Panda
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Biplab Behera
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India.
| |
Collapse
|
33
|
Cicatiello AG, Nappi A, Franchini F, Nettore IC, Raia M, Rocca C, Angelone T, Dentice M, Ungaro P, Macchia PE. The histone methyltransferase SMYD1 is induced by thermogenic stimuli in adipose tissue. Epigenomics 2024; 16:359-374. [PMID: 38440863 DOI: 10.2217/epi-2023-0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Aim: To study the expression of histone methyltransferase SMYD1 in white adipose tissue (WAT) and brown adipose tissue and during differentiation of preadipocytes to white and beige phenotypes. Methods: C57BL/6J mice fed a high-fat diet (and exposed to cold) and 3T3-L1 cells stimulated to differentiate into white and beige adipocytes were used. Results: SMYD1 expression increased in WAT of high-fat diet fed mice and in WAT and brown adipose tissue of cold-exposed mice, suggesting its role in thermogenesis. SMYD1 expression was higher in beige adipocytes than in white adipocytes, and its silencing leads to a decrease in mitochondrial content and in Pgc-1α expression. Conclusion: These data suggest a novel role for SMYD1 as a positive regulator of energy control in adipose tissue.
Collapse
Affiliation(s)
- Annunziata G Cicatiello
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
| | - Annarita Nappi
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
| | - Fabiana Franchini
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
| | - Immacolata C Nettore
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
| | - Maddalena Raia
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy
| | - Carmine Rocca
- Laboratory of Cellular & Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology & Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Tommaso Angelone
- Laboratory of Cellular & Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology & Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy
| | - Monica Dentice
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy
| | - Paola Ungaro
- National Research Council - Institute for Experimental Endocrinology & Oncology 'Gaetano Salvatore', 80131, Naples, Italy
| | - Paolo E Macchia
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
| |
Collapse
|
34
|
Fukui K, You F, Kato Y, Yuzawa S, Kishimoto A, Hara T, Kanome Y, Harakawa Y, Yoshikawa T. A Blended Vitamin Supplement Improves Spatial Cognitive and Short-Term Memory in Aged Mice. Int J Mol Sci 2024; 25:2804. [PMID: 38474050 PMCID: PMC10932377 DOI: 10.3390/ijms25052804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Although many types of antioxidant supplements are available, the effect is greater if multiple types are taken simultaneously rather than one type. However, it is difficult to know which type and how much to take, as it is possible to take too many of some vitamins. As it is difficult for general consumers to make this choice, it is important to provide information based on scientific evidence. This study investigated the various effects of continuous administration of a blended supplement to aging mice. In 18-month-old C57BL/6 mice given a blended supplement ad libitum for 1 month, spatial cognition and short-term memory in the Morris water maze and Y-maze improved compared with the normal aged mice (spontaneous alternative ratio, normal aged mice, 49.5%, supplement-treated mice, 68.67%, p < 0.01). No significant differences in brain levels of secreted neurotrophic factors, such as nerve growth factor and brain-derived neurotrophic factor, were observed between these two groups. In treadmill durability tests before and after administration, the rate of increase in running distance after administration was significantly higher than that of the untreated group (increase rate, normal aged mice, 91.17%, supplement-treated aged mice, 111.4%, p < 0.04). However, training had no reinforcing effect, and post-mortem serum tests showed a significant decrease in aspartate aminotransferase, alanine aminotransferase, and total cholesterol values. These results suggest continuous intake of a blended supplement may improve cognitive function and suppress age-related muscle decline.
Collapse
Affiliation(s)
- Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan (Y.H.)
- Antioxidant Research, Louis Pasteur Center for Medical Research, 103-5 Tanakamonzen-cho, Sakyo-ku, Kyoto 606-8225, Japan;
| | - Yugo Kato
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Shuya Yuzawa
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Ayuta Kishimoto
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Takuma Hara
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Yuki Kanome
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan (S.Y.); (T.H.)
| | - Yoshiaki Harakawa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan (Y.H.)
| | - Toshikazu Yoshikawa
- Antioxidant Research, Louis Pasteur Center for Medical Research, 103-5 Tanakamonzen-cho, Sakyo-ku, Kyoto 606-8225, Japan;
- Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
35
|
Eberhart T, Stanley FU, Ricci L, Chirico T, Ferrarese R, Sisti S, Scagliola A, Baj A, Badurek S, Sommer A, Culp-Hill R, Dzieciatkowska M, Shokry E, Sumpton D, D'Alessandro A, Clementi N, Mancini N, Cardaci S. ACOD1 deficiency offers protection in a mouse model of diet-induced obesity by maintaining a healthy gut microbiota. Cell Death Dis 2024; 15:105. [PMID: 38302438 PMCID: PMC10834593 DOI: 10.1038/s41419-024-06483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Aconitate decarboxylase 1 (ACOD1) is the enzyme synthesizing itaconate, an immuno-regulatory metabolite tuning host-pathogen interactions. Such functions are achieved by affecting metabolic pathways regulating inflammation and microbe survival. However, at the whole-body level, metabolic roles of itaconate remain largely unresolved. By using multiomics-integrated approaches, here we show that ACOD1 responds to high-fat diet consumption in mice by promoting gut microbiota alterations supporting metabolic disease. Genetic disruption of itaconate biosynthesis protects mice against obesity, alterations in glucose homeostasis and liver metabolic dysfunctions by decreasing meta-inflammatory responses to dietary lipid overload. Mechanistically, fecal metagenomics and microbiota transplantation experiments demonstrate such effects are dependent on an amelioration of the intestinal ecosystem composition, skewed by high-fat diet feeding towards obesogenic phenotype. In particular, unbiased fecal microbiota profiling and axenic culture experiments point towards a primary role for itaconate in inhibiting growth of Bacteroidaceae and Bacteroides, family and genus of Bacteroidetes phylum, the major gut microbial taxon associated with metabolic health. Specularly to the effects imposed by Acod1 deficiency on fecal microbiota, oral itaconate consumption enhances diet-induced gut dysbiosis and associated obesogenic responses in mice. Unveiling an unrecognized role of itaconate, either endogenously produced or exogenously administered, in supporting microbiota alterations underlying diet-induced obesity in mice, our study points ACOD1 as a target against inflammatory consequences of overnutrition.
Collapse
Affiliation(s)
- Tanja Eberhart
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federico Uchenna Stanley
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luisa Ricci
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Tiziana Chirico
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Roberto Ferrarese
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
- Synlab Italia, Castenedolo, BS, Italy
| | - Sofia Sisti
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
| | - Alessandra Scagliola
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andreina Baj
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Sylvia Badurek
- Preclinical Phenotyping Facility, Vienna BioCenter Core Facilities (VBCF), member of the Vienna BioCenter (VBC), Vienna, Austria
| | - Andreas Sommer
- Next Generation Sequencing Facility, Vienna BioCenter Core Facilities (VBCF), member of the Vienna BioCenter (VBC), Vienna, Austria
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Laboratory of Medical Microbiology and Virology, Fondazione Macchi University Hospital, Varese, Italy
| | - Simone Cardaci
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
36
|
Jaeckstein MY, Schulze I, Zajac MW, Heine M, Mann O, Pfeifer A, Heeren J. CD73-dependent generation of extracellular adenosine by vascular endothelial cells modulates de novo lipogenesis in adipose tissue. Front Immunol 2024; 14:1308456. [PMID: 38264660 PMCID: PMC10803534 DOI: 10.3389/fimmu.2023.1308456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Next to white and brown adipocytes present in white and brown adipose tissue (WAT, BAT), vascular endothelial cells, tissue-resident macrophages and other immune cells have important roles in maintaining adipose tissue homeostasis but also contribute to the etiology of obesity-associated chronic inflammatory metabolic diseases. In addition to hormonal signals such as insulin and norepinephrine, extracellular adenine nucleotides modulate lipid storage, fatty acid release and thermogenic responses in adipose tissues. The complex regulation of extracellular adenine nucleotides involves a network of ectoenzymes that convert ATP via ADP and AMP to adenosine. However, in WAT and BAT the processing of extracellular adenine nucleotides and its relevance for intercellular communications are still largely unknown. Based on our observations that in adipose tissues the adenosine-generating enzyme CD73 is mainly expressed by vascular endothelial cells, we studied glucose and lipid handling, energy expenditure and adaptive thermogenesis in mice lacking endothelial CD73 housed at different ambient temperatures. Under conditions of thermogenic activation, CD73 expressed by endothelial cells is dispensable for the expression of thermogenic genes as well as energy expenditure. Notably, thermoneutral housing leading to a state of low energy expenditure and lipid accumulation in adipose tissues resulted in enhanced glucose uptake into WAT of endothelial CD73-deficient mice. This effect was associated with elevated expression levels of de novo lipogenesis genes. Mechanistic studies provide evidence that extracellular adenosine is imported into adipocytes and converted to AMP by adenosine kinase. Subsequently, activation of the AMP kinase lowers the expression of de novo lipogenesis genes, most likely via inactivation of the transcription factor carbohydrate response element binding protein (ChREBP). In conclusion, this study demonstrates that endothelial-derived extracellular adenosine generated via the ectoenzyme CD73 is a paracrine factor shaping lipid metabolism in WAT.
Collapse
Affiliation(s)
- Michelle Y. Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Schulze
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Wolfgang Zajac
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Pathak MP, Patowary P, Chattopadhyay P, Barbhuiyan PA, Islam J, Gogoi J, Wankhar W. Obesity-associated Airway Hyperresponsiveness: Mechanisms Underlying Inflammatory Markers and Possible Pharmacological Interventions. Endocr Metab Immune Disord Drug Targets 2024; 24:1053-1068. [PMID: 37957906 DOI: 10.2174/0118715303256440231028072049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023]
Abstract
Obesity is rapidly becoming a global health problem affecting about 13% of the world's population affecting women and children the most. Recent studies have stated that obese asthmatic subjects suffer from an increased risk of asthma, encounter severe symptoms, respond poorly to anti-asthmatic drugs, and ultimately their quality-of-life decreases. Although, the association between airway hyperresponsiveness (AHR) and obesity is a growing concern among the public due to lifestyle and environmental etiologies, however, the precise mechanism underlying this association is yet to establish. Apart from aiming at the conventional antiasthmatic targets, treatment should be directed towards ameliorating obesity pathogenesis too. Understanding the pathogenesis underlying the association between obesity and AHR is limited, however, a plethora of obesity pathologies have been reported viz., increased pro-inflammatory and decreased anti-inflammatory adipokines, depletion of ROS controller Nrf2/HO-1 axis, NLRP3 associated macrophage polarization, hypertrophy of WAT, and down-regulation of UCP1 in BAT following down-regulated AMPKα and melanocortin pathway that may be correlated with AHR. Increased waist circumference (WC) or central obesity was thought to be related to severe AHR, however, some recent reports suggest body mass index (BMI), not WC tends to exaggerate airway closure in AHR due to some unknown mechanisms. This review aims to co-relate the above-mentioned mechanisms that may explain the copious relation underlying obesity and AHR with the help of published reports. A proper understanding of these mechanisms discussed in this review will ensure an appropriate treatment plan for patients through advanced pharmacological interventions.
Collapse
Affiliation(s)
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | | | | | - Johirul Islam
- Department of Pharmaceutical Sciences, School of Health Sciences, Assam Kaziranga University, Jorhat, India
| | - Jyotchna Gogoi
- Department of Biochemistry, Faculty of Science, Assam Down Town University, Guwahati, India
| | - Wankupar Wankhar
- Department of Dialysis, Faculty of Paramedical Science, Assam Down Town University, Guwahati, India
| |
Collapse
|
38
|
Lee MJ, Puri V, Fried SK. Metabolic and structural remodeling during browning of primary human adipocytes derived from omental and subcutaneous depots. Obesity (Silver Spring) 2024; 32:70-79. [PMID: 37929774 DOI: 10.1002/oby.23912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE This study investigated remodeling of cellular metabolism and structures during browning of primary human adipocytes derived from both visceral and subcutaneous adipose tissues. Effects of glucocorticoids on the browning were also assessed. METHODS Differentiated omental and subcutaneous human adipocytes were treated with rosiglitazone, with or without dexamethasone, and expression levels of brite adipocyte markers, lipolysis, and lipid droplet and mitochondrial structures were examined. RESULTS Both omental and subcutaneous adipocytes acquired brite phenotypes upon peroxisome proliferator-activated receptor-γ agonist treatment, and dexamethasone tended to enhance the remodeling. Although rosiglitazone increased lipolysis during treatment, brite adipocytes exhibited lower basal lipolytic rates and enhanced responses to β-adrenergic agonists or atrial natriuretic peptide. Transcriptome analysis identified induction of both breakdown and biosynthesis of lipids in brite adipocytes. After 60+ days in culture, lipid droplet size increased to ~50 microns, becoming almost unilocular in control adipocytes, and after browning, they acquired paucilocular morphology, clusters of small lipid droplets (1-2 micron) surrounded by mitochondria appearing on the periphery of the central large one. CONCLUSIONS Metabolic and structural remodeling during browning of primary human adipocytes is similar to previous findings in human adipocytes in vivo, supporting their uses for mechanical studies investigating browning with translational relevance.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vishwajeet Puri
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Susan K Fried
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
39
|
Wang H, Yu L, Wang J, Zhang Y, Xu M, Lv C, Cui B, Yuan M, Zhang Y, Yan Y, Hui R, Wang Y. SLC35D3 promotes white adipose tissue browning to ameliorate obesity by NOTCH signaling. Nat Commun 2023; 14:7643. [PMID: 37996411 PMCID: PMC10667520 DOI: 10.1038/s41467-023-43418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
White adipose tissue browning can promote lipid burning to increase energy expenditure and improve adiposity. Here, we show that Slc35d3 expression is significantly lower in adipose tissues of obese mice. While adipocyte-specific Slc35d3 knockin is protected against diet-induced obesity, adipocyte-specific Slc35d3 knockout inhibits white adipose tissue browning and causes decreased energy expenditure and impaired insulin sensitivity in mice. Mechanistically, we confirm that SLC35D3 interacts with the NOTCH1 extracellular domain, which leads to the accumulation of NOTCH1 in the endoplasmic reticulum and thus inhibits the NOTCH1 signaling pathway. In addition, knockdown of Notch1 in mouse inguinal white adipose tissue mediated by orthotopic injection of AAV8-adiponectin-shNotch1 shows considerable improvement in obesity and glucolipid metabolism, which is more pronounced in adipocyte-specific Slc35d3 knockout mice than in knockin mice. Overall, in this study, we reveal that SLC35D3 is involved in obesity via NOTCH1 signaling, and low adipose SLC35D3 expression in obesity might be a therapeutic target for obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Hongrui Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin'e Wang
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yaqing Zhang
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Mengchen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Lv
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupeng Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
40
|
El-Yazbi AF, Elrewiny MA, Habib HM, Eid AH, Elzahhar PA, Belal ASF. Thermogenic Modulation of Adipose Depots: A Perspective on Possible Therapeutic Intervention with Early Cardiorenal Complications of Metabolic Impairment. Mol Pharmacol 2023; 104:187-194. [PMID: 37567782 DOI: 10.1124/molpharm.123.000704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular complications of diabetes and obesity remain a major cause for morbidity and mortality worldwide. Despite significant advances in the pharmacotherapy of metabolic disease, the available approaches do not prevent or slow the progression of complications. Moreover, a majority of patients present with significant vascular involvement at early stages of dysfunction prior to overt metabolic changes. The lack of disease-modifying therapies affects millions of patients globally, causing a massive economic burden due to these complications. Significantly, adipose tissue inflammation was implicated in the pathogenesis of metabolic syndrome, diabetes, and obesity. Specifically, perivascular adipose tissue (PVAT) and perirenal adipose tissue (PRAT) depots influence cardiovascular and renal structure and function. Accumulating evidence implicates localized PVAT/PRAT inflammation as the earliest response to metabolic impairment leading to cardiorenal dysfunction. Increased mitochondrial uncoupling protein 1 (UCP1) expression and function lead to PVAT/PRAT hypoxia and inflammation as well as vascular, cardiac, and renal dysfunction. As UCP1 function remains an undruggable target so far, modulation of the augmented UCP1-mediated PVAT/PRAT thermogenesis constitutes a lucrative target for drug development to mitigate early cardiorenal involvement. This can be achieved either by subtle targeted reduction in UCP-1 expression using innovative proteolysis activating chimeric molecules (PROTACs) or by supplementation with cyclocreatine phosphate, which augments the mitochondrial futile creatine cycling and thus decreases UCP1 activity, enhances the efficiency of oxygen use, and reduces hypoxia. Once developed, these molecules will be first-in-class therapeutic tools to directly interfere with and reverse the earliest pathology underlying cardiac, vascular, and renal dysfunction accompanying the early metabolic deterioration. SIGNIFICANCE STATEMENT: Adipose tissue dysfunction plays a major role in the pathogenesis of metabolic diseases and their complications. Although mitochondrial alterations are common in metabolic impairment, it was only recently shown that the early stages of metabolic challenge involve inflammatory changes in select adipose depots associated with increased uncoupling protein 1 thermogenesis and hypoxia. Manipulating this mode of thermogenesis can help mitigate the early inflammation and the consequent cardiorenal complications.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Mohamed A Elrewiny
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Hosam M Habib
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Perihan A Elzahhar
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ahmed S F Belal
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
41
|
Peixoto ÁS, Moreno MF, Castro É, Perandini LA, Belchior T, Oliveira TE, Vieira TS, Gilio GR, Tomazelli CA, Leonardi BF, Ortiz-Silva M, Silva Junior LP, Moretti EH, Steiner AA, Festuccia WT. Hepatocellular carcinoma induced by hepatocyte Pten deletion reduces BAT UCP-1 and thermogenic capacity in mice, despite increasing serum FGF-21 and iWAT browning. J Physiol Biochem 2023; 79:731-743. [PMID: 37405670 DOI: 10.1007/s13105-023-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Hepatocellular carcinoma (HCC) markedly enhances liver secretion of fibroblast growth factor 21 (FGF-21), a hepatokine that increases brown and subcutaneous inguinal white adipose tissues (BAT and iWAT, respectively) uncoupling protein 1 (UCP-1) content, thermogenesis and energy expenditure. Herein, we tested the hypothesis that an enhanced BAT and iWAT UCP-1-mediated thermogenesis induced by high levels of FGF-21 is involved in HCC-associated catabolic state and fat mass reduction. For this, we evaluated body weight and composition, liver mass and morphology, serum and tissue levels of FGF-21, BAT and iWAT UCP-1 content, and thermogenic capacity in mice with Pten deletion in hepatocytes that display a well-defined progression from steatosis to steatohepatitis (NASH) and HCC upon aging. Hepatocyte Pten deficiency promoted a progressive increase in liver lipid deposition, mass, and inflammation, culminating with NASH at 24 weeks and hepatomegaly and HCC at 48 weeks of age. NASH and HCC were associated with elevated liver and serum FGF-21 content and iWAT UCP-1 expression (browning), but reduced serum insulin, leptin, and adiponectin levels and BAT UCP-1 content and expression of sympathetically regulated gene glycerol kinase (GyK), lipoprotein lipase (LPL), and fatty acid transporter protein 1 (FATP-1), which altogether resulted in an impaired whole-body thermogenic capacity in response to CL-316,243. In conclusion, FGF-21 pro-thermogenic actions in BAT are context-dependent, not occurring in NASH and HCC, and UCP-1-mediated thermogenesis is not a major energy-expending process involved in the catabolic state associated with HCC induced by Pten deletion in hepatocytes.
Collapse
Affiliation(s)
- Álbert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Luiz A Perandini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Thayna S Vieira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Gustavo R Gilio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Caroline A Tomazelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Bianca F Leonardi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Luciano P Silva Junior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil
| | - Eduardo H Moretti
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes, 1524, 05508000, Sao Paulo, Brazil.
| |
Collapse
|
42
|
Wu S, Tan J, Zhang H, Hou DX, He J. Tissue-specific mechanisms of fat metabolism that focus on insulin actions. J Adv Res 2023; 53:187-198. [PMID: 36539077 PMCID: PMC10658304 DOI: 10.1016/j.jare.2022.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The accumulation of ectopic fats is related to metabolic syndromes with insulin resistance, which is considered as the first hit in obesity-related diseases. However, systematic understanding of the occurrence of ectopic fats is limited, since organisms are capable of orchestrating complicated intracellular signaling pathways to ensure that the correct nutritional components reach the tissues where they are needed. Interestingly, tissue-specific mechanisms lead to different consequences of fat metabolism with different insulin sensitivities. AIM OF REVIEW To summarize the mechanisms of fat deposition in different tissues including adipose tissue, subcutis, liver, muscle and intestines, in an attempt to elucidate interactive mechanisms involving insulin actions and establish a potential reference for the rational uptake of fat. KEY SCIENTIFIC CONCEPTS OF REVIEW Tissue-specific fat metabolism serves as a trigger for developing abnormal fat metabolism or as a compensatory agent for regulating normal fat metabolism. Outcomes of de novo lipogenesis and adipogenesis differ in the subcutaneous adipose tissue (SAT), liver and muscle, with the participation of insulin actions. Overload of lipid metabolic capability results in SAT fat expansion, and ectopic fat accumulation implicates impaired lipo-/adipogenesis in SAT. Regulating insulin actions may be a key measure on fat deposition and metabolism in individuals.
Collapse
Affiliation(s)
- Shusong Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Jijun Tan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - De-Xing Hou
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
43
|
Meng Y, Li W, Hu C, Chen S, Li H, Bai F, Zheng L, Yuan Y, Fan Y, Zhou Y. Ginsenoside F1 administration promotes UCP1-dependent fat browning and ameliorates obesity-associated insulin resistance. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
44
|
Iio R, Manaka T, Takada N, Orita K, Nakazawa K, Hirakawa Y, Ito Y, Nakamura H. Parathyroid Hormone Inhibits Fatty Infiltration and Muscle Atrophy After Rotator Cuff Tear by Browning of Fibroadipogenic Progenitors in a Rodent Model. Am J Sports Med 2023; 51:3251-3260. [PMID: 37621014 DOI: 10.1177/03635465231190389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
BACKGROUND Progressive fatty infiltration and muscle atrophy after rotator cuff tears lead to tendon repair failure and poor outcomes. Fibro-adipogenic progenitors (FAPs) are involved in fatty infiltration and muscle homeostasis of skeletal muscle. Inducing FAP differentiation into brown adipocyte-like "beige adipocytes" suppresses fatty infiltration and muscle atrophy. HYPOTHESIS Parathyroid hormone (PTH) suppresses fatty infiltration and muscle atrophy after rotator cuff tears in a rat model by browning of FAPs. STUDY DESIGN Controlled laboratory study. METHODS PTH was administered subcutaneously for 4 or 8 weeks to a rotator cuff tear model in rats. After treatment, fatty infiltration of supraspinatus muscles was assessed using Oil Red O staining and muscle atrophy using wet muscle weight and muscle fiber cross-sectional area. Costaining of platelet-derived growth factor receptor α (FAP marker) and uncoupling protein 1 (browning marker) was performed to confirm FAP browning by PTH. Mouse-isolated FAPs were cultured with PTH and evaluated for browning-related gene expression and adipogenic differentiation using BODIPY staining. Myogenic differentiation of C2C12 myoblasts was evaluated using coculture of PTH-treated browning FAPs with C2C12. RESULTS PTH inhibited fatty infiltration after rotator cuff tear at 8 weeks. Rotator cuff wet muscle loss of PTH-treated rats was inhibited at 4 and 8 weeks. Furthermore, PTH-treated rats demonstrated larger myofiber cross-sectional area than did untreated rats at 4 and 8 weeks. Costaining indicated colocalization of platelet-derived growth factor receptor α and uncoupling protein 1 and promoted PTH-induced FAP browning. PTH increased the expression of browning-related genes in FAPs and suppressed fat droplet accumulation in vitro. Coculture with PTH-treated FAPs promoted C2C12 cell differentiation into myotubes. CONCLUSION PTH induced FAP-derived beige adipocytes by upregulating browning-related gene expression, and the browning effect of PTH on FAPs inhibited fatty infiltration and muscle atrophy in the rat rotator cuff tear model. PTH might have potential as a therapeutic drug for fatty infiltration and muscle atrophy after rotator cuff tears. CLINICAL RELEVANCE PTH may expand treatment options for rotator cuff tears by reducing fatty infiltration and muscle atrophy after rotator cuff tears by browning of FAPs.
Collapse
Affiliation(s)
- Ryosuke Iio
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tomoya Manaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Naoki Takada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kumi Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Katsumasa Nakazawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshihiro Hirakawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoichi Ito
- Ito Clinic, Osaka Shoulder Center, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
45
|
von Essen G, Lindsund E, Maldonado EM, Zouhar P, Cannon B, Nedergaard J. Highly recruited brown adipose tissue does not in itself protect against obesity. Mol Metab 2023; 76:101782. [PMID: 37499977 PMCID: PMC10432997 DOI: 10.1016/j.molmet.2023.101782] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE The possibility to counteract the development of obesity in humans by recruiting brown or brite/beige adipose tissue (and thus UCP1) has attracted much attention. Here we examine if a diet that can activate diet-induced thermogenesis can exploit pre-enhanced amounts of UCP1 to counteract the development of diet-induced obesity. METHODS To investigate the anti-obesity significance of highly augmented amounts of UCP1 for control of body energy reserves, we physiologically increased total UCP1 amounts by recruitment of brown and brite/beige tissues in mice. We then examined the influence of the augmented UCP1 levels on metabolic parameters when the mice were exposed to a high-fat/high-sucrose diet under thermoneutral conditions. RESULTS The total UCP1 levels achieved were about 50-fold higher in recruited than in non-recruited mice. Contrary to underlying expectations, in the mice with highly recruited UCP1 and exposed to a high-fat/high-sucrose diet the thermogenic capacity of this UCP1 was completely inactivate. The mice even transiently (in an adipostat-like manner) demonstrated a higher metabolic efficiency and fat gain than did non-recruited mice. This was accomplished without altering energy expenditure or food absorption efficiency. The metabolic efficiency here was indistinguishable from that of mice totally devoid of UCP1. CONCLUSIONS Although UCP1 protein may be available, it is not inevitably utilized for diet-induced thermogenesis. Thus, although attempts to recruit UCP1 in humans may become successful as such, it is only if constant activation of the UCP1 is also achieved that amelioration of obesity development could be attained.
Collapse
Affiliation(s)
- Gabriella von Essen
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Erik Lindsund
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elaina M Maldonado
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Petr Zouhar
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden; Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, CZ-142 00 Prague, Czech Republic
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
46
|
Liang W, Huang L, Yuan T, Cheng R, Takahashi Y, Moiseyev GP, Karamichos D, Ma JX. A Method for Real-Time Assessment of Mitochondrial Respiration Using Murine Corneal Biopsy. Invest Ophthalmol Vis Sci 2023; 64:33. [PMID: 37642632 PMCID: PMC10476441 DOI: 10.1167/iovs.64.11.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/09/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose To develop and optimize a method to monitor real-time mitochondrial function by measuring the oxygen consumption rate (OCR) in murine corneal biopsy punches with a Seahorse extracellular flux analyzer. Methods Murine corneal biopsies were obtained using a biopsy punch immediately after euthanasia. The corneal metabolic profile was assessed using a Seahorse XFe96 pro analyzer, and mitochondrial respiration was analyzed with specific settings. Results Real-time adenosine triphosphate rate assay showed that mitochondrial oxidative phosphorylation is a major source of adenosine triphosphate production in ex vivo live murine corneal biopsies. Euthanasia methods (carbon dioxide asphyxiation vs. overdosing on anesthetic drugs) did not affect corneal OCR values. Mouse corneal biopsy punches in 1.5-mm diameter generated higher and more reproducible OCR values than those in 1.0-mm diameter. The biopsy punches from the central and off-central cornea did not show significant differences in OCR values. There was no difference in OCR reading by the tissue orientations (the epithelium side up vs. the endothelium side up). No significant differences were found in corneal OCR levels between sexes, strains (C57BL/6J vs. BALB/cJ), or ages (4, 8, and 32 weeks). Using this method, we showed that the wound healing process in the mouse cornea affected mitochondrial activity. Conclusions The present study validated a new strategy to measure real-time mitochondrial function in fresh mouse corneal tissues. This procedure should be helpful for studies of the ex vivo live corneal metabolism in response to genetic manipulations, disease conditions, or pharmacological treatments in mouse models.
Collapse
Affiliation(s)
- Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Li Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Tian Yuan
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Rui Cheng
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Yusuke Takahashi
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Gennadiy P. Moiseyev
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| |
Collapse
|
47
|
Jeong JH, Lee HL, Park HJ, Yoon YE, Shin J, Jeong MY, Park SH, Kim DH, Han SW, Kang CG, Hong KJ, Lee SJ. Effects of tomato ketchup and tomato paste extract on hepatic lipid accumulation and adipogenesis. Food Sci Biotechnol 2023; 32:1111-1122. [PMID: 37215254 PMCID: PMC10195947 DOI: 10.1007/s10068-023-01244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 02/09/2023] Open
Abstract
Tomatoes include high levels of lycopene, which is a potent antioxidative, hypolipidemic, and antidiabetic phytochemical. The intake of lycopene is associated with a reduced risk of insulin resistance and metabolic syndrome. The aim of this study was to investigate whether tomato ketchup and tomato paste, major dietary sources for tomato and lycopene, could regulate hepatic lipid metabolism and adipogenesis. To investigate the regulatory effects of tomato ketchup and tomato paste, we prepared a tomato ketchup extract (TKE) and a tomato paste extract (TPE) in 80% (v/v) ethyl acetate for the experiment. TKE and TPE reduced lipid accumulation and key markers for gluconeogenesis and induced a higher rate of fatty acid oxidation in HepG2 hepatocytes. In 3T3-L1 adipocytes, TKE and TPE increased adipogenesis and intracellular triglyceride accumulation, and stimulated glucose uptake. Peroxisome proliferator-activated receptor alpha and gamma expression levels were increased by TKE and TPE treatment. A single oral dose of tomato ketchup and tomato paste (9.28 g/kg) significantly improved glucose and insulin tolerance in mice. These findings suggest that lycopene-containing tomato ketchup and tomato paste may have beneficial regulatory effects in terms of energy metabolism in hepatocytes and adipocytes, and thus may improve blood glucose metabolism.
Collapse
Affiliation(s)
- Ji Hyun Jeong
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ha Lim Lee
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Hyun Ji Park
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ye Eun Yoon
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Jaeeun Shin
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Mi-Young Jeong
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Sung Hoon Park
- Department of Food & Nutrition, College of Life Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Da-hye Kim
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Seung-Woo Han
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Choon-Gil Kang
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Ki-Ju Hong
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
- Department of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University, Seoul, South Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul, South Korea
| |
Collapse
|
48
|
Shaik Mohamed Sayed UF, Moshawih S, Goh HP, Kifli N, Gupta G, Singh SK, Chellappan DK, Dua K, Hermansyah A, Ser HL, Ming LC, Goh BH. Natural products as novel anti-obesity agents: insights into mechanisms of action and potential for therapeutic management. Front Pharmacol 2023; 14:1182937. [PMID: 37408757 PMCID: PMC10318930 DOI: 10.3389/fphar.2023.1182937] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Obesity affects more than 10% of the adult population globally. Despite the introduction of diverse medications aimed at combating fat accumulation and obesity, a significant number of these pharmaceutical interventions are linked to substantial occurrences of severe adverse events, occasionally leading to their withdrawal from the market. Natural products serve as attractive sources for anti-obesity agents as many of them can alter the host metabolic processes and maintain glucose homeostasis via metabolic and thermogenic stimulation, appetite regulation, pancreatic lipase and amylase inhibition, insulin sensitivity enhancing, adipogenesis inhibition and adipocyte apoptosis induction. In this review, we shed light on the biological processes that control energy balance and thermogenesis as well as metabolic pathways in white adipose tissue browning, we also highlight the anti-obesity potential of natural products with their mechanism of action. Based on previous findings, the crucial proteins and molecular pathways involved in adipose tissue browning and lipolysis induction are uncoupling protein-1, PR domain containing 16, and peroxisome proliferator-activated receptor-γ in addition to Sirtuin-1 and AMP-activated protein kinase pathway. Given that some phytochemicals can also lower proinflammatory substances like TNF-α, IL-6, and IL-1 secreted from adipose tissue and change the production of adipokines like leptin and adiponectin, which are important regulators of body weight, natural products represent a treasure trove for anti-obesity agents. In conclusion, conducting comprehensive research on natural products holds the potential to accelerate the development of an improved obesity management strategy characterized by heightened efficacy and reduced incidence of side effects.
Collapse
Affiliation(s)
| | - Said Moshawih
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Hui Poh Goh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Nurolaini Kifli
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas AirlanggaSurabaya, Indonesia
| | - Hooi Leng Ser
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas AirlanggaSurabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Castellá M, Blasco-Roset A, Peyrou M, Gavaldà-Navarro A, Villarroya J, Quesada-López T, Lorente-Poch L, Sancho J, Szymczak F, Piron A, Rodríguez-Fernández S, Carobbio S, Goday A, Domingo P, Vidal-Puig A, Giralt M, Eizirik DL, Villarroya F, Cereijo R. Adipose tissue plasticity in pheochromocytoma patients suggests a role of the splicing machinery in human adipose browning. iScience 2023; 26:106847. [PMID: 37250773 PMCID: PMC10209542 DOI: 10.1016/j.isci.2023.106847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/31/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Adipose tissue from pheochromocytoma patients acquires brown fat features, making it a valuable model for studying the mechanisms that control thermogenic adipose plasticity in humans. Transcriptomic analyses revealed a massive downregulation of splicing machinery components and splicing regulatory factors in browned adipose tissue from patients, with upregulation of a few genes encoding RNA-binding proteins potentially involved in splicing regulation. These changes were also observed in cell culture models of human brown adipocyte differentiation, confirming a potential involvement of splicing in the cell-autonomous control of adipose browning. The coordinated changes in splicing are associated with a profound modification in the expression levels of splicing-driven transcript isoforms for genes involved in the specialized metabolism of brown adipocytes and those encoding master transcriptional regulators of adipose browning. Splicing control appears to be a relevant component of the coordinated gene expression changes that allow human adipose tissue to acquire a brown phenotype.
Collapse
Affiliation(s)
- Moisés Castellá
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Tania Quesada-López
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, and Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | | | - Juan Sancho
- Endocrine Surgery Unit, Hospital del Mar, 08003 Barcelona, Spain
| | - Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), 1070 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Anthony Piron
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), 1070 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Sonia Rodríguez-Fernández
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge 289, UK
| | - Stefania Carobbio
- Bases Moleculares de Patologías Humanas, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Albert Goday
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Endocrinology Service, Hospital del Mar, IMIM, 08003 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pere Domingo
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, and Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge 289, UK
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), 1070 Brussels, Belgium
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, and Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| |
Collapse
|
50
|
Zheng Y, Yang N, Pang Y, Gong Y, Yang H, Ding W, Yang H. Mitochondria-associated regulation in adipose tissues and potential reagents for obesity intervention. Front Endocrinol (Lausanne) 2023; 14:1132342. [PMID: 37396170 PMCID: PMC10313115 DOI: 10.3389/fendo.2023.1132342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction A systematic review analysis was used to assess the profile of mitochondrial involvement in adipose tissue regulation and potential reagents to intervene in obesity through the mitochondrial pathway. Methods Three databases, PubMed, Web of Science, and Embase, were searched online for literature associated with mitochondria, obesity, white adipose tissue, and brown adipose tissue published from the time of their creation until June 22, 2022, and each paper was screened. Results 568 papers were identified, of which 134 papers met the initial selection criteria, 76 were selected after full-text review, and 6 were identified after additional searches. A full-text review of the included 82 papers was performed. Conclusion Mitochondria play a key role in adipose tissue metabolism and energy homeostasis, including as potential therapeutic agents for obesity.
Collapse
Affiliation(s)
- Yali Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueshan Pang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanju Gong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical and Life Sciences/Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongya Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|