1
|
Bourgeois NM, Wei L, Kaushansky A, Aitchison JD. Exploiting Host Kinases to Combat Dengue Virus Infection and Disease. Antiviral Res 2025:106172. [PMID: 40348023 DOI: 10.1016/j.antiviral.2025.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
The burden of dengue on human health has dramatically increased in recent years, underscoring the urgent need for effective therapeutic interventions. Despite decades of research since the discovery of the dengue virus, no specific antiviral treatments are available and strategies to reliably prevent severe disease remain limited. Direct-acting antivirals against dengue are under active investigation but have shown limited efficacy to date. An underappreciated Achille's heal of the virus is its dependence on host factors for infection and pathogenesis, each of which presents a potential avenue for therapeutic intervention. We and others have demonstrated that dengue virus relies on multiple host kinases, some of which are already targeted by clinically approved inhibitors. These offer drug repurposing opportunities for host-directed dengue treatment. Here, we summarize findings on the role of kinases in dengue infection and disease and highlight potential kinase targets for the development of innovative host-directed therapeutics.
Collapse
Affiliation(s)
- Natasha M Bourgeois
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| | - John D Aitchison
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| |
Collapse
|
2
|
Pandey S, Gack MU. Tearing down the house of mosquito-transmitted viruses. Proc Natl Acad Sci U S A 2025; 122:e2504932122. [PMID: 40228137 PMCID: PMC12037046 DOI: 10.1073/pnas.2504932122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Affiliation(s)
- Shanti Pandey
- Florida Research and Innovation Center, Cleveland Clinic, FL34987
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, FL34987
| |
Collapse
|
3
|
Pamidimukkala JV, Parthasarathy BR, Senapati S. Decoding potential host protein targets against Flaviviridae using protein-protein interaction network. Int J Biol Macromol 2025; 310:143217. [PMID: 40250655 DOI: 10.1016/j.ijbiomac.2025.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Flaviviridae family comprises some of the most vulnerable viruses known for causing widespread outbreaks, high mortality rates, and severe long-term health complications in humans. Viruses like Dengue (DENV), Zika (ZIKV) and Hepatitis C (HCV) are endemic across the globe, especially in tropical and subtropical regions, infecting multiple tissues and leading to significant health crises. Investigating virus-host interactions across tissues can reveal tissue-specific drug targets and aid antiviral drug repurposing. In this study, we employed a multi-step computational approach to construct a comprehensive virus-human interactome by integrating virus-host protein-protein interactions (PPIs) with tissue-specific gene expression profiles to study key protein targets associated with Flaviviridae infections. Mapping drug-target predictions revealed druggable proteins - CCNA2 in peripheral blood mononuclear cells (PBMC) and EIF2S2, CDK7 and CARS in the liver, with Tamoxifen, Sirolimus, Entrectinib and L-cysteine as potential repurposable drugs, respectively. Further protein-ligand docking and molecular dynamics (MD) simulations were conducted to assess the stability of the complexes. These findings highlight common druggable human targets exploited by DENV, ZIKV and HCV, providing a foundation for broad-spectrum antiviral therapies. By focusing on shared host pathways and targets in viral replication, we propose promising drug candidates, supporting the development of unified therapeutic strategies against Flaviviridae viruses.
Collapse
Affiliation(s)
- Jaya Vasavi Pamidimukkala
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Bharath Raj Parthasarathy
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
4
|
Chen J, Yang H, Wan M, Cheng Y, Bai J, Li Y, Chen J, Zhao B, Gao F, Zhou B. Classical swine fever virus recruits ALIX and ESCRT-III to facilitate viral budding. mBio 2025; 16:e0261824. [PMID: 39998268 PMCID: PMC11980558 DOI: 10.1128/mbio.02618-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Classical swine fever virus (CSFV) incurs substantial economic losses in the global swine industry due to its persistent emergence and re-emergence across various countries. However, the precise mechanisms governing CSFV budding remain inadequately understood. Our study elucidates that the endosomal sorting complex required for transport (ESCRT)-associated protein ALIX, in conjunction with ESCRT-III, plays a pivotal role in orchestrating CSFV budding. Genomic sequence analysis identified a critical interaction between the YPXnL late domain on the E2 protein and ALIX. Through immunoprecipitation and structural domain deletion assays, we demonstrated that the ALIX Bro1 domain specifically recognized viral particles by binding to the YPXnL motif. Immunoelectron and transmission electron microscopy further confirmed that, upon infection, ALIX accumulated at the periphery of subcellular organelles, including COPII vesicles, endosomes, and the Golgi apparatus, thereby facilitating CSFV budding. Our findings also revealed that ESCRT-III subunits CHMP2B, CHMP4B, CHMP7, and VPS4A interacted with ALIX to expedite CSFV budding. Notably, Rab8 activated by Kif4A contributed to the release of CSFV particles by interacting with ALIX and directing ALIX-containing vesicles along microtubules toward the cytosol. Our study demonstrates that ALIX specifically recognizes E2 and orchestrates the recruitment of ESCRT-III and Rab8 to facilitate the vesicular budding of CSFV particles from the Golgi apparatus to the cytosol. Ultimately, virus-laden vesicles propelled by Kif4A are transported along microtubules to the plasma membrane for release. Our findings offer the first comprehensive elucidation of the CSFV budding process and contribute to the identification of antiviral targets, thereby advancing the development of antiviral therapeutics.IMPORTANCEThe endosomal sorting complex required for transport (ESCRT) machinery plays a pivotal role in the sorting of membrane proteins in eukaryotic cells and regulating various stages of infection for numerous viruses. Previous studies have underscored the indispensable role of ESCRT in the cellular entry and replication of classical swine fever virus (CSFV). However, the precise mechanisms by which ESCRT recognizes CSFV particles and initiates viral vesicle budding have remained elusive. This study reveals that the Bro1 domain of ALIX initiates viral budding proximal to the Golgi apparatus by specifically recognizing the YPXnL late domain on the CSFV E2 protein. Mechanistically, ALIX and ESCRT-III facilitate Rab8-regulated endosomal transport of CSFV particles from the Golgi apparatus to the plasma membrane. Subsequently, virions are propelled by the kinesin Kif4A along microtubules for egress into the extracellular space. In summary, these findings significantly advance our understanding of CSFV pathogenesis and offer valuable insights into the vesicular transport and budding mechanisms of CSFV particles.
Collapse
Affiliation(s)
- Jinxia Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hanfei Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingyue Wan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yan Cheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jishan Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhang Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bingqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Arakawa M, Uriu K, Saito K, Hirose M, Katoh K, Asano K, Nakane A, Saitoh T, Yoshimori T, Morita E. HEATR3 recognizes membrane rupture and facilitates xenophagy in response to Salmonella invasion. Proc Natl Acad Sci U S A 2025; 122:e2420544122. [PMID: 40178893 PMCID: PMC12002282 DOI: 10.1073/pnas.2420544122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial invasion into the cytoplasm of epithelial cells triggers the activation of the cellular autophagic machinery as a defense mechanism, a process known as xenophagy. In this study, we identified HEATR3, an LC3-interacting region (LIR)-containing protein, as a factor involved in this defense mechanism using quantitative mass spectrometry analysis. HEATR3 localizes intracellularly invading Salmonella, and HEATR3 deficiency promotes Salmonella proliferation in the cytoplasm. HEATR3 also localizes to lysosomes damaged by chemical treatment, suggesting that Salmonella recognition is facilitated by damage to the host cell membrane. HEATR3 deficiency impairs LC3 recruitment to damaged membranes and blocks the delivery of the target to the lysosome. These phenotypes were rescued by exogenous expression of wild-type HEATR3 but not by the LIR mutant, indicating the crucial role of the HEATR3-LC3 interaction in the receptor for selective autophagy. HEATR3 is delivered to lysosomes in an autophagy-dependent manner. Although HEATR3 recruitment to the damaged membrane was unaffected by ATG5 or FIP200 deficiency, it was markedly impaired by treatment with a calcium chelator, suggesting involvement upstream of the autophagic pathway. These findings suggest that HEATR3 serves as a receptor for selective autophagy and is able to identify damaged membranes, facilitate the removal of damaged lysosomes, and target invading bacteria within cells.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Keiya Uriu
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Koki Saito
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Mai Hirose
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan
- Center for Infectious Diseases for Education and Research, Suita, Osaka565-0871, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita565-0871, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita565-0871, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| |
Collapse
|
6
|
Zoladek J, Cannac M, Seite M, Davies E, Quellec J, Barthelemy J, Gorna K, Desgraupes S, Bribes I, Salinas S, Coulpier M, Arhel NJ, Palmarini M, Simonin Y, Wilson SJ, Nisole S. MITD1 is a brain-specific interferon-inducible factor that inhibits flavivirus replication. Proc Natl Acad Sci U S A 2025; 122:e2502064122. [PMID: 40112111 PMCID: PMC11962514 DOI: 10.1073/pnas.2502064122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are closely related mosquito-borne neurotropic flaviviruses that share common transmission cycle and can infect humans. However, while human infections by WNV are widespread, infections by USUV are comparatively less frequent, less severe, and currently limited to Africa and Europe. To identify human host factors that contribute to the pathogenic signatures of these two flaviviruses, we carried out an arrayed expression screen of over 1,300 interferon-stimulated genes (ISGs). Several ISGs known to target flaviviruses, including IFI6, SHFL, and RTP4 were among the strongest hits. Interestingly, we also found MITD1, an ISG with no previously reported antiviral activity, among the strongest hits. We demonstrated that the antiviral activity of MITD1 was not limited to USUV and WNV, since it also inhibited Zika and dengue virus replication. We found MITD1 to interfere with viral RNA replication by sequestering specific endosomal sorting complexes required for transport-III (ESCRT-III) proteins involved in the formation of viral replication factories. MITD1 expression was not increased by type I interferon (IFN-I) in most human cells and mouse tissues that we examined, although WNV and USUV replication was strongly inhibited by IFN-I. Strikingly, MITD1 was induced in the brain of USUV-infected mice and importantly, in human monocyte-derived microglia. Using human microglial-like cells, we confirmed that MITD1 is an essential mediator of the anti-flavivirus activity of IFN-I in these cells. We conclude that MITD1 plays a key role in the cellular defenses against neurotropic flaviviruses.
Collapse
Affiliation(s)
- Jim Zoladek
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| | - Marion Cannac
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Établissement français du sang (EFS), Université de Montpellier, Montpellier34394, France
| | - Maël Seite
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| | - Emma Davies
- Medical Research Council-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Jordan Quellec
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Établissement français du sang (EFS), Université de Montpellier, Montpellier34394, France
- Animal, Santé, Territoires, Risques et Ecosystèmes, UMR 117, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Montpellier, Montpellier34398, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Établissement français du sang (EFS), Université de Montpellier, Montpellier34394, France
| | - Kamila Gorna
- UMR Virologie, Laboratoire de Santé Animale, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Anses, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort94700, France
| | - Sophie Desgraupes
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| | - Ines Bribes
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Établissement français du sang (EFS), Université de Montpellier, Montpellier34394, France
| | - Muriel Coulpier
- UMR Virologie, Laboratoire de Santé Animale, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Anses, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort94700, France
| | - Nathalie J. Arhel
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| | - Massimo Palmarini
- Medical Research Council-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Établissement français du sang (EFS), Université de Montpellier, Montpellier34394, France
| | - Sam J. Wilson
- Medical Research Council-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| |
Collapse
|
7
|
Fishburn AT, Florio CJ, Klaessens TN, Prince B, Adia NAB, Lopez NJ, Beesabathuni NS, Becker SS, Cherkashchenko L, Haggard Arcé ST, Hoang V, Shiu TN, Richardson RB, Evans MJ, Rückert C, Shah PS. Microcephaly protein ANKLE2 promotes Zika virus replication. mBio 2025; 16:e0268324. [PMID: 39804047 PMCID: PMC11796389 DOI: 10.1128/mbio.02683-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/26/2024] [Indexed: 02/06/2025] Open
Abstract
Orthoflaviviruses are positive-sense single-stranded RNA viruses that hijack host proteins to promote their own replication. Zika virus (ZIKV) is infamous among orthoflaviviruses for its association with severe congenital birth defects, notably microcephaly. We previously mapped ZIKV-host protein interactions and identified the interaction between ZIKV non-structural protein 4A (NS4A) and host microcephaly protein ankyrin repeat and LEM domain-containing 2 (ANKLE2). Using a fruit fly model, we showed that NS4A induced microcephaly in an ANKLE2-dependent manner. Here, we explore the role of ANKLE2 in ZIKV replication to understand the biological significance of the interaction from a viral perspective. We observe that ANKLE2 localization is drastically shifted to sites of NS4A accumulation during infection and that knockout of ANKLE2 reduces ZIKV replication in multiple human cell lines. This decrease in virus replication is coupled with a moderate increase in innate immune activation. Using microscopy, we observe dysregulated formation of virus-induced endoplasmic reticulum rearrangements in ANKLE2 knockout cells. Knockdown of the ANKLE2 ortholog in Aedes aegypti cells also decreases virus replication, suggesting ANKLE2 is a beneficial replication factor across hosts. Finally, we show that NS4A from four other orthoflaviviruses physically interacts with ANKLE2 and is also beneficial to their replication. Thus, ANKLE2 likely promotes orthoflavivirus replication by regulating membrane rearrangements that serve to accelerate viral genome replication and protect viral dsRNA from immune detection. Taken together with our previous results, our findings indicate that ZIKV and other orthoflaviviruses hijack ANKLE2 for a conserved role in replication, and this drives unique pathogenesis for ZIKV since ANKLE2 has essential roles in developing tissues.IMPORTANCEZIKV is a major concern due to its association with birth defects, including microcephaly. We previously identified a physical interaction between ZIKV NS4A and host microcephaly protein ANKLE2. Mutations in ANKLE2 cause congenital microcephaly, and NS4A induces microcephaly in an ANKLE2-dependent manner. Here, we establish the role of ANKLE2 in ZIKV replication. Depletion of ANKLE2 from cells significantly reduces ZIKV replication and disrupts virus-induced membrane rearrangements. ANKLE2's ability to promote ZIKV replication is conserved in mosquito cells and for other related mosquito-borne orthoflaviviruses. Our data point to an overall model in which ANKLE2 regulates virus-induced membrane rearrangements to accelerate orthoflavivirus replication and avoid immune detection. However, ANKLE2's unique role in ZIKV NS4A-induced microcephaly is a consequence of ZIKV infection of important developing tissues in which ANKLE2 has essential roles.
Collapse
Affiliation(s)
- Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Cole J. Florio
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Thomas N. Klaessens
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Brian Prince
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Neil A. B. Adia
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Nicholas J. Lopez
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | | | - Sydney S. Becker
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Liubov Cherkashchenko
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Sophia T. Haggard Arcé
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Vivian Hoang
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Traci N. Shiu
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - R. Blake Richardson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
- Department of Chemical Engineering, University of California, Davis, California, USA
| |
Collapse
|
8
|
Martin C, Ligat G, Malnou CE. The Yin and the Yang of extracellular vesicles during viral infections. Biomed J 2024; 47:100659. [PMID: 37690583 PMCID: PMC11403433 DOI: 10.1016/j.bj.2023.100659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The role of extracellular vesicles (EVs) as key players in the intercellular communication is a subject of growing interest in all areas of physiology and pathophysiology, and the field of viral infections is no exception to the rule. In this review, we focus on the current state of knowledge and remaining gaps regarding the entanglement of viruses and EVs during infections. These two entities share many similarities, mainly due to their intricated biogenesis pathways that are in constant interaction. EVs can promote the replication and dissemination of viruses within the organism, through the dysregulation of their cargo and the modulation of the innate and adaptive immune response that occurs upon infection, but they can also promote the mitigation of viral infections. Here, we examine how viruses hijack EV biogenesis pathways and describe the consequences of dysregulated EV secretion during viral infections, beneficial or not for viruses, revealing the duality of their possible effects.
Collapse
Affiliation(s)
- Charlène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Gaëtan Ligat
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Cécile E Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
9
|
Sergio MC, Ricciardi S, Guarino AM, Giaquinto L, De Matteis MA. Membrane remodeling and trafficking piloted by SARS-CoV-2. Trends Cell Biol 2024; 34:785-800. [PMID: 38262893 DOI: 10.1016/j.tcb.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
The molecular mechanisms underlying SARS-CoV-2 host cell invasion and life cycle have been studied extensively in recent years, with a primary focus on viral entry and internalization with the aim of identifying antiviral therapies. By contrast, our understanding of the molecular mechanisms involved in the later steps of the coronavirus life cycle is relatively limited. In this review, we describe what is known about the host factors and viral proteins involved in the replication, assembly, and egress phases of SARS-CoV-2, which induce significant host membrane rearrangements. We also discuss the limits of the current approaches and the knowledge gaps still to be addressed.
Collapse
Affiliation(s)
- Maria Concetta Sergio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy
| | | | - Andrea M Guarino
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy
| | - Laura Giaquinto
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy.
| |
Collapse
|
10
|
Nyenhuis DA, Watanabe S, Bernstein R, Swenson RE, Raju N, Sabbasani VR, Mushti C, Lee D, Carter C, Tjandra N. Structural Relationships to Efficacy for Prazole-Derived Antivirals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308312. [PMID: 38447164 PMCID: PMC11095225 DOI: 10.1002/advs.202308312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Here, an in vitro characterization of a family of prazole derivatives that covalently bind to the C73 site on Tsg101 and assay their ability to inhibit viral particle production is presented. Structurally, increased steric bulk on the 4-pyridyl of the prazole expands the prazole site on the UEV domain toward the β-hairpin in the Ub-binding site and is coupled to increased inhibition of virus-like particle production in HIV-1. Increased bulk also increased toxicity, which is alleviated by increasing flexibility. Further, the formation of a novel secondary Tsg101 adduct for several of the tested compounds and the commercial drug lansoprazole. The secondary adduct involved the loss of the 4-pyridyl substituent to form an irreversible species, with implications for increasing the half-life of the active species or its specificity toward Tsg101 UEV. It is also determined that sulfide derivatives display effective viral inhibition, presumably through cellular sulfoxidation, allowing for delayed conversion within the cellular environment, and identify SARS-COV-2 as a target of prazole inhibition. These results open multiple avenues for the design of prazole derivatives for antiviral applications.
Collapse
Affiliation(s)
- David A. Nyenhuis
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| | - Susan Watanabe
- Department of Microbiology and ImmunologyRenaissance School of MedicineStonybrook UniversityLife Sciences Bldg, Rm 248StonybrookNY11790USA
| | - Rebecca Bernstein
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| | - Rolf E. Swenson
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Natarajan Raju
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Venkata R. Sabbasani
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Chandrasekhar Mushti
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Duck‐Yeon Lee
- Biochemistry Core FacilityNHLBINIHBethesdaMD20892USA
| | - Carol Carter
- Department of Microbiology and ImmunologyRenaissance School of MedicineStonybrook UniversityLife Sciences Bldg, Rm 248StonybrookNY11790USA
| | - Nico Tjandra
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| |
Collapse
|
11
|
Sarkar R, Chhabra S, Tanwar M, Agarwal N, Kalia M. Japanese encephalitis virus hijacks ER-associated degradation regulators for its replication. J Gen Virol 2024; 105. [PMID: 38787366 DOI: 10.1099/jgv.0.001995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Flaviviruses target their replication on membranous structures derived from the ER, where both viral and host proteins play crucial structural and functional roles. Here, we have characterized the involvement of the ER-associated degradation (ERAD) pathway core E3 ligase complex (SEL1L-HRD1) regulator proteins in the replication of Japanese encephalitis virus (JEV). Through high-resolution immunofluorescence imaging of JEV-infected HeLa cells, we observe that the virus replication complexes marked by NS1 strongly colocalize with the ERAD adapter SEL1L, lectin OS9, ER-membrane shuttle factor HERPUD1, E3 ubiquitin ligase HRD1 and rhomboid superfamily member DERLIN1. NS5 positive structures also show strong overlap with SEL1L. While these effectors show significant transcriptional upregulation, their protein levels remain largely stable in infected cells. siRNA mediated depletion of OS9, SEL1L, HERPUD1 and HRD1 significantly inhibit viral RNA replication and titres, with SEL1L depletion showing the maximum attenuation of replication. By performing protein translation arrest experiments, we show that SEL1L, and OS9 are stabilised upon JEV infection. Overall results from this study suggest that these ERAD effector proteins are crucial host-factors for JEV replication.
Collapse
Affiliation(s)
- Riya Sarkar
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Centre for Tuberculosis Research, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
- Present address: Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Simran Chhabra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Mukesh Tanwar
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Nisheeth Agarwal
- Centre for Tuberculosis Research, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| |
Collapse
|
12
|
Chen X, Liang Y, Weng Z, Hu C, Peng Y, Sun Y, Gao Q, Huang Z, Tang S, Gong L, Zhang G. ALIX and TSG101 are essential for cellular entry and replication of two porcine alphacoronaviruses. PLoS Pathog 2024; 20:e1012103. [PMID: 38489378 PMCID: PMC10971774 DOI: 10.1371/journal.ppat.1012103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/27/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Alphacoronaviruses are the primary coronaviruses responsible for causing severe economic losses in the pig industry with the potential to cause human outbreaks. Currently, extensive studies have reported the essential role of endosomal sorting and transport complexes (ESCRT) in the life cycle of enveloped viruses. However, very little information is available about which ESCRT components are crucial for alphacoronaviruses infection. By using RNA interference in combination with Co-immunoprecipitation, as well as fluorescence and electron microscopy approaches, we have dissected the role of ALIX and TSG101 for two porcine alphacoronavirus cellular entry and replication. Results show that infection by two porcine alphacoronaviruses, including porcine epidemic diarrhea virus (PEDV) and porcine enteric alphacoronavirus (PEAV), is dramatically decreased in ALIX- or TSG101-depleted cells. Furthermore, PEDV entry significantly increases the interaction of ALIX with caveolin-1 (CAV1) and RAB7, which are crucial for viral endocytosis and lysosomal transport, however, does not require TSG101. Interestingly, PEAV not only relies on ALIX to regulate viral endocytosis and lysosomal transport, but also requires TSG101 to regulate macropinocytosis. Besides, ALIX and TSG101 are recruited to the replication sites of PEDV and PEAV where they become localized within the endoplasmic reticulum and virus-induced double-membrane vesicles. PEDV and PEAV replication were significantly inhibited by depletion of ALIX and TSG101 in Vero cells or primary jejunal epithelial cells, indicating that ALIX and TSG101 are crucial for PEDV and PEAV replication. Collectively, these data highlight the dual role of ALIX and TSG101 in the entry and replication of two porcine alphacoronaviruses. Thus, ESCRT proteins could serve as therapeutic targets against two porcine alphacoronaviruses infection.
Collapse
Affiliation(s)
- Xiongnan Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Yifan Liang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Zhijun Weng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Chen Hu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yunzhao Peng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Yingshuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Qi Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Zhao Huang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Shengqiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
13
|
Rani NV, Baig MS, Pathak B, Kapoor N, Krishnan A. Mutation of conserved histidine residues of dengue virus envelope protein impairs viral like particle maturation and secretion. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119682. [PMID: 38301907 DOI: 10.1016/j.bbamcr.2024.119682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Dengue virus (DENV) envelope protein plays crucial role in virus entry and maturation of virus during infection. Maturation of DENV occurs in the trans Golgi network at slightly acidic pH which is close to pKa of histidine. When exposed to the acidic environment of the late secretory pathway, dengue virus particles go through a significant conformational change, whereby interactions of structural proteins envelope (E) and prM proteins are reorganised and enable furin protease to cleave prM resulting in mature virus. In order to study the role of histidine of E protein in DENV maturation, we mutated 7 conserved histidine residues of envelope protein and assessed the percent of budding using viral like particle (VLP) system. Histidine mutants; H144A, H244A, H261A and H282A severely disrupted VLP formation without any significant change in expression in cell and its oligomerization ability. Treatment with acidotropic amine reversed the defect for all 4 mutants suggesting that these histidines could be involved in maturation and release. Over expression of capsid protein slightly enhanced VLP release of H244A and H261A. Similarly, furin over expression increased VLP release of these mutants. Co-immunoprecipitation studies revealed that prM and E interaction is lost for H244A, H261A and H282A mutants at acidic pH but not at neutral pH indicating that they could be involved in histidine switch during maturation at acidic pH. Detailed analysis of the mutants could provide novel insights on the interplay of envelop protein during maturation and aid in target for drug development.
Collapse
Affiliation(s)
- N Veena Rani
- School of Sciences, IGNOU, New Delhi 110068, India
| | - Mirza Sarwar Baig
- Centre for Virology, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Bharti Pathak
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Neera Kapoor
- School of Sciences, IGNOU, New Delhi 110068, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
14
|
Martínez-Rojas PP, Monroy-Martínez V, Agredano-Moreno LT, Jiménez-García LF, Ruiz-Ordaz BH. Zika Virus-Infected Monocyte Exosomes Mediate Cell-to-Cell Viral Transmission. Cells 2024; 13:144. [PMID: 38247836 PMCID: PMC10814160 DOI: 10.3390/cells13020144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/24/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Zika fever is a reemerging arthropod-borne viral disease; however, Zika virus (ZIKV) can be transmitted by other, non-vector means. Severe Zika fever is characterized by neurological disorders, autoimmunity, or congenital Zika syndrome. Monocytes are primary ZIKV targets in humans and, in response to infection, release extracellular vesicles like exosomes. Exosomes mediate intercellular communication and are involved in the virus's ability to circumvent the immune response, promoting pathological processes. This study aimed to evaluate the role of monocyte exosomes in cell-to-cell viral transmission. We isolated exosomes from ZIKV-infected monocytes (Mø exo ZIKV) by differential ultracentrifugation and identified them by nanoparticle tracking analysis; transmission electron microscopy; and CD63, CD81, TSG101, and Alix detection by cytofluorometry. Purified exosome isolates were obtained by uncoupling from paramagnetic beads or by treatment with UV radiation and RNase A. We found that Mø exo ZIKV carry viral RNA and E/NS1 proteins and that their interaction with naïve cells favors viral transmission, infection, and cell differentiation/activation. These data suggest that Mø exo ZIKV are an efficient alternative pathway for ZIKV infection. Knowledge of these mechanisms contributes to understanding the pathogenesis of severe disease and to the development of new vaccines and therapies.
Collapse
Affiliation(s)
- Pedro Pablo Martínez-Rojas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (P.P.M.-R.); (V.M.-M.)
| | - Verónica Monroy-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (P.P.M.-R.); (V.M.-M.)
| | - Lourdes Teresa Agredano-Moreno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Blanca H. Ruiz-Ordaz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; (P.P.M.-R.); (V.M.-M.)
| |
Collapse
|
15
|
Corneillie L, Lemmens I, Weening K, De Meyer A, Van Houtte F, Tavernier J, Meuleman P. Virus-Host Protein Interaction Network of the Hepatitis E Virus ORF2-4 by Mammalian Two-Hybrid Assays. Viruses 2023; 15:2412. [PMID: 38140653 PMCID: PMC10748205 DOI: 10.3390/v15122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout their life cycle, viruses interact with cellular host factors, thereby influencing propagation, host range, cell tropism and pathogenesis. The hepatitis E virus (HEV) is an underestimated RNA virus in which knowledge of the virus-host interaction network to date is limited. Here, two related high-throughput mammalian two-hybrid approaches (MAPPIT and KISS) were used to screen for HEV-interacting host proteins. Promising hits were examined on protein function, involved pathway(s), and their relation to other viruses. We identified 37 ORF2 hits, 187 for ORF3 and 91 for ORF4. Several hits had functions in the life cycle of distinct viruses. We focused on SHARPIN and RNF5 as candidate hits for ORF3, as they are involved in the RLR-MAVS pathway and interferon (IFN) induction during viral infections. Knocking out (KO) SHARPIN and RNF5 resulted in a different IFN response upon ORF3 transfection, compared to wild-type cells. Moreover, infection was increased in SHARPIN KO cells and decreased in RNF5 KO cells. In conclusion, MAPPIT and KISS are valuable tools to study virus-host interactions, providing insights into the poorly understood HEV life cycle. We further provide evidence for two identified hits as new host factors in the HEV life cycle.
Collapse
Affiliation(s)
- Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karin Weening
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Barrado-Gil L, García-Dorival I, Galindo I, Alonso C, Cuesta-Geijo MÁ. Insights into the function of ESCRT complex and LBPA in ASFV infection. Front Cell Infect Microbiol 2023; 13:1163569. [PMID: 38125905 PMCID: PMC10731053 DOI: 10.3389/fcimb.2023.1163569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The African swine fever virus (ASFV) is strongly dependent on an intact endocytic pathway and a certain cellular membrane remodeling for infection, possibly regulated by the endosomal sorting complexes required for transport (ESCRT). The ESCRT machinery is mainly involved in the coordination of membrane dynamics; hence, several viruses exploit this complex and its accessory proteins VPS4 and ALIX for their own benefit. In this work, we found that shRNA-mediated knockdown of VPS4A decreased ASFV replication and viral titers, and this silencing resulted in an enhanced expression of ESCRT-0 component HRS. ASFV infection slightly increased HRS expression but not under VPS4A depletion conditions. Interestingly, VPS4A silencing did not have an impact on ALIX expression, which was significantly overexpressed upon ASFV infection. Further analysis revealed that ALIX silencing impaired ASFV infection at late stages of the viral cycle, including replication and viral production. In addition to ESCRT, the accessory protein ALIX is involved in endosomal membrane dynamics in a lysobisphosphatydic acid (LBPA) and Ca2+-dependent manner, which is relevant for intraluminal vesicle (ILV) biogenesis and endosomal homeostasis. Moreover, LBPA interacts with NPC2 and/or ALIX to regulate cellular cholesterol traffic, and would affect ASFV infection. Thus, we show that LBPA blocking impacted ASFV infection at both early and late infection, suggesting a function for this unconventional phospholipid in the ASFV viral cycle. Here, we found for the first time that silencing of VPS4A and ALIX affects the infection later on, and blocking LBPA function reduces ASFV infectivity at early and later stages of the viral cycle, while ALIX was overexpressed upon infection. These data suggested the relevance of ESCRT-related proteins in ASFV infection.
Collapse
Affiliation(s)
| | | | | | | | - Miguel Ángel Cuesta-Geijo
- Departmento Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
17
|
Pfitzner AK, Zivkovic H, Bernat-Silvestre C, West M, Peltier T, Humbert F, Odorizzi G, Roux A. Vps60 initiates alternative ESCRT-III filaments. J Cell Biol 2023; 222:e202206028. [PMID: 37768378 PMCID: PMC10538557 DOI: 10.1083/jcb.202206028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 09/29/2023] Open
Abstract
Endosomal sorting complex required for transport-III (ESCRT-III) participates in essential cellular functions, from cell division to endosome maturation. The remarkable increase of its subunit diversity through evolution may have enabled the acquisition of novel functions. Here, we characterize a novel ESCRT-III copolymer initiated by Vps60. Membrane-bound Vps60 polymers recruit Vps2, Vps24, Did2, and Ist1, as previously shown for Snf7. Snf7- and Vps60-based filaments can coexist on membranes without interacting as their polymerization and recruitment of downstream subunits remain spatially and biochemically separated. In fibroblasts, Vps60/CHMP5 and Snf7/CHMP4 are both recruited during endosomal functions and cytokinesis, but their localization is segregated and their recruitment dynamics are different. Contrary to Snf7/CHMP4, Vps60/CHMP5 is not recruited during nuclear envelope reformation. Taken together, our results show that Vps60 and Snf7 form functionally distinct ESCRT-III polymers, supporting the notion that diversification of ESCRT-III subunits through evolution is linked to the acquisition of new cellular functions.
Collapse
Affiliation(s)
| | - Henry Zivkovic
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Matt West
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tanner Peltier
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Frédéric Humbert
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Wang X, Abdullah SW, Wu J, Tang J, Zhang Y, Dong H, Bai M, Wei S, Sun S, Guo H. Foot-and-mouth disease virus downregulates vacuolar protein sorting 28 to promote viral replication. J Virol 2023; 97:e0018123. [PMID: 37565750 PMCID: PMC10506468 DOI: 10.1128/jvi.00181-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 08/12/2023] Open
Abstract
Vacuolar protein sorting 28 (Vps28), a component of the ESCRT-I (endosomal sorting complex required for transport I), plays an important role in the pathogen life cycle. Here, we investigated the reciprocal regulation between Vps28 and the foot-and-mouth disease virus (FMDV). Overexpression of Vps28 decreased FMDV replication. On the contrary, the knockdown of Vps28 increased viral replication. Subsequently, the mechanistic study showed that Vps28 destabilized the replication complex (RC) by associating with 3A rather than 2C protein. In addition, Vps28 targeted FMDV VP0, VP1, and VP3 for degradation to inhibit viral replication. To counteract this, FMDV utilized tactics to restrict Vps28 to promote viral replication. FMDV degraded Vps28 mainly through the ubiquitin-proteasome pathway. Additional data demonstrated that 2B and 3A proteins recruited E3 ubiquitin ligase tripartite motif-containing protein 21 to degrade Vps28 at Lys58 and Lys25, respectively, and FMDV 3Cpro degraded Vps28 through autophagy and its protease activity. Meantime, the 3Cpro-mediated Vps28 degradation principally alleviated the ability to inhibit viral propagation. Intriguingly, we also demonstrated that the N-terminal and C-terminal domains of Vps28 were responsible for the suppression of FMDV replication, which suggested the elaborated counteraction between FMDV and Vps28. Collectively, our results first investigate the role of ESCRTs in host defense against picornavirus and unveil underlying strategies utilized by FMDV to evade degradation machinery for triumphant propagation. IMPORTANCE ESCRT machinery plays positive roles in virus entry, replication, and budding. However, little has been reported on its negative regulation effects during viral infection. Here, we uncovered the novel roles of ESCRT-I subunit Vps28 on FMDV replication. The data indicated that Vps28 destabilized the RC and impaired viral structural proteins VP0, VP1, and VP3 to inhibit viral replication. To counteract this, FMDV hijacked intracellular protein degradation pathways to downregulate Vps28 expression and thus promoted viral replication. Our findings provide insights into how ESCRT regulates pathogen life cycles and elucidate additional information regarding FMDV counteraction of host antiviral activity.
Collapse
Affiliation(s)
- Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jianli Tang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Manyuan Bai
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Sumin Wei
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Rivera-Cuevas Y, Carruthers VB. The multifaceted interactions between pathogens and host ESCRT machinery. PLoS Pathog 2023; 19:e1011344. [PMID: 37141275 PMCID: PMC10159163 DOI: 10.1371/journal.ppat.1011344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.
Collapse
Affiliation(s)
- Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
20
|
Cryo-electron microscopy of adipose tissue extracellular vesicles in obesity and type 2 diabetes mellitus. PLoS One 2023; 18:e0279652. [PMID: 36827314 PMCID: PMC10045588 DOI: 10.1371/journal.pone.0279652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane vesicles which play an important role in cell-to-cell communication and physiology. EVs deliver biological information from producing to recipient cells by transport of different cargo such as proteins, mRNAs, microRNAs, non-coding RNAs and lipids. Adipose tissue EVs could regulate metabolic and inflammatory interactions inside adipose tissue depots as well as distal tissues. Thus, adipose tissue EVs are assumed to be implicated in obesity-associated pathologies, notably in insulin resistance and type 2 diabetes mellitus (T2DM). In this study we for the first time characterize EVs secreted by visceral (VAT) and subcutaneous adipose tissue (SAT) of patients with obesity and T2DM with standard methods as well as analyze their morphology with cryo-electron microscopy. Cryo-electron microscopy allowed us to visualize heterogeneous population of EVs of various size and morphology including single EVs and EVs with internal membrane structures in samples from obese patients as well from the control group. Single vesicles prevailed (up to 85% for SAT, up to 75% for VAT) and higher proportion of EVs with internal membrane structures compared to SAT was typical for VAT. Decreased size of single and double SAT EVs compared to VAT EVs, large proportion of multilayered EVs and all EVs with internal membrane structures secreted by VAT distinguished obese patients with/without T2DM from the control group. These findings could support the idea of modified biogenesis of EVs during obesity and T2DM.
Collapse
|
21
|
Arakawa M, Yoshida A, Okamura S, Ebina H, Morita E. A highly sensitive NanoLuc-based protease biosensor for detecting apoptosis and SARS-CoV-2 infection. Sci Rep 2023; 13:1753. [PMID: 36720982 PMCID: PMC9887574 DOI: 10.1038/s41598-023-28984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/27/2023] [Indexed: 02/02/2023] Open
Abstract
Proteases play critical roles in various biological processes, including apoptosis and viral infection. Several protease biosensors have been developed; however, obtaining a reliable signal from a very low level of endogenous protease activity remains a challenge. In this study, we developed a highly sensitive protease biosensor, named FlipNanoLuc, based on the Oplophorus gracilirostris NanoLuc luciferase. The flipped β-strand was restored by protease activation and cleavage, resulting in the reconstitution of luciferase and enzymatic activity. By making several modifications, such as introducing NanoBiT technology and CL1-PEST1 degradation tag, the FlipNanoLuc-based protease biosensor system achieved more than 500-fold luminescence increase in the corresponding protease-overexpressing cells. We demonstrated that the FlipNanoLuc-based caspase sensor can be utilized for the detection of staurosporine-induced apoptosis with sixfold increase in luminescence. Furthermore, we also demonstrated that the FlipNanoLuc-based coronavirus 3CL-protease sensor can be used to detect human coronavirus OC43 with tenfold increase in luminescence and severe acute respiratory syndrome-coronavirus-2 infections with 20-fold increase in luminescence by introducing the stem-loop 1 sequence to prevent the virus inducing global translational shutdown.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-Cho, Hirosaki-Shi, Aomori, 036-8561, Japan.,Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-0066, Japan
| | - Akiho Yoshida
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.,The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Shinya Okamura
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.,The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Hirotaka Ebina
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.,Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-Cho, Hirosaki-Shi, Aomori, 036-8561, Japan. .,Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-0066, Japan.
| |
Collapse
|
22
|
Barbosa NS, Concha JO, daSilva LLP, Crump CM, Graham SC. Oropouche Virus Glycoprotein Topology and Cellular Requirements for Glycoprotein Secretion. J Virol 2023; 97:e0133122. [PMID: 36475765 PMCID: PMC9888203 DOI: 10.1128/jvi.01331-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
Oropouche virus (OROV; genus Orthobunyavirus) is the etiological agent of Oropouche fever, a debilitating febrile illness common in South America. We used recombinant expression of the OROV M polyprotein, which encodes the surface glycoproteins Gn and Gc plus the nonstructural protein NSm, to probe the cellular determinants for OROV assembly and budding. Gn and Gc self-assemble and are secreted independently of NSm. Mature OROV Gn has two predicted transmembrane domains that are crucial for glycoprotein translocation to the Golgi complex and glycoprotein secretion, and unlike related orthobunyaviruses, both transmembrane domains are retained during Gn maturation. Disruption of Golgi function using the drugs brefeldin A and monensin inhibits glycoprotein secretion. Infection studies have previously shown that the cellular endosomal sorting complexes required for transport (ESCRT) machinery is recruited to Golgi membranes during OROV assembly and that ESCRT activity is required for virus secretion. A dominant-negative form of the ESCRT-associated ATPase VPS4 significantly reduces recombinant OROV glycoprotein secretion and blocks virus release from infected cells, and VPS4 partly colocalizes with OROV glycoproteins and membranes costained with Golgi markers. Furthermore, immunoprecipitation and fluorescence microscopy experiments demonstrate that OROV glycoproteins interact with the ESCRT-III component CHMP6, with overexpression of a dominant-negative form of CHMP6 significantly reducing OROV glycoprotein secretion. Taken together, our data highlight differences in M polyprotein processing across orthobunyaviruses, indicate that Golgi and ESCRT function are required for glycoprotein secretion, and identify CHMP6 as an ESCRT-III component that interacts with OROV glycoproteins. IMPORTANCE Oropouche virus causes Oropouche fever, a debilitating illness common in South America that is characterized by high fever, headache, myalgia, and vomiting. The tripartite genome of this zoonotic virus is capable of reassortment, and there have been multiple epidemics of Oropouche fever in South America over the last 50 years, making Oropouche virus infection a significant threat to public health. However, the molecular characteristics of this arbovirus are poorly understood. We developed a recombinant protein expression system to investigate the cellular determinants of OROV glycoprotein maturation and secretion. We show that the proteolytic processing of the M polypeptide, which encodes the surface glycoproteins (Gn and Gc) plus a nonstructural protein (NSm), differs between OROV and its close relative Bunyamwera virus. Furthermore, we demonstrate that OROV M glycoprotein secretion requires the cellular endosomal sorting complexes required for transport (ESCRT) membrane-remodeling machinery and identify that the OROV glycoproteins interact with the ESCRT protein CHMP6.
Collapse
Affiliation(s)
- Natalia S. Barbosa
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Juan O. Concha
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luis L. P. daSilva
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Hepatitis Viruses Control Host Immune Responses by Modifying the Exosomal Biogenesis Pathway and Cargo. Int J Mol Sci 2022; 23:ijms231810862. [PMID: 36142773 PMCID: PMC9505460 DOI: 10.3390/ijms231810862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of smart immune evasion mechanisms is crucial for the establishment of acute and chronic viral hepatitis. Hepatitis is a major health problem worldwide arising from different causes, such as pathogens, metabolic disorders, and xenotoxins, with the five hepatitis viruses A, B, C, D, and E (HAV, HBV, HCV, HDV, and HEV) representing the majority of the cases. Most of the hepatitis viruses are considered enveloped. Recently, it was reported that the non-enveloped HAV and HEV are, in reality, quasi-enveloped viruses exploiting exosomal-like biogenesis mechanisms for budding. Regardless, all hepatitis viruses use exosomes to egress, regulate, and eventually escape from the host immune system, revealing another key function of exosomes apart from their recognised role in intercellular communication. This review will discuss how the hepatitis viruses exploit exosome biogenesis and transport capacity to establish successful infection and spread. Then, we will outline the contribution of exosomes in viral persistence and liver disease progression.
Collapse
|
24
|
Prange R. Hepatitis B virus movement through the hepatocyte: An update. Biol Cell 2022; 114:325-348. [PMID: 35984727 DOI: 10.1111/boc.202200060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Viruses are obligate intracellular pathogens that utilize cellular machinery for many aspects of their propagation and effective egress of virus particles from host cells is one important determinant of virus infectivity. Hijacking host cell processes applies in particular to the hepatitis B virus (HBV), as its DNA genome with about 3 kb in size is one of the smallest viral genomes known. HBV is a leading cause of liver disease and still displays one of the most successful pathogens in human populations worldwide. The extremely successful spread of this virus is explained by its efficient transmission strategies and its versatile particle types, including virions, empty envelopes, naked capsids and others. HBV exploits distinct host trafficking machineries to assemble and release its particle types including nucleocytoplasmic shuttling transport, secretory and exocytic pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Understanding how HBV uses and subverts host membrane trafficking systems offers the chance of obtaining new mechanistic insights into the regulation and function of this essential cellular processes. It can also help to identify potential targets for antiviral interventions. Here, I will provide an overview of HBV maturation, assembly, and budding, with a focus on recent advances, and will point out areas where questions remain that can benefit from future studies. Unless otherwise indicated, almost all presented knowledge was gained from cell culture-based, HBV in vitro -replication and in vitro -infection systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Reinhild Prange
- Department of Virology, University Medical Center of the Johannes Gutenberg University Mainz, Augustusplatz, Mainz, D-55131, Germany
| |
Collapse
|
25
|
Tumor Susceptibility Gene 101 (TSG101) Contributes to Virion Formation of Porcine Reproductive and Respiratory Syndrome Virus via Interaction with the Nucleocapsid (N) Protein along with the Early Secretory Pathway. J Virol 2022; 96:e0000522. [PMID: 35080428 PMCID: PMC8941886 DOI: 10.1128/jvi.00005-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses to global swine industry. As an intracellular obligate pathogen, PRRSV exploits host cellular machinery to establish infection. The endocytic sorting complex required for transport (ESCRT) system has been shown to participate in different life cycle stages of multiple viruses. In the current study, a systematic small interference RNA (siRNA) screening assay identified that certain ESCRT components contributed to PRRSV infection. Among them, tumor susceptibility gene 101 (TSG101) was demonstrated to be important for PRRSV infection by knockdown and overexpression assays. TSG101 was further revealed to be involved in virion formation rather than viral attachment, internalization, RNA replication and nucleocapsid (N) protein translation within the first round of PRRSV life cycle. In detail, TSG101 was determined to specially interact with PRRSV N protein and take effect on its subcellular localization along with the early secretory pathway. Taken together, these results provide evidence that TSG101 is a pro-viral cellular factor for PRRSV assembly, which will be a promising target to interfere with the viral infection. IMPORTANCE PRRSV infection results in a serious swine disease affecting pig farming in the world. However, efficient prevention and control of PRRSV is hindered by its complicated infection process. Up to now, our understanding of PRRSV assembly during infection is especially limited. Here, we identified that TSG101, an ESCRT-I subunit, facilitated virion formation of PRRSV via interaction with the viral N protein along with the early secretory pathway. Our work actually expands the knowledge of PRRSV infection and provides a novel therapeutic target for prevention and control of the virus.
Collapse
|
26
|
Flavivirus recruits the valosin-containing protein-NPL4 complex to induce stress granule disassembly for efficient viral genome replication. J Biol Chem 2022; 298:101597. [PMID: 35063505 PMCID: PMC8857493 DOI: 10.1016/j.jbc.2022.101597] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Flaviviruses are human pathogens that can cause severe diseases, such as dengue fever and Japanese encephalitis, which can lead to death. Valosin-containing protein (VCP)/p97, a cellular ATPase associated with diverse cellular activities (AAA-ATPase), is reported to have multiple roles in flavivirus replication. Nevertheless, the importance of each role still has not been addressed. In this study, the functions of 17 VCP mutants that are reportedly unable to interact with the VCP cofactors were validated using the short-interfering RNA rescue experiments. Our findings of this study suggested that VCP exerts its functions in replication of the Japanese encephalitis virus by interacting with the VCP cofactor nuclear protein localization 4 (NPL4). We show that the depletion of NPL4 impaired the early stage of viral genome replication. In addition, we demonstrate that the direct interaction between NPL4 and viral nonstructural protein (NS4B) is critical for the translocation of NS4B to the sites of viral replication. Finally, we found that Japanese encephalitis virus and dengue virus promoted stress granule formation only in VCP inhibitor-treated cells and the expression of NS4B or VCP attenuated stress granule formation mediated by protein kinase R, which is generally known to be activated by type I interferon and viral genome RNA. These results suggest that the NS4B-mediated recruitment of VCP to the virus replication site inhibits cellular stress responses and consequently facilitates viral protein synthesis in the flavivirus-infected cells.
Collapse
|
27
|
Tabata K, Prasad V, Paul D, Lee JY, Pham MT, Twu WI, Neufeldt CJ, Cortese M, Cerikan B, Stahl Y, Joecks S, Tran CS, Lüchtenborg C, V'kovski P, Hörmann K, Müller AC, Zitzmann C, Haselmann U, Beneke J, Kaderali L, Erfle H, Thiel V, Lohmann V, Superti-Furga G, Brügger B, Bartenschlager R. Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation. Nat Commun 2021; 12:7276. [PMID: 34907161 PMCID: PMC8671429 DOI: 10.1038/s41467-021-27511-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Double membrane vesicles (DMVs) serve as replication organelles of plus-strand RNA viruses such as hepatitis C virus (HCV) and SARS-CoV-2. Viral DMVs are morphologically analogous to DMVs formed during autophagy, but lipids driving their biogenesis are largely unknown. Here we show that production of the lipid phosphatidic acid (PA) by acylglycerolphosphate acyltransferase (AGPAT) 1 and 2 in the ER is important for DMV biogenesis in viral replication and autophagy. Using DMVs in HCV-replicating cells as model, we found that AGPATs are recruited to and critically contribute to HCV and SARS-CoV-2 replication and proper DMV formation. An intracellular PA sensor accumulated at viral DMV formation sites, consistent with elevated levels of PA in fractions of purified DMVs analyzed by lipidomics. Apart from AGPATs, PA is generated by alternative pathways and their pharmacological inhibition also impaired HCV and SARS-CoV-2 replication as well as formation of autophagosome-like DMVs. These data identify PA as host cell lipid involved in proper replication organelle formation by HCV and SARS-CoV-2, two phylogenetically disparate viruses causing very different diseases, i.e. chronic liver disease and COVID-19, respectively. Host-targeting therapy aiming at PA synthesis pathways might be suitable to attenuate replication of these viruses.
Collapse
Affiliation(s)
- Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Minh-Tu Pham
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Woan-Ing Twu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Yannick Stahl
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Sebastian Joecks
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- LI-COR Biosciences GmbH, Siemensstrasse 25A, Bad Homburg, Germany
| | - Cong Si Tran
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | | | - Philip V'kovski
- Institute of Virology and Immunology IVI, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Katrin Hörmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Carolin Zitzmann
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
- Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, NM, USA
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Jürgen Beneke
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Holger Erfle
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Volker Thiel
- Institute of Virology and Immunology IVI, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Britta Brügger
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany.
- German Center for Infection Research, Heidelberg Partner Site, Heidelberg, Germany.
| |
Collapse
|
28
|
Rivera-Cuevas Y, Mayoral J, Di Cristina M, Lawrence ALE, Olafsson EB, Patel RK, Thornhill D, Waldman BS, Ono A, Sexton JZ, Lourido S, Weiss LM, Carruthers VB. Toxoplasma gondii exploits the host ESCRT machinery for parasite uptake of host cytosolic proteins. PLoS Pathog 2021; 17:e1010138. [PMID: 34898650 PMCID: PMC8700025 DOI: 10.1371/journal.ppat.1010138] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/23/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is a master manipulator capable of effectively siphoning the resources from the host cell for its intracellular subsistence. However, the molecular underpinnings of how the parasite gains resources from its host remain largely unknown. Residing within a non-fusogenic parasitophorous vacuole (PV), the parasite must acquire resources across the limiting membrane of its replicative niche, which is decorated with parasite proteins including those secreted from dense granules. We discovered a role for the host Endosomal Sorting Complex Required for Transport (ESCRT) machinery in host cytosolic protein uptake by T. gondii by disrupting host ESCRT function. We identified the transmembrane dense granule protein TgGRA14, which contains motifs homologous to the late domain motifs of HIV-1 Gag, as a candidate for the recruitment of the host ESCRT machinery to the PV membrane. Using an HIV-1 virus-like particle (VLP) release assay, we found that the motif-containing portion of TgGRA14 is sufficient to substitute for HIV-1 Gag late domain to mediate ESCRT-dependent VLP budding. We also show that TgGRA14 is proximal to and interacts with host ESCRT components and other dense granule proteins during infection. Furthermore, analysis of TgGRA14-deficient parasites revealed a marked reduction in ingestion of a host cytosolic protein compared to WT parasites. Thus, we propose a model in which T. gondii recruits the host ESCRT machinery to the PV where it can interact with TgGRA14 for the internalization of host cytosolic proteins across the PV membrane (PVM). These findings provide new insight into how T. gondii accesses contents of the host cytosol by exploiting a key pathway for vesicular budding and membrane scission.
Collapse
Affiliation(s)
- Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Anna-Lisa E. Lawrence
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Einar B. Olafsson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Romir K. Patel
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Dishari Thornhill
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Benjamin S. Waldman
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jonathan Z. Sexton
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, Michigan, United States of America
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
29
|
van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 2021; 12:2814-2838. [PMID: 34696709 PMCID: PMC8632085 DOI: 10.1080/21505594.2021.1996059] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/01/2022] Open
Abstract
The Flavivirus genus consists of >70 members including several that are considered significant human pathogens. Flaviviruses display a broad spectrum of diseases that can be roughly categorised into two phenotypes - systemic disease involving haemorrhage exemplified by dengue and yellow Fever virus, and neurological complications associated with the likes of West Nile and Zika viruses. Attempts to develop vaccines have been variably successful against some. Besides, mosquito-borne flaviviruses can be vertically transmitted in the arthropods, enabling long term persistence and the possibility of re-emergence. Therefore, developing strategies to combat disease is imperative even if vaccines become available. The cellular interactions of flaviviruses with their human hosts are key to establishing the viral lifecycle on the one hand, and activation of host immunity on the other. The latter should ideally eradicate infection, but often leads to immunopathological and neurological consequences. In this review, we use Dengue and Zika viruses to discuss what we have learned about the cellular and molecular determinants of the viral lifecycle and the accompanying immunopathology, while highlighting current knowledge gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| |
Collapse
|
30
|
Roles of ESCRT proteins (ALIX and CHIMP4A) and their interplay with ISG15 during tick-borne flavivirus infection. J Virol 2021; 96:e0162421. [PMID: 34851141 PMCID: PMC8826915 DOI: 10.1128/jvi.01624-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Flaviviruses are usually transmitted to humans via mosquito or tick bites. During infection, virus replication and assembly, whose cellular sites are relatively close, are controlled by virus proteins and a diverse range of host proteins. By siRNA-mediated gene silencing, we showed that ALIX and CHMP4A, two members of the host endosomal sorting complex required for transport (ESCRT) protein machinery, are required during flavivirus infection. Using cell lines expressing subgenomic replicons and replicon virus-like particles, we demonstrated specific roles for ALIX and CHMP4A in viral replication and assembly, respectively. Employing biochemical and imaging methodology, we showed that the ESCRT proteins are recruited by a putative specific late (L) domain motif LYXLA within the NS3 protein of tick-borne flaviviruses. Furthermore, to counteract the recruitment of ESCRT proteins, the host cells may elicit defense mechanisms. We found that ectopic expression of the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) reduced virus replication by suppressing the positive effects of ALIX and CHMP4A. Collectively, these results have provided new insights into flavivirus-host cell interactions that function as checkpoints, including the NS3 and the ESCRT proteins, the ISG15 and the ESCRT proteins, at essential stages of the virus life cycle. IMPORTANCE Flaviviruses are important zoonotic viruses with high fatality rates worldwide. Here, we report that during infection, the virus employs members of ESCRT proteins for virus replication and assembly. Among the ESCRT proteins, ALIX acts during virus replication, while CHMP4A is required during virus assembly. Another important ESCRT protein, TSG101, is not required for virus production. The ESCRT, complex, ALIX-CHMP4A, is recruited to NS3 through their interactions with the putative L domain motif of NS3, while CHMP4A is recruited to E. In addition, we demonstrate the antiviral mechanism of ISG15 and HERC5, which degrades ALIX and CHIMP4A, indirectly targets virus infection. In summary, we reveal host-dependency factors supporting flavivirus infection, but these factors may also be targeted by antiviral host effector mechanisms.
Collapse
|
31
|
The Biogenesis of Dengue Virus Replication Organelles Requires the ATPase Activity of Valosin-Containing Protein. Viruses 2021; 13:v13102092. [PMID: 34696522 PMCID: PMC8540793 DOI: 10.3390/v13102092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
The dengue virus (DENV) causes the most prevalent arthropod-borne viral disease worldwide. While its incidence is increasing in many countries, there is no approved antiviral therapy currently available. In infected cells, the DENV induces extensive morphological alterations of the endoplasmic reticulum (ER) to generate viral replication organelles (vRO), which include convoluted membranes (CM) and vesicle packets (VP) hosting viral RNA replication. The viral non-structural protein NS4B localizes to vROs and is absolutely required for viral replication through poorly defined mechanisms, which might involve cellular protein partners. Previous interactomic studies identified the ATPase valosin-containing protein (VCP) as a DENV NS4B-interacting host factor in infected cells. Using both pharmacological and dominant-negative inhibition approaches, we show, in this study, that VCP ATPase activity is required for efficient DENV replication. VCP associates with NS4B when expressed in the absence of other viral proteins while in infected cells, both proteins colocalize within large DENV-induced cytoplasmic structures previously demonstrated to be CMs. Consistently, VCP inhibition dramatically reduces the abundance of DENV CMs in infected cells. Most importantly, using a recently reported replication-independent plasmid-based vRO induction system, we show that de novo VP biogenesis is dependent on VCP ATPase activity. Overall, our data demonstrate that VCP ATPase activity is required for vRO morphogenesis and/or stability. Considering that VCP was shown to be required for the replication of other flaviviruses, our results argue that VCP is a pan-flaviviral host dependency factor. Given that new generation VCP-targeting drugs are currently evaluated in clinical trials for cancer treatment, VCP may constitute an attractive broad-spectrum antiviral target in drug repurposing approaches.
Collapse
|
32
|
Hassan Z, Kumar ND, Reggiori F, Khan G. How Viruses Hijack and Modify the Secretory Transport Pathway. Cells 2021; 10:2535. [PMID: 34685515 PMCID: PMC8534161 DOI: 10.3390/cells10102535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.
Collapse
Affiliation(s)
- Zubaida Hassan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
- Department of Microbiology, School of Life Sciences, Modibbo Adama University, Yola PMB 2076, Nigeria
| | - Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| |
Collapse
|
33
|
Endoplasmic Reticulum-Associated Degradation Controls Virus Protein Homeostasis, Which Is Required for Flavivirus Propagation. J Virol 2021; 95:e0223420. [PMID: 33980593 DOI: 10.1128/jvi.02234-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many positive-stranded RNA viruses encode polyproteins from which viral proteins are generated by processing the polyproteins. This system produces an equal amount of each viral protein, though the required amounts for each protein are not the same. In this study, we found the extra membrane-anchored nonstructural (NS) proteins of Japanese encephalitis virus and dengue virus are rapidly and selectively degraded by the endoplasmic reticulum-associated degradation (ERAD) pathway. Our gene targeting study revealed that ERAD involving Derlin2 and SEL1L, but not Derlin1, is required for the viral genome replication. Derlin2 is predominantly localized in the convoluted membrane (CM) of the viral replication organelle, and viral NS proteins are degraded in the CM. Hence, these results suggest that viral protein homeostasis is regulated by Derlin2-mediated ERAD in the CM, and this process is critical for the propagation of these viruses. IMPORTANCE The results of this study reveal the cellular ERAD system controls the amount of each viral protein in virus-infected cells and that this "viral protein homeostasis" is critical for viral propagation. Furthermore, we clarified that the "convoluted membrane (CM)," which was previously considered a structure with unknown function, serves as a kind of waste dump where viral protein degradation occurs. We also found that the Derlin2/SEL1L/HRD1-specific pathway is involved in this process, whereas the Derlin1-mediated pathway is not. This novel ERAD-mediated fine-tuning system for the stoichiometries of polyprotein-derived viral proteins may represent a common feature among polyprotein-encoding viruses.
Collapse
|
34
|
York SB, Sun L, Cone AS, Duke LC, Cheerathodi MR, Meckes DG. Zika Virus Hijacks Extracellular Vesicle Tetraspanin Pathways for Cell-to-Cell Transmission. mSphere 2021; 6:e0019221. [PMID: 34190582 PMCID: PMC8265634 DOI: 10.1128/msphere.00192-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells which carry signaling factors, proteins, and microRNAs that mediate intercellular communication. Accumulating evidence supports an important role of EVs in the progression of neurological conditions and both the spread and pathogenesis of infectious diseases. It has recently been demonstrated that EVs from hepatitis C virus (HCV)-infected individuals and cells contained replicative-competent viral RNA that was capable of infecting hepatocytes. Being a member of the same viral family, it is likely the Zika virus also hijacks EV pathways to package viral components and secrete vesicles that are infectious and potentially less immunogenic. As EVs have been shown to cross blood-brain and placental barriers, it is possible that Zika virus could usurp normal EV biology to gain access to the brain or developing fetus. Here, we demonstrate that Zika virus-infected cells secrete distinct EV subpopulations with specific viral protein profiles and infectious genomes. Zika virus infection resulted in the enhanced production of EVs with various sizes and densities compared to those released from noninfected cells. We also show that the EV-enriched tetraspanin CD63 regulates the release of EVs and Zika viral genomes and capsids following infection. Overall, these findings provide evidence for an alternative means of Zika virus transmission and demonstrate the role of EV biogenesis and trafficking proteins in the modulation of Zika virus infection and virion morphogenesis. IMPORTANCE Zika virus is a reemerging infectious disease that spread rapidly across the Caribbean and South America. Infection of pregnant women during the first trimester has been linked to microcephaly, a neurological condition where babies are born with smaller heads due to abnormal brain development. Babies born with microcephaly can develop convulsions and suffer disabilities as they age. Despite the significance of Zika virus, little is known about how the virus infects the fetus or causes disease. Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells that are present in all biological fluids. EVs carry signaling factors, proteins, and microRNAs that mediate intercellular communication. EVs have been shown to be a means by which some viruses can alter cellular environments and cross previously unpassable cellular barriers. Thus, gaining a greater understanding of how Zika virus affects EV cargo may aid in the development of better diagnostics, targeted therapeutics, and/or prophylactic treatments.
Collapse
Affiliation(s)
- Sara B. York
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Li Sun
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Allaura S. Cone
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Leanne C. Duke
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Mujeeb R. Cheerathodi
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - David G. Meckes
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| |
Collapse
|
35
|
Rose KM. When in Need of an ESCRT: The Nature of Virus Assembly Sites Suggests Mechanistic Parallels between Nuclear Virus Egress and Retroviral Budding. Viruses 2021; 13:v13061138. [PMID: 34199191 PMCID: PMC8231873 DOI: 10.3390/v13061138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The proper assembly and dissemination of progeny virions is a fundamental step in virus replication. As a whole, viruses have evolved a myriad of strategies to exploit cellular compartments and mechanisms to ensure a successful round of infection. For enveloped viruses such as retroviruses and herpesviruses, acquisition and incorporation of cellular membrane is an essential process during the formation of infectious viral particles. To do this, these viruses have evolved to hijack the host Endosomal Sorting Complexes Required for Transport (ESCRT-I, -II, and -III) to coordinate the sculpting of cellular membrane at virus assembly and dissemination sites, in seemingly different, yet fundamentally similar ways. For instance, at the plasma membrane, ESCRT-I recruitment is essential for HIV-1 assembly and budding, while it is dispensable for the release of HSV-1. Further, HSV-1 was shown to recruit ESCRT-III for nuclear particle assembly and egress, a process not used by retroviruses during replication. Although the cooption of ESCRTs occurs in two separate subcellular compartments and at two distinct steps for these viral lifecycles, the role fulfilled by ESCRTs at these sites appears to be conserved. This review discusses recent findings that shed some light on the potential parallels between retroviral budding and nuclear egress and proposes a model where HSV-1 nuclear egress may occur through an ESCRT-dependent mechanism.
Collapse
Affiliation(s)
- Kevin M Rose
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
36
|
Morita E, Suzuki Y. Membrane-Associated Flavivirus Replication Complex-Its Organization and Regulation. Viruses 2021; 13:v13061060. [PMID: 34205058 PMCID: PMC8228428 DOI: 10.3390/v13061060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Flavivirus consists of a large number of arthropod-borne viruses, many of which cause life-threatening diseases in humans. A characteristic feature of flavivirus infection is to induce the rearrangement of intracellular membrane structure in the cytoplasm. This unique membranous structure called replication organelle is considered as a microenvironment that provides factors required for the activity of the flaviviral replication complex. The replication organelle serves as a place to coordinate viral RNA amplification, protein translation, and virion assembly and also to protect the viral replication complex from the cellular immune defense system. In this review, we summarize the current understanding of how the formation and function of membrane-associated flaviviral replication organelle are regulated by cellular factors.
Collapse
Affiliation(s)
- Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki-shi 036-8561, Japan
- Correspondence: (E.M.); (Y.S.); Tel.: +81-172-39-3586 (E.M.); +81-72-684-7367 (Y.S.)
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan
- Correspondence: (E.M.); (Y.S.); Tel.: +81-172-39-3586 (E.M.); +81-72-684-7367 (Y.S.)
| |
Collapse
|
37
|
Russell T, Samolej J, Hollinshead M, Smith GL, Kite J, Elliott G. Novel Role for ESCRT-III Component CHMP4C in the Integrity of the Endocytic Network Utilized for Herpes Simplex Virus Envelopment. mBio 2021; 12:e02183-20. [PMID: 33975940 PMCID: PMC8262985 DOI: 10.1128/mbio.02183-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
Enveloped viruses exploit cellular trafficking pathways for their morphogenesis, providing potential scope for the development of new antiviral therapies. We have previously shown that herpes simplex virus 1 (HSV1) utilizes recycling endocytic membranes as the source of its envelope, in a process involving four Rab GTPases. To identify novel factors involved in HSV1 envelopment, we have screened a small interfering RNA (siRNA) library targeting over 80 human trafficking proteins, including coat proteins, adaptor proteins, fusion factors, fission factors, and Rab effectors. The depletion of 11 factors reduced virus yields by 20- to 100-fold, including three early secretory pathway proteins, four late secretory pathway proteins, and four endocytic pathway proteins, three of which are membrane fission factors. Five of the 11 targets were chosen for further analysis in virus infection, where it was found that the absence of only 1, the fission factor CHMP4C, but not the CHMP4A or CHMP4B paralogues, reduced virus production at the final stage of morphogenesis. Ultrastructural and confocal microscopy of CHMP4C-depleted, HSV1-infected cells showed an accumulation of endocytic membranes; extensive tubulation of recycling, transferrin receptor-positive endosomes indicative of aberrant fission; and a failure in virus envelopment. No effect on the late endocytic pathway was detected, while exogenous CHMP4C was shown to localize to recycling endosomes. Taken together, these data reveal a novel role for the CHMP4C fission factor in the integrity of the recycling endosomal network, which has been unveiled through the dependence of HSV1 on these membranes for the acquisition of their envelopes.IMPORTANCE Cellular transport pathways play a fundamental role in secretion and membrane biogenesis. Enveloped viruses exploit these pathways to direct their membrane proteins to sites of envelopment and, as such, are powerful tools for unraveling subtle activities of trafficking factors, potentially pinpointing therapeutic targets. Using the sensitive biological readout of virus production, over 80 trafficking factors involved in diverse and poorly defined cellular processes have been screened for involvement in the complex process of HSV1 envelopment. Out of 11 potential targets, CHMP4C, a key component in the cell cycle abscission checkpoint, stood out as being required for the process of virus wrapping in endocytic tubules, where it localized. In the absence of CHMP4C, recycling endocytic membranes failed to undergo scission in infected cells, causing transient tubulation and accumulation of membranes and unwrapped virus. These data reveal a new role for this important cellular factor in the biogenesis of recycling endocytic membranes.
Collapse
Affiliation(s)
- Tiffany Russell
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Jerzy Samolej
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Kite
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Gillian Elliott
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
38
|
Hernandez-Gonzalez M, Larocque G, Way M. Viral use and subversion of membrane organization and trafficking. J Cell Sci 2021; 134:jcs252676. [PMID: 33664154 PMCID: PMC7610647 DOI: 10.1242/jcs.252676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking is an essential cellular process conserved across all eukaryotes, which regulates the uptake or release of macromolecules from cells, the composition of cellular membranes and organelle biogenesis. It influences numerous aspects of cellular organisation, dynamics and homeostasis, including nutrition, signalling and cell architecture. Not surprisingly, malfunction of membrane trafficking is linked to many serious genetic, metabolic and neurological disorders. It is also often hijacked during viral infection, enabling viruses to accomplish many of the main stages of their replication cycle, including entry into and egress from cells. The appropriation of membrane trafficking by viruses has been studied since the birth of cell biology and has helped elucidate how this integral cellular process functions. In this Review, we discuss some of the different strategies viruses use to manipulate and take over the membrane compartments of their hosts to promote their replication, assembly and egress.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gabrielle Larocque
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
39
|
The ESCRT-I Subunit Tsg101 Plays Novel Dual Roles in Entry and Replication of Classical Swine Fever Virus. J Virol 2021; 95:JVI.01928-20. [PMID: 33328308 DOI: 10.1128/jvi.01928-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022] Open
Abstract
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious disease of swine with high morbidity and mortality that negatively affects the pig industry worldwide, in particular in China. Soon after the endocytosis of CSFV, the virus makes full use of the components of host cells to complete its life cycle. The endocytosis sorting complex required for transport (ESCRT) system is a central molecular machine for membrane protein sorting and scission in eukaryotic cells that plays an essential role in many physiological metabolic processes, including invasion and egress of envelope viruses. However, the molecular mechanism that ESCRT uses to regulate the replication of CSFV is unknown. In this study, we demonstrated that the ESCRT-I complex Tsg101 protein participates in clathrin-mediated endocytosis of CSFV and is also involved in CSFV trafficking. Tsg101 assists the virus in entering the host cell through the late endosome (Rab7 and Rab9) and finally reaching the lysosome (Lamp-1). Interestingly, Tsg101 is also involved in the viral replication process by interacting with nonstructural proteins 4B and 5B of CSFV. Finally, confocal microscopy showed that the replication complex of Tsg101 and double-stranded RNA (dsRNA) or NS4B and NS5B protein was close to the endoplasmic reticulum (ER), not the Golgi, in the cytoplasm. Collectively, our finding highlights that Tsg101 regulates the process of CSFV entry and replication, indicating that the ESCRT plays an important role in the life cycle of CSFV. Thus, ESCRT molecules could serve as therapeutic targets to combat CSFV infection.IMPORTANCE CSF, caused by CSFV, is a World Organization for Animal Health (OIE) notifiable disease and causes significant financial losses to the pig industry globally. The ESCRT machinery plays an important regulatory role in several members of the genera Flavivirus and Hepacivirus within the family Flaviviridae, such as hepatitis C virus, Japanese encephalitis virus, and dengue virus. Previous reports have shown that assembling and budding of these viruses require ESCRT. However, the role of ESCRT in Pestivirus infection remains to be elucidated. We determined the molecular mechanisms of the regulation of CSFV infection by the major subunit Tsg101 of ESCRT-I. Interestingly, Tsg101 plays an essential regulatory role in both clathrin-mediated endocytosis and genome replication of CSFV. Overall, the results of this study provide further insights into the molecular function of ESCRT-I complex protein Tsg101 during CSFV infection, which may serve as a molecular target for pestivirus inhibitors.
Collapse
|
40
|
Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021; 10:cells10030483. [PMID: 33668191 PMCID: PMC7995964 DOI: 10.3390/cells10030483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear–cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.
Collapse
|
41
|
The Interplay between ESCRT and Viral Factors in the Enveloped Virus Life Cycle. Viruses 2021; 13:v13020324. [PMID: 33672541 PMCID: PMC7923801 DOI: 10.3390/v13020324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses are obligate parasites that rely on host cellular factors to replicate and spread. The endosomal sorting complexes required for transport (ESCRT) system, which is classically associated with sorting and downgrading surface proteins, is one of the host machineries hijacked by viruses across diverse families. Knowledge gained from research into ESCRT and viruses has, in turn, greatly advanced our understanding of many other cellular functions in which the ESCRT pathway is involved, e.g., cytokinesis. This review highlights the interplay between the ESCRT pathway and the viral factors of enveloped viruses with a special emphasis on retroviruses.
Collapse
|
42
|
Barnard TR, Abram QH, Lin QF, Wang AB, Sagan SM. Molecular Determinants of Flavivirus Virion Assembly. Trends Biochem Sci 2021; 46:378-390. [PMID: 33423940 DOI: 10.1016/j.tibs.2020.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023]
Abstract
Virion assembly is an important step in the life cycle of all viruses. For viruses of the Flavivirus genus, a group of enveloped positive-sense RNA viruses, the assembly step represents one of the least understood processes in the viral life cycle. While assembly is primarily driven by the viral structural proteins, recent studies suggest that several nonstructural proteins also play key roles in coordinating the assembly and packaging of the viral genome. This review focuses on describing recent advances in our understanding of flavivirus virion assembly, including the intermolecular interactions between the viral structural (capsid) and nonstructural proteins (NS2A and NS2B-NS3), host factors, as well as features of the viral genomic RNA required for efficient flavivirus virion assembly.
Collapse
Affiliation(s)
- Trisha R Barnard
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Quinn H Abram
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Qi Feng Lin
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Alex B Wang
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
43
|
Conrad KP. Might proton pump or sodium-hydrogen exchanger inhibitors be of value to ameliorate SARs-CoV-2 pathophysiology? Physiol Rep 2021; 8:e14649. [PMID: 33369281 PMCID: PMC7762781 DOI: 10.14814/phy2.14649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
Discovering therapeutics for COVID-19 is a priority. Besides high-throughput screening of compounds, candidates might be identified based on their known mechanisms of action and current understanding of the SARs-CoV-2 life cycle. Using this approach, proton pump (PPIs) and sodium-hydrogen exchanger inhibitors (NHEIs) emerged, because of their potential to inhibit the release of extracellular vesicles (EVs; exosomes and/or microvesicles) that could promote disease progression, and to directly disrupt SARs-CoV-2 pathogenesis. If EVs exacerbate SARs-CoV-2 infection as suggested for other viruses, then inhibiting EV release by PPIs/NHEIs should be beneficial. Mechanisms underlying inhibition of EV release by these drugs remain uncertain, but may involve perturbing endosomal pH especially of multivesicular bodies where intraluminal vesicles (nascent exosomes) are formed. Additionally, PPIs might inhibit the endosomal sorting complex for transport machinery involved in EV biogenesis. Through perturbing endocytic vesicle pH, PPIs/NHEIs could also impede cleavage of SARs-CoV-2 spike protein by cathepsins necessary for viral fusion with the endosomal membrane. Although pulmonary epithelial cells may rely mainly on plasma membrane serine protease TMPRSS2 for cell entry, PPIs/NHEIs might be efficacious in ACE2-expressing cells where viral endocytosis is the major or a contributing entry pathway. These pharmaceutics might also perturb pH in the endoplasmic reticulum-Golgi intermediate and Golgi compartments, thereby potentially disrupting viral assembly and glycosylation of spike protein/ACE2, respectively. A caveat, however, is that facilitation not inhibition of avian infectious bronchitis CoV pathogenesis was reported in one study after increasing Golgi pH. Envelope protein-derived viroporins contributed to pulmonary edema formation in mice infected with SARs-CoV. If similar pathogenesis occurs with SARs-CoV-2, then blocking these channels with NHEIs could ameliorate disease pathogenesis. To ascertain their potential efficacy, PPIs/NHEIs need evaluation in cell and animal models at various phases of SARs-CoV-2 infection. If they prove to be therapeutic, the greatest benefit might be realized with the administration before the onset of severe cytokine release syndrome.
Collapse
Affiliation(s)
- Kirk P. Conrad
- Departments of Physiology and Functional Genomics, and of Obstetrics and GynecologyUniversity of Florida College of MedicineGainesvilleFLUSA
| |
Collapse
|
44
|
Lyn kinase regulates egress of flaviviruses in autophagosome-derived organelles. Nat Commun 2020; 11:5189. [PMID: 33060596 PMCID: PMC7564011 DOI: 10.1038/s41467-020-19028-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Among the various host cellular processes that are hijacked by flaviviruses, few mechanisms have been described with regard to viral egress. Here we investigate how flaviviruses exploit Src family kinases (SFKs) for exit from infected cells. We identify Lyn as a critical component for secretion of Dengue and Zika infectious particles and their corresponding virus like particles (VLPs). Pharmacological inhibition or genetic depletion of the SFKs, Lyn in particular, block virus secretion. Lyn−/− cells are impaired in virus release and are rescued when reconstituted with wild-type Lyn, but not a kinase- or palmitoylation-deficient Lyn mutant. We establish that virus particles are secreted in two distinct populations – one as free virions and the other enclosed within membranes. Lyn is critical for the latter, which consists of proteolytically processed, infectious virus progenies within autophagosome-derived vesicles. This process depends on Ulk1, Rab GTPases and SNARE complexes implicated in secretory but not degradative autophagy and occur with significantly faster kinetics than the conventional secretory pathway. Our study reveals a previously undiscovered Lyn-dependent exit route of flaviviruses in LC3+ secretory organelles that enables them to evade circulating antibodies and might affect tissue tropism. Egress of flaviviruses and involved host pathways are not well understood. Here, the authors show that Lyn is a critical host kinase for Dengue and Zika virus egress resulting in infectious virus progenies within autophagosome-derived vesicles, which might help the virus to evade antibody responses.
Collapse
|
45
|
Mast FD, Navare AT, van der Sloot AM, Coulombe-Huntington J, Rout MP, Baliga NS, Kaushansky A, Chait BT, Aderem A, Rice CM, Sali A, Tyers M, Aitchison JD. Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. J Cell Biol 2020; 219:e202006159. [PMID: 32785687 PMCID: PMC7659715 DOI: 10.1083/jcb.202006159] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
With the rapid global spread of SARS-CoV-2, we have become acutely aware of the inadequacies of our ability to respond to viral epidemics. Although disrupting the viral life cycle is critical for limiting viral spread and disease, it has proven challenging to develop targeted and selective therapeutics. Synthetic lethality offers a promising but largely unexploited strategy against infectious viral disease; as viruses infect cells, they abnormally alter the cell state, unwittingly exposing new vulnerabilities in the infected cell. Therefore, we propose that effective therapies can be developed to selectively target the virally reconfigured host cell networks that accompany altered cellular states to cripple the host cell that has been converted into a virus factory, thus disrupting the viral life cycle.
Collapse
Affiliation(s)
- Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
| | - Arti T. Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
| | - Almer M. van der Sloot
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | | | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY
| | | | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
- Department of Biochemistry, University of Washington, Seattle, WA
| |
Collapse
|
46
|
Abstract
The flavivirus genus encompasses more than 75 unique viruses, including dengue virus which accounts for almost 390 million global infections annually. Flavivirus infection can result in a myriad of symptoms ranging from mild rash and flu-like symptoms, to severe encephalitis and even hemorrhagic fever. Efforts to combat the impact of these viruses have been hindered due to limited antiviral drug and vaccine development. However, the advancement of knowledge in the structural biology of flaviviruses over the last 25 years has produced unique perspectives for the identification of potential therapeutic targets. With particular emphasis on the assembly and maturation stages of the flavivirus life cycle, it is the goal of this review to comparatively analyze the structural similarities between flaviviruses to provide avenues for new research and innovation.
Collapse
Affiliation(s)
- Conrrad M R Nicholls
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Madhumati Sevvana
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
47
|
Ray A, Sharma S, Sadasivam B. The Potential Therapeutic Role of Proton Pump Inhibitors in COVID-19: Hypotheses Based on Existing Evidences. Drug Res (Stuttg) 2020; 70:484-488. [PMID: 32877948 PMCID: PMC7672704 DOI: 10.1055/a-1236-3041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the major therapeutic uses of the proton pump inhibitors are in gastric-acid related diseases, evidences are suggestive of a pleiotropic nature of the compounds. We comment on the probable pathways and cellular machineries via which proton pump inhibitors could show beneficial therapeutic effects against SARS-CoV-2 based on the existing evidences. Proton pump inhibitors have shown antiviral potencies in various in vivo and in vitro studies. Some of the major possible ways through which they can act against SARS-CoV-2 are by exerting anti-inflammatory and anti-fibrotic effects, via vacuolar ATPase pumps leading to raised endolysosomal pH and by targeting endosomal complexes. The current pandemic has put forward a challenge to find treatment options. Although the potential roles of proton pump inhibitors against SARS-CoV-2 have been discussed in recent publications, the clinical evidences for their real-world effectiveness do not point towards a beneficial effect clearly yet. We suggest that although proton pump inhibitors should strongly be considered as potential therapeutic options for COVID-19, larger studies in the form of randomized controlled trials would be required to arrive at a definite conclusion.
Collapse
Affiliation(s)
- Avik Ray
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| | - Swati Sharma
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| | - Balakrishnan Sadasivam
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
48
|
Reyes-Ruiz JM, Osuna-Ramos JF, De Jesús-González LA, Palacios-Rápalo SN, Cordero-Rivera CD, Farfan-Morales CN, Hurtado-Monzón AM, Gallardo-Flores CE, Alcaraz-Estrada SL, Salas-Benito JS, del Ángel RM. The Regulation of Flavivirus Infection by Hijacking Exosome-Mediated Cell-Cell Communication: New Insights on Virus-Host Interactions. Viruses 2020; 12:E765. [PMID: 32708685 PMCID: PMC7412163 DOI: 10.3390/v12070765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
The arthropod-borne flaviviruses are important human pathogens, and a deeper understanding of the virus-host cell interaction is required to identify cellular targets that can be used as therapeutic candidates. It is well reported that the flaviviruses hijack several cellular functions, such as exosome-mediated cell communication during infection, which is modulated by the delivery of the exosomal cargo of pro- or antiviral molecules to the receiving host cells. Therefore, to study the role of exosomes during flavivirus infections is essential, not only to understand its relevance in virus-host interaction, but also to identify molecular factors that may contribute to the development of new strategies to block these viral infections. This review explores the implications of exosomes in flavivirus dissemination and transmission from the vector to human host cells, as well as their involvement in the host immune response. The hypothesis about exosomes as a transplacental infection route of ZIKV and the paradox effect or the dual role of exosomes released during flavivirus infection are also discussed here. Although several studies have been performed in order to identify and characterize cellular and viral molecules released in exosomes, it is not clear how all of these components participate in viral pathogenesis. Further studies will determine the balance between protective and harmful exosomes secreted by flavivirus infected cells, the characteristics and components that distinguish them both, and how they could be a factor that determines the infection outcome.
Collapse
Affiliation(s)
- José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Arianna Mahely Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | - Carla Elizabeth Gallardo-Flores
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| | | | - Juan Santiago Salas-Benito
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07320, Mexico; (J.M.R.-R.); (J.F.O.-R.); (L.A.D.J.-G.); (S.N.P.-R.); (C.D.C.-R.); (C.N.F.-M.); (A.M.H.-M.); (C.E.G.-F.)
| |
Collapse
|
49
|
Li M, Ramage H, Cherry S. Deciphering flavivirus-host interactions using quantitative proteomics. Curr Opin Immunol 2020; 66:90-97. [PMID: 32682290 DOI: 10.1016/j.coi.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/13/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023]
Abstract
Flaviviruses are a group of important emerging and re-emerging human pathogens that cause worldwide epidemics with thousands of deaths annually. Flaviviruses are small, enveloped, positive-sense, single-stranded RNA viruses that are obligate intracellular pathogens, relying heavily on host cell machinery for productive replication. Proteomic approaches have become an increasingly powerful tool to investigate the mechanisms by which viruses interact with host proteins and manipulate cellular processes to promote infection. Here, we review recent advances in employing quantitative proteomics techniques to improve our understanding of the complex interplay between flaviviruses and host cells. We describe new findings on our understanding of how flaviviruses impact protein-protein interactions, protein-RNA interactions, protein abundance, and post-translational modifications to modulate viral infection.
Collapse
Affiliation(s)
- Minghua Li
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Holly Ramage
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Torii S, Orba Y, Sasaki M, Tabata K, Wada Y, Carr M, Hobson-Peters J, Hall RA, Takada A, Fukuhara T, Matsuura Y, Hall WW, Sawa H. Host ESCRT factors are recruited during chikungunya virus infection and are required for the intracellular viral replication cycle. J Biol Chem 2020; 295:7941-7957. [PMID: 32341071 PMCID: PMC7278350 DOI: 10.1074/jbc.ra119.012303] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/23/2020] [Indexed: 11/06/2022] Open
Abstract
Chikungunya fever is a re-emerging zoonotic disease caused by chikungunya virus (CHIKV), a member of the Alphavirus genus in the Togaviridae family. Only a few studies have reported on the host factors required for intracellular CHIKV trafficking. Here, we conducted an imaging-based siRNA screen to identify human host factors for intracellular trafficking that are involved in CHIKV infection, examined their interactions with CHIKV proteins, and investigated the contributions of these proteins to CHIKV infection. The results of the siRNA screen revealed that host endosomal sorting complexes required for transport (ESCRT) proteins are recruited during CHIKV infection. Co-immunoprecipitation analyses revealed that both structural and nonstructural CHIKV proteins interact with hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), a component of the ESCRT-0 complex. We also observed that HGS co-localizes with the E2 protein of CHIKV and with dsRNA, a marker of the replicated CHIKV genome. Results from gene knockdown analyses indicated that, along with other ESCRT factors, HGS facilitates both genome replication and post-translational steps during CHIKV infection. Moreover, we show that ESCRT factors are also required for infections with other alphaviruses. We conclude that during CHIKV infection, several ESCRT factors are recruited via HGS and are involved in viral genome replication and post-translational processing of viral proteins.
Collapse
Affiliation(s)
- Shiho Torii
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuji Wada
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Michael Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Ayato Takada
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - William W Hall
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Centre for Research in Infectious Diseases, School of Medicine, University College Dublin, Dublin, Ireland
- Global Virus Network, Baltimore, Maryland, USA
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, Maryland, USA
| |
Collapse
|