1
|
Nakada Y, Martinez MJ, Johnson JE. ASCL1 protein domains with distinct functions in neuronal differentiation and subtype specification. Dev Biol 2025; 523:32-42. [PMID: 40187474 DOI: 10.1016/j.ydbio.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
ASCL1 is a neural basic helix-loop-helix (bHLH) transcription factor that plays essential roles during neural development, including neural differentiation and neuronal subtype specification. bHLH factors are defined by their motifs, including a basic region interacting with DNA and an HLH domain involved in protein-protein interactions. We previously defined specific regions within the bHLH domain of ASCL1 as important for its specific functions directing neuronal differentiation in the chick neural tube. Here, we build upon these findings to show how specific mutations within the basic region block DNA binding but not heterodimer formation with E-protein partners TCF3 (E12/E47) and TCF12 (HEB) yet have differential abilities to show dominant negative phenotypes. Additionally, truncating domains outside the bHLH define a nuclear localization signal, a requirement for the C-terminal acidic residues, and the non-essentiality of the N-terminal glutamine/alanine repeats. This structure/function analysis identifies functional domains for ASCL1 activity.
Collapse
Affiliation(s)
- Yuji Nakada
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Madison J Martinez
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jane E Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Cai L, Wu F, Zhou Q, Gao Y, Yao B, DeBerardinis RJ, Acquaah-Mensah GK, Aidinis V, Beane JE, Biswal S, Chen T, Concepcion-Crisol CP, Grüner BM, Jia D, Jones RA, Kurie JM, Lee MG, Lindahl P, Lissanu Y, Lorz C, MacPherson D, Martinelli R, Mazur PK, Mazzilli SA, Mii S, Moll HP, Moorehead RA, Morrisey EE, Ng SR, Oser MG, Pandiri AR, Powell CA, Ramadori G, Santos M, Snyder EL, Sotillo R, Su KY, Taki T, Taparra K, Tran PT, Xia Y, van Veen JE, Winslow MM, Xiao G, Rudin CM, Oliver TG, Xie Y, Minna JD. The Lung Cancer Autochthonous Model Gene Expression Database Enables Cross-Study Comparisons of the Transcriptomic Landscapes Across Mouse Models. Cancer Res 2025; 85:1769-1783. [PMID: 40298430 PMCID: PMC12081188 DOI: 10.1158/0008-5472.can-24-1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/23/2024] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
Lung cancer, the leading cause of cancer mortality, exhibits diverse histologic subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. In this study, we established the Lung Cancer Autochthonous Model Gene Expression Database (LCAMGDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMM), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCAMGDB aligned 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in the GEMMs. To accompany this resource, a web application was developed that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCAMGDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance. Significance: The Lung Cancer Autochthonous Model Gene Expression Database (LCAMGDB) provides a comprehensive and accessible resource for the research community to investigate lung cancer biology in mouse models.
Collapse
Affiliation(s)
- Ling Cai
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fangjiang Wu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ying Gao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Yao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Vassilis Aidinis
- Institute of Fundamental Biological Research, Biomedical Sciences Research Center Alexander Fleming, 34 Fleming Street, 16672 Athens, Greece
| | - Jennifer E. Beane
- Section of Computational Biomedicine, Boston University School of Medicine, 72 E. Concord Street | Boston, MA 02118
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD 21205
| | | | | | - Barbara M. Grüner
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Deshui Jia
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201620, China
| | - Robert A Jones
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G2W1
| | - Jonathan M. Kurie
- Department of Thoracic-Head & Neck Med Onc, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Per Lindahl
- Sahlgrenska Center for Cancer Research Institute of Biomedicine | Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicanaregatan 1F, 413 90 Gothenburg, Sweden
| | - Yonathan Lissanu
- Department of Thoracic & Cardiovascular Surgery, the University of Texas MD Anderson Cancer Center
| | - Corina Lorz
- Biomedical Innovation Unit. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | | | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, SA, Italy
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarah A. Mazzilli
- Section of Computational Biomedicine, Boston University School of Medicine, 72 E. Concord Street | Boston, MA 02118
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Herwig P. Moll
- Medical University of Vienna Center for Physiology and Pharmacology Waehringer Strasse 13a 1090 Vienna, Austria
| | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G2W1
| | - Edward E. Morrisey
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Sheng Rong Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138632
| | - Matthew G. Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Arun R. Pandiri
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709,USA
| | - Charles A. Powell
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1232, New York, N.Y. 10029
| | - Giorgio Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva; Geneva, 1211, Switzerland
| | - Mirentxu Santos
- Biomedical Innovation Unit. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | - Eric L. Snyder
- Department of Pathology and Huntsman Cancer Institute, University of Utah, SLC, UT 84112
| | - Rocio Sotillo
- Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University
| | - Tetsuro Taki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kekoa Taparra
- Department of Radiation Oncology, Stanford Health Care, Stanford, CA
| | - Phuoc T. Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Yifeng Xia
- Salk Institute for Biological Studies. La Jolla, CA 92037 USA
| | - J. Edward van Veen
- Department of Integrative Biology and Physiology, University of California Los Angeles
| | - Monte M. Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Trudy G. Oliver
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Minna
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Li Y, Oser MG. A circular RNA in neuroendocrine carcinomas. Cancer Cell 2025; 43:812-814. [PMID: 40250442 DOI: 10.1016/j.ccell.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/20/2025]
Abstract
In this issue of Cancer Cell, Teng et al. discover that small cell lung cancer and neuroendocrine prostate cancer highly express a circular RNA known as circRMST. They show that circRMST is necessary for these neuroendocrine cancers to promote their ASCL1-positive neuroendocrine phenotype through binding lineage transcription factors that promote ASCL1 expression.
Collapse
Affiliation(s)
- Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Fukushima T, Togasaki K, Hamamoto J, Emoto K, Ebisudani T, Mitsuishi A, Sugihara K, Shinozaki T, Okada M, Saito A, Takaoka H, Ito F, Shigematsu L, Ohta Y, Takahashi S, Matano M, Kurebayashi Y, Ohgino K, Sato T, Kawada I, Asakura K, Hishida T, Asamura H, Ikemura S, Terai H, Soejima K, Oda M, Fujii M, Fukunaga K, Yasuda H, Sato T. An organoid library unveils subtype-specific IGF-1 dependency via a YAP-AP1 axis in human small cell lung cancer. NATURE CANCER 2025:10.1038/s43018-025-00945-y. [PMID: 40307487 DOI: 10.1038/s43018-025-00945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/07/2025] [Indexed: 05/02/2025]
Abstract
Small cell lung cancer (SCLC) is a devastating disease with limited therapeutic advancements. Although SCLC has recently been classified into four molecular subtypes, subtype-specific therapies are still lacking. Here, we established 40 patient-derived SCLC organoid lines with predominant TP53 and RB1 alterations and rare targetable genetic lesions. Transcriptome profiling divided the SCLC organoids into neuroendocrine (NE)-type SCLC and non-NE-type SCLC, with the latter characterized by YAP1 or POU2F3 expression. NE-type SCLC organoids grew independent of alveolar niche factors, whereas non-NE-type SCLC organoids relied on insulin-like growth factor (IGF)-1-driven YAP1 and AP1 activation. Therapeutic targeting of IGF-1, YAP1 and AP1 effectively suppressed the growth of non-NE-type organoids. Co-knockout of TP53 and RB1 in human alveolar cells altered their lineage toward the airway epithelium-like fate and conferred IGF-1 dependency, validating the subtype-phenotype connection. Our SCLC organoid library represents a valuable resource for developing biology-based therapies and has the potential to reshape the drug discovery landscape.
Collapse
Affiliation(s)
- Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kazuhiro Togasaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Division of Gastroenterology Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Katsura Emoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Ebisudani
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akifumi Mitsuishi
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kai Sugihara
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Taro Shinozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Masahiko Okada
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Ayaka Saito
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Hatsuyo Takaoka
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Fumimaro Ito
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Lisa Shigematsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ohgino
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Takashi Sato
- Department of Respiratory Medicine, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Keisuke Asakura
- Division of Thoracic Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Hishida
- Division of Thoracic Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hisao Asamura
- Division of Thoracic Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shinnosuke Ikemura
- Department of Pulmonary Medicine, Faculty of Medicine University of Yamanashi, Yamanashi, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kenzo Soejima
- Department of Pulmonary Medicine, Faculty of Medicine University of Yamanashi, Yamanashi, Japan
| | - Mayumi Oda
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan.
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Catozzi A, Peiris Pagès M, Humphrey S, Revill M, Morgan D, Roebuck J, Chen Y, Davies-Williams B, Brennan K, Mukarram Hossain ASM, Makeev VJ, Satia K, Sfyri PP, Galvin M, Coles D, Lallo A, Pearce SP, Kerr A, Priest L, Foy V, Carter M, Caeser R, Chan JM, Rudin CM, Blackhall F, Frese KK, Dive C, Simpson KL. Functional characterization of the ATOH1 molecular subtype indicates a pro-metastatic role in small cell lung cancer. Cell Rep 2025; 44:115603. [PMID: 40305287 DOI: 10.1016/j.celrep.2025.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/09/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Molecular subtypes of small cell lung cancer (SCLC) have been described based on differential expression of the transcription factors (TFs) ASCL1, NEUROD1, and POU2F3 and immune-related genes. We previously reported an additional subtype based on expression of the neurogenic TF ATOH1 within our SCLC circulating tumor cell-derived explant (CDX) model biobank. Here, we show that ATOH1 protein is detected in 7 of 81 preclinical models and 16 of 102 clinical samples of SCLC. In CDX models, ATOH1 directly regulates neurogenesis and differentiation programs, consistent with roles in normal tissues. In ex vivo cultures of ATOH1+ CDXs, ATOH1 is required for cell survival. In vivo, ATOH1 depletion slows tumor growth and suppresses liver metastasis. Our data validate ATOH1 as a bona fide lineage-defining TF of SCLC with cell survival and pro-metastatic functions. Further investigation exploring ATOH1-driven vulnerabilities for targeted treatment with predictive biomarkers is warranted.
Collapse
Affiliation(s)
- Alessia Catozzi
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Maria Peiris Pagès
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Sam Humphrey
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Mitchell Revill
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Derrick Morgan
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Jordan Roebuck
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Yitao Chen
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Bethan Davies-Williams
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Kevin Brennan
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - A S Md Mukarram Hossain
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Vsevolod J Makeev
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Karishma Satia
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Pagona P Sfyri
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Melanie Galvin
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Darryl Coles
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Alice Lallo
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Simon P Pearce
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Alastair Kerr
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Lynsey Priest
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Victoria Foy
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK; Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Mathew Carter
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK; Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph M Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, UK
| | - Kristopher K Frese
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Caroline Dive
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK.
| | - Kathryn L Simpson
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| |
Collapse
|
6
|
Hylton-McComas HM, Cordes A, Floros KV, Faber A, Drapkin BJ, Miles WO. Myc family proteins: Molecular drivers of tumorigenesis and resistance in neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189332. [PMID: 40280500 DOI: 10.1016/j.bbcan.2025.189332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Neuroendocrine cancers are a diverse and poorly understood collection of malignancies derived from neuroendocrine cells throughout the body. These cancers uniquely exhibit properties of both the nervous and endocrine systems. Only a limited number of genetic driver mutations have been identified in neuroendocrine cancers, however the mechanisms of how these genetic aberrations alter tumor biology remain elusive. Recent studies have implicated the MYC family of transcription factors as important oncogenic factors in neuroendocrine tumors. We take a systematic approach to understand the roles of the MYC family (c-MYC, n-MYC, l-MYC) in the tumorigenesis of neuroendocrine cancers of the lung, GI tract, pancreas, kidney, prostate, pediatric neuroblastoma, and adrenal glands. Reflecting the complexity of neuroendocrine cancers, we highlight the roles of the MYC family in deregulating the cell cycle and transcriptional networks, invoking cellular plasticity, affecting proliferation capacity, aiding in chromatin remodeling, angiogenesis, metabolic changes, and resistance mechanisms. Depicting the diversity of neuroendocrine cancers, we suggest new approaches in understanding the underlying tumorigenic processes of neuroendocrine cancers from the perspective of MYC.
Collapse
Affiliation(s)
- Hannah M Hylton-McComas
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Alyssa Cordes
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Konstantinos V Floros
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Anthony Faber
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Huang D, Wang J, Chen L, Jiang W, Inuzuka H, Simon DK, Wei W. Molecular Subtypes and Targeted Therapeutic Strategies in Small Cell Lung Cancer: Advances, Challenges, and Future Perspectives. Molecules 2025; 30:1731. [PMID: 40333678 PMCID: PMC12029361 DOI: 10.3390/molecules30081731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive malignancy characterized by rapid progression, early metastasis, and high recurrence rates. Historically considered a homogeneous disease, recent multi-omic studies have revealed distinct molecular subtypes driven by lineage-defining transcription factors, including ASCL1, NEUROD1, POU2F3, and YAP1, as well as an inflamed subtype (SCLC-I). These subtypes exhibit unique therapeutic vulnerabilities, thereby paving the way for precision medicine and targeted therapies. Despite recent advances in molecular classification, tumor heterogeneity, plasticity, and therapy resistance continue to hinder clinical success in treating SCLC patients. To this end, novel therapeutic strategies are being explored, including BCL2 inhibitors, DLL3-targeting agents, Aurora kinase inhibitors, PARP inhibitors, and epigenetic modulators. Additionally, immune checkpoint inhibitors (ICIs) show promise, particularly in immune-enriched subtypes of SCLC patients. Hence, a deeper understanding of SCLC subtype characteristics, evolution, and the regulatory mechanisms of subtype-specific transcription factors is crucial for rationally optimizing precision therapy. This knowledge not only facilitates the identification of subtype-specific therapeutic targets, but also provides a foundation for overcoming resistance and developing personalized combination treatment strategies. In the future, the integration of multi-omic data, dynamic molecular monitoring, and precision medicine approaches are expected to further advance the clinical translation of SCLC subtype-specific therapies, ultimately improving patient survival and outcomes.
Collapse
Affiliation(s)
- Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Weiwei Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David K. Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Simpson KL, Rothwell DG, Blackhall F, Dive C. Challenges of small cell lung cancer heterogeneity and phenotypic plasticity. Nat Rev Cancer 2025:10.1038/s41568-025-00803-0. [PMID: 40211072 DOI: 10.1038/s41568-025-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 04/12/2025]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with ~7% 5-year overall survival reflecting early metastasis and rapid acquired chemoresistance. Immunotherapy briefly extends overall survival in ~15% cases, yet predictive biomarkers are lacking. Targeted therapies are beginning to show promise, with a recently approved delta-like ligand 3 (DLL3)-targeted therapy impacting the treatment landscape. The increased availability of patient-faithful models, accumulating human tumour biobanks and numerous comprehensive molecular profiling studies have collectively facilitated the mapping and understanding of substantial intertumoural and intratumoural heterogeneity. Beyond the almost ubiquitous loss of wild-type p53 and RB1, SCLC is characterized by heterogeneously mis-regulated expression of MYC family members, yes-associated protein 1 (YAP1), NOTCH pathway signalling, anti-apoptotic BCL2 and epigenetic regulators. Molecular subtypes are based on the neurogenic transcription factors achaete-scute homologue 1 (ASCL1) and neurogenic differentiation factor 1 (NEUROD1), the rarer non-neuroendocrine transcription factor POU class 2 homeobox 3 (POU2F3), and immune- and inflammation-related signatures. Furthermore, SCLC shows phenotypic plasticity, including neuroendocrine-to-non-neuroendocrine transition driven by NOTCH signalling, which is associated with disease progression, chemoresistance and immune modulation and, in mouse models, with metastasis. Although these features pose substantial challenges, understanding the molecular vulnerabilities of transcription factor subtypes, the functional relevance of plasticity and cell cooperation offer opportunities for personalized therapies informed by liquid and tissue biomarkers.
Collapse
Affiliation(s)
- Kathryn L Simpson
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Dominic G Rothwell
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Fiona Blackhall
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Medical Oncology, Christie Hospital National Health Service, Foundation Trust, Manchester, UK
| | - Caroline Dive
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK.
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK.
- CRUK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
9
|
Yang Y, Yu J, Chen S, Wang X, Wu F, Huang C, Lin Y, Tang T, Gao T, Zhang Z, Zhang Y, Wang L, Chen J, Zhang Z, Wang W, Lin J, Wang Y, Xu Y, Zhao L. A novel risk stratification system for primary small-cell carcinoma of the esophagus: indication for prognostication and staging. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:212-220. [PMID: 40265098 PMCID: PMC12010368 DOI: 10.1016/j.jncc.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/11/2024] [Accepted: 02/10/2025] [Indexed: 04/24/2025] Open
Abstract
Background Primary small cell carcinoma of the oesophagus (PSCCE) is a gastrointestinal tumour of rare onset. The current study was to investigate the role of a novel risk stratification system (RSS) for PSCCE. Methods The study included patients with PSCCE attending any of five medical institutions in China in 2008-2021, four of which served as a training set (n = 422) for construction of the RSS while the other served as a separate cohort (n = 256) for validation of the model. The RSS was established based on covariates associated with overall survival (OS) with a two-sided P-value of < 0.05 in multivariable regression. Survival discrimination of RSS was assessed. Results In the training cohort, multivariate regression analysis revealed age, Eastern Cooperative Oncology Group score, and initial lymph node metastasis to be independent prognostic factors for OS in non-distant metastatic PESCC; concurrent hepatic metastasis was the only significant predictor of distant metastatic PESCC. Accordingly, the RSS was developed and could classify patients into four subgroups: low-risk localized disease (LLD, defined as non-distant metastasis PESCC without risk factors, n = 58); high-risk localized disease (HLD, defined as non-distant metastasis PESCC with ≥ 1 risk factor, n = 199); low-risk metastatic disease (LMD, defined as metastatic PESCC without concomitant liver metastases, n = 103); and high-risk metastatic disease (HMD, definded as metastatic disease with synchronous liver metastases, n = 63). Three-year OS rates were 52.5%, 29.5%, 14.4%, and 5.7% for LLD, HLD, LMD, and HMD, respectively. When compared with the tumor-node-metastasis (TNM) system, RSS showed a consistently superior ability to predict OS in both the training and validation cohorts. Conclusion The RSS is a reliable stratification model that could be used to optimize treatment for PESCC.
Collapse
Affiliation(s)
- Yong Yang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
| | - Jing Yu
- Department of Pulmonary Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Silin Chen
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
| | - Xiaomin Wang
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, China
| | - Furong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Cheng Huang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
| | - Yuping Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
| | - Tianlan Tang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
| | - Tiantian Gao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zewei Zhang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yiping Zhang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Liyan Wang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Junqiang Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Zhenyang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| | - Weijie Wang
- Department of Radiation Oncology, Anyang Cancer Hospital, Anyang, China
| | - Jiangbo Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| | - Ying Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Yuanji Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Lei Zhao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
10
|
Morin A, Chu CP, Pavlidis P. Identifying reproducible transcription regulator coexpression patterns with single cell transcriptomics. PLoS Comput Biol 2025; 21:e1012962. [PMID: 40257984 PMCID: PMC12011263 DOI: 10.1371/journal.pcbi.1012962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/13/2025] [Indexed: 04/23/2025] Open
Abstract
The proliferation of single cell transcriptomics has potentiated our ability to unveil patterns that reflect dynamic cellular processes such as the regulation of gene transcription. In this study, we leverage a broad collection of single cell RNA-seq data to identify the gene partners whose expression is most coordinated with each human and mouse transcription regulator (TR). We assembled 120 human and 103 mouse scRNA-seq datasets from the literature (>28 million cells), constructing a single cell coexpression network for each. We aimed to understand the consistency of TR coexpression profiles across a broad sampling of biological contexts, rather than examine the preservation of context-specific signals. Our workflow therefore explicitly prioritizes the patterns that are most reproducible across cell types. Towards this goal, we characterize the similarity of each TR's coexpression within and across species. We create single cell coexpression rankings for each TR, demonstrating that this aggregated information recovers literature curated targets on par with ChIP-seq data. We then combine the coexpression and ChIP-seq information to identify candidate regulatory interactions supported across methods and species. Finally, we highlight interactions for the important neural TR ASCL1 to demonstrate how our compiled information can be adopted for community use.
Collapse
Affiliation(s)
- Alexander Morin
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ching Pan Chu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Csende K, Ferencz B, Boettiger K, Pozonec MD, Lantos A, Ferenczy A, Pipek O, Solta A, Ernhofer B, Laszlo V, Megyesfalvi E, Schelch K, Pozonec V, Skarda J, Skopelidou V, Lohinai Z, Lang C, Horvath L, Dezso K, Fillinger J, Renyi-Vamos F, Aigner C, Dome B, Megyesfalvi Z. Comparative profiling of surgically resected primary tumors and their lymph node metastases in small-cell lung cancer. ESMO Open 2025; 10:104514. [PMID: 40107154 PMCID: PMC11964634 DOI: 10.1016/j.esmoop.2025.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Profiling studies in small-cell lung cancer (SCLC) have mainly focused on primary tumors, omitting the potential molecular changes that might occur during lymphatic metastasis formation. Here, we assessed the molecular discordance between primary SCLCs and corresponding lymph node (LN) metastases in the light of subtype distribution and expression of clinically relevant proteins. METHODS Comparative profiling of 32 surgically resected primary SCLCs and their LN metastases was achieved by RNA expression analysis and immunohistochemistry (IHC). In addition to subtype markers (ASCL1, NEUROD1, POU2F3, and YAP1), the expression of nine cancer-specific proteins was evaluated. RESULTS The selected clinically relevant molecules showed no significant differences in their RNA expression profile when assessing the primary tumors and their corresponding LN metastases. Nevertheless, IHC analyses revealed significantly higher DLL3 expression in the primary tumors than in the LN metastases (P = 0.008). In contrast, NEUROD1 expression was significantly lower in the primary tumors (versus LN metastases, P < 0.001). No statistically significant difference was found by IHC analysis in the case of other clinically relevant proteins. Concerning SCLC molecular subtypes, a change in subtype distribution was detected in 21 cases. Phenotype switching from neuroendocrine (NE) subtypes toward non-NE lesions and from non-NE landscape toward NE subtypes were both detected. CONCLUSIONS Although the molecular landscape of SCLC LN metastases largely resembles that of the tumor of origin, key differences exist in terms of DLL3 and NEUROD1 expression, and in subtype distribution. These diagnostic pitfalls should be considered when establishing the tumors' molecular profile for future clinical trials solely based on LN biopsies.
Collapse
Affiliation(s)
- K Csende
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - B Ferencz
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - K Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - M D Pozonec
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - A Lantos
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - A Ferenczy
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; Department of Obstetrics and Gynecology, South Buda Central Hospital, Saint Emeric University Teaching Hospital, Budapest, Hungary
| | - O Pipek
- Department of Physics of Complex Systems, Eotvos Lorand University, Budapest, Hungary
| | - A Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - B Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - V Laszlo
- National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - E Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; Department of Thoracic and Abdominal Tumors and Clinical Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - K Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - V Pozonec
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; Multidisciplinary Centre of Head and Neck Tumors, National Institute of Oncology, Budapest, Hungary
| | - J Skarda
- Institute of Clinical and Molecular Pathology, Medical Faculty, Palacký University Olomouc, Olomouc, Czech Republic; Department of Pathology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - V Skopelidou
- Department of Pathology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Z Lohinai
- Torokbalint County Institute of Pulmonology, Torokbalint, Hungary
| | - C Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - L Horvath
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - K Dezso
- Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - J Fillinger
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - F Renyi-Vamos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary; National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
| | - C Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - B Dome
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Translational Medicine, Lund University, Lund, Sweden.
| | - Z Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Watanabe H, Inoue Y, Tsuchiya K, Asada K, Suzuki M, Ogawa H, Tanahashi M, Watanabe T, Matsuura S, Yasuda K, Ohnishi I, Imokawa S, Yasui H, Karayama M, Suzuki Y, Hozumi H, Furuhashi K, Enomoto N, Fujisawa T, Funai K, Shinmura K, Sugimura H, Inui N, Suda T. Lethal co-expression intolerance underlies the mutually exclusive expression of ASCL1 and NEUROD1 in SCLC cells. NPJ Precis Oncol 2025; 9:74. [PMID: 40082639 PMCID: PMC11906894 DOI: 10.1038/s41698-025-00860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Small cell lung cancer (SCLC) subtypes, defined by the expression of lineage-specific transcription factors (TFs), are thought to be mutually exclusive, with intra-tumoral heterogeneities. This study investigated the mechanism underlying this phenomenon with the aim of identifying a novel vulnerability of SCLC. We profiled the expression status of ASCL1, NEUROD1, POU2F3, and YAP1 in 151 surgically obtained human SCLC samples. On subtyping, a high degree of mutual exclusivity was observed between ASCL1 and NEUROD1 expression at the cell, but not tissue, level. Inducible co-expression models of all combinations of ASCL1, NEUROD1, POU2F3, YAP1, and ATOH1 using SCLC cell lines showed that some expression combinations, such as ASCL1 and NEUROD1, exhibited mutual repression and caused growth inhibition and apoptosis. Gene expression and ATAC-seq analyses of the ASCL1 and NEUROD1 co-expression models revealed that co-expression of ASCL1 in NEUROD1-driven cells, and of NEUROD1 in ASCL1-driven cells, both (although more efficiently by the former) reprogrammed the cell lineage to favor the ectopically expressed factor, with rewiring of chromatin accessibility. Mechanistically, co-expressed NEUROD1 in ASCL1-driven SCLC cells caused apoptosis by downregulating BCL2, likely in a MYC-independent manner. In conclusion, lethal co-expression intolerance underlies the mutual exclusivity between these pioneer TFs, ASCL1 and NEUROD1, in an SCLC cell. Further investigation is warranted to enable therapeutic targeting of this vulnerability.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Kazuo Tsuchiya
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhiro Asada
- Department of Respiratory Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Makoto Suzuki
- Department of Pathology, Shizuoka General Hospital, Shizuoka, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takuya Watanabe
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Shun Matsuura
- Department of Respiratory Medicine, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Kazuyo Yasuda
- Department of Pathology, Shizuoka General Hospital, Shizuoka, Japan
- Department of Pathology, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Ippei Ohnishi
- Division of Pathology, Iwata City Hospital, Iwata, Japan
| | - Shiro Imokawa
- Department of Respiratory Medicine, Iwata City Hospital, Iwata, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Chemotherapy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
13
|
Li S, Song K, Sun H, Tao Y, Huang A, Bhatia V, Hanratty B, Patel RA, Long HW, Morrissey C, Haffner MC, Nelson PS, Graeber TG, Lee JK. Defined cellular reprogramming of androgen receptor-active prostate cancer to neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637904. [PMID: 40027790 PMCID: PMC11870442 DOI: 10.1101/2025.02.12.637904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neuroendocrine prostate cancer (NEPC) arises primarily through neuroendocrine transdifferentiation (NEtD) as an adaptive mechanism of therapeutic resistance. Models to define the functional effects of putative drivers of this process on androgen receptor (AR) signaling and NE cancer lineage programs are lacking. We adapted a genetically defined strategy from the field of cellular reprogramming to directly convert AR-active prostate cancer (ARPC) to AR-independent NEPC using candidate factors. We delineated critical roles of the pioneer factors ASCL1 and NeuroD1 in NEtD and uncovered their abilities to silence AR expression and signaling by remodeling chromatin at the somatically acquired AR enhancer and global AR binding sites with enhancer activity. We also elucidated the dynamic temporal changes in the transcriptomic and epigenomic landscapes of cells undergoing acute lineage conversion from ARPC to NEPC which should inform future therapeutic development. Further, we distinguished the activities of ASCL1 and NeuroD1 from the inactivation of RE-1 silencing transcription factor (REST), a master suppressor of a major neuronal gene program, in establishing a NEPC lineage state and in modulating the expression of genes associated with major histocompatibility complex class I (MHC I) antigen processing and presentation. These findings provide important, clinically relevant insights into the biological processes driving NEtD of prostate cancer.
Collapse
Affiliation(s)
- Shan Li
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kai Song
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Huiyun Sun
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Yong Tao
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arthur Huang
- Department of Urology, University of Washington, Seattle, WA, 98195, USA
| | - Vipul Bhatia
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Brian Hanratty
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Radhika A Patel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Center for Functional Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, 98195, USA
| | - Michael C Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA. 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA. 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, 98195, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Institute of Urologic Oncology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
14
|
Febres-Aldana CA, Elsayad MM, Saliba M, Bhanot U, Ntiamoah P, Takeyama A, Purgina BM, Rodriguez-Urrego PA, Marusic Z, Jakovcevic A, Chute DJ, Dunn LA, Ganly I, Cohen MA, Pfister DG, Ghossein RA, Baine MK, Rekhtman N, Dogan S. Analysis of ASCL1/NEUROD1/POU2F3/YAP1 Yields Novel Insights for the Diagnosis of Olfactory Neuroblastoma and Identifies Sinonasal Tuft Cell-Like Carcinoma. Mod Pathol 2025; 38:100674. [PMID: 39613231 PMCID: PMC11928266 DOI: 10.1016/j.modpat.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
The diagnosis and treatment of sinonasal small round epithelial/neuroepithelial malignancies depend on the expression of conventional neuroendocrine markers (NEMs), such as synaptophysin, chromogranin A, INSM1, and CD56/NCAM1. However, these tumors remain diagnostically challenging because of overlapping histologic and immunohistochemical features. The transcriptional regulators ASCL1, NEUROD1, POU2F3, and YAP1 are novel NEM (nNEM) used for the subtyping of small-cell lung cancer (SCLC). Here, we assessed the immunoexpression of nNEM in 76 sinonasal malignancies, including 27 olfactory neuroblastomas (ONB), 14 small-cell neuroendocrine carcinomas (SCNEC), 2 large-cell neuroendocrine carcinomas, 12 sinonasal undifferentiated carcinomas (SNUC), 7 olfactory carcinomas (OC), 11 SWI/SNF-deficient carcinomas, and 3 neuroendocrine tumors. We correlated nNEM expression with the extent of neuroendocrine (NE) differentiation, as defined by averaged conventional NEM expression (NE-high: H-score, ≥150; NE-low: H-score, <150). Dominant NE subtypes were defined by the nNEM with the highest H-score. Coexpression of 2 nNEM with <100 H-score difference defined a codominant NE subtype. NE differentiation positively correlated with NEUROD1 and negatively with YAP1 expression (P < .0001). ONB were NE-high (96%), and all were NEUROD1-dominant/POU2F3-negative/ASCL1-negative (low)/YAP1-negative (low). In contrast to ONB, all OC were NE-low, mostly (71%) codominant subtypes, NEUROD1-low (negative) (100%, P = .0001), and YAP1 high (71%; P = .0001). Most notably, all SNUC were POU2F3-(co)dominant/NEUROD1-negative irrespective of the IDH2 mutations. Sinonasal tumors with high POU2F3 expression showed enrichment for "tuft cell carcinoma" and tuft cell signatures (P = .009). Similar to SCLC, SCNEC was heterogeneous in terms of nNEM expression comprising several molecular subtypes, including ASCL1-(co)dominant (43%) cases. All SWI/SNF-deficient carcinomas were consistently ASCL1/NEUROD1/POU2F3-negative and YAP1-positive. ASCL1/NEUROD1/POU2F3/YAP1 are useful markers in the differential diagnosis of ONB, SNUC, OC, and SWI/SNF-deficient carcinomas. Subsets of SNUC and large-cell neuroendocrine carcinomas may represent tuft cell-like carcinomas, suggesting that the tuft cell could be explored as the cell of origin for these tumors. The therapeutic vulnerabilities associated with POU2F3 expression in SCLC suggest that a similar approach might be considered for POU2F3-positive carcinomas of the sinonasal tract. Given their diagnostic and possible therapeutic relevance, nNEM have the potential to transform the way we approach the diagnosis and management of sinonasal small round epithelial/neuroepithelial malignancies.
Collapse
Affiliation(s)
- Christopher A Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mahmoud M Elsayad
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maelle Saliba
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Umesh Bhanot
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter Ntiamoah
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anjanie Takeyama
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bibianna M Purgina
- Department of Pathology and Laboratory Medicine, Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Paula A Rodriguez-Urrego
- Department of Pathology, University Hospital of the Santa Fe de Bogotá Medical Foundation, Bogotá, Colombia
| | - Zlatko Marusic
- Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Antonia Jakovcevic
- Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Deborah J Chute
- Department of Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Lara A Dunn
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ian Ganly
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc A Cohen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David G Pfister
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald A Ghossein
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marina K Baine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Snjezana Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
15
|
Takahashi N, Pongor L, Agrawal SP, Shtumpf M, Gurjar A, Rajapakse VN, Shafiei A, Schultz CW, Kim S, Roame D, Carter P, Vilimas R, Nichols S, Desai P, Figg WD, Bagheri M, Teif VB, Thomas A. Genomic alterations and transcriptional phenotypes in circulating free DNA and matched metastatic tumor. Genome Med 2025; 17:15. [PMID: 40001151 PMCID: PMC11863907 DOI: 10.1186/s13073-025-01438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Profiling circulating cell-free DNA (cfDNA) has become a fundamental practice in cancer medicine, but the effectiveness of cfDNA at elucidating tumor-derived molecular features has not been systematically compared to standard single-lesion tumor biopsies in prospective cohorts of patients. The use of plasma instead of tissue to guide therapy is particularly attractive for patients with small cell lung cancer (SCLC), due to the aggressive clinical course of this cancer, which makes obtaining tumor biopsies exceedingly challenging. METHODS In this study, we analyzed a prospective cohort of 49 plasma samples obtained before, during, and after treatment from 20 patients with recurrent SCLC. We conducted cfDNA low-pass whole genome sequencing (0.1X coverage), comparing it with time-point matched tumor characterized using whole-exome (130X) and transcriptome sequencing. RESULTS A direct comparison of cfDNA and tumor biopsy revealed that cfDNA not only mirrors the mutation and copy number landscape of the corresponding tumor but also identifies clinically relevant resistance mechanisms and cancer driver alterations not detected in matched tumor biopsies. Longitudinal cfDNA analysis reliably tracks tumor response, progression, and clonal evolution. Sequencing coverage of plasma DNA fragments around transcription start sites showed distinct treatment-related changes and captured the expression of key transcription factors such as NEUROD1 and REST in the corresponding SCLC tumors. This allowed for the prediction of SCLC neuroendocrine phenotypes and treatment responses. CONCLUSIONS cfDNA captures a comprehensive view of tumor heterogeneity and evolution. These findings have significant implications for the non-invasive stratification of SCLC, a disease currently treated as a single entity.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Lorinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | | | - Mariya Shtumpf
- School of Life Sciences, University of Essex, Colchester, UK
| | - Ankita Gurjar
- School of Life Sciences, University of Essex, Colchester, UK
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ahmad Shafiei
- Department of Radiology and Imaging Sciences, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Christopher W Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sehyun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Diana Roame
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Paula Carter
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - William Douglas Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Mohammad Bagheri
- Department of Radiology and Imaging Sciences, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Colchester, UK.
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Iñañez A, del Rey-Vergara R, Quimis F, Rocha P, Galindo M, Menéndez S, Masfarré L, Sánchez I, Carpes M, Martínez C, Pérez-Buira S, Rojo F, Rovira A, Arriola E. The Potential of Single-Transcription Factor Gene Expression by RT-qPCR for Subtyping Small Cell Lung Cancer. Int J Mol Sci 2025; 26:1293. [PMID: 39941061 PMCID: PMC11818609 DOI: 10.3390/ijms26031293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Complex RNA-seq signatures involving the transcription factors ASCL1, NEUROD1, and POU2F3 classify Small Cell Lung Cancer (SCLC) into four subtypes: SCLC-A, SCLC-N, SCLC-P, and SCLC-I (triple negative or inflamed). Preliminary studies suggest that identifying these subtypes can guide targeted therapies and potentially improve outcomes. This study aims to evaluate whether the expression levels of these three key transcription factors can effectively classify SCLC subtypes, comparable to the use of individual antibodies in immunohistochemical (IHC) analysis of formalin-fixed, paraffin-embedded (FFPE) tumor samples. We analyzed preclinical models of increasing complexity, including eleven human and five mouse SCLC cell lines, six patient-derived xenografts (PDXs), and two circulating tumor cell (CTC)-derived xenografts (CDXs) generated in our laboratory. RT-qPCR conditions were established to detect the expression levels of ASCL1, NEUROD1, and POU2F3. Additionally, protein-level analysis was performed using Western blot for cell lines and IHC for FFPE samples of PDX and CDX tumors, following our experience with patient tumor samples from the CANTABRICO trial (NCT04712903). We found that the analyzed SCLC cell line models predominantly expressed ASCL1, NEUROD1, and POU2F3, or showed no expression, as identified by RT-qPCR, consistently matching the previously assigned subtypes for each cell line. The classification of PDX and CDX models demonstrated consistency between RT-qPCR and IHC analyses of the transcription factors. Our results show that single-gene analysis by RT-qPCR from FFPE-extracted RNA simplifies SCLC subtype classification. This approach provides a cost-effective alternative to IHC staining or expensive multi-gene RNA sequencing panels, making SCLC subtyping more accessible for both preclinical research and clinical applications.
Collapse
Affiliation(s)
- Albert Iñañez
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (A.I.)
| | - Raúl del Rey-Vergara
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (A.I.)
| | - Fabricio Quimis
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (A.I.)
| | - Pedro Rocha
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
| | - Miguel Galindo
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (A.I.)
| | - Sílvia Menéndez
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (A.I.)
| | - Laura Masfarré
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (A.I.)
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
| | - Ignacio Sánchez
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
| | - Marina Carpes
- Instituto Murciano de Investigación Biosanitaria IMIB-Pascual Parrilla, Pathology Core, 30120 Murcia, Spain
| | - Carlos Martínez
- Instituto Murciano de Investigación Biosanitaria IMIB-Pascual Parrilla, Pathology Core, 30120 Murcia, Spain
- Department of Anatomy and Comparative Pathology, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain
| | - Sandra Pérez-Buira
- Department of Pathology, IIS-Fundación Jiménez Díaz-CIBERONC, 28040 Madrid, Spain
| | - Federico Rojo
- Department of Pathology, IIS-Fundación Jiménez Díaz-CIBERONC, 28040 Madrid, Spain
| | - Ana Rovira
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (A.I.)
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Edurne Arriola
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (A.I.)
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
17
|
Yang X, Li Y, Peng Y, Chang Y, He B, Zhang T, Zhang S, Geng C, Liu Y, Li X, Hao J, Ma L. An integrative analysis of ASCL1 in breast cancer and inhibition of ASCL1 increases paclitaxel sensitivity by activating ferroptosis via the CREB1/GPX4 axis. Front Immunol 2025; 16:1546794. [PMID: 39963143 PMCID: PMC11830715 DOI: 10.3389/fimmu.2025.1546794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Objective Our previous study found that Achaete-scute complex homolog 1 (ASCL1) is involved in classifying BC subtypes with different prognostic and pathological characteristics. However, the biological role of ASCL1 in BC still remains largely unexplored. This study aims to elucidate the function of ASCL1 in BC using bioinformatics analyses, as well as in vitro and in vivo experimental approaches. Methods Data from the TCGA, GEO, and Human Protein Atlas databases were utilized to evaluate ASCL1 expression in BC and its association with patient prognosis. Genetic alterations in ASCL1 were assessed through the COSMIC and cBioPortal databases, while the TIMER2.0 database provided insights into the relationship between ASCL1 expression and key gene mutations in BC. The GDSC database was used to examine correlations between ASCL1 levels and sensitivity to standard chemotherapeutic agents. Associations between ASCL1 expression and cytokines, immunomodulatory factors, MHC molecules, and receptors were analyzed using Pearson and Spearman correlation methods. The TIP database was employed to investigate the connection between ASCL1 expression and immunoreactivity scores, and six computational approaches were applied to evaluate immune cell infiltration. Functional assays were conducted on BC cell lines MCF-7 and MDA-MB-231, and nude mouse models were used for in vivo studies. Results ASCL1 was found to be upregulated in BC and correlated with unfavorable prognosis and mutations in key oncogenes. Its expression was linked to immunomodulatory factors, immune cell infiltration, and immunoreactivity scores in the tumor microenvironment. Additionally, ASCL1 influenced tumor immune dynamics and chemosensitivity in BC. Overexpression of ASCL1 enhanced BC cell proliferation, migration and invasion, while its knockdown had the opposite effect. Notably, inhibition of ASCL1 increased BC cell sensitivity to paclitaxel both in vitro and in vivo. In addition, inhibition of ASCL1 activated ferroptosis in BC, including altered mitochondrial morphology, increased MDA and ROS levels, decreased GSH levels and reduced GSH/GSSG ratio. Mechanistically, inhibition of ASCL1 decreases the phosphorylation of CREB1, thus reducing the expression of GPX4. In summary, inhibition of ASCL1 increases paclitaxel sensitivity by activating ferroptosis via the CREB1/GPX4 axis. Conclusions ASCL1 exerts oncogenic effects in BC and represents a potential therapeutic target for intervention.
Collapse
Affiliation(s)
- Xiaolu Yang
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yilun Li
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yaqi Peng
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yuan Chang
- Department of Breast Disease Center, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Binglu He
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Tianqi Zhang
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shiyu Zhang
- Department of Breast Disease Center, Xingtai Renmin Hospital, Xingtai, China
| | - Cuizhi Geng
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolong Li
- Department of Breast Disease Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Li Ma
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Morin A, Chu CP, Pavlidis P. Identifying Reproducible Transcription Regulator Coexpression Patterns with Single Cell Transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.15.580581. [PMID: 38559016 PMCID: PMC10979919 DOI: 10.1101/2024.02.15.580581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The proliferation of single cell transcriptomics has potentiated our ability to unveil patterns that reflect dynamic cellular processes such as the regulation of gene transcription. In this study, we leverage a broad collection of single cell RNA-seq data to identify the gene partners whose expression is most coordinated with each human and mouse transcription regulator (TR). We assembled 120 human and 103 mouse scRNA-seq datasets from the literature (>28 million cells), constructing a single cell coexpression network for each. We aimed to understand the consistency of TR coexpression profiles across a broad sampling of biological contexts, rather than examine the preservation of context-specific signals. Our workflow therefore explicitly prioritizes the patterns that are most reproducible across cell types. Towards this goal, we characterize the similarity of each TR's coexpression within and across species. We create single cell coexpression rankings for each TR, demonstrating that this aggregated information recovers literature curated targets on par with ChIP-seq data. We then combine the coexpression and ChIP-seq information to identify candidate regulatory interactions supported across methods and species. Finally, we highlight interactions for the important neural TR ASCL1 to demonstrate how our compiled information can be adopted for community use.
Collapse
Affiliation(s)
- Alexander Morin
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - C. Pan Chu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Liao S, Kang K, Yao Z, Lu Y. Nervous system contributions to small cell lung cancer: Lessons from diverse oncological studies. Biochim Biophys Acta Rev Cancer 2025; 1880:189252. [PMID: 39725176 DOI: 10.1016/j.bbcan.2024.189252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The nervous system plays a vital role throughout the entire lifecycle and it may regulate the formation, development and metastasis of tumors. Small cell lung cancer is a typical neuroendocrine tumor, and it is naturally equipped with neurotropism. In this review, we firstly summarize current preclinical and clinical evidence to demonstrate the reciprocal crosstalk among the nervous system, tumor, and tumor microenvironment in various ways, including neurotransmitter-receptor pathways, innervations of nerve fibers, different types of synapse formation by neurons, astrocytes, and cancer cells, neoneurogenesis. Futherly, we emphasize how the nervous system interacts with small cell lung cancer and discuss the limitations of current research methods for examining the interactions. We propose that integrating neuroscience, development biology, and tumor biology can be a promising direction to provide new insights into development and metastasis of small cell lung cancer and raise some novel treatment strategies.
Collapse
Affiliation(s)
- Shuangsi Liao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| | - You Lu
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Li M, Wang X, Gong J, Lu H. The analysis of molecular classification of pulmonary neuroendocrine tumors and relationship between YAP1 and efficacy. Invest New Drugs 2025; 43:108-117. [PMID: 39786663 DOI: 10.1007/s10637-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
A novel molecular classification for small cell lung cancer (SCLC) has been established utilizing the transcription factors achaete-scute homologue 1 (ASCL1), neurogenic differentiation factor 1 (NeuroD1), POU class 2 homeobox 3 (POU2F3), and yes-associated protein 1 (YAP1). This classification was predicated on the transcription factors. Conversely, there is a paucity of information regarding the distribution of these markers in other subtypes of pulmonary neuroendocrine tumors (PNET). Clinical and survival data for PNET patients were gathered from January 2008 to December 2020. Immunohistochemical analysis was employed to evaluate the expression. The relationship between YAP1 expression and outcomes in patients with pulmonary large cell neuroendocrine carcinoma (LCNEC) was examined. Data from low-grade PNET patients who had previously undergone immunotherapy were retrospectively gathered and analyzed. The ASCL1 positive rate was markedly elevated in SCLC (7.1% vs. 60%; P < 0.001) and LCNEC patients (7.1% vs. 38.5%; P = 0.034) compared to PC patients. The YAP1-positive rate was elevated in LCNEC compared to SCLC (43.6% vs. 20%, P = 0.028) and pulmonary carcinoid (PC) patients (43.6% vs. 21.4%; P = 0.021). The DLL3-positive rate in SCLC patients was greater than in SCLC and PC patients (37.1% vs. 23.1% vs. 0%; P = 0.028, P = 0.021). A significant level of tumor heterogeneity was noted, with SCLC and LCNEC patients exhibiting markedly higher heterogeneity than PC patients (65.7% vs. 56.3% vs. 21.4%; P = 0.005, P = 0.025). In patients with LCNEC, YAP1 positivity exhibited no correlation with PD-L1 expression (17.1% vs. 45.7%, P = 0.518). Tumor heterogeneity was also noted in transformed SCLC, with no significant differences in the expression levels of transcription factors between transformed and traditional SCLC. In 13 LCNEC patients with a history of ICI application, YAP1 exhibited no significant effect on PFS (P = 0.331) or OS (P = 0.17) in the subgroup analysis of LCNEC patients. Among the 14 patients with low-grade PNET who underwent immunotherapy, the disease control rate was 85.7%. Patients with high-grade PNET have high levels of expression of ASCL1 and DLL3, whereas patients with LCNEC have high levels of expression of YAP1. With regard to the transcription factor level, it was found that patients with SCLC and LCNEC had a much higher degree of tumor heterogeneity than those with PC. In patients with LCNEC who were receiving monotherapy of ICIs or chemotherapy in combination with ICIs, the expression of YAP1 did not appear to have any clear impact on the prognosis. This is due to the limited sample size of the study, which requires additional investigation. When compared to the expression of TFs in regular SCLC, the expression of TFs in converted SCLC is comparable.
Collapse
Affiliation(s)
- Meihui Li
- Department of Radiotherapy, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Xinyuan Wang
- Postgraduate Training Base Alliance, Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Jiali Gong
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Hongyang Lu
- Postgraduate Training Base Alliance, Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China.
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| |
Collapse
|
21
|
Chen T, Ashwood LM, Kondrashova O, Strasser A, Kelly G, Sutherland KD. Breathing new insights into the role of mutant p53 in lung cancer. Oncogene 2025; 44:115-129. [PMID: 39567755 PMCID: PMC11725503 DOI: 10.1038/s41388-024-03219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
The tumour suppressor gene p53 is one of the most frequently mutated genes in lung cancer and these defects are associated with poor prognosis, albeit some debate exists in the lung cancer field. Despite extensive research, the exact mechanisms by which mutant p53 proteins promote the development and sustained expansion of cancer remain unclear. This review will discuss the cellular responses controlled by p53 that contribute to tumour suppression, p53 mutant lung cancer mouse models and characterisation of p53 mutant lung cancer. Furthermore, we discuss potential approaches of targeting mutant p53 for the treatment of lung cancer.
Collapse
Affiliation(s)
- Tianwei Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lauren M Ashwood
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Gemma Kelly
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Kate D Sutherland
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
22
|
Chatterjee D, Svoboda RA, Huisman DH, Drapkin BJ, Vieira HM, Rao C, Askew JW, Fisher KW, Lewis RE. KSR1 mediates small-cell lung carcinoma tumor initiation and cisplatin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.23.581815. [PMID: 38464216 PMCID: PMC10925196 DOI: 10.1101/2024.02.23.581815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Small-cell lung cancer (SCLC) has a dismal five-year survival rate of less than 7%, with limited advances in first line treatment over the past four decades. Tumor-initiating cells (TICs) contribute to resistance and relapse, a major impediment to SCLC treatment. Here, we identify Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK signaling cascade, as a critical regulator of SCLC TIC formation and tumor initiation in vivo . We further show that KSR1 mediates cisplatin resistance in SCLC. While 50-70% of control cells show resistance after 6-week exposure to cisplatin, CRISPR/Cas9-mediated KSR1 knockout prevents resistance in >90% of SCLC cells in ASCL1, NeuroD1, and POU2F3 subtypes. KSR1 KO significantly enhances the ability of cisplatin to decrease SCLC TICs via in vitro extreme limiting dilution analysis (ELDA), indicating that KSR1 disruption enhances the cisplatin toxicity of cells responsible for therapeutic resistance and tumor initiation. The ability of KSR1 disruption to prevent cisplatin resistant in H82 tumor xenograft formation supports this conclusion. Previous studies indicate that ERK activation inhibits SCLC tumor growth and development. We observe a minimal effect of pharmacological ERK inhibition on cisplatin resistance and no impact on TIC formation via in vitro ELDA. However, mutational analysis of the KSR1 DEF domain, which mediates interaction with ERK, suggests that ERK interaction with KSR1 is essential for KSR1-driven cisplatin resistance. These findings reveal KSR1 as a key regulatory protein in SCLC biology and a potential therapeutic target across multiple SCLC subtypes. Statement of Implication Genetic manipulation of the molecular scaffold KSR1 in small-cell lung cancer cells reveals its contribution to cisplatin resistance and tumor initiation.
Collapse
|
23
|
Yin L, Wang R, Ma X, Jiang K, Hu Y, Zhao X, Zhang L, Wang Z, Long T, Lu M, Li J, Sun Y. Exploring the expression of DLL3 in gastroenteropancreatic neuroendocrine neoplasms and its potential diagnostic value. Sci Rep 2025; 15:3287. [PMID: 39865119 PMCID: PMC11770191 DOI: 10.1038/s41598-025-86237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
Delta-like protein (DLL3) is a novel therapeutic target. DLL3 expression in gastroenteropancreatic neuroendocrine tumors (GEP-NECs) is poorly understood, complicating the distinction between well-differentiated neuroendocrine tumors G3 (NET G3) and poorly differentiated NEC. DLL3 immunohistochemistry (IHC) was performed on 248 primary GEP-NECs, correlating with clinicopathological parameters, NE markers, PD-L1, Ki67 index, and prognosis. Achaete-scute complex-like 1 (ASCL1) IHC was performed on some GEP-NECs. DLL3 IHC was conducted on 36 GEP-NETs, 29 gastric adenocarcinomas (GACs), and metastatic tumors (9 lymph node metastases and 19 distant metastases). DLL3 expression rates were 54.8% in GEP-NECs at the primary site, associated with small cell neuroendocrine carcinoma (SCNEC) (p < 0.001), chemotherapy before baseline (p = 0.015), and at least two NE markers (p = 0.048). DLL3 expression in metastatic GEP-NECs was similar to that of primary tumors. Expression rates in NET G1, NET G2, NET G3, and GACs were 0%, 0%, 15.8%, and 0%, respectively, highlighting DLL3 as a powerful tool for identifying poorly differentiated NEC. DLL3 expression was related to ASCL1 in GEP-NECs, especially in SCNEC. It was not correlated with progression-free survival (PFS) or overall survival(OS), regardless of cutoff value (1%, 50%, 75%). In conclusion, DLL3 targeted therapy may offer potential for the treatment of poorly differentiated NEC of the digestive system, although further studies are needed to validate its efficacy.
Collapse
Affiliation(s)
- L Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - R Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - X Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - K Jiang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Y Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - X Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - L Zhang
- Neukio Biotherapeutics, Shanghai, 200131, China
| | - Z Wang
- Neukio Biotherapeutics, Shanghai, 200131, China
| | - T Long
- Neukio Biotherapeutics, Shanghai, 200131, China
| | - M Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - J Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Y Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
24
|
Furlano K, Keshavarzian T, Biernath N, Fendler A, de Santis M, Weischenfeldt J, Lupien M. Epigenomics-guided precision oncology: Chromatin variants in prostate tumor evolution. Int J Cancer 2025. [PMID: 39853587 DOI: 10.1002/ijc.35327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Prostate cancer is a common malignancy that in 5%-30% leads to treatment-resistant and highly aggressive disease. Metastasis-potential and treatment-resistance is thought to rely on increased plasticity of the cancer cells-a mechanism whereby cancer cells alter their identity to adapt to changing environments or therapeutic pressures to create cellular heterogeneity. To understand the molecular basis of this plasticity, genomic studies have uncovered genetic variants to capture clonal heterogeneity of primary tumors and metastases. As cellular plasticity is largely driven by non-genetic events, complementary studies in cancer epigenomics are now being conducted to identify chromatin variants. These variants, defined as genomic loci in cancer cells that show changes in chromatin state due to the loss or gain of epigenomic marks, inclusive of histone post-translational modifications, DNA methylation and histone variants, are considered the fundamental units of epigenomic heterogeneity. In prostate cancer chromatin variants hold the promise of guiding the new era of precision oncology. In this review, we explore the role of epigenomic heterogeneity in prostate cancer, focusing on how chromatin variants contribute to tumor evolution and therapy resistance. We therefore discuss their impact on cellular plasticity and stochastic events, highlighting the value of single-cell sequencing and liquid biopsy epigenomic assays to uncover new therapeutic targets and biomarkers. Ultimately, this review aims to support a new era of precision oncology, utilizing insights from epigenomics to improve prostate cancer patient outcomes.
Collapse
Affiliation(s)
- Kira Furlano
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Tina Keshavarzian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Nadine Biernath
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Fendler
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Maria de Santis
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Joachim Weischenfeldt
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
- Biotech Research & Innovation Centre (BRIC), The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Ouyang W, Xu Z, Guan S, Hu Y, Gou X, Liu Z, Guo W, Huang Y, Zhang L, Zhang X, Li T, Yang B. Advancement Opportunities and Endeavor of Innovative Targeted Therapies for Small Cell Lung Cancer. Int J Biol Sci 2025; 21:1322-1341. [PMID: 39897044 PMCID: PMC11781172 DOI: 10.7150/ijbs.105973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Small cell lung cancer (SCLC) is an intractable disease with rapid progression and high mortality, presenting a persistent obstacle impeding clinical management. Although recent advancements in immunotherapy have enhanced the response rates of platinum-based chemotherapy regimens, the emergence of acquired resistance invariably leads to recurrence and metastasis. Consequently, there is an urgent necessity to explore novel therapeutic targets and optimize existing treatment strategies. This article comprehensively reviews the currently available therapeutic modalities for SCLC. It delves into the immunologic prognostic implications by analyzing selected immune-related signatures. Moreover, it conducts an in-depth exploration of the molecular subtyping of SCLC and the associated molecular pathways to identify potential therapeutic targets. Specifically, the focus is on clinical interventions targeting delta-like ligand 3 (DLL3), elucidating its resistance mechanisms and demonstrating its notable antitumor efficacy. Furthermore, the study examines the mechanisms of chimeric antigen receptor (CAR) T and antibody-drug conjugate (ADC), covering resistance issues and strategies for optimizing resistance management, with particular emphasis being placed on analyzing the prospects and clinical value of CAR T therapy in the context of SCLC. Moreover, the effectiveness of poly ADP-ribose polymerase and ataxia telangiectasia and rad3/checkpoint kinase 1 inhibitors is discussed and underscores the advantages of combining these inhibitors with standard chemotherapy to combat chemoresistance and enhance the antitumor effects of immunotherapies. Overall, this study investigates emerging strategies for targeted therapies and optimized combination regimens to overcome resistance in SCLC and highlights future strategies for new therapeutic technologies for SCLC.
Collapse
Affiliation(s)
- Wei Ouyang
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China
| | - Ziyao Xu
- Department of General Surgery, The first Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Shaoyu Guan
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre of PLA General Hospital/Medical School of Chinese PLA, Beijing 100853, China
| | - Yang Hu
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China
| | - Xiaoxue Gou
- Department of Oncology, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ye Huang
- Department of Respiratory Medicine, Enshi Central Hospital, Enshi 445000, Hubei, China
| | - Lifen Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Tian Li
- Tianjin Medical University, Tianjin 300100, China
| | - Bin Yang
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Ding E, Pinho-Schwermann M, Zhang S, Purcell C, El-Deiry WS. Small cell lung cancer and prostate cancer cells with varying neuroendocrine differentiation markers show sensitivity to imipridone ONC201/TIC10. Am J Transl Res 2025; 17:104-115. [PMID: 39959215 PMCID: PMC11826210 DOI: 10.62347/ibus3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/10/2024] [Indexed: 02/18/2025]
Abstract
OBJECTIVES To investigate whether neuroendocrine differentiation (NED) markers, activation of the integrated stress response (ISR), and TRAIL pathway alter neuroendocrine tumor (NET) cell death and ONC201 sensitivity. METHODS We conducted cell viability assays to determine ONC201 sensitivity. Western blot analysis was performed to evaluate NED, ISR, and TRAIL pathway markers. Expression levels of NED markers were compared between cell lines with and without BRN2 overexpression. RESULTS Prostate cancer (PCa) and small cell lung cancer (SCLC) cell lines (N = 6) were sensitive to ONC201. Endogenous NET marker levels varied across PCa and SCLC cells. Transient BRN2 overexpression slightly reduced some NET markers while maintaining the sensitivity of PCa cells to ONC201. CONCLUSIONS PCa cell lines exhibit sensitivity to ONC201, with variability of NED features. These findings are relevant to the design of future studies evaluating imipridone efficacy in PCa and suggest that non-NET patients could be included in such studies.
Collapse
Affiliation(s)
- Elizabeth Ding
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, The Warren Alpert Medical School of Brown UniversityProvidence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Maximillian Pinho-Schwermann
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, The Warren Alpert Medical School of Brown UniversityProvidence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, The Warren Alpert Medical School of Brown UniversityProvidence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, The Warren Alpert Medical School of Brown UniversityProvidence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, The Warren Alpert Medical School of Brown UniversityProvidence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Division of Hematology-Oncology, Department of Medicine, Rhode Island Hospital and Brown UniversityProvidence, RI 02903, USA
- The Joint Program in Cancer Biology, Brown University and The Lifespan Health SystemProvidence, RI 02903, USA
| |
Collapse
|
27
|
Das S, Samaddar S. Recent Advances in the Clinical Translation of Small-Cell Lung Cancer Therapeutics. Cancers (Basel) 2025; 17:255. [PMID: 39858036 PMCID: PMC11764476 DOI: 10.3390/cancers17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant form of cancer, representing 15% of lung cancer cases globally. SCLC is classified within the range of neuroendocrine pulmonary neoplasms, exhibiting shared morphologic, ultrastructural, immunohistochemical, and molecular genomic features. It is marked by rapid proliferation, a propensity for early metastasis, and an overall poor prognosis. The current conventional therapies involve platinum-etoposide-based chemotherapy in combination with immunotherapy. Nonetheless, the rapid emergence of therapeutic resistance continues to pose substantial difficulties. The genomic profiling of SCLC uncovers significant chromosomal rearrangements along with a considerable mutation burden, typically involving the functional inactivation of the tumor suppressor genes TP53 and RB1. Identifying biomarkers and evaluating new treatments is crucial for enhancing outcomes in patients with SCLC. Targeted therapies such as topoisomerase inhibitors, DLL3 inhibitors, HDAC inhibitors, PARP inhibitors, Chk1 inhibitors, etc., have introduced new therapeutic options for future applications. In this current review, we will attempt to outline the key molecular pathways that play a role in the development and progression of SCLC, together with a comprehensive overview of the most recent advancements in the development of novel targeted treatment strategies, as well as some ongoing clinical trials against SCLC, with the goal of improving patient outcomes.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
28
|
Hao Y, Li M, Liu W, Ma Z, Liu Z. Autophagic flux modulates tumor heterogeneity and lineage plasticity in SCLC. Front Oncol 2025; 14:1509183. [PMID: 39850810 PMCID: PMC11754400 DOI: 10.3389/fonc.2024.1509183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Small cell lung cancer (SCLC) is characterized by significant heterogeneity and plasticity, contributing to its aggressive progression and therapy resistance. Autophagy, a conserved cellular process, is implicated in many cancers, but its role in SCLC remains unclear. Methods Using a genetically engineered mouse model (Rb1fl/fl ; Trp53fl/fl ; GFP-LC3-RFP-LC3△G), we tracked autophagic flux in vivo to investigate its effects on SCLC biology. Additional in vitro experiments were conducted to modulate autophagic flux in NE and non-NE SCLC cell lines. Results Tumor subpopulations with high autophagic flux displayed increased proliferation, enhanced metastatic potential, and neuroendocrine (NE) characteristics. Conversely, low-autophagic flux subpopulations exhibited immune-related signals and non-NE traits. In vitro, increasing autophagy induced NE features in non-NE cell lines, while autophagy inhibition in NE cell lines promoted non-NE characteristics. Discussion This study provides a novel model for investigating autophagy in vivo and underscores its critical role in driving SCLC heterogeneity and plasticity, offering potential therapeutic insights.
Collapse
Affiliation(s)
- Yujie Hao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingchen Li
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenxu Liu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhenyi Ma
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Lei X, Su Y, Lei R, Zhang D, Liu Z, Li X, Yang M, Pei J, Chi Y, Song L. Predictive and prognostic nomogram models for liver metastasis in colorectal neuroendocrine neoplasms: a large population study. Front Endocrinol (Lausanne) 2025; 15:1488733. [PMID: 39839478 PMCID: PMC11746099 DOI: 10.3389/fendo.2024.1488733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Background In recent years, the incidence of patients with colorectal neuroendocrine neoplasms (CRNENs) has been continuously increasing. When diagnosed, most patients have distant metastases. Liver metastasis (LM) is the most common type of distant metastasis, and the prognosis is poor once it occurs. However, there is still a lack of large studies on the risk and prognosis of LM in CRNENs. This study aims to identify factors related to LM and prognosis and to develop a predictive model accordingly. Methods In this study, the Surveillance, Epidemiology, and End Results (SEER) database was used to collect clinical data from patients with CRNENs. The logistic regression analyses were conducted to identify factors associated with LM in patients with CRNENs. The patients with LM formed the prognostic cohort, and Cox regression analyses were performed to evaluate prognostic factors in patients with liver metastasis of colorectal neuroendocrine neoplasms (LM-CRNENs). Predictive and prognostic nomogram models were constructed based on the multivariate logistic and Cox analysis results. Finally, the capabilities of the nomogram models were verified through model assessment metrics, including the receiver operating characteristic (ROC) curves, calibration curve, and decision curve analysis (DCA) curve. Results This study ultimately encompassed a total of 10,260 patients with CRNENs. Among these patients, 501 cases developed LM. The result of multivariate logistic regression analyses indicated that histologic type, tumor grade, T stage, N stage, lung metastasis, bone metastasis, and tumor size were independent predictive factors for LM in patients with CRNENs (p < 0.05). Multivariate Cox regression analyses indicated that age, primary tumor site, histologic type, tumor grade, N stage, tumor size, chemotherapy, and surgery were independent prognostic factors (p < 0.05) for patients with LM-CRNENs. The predictive and prognostic nomogram models were established based on the independent factors of logistic and Cox analyses. The nomogram models can provide higher accuracy and efficacy in predicting the probability of LM in patients with CRNENs and the prognosis of patients with LM. Conclusion The factors associated with the occurrence of LM in CRNENs were identified. On the other hand, the relevant prognostic factors for patients with LM-CRNENs were also demonstrated. The nomogram models, based on independent factors, demonstrate greater efficiency and accuracy, promising to provide clinical interventions and decision-making support for patients.
Collapse
Affiliation(s)
- Xiao Lei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanwei Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Neuroendocrine Tumor Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Lei
- Department of Endocrinology, Zhoukou First People‘s Hospital, Zhoukou, China
| | - Dongyang Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zimeng Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangke Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minjie Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaxin Pei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Chi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Neuroendocrine Tumor Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijie Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Neuroendocrine Tumor Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Dolkar T, Gates C, Hao Z, Munker R. New developments in immunotherapy for SCLC. J Immunother Cancer 2025; 13:e009667. [PMID: 39762075 PMCID: PMC11748767 DOI: 10.1136/jitc-2024-009667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive form of neuroendocrine neoplasm known for its striking initial response to treatment, followed by fast relapse and refractoriness in response to additional lines of therapy. New advances in immunotherapy are paving the way for more effective treatment strategies and have promising results with early clinical trial data. While SCLC rarely harbors actionable mutations, the receptor DLL3 is extensively present in SCLC, making it a potential target for immunotherapy. Three emerging therapeutic options include bispecific T cell engagers targeting DLL3, chimeric antigen receptor T cells (CAR-T cells), and antibody-drug conjugates. Several phase II and phase III clinical trials for bispecific T cell engagers show promise. Additionally, the first CAR-T cell trials in humans for SCLC are currently underway.
Collapse
Affiliation(s)
- Tsering Dolkar
- Hospital Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Christopher Gates
- Hematology - Oncology, University of Kentucky, Lexington, Kentucky, USA
| | - Zhonglin Hao
- Medical Oncollogy, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
31
|
Nouruzi S, Namekawa T, Tabrizian N, Kobelev M, Sivak O, Scurll JM, Cui CJ, Ganguli D, Zoubeidi A. ASCL1 regulates and cooperates with FOXA2 to drive terminal neuroendocrine phenotype in prostate cancer. JCI Insight 2024; 9:e185952. [PMID: 39470735 PMCID: PMC11623946 DOI: 10.1172/jci.insight.185952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024] Open
Abstract
Lineage plasticity mediates resistance to androgen receptor pathway inhibitors (ARPIs) and progression from adenocarcinoma to neuroendocrine prostate cancer (NEPC), a highly aggressive and poorly understood subtype. Neuronal transcription factor ASCL1 has emerged as a central regulator of the lineage plasticity driving neuroendocrine differentiation. Here, we showed that ASCL1 was reprogrammed in ARPI-induced transition to terminal NEPC and identified that the ASCL1 binding pattern tailored the expression of lineage-determinant transcription factor combinations that underlie discrete terminal NEPC identity. Notably, we identified FOXA2 as a major cofactor of ASCL1 in terminal NEPC, which is highly expressed in ASCL1-driven NEPC. Mechanistically, FOXA2 and ASCL1 interacted and worked in concert to orchestrate terminal neuronal differentiation. We identified that prospero homeobox 1 was a target of ASCL1 and FOXA2. Targeting prospero homeobox 1 abrogated neuroendocrine characteristics and led to a decrease in cell proliferation in vitro and tumor growth in vivo. Our findings provide insights into the molecular conduit underlying the interplay between different lineage-determinant transcription factors to support the neuroendocrine identity and nominate prospero homeobox 1 as a potential target in ASCL1-high NEPC.
Collapse
Affiliation(s)
- Shaghayegh Nouruzi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Takeshi Namekawa
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Nakisa Tabrizian
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Maxim Kobelev
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Olena Sivak
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Joshua M Scurll
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Cassandra Jingjing Cui
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Amina Zoubeidi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Ding J, Yeong C. Advances in DLL3-targeted therapies for small cell lung cancer: challenges, opportunities, and future directions. Front Oncol 2024; 14:1504139. [PMID: 39703856 PMCID: PMC11655346 DOI: 10.3389/fonc.2024.1504139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Small cell lung cancer (SCLC) remains one of the most aggressive and challenging malignancies to treat, with limited therapeutic options and poor outcomes. Recent advances in understanding SCLC biology have identified Delta-like ligand 3 (DLL3) as a promising target for novel therapies. This review explores the evolving landscape of DLL3-targeted therapies in SCLC, examining their mechanistic basis, preclinical promise, and clinical development. We discuss various therapeutic modalities, including antibody-drug conjugates (ADCs), bispecific T-cell engagers (BiTEs), chimeric antigen receptor T-cell (CAR-T) therapies, and emerging approaches such as near-infrared photoimmunotherapy (NIR-PIT) and radiopharmaceutical therapy (RPT). The review highlights the challenges encountered in translating these promising approaches into clinical practice, including the setbacks faced by early DLL3-targeted therapies like Rovalpituzumab Tesirine (Rova-T). We also explore potential strategies to overcome these obstacles, emphasizing the need for a more nuanced understanding of DLL3 biology and its role in SCLC pathogenesis. The integration of cutting-edge technologies and interdisciplinary collaboration is proposed as a path forward to optimize DLL3-targeted therapies and improve outcomes for SCLC patients. This comprehensive overview provides insights into the current state and future directions of DLL3-targeted therapies, underscoring their potential to revolutionize SCLC treatment paradigms.
Collapse
Affiliation(s)
- Jianhua Ding
- Taylor’s University, Subang Jaya, Selangor, Malaysia
| | | |
Collapse
|
33
|
Martin-Vega A, Earnest S, Augustyn A, Wichaidit C, Girard L, Peyton M, Minna JD, Johnson JE, Cobb MH. ASCL1 Restrains ERK1/2 to Promote Survival of a Subset of Neuroendocrine Lung Cancers. Mol Cancer Ther 2024; 23:1789-1800. [PMID: 39295275 PMCID: PMC11614696 DOI: 10.1158/1535-7163.mct-24-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024]
Abstract
The transcription factor achaete-scute complexhomolog 1 (ASCL1) is a lineage oncogene that is central in growth and survival of the majority of small cell lung cancers and neuroendocrine (NE) non-small cell lung cancers (NSCLC) that express it. Targeting ASCL1, or its downstream pathways, remains a challenge. Small cell lung cancers and NSCLC-NE that express ASCL1 exhibit relatively low ERK1/2 activity, in dramatic contrast to NSCLCs in which the ERK pathway plays a major role in pathogenesis. ERK1/2 inhibition in ASCL1-expressing lung tumor cells revealed downregulation of ERK1/2 pathway suppressors SPRY4, SPRED1, DUSP6, and the transcription factor ETV5, which regulates DUSP6. Chromatin immunoprecipitation sequencing demonstrated that these genes are bound by ASCL1. Availability of a pharmacologic inhibitor directed mechanistic studies toward DUSP6, an ERK1/2-selective phosphatase, in a subset of ASCL1-high NE lung tumors. Inhibition of DUSP6 increased active ERK1/2, which accumulated in the nucleus. Pharmacologic and genetic inhibition of DUSP6 reduced proliferation and survival of these cancers. Resistance developed in DUSP6-knockout cells, indicating a bypass mechanism. Although targeting ASCL1 remains a challenge, our findings suggest that expression of ASCL1, DUSP6, and low phospho-ERK1/2 identifies NE lung cancers for which DUSP6 may be a therapeutic target.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Svetlana Earnest
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Alexander Augustyn
- Departments of Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
| | | | - Luc Girard
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
- Departments of Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Michael Peyton
- Departments of Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
| | - John D. Minna
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
- Departments of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
- Departments of Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Jane E. Johnson
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
- Departments of Neuroscience, UT Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Melanie H. Cobb
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
34
|
Peddio A, Pietroluongo E, Lamia MR, Luciano A, Caltavituro A, Buonaiuto R, Pecoraro G, De Placido P, Palmieri G, Bianco R, Giuliano M, Servetto A. DLL3 as a potential diagnostic and therapeutic target in neuroendocrine neoplasms: A narrative review. Crit Rev Oncol Hematol 2024; 204:104524. [PMID: 39326646 DOI: 10.1016/j.critrevonc.2024.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) represent a diagnostic and therapeutic challenge, due to their heterogeneity and limited treatment options. Conventional imaging techniques and therapeutic strategies may become unreliable during follow-up, due to the tendency of these neoplasms to dedifferentiate over time. Therefore, novel diagnostic and therapeutic options are required for the management of NEN patients. Delta-like ligand 3 (DLL3), an inhibitory ligand of Notch receptor, has emerged as a potential target for novel diagnostic and therapeutic strategies in NENs, since overexpression of DLL3 has been associated with tumor progression, poor prognosis and dedifferentiation in several NENs. This narrative review examines the current evidence about DLL3, its structure, function and association with tumorigenesis in NENs. Ongoing studies exploring the role of DLL3 as an emerging diagnostic marker are reviewed. Promising therapeutic options, such as antibody-conjugated drugs, CAR-T cells and radioimmunoconjugates, are also discussed.
Collapse
Affiliation(s)
- Annarita Peddio
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Erica Pietroluongo
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Maria Rosaria Lamia
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Angelo Luciano
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Aldo Caltavituro
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Roberto Buonaiuto
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Giovanna Pecoraro
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Giovannella Palmieri
- Rare Tumors Coordinating Center of Campania Region (CRCTR), University Federico II, Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy.
| |
Collapse
|
35
|
Yu Z, Zou J, Xu F. The molecular subtypes of small cell lung cancer defined by key transcription factors and their clinical significance. Lung Cancer 2024; 198:108033. [PMID: 39571251 DOI: 10.1016/j.lungcan.2024.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Lung cancer, a prevalent and deadly malignancy, is classified into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC is further subdivided into four molecular subtypes-SCLC-A, SCLC-N, SCLC-P, and SCLC-I-based on key transcription factor expression. METHODS Immunohistochemistry (IHC) was used to assess ASCL1, NEUROD1, and POU2F3 expression in tumor tissues. The H-Score quantified these results. Clinical characteristics, overall survival (OS), progression-free survival (PFS), and treatment responses were analyzed by subtype, and sensitivity to different treatments was assessed. Risk factors were identified through univariate and multivariate analyses. RESULTS IHC and H-Score analysis showed that POU2F3 expression was mutually exclusive with ASCL1 or NEUROD1. Subtype distribution was as follows: SCLC-A (40 %), SCLC-N (33 %), SCLC-P (7 %), and SCLC-I (20 %). There were no significant differences in baseline characteristics, OS (p = 0.829), or PFS (p = 0.924) among subtypes. However, the SCLC-I subtype showed a trend toward improved outcomes with platinum-based doublet chemotherapy plus immune checkpoint inhibitors. Multivariate COX regression identified M stage (HR: 1.72, 95 % CI: 1.13-2.63, p = 0.012) and bone metastasis at diagnosis (HR: 1.58, 95 % CI: 1.02-2.43, p = 0.040) as independent risk factors. CONCLUSION This study confirmed the SCLC subtyping based on key transcription factors. While no significant differences in OS and PFS among subtypes were found, the SCLC-I subtype showed potential benefit from platinum-based chemotherapy combined with immune checkpoint inhibitors. M stage and bone metastasis at diagnosis were identified as independent risk factors for SCLC.
Collapse
Affiliation(s)
- Zhuchen Yu
- Clinical Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Juntao Zou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China.
| | - Fei Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China.
| |
Collapse
|
36
|
Ireland AS, Hawgood SB, Xie DA, Barbier MW, Lucas-Randolph S, Tyson DR, Zuo LY, Witt BL, Govindan R, Dowlati A, Moser JC, Puri S, Rudin CM, Chan JM, Elliott A, Oliver TG. Basal cell of origin resolves neuroendocrine-tuft lineage plasticity in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623500. [PMID: 39605338 PMCID: PMC11601426 DOI: 10.1101/2024.11.13.623500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuroendocrine and tuft cells are rare, chemosensory epithelial lineages defined by expression of ASCL1 and POU2F3 transcription factors, respectively1,2. Neuroendocrine cancers, including small cell lung cancer (SCLC), frequently display tuft-like subsets, a feature linked to poor patient outcomes3-13. The mechanisms driving neuroendocrine-tuft tumour heterogeneity, and the origins of tuft-like cancers are unknown. Using multiple genetically-engineered animal models of SCLC, we demonstrate that a basal cell of origin (but not the accepted neuroendocrine origin) generates neuroendocrine-tuft-like tumours that highly recapitulate human SCLC. Single-cell clonal analyses of basal-derived SCLC further uncovers unexpected transcriptional states and lineage trajectories underlying neuroendocrine-tuft plasticity. Uniquely in basal cells, introduction of genetic alterations enriched in human tuft-like SCLC, including high MYC, PTEN loss, and ASCL1 suppression, cooperate to promote tuft-like tumours. Transcriptomics of 944 human SCLCs reveal a basal-like subset and a tuft-ionocyte-like state that altogether demonstrate remarkable conservation between cancer states and normal basal cell injury response mechanisms14-18. Together, these data suggest that the basal cell is a plausible origin for SCLC and other neuroendocrine-tuft cancers that can explain neuroendocrine-tuft heterogeneity-offering new insights for targeting lineage plasticity.
Collapse
Affiliation(s)
- Abbie S. Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Sarah B. Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Daniel A. Xie
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Margaret W. Barbier
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | | | - Darren R. Tyson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Lisa Y. Zuo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Benjamin L. Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Sonam Puri
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph M. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
37
|
Rodarte KE, Heyman SN, Guo L, Flores L, Savage TK, Villarreal J, Deng S, Xu L, Shah RB, Oliver TG, Johnson JE. Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1. Cancer Res 2024; 84:3522-3537. [PMID: 39264686 PMCID: PMC11534540 DOI: 10.1158/0008-5472.can-24-1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Most patients with prostate adenocarcinoma develop resistance to therapies targeting the androgen receptor (AR). Consequently, a portion of these patients develop AR-independent neuroendocrine (NE) prostate cancer (NEPC), a rapidly progressing cancer with limited therapies and poor survival outcomes. Current research to understand the progression to NEPC suggests a model of lineage plasticity whereby AR-dependent luminal-like tumors progress toward an AR-independent NEPC state. Genetic analysis of human NEPC identified frequent loss of RB1 and TP53, and the loss of both genes in experimental models mediates the transition to a NE lineage. Transcriptomics studies have shown that lineage transcription factors ASCL1 and NEUROD1 are present in NEPC. In this study, we modeled the progression of prostate adenocarcinoma to NEPC by establishing prostate organoids and subsequently generating subcutaneous allograft tumors from genetically engineered mouse models harboring Cre-induced loss of Rb1 and Trp53 with Myc overexpression (RPM). These tumors were heterogeneous and displayed adenocarcinoma, squamous, and NE features. ASCL1 and NEUROD1 were expressed within NE-defined regions, with ASCL1 being predominant. Genetic loss of Ascl1 in this model did not decrease tumor incidence, growth, or metastasis; however, there was a notable decrease in NE identity and an increase in basal-like identity. This study provides an in vivo model to study progression to NEPC and establishes the requirement for ASCL1 in driving NE differentiation in prostate cancer. Significance: Modeling lineage transitions in prostate cancer and testing dependencies of lineage transcription factors have therapeutic implications, given the emergence of treatment-resistant, aggressive forms of neuroendocrine prostate cancer. See related commentary by McQuillen and Brady, p. 3499.
Collapse
Affiliation(s)
- Kathia E. Rodarte
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shaked Nir Heyman
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lydia Flores
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trisha K. Savage
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Villarreal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajal B. Shah
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, NC 27708, USA
| | - Jane E. Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
38
|
Romero R, Chu T, González Robles TJ, Smith P, Xie Y, Kaur H, Yoder S, Zhao H, Mao C, Kang W, Pulina MV, Lawrence KE, Gopalan A, Zaidi S, Yoo K, Choi J, Fan N, Gerstner O, Karthaus WR, DeStanchina E, Ruggles KV, Westcott PMK, Chaligné R, Pe'er D, Sawyers CL. The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1. NATURE CANCER 2024; 5:1641-1659. [PMID: 39394434 PMCID: PMC11584404 DOI: 10.1038/s43018-024-00838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Lineage plasticity is a hallmark of cancer progression that impacts therapy outcomes, yet the mechanisms mediating this process remain unclear. Here, we introduce a versatile in vivo platform to interrogate neuroendocrine lineage transformation throughout prostate cancer progression. Transplanted mouse prostate organoids with human-relevant driver mutations (Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+) develop adenocarcinomas, but only those with Rb1 deletion advance to aggressive, ASCL1+ neuroendocrine prostate cancer (NEPC) resistant to androgen receptor signaling inhibitors. Notably, this transition requires an in vivo microenvironment not replicated by conventional organoid culture. Using multiplexed immunofluorescence and spatial transcriptomics, we reveal that ASCL1+ cells arise from KRT8+ luminal cells, progressing into transcriptionally heterogeneous ASCL1+;KRT8- NEPC. Ascl1 loss in established NEPC causes transient regression followed by recurrence, but its deletion before transplantation abrogates lineage plasticity, resulting in castration-sensitive adenocarcinomas. This dynamic model highlights the importance of therapy timing and offers a platform to identify additional lineage plasticity drivers.
Collapse
Affiliation(s)
- Rodrigo Romero
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tinyi Chu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tania J González Robles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Perianne Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harmanpreet Kaur
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Yoder
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chenyi Mao
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenfei Kang
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria V Pulina
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kayla E Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivia Gerstner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelly V Ruggles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
39
|
Velut Y, Arqué B, Wislez M, Blons H, Burroni B, Prieto M, Beau S, Fournel L, Birsen G, Cremer I, Alifano M, Damotte D, Mansuet-Lupo A. The tumor immune microenvironment of SCLC is not associated with its molecular subtypes. Eur J Cancer 2024; 212:115067. [PMID: 39413714 DOI: 10.1016/j.ejca.2024.115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/28/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Small-cell lung carcinoma (SCLC) is a high-grade neuroendocrine carcinoma of poor prognosis. Although immune checkpoint blockers have shown promising results in advanced SCLC, the tumor immune microenvironment (TME) remains poorly understood, with no validated prognostic or predictive biomarkers of efficacy. METHODS This retrospective study included surgically samples from 48 SCLC patients between 2009 and 2018. We assessed the TME using two quantitative 7-plex immunofluorescence panels focusing on T and B cells, and compared it to NSCLC (N = 10). Molecular subtypes were determined by assessing the expression of ASCL1, NEUROD1 and YAP1 using immunohistochemistry. RESULTS Immune-hot SCLC were defined as those exhibiting the highest immune cell and immune-related marker densities. They were associated with longer overall survival, significantly more frequently detected at early stages, and exhibited high PD-L1 expression in immune cells, but were not associated with molecular subtypes. Compared to NSCLC, SCLC had significantly lower densities of CD20 + cells and higher density of PD1 + cells, with no significant differences in CD4 + , CD8 + and plasma cell densities. In univariate analysis, the highest OS was significantly associated with early stage (p < 0.001), low expression of NEUROD1 (p = 0.047), high PD1 + cell density (p < 0.001) and high PD-L1 immune cell expression (p = 0.04). Only stage and PD1 + cell density emerged as independent prognostic markers. CONCLUSION SCLC TME is highly heterogeneous. Immune-hot tumors were associated with OS but not with molecular classification. PD1 expression and PD-L1 expression by immune cells may thus serve as a prognostic marker.
Collapse
Affiliation(s)
- Yoan Velut
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Institut du cancer Paris CARPEM, Team Inflammation, Complement and Cancer, Paris, France
| | - Basilia Arqué
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Institut du cancer Paris CARPEM, Team Inflammation, Complement and Cancer, Paris, France
| | - Marie Wislez
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Institut du cancer Paris CARPEM, Team Inflammation, Complement and Cancer, Paris, France; Department of pneumology, Cochin Hospital, AP-HP.centre, Université Paris Cité, Paris, France
| | - Hélène Blons
- Centre de Recherche des Cordeliers, INSERM CNRS SNC 5096, Sorbonne Université, Université Paris Cité, Institut du cancer Paris CARPEM, Paris, France; Department of Biochemistry, Unit of Pharmacogenetic and Molecular Oncology, Georges Pompidou European Hospital, AP-HP.centre, Université Paris Cité, Paris, France
| | - Barbara Burroni
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Institut du cancer Paris CARPEM, Team Inflammation, Complement and Cancer, Paris, France; Department of Pathology, Cochin Hospital, AP-HP.centre, Université Paris Cité, Paris, France
| | - Mathilde Prieto
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Institut du cancer Paris CARPEM, Team Inflammation, Complement and Cancer, Paris, France; Department of Thoracic Surgery, Cochin Hospital, AP-HP.centre, Université Paris Cité, Paris, France
| | - Siméon Beau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Institut du cancer Paris CARPEM, Team Inflammation, Complement and Cancer, Paris, France
| | - Ludovic Fournel
- Department of Thoracic Surgery, Cochin Hospital, AP-HP.centre, Université Paris Cité, Paris, France
| | - Gary Birsen
- Department of pneumology, Cochin Hospital, AP-HP.centre, Université Paris Cité, Paris, France
| | - Isabelle Cremer
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Institut du cancer Paris CARPEM, Team Inflammation, Complement and Cancer, Paris, France
| | - Marco Alifano
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Institut du cancer Paris CARPEM, Team Inflammation, Complement and Cancer, Paris, France; Department of Thoracic Surgery, Cochin Hospital, AP-HP.centre, Université Paris Cité, Paris, France
| | - Diane Damotte
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Institut du cancer Paris CARPEM, Team Inflammation, Complement and Cancer, Paris, France; Department of Pathology, Cochin Hospital, AP-HP.centre, Université Paris Cité, Paris, France.
| | - Audrey Mansuet-Lupo
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Institut du cancer Paris CARPEM, Team Inflammation, Complement and Cancer, Paris, France; Department of Pathology, Cochin Hospital, AP-HP.centre, Université Paris Cité, Paris, France
| |
Collapse
|
40
|
Domingo-Sabugo C, Willis-Owen SA, Mandal A, Nastase A, Dwyer S, Brambilla C, Gálvez JH, Zhuang Q, Popat S, Eveleigh R, Munter M, Lim E, Nicholson AG, Lathrop GM, Cookson WO, Moffatt MF. Genomic analysis defines distinct pancreatic and neuronal subtypes of lung carcinoid. J Pathol 2024; 264:332-343. [PMID: 39329437 DOI: 10.1002/path.6352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Lung carcinoids (L-CDs) are rare, poorly characterised neuroendocrine tumours (NETs). L-CDs are more common in women and are not the consequence of cigarette smoking. They are classified histologically as typical carcinoids (TCs) or atypical carcinoids (ACs). ACs confer a worse survival. Histological classification is imperfect, and there is increasing interest in molecular markers. We therefore investigated global transcriptomic and epigenomic profiles of 15 L-CDs resected with curative intent at Royal Brompton Hospital. We identified underlying mutations and structural abnormalities through whole-exome sequencing (WES) and single nucleotide polymorphism (SNP) genotyping. Transcriptomic clustering algorithms identified two distinct L-CD subtypes. These showed similarities either to pancreatic or neuroendocrine tumours at other sites and so were named respectively L-CD-PanC and L-CD-NeU. L-CD-PanC tumours featured upregulation of pancreatic and metabolic pathway genes matched by promoter hypomethylation of genes for beta cells and insulin secretion (p < 1 × 10-6). These tumours were centrally located and showed mutational signatures of activation-induced deaminase/apolipoprotein B editing complex activity, together with genome-wide DNA methylation loss enriched in repetitive elements (p = 2.2 × 10-16). By contrast, the L-CD-NeU group exhibited upregulation of neuronal markers (adjusted p < 0.01) and was characterised by focal spindle cell morphology (p = 0.04), peripheral location (p = 0.01), high mutational load (p = 2.17 × 10-4), recurrent copy number alterations, and enrichment for ACs. Mutations affected chromatin remodelling and SWI/SNF complex pathways. L-CD-NeU tumours carried a mutational signature attributable to aflatoxin and aristolochic acid (p = 0.05), suggesting a possible environmental exposure in their pathogenesis. Immunologically, myeloid and T-cell markers were enriched in L-CD-PanC and B-cell markers in L-CD-NeU tumours. The substantial epigenetic and non-coding differences between L-CD-PanC and L-CD-NeU open new possibilities for biomarker selection and targeted treatment of L-CD. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Amit Mandal
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anca Nastase
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah Dwyer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Cecilia Brambilla
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - José Héctor Gálvez
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Qinwei Zhuang
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Sanjay Popat
- Royal Marsden Hospital NHS Foundation Trust, London and Surrey, UK
- The Institute of Cancer Research, London, UK
| | - Robert Eveleigh
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Markus Munter
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Eric Lim
- Department of Thoracic Surgery, Royal Brompton Hospital, London, UK
| | - Andrew G Nicholson
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - G Mark Lathrop
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | | | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
41
|
Ozakinci H, Alontaga AY, Cano P, Koomen JM, Perez BA, Beg AA, Chiappori AA, Haura EB, Boyle TA. Unveiling the Molecular Features of SCLC With a Clinical RNA Expression Panel. JTO Clin Res Rep 2024; 5:100723. [PMID: 39386315 PMCID: PMC11459576 DOI: 10.1016/j.jtocrr.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 08/23/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The translation of gene expression profiles of SCLC to clinical testing remains relatively unexplored. In this study, gene expression variations in SCLC were evaluated to identify potential biomarkers. Methods RNA expression profiling was performed on 44 tumor samples from 35 patients diagnosed with SCLC using the clinically validated RNA Salah Targeted Expression Panel (RNA STEP). RNA sequencing (RNA-Seq) and immunohistochemistry were performed on two different SCLC cohorts, and correlation analyses were performed for the ASCL1, NEUROD1, POU2F3, and YAP1 genes and their corresponding proteins. RNA STEP and RNA-Seq results were evaluated for gene expression profiles and heterogeneity between SCLC primary and metastatic sites. RNA STEP gene expression profiles of independent SCLC samples (n = 35) were compared with lung adenocarcinoma (n = 160) and squamous cell carcinoma results (n = 25). Results The RNA STEP results were highly correlated with RNA-Seq and immunohistochemistry results. The dominant transcription regulator by RNA STEP was ASCL1 in 74.2% of the samples, NEUROD1 in 20%, and POU2F3 in 2.9%. The ASCL1, NEUROD1, and POU2F3 gene expression profiles were heterogeneous between primary and metastatic sites. SCLCs displayed markedly high expression for targetable genes DLL3, EZH2, TERT, and RET. SCLCs were found to have relatively colder immune profiles than lung adenocarcinomas and squamous cell carcinomas, characterized by lower expression of HLA genes, immune cell, and immune checkpoint genes, except the LAG3 gene. Conclusions Clinical-grade SCLC RNA expression profiling has value for SCLC subtyping, design of clinical trials, and identification of patients for trials and potential targeted therapy.
Collapse
Affiliation(s)
- Hilal Ozakinci
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Aileen Y. Alontaga
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Pedro Cano
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John M. Koomen
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Bradford A. Perez
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Florida Cancer Specialists & Research Institute, Trinity Cancer Center, Trinity, Florida
| | - Amer A. Beg
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Alberto A. Chiappori
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Theresa A. Boyle
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
42
|
Yu T, Lok BH. Strategies to Target Chemoradiotherapy Resistance in Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3438. [PMID: 39456533 PMCID: PMC11506711 DOI: 10.3390/cancers16203438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Small cell lung cancer (SCLC) is a lethal form of lung cancer with few treatment options and a high rate of relapse. While SCLC is initially sensitive to first-line DNA-damaging chemo- and radiotherapy, relapse disease is almost universally therapy-resistant. As a result, there has been interest in understanding the mechanisms of therapeutic resistance in this disease. Conclusions: Progress has been made in elucidating these mechanisms, particularly as they relate to the DNA damage response and SCLC differentiation and transformation, leading to many clinical trials investigating new therapies and combinations. Yet there remain many gaps in our understanding, such as the effect of epigenetics or the tumor microenvironment on treatment response, and no single mechanism has been found to be ubiquitous, suggesting a significant heterogeneity in the mechanisms of acquired resistance. Nevertheless, the advancement of techniques in the laboratory and the clinic will improve our ability to study this disease, especially in patient populations, and identify methods to surmount therapeutic resistance.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Benjamin H. Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 6 Queen’s Park Crescent, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
43
|
Akbulut D, Whiting K, Teo MY, Tallman JE, Ozcan GG, Basar M, Jia L, Rammal R, Chen JF, Sarungbam J, Chen YB, Gopalan A, Fine SW, Tickoo SK, Mehra R, Baine M, Bochner BH, Pietzak EJ, Bajorin DF, Rosenberg JE, Iyer G, Solit DB, Reuter VE, Rekhtman N, Ostrovnaya I, Al-Ahmadie H. Differential NEUROD1, ASCL1, and POU2F3 Expression Defines Molecular Subsets of Bladder Small Cell/Neuroendocrine Carcinoma With Prognostic Implications. Mod Pathol 2024; 37:100557. [PMID: 38964503 PMCID: PMC11490389 DOI: 10.1016/j.modpat.2024.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Small cell carcinomas (SMC) of the lung are now molecularly classified based on the expression of transcriptional regulators (NEUROD1, ASCL1, POU2F3, and YAP1) and DLL3, which has emerged as an investigational therapeutic target. PLCG2 has been shown to identify a distinct subpopulation of lung SMC with stem cell-like and prometastasis features and poor prognosis. We analyzed the expression of these novel neuroendocrine markers and their association with traditional neuroendocrine markers and patient outcomes in a cohort of bladder neuroendocrine carcinoma (NEC) consisting of 103 SMC and 19 large cell NEC (LCNEC) assembled in tissue microarrays. Coexpression patterns were assessed and integrated with detailed clinical annotation including overall (OS) and recurrence-free survival (RFS) and response to neoadjuvant/adjuvant chemotherapy. We identified 5 distinct molecular subtypes in bladder SMC based on the expression of ASCL1, NEUROD1, and POU2F3: ASCL1+/NEUROD1- (n = 33; 34%), ASCL1- /NEUROD1+ (n = 21; 21%), ASCL1+/NEUROD1+ (n = 17; 17%), POU2F3+ (n = 22, 22%), and ASCL1- /NEUROD1- /POU2F3- (n = 5, 5%). POU2F3+ tumors were mutually exclusive with those expressing ASCL1 and NEUROD1 and exhibited lower expression of traditional neuroendocrine markers. PLCG2 expression was noted in 33 tumors (32%) and was highly correlated with POU2F3 expression (P < .001). DLL3 expression was high in both SMC (n = 72, 82%) and LCNEC (n = 11, 85%). YAP1 expression was enriched in nonneuroendocrine components and negatively correlated with all neuroendocrine markers. In patients without metastatic disease who underwent radical cystectomy, PLCG2+ or POU2F3+ tumors had shorter RFS and OS (P < .05), but their expression was not associated with metastasis status or response to neoadjuvant/adjuvant chemotherapy. In conclusion, the NEC of the bladder can be divided into distinct molecular subtypes based on the expression of ASCL1, NEUROD1, and POU2F3. POU2F3-expressing tumors represent an ASCL1/NEUROD1-negative subset of bladder NEC characterized by lower expression of traditional neuroendocrine markers. Marker expression patterns were similar in SMC and LCNEC. Expression of PLCG2 and POU2F3 was associated with shorter RFS and OS. DLL3 was expressed at high levels in both SMC and LCNEC of the bladder, nominating it as a potential therapeutic target.
Collapse
MESH Headings
- Humans
- Basic Helix-Loop-Helix Transcription Factors/analysis
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Urinary Bladder Neoplasms/pathology
- Urinary Bladder Neoplasms/mortality
- Urinary Bladder Neoplasms/metabolism
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/mortality
- Carcinoma, Neuroendocrine/therapy
- Male
- Female
- Aged
- Middle Aged
- Prognosis
- Carcinoma, Small Cell/pathology
- Carcinoma, Small Cell/metabolism
- Carcinoma, Small Cell/mortality
- Carcinoma, Small Cell/genetics
- Tissue Array Analysis
- POU Domain Factors/genetics
- POU Domain Factors/metabolism
- POU Domain Factors/analysis
- Adult
- Aged, 80 and over
- Immunohistochemistry
- Disease-Free Survival
Collapse
Affiliation(s)
- Dilara Akbulut
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Karissa Whiting
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Min-Yuen Teo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacob E Tallman
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gamze Gokturk Ozcan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology and Laboratory Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Merve Basar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Liwei Jia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, UT Southwestern, Dallas, Texas
| | - Rayan Rammal
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jie-Fu Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Judy Sarungbam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anuradha Gopalan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samson W Fine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Satish K Tickoo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Marina Baine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernard H Bochner
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eugene J Pietzak
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dean F Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Victor E Reuter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hikmat Al-Ahmadie
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
44
|
Redin E, Quintanal-Villalonga Á, Rudin CM. Small cell lung cancer profiling: an updated synthesis of subtypes, vulnerabilities, and plasticity. Trends Cancer 2024; 10:935-946. [PMID: 39164163 DOI: 10.1016/j.trecan.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Small cell lung cancer (SCLC) is a devastating disease with high proliferative and metastatic capacity. SCLC has been classified into molecular subtypes based on differential expression of lineage-defining transcription factors. Recent studies have proposed new subtypes that are based on both tumor-intrinsic and -extrinsic factors. SCLC demonstrates substantial intratumoral subtype heterogeneity characterized by highly plastic transcriptional states, indicating that the initially dominant subtype can shift during disease progression and in association with resistance to therapy. Strategies to promote or constrain plasticity and cell fate transitions have nominated novel targets that could prompt the development of more durably effective therapies for patients with SCLC. In this review, we describe the latest advances in SCLC subtype classification and their biological and clinical implications.
Collapse
Affiliation(s)
- Esther Redin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Álvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
45
|
Jiang S, Dai T, Li Q, Xu T, Zhang W, Sun J, Liu H. Generation of ASCL1-mCherry knock-in reporter in human embryonic stem cell line, WAe001-A-2E, using CRISPR/Cas9-based gene targeting. Stem Cell Res 2024; 80:103500. [PMID: 39059080 DOI: 10.1016/j.scr.2024.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/14/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Achaete-Scute Complex Homolog 1 (ASCL1) is a key regulator in the development and function of the nervous system, particularly in the process of neuronal and neuroendocrine cell differentiation. By employing the CRISPR/Cas9 system, we successfully established an ASCL1-mCherry knock-in human embryonic stem cell (hESC) line by inserting a P2A-mCherry fragment at the ASCL1 locus. The mCherry reporter effectively demonstrated the expression level of endogenous ASCL1 during the process of inducing pulmonary neuroendocrine cells (PNECs) from hESC. This reporter cell line holds significant value as a research tool for investigating the process of lung neuroendocrine cell differentiation, conducting drug screening, and exploring the underlying mechanisms of lung diseases associated with PNECs dysfunction.
Collapse
Affiliation(s)
- Shisheng Jiang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou National Laboratory, Guangzhou 510005, China
| | - Tiankai Dai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Guangzhou National Laboratory, Guangzhou 510005, China
| | - Qian Li
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou National Laboratory, Guangzhou 510005, China
| | - Wei Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou National Laboratory, Guangzhou 510005, China
| | - Jiaqi Sun
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou National Laboratory, Guangzhou 510005, China
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Guangzhou National Laboratory, Guangzhou 510005, China; Bioland Laboratory, Guangzhou 510005, China.
| |
Collapse
|
46
|
Ludwig ML, Moline D, Horrmann A, Boytim E, Larson G, Arafa AT, Sayeda M, Lozada JR, Bergom HE, Day A, Dasaraju S, Dehm SM, Murugan P, Hwang J, Drake JM, Antonarakis ES. Integrated multi-omics assessment of lineage plasticity in a prostate cancer patient with brain and dural metastases. NPJ Precis Oncol 2024; 8:215. [PMID: 39349591 PMCID: PMC11443004 DOI: 10.1038/s41698-024-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Metastases to the brain are rare in prostate cancer. Here, we describe a patient with two treatment-emergent metastatic lesions, one to the brain with neuroendocrine prostate cancer (NEPC) histology and one to the dural membrane of adenocarcinoma histology. We performed genomic, transcriptomic, and proteomic characterization of these lesions and the primary tumor to investigate molecular features promoting these metastases. The two metastatic lesions had high genomic similarity, including TP53 mutation and PTEN deletion, with the most striking difference being the additional loss of RB1 in the NEPC lesion. Interestingly, the dural lesion expressed both androgen receptor and neuroendocrine markers, suggesting amphicrine carcinoma (AMPC). When analyzing pioneer transcription factors, the AMPC lesion exhibited elevated FOXA1 activity while the brain NEPC lesion showed elevated HOXC10, NFYB, and OTX2 expression suggesting novel roles in NEPC formation or brain tropism. Our results highlight the utility of performing multi-omic characterization, especially in rare cancer subtypes.
Collapse
Affiliation(s)
- Megan L Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - David Moline
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Alec Horrmann
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Ella Boytim
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Gabrianne Larson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Ali T Arafa
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Masooma Sayeda
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - John R Lozada
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Hannah E Bergom
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Abderrahman Day
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Sandhyarani Dasaraju
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Scott M Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Justin Hwang
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, USA.
| | - Emmanuel S Antonarakis
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
47
|
Hou Y, Gan J, Fan Z, Sun L, Garg V, Wang Y, Li S, Bao P, Cao B, Varshney RK, Zhao H. Haplotype-based pangenomes reveal genetic variations and climate adaptations in moso bamboo populations. Nat Commun 2024; 15:8085. [PMID: 39278956 PMCID: PMC11402969 DOI: 10.1038/s41467-024-52376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
Moso bamboo (Phyllostachys edulis), an ecologically and economically important forest species in East Asia, plays vital roles in carbon sequestration and climate change mitigation. However, intensifying climate change threatens moso bamboo survival. Here we generate high-quality haplotype-based pangenome assemblies for 16 representative moso bamboo accessions and integrated these assemblies with 427 previously resequenced accessions. Characterization of the haplotype-based pangenome reveals extensive genetic variation, predominantly between haplotypes rather than within accessions. Many genes with allele-specific expression patterns are implicated in climate responses. Integrating spatiotemporal climate data reveals more than 1050 variations associated with pivotal climate factors, including temperature and precipitation. Climate-associated variations enable the prediction of increased genetic risk across the northern and western regions of China under future emissions scenarios, underscoring the threats posed by rising temperatures. Our integrated haplotype-based pangenome elucidates moso bamboo's local climate adaptation mechanisms and provides critical genomic resources for addressing intensifying climate pressures on this essential bamboo. More broadly, this study demonstrates the power of long-read sequencing in dissecting adaptive traits in climate-sensitive species, advancing evolutionary knowledge to support conservation.
Collapse
Affiliation(s)
- Yinguang Hou
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Junwei Gan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Zeyu Fan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Lei Sun
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Vanika Garg
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Yu Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Shanying Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Pengfei Bao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Bingchen Cao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Hansheng Zhao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China.
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China.
| |
Collapse
|
48
|
Hartmann GG, Sage J. Small Cell Lung Cancer Neuronal Features and Their Implications for Tumor Progression, Metastasis, and Therapy. Mol Cancer Res 2024; 22:787-795. [PMID: 38912893 PMCID: PMC11374474 DOI: 10.1158/1541-7786.mcr-24-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Small cell lung cancer (SCLC) is an epithelial neuroendocrine form of lung cancer for which survival rates remain dismal and new therapeutic approaches are greatly needed. Key biological features of SCLC tumors include fast growth and widespread metastasis, as well as rapid resistance to treatment. Similar to pulmonary neuroendocrine cells, SCLC cells have traits of both hormone-producing cells and neurons. In this study, we specifically discuss the neuronal features of SCLC. We consider how neuronal G protein-coupled receptors and other neuronal molecules on the surface of SCLC cells can contribute to the growth of SCLC tumors and serve as therapeutic targets in SCLC. We also review recent evidence for the role of neuronal programs expressed by SCLC cells in the fast proliferation, migration, and metastasis of these cells. We further highlight how these neuronal programs may be particularly relevant for the development of brain metastases and how they can assist SCLC cells to functionally interact with neurons and astrocytes. A greater understanding of the molecular and cellular neuronal features of SCLC is likely to uncover new vulnerabilities in SCLC cells, which may help develop novel therapeutic approaches. More generally, the epithelial-to-neuronal transition observed during tumor progression in SCLC and other cancer types can contribute significantly to tumor development and response to therapy.
Collapse
Affiliation(s)
- Griffin G. Hartmann
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
49
|
Nguyen A, Nuñez CG, Tran TA, Girard L, Peyton M, Catalan R, Guerena C, Avila K, Drapkin BJ, Chandra R, Minna JD, Martinez ED. Jumonji histone demethylases are therapeutic targets in small cell lung cancer. Oncogene 2024; 43:2885-2899. [PMID: 39154123 PMCID: PMC11405284 DOI: 10.1038/s41388-024-03125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer of neuroendocrine (NE) origin. Changes in therapeutic approaches against SCLC have been lacking over the decades. Here, we use preclinical models to identify a new therapeutic vulnerability in SCLC consisting of the targetable Jumonji lysine demethylase (KDM) family. We show that Jumonji demethylase inhibitors block malignant growth and that etoposide-resistant SCLC cell lines are particularly sensitive to Jumonji inhibition. Mechanistically, small molecule-mediated inhibition of Jumonji KDMs activates endoplasmic reticulum (ER) stress genes, upregulates ER stress signaling, and triggers apoptotic cell death. Furthermore, Jumonji inhibitors decrease protein levels of SCLC NE markers INSM1 and Secretogranin-3 and of driver transcription factors ASCL1 and NEUROD1. Genetic knockdown of KDM4A, a Jumonji demethylase highly expressed in SCLC and a known regulator of ER stress genes, induces ER stress response genes, decreases INSM1, Secretogranin-3, and NEUROD1 and inhibits proliferation of SCLC in vitro and in vivo. Lastly, we demonstrate that two different small molecule Jumonji KDM inhibitors (pan-inhibitor JIB-04 and KDM4 inhibitor SD70) block the growth of SCLC tumor xenografts in vivo. Our study highlights the translational potential of Jumonji KDM inhibitors against SCLC, a clinically feasible approach in light of recently opened clinical trials evaluating this drug class, and establishes KDM4A as a relevant target across SCLC subtypes.
Collapse
Affiliation(s)
- Aiden Nguyen
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Clarissa G Nuñez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tram Anh Tran
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rodrigo Catalan
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cristina Guerena
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kimberley Avila
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Raghav Chandra
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Elisabeth D Martinez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
50
|
Sakurai K, Ando T, Sakai Y, Mori Y, Nakamura S, Kato T, Ito H. PROX1 is a regulator of neuroendocrine-related gene expression in lung carcinoid. Hum Cell 2024; 37:1559-1566. [PMID: 39066858 DOI: 10.1007/s13577-024-01109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Lung neuroendocrine neoplasms (NENs) are a diverse group of tumors characterized by neuroendocrine (NE) differentiation. Among lung NENs, lung carcinoid (LC) is a rare tumor with unique characteristics. Recent research has highlighted the importance of transcription factors (TFs) in establishing gene expression programs in lung NENs such as small cell lung carcinoma. However, the TFs that control the gene expression of LC are largely unknown. In this study, we report the expression and potential function of a TF called Prospero homeobox protein1 (PROX1) in LC. Publicly available transcriptome data suggested that PROX1 was highly expressed in LC tissues, which was confirmed by immunohistochemical analysis on a tissue microarray. Knockdown of PROX1 did not impact the cellular viability of an LC-derived cell line, NCI-H727. Meanwhile, transcriptome analysis revealed that PROX1 knockdown altered the expression of genes involved in NE differentiation. ASCL1, CHGA, CALCA, and LINC00261 were suggested as downstream genes of PROX1. These findings indicate that PROX1 may play an important role in the NE identity of LC by regulating the expression of key target genes.
Collapse
Affiliation(s)
- Kouhei Sakurai
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Tatsuya Ando
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yuichiro Mori
- School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Satoru Nakamura
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
- Central Research Laboratory, Nitto Fuji Flour Milling Co., Ltd., Tokyo, 143-0001, Japan
| | - Taku Kato
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|