1
|
Qi G, Tang H, Hu J, Kang S, Qin S. Potential role of tanycyte-derived neurogenesis in Alzheimer's disease. Neural Regen Res 2025; 20:1599-1612. [PMID: 38934388 PMCID: PMC11688558 DOI: 10.4103/nrr.nrr-d-23-01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. The precise coordination of the gene networks controlling neurogenesis in naive and mature tanycytes is essential for maintaining homeostasis in adulthood. However, our understanding of the molecular mechanisms and signaling pathways that govern the proliferation and differentiation of tanycytes into neurons remains limited. This article aims to review the recent advancements in research into the mechanisms and functions of tanycyte-derived neurogenesis. Studies employing lineage-tracing techniques have revealed that the neurogenesis specifically originating from tanycytes in the hypothalamus has a compensatory role in neuronal loss and helps maintain energy homeostasis during metabolic diseases. Intriguingly, metabolic disorders are considered early biomarkers of Alzheimer's disease. Furthermore, the neurogenic potential of tanycytes and the state of newborn neurons derived from tanycytes heavily depend on the maintenance of mild microenvironments, which may be disrupted in Alzheimer's disease due to the impaired blood-brain barrier function. However, the specific alterations and regulatory mechanisms governing tanycyte-derived neurogenesis in Alzheimer's disease remain unclear. Accumulating evidence suggests that tanycyte-derived neurogenesis might be impaired in Alzheimer's disease, exacerbating neurodegeneration. Confirming this hypothesis, however, poses a challenge because of the lack of long-term tracing and nucleus-specific analyses of newborn neurons in the hypothalamus of patients with Alzheimer's disease. Further research into the molecular mechanisms underlying tanycyte-derived neurogenesis holds promise for identifying small molecules capable of restoring tanycyte proliferation in neurodegenerative diseases. This line of investigation could provide valuable insights into potential therapeutic strategies for Alzheimer's disease and related conditions.
Collapse
Affiliation(s)
- Guibo Qi
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Tang
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianian Hu
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siying Kang
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Junaid M, Lee EJ, Lim SB. Single-cell and spatial omics: exploring hypothalamic heterogeneity. Neural Regen Res 2025; 20:1525-1540. [PMID: 38993130 PMCID: PMC11688568 DOI: 10.4103/nrr.nrr-d-24-00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Eun Jeong Lee
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| |
Collapse
|
3
|
Chen YW, Ahn IS, Wang SSM, Majid S, Diamante G, Cely I, Zhang G, Cabanayan A, Komzyuk S, Bonnett J, Arneson D, Yang X. Multitissue single-cell analysis reveals differential cellular and molecular sensitivity between fructose and high-fat high-sucrose diets. Cell Rep 2025; 44:115690. [PMID: 40349341 DOI: 10.1016/j.celrep.2025.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/03/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
Metabolic syndrome (MetS), a conglomerate of dysregulated metabolic traits that vary between individuals, is partially driven by modern diets high in fat, sucrose, or fructose and their interactions with host genes in metabolic tissues. To elucidate the roles of individual tissues and cell types in diet-induced MetS, we performed single-cell RNA sequencing on the hypothalamus, liver, adipose tissue, and small intestine of mice fed high-fat high-sucrose (HFHS) or fructose diets. We found that hypothalamic neurons were sensitive to fructose, while adipose progenitor cells and macrophages were responsive to HFHS. Ligand-receptor analysis revealed lipid metabolism and inflammation networks among peripheral tissues driven by HFHS, while both diets stimulated synaptic remodeling within the hypothalamus. mt-Rnr2, a top responder to both diets, mitigated diet-induced MetS by stimulating thermogenesis. Our study demonstrates that HFHS and fructose diets have differential cell type and network targets but also share regulators such as mt-Rnr2 to affect MetS risk.
Collapse
Affiliation(s)
- Yen-Wei Chen
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susanna Sue-Ming Wang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sana Majid
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ingrid Cely
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guanglin Zhang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Angelus Cabanayan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sergey Komzyuk
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jack Bonnett
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas Arneson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Hanchate NK. Single-cell genomics meets systems neuroscience: Insights from mapping the brain circuitry of stress. J Neuroendocrinol 2025; 37:e70005. [PMID: 39956535 PMCID: PMC12045673 DOI: 10.1111/jne.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
Responses to external and internal dangers is essential for survival and homeostatic regulation. Hypothalamic corticotropin-releasing hormone neurons (CRHNs) play a pivotal role in regulating neuroendocrine responses to fear and stress. In recent years, the application of neurogenetic tools, such as fiber photometry, chemogenetics and optogenetics, have provided new insights into the dynamic neuronal responses of CRHNs during stressful events, offering new perspectives into their functional significance in mediating neurobehavioural responses to stress. Transsynaptic viral tracers have facilitated the comprehensive mapping of neuronal inputs to CRHNs. Furthermore, the development and application of innovative single-cell genomic tools combined with viral tracing have begun to pave the way for a deeper understanding of the transcriptional profiles of neural circuit components, enabling molecular-anatomical circuit mapping. Here, I will discuss how these systems neuroscience approaches and novel single-cell genomic methods are advancing the molecular and functional mapping of stress neurocircuits, their associated challenges and future directions.
Collapse
Affiliation(s)
- Naresh K. Hanchate
- Genetics & Genomic Medicine DepartmentUCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
| |
Collapse
|
5
|
Shen Y, Wong SZH, Ma T, Zhang F, Wang Q, Kawaguchi R, Geschwind DH, Wang J, He C, Ming GL, Song H. m 6A deficiency impairs hypothalamic neurogenesis of feeding-related neurons in mice and human organoids and leads to adult obesity in mice. Cell Stem Cell 2025; 32:727-743.e8. [PMID: 40112816 DOI: 10.1016/j.stem.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/07/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
N6-methyladenosine (m6A), the most prevalent internal modification on mRNAs, plays important roles in the nervous system. Whether neurogenesis in the hypothalamus, a region critical for controlling appetite, is regulated by m6A signaling, especially in humans, remains unclear. Here, we showed that deletion of m6A writer Mettl14 in the mouse embryonic hypothalamus led to adult obesity, with impaired glucose-insulin homeostasis and increased energy intake. Mechanistically, deletion of Mettl14 leads to hypothalamic arcuate nucleus neurogenesis deficits with reduced generation of feeding-related neurons and dysregulation of neurogenesis-related m6A-tagged transcripts. Deletion of m6A writer Mettl3 or m6A reader Ythdc1 shared similar phenotypes. METTL14 or YTHDC1 knockdown also led to reduced generation of feeding-related neurons in human brain subregion-specific arcuate nucleus organoids. Our studies reveal a conserved role of m6A signaling in arcuate nucleus neurogenesis in mice and human organoids and shed light on the developmental basis of epitranscriptomic regulation of food intake and energy homeostasis.
Collapse
Affiliation(s)
- Yachen Shen
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Zheng Hao Wong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tong Ma
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qing Wang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Chuan He
- Department of Chemistry, Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA; Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Yu X, Ren Y, Xia M, Shu Z, Zhu L. Decoupled GNNs based on multi-view contrastive learning for scRNA-seq data clustering. Brief Bioinform 2025; 26:bbaf198. [PMID: 40366859 PMCID: PMC12077398 DOI: 10.1093/bib/bbaf198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Clustering is pivotal in deciphering cellular heterogeneity in single-cell RNA sequencing (scRNA-seq) data. However, it suffers from several challenges in handling the high dimensionality and complexity of scRNA-seq data. Especially when employing graph neural networks (GNNs) for cell clustering, the dependencies between cells expand exponentially with the number of layers. This results in high computational complexity, negatively impacting the model's training efficiency. To address these challenges, we propose a novel approach, called decoupled GNNs, based on multi-view contrastive learning (scDeGNN), for scRNA-seq data clustering. Firstly, this method constructs two adjacency matrices to generate distinct views, and trains them using decoupled GNNs to derive the initial cell feature representations. These representations are then refined through a multilayer perceptron and a contrastive learning layer, ensuring the consistency and discriminability of the learned features. Finally, the learned representations are fused and applied to the cell clustering task. Extensive experimental results on nine real scRNA-seq datasets from various organisms and tissues show that the proposed scDeGNN method significantly outperforms other state-of-the-art scRNA-seq data clustering algorithms across multiple evaluation metrics.
Collapse
Affiliation(s)
- Xiaoyan Yu
- School of Computer Science and Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian, Beijing, 100081, China
| | - Yixuan Ren
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Jingming South Road, Chenggong, Kunming, Yunnan, 650500, China
| | - Min Xia
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Jingming South Road, Chenggong, Kunming, Yunnan, 650500, China
| | - Zhenqiu Shu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Jingming South Road, Chenggong, Kunming, Yunnan, 650500, China
| | - Liehuang Zhu
- School of Cyberspace Science and Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian, Beijing, 100081, China
| |
Collapse
|
7
|
Goudarzi HT, Pouyan MB. Enhanced single-cell RNA-seq embedding through gene expression and data-driven gene-gene interaction integration. Comput Biol Med 2025; 188:109880. [PMID: 39999494 DOI: 10.1016/j.compbiomed.2025.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) provides unprecedented insights into cellular heterogeneity, enabling detailed analysis of complex biological systems at single-cell resolution. However, the high dimensionality and technical noise inherent in scRNA-seq data pose significant analytical challenges. While current embedding methods focus primarily on gene expression levels, they often overlook crucial gene-gene interactions that govern cellular identity and function. To address this limitation, we present a novel embedding approach that integrates both gene expression profiles and data-driven gene-gene interactions. Our method first constructs a Cell-Leaf Graph (CLG) using random forest models to capture regulatory relationships between genes, while simultaneously building a K-Nearest Neighbor Graph (KNNG) to represent expression similarities between cells. These graphs are then combined into an Enriched Cell-Leaf Graph (ECLG), which serves as input for a graph neural network to compute cell embeddings. By incorporating both expression levels and gene-gene interactions, our approach provides a more comprehensive representation of cellular states. Extensive evaluation across multiple datasets demonstrates that our method enhances the detection of rare cell populations and improves downstream analyses such as visualization, clustering, and trajectory inference. This integrated approach represents a significant advance in single-cell data analysis, offering a more complete framework for understanding cellular diversity and dynamics.
Collapse
Affiliation(s)
- Hojjat Torabi Goudarzi
- Electrical Engineering and Computer Science Department, Oregon State University, Address one, Corvallis, 97331, OR, United States.
| | | |
Collapse
|
8
|
Zhu M, Peng J, Wang M, Lin S, Zhang H, Zhou Y, Dai X, Zhao H, Yu YQ, Shen L, Li XM, Chen J. Transcriptomic and spatial GABAergic neuron subtypes in zona incerta mediate distinct innate behaviors. Nat Commun 2025; 16:3107. [PMID: 40169544 PMCID: PMC11961626 DOI: 10.1038/s41467-025-57896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Understanding the anatomical connection and behaviors of transcriptomic neuron subtypes is critical to delineating cell type-specific functions in the brain. Here we integrated single-nucleus transcriptomic sequencing, in vivo circuit mapping, optogenetic and chemogenetic approaches to dissect the molecular identity and function of heterogeneous GABAergic neuron populations in the zona incerta (ZI) in mice, a region involved in modulating various behaviors. By microdissecting ZI for transcriptomic and spatial gene expression analyses, our results revealed two non-overlapping Ecel1- and Pde11a-expressing GABAergic neurons with dominant expression in the rostral and medial zona incerta (ZIrEcel1 and ZImPde11a), respectively. The GABAergic projection from ZIrEcel1 to periaqueductal gray mediates self-grooming, while the GABAergic projection from ZImPde11a to the oral part of pontine reticular formation promotes transition from sleep to wakefulness. Together, our results revealed the molecular markers, spatial organization and specific neuronal circuits of two discrete GABAergic projection neuron populations in segregated subregions of the ZI that mediate distinct innate behaviors, advancing our understanding of the functional organization of the brain.
Collapse
Affiliation(s)
- Mengyue Zhu
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jieqiao Peng
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mi Wang
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shan Lin
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huiying Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhou
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xinyue Dai
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huiying Zhao
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Qin Yu
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 311305, China.
| | - Jiadong Chen
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
9
|
Iremonger KJ, Power EM. The paraventricular nucleus of the hypothalamus: a key node in the control of behavioural states. J Physiol 2025; 603:2231-2243. [PMID: 40119815 PMCID: PMC12013795 DOI: 10.1113/jp288366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/05/2025] [Indexed: 03/24/2025] Open
Abstract
The paraventricular nucleus (PVN) of the hypothalamus contains diverse populations of neuropeptide-producing neurons. These include neurons that synthesise oxytocin, vasopressin, corticotropin-releasing hormone, thyrotropin-releasing hormone and somatostatin. While it is well established that these neurons control the secretion of neuroendocrine hormones, there is growing evidence that they also control the expression of important homeostatic behaviours. Here we review recent data showing a critical role of PVN neurons in controlling arousal, social behaviour, defensive behaviour and pain. Collectively, this suggests that the PVN is a key node in a wider neural network controlling behavioural states.
Collapse
Affiliation(s)
- Karl J. Iremonger
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Emmet M. Power
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
10
|
Zangerolamo L, Carvalho M, Solon C, Sidarta-Oliveira D, Soares GM, Marmentini C, Boschero AC, Tseng YH, Velloso LA, Barbosa HCL. Central FGF19 signaling enhances energy homeostasis and adipose tissue thermogenesis through sympathetic activation in obese mice. Am J Physiol Endocrinol Metab 2025; 328:E524-E542. [PMID: 40059865 DOI: 10.1152/ajpendo.00488.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Fibroblast growth factor 19 (FGF19) signaling in the brain is associated with body weight loss, reduced food intake, and improved glycemic control in obese mice through unclear mechanisms. Here, we investigated the effects of central FGF19 administration on peripheral tissues, focusing on adipose tissue and its contributions to body weight loss. Using single-cell RNA sequencing of the adult murine hypothalamus, we found that FGF19 has the potential to target multiple cell populations, including astrocytes-tanycytes, microglia, neurons, and oligodendrocytes. Central delivery of FGF19 decreased body weight gain and ameliorated glucose-insulin homeostasis in diet-induced obese (DIO) mice. These results were accompanied by increased energy expenditure and reduced peripheric inflammation. Notably, these effects were attributable to the increased activity of thermogenic adipocytes, as upregulated thermogenic markers in brown and inguinal adipose tissue and improved cold tolerance were induced by central FGF19. However, under blunted sympathetic activity, the described effects were abolished. Moreover, cold exposure induced upregulation of FGF19 receptors and coreceptors specifically in the hypothalamus, suggesting a critical metabolic adaptation for thermoregulation and energy homeostasis. Our findings indicate that central FGF19 signaling improves energy homeostasis in DIO mice, at least in part, by stimulating sympathetic activity and adipose tissue thermogenesis. These findings highlight FGF19's potential as a therapeutic target for obesity and metabolic disorders.NEW & NOTEWORTHY Although most studies associate central fibroblast growth factor 19 (FGF19) with reduced food intake, our findings highlight its role in enhancing thermogenesis in white and brown adipose tissues through sympathetic activation. Central FGF19 not only regulates feeding but also drives peripheral adaptations critical for energy homeostasis and body weight control under obesogenic conditions. These insights underscore the significance of top-down mechanisms in FGF19 action and its therapeutic potential for combating obesity.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Gabriela M Soares
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| |
Collapse
|
11
|
Yan L, Zhang X, Jin L, Li Y, Chen Y, Zhang J, Sun Z, Qi J, Qu C, Dong G, Zhang Y, Jiang Q, Liu A, Li J. The ARC CRABP1 neurons play a crucial role in the regulation of energy homeostasis. Nat Commun 2025; 16:2319. [PMID: 40057489 PMCID: PMC11890859 DOI: 10.1038/s41467-025-57411-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/19/2025] [Indexed: 05/13/2025] Open
Abstract
Recent single-cell RNA sequencing study suggested that CRABP1 expressing neurons in the arcuate nucleus (ARCCRABP1 neurons) were a distinct group of neurons. However, the physiological role of ARCCRABP1 neurons remains unexplored. Here, we demonstrated that ARCCRABP1 neurons played a crucial role in regulation of energy homeostasis in male mice. Ablation of ARCCRABP1 neurons resulted in obesity and a diabetic phenotype in mice. By employing chemogenetic or optogenetic manipulation techniques, the inhibition and activation of ARCCRABP1 neurons resulted in an increase and decrease in food intake, respectively. The axon terminals from these ARCCRABP1 neurons project to several brain regions implicated in feeding regulation such as PVH, BNST, PBN, and NTS. Optogenetic manipulation of these axons within these brain regions resulted in significant alterations of food intake behavior in mice. Furthermore, the electrophysiological studies demonstrated that the activation of ARCCRABP1 neurons induces depolarization in POMC neurons in the hypothalamus. The hormone stimulation studies showed that most of the ARCCRABP1 neurons respond to insulin. Collectively, our findings demonstrate that ARCCRABP1 neurons represent a distinct neuronal subtype involved in energy homeostasis regulation.
Collapse
Affiliation(s)
- Lihong Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing, Jiangsu, 211166, China
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing, Jiangsu, 211166, China
| | - Liling Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing, Jiangsu, 211166, China
| | - Yin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing, Jiangsu, 211166, China
| | - Yang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing, Jiangsu, 211166, China
| | - Jubiao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing, Jiangsu, 211166, China
| | - Zhenning Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing, Jiangsu, 211166, China
| | - Junxia Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing, Jiangsu, 211166, China
| | - Changqing Qu
- Fuyang Normal University, Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, Fuyang, Anhui, 236037, China
| | - Guanzhong Dong
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
| | - Yongjie Zhang
- Department of Human Anatomy of Nanjing Medical University, Human Brain Tissue Resource Center of Nanjing Medical University, National Health and Disease Human Brain Tissue Resource Center - sub-center of Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing, Jiangsu, 211166, China.
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China.
| |
Collapse
|
12
|
Xie LQ, Hu B, Lu RB, Cheng YL, Chen X, Wen J, Xiao Y, An YZ, Peng N, Dai Y, Xie G, Guo Q, Peng H, Luo XH. Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity. Cell Res 2025; 35:165-185. [PMID: 39875551 PMCID: PMC11909135 DOI: 10.1038/s41422-025-01078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin. Raptin release is timed by the circuit from vasopressin-expressing neurons in the suprachiasmatic nucleus to RCN2-positive neurons in the paraventricular nucleus. Raptin levels peak during sleep, which is blunted by sleep deficiency. Raptin binds to glutamate metabotropic receptor 3 (GRM3) in neurons of the hypothalamus and stomach to inhibit appetite and gastric emptying, respectively. Raptin-GRM3 signaling mediates anorexigenic effects via PI3K-AKT signaling. Of note, we verify the connections between deficiencies in the sleeping state, impaired Raptin release, and obesity in patients with sleep deficiency. Moreover, humans carrying an RCN2 nonsense variant present with night eating syndrome and obesity. These data define a unique hormone that suppresses food intake and prevents obesity.
Collapse
Affiliation(s)
- Ling-Qi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ren-Bin Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya-Lun Cheng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xin Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie Wen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu-Ze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ning Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Dai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Genqing Xie
- Department of Endocrinology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
13
|
Cheng B, Wen Y, Wei W, Cheng S, Pan C, Meng P, Liu L, Yang X, Liu H, Jia Y, Zhang F. Polygenic enrichment analysis in multi-omics levels identifies cell/tissue specific associations with schizophrenia based on single-cell RNA sequencing data. Schizophr Res 2025; 277:93-101. [PMID: 40036903 DOI: 10.1016/j.schres.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/24/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
OBJECTIVE Understanding the specific cellular origin and tissue heterogeneity in schizophrenia is critically important for exploring the disease etiology. This study aims to investigate these aspects by performing multiple analyses based on omics data. METHOD We performed single-cell disease relevance score (scDRS) algorithm to link brain single-cell RNA sequencing (scRNA-seq) with schizophrenia risk across multi-omics scales at single-cell resolution. This approach identified cell types with overexpression of schizophrenia-related genes implicated by multi-omics panels (ATAC-seq, RNA-seq, TWAS, and GWAS). Schizophrenia-related genes from these multi-omics panels were extracted and combined with scRNA-seq data to calculate scDRS. Subsequently, the cell-type vs. disease association and tissue heterogeneity were assessed using scDRS for each omics panel. RESULTS We identified two novel cell subpopulations in the brain that differentially express SCUBE3 (59 cells, 7.0 %) and FN1 (21 cells, 2.5 %). At the individual cell level, schizophrenia-associated cell subpopulations included microglial cell associated with ATAC-seq panel (Passociation = 0.002, Pheterogeneity = 0.009) and deep layer neuron suggestively associated with GWAS panel (Passociation = 0.033, Pheterogeneity = 0.017). At the brain tissue level, microglial cell was significantly associated with cortical plate in ATAC-seq panel (Passociation = 0.002, Pheterogeneity = 0.011). Gene level analysis identified several genes associated with schizophrenia across multi-omics panels. CONCLUSIONS Our study outlines the signature of cell subpopulations, brain regions, and disease risk genes in schizophrenia at single-cell resolution across multi-omics scales. These findings provide a reference for future precision medicine approaches targeting specific cell types and brain regions in schizophrenia.
Collapse
Affiliation(s)
- Bolun Cheng
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Yan Wen
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Wenming Wei
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Shiqiang Cheng
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Chuyu Pan
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Peilin Meng
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Li Liu
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Xuena Yang
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Huan Liu
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Yumeng Jia
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China.
| | - Feng Zhang
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China.
| |
Collapse
|
14
|
Dieguez C, López M, Casanueva F. Hypothalamic GHRH. Rev Endocr Metab Disord 2025:10.1007/s11154-025-09951-y. [PMID: 39913072 DOI: 10.1007/s11154-025-09951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Despite initial discovery in pancreatic tumors, GHRH is a 44-amino acid peptide primarily expressed in the hypothalamus. Recent RNA sequencing clarifies GHRH expression: predominantly hypothalamic in humans, with some basal ganglia presence, while extending to additional central nervous system (CNS) regions in other species. GHRH binds to its G-protein coupled receptor (GHRHR) in the arcuate (ARC), ventromedial (VMH), and periventricular (PeN) nuclei of the hypothalamus to exert its effects. Notably, the highest non-brain expression is found in somatotroph cells of the pituitary, directly targeting growth hormone (GH) production. GHRH is the primary regulator of pulsatile GH secretion, counteracted by somatostatin. While early models proposed alternating GHRH/somatostatin bursts, others implicate somatostatin as the primary regulator of GH pulse timing. These models fail to fully explain species and gender differences, particularly regarding nutritional status. The discovery of ghrelin, acting via GHS-R1a on GHRH neurons, significantly advanced understanding of GH regulation. Ghrelin interacts intricately with GHRH, modulating its expression and neuronal activity. Ghrelin also exerts GHRH-independent GH stimulation and synergizes with GHRH. The crucial role of GHRH in GH regulation is demonstrated by its key involvement in the action of other GH regulators, such as leptin, neuropeptide Y (NPY), and orexins. However, these interactions have also revealed that the physiological effects of GHRH extend far beyond its canonical role as a GH secretagogue. In this context, GHRH is thought to be a key regulator of the sleep-wake cycle and may be involved in whole-body energy homeostasis. The objective of this review is to summarize the current knowledge on GHRH and to discuss the potential pleiotropic effect of this hypothalamic neuropeptide, far beyond its classical action as regulator of the somatotroph axis.
Collapse
Affiliation(s)
- Carlos Dieguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, 15782,, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain.
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, 15782,, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain
| | - Felipe Casanueva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain
- Department of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, 15782, Santiago de Compotela, Spain
- Complejo Universitario de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| |
Collapse
|
15
|
Qu R, Cheng X, Sefik E, Stanley Iii JS, Landa B, Strino F, Platt S, Garritano J, Odell ID, Coifman R, Flavell RA, Myung P, Kluger Y. Gene trajectory inference for single-cell data by optimal transport metrics. Nat Biotechnol 2025; 43:258-268. [PMID: 38580861 PMCID: PMC11452571 DOI: 10.1038/s41587-024-02186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
Single-cell RNA sequencing has been widely used to investigate cell state transitions and gene dynamics of biological processes. Current strategies to infer the sequential dynamics of genes in a process typically rely on constructing cell pseudotime through cell trajectory inference. However, the presence of concurrent gene processes in the same group of cells and technical noise can obscure the true progression of the processes studied. To address this challenge, we present GeneTrajectory, an approach that identifies trajectories of genes rather than trajectories of cells. Specifically, optimal transport distances are calculated between gene distributions across the cell-cell graph to extract gene programs and define their gene pseudotemporal order. Here we demonstrate that GeneTrajectory accurately extracts progressive gene dynamics in myeloid lineage maturation. Moreover, we show that GeneTrajectory deconvolves key gene programs underlying mouse skin hair follicle dermal condensate differentiation that could not be resolved by cell trajectory approaches. GeneTrajectory facilitates the discovery of gene programs that control the changes and activities of biological processes.
Collapse
Affiliation(s)
- Rihao Qu
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiuyuan Cheng
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Boris Landa
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | | | - Sarah Platt
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - James Garritano
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | - Ian D Odell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Ronald Coifman
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
- Department of Mathematics, Yale University, New Haven, CT, USA
- Department of Electrical Engineering, Yale University, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Peggy Myung
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
- Program in Applied Mathematics, Yale University, New Haven, CT, USA.
| |
Collapse
|
16
|
Placzek M, Chinnaiya K, Kim DW, Blackshaw S. Control of tuberal hypothalamic development and its implications in metabolic disorders. Nat Rev Endocrinol 2025; 21:118-130. [PMID: 39313573 PMCID: PMC11864813 DOI: 10.1038/s41574-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes. Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain-body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation. Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.
Collapse
Affiliation(s)
- Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK.
- Bateson Centre, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | | | - Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Bao M, Wang X, Li X, Sun R, Wang Z, Jiang T, Wang H, Feng J. Single-Cell Landscape of the Cochlea Revealed Cell-Type-Specific Diversification in Hipposideros armiger Based on PacBio Long-Read Sequencing. Biomolecules 2025; 15:211. [PMID: 40001514 PMCID: PMC11853400 DOI: 10.3390/biom15020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Echolocation represents one of the most rapid adaptive sensorimotor modulation behaviors observed in mammals, establishing bats as one of the most evolutionarily successful mammals. Bats rely on high-frequency hearing for survival, but our understanding of its cellular molecular basis is scattered and segmented. Herein, we constructed the first single-cell transcriptomic landscape of the cochlea in Hipposideros armiger, a CF-FM bat, using a PacBio-optimized genome and compared it with the results obtained from unoptimized original genomes. Sixteen distinct cell types were distributed across five spatial regions of the cochlea. Notably, through hematoxylin and eosin staining and fluorescence in situ hybridization, we identified new types of spiral ganglion neuron (SGN) cells in the cochlea of H. armiger. These SGN cells are likely critical for auditory perception and may have driven the adaptive evolution of high-frequency hearing in this species. Furthermore, we uncovered the differentiation relationships of among specific cell types, such as the transition from supporting cells to hair cells. Using the cochlear cell atlas as a reference, cell types susceptible to deafness-associated genes (in the human) were also identified. In summary, this study provides novel insights into the cellular and molecular mechanisms underlying the adaptive high-frequency hearing in bats and highlights potential candidate cell types and genes for therapeutic interventions in hearing loss.
Collapse
Affiliation(s)
- Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (M.B.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Xue Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (M.B.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Xintong Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (M.B.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Ruyi Sun
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (M.B.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Zhiqiang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| | - Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (M.B.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (M.B.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
18
|
Jin K, Yao Z, van Velthoven CTJ, Kaplan ES, Glattfelder K, Barlow ST, Boyer G, Carey D, Casper T, Chakka AB, Chakrabarty R, Clark M, Departee M, Desierto M, Gary A, Gloe J, Goldy J, Guilford N, Guzman J, Hirschstein D, Lee C, Liang E, Pham T, Reding M, Ronellenfitch K, Ruiz A, Sevigny J, Shapovalova N, Shulga L, Sulc J, Torkelson A, Tung H, Levi B, Sunkin SM, Dee N, Esposito L, Smith KA, Tasic B, Zeng H. Brain-wide cell-type-specific transcriptomic signatures of healthy ageing in mice. Nature 2025; 638:182-196. [PMID: 39743592 PMCID: PMC11798837 DOI: 10.1038/s41586-024-08350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2024] [Indexed: 01/04/2025]
Abstract
Biological ageing can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function1,2. Mammalian brains consist of thousands of cell types3, which may be differentially susceptible or resilient to ageing. Here we present a comprehensive single-cell RNA sequencing dataset containing roughly 1.2 million high-quality single-cell transcriptomes of brain cells from young adult and aged mice of both sexes, from regions spanning the forebrain, midbrain and hindbrain. High-resolution clustering of all cells results in 847 cell clusters and reveals at least 14 age-biased clusters that are mostly glial types. At the broader cell subclass and supertype levels, we find age-associated gene expression signatures and provide a list of 2,449 unique differentially expressed genes (age-DE genes) for many neuronal and non-neuronal cell types. Whereas most age-DE genes are unique to specific cell types, we observe common signatures with ageing across cell types, including a decrease in expression of genes related to neuronal structure and function in many neuron types, major astrocyte types and mature oligodendrocytes, and an increase in expression of genes related to immune function, antigen presentation, inflammation, and cell motility in immune cell types and some vascular cell types. Finally, we observe that some of the cell types that demonstrate the greatest sensitivity to ageing are concentrated around the third ventricle in the hypothalamus, including tanycytes, ependymal cells, and certain neuron types in the arcuate nucleus, dorsomedial nucleus and paraventricular nucleus that express genes canonically related to energy homeostasis. Many of these types demonstrate both a decrease in neuronal function and an increase in immune response. These findings suggest that the third ventricle in the hypothalamus may be a hub for ageing in the mouse brain. Overall, this study systematically delineates a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal ageing that will serve as a foundation for the investigation of functional changes in ageing and the interaction of ageing and disease.
Collapse
Affiliation(s)
- Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Max Departee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Josh Sevigny
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
19
|
Eisenhuth F, Agbonze JE, Groh AMR, Klostranec JM, Rudko DA, Stratton JA, Shapiro AJ. Age-related cerebral ventriculomegaly occurs in patients with primary ciliary dyskinesia. Fluids Barriers CNS 2025; 22:12. [PMID: 39891273 PMCID: PMC11783799 DOI: 10.1186/s12987-024-00614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/20/2024] [Indexed: 02/03/2025] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disorder causing motile ciliary dysfunction primarily affecting the respiratory and reproductive systems. However, the impact of PCD on the central nervous system remains poorly understood. Rodent models of PCD exhibit marked hydrocephalus leading to early animal mortality, however, most humans with PCD do not develop hydrocephalus for unknown reasons. We hypothesized that patients with PCD exhibit sub-clinical ventriculomegaly related to ependymal motile ciliary dysfunction. We demonstrated highly specific expression levels of known PCD-related genes in human brain multiciliated ependymal cells (p < 0.0001). To assess ventricular size, computed tomography sinus images from patients with PCD (n = 33) and age/sex-matched controls (n = 64) were analysed. Patients with PCD displayed significantly larger ventricular areas (p < 0.0001) and Evans index (p < 0.01), indicating ventriculomegaly that was consistent across all genetic subgroups. Ventricular enlargement correlated positively with increasing age in patients with PCD compared to controls (p < 0.001). Additionally, chart review demonstrated a high prevalence (39%) of neuropsychiatric/neurological disorders in adult PCD patients that did not correlate with degree of ventriculomegaly. Our findings suggest that patients with PCD may have unrecognized, mild ventriculomegaly which correlates with ageing, potentially attributable to ependymal ciliary dysfunction. Further study is required to determine causality, and whether ventricular enlargement contributes to neuropsychiatric/neurological or other morbidity in PCD.
Collapse
Affiliation(s)
- Franziska Eisenhuth
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Joy E Agbonze
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Adam M R Groh
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Jesse M Klostranec
- Department of Neuroradiology, Montreal Neurological Institute and Hospital, Montreal, QC, H3A 2B4, Canada
- McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - David A Rudko
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada.
- Montreal Neurological Institute, 3801 University Drive, Montreal, QC, H4A 3J1, Canada.
| | - Adam J Shapiro
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
- Montreal Children's Hospital, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
20
|
Yacawych WT, Wang Y, Zhou G, Hassan S, Kernodle S, Sass F, DeVaux M, Wu I, Rupp A, Tomlinson AJ, Lin Z, Secher A, Raun K, Pers T, Seeley RJ, Myers M, Qiu W. A single dorsal vagal complex circuit mediates the aversive and anorectic responses to GLP1R agonists. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634167. [PMID: 39896596 PMCID: PMC11785067 DOI: 10.1101/2025.01.21.634167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
GLP-1 receptor agonists (GLP1RAs) effectively reduce feeding to treat obesity, although nausea and other aversive side effects of these drugs can limit their use. Brainstem circuits that promote satiation and that mediate the physiologic control of body weight can be distinguished from those that cause aversion. It remains unclear whether brainstem Glp1r neurons contribute to the normal regulation of energy balance and whether GLP1RAs control appetite via circuits distinct from those that mediate aversive responses, however. Hence, we defined roles for AP and NTS Glp1r-expressing neurons (APGlp1r and NTSGlp1r neurons, respectively) in the physiologic control of body weight, the GLP1RA-dependent suppression of food intake, and the GLP1RA-mediated stimulation of aversive responses. While silencing non-aversive NTSGlp1r neurons interfered with the physiologic restraint of feeding and body weight, restoring NTSGlp1r neuron Glp1r expression on an otherwise Glp1r-null background failed to enable long-term body weight suppression by GLP1RAs. In contrast, selective Glp1r expression in APGlp1r neurons restored both aversive responses and long-term body weight suppression by GLP1RAs. Thus, while non-aversive NTSGlp1r neurons control physiologic feeding, aversive APGlp1r neurons mediate both the anorectic and weight loss effects of GLP1RAs, dictating the functional inseparability of these pharmacologic GLP1RA responses at a circuit level.
Collapse
Affiliation(s)
- Warren T. Yacawych
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Yi Wang
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Guoxiang Zhou
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Shad Hassan
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Stace Kernodle
- Department of Surgery, University of Michigan, Ann Arbor MI USA
| | - Frederike Sass
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| | - Martin DeVaux
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
| | - Iris Wu
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Alan Rupp
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
| | | | - Zitian Lin
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anna Secher
- Global Drug Discovery, Novo Nordisk A/S, Maløv, Denmark
| | - Kirsten Raun
- Research and Early Development, Novo Nordisk A/S, Bagsværd, Denmark
| | - Tune Pers
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor MI USA
| | - Martin Myers
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Weiwei Qiu
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Sun ED, Nagvekar R, Pogson AN, Brunet A. Brain aging and rejuvenation at single-cell resolution. Neuron 2025; 113:82-108. [PMID: 39788089 PMCID: PMC11842159 DOI: 10.1016/j.neuron.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Brain aging leads to a decline in cognitive function and a concomitant increase in the susceptibility to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A key question is how changes within individual cells of the brain give rise to age-related dysfunction. Developments in single-cell "omics" technologies, such as single-cell transcriptomics, have facilitated high-dimensional profiling of individual cells. These technologies have led to new and comprehensive characterizations of brain aging at single-cell resolution. Here, we review insights gleaned from single-cell omics studies of brain aging, starting with a cell-type-centric overview of age-associated changes and followed by a discussion of cell-cell interactions during aging. We highlight how single-cell omics studies provide an unbiased view of different rejuvenation interventions and comment on the promise of combinatorial rejuvenation approaches for the brain. Finally, we propose new directions, including models of brain aging and neural stem cells as a focal point for rejuvenation.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA; Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Rahul Nagvekar
- Department of Genetics, Stanford University, Stanford, CA, USA; Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA; Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Wegmann L, Haas HL, Sergeeva OA. Comparative analysis of adenosine 1 receptor expression and function in hippocampal and hypothalamic neurons. Inflamm Res 2025; 74:11. [PMID: 39775928 PMCID: PMC11711771 DOI: 10.1007/s00011-024-01980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Adenosine, an ATP degradation product, is a sleep pressure factor. The adenosine 1 receptor (A1R) reports sleep need. Histaminergic neurons (HN) of the tuberomamillary nucleus (TMN) fire exclusively during wakefulness and promote arousal. All of them express GABAA receptors and are inhibited by GABA. Does adenosine contribute to their silencing? SUBJECTS AND TREATMENT Responses to adenosine were studied in mouse brain slices and primary dissociated cultures. For HN identification single-cell (sc)RT-PCR, reporter protein and pharmacology were used. Hippocampal Dentate Gyrus granular layer cells (DGgc) were studied in parallel. METHODS Firing frequency was recorded in patch-clamp configuration or by microelectrode arrays. A1R-expression was studied by scRT-PCR and semiquantitative PCR. RESULTS Most DGgc were inhibited through A1R, detected with scRT-PCR in 7 out of 10 PDZd2-positive DGgc; all HN were A1R negative. One HN out of 25 was inhibited by adenosine. The A1R mRNA level in the hippocampus was 6 times higher than in the caudal (posterior) hypothalamus. Response to adenosine was weaker in hypothalamic compared to hippocampal cultures. CONCLUSIONS Most HN are not inhibited by adenosine.
Collapse
Affiliation(s)
- Lea Wegmann
- Medical Faculty and University Hospital, Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Medical Faculty and University Hospital, Institute of Clinical Neurosciences and Medical Psychology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Helmut L Haas
- Medical Faculty and University Hospital, Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Olga A Sergeeva
- Medical Faculty and University Hospital, Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Medical Faculty and University Hospital, Institute of Clinical Neurosciences and Medical Psychology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
23
|
Golchin A, Shams F, Moradi F, Sadrabadi AE, Parviz S, Alipour S, Ranjbarvan P, Hemmati Y, Rahnama M, Rasmi Y, Aziz SGG. Single-cell Technology in Stem Cell Research. Curr Stem Cell Res Ther 2025; 20:9-32. [PMID: 38243989 DOI: 10.2174/011574888x265479231127065541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 01/22/2024]
Abstract
Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing on the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Moradi
- Department of Tissue Engineering, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Shima Parviz
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parviz Ranjbarvan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Hemmati
- Department of Prosthodontics, Dental Faculty, Urmia University of Medical Science, Urmia, Iran
| | - Maryam Rahnama
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
24
|
Menon V. Deconvolving Bulk Transcriptomics Samples to Obtain Cell Type Proportion Estimates. Methods Mol Biol 2025; 2880:309-318. [PMID: 39900766 DOI: 10.1007/978-1-0716-4276-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The brain, like many organs in the body, comprises an array of different cell types that act in concert to achieve its many functions. These cell types vary dramatically in molecular composition, morphology, spatial distribution, electrical activity, signaling, and association with sensory processing and behavior. As a result, a comprehensive investigation of molecular alterations in disease or perturbation studies needs to account for cell type heterogeneity in the brain. Bulk profiling of tissue is widely used in neuroscience, and is now a relatively mature field, with a range of experimental, technical, and computational approaches that are broadly and consistently used. One major question in bulk profiling, however, is the contribution of individual cell types to the overall bulk signature. Recently, advances in scale and sensitivity of single-cell methods have provided cell type-specific signatures in health and disease, offering a solution to the problem of inferring cell type contributions to bulk signatures. This is the main goal of bulk deconvolution, which aims to deconvolve cell type-specific signatures and proportions from bulk data, either de novo or using reference profiles obtained from single-cell data. Here, we present an overview of some basic principles of deconvolution, followed by a general workflow on applying deconvolution methods to bulk RNA-seq data in order to assess compositional differences in individual cell types that may be associated with experimental variable of interests.
Collapse
Affiliation(s)
- Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
25
|
Stangerup I, Georg B, Hannibal J. Prokineticin 2 protein is diurnally expressed in PER2-containing clock neurons in the mouse suprachiasmatic nucleus. Peptides 2025; 183:171339. [PMID: 39755259 DOI: 10.1016/j.peptides.2024.171339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also known as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent. Hence, data on PK2 protein expression in the SCN is lacking. In this study a thorough validation of a commercial PK2 antibody for immunohistochemistry (IHC) was performed followed by fluorescence IHC on SCN mouse brain sections at six consecutive ZTs over a 24-h cycle (12:12 light-dark, ZT0 =light ON whereas ZT12 =light OFF). Data were visualized and processed using confocal microscopy. Results showed that PK2 protein expression diurnally oscillates with calculated peak expression ZT5:40 ± 1:40 h. Opposite than described for PK2 mRNA, PK2 immunoreactivity was detectable at all times during the 24-h cycle. PK2 was primarily located in neurons of the shell compartment and > 80 % of these neurons co-expressed the core clock protein PER2. In conclusion, PK2 protein expression oscillates as the mRNA, supporting the suggested role of PK2 as a SCN molecule involved in circadian rhythm regulation.
Collapse
Affiliation(s)
- Ida Stangerup
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Birgitte Georg
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Liu X, Wang H, Gao J. scIALM: A method for sparse scRNA-seq expression matrix imputation using the Inexact Augmented Lagrange Multiplier with low error. Comput Struct Biotechnol J 2024; 23:549-558. [PMID: 38274995 PMCID: PMC10809077 DOI: 10.1016/j.csbj.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a high-throughput sequencing technology that quantifies gene expression profiles of specific cell populations at the single-cell level, providing a foundation for studying cellular heterogeneity and patient pathological characteristics. It is effective for developmental, fertility, and disease studies. However, the cell-gene expression matrix of single-cell sequencing data is often sparse and contains numerous zero values. Some of the zero values derive from noise, where dropout noise has a large impact on downstream analysis. In this paper, we propose a method named scIALM for imputation recovery of sparse single-cell RNA data expression matrices, which employs the Inexact Augmented Lagrange Multiplier method to use sparse but clean (accurate) data to recover unknown entries in the matrix. We perform experimental analysis on four datasets, calling the expression matrix after Quality Control (QC) as the original matrix, and comparing the performance of scIALM with six other methods using mean squared error (MSE), mean absolute error (MAE), Pearson correlation coefficient (PCC), and cosine similarity (CS). Our results demonstrate that scIALM accurately recovers the original data of the matrix with an error of 10e-4, and the mean value of the four metrics reaches 4.5072 (MSE), 0.765 (MAE), 0.8701 (PCC), 0.8896 (CS). In addition, at 10%-50% random masking noise, scIALM is the least sensitive to the masking ratio. For downstream analysis, this study uses adjusted rand index (ARI) and normalized mutual information (NMI) to evaluate the clustering effect, and the results are improved on three datasets containing real cluster labels.
Collapse
Affiliation(s)
- Xiaohong Liu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Han Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingyang Gao
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
27
|
Kosse C, Ivanov J, Knight Z, Pellegrino K, Friedman J. A subcortical feeding circuit linking an interoceptive node to jaw movement. Nature 2024; 636:151-161. [PMID: 39443799 PMCID: PMC11618074 DOI: 10.1038/s41586-024-08098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The brain processes an array of stimuli, enabling the selection of appropriate behavioural responses, but the neural pathways linking interoceptive inputs to outputs for feeding are poorly understood1-3. Here we delineate a subcortical circuit in which brain-derived neurotrophic factor (BDNF)-expressing neurons in the ventromedial hypothalamus (VMH) directly connect interoceptive inputs to motor centres, controlling food consumption and jaw movements. VMHBDNF neuron inhibition increases food intake by gating motor sequences of feeding through projections to premotor areas of the jaw. When food is unavailable, VMHBDNF inhibition elicits consummatory behaviours directed at inanimate objects such as wooden blocks, and inhibition of perimesencephalic trigeminal area (pMe5) projections evokes rhythmic jaw movements. The activity of these neurons is decreased during food consumption and increases when food is in proximity but not consumed. Activity is also increased in obese animals and after leptin treatment. VMHBDNF neurons receive monosynaptic inputs from both agouti-related peptide (AgRP) and proopiomelanocortin neurons in the arcuate nucleus (Arc), and constitutive VMHBDNF activation blocks the orexigenic effect of AgRP activation. These data indicate an Arc → VMHBDNF → pMe5 circuit that senses the energy state of an animal and regulates consummatory behaviours in a state-dependent manner.
Collapse
Affiliation(s)
- Christin Kosse
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Jessica Ivanov
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Zachary Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Kyle Pellegrino
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Jeffrey Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
28
|
Li D, Mei Q, Li G. scQA: A dual-perspective cell type identification model for single cell transcriptome data. Comput Struct Biotechnol J 2024; 23:520-536. [PMID: 38235363 PMCID: PMC10791572 DOI: 10.1016/j.csbj.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Single-cell RNA sequencing technologies have been pivotal in advancing the development of algorithms for clustering heterogeneous cell populations. Existing methods for utilizing scRNA-seq data to identify cell types tend to neglect the beneficial impact of dropout events and perform clustering focusing solely on quantitative perspective. Here, we introduce a novel method named scQA, notable for its ability to concurrently identify cell types and cell type-specific key genes from both qualitative and quantitative perspectives. In contrast to other methods, scQA not only identifies cell types but also extracts key genes associated with these cell types, enabling bidirectional clustering for scRNA-seq data. Through an iterative process, our approach aims to minimize the number of landmarks to approximately a dozen while maximizing the inclusion of quasi-trend-preserved genes with dropouts both qualitatively and quantitatively. It then clusters cells by employing an ingenious label propagation strategy, obviating the requirement for a predetermined number of cell types. Validated on 20 publicly available scRNA-seq datasets, scQA consistently outperforms other salient tools. Furthermore, we confirm the effectiveness and potential biological significance of the identified key genes through both external and internal validation. In conclusion, scQA emerges as a valuable tool for investigating cell heterogeneity due to its distinctive fusion of qualitative and quantitative facets, along with bidirectional clustering capabilities. Furthermore, it can be seamlessly integrated into border scRNA-seq analyses. The source codes are publicly available at https://github.com/LD-Lyndee/scQA.
Collapse
Affiliation(s)
- Di Li
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| | - Qinglin Mei
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Guojun Li
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
29
|
Shi J, Xiong H, Su J, Wang Q, Wang H, Yang C, Hu C, Cui Z, Liu L. Multiomics analyses reveal high yield-related genes in the hypothalamic-pituitary-ovarian/liver axis of chicken. Poult Sci 2024; 103:104276. [PMID: 39299017 PMCID: PMC11426133 DOI: 10.1016/j.psj.2024.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Egg production, regulated by multiple tissues, is among the most important economic traits in poultry. However, current research only focuses on the hypothalamic-pituitary-ovarian axis, ignoring the most important organ for substance metabolism in the body, the liver. Eggs are rich in lipids, proteins, and other nutrients, which are biosynthesized in the liver. Therefore, here the liver was included in the study of the hypothalamic-pituitary axis. This study used hypothalamus (HH_vs_LH), pituitary (HP_vs_LP), liver (HL_vs_LL), and ovary (HO_vs_LO) tissue samples from high- and low-laying Chengkou mountain chickens (CMC) for epihistological, transcriptome and metabolomic analyses aimed at improving the reproductive performance of CMC. The results showed that the liver of the high-laying group was yellowish, the cell boundary was clear, and the lipid droplets were evenly distributed. The ovaries of the high-laying group had a complete sequence of hierarchical follicles, which were rich in yolk. In contrast, the ovaries of the low-laying group were atrophic, except for a few small yellow follicles, and numerous primordial follicles that remained. The transcriptome sequences yielded 167.11 Gb of clean data, containing 28,715 genes. Furthermore, 285, 822, 787, and 1,183 differentially expressed genes (DEG) were identified in HH_vs_LH, HP_vs_LP, HL_vs_LL and HO_vs_LO and the DEGs significantly enriched 77, 163, 170, 171 pathways, respectively. Metabolome sequencing yielded 21,808 peaks containing 4,006 metabolites. The differential metabolite analysis yielded 343 and 682 significantly different metabolites (SDM) that significantly enriched 136 and 87 pathways in the liver and ovaries, respectively. A combined analysis of the transcriptome and metabolome of the liver and ovaries identified "CYP51A1-4α-carboxy-stigmasta7, 24(24(1))-dien-3β-ol" and "ACSS1B-estrone 3-sulfate" and other multiple gene-metabolite pairs. The DEGs in the hypothalamus and pituitary mainly enriched signaling transduction. In contrast, the DEGs and SDMs in the liver and ovaries mainly enriched the substance metabolism pathways: "gap junction", "extracellular matrix (ECM)-receptor interaction", "Steroid biosynthesis", and "Steroid hormone biosynthesis". These results suggest that the hypothalamic-pituitary axis may affect egg production mainly by regulating lipid metabolism in the liver and ovaries.
Collapse
Affiliation(s)
- Jun'an Shi
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Hanlin Xiong
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Junchao Su
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Qigui Wang
- ChongQing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Haiwei Wang
- ChongQing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chenming Hu
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Zhifu Cui
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Lingbin Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China.
| |
Collapse
|
30
|
Watteyne J, Chudinova A, Ripoll-Sánchez L, Schafer WR, Beets I. Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior. Genetics 2024; 228:iyae141. [PMID: 39344922 PMCID: PMC11538413 DOI: 10.1093/genetics/iyae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Neuropeptides are abundant signaling molecules that control neuronal activity and behavior in all animals. Owing in part to its well-defined and compact nervous system, Caenorhabditis elegans has been one of the primary model organisms used to investigate how neuropeptide signaling networks are organized and how these neurochemicals regulate behavior. We here review recent work that has expanded our understanding of the neuropeptidergic signaling network in C. elegans by mapping the evolutionary conservation, the molecular expression, the receptor-ligand interactions, and the system-wide organization of neuropeptide pathways in the C. elegans nervous system. We also describe general insights into neuropeptidergic circuit motifs and the spatiotemporal range of peptidergic transmission that have emerged from in vivo studies on neuropeptide signaling. With efforts ongoing to chart peptide signaling networks in other organisms, the C. elegans neuropeptidergic connectome can serve as a prototype to further understand the organization and the signaling dynamics of these networks at organismal level.
Collapse
Affiliation(s)
- Jan Watteyne
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| | | | - Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Psychiatry, Cambridge University, Cambridge CB2 0SZ, UK
| | - William R Schafer
- Department of Biology, University of Leuven, Leuven 3000, Belgium
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Isabel Beets
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
31
|
Lee TH, Nicolas JC, Quarta C. Molecular and functional mapping of the neuroendocrine hypothalamus: a new era begins. J Endocrinol Invest 2024; 47:2627-2648. [PMID: 38878127 DOI: 10.1007/s40618-024-02411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Recent advances in neuroscience tools for single-cell molecular profiling of brain neurons have revealed an enormous spectrum of neuronal subpopulations within the neuroendocrine hypothalamus, highlighting the remarkable molecular and cellular heterogeneity of this brain area. RATIONALE Neuronal diversity in the hypothalamus reflects the high functional plasticity of this brain area, where multiple neuronal populations flexibly integrate a variety of physiological outputs, including energy balance, stress and fertility, through crosstalk mechanisms with peripheral hormones. Intrinsic functional heterogeneity is also observed within classically 'defined' subpopulations of neuroendocrine neurons, including subtypes with distinct neurochemical signatures, spatial organisation and responsiveness to hormonal cues. AIM The aim of this review is to critically evaluate past and current research on the functional diversity of hypothalamic neuroendocrine neurons and their plasticity. It focuses on how this neuronal plasticity in this brain area relates to metabolic control, feeding regulation and interactions with stress and fertility-related neural circuits. CONCLUSION Our analysis provides an original framework for improving our understanding of the hypothalamic regulation of hormone function and the development of neuroendocrine diseases.
Collapse
Affiliation(s)
- T H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - J-C Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - C Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
32
|
Sokolowski DJ, Hou H, Yuki KE, Roy A, Chan C, Choi W, Faykoo-Martinez M, Hudson M, Corre C, Uusküla-Reimand L, Goldenberg A, Palmert MR, Wilson MD. Age, sex, and cell type-resolved hypothalamic gene expression across the pubertal transition in mice. Biol Sex Differ 2024; 15:83. [PMID: 39449090 PMCID: PMC11515584 DOI: 10.1186/s13293-024-00661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The hypothalamus plays a central role in regulating puberty. However, our knowledge of the postnatal gene regulatory networks that control the pubertal transition in males and females is incomplete. Here, we investigate the age-, sex- and cell-type-specific gene regulation in the hypothalamus across the pubertal transition. METHODS We used RNA-seq to profile hypothalamic gene expression in male and female mice at five time points spanning the onset of puberty (postnatal days (PD) 12, 22, 27, 32, and 37). By combining this data with hypothalamic single nuclei RNA-seq data from pre- and postpubertal mice, we assigned gene expression changes to their most likely cell types of origin. In our colony, pubertal onset occurs earlier in male mice, allowing us to focus on genes whose expression is dynamic across ages and offset between sexes, and to explore the bases of sex effects. RESULTS Our age-by-sex pattern of expression enriched for biological pathways involved hormone production, neuronal activation, and glial maturation. Additionally, we inferred a robust expansion of oligodendrocytes precursor cells into mature oligodendrocytes spanning the prepubertal (PD12) to peri-pubertal (PD27) timepoints. Using spatial transcriptomic data from postpubertal mice, we observed the lateral hypothalamic area and zona incerta were the most oligodendrocyte-rich regions and that these cells expressed genes known to be involved in pubertal regulation. CONCLUSION Together, by incorporating multiple biological timepoints and using sex as a variable, we identified gene and cell-type changes that may participate in orchestrating the pubertal transition and provided a resource for future studies of postnatal hypothalamic gene regulation.
Collapse
Affiliation(s)
- Dustin J Sokolowski
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Huayun Hou
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Kyoko E Yuki
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Anna Roy
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Cadia Chan
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Wendy Choi
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mariela Faykoo-Martinez
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Matt Hudson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christina Corre
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | | | - Anna Goldenberg
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
- CIFAR, Toronto, ON, Canada
| | - Mark R Palmert
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Pediatrics and Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Zupančič M, Keimpema E, Tretiakov EO, Eder SJ, Lev I, Englmaier L, Bhandari P, Fietz SA, Härtig W, Renaux E, Villunger A, Hökfelt T, Zimmer M, Clotman F, Harkany T. Concerted transcriptional regulation of the morphogenesis of hypothalamic neurons by ONECUT3. Nat Commun 2024; 15:8631. [PMID: 39366958 PMCID: PMC11452682 DOI: 10.1038/s41467-024-52762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Acquisition of specialized cellular features is controlled by the ordered expression of transcription factors (TFs) along differentiation trajectories. Here, we find a member of the Onecut TF family, ONECUT3, expressed in postmitotic neurons that leave their Ascl1+/Onecut1/2+ proliferative domain in the vertebrate hypothalamus to instruct neuronal differentiation. We combined single-cell RNA-seq and gain-of-function experiments for gene network reconstruction to show that ONECUT3 affects the polarization and morphogenesis of both hypothalamic GABA-derived dopamine and thyrotropin-releasing hormone (TRH)+ glutamate neurons through neuron navigator-2 (NAV2). In vivo, siRNA-mediated knockdown of ONECUT3 in neonatal mice reduced NAV2 mRNA, as well as neurite complexity in Onecut3-containing neurons, while genetic deletion of Onecut3/ceh-48 in C. elegans impaired neurocircuit wiring, and sensory discrimination-based behaviors. Thus, ONECUT3, conserved across neuronal subtypes and many species, underpins the polarization and morphological plasticity of phenotypically distinct neurons that descend from a common pool of Ascl1+ progenitors in the hypothalamus.
Collapse
Affiliation(s)
- Maja Zupančič
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stephanie J Eder
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Itamar Lev
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Pradeep Bhandari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Estelle Renaux
- Animal Molecular and Cellular Biology, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Frédéric Clotman
- Animal Molecular and Cellular Biology, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
34
|
Bai L, Ji B, Wang S. SAE-Impute: imputation for single-cell data via subspace regression and auto-encoders. BMC Bioinformatics 2024; 25:317. [PMID: 39354334 PMCID: PMC11443887 DOI: 10.1186/s12859-024-05944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) technology has emerged as a crucial tool for studying cellular heterogeneity. However, dropouts are inherent to the sequencing process, known as dropout events, posing challenges in downstream analysis and interpretation. Imputing dropout data becomes a critical concern in scRNA-seq data analysis. Present imputation methods predominantly rely on statistical or machine learning approaches, often overlooking inter-sample correlations. RESULTS To address this limitation, We introduced SAE-Impute, a new computational method for imputing single-cell data by combining subspace regression and auto-encoders for enhancing the accuracy and reliability of the imputation process. Specifically, SAE-Impute assesses sample correlations via subspace regression, predicts potential dropout values, and then leverages these predictions within an autoencoder framework for interpolation. To validate the performance of SAE-Impute, we systematically conducted experiments on both simulated and real scRNA-seq datasets. These results highlight that SAE-Impute effectively reduces false negative signals in single-cell data and enhances the retrieval of dropout values, gene-gene and cell-cell correlations. Finally, We also conducted several downstream analyses on the imputed single-cell RNA sequencing (scRNA-seq) data, including the identification of differential gene expression, cell clustering and visualization, and cell trajectory construction. CONCLUSIONS These results once again demonstrate that SAE-Impute is able to effectively reduce the droupouts in single-cell dataset, thereby improving the functional interpretability of the data.
Collapse
Affiliation(s)
- Liang Bai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Boya Ji
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| | - Shulin Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
35
|
Pfau SJ, Langen UH, Fisher TM, Prakash I, Nagpurwala F, Lozoya RA, Lee WCA, Wu Z, Gu C. Characteristics of blood-brain barrier heterogeneity between brain regions revealed by profiling vascular and perivascular cells. Nat Neurosci 2024; 27:1892-1903. [PMID: 39210068 PMCID: PMC11452347 DOI: 10.1038/s41593-024-01743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The blood-brain barrier (BBB) protects the brain and maintains neuronal homeostasis. BBB properties can vary between brain regions to support regional functions, yet how BBB heterogeneity occurs is poorly understood. Here, we used single-cell and spatial transcriptomics to compare the mouse median eminence, one of the circumventricular organs that has naturally leaky blood vessels, with the cortex. We identified hundreds of molecular differences in endothelial cells (ECs) and perivascular cells, including astrocytes, pericytes and fibroblasts. Using electron microscopy and an aqueous-based tissue-clearing method, we revealed distinct anatomical specializations and interaction patterns of ECs and perivascular cells in these regions. Finally, we identified candidate regionally enriched EC-perivascular cell ligand-receptor pairs. Our results indicate that both molecular specializations in ECs and unique EC-perivascular cell interactions contribute to BBB functional heterogeneity. This platform can be used to investigate BBB heterogeneity in other regions and may facilitate the development of central nervous system region-specific therapeutics.
Collapse
Affiliation(s)
- Sarah J Pfau
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Urs H Langen
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Theodore M Fisher
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Indumathi Prakash
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Faheem Nagpurwala
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ricardo A Lozoya
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wei-Chung Allen Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Zhuhao Wu
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chenghua Gu
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Singh O, Basu S, Srivastava A, Pradhan DR, Dandapat P, Bathrachalam C, Singru PS. Cocaine- and Amphetamine-Regulated Transcript Peptide in the Central Nervous System of the Gecko, Hemidactylus leschenaultii: Molecular Characterization, Neuroanatomical Organization, and Regulation by Neuropeptide Y. J Comp Neurol 2024; 532:e25672. [PMID: 39380327 DOI: 10.1002/cne.25672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
Neuropeptide cocaine- and amphetamine-regulated transcript (CART) is widely expressed in the brains of teleosts, amphibians, birds, and mammals and has emerged as a conserved regulator of energy balance across these vertebrate phyla. However, as yet, there is no information on CART in the reptilian brain. We characterized the cDNA encoding CART and mapped CART-containing elements in the brain of gecko, Hemidactylus leschenaultii (hl) using a specific anti-CART antiserum. We report a 683-bp hlcart transcript containing a 336-bp open reading frame, which encodes a putative 111-amino acid hl-preproCART. The 89-amino acid hl-proCART generated from hl-preproCART produced two putative bioactive hl-CART-peptides. These bioactive CART-peptides were > 93% similar with those in rats/humans. Although reverse transcription-polymerase chain reaction (RT-PCR) detected hlcart-transcript in the brain, CART-containing neurons/fibers were widely distributed in the telencephalon, diencephalon, mesencephalon, rhombencephalon, spinal cord, and retina. The mitral cells in olfactory bulb, neurons in the paraventricular, periventricular, arcuate (Arc), Edinger-Westphal, and brainstem nuclei were intensely CART-positive. In view of antagonistic roles of neuropeptide Y (NPY) and CART in energy balance in the framework of mammalian hypothalamus, we probed CART-NPY interaction in the hypothalamus of H. leschenaultii. Double immunofluorescence showed a dense NPY-innervation of Arc CART neurons. Ex vivo hypothalamic slices treated with NPY/NPY-Y1-receptor agonist significantly reduced hlcart-mRNA levels in the Arc-containing tissues and CART-ir in the dorsal-Arc. However, CART-ir in ventral-Arc was unaffected. NPY via Y1-receptors may regulate energy balance by inhibiting dArc CART neurons. This study on CART in a reptilian brain fills the current void in literature and underscores the conserved feature of the neuropeptide across the entire vertebrate phyla.
Collapse
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Abhinav Srivastava
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Dipti R Pradhan
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Pallabi Dandapat
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Chandramohan Bathrachalam
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| |
Collapse
|
37
|
Liu T, Jia C, Bi Y, Guo X, Zou Q, Li F. scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks. Brief Bioinform 2024; 25:bbae486. [PMID: 39373051 PMCID: PMC11456827 DOI: 10.1093/bib/bbae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024] Open
Abstract
Single-cell ribonucleic acid sequencing (scRNA-seq) technology can be used to perform high-resolution analysis of the transcriptomes of individual cells. Therefore, its application has gained popularity for accurately analyzing the ever-increasing content of heterogeneous single-cell datasets. Central to interpreting scRNA-seq data is the clustering of cells to decipher transcriptomic diversity and infer cell behavior patterns. However, its complexity necessitates the application of advanced methodologies capable of resolving the inherent heterogeneity and limited gene expression characteristics of single-cell data. Herein, we introduce a novel deep learning-based algorithm for single-cell clustering, designated scDFN, which can significantly enhance the clustering of scRNA-seq data through a fusion network strategy. The scDFN algorithm applies a dual mechanism involving an autoencoder to extract attribute information and an improved graph autoencoder to capture topological nuances, integrated via a cross-network information fusion mechanism complemented by a triple self-supervision strategy. This fusion is optimized through a holistic consideration of four distinct loss functions. A comparative analysis with five leading scRNA-seq clustering methodologies across multiple datasets revealed the superiority of scDFN, as determined by better the Normalized Mutual Information (NMI) and the Adjusted Rand Index (ARI) metrics. Additionally, scDFN demonstrated robust multi-cluster dataset performance and exceptional resilience to batch effects. Ablation studies highlighted the key roles of the autoencoder and the improved graph autoencoder components, along with the critical contribution of the four joint loss functions to the overall efficacy of the algorithm. Through these advancements, scDFN set a new benchmark in single-cell clustering and can be used as an effective tool for the nuanced analysis of single-cell transcriptomics.
Collapse
Affiliation(s)
- Tianxiang Liu
- School of Science, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Yue Bi
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Xudong Guo
- College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi,China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China
| | - Fuyi Li
- College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi,China
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, 4 North Terrace, SA 5000, Australia
| |
Collapse
|
38
|
Liu Y, Wang X, Li G, Chen S, Jia H, Dai J, He D. Investigating the Impact of Fasting and Refeeding on Blood Biochemical Indicators and Transcriptional Profiles in the Hypothalamus and Subcutaneous Adipose Tissue in Geese. Animals (Basel) 2024; 14:2746. [PMID: 39335335 PMCID: PMC11428393 DOI: 10.3390/ani14182746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Fasting and refeeding systems can cause significant short-term fluctuations in nutrient and energy levels, triggering adaptive physiological responses in animals. This study examines the effects of fasting and refeeding on blood biochemical indicators and transcriptional profiles in the hypothalamus and subcutaneous adipose tissue of geese. Biochemical assays reveal that fasting significantly increases levels of free fatty acids and glucagon, while reducing concentrations of triglycerides, leptin, and insulin. Transcriptomic analyses identify a complex transcriptional response in both the hypothalamus and subcutaneous adipose tissue, affecting several metabolic pathways and key genes associated with feed intake and energy metabolism. In subcutaneous adipose tissue, fasting downregulates genes involved in fatty acid synthesis (LPL, SCD, and ACSL1) and upregulates PLIN2, a gene promoting lipid droplet degradation. Fasting affects a variety of metabolic pathways and critical genes in the hypothalamus, including Apelin, insulin, and mTOR signaling pathways. After fasting, the mRNA expression of NOG, GABRD, and IGFBP-1 genes in the hypothalamus are significantly upregulated, while proopiomelanocortin (POMC) gene expression is markedly downregulated. This study highlights the intricate biological responses to nutritional changes in geese, which adds to our understanding of energy balance and metabolic regulation in avian species.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xianze Wang
- Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Guangquan Li
- Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Shufang Chen
- Ningbo Academy of Agricultural Sciences, Ningbo 315101, China
| | - Huiyan Jia
- Ningbo Academy of Agricultural Sciences, Ningbo 315101, China
| | - Jiuli Dai
- Ningbo Academy of Agricultural Sciences, Ningbo 315101, China
| | - Daqian He
- Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| |
Collapse
|
39
|
Lou Z, Wei X, Hu Y, Hu S, Wu Y, Tian Z. Clustering scRNA-seq data with the cross-view collaborative information fusion strategy. Brief Bioinform 2024; 25:bbae511. [PMID: 39402696 PMCID: PMC11473192 DOI: 10.1093/bib/bbae511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology has revolutionized biological research by enabling high-throughput, cellular-resolution gene expression profiling. A critical step in scRNA-seq data analysis is cell clustering, which supports downstream analyses. However, the high-dimensional and sparse nature of scRNA-seq data poses significant challenges to existing clustering methods. Furthermore, integrating gene expression information with potential cell structure data remains largely unexplored. Here, we present scCFIB, a novel information bottleneck (IB)-based clustering algorithm that leverages the power of IB for efficient processing of high-dimensional sparse data and incorporates a cross-view fusion strategy to achieve robust cell clustering. scCFIB constructs a multi-feature space by establishing two distinct views from the original features. We then formulate the cell clustering problem as a target loss function within the IB framework, employing a collaborative information fusion strategy. To further optimize scCFIB's performance, we introduce a novel sequential optimization approach through an iterative process. Benchmarking against established methods on diverse scRNA-seq datasets demonstrates that scCFIB achieves superior performance in scRNA-seq data clustering tasks. Availability: the source code is publicly available on GitHub: https://github.com/weixiaojiao/scCFIB.
Collapse
Affiliation(s)
- Zhengzheng Lou
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Xiaojiao Wei
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Yuanhao Hu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Shizhe Hu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Yucong Wu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| |
Collapse
|
40
|
Zhang Y, Kang HR, Jun Y, Kang H, Bang G, Ma R, Ju S, Yoon DE, Kim Y, Kim K, Kim JY, Han K. Neurodevelopmental disorder-associated CYFIP2 regulates membraneless organelles and eIF2α phosphorylation via protein interactors and actin cytoskeleton. Hum Mol Genet 2024; 33:1671-1687. [PMID: 38981622 DOI: 10.1093/hmg/ddae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
De novo variants in the Cytoplasmic FMR1-interacting protein 2 (CYFIP2) have been repeatedly associated with neurodevelopmental disorders and epilepsy, underscoring its critical role in brain development and function. While CYFIP2's role in regulating actin polymerization as part of the WAVE regulatory complex (WRC) is well-established, its additional molecular functions remain relatively unexplored. In this study, we performed unbiased quantitative proteomic analysis, revealing 278 differentially expressed proteins (DEPs) in the forebrain of Cyfip2 knock-out embryonic mice compared to wild-type mice. Unexpectedly, these DEPs, in conjunction with previously identified CYFIP2 brain interactors, included not only other WRC components but also numerous proteins associated with membraneless organelles (MLOs) involved in mRNA processing and translation within cells, including the nucleolus, stress granules, and processing bodies. Additionally, single-cell transcriptomic analysis of the Cyfip2 knock-out forebrain revealed gene expression changes linked to cellular stress responses and MLOs. We also observed morphological changes in MLOs in Cyfip2 knock-out brains and CYFIP2 knock-down cells under basal and stress conditions. Lastly, we demonstrated that CYFIP2 knock-down in cells, potentially through WRC-dependent actin regulation, suppressed the phosphorylation levels of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α), thereby enhancing protein synthesis. These results suggest a physical and functional connection between CYFIP2 and various MLO proteins and also extend CYFIP2's role within the WRC from actin regulation to influencing eIF2α phosphorylation and protein synthesis. With these dual functions, CYFIP2 may fine-tune the balance between MLO formation/dynamics and protein synthesis, a crucial aspect of proper mRNA processing and translation.
Collapse
Affiliation(s)
- Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yukyung Jun
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Geul Bang
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungjin Ju
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
41
|
Leng D, Zeng B, Wang T, Chen BL, Li DY, Li ZJ. Single nucleus/cell RNA-seq of the chicken hypothalamic-pituitary-ovarian axis offers new insights into the molecular regulatory mechanisms of ovarian development. Zool Res 2024; 45:1088-1107. [PMID: 39245652 PMCID: PMC11491784 DOI: 10.24272/j.issn.2095-8137.2024.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-ovarian (HPO) axis represents a central neuroendocrine network essential for reproductive function. Despite its critical role, the intrinsic heterogeneity within the HPO axis across vertebrates and the complex intercellular interactions remain poorly defined. This study provides the first comprehensive, unbiased, cell type-specific molecular profiling of all three components of the HPO axis in adult Lohmann layers and Liangshan Yanying chickens. Within the hypothalamus, pituitary, and ovary, seven, 12, and 13 distinct cell types were identified, respectively. Results indicated that the pituitary adenylate cyclase activating polypeptide (PACAP), follicle-stimulating hormone (FSH), and prolactin (PRL) signaling pathways may modulate the synthesis and secretion of gonadotropin-releasing hormone (GnRH), FSH, and luteinizing hormone (LH) within the hypothalamus and pituitary. In the ovary, interactions between granulosa cells and oocytes involved the KIT, CD99, LIFR, FN1, and ANGPTL signaling pathways, which collectively regulate follicular maturation. The SEMA4 signaling pathway emerged as a critical mediator across all three tissues of the HPO axis. Additionally, gene expression analysis revealed that relaxin 3 (RLN3), gastrin-releasing peptide (GRP), and cocaine- and amphetamine regulated transcripts (CART, also known as CARTPT) may function as novel endocrine hormones, influencing the HPO axis through autocrine, paracrine, and endocrine pathways. Comparative analyses between Lohmann layers and Liangshan Yanying chickens demonstrated higher expression levels of GRP, RLN3, CARTPT, LHCGR, FSHR, and GRPR in the ovaries of Lohmann layers, potentially contributing to their superior reproductive performance. In conclusion, this study provides a detailed molecular characterization of the HPO axis, offering novel insights into the regulatory mechanisms underlying reproductive biology.
Collapse
Affiliation(s)
- Dong Leng
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Bin-Long Chen
- College of Animal Science, Xichang University, Xichang, Sichuan 615000, China. E-mail:
| | - Di-Yan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China. E-mail:
| | - Zhuan-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China. E-mail:
| |
Collapse
|
42
|
Goggin SM, Zunder ER. ESCHR: a hyperparameter-randomized ensemble approach for robust clustering across diverse datasets. Genome Biol 2024; 25:242. [PMID: 39285487 PMCID: PMC11406744 DOI: 10.1186/s13059-024-03386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Clustering is widely used for single-cell analysis, but current methods are limited in accuracy, robustness, ease of use, and interpretability. To address these limitations, we developed an ensemble clustering method that outperforms other methods at hard clustering without the need for hyperparameter tuning. It also performs soft clustering to characterize continuum-like regions and quantify clustering uncertainty, demonstrated here by mapping the connectivity and intermediate transitions between MNIST handwritten digits and between hypothalamic tanycyte subpopulations. This hyperparameter-randomized ensemble approach improves the accuracy, robustness, ease of use, and interpretability of single-cell clustering, and may prove useful in other fields as well.
Collapse
Affiliation(s)
- Sarah M Goggin
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, 22902, USA
| | - Eli R Zunder
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, 22902, USA.
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22902, USA.
| |
Collapse
|
43
|
Kim S, Badhiwala KN, Duret G, Robinson JT. Phototaxis is a satiety-dependent behavioral sequence in Hydra vulgaris. J Exp Biol 2024; 227:jeb247503. [PMID: 39155640 PMCID: PMC11449437 DOI: 10.1242/jeb.247503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Understanding how internal states such as satiety are connected to animal behavior is a fundamental question in neuroscience. Hydra vulgaris, a freshwater cnidarian with only 12 neuronal cell types, serves as a tractable model system for studying state-dependent behaviors. We found that starved hydras consistently move towards light, while fed hydras do not. By modeling this behavior as a set of three sequences of head orientation, jump distance and jump rate, we demonstrate that the satiety state only affects the rate of the animal jumping to a new position, while the orientation and jump distance are unaffected. These findings yield insights into how internal states in a simple organism, Hydra, affect specific elements of a behavior, and offer general principles for studying the relationship between state-dependent behaviors and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Soonyoung Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | | | - Guillaume Duret
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
44
|
Xu Y, Wang S, Feng Q, Xia J, Li Y, Li HD, Wang J. scCAD: Cluster decomposition-based anomaly detection for rare cell identification in single-cell expression data. Nat Commun 2024; 15:7561. [PMID: 39215003 PMCID: PMC11364754 DOI: 10.1038/s41467-024-51891-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies have become essential tools for characterizing cellular landscapes within complex tissues. Large-scale single-cell transcriptomics holds great potential for identifying rare cell types critical to the pathogenesis of diseases and biological processes. Existing methods for identifying rare cell types often rely on one-time clustering using partial or global gene expression. However, these rare cell types may be overlooked during the clustering phase, posing challenges for their accurate identification. In this paper, we propose a Cluster decomposition-based Anomaly Detection method (scCAD), which iteratively decomposes clusters based on the most differential signals in each cluster to effectively separate rare cell types and achieve accurate identification. We benchmark scCAD on 25 real-world scRNA-seq datasets, demonstrating its superior performance compared to 10 state-of-the-art methods. In-depth case studies across diverse datasets, including mouse airway, brain, intestine, human pancreas, immunology data, and clear cell renal cell carcinoma, showcase scCAD's efficiency in identifying rare cell types in complex biological scenarios. Furthermore, scCAD can correct the annotation of rare cell types and identify immune cell subtypes associated with disease, thereby offering valuable insights into disease progression.
Collapse
Affiliation(s)
- Yunpei Xu
- School of Computer Science and Engineering, Central South University, Changsha, China
- Xiangjiang Laboratory, Changsha, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China
| | - Shaokai Wang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Qilong Feng
- School of Computer Science and Engineering, Central South University, Changsha, China
- Xiangjiang Laboratory, Changsha, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China
| | - Jiazhi Xia
- School of Computer Science and Engineering, Central South University, Changsha, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Hong-Dong Li
- School of Computer Science and Engineering, Central South University, Changsha, China.
- Xiangjiang Laboratory, Changsha, China.
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China.
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China.
- Xiangjiang Laboratory, Changsha, China.
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China.
| |
Collapse
|
45
|
Butts JC, Wu SR, Durham MA, Dhindsa RS, Revelli JP, Ljungberg MC, Saulnier O, McLaren ME, Taylor MD, Zoghbi HY. A single-cell transcriptomic map of the developing Atoh1 lineage identifies neural fate decisions and neuronal diversity in the hindbrain. Dev Cell 2024; 59:2171-2188.e7. [PMID: 39106860 DOI: 10.1016/j.devcel.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024]
Abstract
Proneural transcription factors establish molecular cascades to orchestrate neuronal diversity. One such transcription factor, Atonal homolog 1 (Atoh1), gives rise to cerebellar excitatory neurons and over 30 distinct nuclei in the brainstem critical for hearing, breathing, and balance. Although Atoh1 lineage neurons have been qualitatively described, the transcriptional programs that drive their fate decisions and the full extent of their diversity remain unknown. Here, we analyzed single-cell RNA sequencing and ATOH1 DNA binding in Atoh1 lineage neurons of the developing mouse hindbrain. This high-resolution dataset identified markers for specific brainstem nuclei and demonstrated that transcriptionally heterogeneous progenitors require ATOH1 for proper migration. Moreover, we identified a sizable population of proliferating unipolar brush cell progenitors in the mouse Atoh1 lineage, previously described in humans as the origin of one medulloblastoma subtype. Collectively, our data provide insights into the developing mouse hindbrain and markers for functional assessment of understudied neuronal populations.
Collapse
Affiliation(s)
- Jessica C Butts
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| | - Sih-Rong Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark A Durham
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan S Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Pierre Revelli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Genomics and Development of Childhood Cancers, Institut Curie, PSL University, 75005 Paris, France; INSERM U830, Cancer Heterogeneity Instability and Plasticity, Institut Curie, PSL University, 75005 Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | - Madison E McLaren
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, Department of Laboratory Medicine and Pathobiology, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Brunner M, Lopez-Rodriguez D, Estrada-Meza J, Dali R, Rohrbach A, Deglise T, Messina A, Thorens B, Santoni F, Langlet F. Fasting induces metabolic switches and spatial redistributions of lipid processing and neuronal interactions in tanycytes. Nat Commun 2024; 15:6604. [PMID: 39098920 PMCID: PMC11298547 DOI: 10.1038/s41467-024-50913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
The ependyma lining the third ventricle (3V) in the mediobasal hypothalamus plays a crucial role in energy balance and glucose homeostasis. It is characterized by a high functional heterogeneity and plasticity, but the underlying molecular mechanisms governing its features are not fully understood. Here, 5481 hypothalamic ependymocytes were cataloged using FACS-assisted scRNAseq from fed, 12h-fasted, and 24h-fasted adult male mice. With standard clustering analysis, typical ependymal cells and β2-tanycytes appear sharply defined, but other subpopulations, β1- and α-tanycytes, display fuzzy boundaries with few or no specific markers. Pseudospatial approaches, based on the 3V neuroanatomical distribution, enable the identification of specific versus shared tanycyte markers and subgroup-specific versus general tanycyte functions. We show that fasting dynamically shifts gene expression patterns along the 3V, leading to a spatial redistribution of cell type-specific responses. Altogether, we show that changes in energy status induce metabolic and functional switches in tanycyte subpopulations, providing insights into molecular and functional diversity and plasticity within the tanycyte population.
Collapse
Affiliation(s)
- Maxime Brunner
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - David Lopez-Rodriguez
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Judith Estrada-Meza
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rafik Dali
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Rohrbach
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tamara Deglise
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Institute for Genetic and Biomedical Research (IRGB) - CNR, Monserrato, Italy.
| | - Fanny Langlet
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
47
|
Liu Y, Wang Y, Zhao ZD, Xie G, Zhang C, Chen R, Zhang Y. A subset of dopamine receptor-expressing neurons in the nucleus accumbens controls feeding and energy homeostasis. Nat Metab 2024; 6:1616-1631. [PMID: 39147933 PMCID: PMC11349581 DOI: 10.1038/s42255-024-01100-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Orchestrating complex behaviors, such as approaching and consuming food, is critical for survival. In addition to hypothalamus neuronal circuits, the nucleus accumbens (NAc) also controls appetite and satiety. However, specific neuronal subtypes of the NAc that are involved and how the humoral and neuronal signals coordinate to regulate feeding remain incompletely understood. Here we decipher the spatial diversity of neuron subtypes of the NAc shell (NAcSh) and define a dopamine receptor D1-expressing and Serpinb2-expressing subtype controlling food consumption in male mice. Chemogenetics and optogenetics-mediated regulation of Serpinb2+ neurons bidirectionally regulate food seeking and consumption specifically. Circuitry stimulation reveals that the NAcShSerpinb2→LHLepR projection controls refeeding and can overcome leptin-mediated feeding suppression. Furthermore, NAcSh Serpinb2+ neuron ablation reduces food intake and upregulates energy expenditure, resulting in reduced bodyweight gain. Our study reveals a neural circuit consisting of a molecularly distinct neuronal subtype that bidirectionally regulates energy homeostasis, providing a potential therapeutic target for eating disorders.
Collapse
Affiliation(s)
- Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ying Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Zheng-Dong Zhao
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Guoguang Xie
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
48
|
Schäfer F, Tomar A, Sato S, Teperino R, Imhof A, Lahiri S. Enhanced In Situ Spatial Proteomics by Effective Combination of MALDI Imaging and LC-MS/MS. Mol Cell Proteomics 2024; 23:100811. [PMID: 38996918 PMCID: PMC11345593 DOI: 10.1016/j.mcpro.2024.100811] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Highly specialized cells are fundamental for the proper functioning of complex organs. Variations in cell-type-specific gene expression and protein composition have been linked to a variety of diseases. Investigation of the distinctive molecular makeup of these cells within tissues is therefore critical in biomedical research. Although several technologies have emerged as valuable tools to address this cellular heterogeneity, most workflows lack sufficient in situ resolution and are associated with high costs and extremely long analysis times. Here, we present a combination of experimental and computational approaches that allows a more comprehensive investigation of molecular heterogeneity within tissues than by either shotgun LC-MS/MS or MALDI imaging alone. We applied our pipeline to the mouse brain, which contains a wide variety of cell types that not only perform unique functions but also exhibit varying sensitivities to insults. We explored the distinct neuronal populations within the hippocampus, a brain region crucial for learning and memory that is involved in various neurological disorders. As an example, we identified the groups of proteins distinguishing the neuronal populations of the dentate gyrus (DG) and the cornu ammonis (CA) in the same brain section. Most of the annotated proteins matched the regional enrichment of their transcripts, thereby validating the method. As the method is highly reproducible, the identification of individual masses through the combination of MALDI-IMS and LC-MS/MS methods can be used for the much faster and more precise interpretation of MALDI-IMS measurements only. This greatly speeds up spatial proteomic analyses and allows the detection of local protein variations within the same population of cells. The method's general applicability has the potential to be used to investigate different biological conditions and tissues and a much higher throughput than other techniques making it a promising approach for clinical routine applications.
Collapse
Affiliation(s)
- Frederike Schäfer
- Faculty of Medicine, Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians Universität München, Munich, Germany; Protein Analysis Unit, Faculty of Medicine, Biomedical Center Munich, Ludwig-Maximilians Universität München, Munich, Germany; Institute for Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Environmental Epigenetics Group, German Center for Diabetes Research (DZD), Munich, Germany
| | - Archana Tomar
- Institute for Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Environmental Epigenetics Group, German Center for Diabetes Research (DZD), Munich, Germany
| | - Shogo Sato
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Raffaele Teperino
- Institute for Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Environmental Epigenetics Group, German Center for Diabetes Research (DZD), Munich, Germany
| | - Axel Imhof
- Faculty of Medicine, Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians Universität München, Munich, Germany; Protein Analysis Unit, Faculty of Medicine, Biomedical Center Munich, Ludwig-Maximilians Universität München, Munich, Germany.
| | - Shibojyoti Lahiri
- Faculty of Medicine, Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians Universität München, Munich, Germany; Protein Analysis Unit, Faculty of Medicine, Biomedical Center Munich, Ludwig-Maximilians Universität München, Munich, Germany.
| |
Collapse
|
49
|
Grobecker P, Sakoparnig T, van Nimwegen E. Identifying cell states in single-cell RNA-seq data at statistically maximal resolution. PLoS Comput Biol 2024; 20:e1012224. [PMID: 38995959 PMCID: PMC11364423 DOI: 10.1371/journal.pcbi.1012224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/30/2024] [Accepted: 06/04/2024] [Indexed: 07/14/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has become a popular experimental method to study variation of gene expression within a population of cells. However, obtaining an accurate picture of the diversity of distinct gene expression states that are present in a given dataset is highly challenging because of the sparsity of the scRNA-seq data and its inhomogeneous measurement noise properties. Although a vast number of different methods is applied in the literature for clustering cells into subsets with 'similar' expression profiles, these methods generally lack rigorously specified objectives, involve multiple complex layers of normalization, filtering, feature selection, dimensionality-reduction, employ ad hoc measures of distance or similarity between cells, often ignore the known measurement noise properties of scRNA-seq measurements, and include a large number of tunable parameters. Consequently, it is virtually impossible to assign concrete biophysical meaning to the clusterings that result from these methods. Here we address the following problem: Given raw unique molecule identifier (UMI) counts of an scRNA-seq dataset, partition the cells into subsets such that the gene expression states of the cells in each subset are statistically indistinguishable, and each subset corresponds to a distinct gene expression state. That is, we aim to partition cells so as to maximally reduce the complexity of the dataset without removing any of its meaningful structure. We show that, given the known measurement noise structure of scRNA-seq data, this problem is mathematically well-defined and derive its unique solution from first principles. We have implemented this solution in a tool called Cellstates which operates directly on the raw data and automatically determines the optimal partition and cluster number, with zero tunable parameters. We show that, on synthetic datasets, Cellstates almost perfectly recovers optimal partitions. On real data, Cellstates robustly identifies subtle substructure within groups of cells that are traditionally annotated as a common cell type. Moreover, we show that the diversity of gene expression states that Cellstates identifies systematically depends on the tissue of origin and not on technical features of the experiments such as the total number of cells and total UMI count per cell. In addition to the Cellstates tool we also provide a small toolbox of software to place the identified cellstates into a hierarchical tree of higher-order clusters, to identify the most important differentially expressed genes at each branch of this hierarchy, and to visualize these results.
Collapse
Affiliation(s)
- Pascal Grobecker
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Thomas Sakoparnig
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Erik van Nimwegen
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
50
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|