1
|
Ziqubu K, Dludla PV, Mazibuko-Mbeje SE. Chronic exposure to palmitic acid-induced adipocyte hypertrophy and altered batokine gene expression in T37i brown adipocytes. Toxicol In Vitro 2025:106097. [PMID: 40449640 DOI: 10.1016/j.tiv.2025.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 05/22/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Enlargement of adipose tissue through hypertrophy is a key hallmark of obesity. Our previous study demonstrated that chronic obesity induces brown adipose tissue hypertrophy and altered batokine gene expression patterns in vivo. The present study further explored and verified the pathophysiological and molecular changes implicated in brown adipocyte hypertrophy by exposing T37i cells to 0.25, 0.5, 0.75, and 1 mM of palmitic acid for 48 h. The results showed that palmitic acid-induced intracellular lipid accumulation and lipolysis. Gene expression analysis showed that palmitic acid downregulated genes responsible for glucose and lipid metabolism, such as AdipoQ and PIk3r1, while upregulating Cpt1A, a mitochondrial fatty acid transporter, and Tnf-α, a pro-inflammatory cytokine. Moreover, palmitic acid downregulated brown adipocyte transcriptional factors and thermogenic markers, including Prdm16, Pparg, Cidea, Dio2, Sirt1, and Ucp1. Palmitic acid altered the gene expression pattern of batokines regulating substrate metabolism (Fgf21), angiogenesis (Nrg4 and VegfA), and immune cell recruitment (Metrnl, Gdf15, and Cxcl14). This data has demonstrated that palmitic acid contributes to the hypertrophy and whitening of brown adipocytes by inhibiting brown adipocyte differentiation and altering batokines expression patterns.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | | |
Collapse
|
2
|
Sun Q, Cui X, Yin D, Li J, Li J, Du L. Molecular mechanisms of UCP1-independent thermogenesis: the role of futile cycles in energy dissipation. J Physiol Biochem 2025:10.1007/s13105-025-01090-x. [PMID: 40380026 DOI: 10.1007/s13105-025-01090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 05/01/2025] [Indexed: 05/19/2025]
Abstract
Adipose tissue thermogenesis has emerged as a prominent research focus for the treatment of metabolic diseases, particularly through mitochondrial uncoupling, which oxidizes nutrients to produce heat rather than synthesizing ATP. Uncoupling protein 1 (UCP1) has garnered significant attention as a core protein mediating non-shivering thermogenesis(NST). However, recent studies indicate that energy dissipation can also occur via UCP1-independent thermogenesis, partially driven by futile metabolic cycles. These cycles involve ATP depletion coupled with reversible energy reactions, resulting in futile energy expenditure. Unlike classical UCP1-mediated thermogenesis, futile cycling is not confined to brown and beige adipose tissue, suggesting a broader range of therapeutic targets. These findings open new avenues for targeting these pathways to enhance metabolic health. This review explores the characteristics and distinctions of the primary metabolic organs (adipose tissue, liver, and skeletal muscle) involved in the futile cycles of thermogenesis. It further elaborates on the cellular and molecular mechanisms underlying calcium, creatine, and lipid cycling, emphasizing their strengths, limitations, and roles beyond thermogenesis.
Collapse
Affiliation(s)
- Quanhao Sun
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Xinyue Cui
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Dong Yin
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Juan Li
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Jiarui Li
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Likun Du
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
3
|
Pahlavani M, Pham K, Kalupahana NS, Morovati A, Ramalingam L, Abidi H, Kiridana V, Moustaid-Moussa N. Thermogenic adipose tissues: Promising therapeutic targets for metabolic diseases. J Nutr Biochem 2025; 137:109832. [PMID: 39653156 DOI: 10.1016/j.jnutbio.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
The ongoing increase in the prevalence of obesity and its comorbidities such as cardiovascular disease, type 2 diabetes (T2D) and dyslipidemia warrants discovery of novel therapeutic options for these metabolic diseases. Obesity is characterized by white adipose tissue expansion due to chronic positive energy balance as a result of excessive energy intake and/or reduced energy expenditure. Despite various efforts to prevent or reduce obesity including lifestyle and behavioral interventions, surgical weight reduction approaches and pharmacological methods, there has been limited success in significantly reducing obesity prevalence. Recent research has shown that thermogenic adipocyte (brown and beige) activation or formation, respectively, could potentially act as a therapeutic strategy to ameliorate obesity and its related disorders. This can be achieved through the ability of these thermogenic cells to enhance energy expenditure and regulate circulating levels of glucose and lipids. Thus, unraveling the molecular mechanisms behind the formation and activation of brown and beige adipocytes holds the potential for probable therapeutic paths to combat obesity. In this review, we provide a comprehensive update on the development and regulation of different adipose tissue types. We also emphasize recent interventions in harnessing therapeutic potential of thermogenic adipocytes by bioactive compounds and new pharmacological anti-obesity agents.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Sciences, Texas Woman's University, Dallas, Texas, USA
| | - Kenneth Pham
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Ashti Morovati
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York, USA
| | - Hussain Abidi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Vasana Kiridana
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Institute for One Health Innovation, Texas Tech University and Texas Tech Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
4
|
Rowland LA, Santos KB, Guilherme A, Munroe S, Lifshitz LM, Nicoloro S, Wang H, Yee MF, Czech MP. The autophagy receptor Ncoa4 controls PPARγ activity and thermogenesis in brown adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636110. [PMID: 39974946 PMCID: PMC11838434 DOI: 10.1101/2025.02.02.636110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Adipose tissue dysfunction leads to a variety of deleterious systemic consequences including ectopic lipid deposition and impaired insulin sensitivity. PPARγ is a major regulator of adipocyte differentiation and functionality and is thus a determinant of systemic metabolic health. We recently reported that deletion of adipocyte fatty acid synthase (AdFasnKO) impairs autophagy in association with a striking upregulation of genes controlled by PPARγ, including thermogenic uncoupling protein 1 (Ucp1). In this present study, screening for PPARγ coactivators regulated by autophagy revealed a protein denoted as Nuclear receptor coactivator 4 (Ncoa4), known to mediate ferritinophagy and interact with PPARγ and other nuclear receptors. Indeed, we found Ncoa4 is upregulated in the early phase of adipocyte differentiation and is required for adipogenesis. Ncoa4 is also elevated in FasnKO adipocytes and necessary for full upregulation of Ucp1 expression in vitro , even in response to norepinephrine. Consistent with these findings, adipose-selective knockout of Ncoa4 (AdNcoa4KO mice) impairs Ucp1 expression in brown adipose tissue and cold-induced thermogenesis. Adipose-selective double KO of Fasn plus Ncoa4 (AdFasnNcoa4DKO mice) prevents the upregulation of classic PPARγ target genes normally observed in the white adipose tissue of AdFasnKO mice, but not thermogenic Ucp1 expression. These findings reveal Ncoa4 is a novel determinant of adipocyte PPARγ activity and regulator of white and brown adipocyte biology and suggest that manipulation of autophagy flux modulates PPARγ activity and key adipocyte functions via Ncoa4 actions.
Collapse
|
5
|
Halurkar MS, Inoue O, Singh A, Mukherjee R, Ginugu M, Ahn C, Bonatto Paese CL, Duszynski M, Brugmann SA, Lim HW, Sanchez-Gurmaches J. The widely used Ucp1-Cre transgene elicits complex developmental and metabolic phenotypes. Nat Commun 2025; 16:770. [PMID: 39824816 PMCID: PMC11742029 DOI: 10.1038/s41467-024-54763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/20/2024] [Indexed: 01/20/2025] Open
Abstract
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we perform comprehensive analysis of the Ucp1-CreEvdr line which is widely used for brown fat research. Hemizygotes exhibit major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function. Ucp1-CreEvdr homozygotes also show high mortality, tissue specific growth defects, and craniofacial abnormalities. Mapping the transgene insertion site reveals insertion in chromosome 1 accompanied by large genomic alterations disrupting several genes expressed in a range of tissues. Notably, Ucp1-CreEvdr transgene retains an extra Ucp1 gene copy that may be highly expressed under high thermogenic burden. Our multi-faceted analysis highlights a complex phenotype arising from the presence of the Ucp1-CreEvdr transgene independently of intended genetic manipulations. Overall, comprehensive validation of transgenic mice is imperative to maximize discovery while mitigating unexpected, off-target effects.
Collapse
Affiliation(s)
- Manasi Suchit Halurkar
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Oto Inoue
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Archana Singh
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Pioneering Medicines, 140 First St., Suite 302, Cambridge, MA, USA
| | - Meghana Ginugu
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher Ahn
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Molly Duszynski
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
7
|
Jeon YG, Kim SW, Kim JB. Decoding temporal thermogenesis: coregulator selectivity and transcriptional control in brown and beige adipocytes. Adipocyte 2024; 13:2391511. [PMID: 39155481 PMCID: PMC11340756 DOI: 10.1080/21623945.2024.2391511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
In mammals, brown adipose tissue (BAT) and beige adipocytes in white adipose tissue (WAT) play pivotal roles in maintaining body temperature and energy metabolism. In mice, BAT quickly stimulates thermogenesis by activating brown adipocytes upon cold exposure. In the presence of chronic cold stimuli, beige adipocytes are recruited in inguinal WAT to support heat generation. Accumulated evidence has shown that thermogenic execution of brown and beige adipocytes is regulated in a fat depot-specific manner. Recently, we have demonstrated that ubiquitin ligase ring finger protein 20 (RNF20) regulates brown and beige adipocyte thermogenesis through fat-depot-specific modulation. In BAT, RNF20 regulates transcription factor GA-binding protein alpha (GABPα), whereas in inguinal WAT, RNF20 potentiates transcriptional activity of peroxisome proliferator-activated receptor-gamma (PPARγ) through the degradation of nuclear corepressor 1 (NCoR1). This study proposes the molecular mechanisms by which co-regulator(s) selectively and temporally control transcription factors to coordinate adipose thermogenesis in a fat-depot-specific manner. In this Commentary, we provide molecular features of brown and beige adipocyte thermogenesis and discuss the underlying mechanisms of distinct thermogenic processes in two fat depots.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sun Won Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
8
|
Reguero M, Reglero G, Quintela JC, Ramos-Ruiz R, Ramírez de Molina A, Gómez de Cedrón M. Silymarin-Enriched Extract from Milk Thistle Activates Thermogenesis in a Preclinical Model of High-Fat-Diet-Induced Obesity to Relieve Systemic Meta-Inflammation. Nutrients 2024; 16:4166. [PMID: 39683558 DOI: 10.3390/nu16234166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Obesity and aging are associated with the progressive loss of brown adipose tissue (BAT), an increase in visceral white adipose tissue (vWAT), and a reduction in subcutaneous white adipose tissue (sWAT). The progressive expansion of visceral obesity promotes a low grade of systemic chronic inflammation (meta-inflammation), contributing to the onset of comorbidities such as type 2 diabetes mellitus (T2DM), metabolic syndrome, and even cancer. Thus, preserving the thermogenic activity of adipose tissue and improving the metabolic flexibility of sWAT could be an effective strategy to prevent the development of metabolic chronic diseases and promote healthy aging. Precision nutrition has emerged as a complementary approach to control the metabolic alterations associated with unhealthy obesity and aging. In a previous work, we described that a silymarin-enriched extract from milk thistle (Mthistle) increased markers of browning and thermogenesis in vitro in human differentiated adipocytes (SGBS). OBJECTIVES/METHODS Therefore, this study aims to evaluate the potential of Mthistle to activate thermogenesis in a preclinical model of high-fat diet (HFD)-induced obesity (DIO). RESULTS Our results demonstrate that Mthistle increases systemic energy expenditure (EE), preserves body temperature after cold exposure, improves insulin resistance, and reduces inflammatory markers in WAT. CONCLUSIONS Based on these results, silymarin-enriched extract from Mthistle may be proposed as a nutraceutical for the management of metabolic chronic diseases and/or accelerated aging.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, E28049 Madrid, Spain
- NATAC BIOTECH, Electronica 7, E28923 Madrid, Spain
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, E28049 Madrid, Spain
| | | | - Ricardo Ramos-Ruiz
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, E28049 Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, E28049 Madrid, Spain
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, E28049 Madrid, Spain
- Cell Metabolism Unit, IMDEA Food Institute, CEI UAM + CSIC, E28049 Madrid, Spain
| |
Collapse
|
9
|
Sugimoto H, Morita K, Li D, Bai Y, Mattanovich M, Kuroda S. iTraNet: a web-based platform for integrated trans-omics network visualization and analysis. BIOINFORMATICS ADVANCES 2024; 4:vbae141. [PMID: 39440006 PMCID: PMC11493990 DOI: 10.1093/bioadv/vbae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Motivation Visualization and analysis of biological networks play crucial roles in understanding living systems. Biological networks include diverse types, from gene regulatory networks and protein-protein interactions to metabolic networks. Metabolic networks include substrates, products, and enzymes, which are regulated by allosteric mechanisms and gene expression. However, the analysis of these diverse omics types is challenging due to the diversity of databases and the complexity of network analysis. Results We developed iTraNet, a web application that visualizes and analyses trans-omics networks involving four types of networks: gene regulatory networks, protein-protein interactions, metabolic networks, and metabolite exchange networks. Using iTraNet, we found that in wild-type mice, hub molecules within the network tended to respond to glucose administration, whereas in ob/ob mice, this tendency disappeared. With its ability to facilitate network analysis, we anticipate that iTraNet will help researchers gain insights into living systems. Availability and implementation iTraNet is available at https://itranet.streamlit.app/.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yunfan Bai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Matthias Mattanovich
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen DK-2200, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Shinya Kuroda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Sharma AK, Khandelwal R, Wolfrum C. Futile lipid cycling: from biochemistry to physiology. Nat Metab 2024; 6:808-824. [PMID: 38459186 DOI: 10.1038/s42255-024-01003-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
In the healthy state, the fat stored in our body isn't just inert. Rather, it is dynamically mobilized to maintain an adequate concentration of fatty acids (FAs) in our bloodstream. Our body tends to produce excess FAs to ensure that the FA availability is not limiting. The surplus FAs are actively re-esterified into glycerides, initiating a cycle of breakdown and resynthesis of glycerides. This cycle consumes energy without generating a new product and is commonly referred to as the 'futile lipid cycle' or the glyceride/FA cycle. Contrary to the notion that it's a wasteful process, it turns out this cycle is crucial for systemic metabolic homeostasis. It acts as a control point in intra-adipocyte and inter-organ cross-talk, a metabolic rheostat, an energy sensor and a lipid diversifying mechanism. In this Review, we discuss the metabolic regulation and physiological implications of the glyceride/FA cycle and its mechanistic underpinnings.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
11
|
Wang H, Yu H, Li Q. Integrative analysis of single-nucleus RNA-seq and bulk RNA-seq reveals germline cells development dynamics and niches in the Pacific oyster gonad. iScience 2024; 27:109499. [PMID: 38571762 PMCID: PMC10987912 DOI: 10.1016/j.isci.2024.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Gametogenesis drives the maturation of germ cell precursors into functional gametes, facilitated by interactions with the niche environment. However, the molecular mechanisms, especially in invertebrates, remain incompletely understood. In this study, the gonadal microenvironment and gametogenic processes in the Pacific oyster, a model for diffuse gonadal organization and periodic gametogenesis, are investigated. We combine single-nucleus RNA-seq and bulk RNA-seq to analyze gonadal microenvironments in oysters. Twenty-three male and nineteen female gonadal cell clusters are identified, revealing four male and three female germ cell types, alongside follicular cells in females and Sertoli/Leydig cells in males. The NOTCH and BMP (bone morphogenetic protein) signaling pathways play a significant role in the male germline niche, suggesting similarities with mammalian germ cell microenvironment. This study offers valuable insights into germ cell developmental transitions and microenvironmental characteristics.
Collapse
Affiliation(s)
- Huihui Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
12
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
13
|
Abbas NAT, Fayed FA, El Sebaey RS, Hassan HA. Telmisartan and candesartan promote browning of white adipose tissue and reverse fatty liver changes in high fat diet fed male albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2359-2378. [PMID: 37831115 DOI: 10.1007/s00210-023-02771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Obesity is a key risk factor for many diseases, as cardiovascular disorders, diabetes, infertility, osteoarthritis, sleep apnea, non-alcoholic fatty liver disease (NAFLD) as well as increased risk for many cancers. Telmisartan and Candesartan cilexetil are angiotensin II receptor blockers which had proven to involve in pathogenesis of obesity and NAFLD. AIMS This work is designed to explore the possible mitigated effects of Telmisartan and Candesartan cilexetil on weight gain and fatty liver in high fat diet (HFD) fed rats. MAIN METHODS The HFD rat model was achieved with induction of NAFLD. For Seven weeks either telmisartan or candesartan were orally administered at doses of 5 and 10 mg/kg respectively once daily. The effects of both drugs were evaluated by measurements of rat's body weight, food intakes, length, body mass index (BMI), liver weight, inguinal and interscapular fat weights. In addition, we assayed lipid profile, liver functions tests, serum inflammatory cytokines, adipokine and leptin. Lastly, liver and adipose tissue histopathological structures were evaluated. KEY FINDINGS at end of experiment, telmisartan and candesartan were highly effective in decreasing rat's body weight from (213.1±2.68 to 191.2±2.54 and 203.5±5.89 gm , respectively), BMI, liver weight, fat weights in addition reduced serum levels of lipid and liver enzymes. Also, inflammatory cytokines were reduced with repaired histopathological insults in liver by significantly damped NAFLD score from (6.5 ±0.17 to 1±0 and 4 ±0, respectively) and decreased areas of adipocytes from (21239.12 to 5355.7 and 11607.1 um2 , respectively). SIGNIFICANCE Telmisartan and candesartan have therapeutic potential against obesity and NAFLD induced by HFD in rats. All the previous indices showed more improvement in telmisartan than candesartan group.
Collapse
Affiliation(s)
- Noha A T Abbas
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Fawkia A Fayed
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab Saber El Sebaey
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Heba A Hassan
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan.
| |
Collapse
|
14
|
Sun Z, Zhao L, Peng X, Yan M, Ding S, Sun J, Kang B. Tissue damage, antioxidant capacity, transcriptional and metabolic regulation of red drum Sciaenops ocellatus in response to nanoplastics exposure and subsequent recovery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116175. [PMID: 38458070 DOI: 10.1016/j.ecoenv.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Nanoplastics are recognized as emerging contaminants that can cause severe toxicity to marine fishes. However, limited researches were focusing on the toxic effects of nanoplastics on marine fish, especially the post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to 5 mg/L polystyrene nanoplastics (100 nm, PS-NPs) for a 7-day exposure experiment, and a 14-day recovery experiment that followed. The aim was to evaluate the dynamic alterations in hepatic and branchial tissue damage, hepatic antioxidant capacity, as well as hepatic transcriptional and metabolic regulation in the red drum during exposure and post-exposure to PS-NPs. Histopathological observation found that PS-NPs primarily triggered hepatic lipid droplets and branchial epithelial liftings, a phenomenon persistently discernible up to the 14 days of recovery. Although antioxidant capacity partially recovered during recovery periods, PS-NPs resulted in a sustained reduction in hepatic antioxidant activity, causing oxidative damage throughout the entire exposure and recovery phases, as evidenced by decreased total superoxide dismutase activities and increased malondialdehyde content. At the transcriptional and metabolic level, PS-NPs primarily induced lipid metabolism disorders, DNA damage, biofilm disruption, and mitochondrial dysfunction. In the gene-metabolite correlation interaction network, numerous CcO (cytochrome c oxidase) family genes and lipid metabolites were identified as key regulatory genes and metabolites in detoxification processes. Among them, the red drum possesses one additional CcO6B in comparison to human and zebrafish, which potentially contributes to its enhanced capacity for maintaining a stable and positive regulatory function in detoxification. This study revealed that nanoplastics cause severe biotoxicity to red drum, which may be detrimental to the survival of wild populations and affect the economics of farmed populations.
Collapse
Affiliation(s)
- Zhicheng Sun
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xin Peng
- Marine Academy of Zhejiang Province, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Hangzhou, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Bin Kang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China.
| |
Collapse
|
15
|
Halurkar MS, Inoue O, Mukherjee R, Paese CLB, Duszynski M, Brugmann SA, Lim HW, Sanchez-Gurmaches J. The widely used Ucp1-CreEvdr transgene elicits complex developmental and metabolic phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563165. [PMID: 37904917 PMCID: PMC10614962 DOI: 10.1101/2023.10.20.563165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we performed comprehensive analysis of the Ucp1-CreEvdr line which is widely used for brown fat research. Hemizygotes exhibited major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function. Ucp1-CreEvdr homozygotes also show high mortality, growth defects, and craniofacial abnormalities. Mapping the transgene insertion site revealed insertion in chromosome 1 accompanied by large genomic alterations disrupting several genes expressed in a range of tissues. Notably, Ucp1-CreEvdr transgene retains an extra Ucp1 gene copy that may be highly expressed under high thermogenic burden. Our multi-faceted analysis highlights a complex phenotype arising from the presence of the Ucp1-CreEvdr transgene independently of the intended genetic manipulations. Overall, comprehensive validation of transgenic mice is imperative to maximize discovery while mitigating unexpected, off-target effects.
Collapse
Affiliation(s)
- Manasi Suchit Halurkar
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Oto Inoue
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | | | - Molly Duszynski
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Samantha A. Brugmann
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| |
Collapse
|
16
|
Yang XF, Shang DJ. The role of peroxisome proliferator-activated receptor γ in lipid metabolism and inflammation in atherosclerosis. Cell Biol Int 2023; 47:1469-1487. [PMID: 37369936 DOI: 10.1002/cbin.12065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/09/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Cardiovascular disease events are the result of functional and structural abnormalities in the arteries and heart. Atherosclerosis is the main cause and pathological basis of cardiovascular diseases. Atherosclerosis is a multifactorial disease associated with dyslipidemia, inflammation, and oxidative stress, among which dyslipidemia and chronic inflammation occur in all processes. Under the influence of lipoproteins, the arterial intima causes inflammation, necrosis, fibrosis, and calcification, leading to plaque formation in specific parts of the artery, which further develops into plaque rupture and secondary thrombosis. Foam cell formation from macrophages is an early event in the development of atherosclerosis. Lipid uptake causes a vascular inflammatory response, and persistent inflammatory infiltration in the lesion area further promotes the development of the disease. Inhibition of macrophage differentiation into foam cell and reduction of the level of proinflammatory factors in macrophages can effectively alleviate the occurrence and development of atherosclerosis. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor that plays an important antiatherosclerotic role by regulating triglyceride metabolism, lipid uptake, cholesterol efflux, macrophage polarity, and inhibiting inflammatory signaling pathways. In addition, PPARγ shifts its binding to ligands and co-activators or co-repressors of transcription of target genes through posttranslational modification, thereby affecting the regulation of its downstream target genes. Many ligand agonists have also been developed targeting PPARγ. In this review, we summarized the role of PPARγ in lipid metabolism and inflammation in development of atherosclerosis, the posttranslational regulatory mechanism of PPARγ, and further discusses the value of PPARγ as an antiatherosclerosis target.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
17
|
Egusa G, Ohno H, Nagano G, Sagawa J, Shinjo H, Yamamoto Y, Himeno N, Morita Y, Kanai A, Baba R, Kobuke K, Oki K, Yoneda M, Hattori N. Selective activation of PPARα maintains thermogenic capacity of beige adipocytes. iScience 2023; 26:107143. [PMID: 37456852 PMCID: PMC10338232 DOI: 10.1016/j.isci.2023.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Beige adipocytes are inducible thermogenic adipocytes used for anti-obesity treatment. Beige adipocytes rapidly lose their thermogenic capacity once external cues are removed. However, long-term administration of stimulants, such as PPARγ and β-adrenergic receptor agonists, is unsuitable due to various side effects. Here, we reported that PPARα pharmacological activation was the preferred target for maintaining induced beige adipocytes. Pemafibrate used in clinical practice for dyslipidemia was developed as a selective PPARα modulator (SPPARMα). Pemafibrate administration regulated the thermogenic capacity of induced beige adipocytes, repressed body weight gain, and ameliorated impaired glucose tolerance in diet-induced obese mouse models. The transcriptome analysis revealed that the E-twenty-six transcription factor ELK1 acted as a cofactor of PPARα. ELK1 was mobilized to the Ucp1 transcription regulatory region with PPARα and modulated its expression by pemafibrate. These results suggest that selective activation of PPARα by pemafibrate is advantageous to maintain the function of beige adipocytes.
Collapse
Affiliation(s)
- Gentaro Egusa
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruya Ohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gaku Nagano
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junji Sagawa
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroko Shinjo
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yutaro Yamamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Natsumi Himeno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshimi Morita
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Baba
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Kobuke
- Department of Preventive Medicine for Diabetes and Lifestyle-related Diseases, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masayasu Yoneda
- Department of Preventive Medicine for Diabetes and Lifestyle-related Diseases, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Nirengi S, Stanford K. Brown adipose tissue and aging: A potential role for exercise. Exp Gerontol 2023; 178:112218. [PMID: 37224933 DOI: 10.1016/j.exger.2023.112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/05/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Aging is one of the primary risk factors for the development of type 2 diabetes and cardiovascular disease, and regular physical activity can help to delay, prevent, or manage the onset and development of many chronic diseases present in older adults. Brown adipose tissue (BAT) is thermogenic tissue that protects against age-related disease, but BAT activity decreases with age. In this review, we discuss how aging contributes to impaired BAT function by inducing a 'whitening' of the BAT and altering beta 3 adrenergic receptor (β3AR) signaling, uncoupling protein 1 (UCP1) gene expression, and mitochondria respiration, and potential mechanisms for exercise to counteract the effects of aging on BAT.
Collapse
Affiliation(s)
- Shinsuke Nirengi
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kristin Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Klein Hazebroek M, Laterveer R, Kutschke M, Ramšak Marčeta V, Barthem CS, Keipert S. Hyperphagia of female UCP1-deficient mice blunts anti-obesity effects of FGF21. Sci Rep 2023; 13:10288. [PMID: 37355753 PMCID: PMC10290677 DOI: 10.1038/s41598-023-37264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023] Open
Abstract
Increasing energy expenditure through uncoupling protein 1 (UCP1) activity in thermogenic adipose tissue is widely investigated to correct diet-induced obesity (DIO). Paradoxically, UCP1-deficient male mice are resistant to DIO at room temperature. Recently, we uncovered a key role for fibroblast growth factor 21 (FGF21), a promising drug target for treatment of metabolic disease, in this phenomenon. As the metabolic action of FGF21 is so far understudied in females, we aim to investigate potential sexual dimorphisms. Here, we confirm that male UCP1 KO mice display resistance to DIO in mild cold, without significant changes in metabolic parameters. Surprisingly, females gained the same amount of body fat as WT controls. Molecular regulation was similar between UCP1 KO males and females, with an upregulation of serum FGF21, coinciding with beiging of inguinal white adipose tissue and induced lipid metabolism. While energy expenditure did not display significant differences, UCP1 KO females significantly increased their food intake. Altogether, our results indicate that hyperphagia is likely counteracting the beneficial effects of FGF21 in female mice. This underlines the importance of sex-specific studies in (pre)clinical research for personalized drug development.
Collapse
Affiliation(s)
- Marlou Klein Hazebroek
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Rutger Laterveer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Maria Kutschke
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Vida Ramšak Marčeta
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Clarissa S Barthem
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
20
|
Kwon I, Talib NF, Zhu J, Yang HI, Kim KS. Effects of aging-induced obesity on the transcriptional expression of adipogenesis and thermogenic activity in the gonadal white adipose, brown adipose, and skeletal muscle tissues. Phys Act Nutr 2023; 27:39-49. [PMID: 37583071 PMCID: PMC10440178 DOI: 10.20463/pan.2023.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Aging is closely associated with chronic metabolic diseases, such as obesity, which lead to increased adiposity, skeletal muscle wasting, and imbalanced cellular energy metabolism. However, transcriptional profiles representing energy imbalances in aging-induced obesity are not fully understood. Thus, this study aimed to investigate the candidate genes predominantly regulated in aging-related obesity in spontaneously aged mice. METHODS Male C57BL/6J mice were divided into three age groups according to age: 2- (young), 12- (middle-aged), and 24- (old) months. Body weight and body composition parameters were measured in all mice. Gonadal white adipose tissue (gWAT), brown adipose tissue (BAT), and skeletal muscle (SM) were dissected and weighed. The target tissues were assessed using biochemical and histological assays. RESULTS Aging-induced obesity increased adipose mass and decreased SM weight through processes of adipocyte hypertrophy; however, recruitment of modulating adipogenesis-inducing transcription factors did not occur. Among adipokines, leptin level was greatly increased in the gWAT during aging. Interestingly, the β2-adrenergic receptor had a higher affinity than the β3-adrenergic receptor in aging-induced obesity. For the thermogenic regulation through β-adrenergic receptors (β-ARs), a declined uncoupling protein-1 (UCP-1) in the BAT was relevant to aging-induced obesity. CONCLUSION Aging-induced obesity increases leptin levels in adipocytes and decreases UCP-1 in BAT through β-ARs, according to transcriptional gene profiling. WAT browning increases energy expenditure due to exercise training adaptations. Further research is needed to discover more effective methods, such as exercise, against aging-induced obesity.
Collapse
Affiliation(s)
- Insu Kwon
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Nurul Fatihah Talib
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - JunShu Zhu
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-In Yang
- Division of Rheumatology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| |
Collapse
|
21
|
Ban OH, Lee M, Bang WY, Nam EH, Jeon HJ, Shin M, Yang J, Jung YH. Bifidobacterium lactis IDCC 4301 Exerts Anti-Obesity Effects in High-Fat Diet-Fed Mice Model by Regulating Lipid Metabolism. Mol Nutr Food Res 2023; 67:e2200385. [PMID: 36517937 DOI: 10.1002/mnfr.202200385] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SCOPE Chronic hypernutrition promotes lipid accumulation in the body and excessive lipid accumulation leads to obesity. An increase in the number and size of adipocytes, a characteristic of obesity is closely associated with adipose dysfunction. Recent in vitro and in vivo studies have shown that probiotics may prevent this dysfunction by regulating lipid metabolism. However, the mechanisms of action of probiotics in obesity are not fully understood and their usage for treating obesity remains limited. METHODS AND RESULTS Bifidobacterium lactis IDCC 4301 is selected for its anti-obesity potential after evaluating inhibitory activity of pancreatic lipase and cholesterol reducing activity. Next, this study investigates the roles of B. lactis IDCC 4301 on lipid metabolism in 3T3-L1 preadipocytes and high-fat diet (HFD)-fed mice. B. lactis IDCC 4301 inhibits cell differentiation and lipid accumulation by suppressing the expression of adipogenic enzymes in 3T3-L1 cells. Moreover, the administration of B. lactis IDCC 4301 decreases body and adipose tissue weight, improves serum lipid levels, and downregulates adipogenic mRNA expression in HFD-fed mice. Additionally, metabolomic analysis suggests that 2-ketobutyrate should be a possible target compound against obesity. CONCLUSIONS B. lactis IDCC 4301 may be used as an alternative treatment for obesity.
Collapse
Affiliation(s)
- O-Hyun Ban
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea.,School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minjee Lee
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Won Yeong Bang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Eoun Ho Nam
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Hyeon Ji Jeon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
22
|
Shin KC, Huh JY, Ji Y, Han JS, Han SM, Park J, Nahmgoong H, Lee WT, Jeon YG, Kim B, Park C, Kang H, Choe SS, Kim JB. VLDL-VLDLR axis facilitates brown fat thermogenesis through replenishment of lipid fuels and PPARβ/δ activation. Cell Rep 2022; 41:111806. [PMID: 36516764 DOI: 10.1016/j.celrep.2022.111806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
In mammals, brown adipose tissue (BAT) is specialized to conduct non-shivering thermogenesis for survival under cold acclimation. Although emerging evidence suggests that lipid metabolites are essential for heat generation in cold-activated BAT, the underlying mechanisms of lipid uptake in BAT have not been thoroughly understood. Here, we show that very-low-density lipoprotein (VLDL) uptaken by VLDL receptor (VLDLR) plays important roles in thermogenic execution in BAT. Compared with wild-type mice, VLDLR knockout mice exhibit impaired thermogenic features. Mechanistically, VLDLR-mediated VLDL uptake provides energy sources for mitochondrial oxidation via lysosomal processing, subsequently enhancing thermogenic activity in brown adipocytes. Moreover, the VLDL-VLDLR axis potentiates peroxisome proliferator activated receptor (PPAR)β/δ activity with thermogenic gene expression in BAT. Accordingly, VLDL-induced thermogenic capacity is attenuated in brown-adipocyte-specific PPARβ/δ knockout mice. Collectively, these data suggest that the VLDL-VLDLR axis in brown adipocytes is a key factor for thermogenic execution during cold exposure.
Collapse
Affiliation(s)
- Kyung Cheul Shin
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jin Young Huh
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yul Ji
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Mun Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeu Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hahn Nahmgoong
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Won Taek Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bohyeon Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chanyoon Park
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul 08826, Korea
| | - Heonjoong Kang
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul 08826, Korea; School of Earth and Environmental Sciences, Interdisciplinary Graduate Program in Genetic Engineering, Research Institute of Oceanography, Seoul National University, Seoul 08826, Korea
| | - Sung Sik Choe
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
23
|
Selenium and selenoproteins in thermogenic adipocytes. Arch Biochem Biophys 2022; 731:109445. [PMID: 36265651 PMCID: PMC9981474 DOI: 10.1016/j.abb.2022.109445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022]
Abstract
Selenium (Se) is involved in energy metabolism in the liver, white adipose tissue, and skeletal muscle, and may also play a role in thermogenic adipocytes, i.e. brown and beige adipocytes. Thereby this micronutrient is a key nutritional target to aid in combating obesity and metabolic diseases. In thermogenic adipocytes, particularly in brown adipose tissue (BAT), the selenoprotein type 2 iodothyronine deiodinase (DIO2) is essential for the activation of adaptive thermogenesis. Recent evidence has suggested that additional selenoproteins may also be participating in this process, and a role for Se itself through its metabolic pathways is also envisioned. In this review, we discuss the recognized effects and the knowledge gaps in the involvement of Se metabolism and selenoproteins in the mechanisms of adaptive thermogenesis in thermogenic (brown and beige) adipocytes.
Collapse
|
24
|
Al-Obaidi ZAF, Erdogan CS, Sümer E, Özgün HB, Gemici B, Sandal S, Yilmaz B. Investigation of obesogenic effects of hexachlorobenzene, DDT and DDE in male rats. Gen Comp Endocrinol 2022; 327:114098. [PMID: 35878704 DOI: 10.1016/j.ygcen.2022.114098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Obesity has become a very important public health problem and is increasing globally. Genetics, individual and environmental factors play roles in the etiology of this complex disorder. Recently, several environmental pollutants have been suggested to have obesogenic activities. Peroxisome proliferator activating receptor gamma (PPARγ), uncoupling protein-1 (UCP1) and their expression in white adipose tissue (WAT) and brown adipose tissue (BAT) play key roles in adipogenesis. UCP3 and irisin were reported to play roles in non-shivering thermogenesis. Our primary aim was to investigate obesogenic effects of hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) in rats. In addition, thermoregulatory effects of HCB, DDT and DDE were also investigated by analyzing the levels of Ucp3 and irisin. Thirty-two adult male Sprague-Dawley rats were randomly divided into four groups as control, HCB, DDT and DDE. Animals were administered with organochlorine pesticides (OCPs; 5 mg/kg bw) by oral gavage every other day for five weeks. At the end of the experimental period, the animals were sacrificed, BAT and WAT samples were collected to analyze Pparγ, Ucp1 and Ucp3 levels. Moreover, skeletal muscle samples were collected to examine Ucp3 and irisin levels. Serum glucose, cholesterol and triglyceride levels were also determined. Body weight and core temperature of the animals were not significantly affected by any of the OCP administration. Serum glucose, cholesterol and triglyceride levels were similar among the experimental groups. Pparγ expression was significantly elevated by HCB administration only in WAT (p < 0.05). On the other hand, both Pparγ and Ucp1 expressions were diminished in WAT and BAT (p < 0.01) by DDT treatment, while in WAT, DDE significantly decreased Pparγ expression without altering its expression in BAT (p < 0.001). Ucp3 and irisin levels in skeletal muscle were not altered. Our findings show that both DDT and DDE reduce the browning of WAT by suppressing white adipocytes and thus may have obesogenic activity in male rats without altering thermoregulation. In addition, HCB, DDT and DDE-induced alterations in expression of Pparγ and Ucp1 in WAT implicates differential regulation of adipogenic processes.
Collapse
Affiliation(s)
| | | | - Engin Sümer
- Yeditepe University, Faculty of Medicine, Experimental Research Center, Istanbul, Turkey
| | - Hüseyin Bugra Özgün
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Süleyman Sandal
- İnönü University, Faculty of Medicine, Department of Physiology, Malatya, Turkey
| | - Bayram Yilmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey.
| |
Collapse
|
25
|
Polyphenol-rich jaboticaba (Myrciaria jaboticaba) peel and seed powder induces browning of subcutaneous white adipose tissue and improves metabolic status in high-fat-fed mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Markussen LK, Rondini EA, Johansen OS, Madsen JGS, Sustarsic EG, Marcher AB, Hansen JB, Gerhart-Hines Z, Granneman JG, Mandrup S. Lipolysis regulates major transcriptional programs in brown adipocytes. Nat Commun 2022; 13:3956. [PMID: 35803907 PMCID: PMC9270495 DOI: 10.1038/s41467-022-31525-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
β-Adrenergic signaling is a core regulator of brown adipocyte function stimulating both lipolysis and transcription of thermogenic genes, thereby expanding the capacity for oxidative metabolism. We have used pharmacological inhibitors and a direct activator of lipolysis to acutely modulate the activity of lipases, thereby enabling us to uncover lipolysis-dependent signaling pathways downstream of β-adrenergic signaling in cultured brown adipocytes. Here we show that induction of lipolysis leads to acute induction of several gene programs and is required for transcriptional regulation by β-adrenergic signals. Using machine-learning algorithms to infer causal transcription factors, we show that PPARs are key mediators of lipolysis-induced activation of genes involved in lipid metabolism and thermogenesis. Importantly, however, lipolysis also activates the unfolded protein response and regulates the core circadian transcriptional machinery independently of PPARs. Our results demonstrate that lipolysis generates important metabolic signals that exert profound pleiotropic effects on transcription and function of cultured brown adipocytes.
Collapse
Affiliation(s)
- Lasse K Markussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark
| | - Elizabeth A Rondini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Olivia Sveidahl Johansen
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Embark Biotech ApS, Copenhagen, Denmark
| | - Jesper G S Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark
| | - Elahu G Sustarsic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Britt Marcher
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Embark Biotech ApS, Copenhagen, Denmark
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
- Center for Adipocyte Signaling (AdipoSign), Odense, Denmark.
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark.
| |
Collapse
|
27
|
Rast IT, Zini E, Wolfrum C, Lutz TA, Reusch CE, Salesov E. Effect of tetra-hydroxylated bile acid on size and insulin sensitivity of subcutaneous adipocytes in healthy lean cats. Domest Anim Endocrinol 2022; 80:106722. [PMID: 35366568 DOI: 10.1016/j.domaniend.2022.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
Abstract
Obesity leads to insulin resistance and is a major risk factor for the development of diabetes mellitus in cats. Prevention of obesity and obesity-induced insulin resistance is difficult, and reliable long-term strategies are currently lacking. Retinoid-related orphan receptor gamma (RORγ) was recently identified as an important transcription factor in the development of large insulin-resistant adipocytes in mice and humans. RORγ negatively affects adipocyte differentiation through expression of its target gene matrix metalloproteinase 3 (MMP3) and promotes the development of large insulin-resistant adipocytes. Preliminary studies in mice showed that RORγ can be inhibited by its ligand tetra-hydroxylated bile acid (THBA). In the present study, serum THBA levels were determined in healthy and diabetic cats. Moreover, potential side effects and the effects of THBA supplementation on adipocyte size, mRNA expression of RORγ, MMP3, interleukin 6, tumor necrosis factor α, adiponectin and leptin in feline subcutaneous adipocytes and insulin sensitivity were investigated in healthy normal weight cats. Thirteen healthy and 13 diabetic cats were used for determination of serum THBA level, and six healthy normal-weight cats were included in a feeding trial. Similar THBA levels were determined in serum of healthy and diabetic cats. Supplementation of 5 mg/kg THBA for 8 wk did not cause any negative effect on feeding behavior, general condition and blood parameters of tested cats. It significantly reduced adipocyte size and mRNA expression of MMP3, interleukin 6, and tumor necrosis factor α in adipocytes, while mRNA expression of adiponectin significantly increased and mRNA expression of RORγ and leptin remained unchanged. Administration of THBA did not influence fasting blood glucose levels or the response of cats to acute insulin administration. Based on these results, THBA is palatable and is considered safe for use in cats. It reduces expression of MMP3 and promotes the development of small adipocytes with increased expression of adiponectin and reduced expression of interleukin 6 and tumor necrosis factor α. Further studies are recommended to evaluate the effect of THBA on adipocyte size and insulin sensitivity in obese cats.
Collapse
Affiliation(s)
- I T Rast
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - E Zini
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Department of Animal Medicine, Production and Health, University of Padova, Legnaro (PD), Italy; AniCura Istituto Veterinario Novara, Granozzo con Monticello (NO), Italy
| | - C Wolfrum
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology Zurich, Schwerzenbach, Switzerland
| | - T A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - C E Reusch
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - E Salesov
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| |
Collapse
|
28
|
Brouns F, Shewry PR. Do gluten peptides stimulate weight gain in humans? NUTR BULL 2022; 47:186-198. [PMID: 35915782 PMCID: PMC9328276 DOI: 10.1111/nbu.12558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Observations from animal and in vitro laboratory research, and anecdotal evidence, have led to the suggestion that gluten consumption stimulates weight gain by the presence of peptides expressing opioid activity. Another proposed mechanism is that gluten peptides decrease resting energy expenditure resulting in a positive energy balance. In order to induce such effects in vivo, intact food peptides must be absorbed in sufficient quantities, remain intact in the blood for sufficient time to have long-lasting biological activity and bind to receptors involved in appetite, satiety and energy regulation. However, although peptides from food may pass from the intestine into the blood in extremely low quantities, they are generally rapidly degraded by plasma and vasculum-bound aminopeptidases, resulting in very short half-lives and loss of bioactivity. At present, gluten peptide sequences that influence regulators of energy metabolism have not been identified. Furthermore, data on the quantitative absorption of gluten peptides in the blood stream, their stability and lasting bioactivity are also lacking. Therefore, there is no evidence for proposed effects on driving appetite by the brain, nor on energy expenditure and weight gain. Furthermore, the level of overweight observed in various countries appears to be independent of the level of wheat consumption, and abundant observational evidence in humans shows that the levels of gluten consumption are neither related to daily calorie intake nor to BMI. This narrative review therefore discusses the proposed effects of gluten on bodyweight (BW) and putative biological mechanisms in the light of the current evidence.
Collapse
Affiliation(s)
- Fred Brouns
- School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | | |
Collapse
|
29
|
Oeckl J, Janovska P, Adamcova K, Bardova K, Brunner S, Dieckmann S, Ecker J, Fromme T, Funda J, Gantert T, Giansanti P, Hidrobo MS, Kuda O, Kuster B, Li Y, Pohl R, Schmitt S, Schweizer S, Zischka H, Zouhar P, Kopecky J, Klingenspor M. Loss of UCP1 function augments recruitment of futile lipid cycling for thermogenesis in murine brown fat. Mol Metab 2022; 61:101499. [PMID: 35470094 PMCID: PMC9097615 DOI: 10.1016/j.molmet.2022.101499] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Josef Oeckl
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Sarah Brunner
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Sebastian Dieckmann
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Josef Ecker
- ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Thomas Gantert
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Piero Giansanti
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Maria Soledad Hidrobo
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Yongguo Li
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Radek Pohl
- NMR spectroscopy, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Czech Republic
| | - Sabine Schmitt
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sabine Schweizer
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, Munich, Germany
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic.
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
30
|
van Eenige R, In Het Panhuis W, Schönke M, Jouffe C, Devilee TH, Siebeler R, Streefland TCM, Sips HCM, Pronk ACM, Vorderman RHP, Mei H, van Klinken JB, van Weeghel M, Uhlenhaut NH, Kersten S, Rensen PCN, Kooijman S. Angiopoietin-like 4 governs diurnal lipoprotein lipase activity in brown adipose tissue. Mol Metab 2022; 60:101497. [PMID: 35413480 PMCID: PMC9048098 DOI: 10.1016/j.molmet.2022.101497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Brown adipose tissue (BAT) burns fatty acids (FAs) to produce heat, and shows diurnal oscillation in glucose and triglyceride (TG)-derived FA-uptake, peaking around wakening. Here we aimed to gain insight in the diurnal regulation of metabolic BAT activity. Methods RNA-sequencing, chromatin immunoprecipitation (ChIP)-sequencing, and lipidomics analyses were performed on BAT samples of wild type C57BL/6J mice collected at 3-hour intervals throughout the day. Knockout and overexpression models were used to study causal relationships in diurnal lipid handling by BAT. Results We identified pronounced enrichment of oscillating genes involved in extracellular lipolysis in BAT, accompanied by oscillations of FA and monoacylglycerol content. This coincided with peak lipoprotein lipase (Lpl) expression, and was predicted to be driven by peroxisome proliferator-activated receptor gamma (PPARγ) activity. ChIP-sequencing for PPARγ confirmed oscillation in binding of PPARγ to Lpl. Of the known LPL-modulators, angiopoietin-like 4 (Angptl4) showed the largest diurnal amplitude opposite to Lpl, and both Angptl4 knockout and overexpression attenuated oscillations of LPL activity and TG-derived FA-uptake by BAT. Conclusions Our findings highlight involvement of PPARγ and a crucial role of ANGPTL4 in mediating the diurnal oscillation of TG-derived FA-uptake by BAT, and imply that time of day is essential when targeting LPL activity in BAT to improve metabolic health. The transcriptome and lipidome of brown fat show clusters with distinct circadian phases. The peak in metabolic brown fat activity is defined by activation of lipolytic processes. PPARγ shows oscillating binding to lipolytic genes and may drive diurnal brown fat activity. Genetic modulation of the lipoprotein lipase inhibitor Angptl4 flattens rhythmic activity in brown fat. Time of day should be considered when studying the metabolic benefits of targeting brown fat.
Collapse
Affiliation(s)
- Robin van Eenige
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wietse In Het Panhuis
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Céline Jouffe
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Munich, Germany
| | - Thomas H Devilee
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ricky Siebeler
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Trea C M Streefland
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hetty C M Sips
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ruben H P Vorderman
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Bert van Klinken
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina H Uhlenhaut
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Metabolic Programming, Technical University of Munich School of Life Sciences, Freising, Germany
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
31
|
Leuillier M, Duflot T, Ménoret S, Messaoudi H, Djerada Z, Groussard D, Denis RG, Chevalier L, Karoui A, Panthu B, Thiébaut PA, Schmitz-Afonso I, Nobis S, Campart C, Henry T, Sautreuil C, Luquet SH, Beseme O, Féliu C, Peyret H, Nicol L, Henry JP, Renet S, Mulder P, Wan D, Tesson L, Heslan JM, Duché A, Jacques S, Ziegler F, Brunel V, Rautureau GJ, Monteil C, do Rego JL, do Rego JC, Afonso C, Hammock B, Madec AM, Pinet F, Richard V, Anegon I, Guignabert C, Morisseau C, Bellien J. CRISPR/Cas9-mediated inactivation of the phosphatase activity of soluble epoxide hydrolase prevents obesity and cardiac ischemic injury. J Adv Res 2022; 43:163-174. [PMID: 36585106 PMCID: PMC9811321 DOI: 10.1016/j.jare.2022.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Although the physiological role of the C-terminal hydrolase domain of the soluble epoxide hydrolase (sEH-H) is well investigated, the function of its N-terminal phosphatase activity (sEH-P) remains unknown. OBJECTIVES This study aimed to assess in vivo the physiological role of sEH-P. METHODS CRISPR/Cas9 was used to generate a novel knock-in (KI) rat line lacking the sEH-P activity. RESULTS The sEH-P KI rats has a decreased metabolism of lysophosphatidic acids to monoacyglycerols. KI rats grew almost normally but with less weight and fat mass gain while insulin sensitivity was increased compared to wild-type rats. This lean phenotype was more marked in males than in female KI rats and mainly due to decreased food consumption and enhanced energy expenditure. In fact, sEH-P KI rats had an increased lipolysis allowing to supply fatty acids as fuel to potentiate brown adipose thermogenesis under resting condition and upon cold exposure. The potentiation of thermogenesis was abolished when blocking PPARγ, a nuclear receptor activated by intracellular lysophosphatidic acids, but also when inhibiting simultaneously sEH-H, showing a functional interaction between the two domains. Furthermore, sEH-P KI rats fed a high-fat diet did not gain as much weight as the wild-type rats, did not have increased fat mass and did not develop insulin resistance or hepatic steatosis. In addition, sEH-P KI rats exhibited enhanced basal cardiac mitochondrial activity associated with an enhanced left ventricular contractility and were protected against cardiac ischemia-reperfusion injury. CONCLUSION Our study reveals that sEH-P is a key player in energy and fat metabolism and contributes together with sEH-H to the regulation of cardiometabolic homeostasis. The development of pharmacological inhibitors of sEH-P appears of crucial importance to evaluate the interest of this promising therapeutic strategy in the management of obesity and cardiac ischemic complications.
Collapse
Affiliation(s)
- Matthieu Leuillier
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Thomas Duflot
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France,Department of Pharmacology, Rouen University Hospital, F-76000 Rouen, France,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, F-76000 Rouen, France
| | - Séverine Ménoret
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France,Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France,Transgenesis Rat ImmunoPhenomic Platform, F-44000 Nantes, France
| | - Hind Messaoudi
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Zoubir Djerada
- Department of Pharmacology, EA 3801, SFR CAP-santé, Reims University Hospital, F-51095 Reims Cedex, France
| | - Déborah Groussard
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Raphaël G.P. Denis
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche scientifique, Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Laurence Chevalier
- Normandie University, Unirouen, INSA Rouen, CNRS, Groupe de Physique des Matériaux-UMR6634, F-76000 Rouen, France
| | - Ahmed Karoui
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, F-76000 Rouen, France
| | - Baptiste Panthu
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, F-69600 Oullins, France
| | | | - Isabelle Schmitz-Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, F-76821, Mont-Saint-Aignan, Cedex, France
| | - Séverine Nobis
- Animal Behavioral Platform (SCAC), HeRacLeS Inserm US51-CNRS UAR2026, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, F-76183 Rouen, France
| | - Cynthia Campart
- Animal Behavioral Platform (SCAC), HeRacLeS Inserm US51-CNRS UAR2026, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, F-76183 Rouen, France
| | - Tiphaine Henry
- Animal Behavioral Platform (SCAC), HeRacLeS Inserm US51-CNRS UAR2026, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, F-76183 Rouen, France
| | - Camille Sautreuil
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F-76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Serge H. Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche scientifique, Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Olivia Beseme
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Catherine Féliu
- Department of Pharmacology, EA 3801, SFR CAP-santé, Reims University Hospital, F-51095 Reims Cedex, France
| | - Hélène Peyret
- Department of Pharmacology, EA 3801, SFR CAP-santé, Reims University Hospital, F-51095 Reims Cedex, France
| | - Lionel Nicol
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Jean-Paul Henry
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Sylvanie Renet
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Paul Mulder
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France
| | - Debin Wan
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Laurent Tesson
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France,Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France,Transgenesis Rat ImmunoPhenomic Platform, F-44000 Nantes, France
| | - Jean-Marie Heslan
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France,Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France,GenoCellEdit Platform, F-44000 Nantes, France
| | - Angéline Duché
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, F-75014 Paris, France
| | - Sébastien Jacques
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, F-75014 Paris, France
| | - Frédéric Ziegler
- Department of General Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Valéry Brunel
- Department of General Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Gilles J.P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très hauts Champs (FRE 2034, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1), Université de Lyon, F-69100 Villeurbanne, France
| | | | - Jean-Luc do Rego
- Animal Behavioral Platform (SCAC), HeRacLeS Inserm US51-CNRS UAR2026, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, F-76183 Rouen, France
| | - Jean-Claude do Rego
- Animal Behavioral Platform (SCAC), HeRacLeS Inserm US51-CNRS UAR2026, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, F-76183 Rouen, France
| | - Carlos Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, F-76821, Mont-Saint-Aignan, Cedex, France
| | - Bruce Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Anne-Marie Madec
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, F-69600 Oullins, France
| | - Florence Pinet
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, F-75014 Paris, France
| | - Vincent Richard
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France,Department of Pharmacology, Rouen University Hospital, F-76000 Rouen, France
| | - Ignacio Anegon
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France,Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France,Transgenesis Rat ImmunoPhenomic Platform, F-44000 Nantes, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France,Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jérémy Bellien
- Normandy University, UniRouen, Inserm UMR1096 EnVI, FHU REMOD-VHF, F-76000 Rouen, France; Department of Pharmacology, Rouen University Hospital, F-76000 Rouen, France.
| |
Collapse
|
32
|
Hu W, Jiang C, Kim M, Xiao Y, Richter HJ, Guan D, Zhu K, Krusen BM, Roberts AN, Miller J, Steger DJ, Lazar MA. Isoform-specific functions of PPARγ in gene regulation and metabolism. Genes Dev 2022; 36:300-312. [PMID: 35273075 PMCID: PMC8973844 DOI: 10.1101/gad.349232.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
In this study, Hu et al. investigated the specific functions of the two main PPARγ isoforms by generating mouse lines in which endogenous PPARγ1 and PPARγ2 were epitope-tagged to interrogate isoform-specific genomic binding, and mice deficient in either PPARγ1 or PPARγ2 to assess isoform-specific gene regulation. They show that PPARγ isoforms have specific and separable metabolic functions that may be targeted to improve therapy for insulin resistance and diabetes. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that is a vital regulator of adipogenesis, insulin sensitivity, and lipid metabolism. Activation of PPARγ by antidiabetic thiazolidinediones (TZD) reverses insulin resistance but also leads to weight gain that limits the use of these drugs. There are two main PPARγ isoforms, but the specific functions of each are not established. Here we generated mouse lines in which endogenous PPARγ1 and PPARγ2 were epitope-tagged to interrogate isoform-specific genomic binding, and mice deficient in either PPARγ1 or PPARγ2 to assess isoform-specific gene regulation. Strikingly, although PPARγ1 and PPARγ2 contain identical DNA binding domains, we uncovered isoform-specific genomic binding sites in addition to shared sites. Moreover, PPARγ1 and PPARγ2 regulated a different set of genes in adipose tissue depots, suggesting distinct roles in adipocyte biology. Indeed, mice with selective deficiency of PPARγ1 maintained body temperature better than wild-type or PPARγ2-deficient mice. Most remarkably, although TZD treatment improved glucose tolerance in mice lacking either PPARγ1 or PPARγ2, the PPARγ1-deficient mice were protected from TZD-induced body weight gain compared with PPARγ2-deficient mice. Thus, PPARγ isoforms have specific and separable metabolic functions that may be targeted to improve therapy for insulin resistance and diabetes.
Collapse
Affiliation(s)
- Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hannah J Richter
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dongyin Guan
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brianna M Krusen
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arielle N Roberts
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania 19131, USA
| | - Jessica Miller
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David J Steger
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
33
|
Kassan A, Ait-Aissa K, Kassan M. Gut Microbiota Regulates the Sympathetic Nerve Activity and Peripheral Serotonin Through Hypothalamic MicroRNA-204 in Order to Increase the Browning of White Adipose Tissue in Obesity. Cureus 2022; 14:e21913. [PMID: 35155042 PMCID: PMC8820388 DOI: 10.7759/cureus.21913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
The prevalence of obesity is increasing worldwide, and novel therapeutic strategies such as enhancement of thermogenic pathways in white adipose tissue (WAT) are gaining more attention. The gut/brain axis plays an essential role in promoting the browning of WAT. However, the mechanism by which this axis regulates WAT function is not fully understood. On the other hand, the role of microRNAs (miRNAs) in the control of WAT browning has already been established. Therefore, understanding the communication pathways linking the gut/brain axis and miRNAs might establish a promising intervention for obesity. Our published data showed that microRNA-204 (miR-204), a microRNA that plays an important role in the control of the central nervous system (CNS) and the pathogenesis of obesity, is affected by gut dysbiosis. Therefore, miR-204 could be a key element that controls the browning of WAT by acting as a potential link between the gut microbiota and the brain. In this review, we summarized the current knowledge about communication pathways between the brain, gut, and miR-204 and examined the literature to discuss potential research directions that might lead to a better understanding of the mechanisms underlying the browning of WAT in obesity.
Collapse
Affiliation(s)
- Adam Kassan
- Pharmacy, West Coast University, Los Angeles, USA
| | | | - Modar Kassan
- Physiology, University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
34
|
Lack of TRPV1 aggravates obesity-associated hypertension through the disturbance of mitochondrial Ca2+ homeostasis in brown adipose tissue. Hypertens Res 2022; 45:789-801. [PMID: 35043013 PMCID: PMC9010289 DOI: 10.1038/s41440-021-00842-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/09/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
The combination of obesity and hypertension is associated with high morbidity and mortality; however, the mechanism underlying obesity-induced hypertension remains unclear. In this study, we detected the possible effects of TRPV1, a previously identified antihypertensive calcium (Ca2+) channel in adipose tissue, on the occurrence of obesity and hypertension in mice lacking UCP1, a spontaneously genetically manipulated obesity model, by generating TRPV1 and UCP1 double knockout mice. In these mice, obesity and hypertension appeared earlier and were more severe than in mice with the knockout of UCP1 or TRPV1 alone. The knockout of TRPV1 in UCP1 knockout mice further reduced functional brown adipose tissue (BAT) generation; decreased resting oxygen consumption, heat production, and locomotor activities; and was accompanied by severe mitochondrial respiratory dysfunction in BAT. Mechanistically, TRPV1, UCP1, and LETM1 acted as a complex to maintain an appropriate mitochondrial Ca2+ level, and TRPV1 knockout caused a compensatory increase in mitochondrial Ca2+ uptake via LETM1 activation. However, the compensatory response was blocked in UCP1−/− mice, resulting in dramatically reduced mitochondrial Ca2+ uptake and higher production of ATP and oxidative stress. This study provides in vivo evidence for the critical role of BAT mitochondrial Ca2+ homeostasis in obesity-associated hypertension and indicates that the TRPV1/UCP1/LETM1 complex may be an alternative intervention target.
Collapse
|
35
|
Nuclear Receptors in Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:61-82. [DOI: 10.1007/978-3-031-11836-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Ávila DL, Nunes NAM, Almeida PHRF, Gomes JAS, Rosa COB, Alvarez-Leite JI. Signaling Targets Related to Antiobesity Effects of Capsaicin: A Scoping Review. Adv Nutr 2021; 12:2232-2243. [PMID: 34171094 PMCID: PMC8634413 DOI: 10.1093/advances/nmab064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/22/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023] Open
Abstract
The search for new antiobesogenic agents is increasing because of the current obesity pandemic. Capsaicin (Caps), an exogenous agonist of the vanilloid receptor of transient potential type 1 (TRPV1), has shown promising results in the treatment of obesity. This scoping review aims to verify the pathways mediating the effects of Caps in obesity and the different methods adopted to identify these pathways. The search was carried out using data from the EMBASE, MEDLINE (PubMed), Web of Science, and SCOPUS databases. Studies considered eligible evaluated the mechanisms of action of Caps in obesity models or cell types involved in obesity. Nine studies were included and 100% (n = 6) of the in vivo studies showed a high risk of bias. Of the 9 studies, 66.6% (n = 6) administered Caps orally in the diet and 55.5% (n = 5) used a concentration of Caps of 0.01% in the diet. In vitro, the most tested concentration was 1 μM (88.9%; n = 8). Capsazepine was the antagonist chosen by 66.6% (n = 6) of the studies. Seven studies (77.8%) linked the antiobesogenic effects of Caps to TRPV1 activation and 3 (33.3%) indicated peroxisome proliferator-activated receptor (PPAR) involvement as an upstream connection to TRPV1, rather than a direct metabolic target of Caps. The main secondary effects of Caps were lower weight gain (33.3%; n = 3) or loss (22.2%; n = 2), greater improvement in lipid profile (33.3%; n = 3), lower white adipocyte adipogenesis (33.3%; n = 3), browning process activation (44.4%; n = 4), and higher brown adipocyte activity (33.3%; n = 3) compared with those of the control treatment. Some studies have shown that PPAR agonists modulate TRPV1 activity, and no study has evaluated the simultaneous antagonism of these 2 receptors. Consequently, further studies are necessary to elucidate the role of each of these signaling molecules in the antiobesogenic effects of Caps.
Collapse
Affiliation(s)
- Danielle L Ávila
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Núbia A M Nunes
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo H R F Almeida
- Programa de Pós-Graduação em Medicamentos e Assistência Farmacêutica, Departamento de Farmácia Social, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana A S Gomes
- Instituto de Ciências Biológicas, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carla O B Rosa
- Faculdade de Nutrição, Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jacqueline I Alvarez-Leite
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
37
|
Fang D, Shi X, Jia X, Yang C, Wang L, Du B, Lu T, Shan L, Gao Y. Ups and downs: The PPARγ/p-PPARγ seesaw of follistatin-like 1 and integrin receptor signaling in adipogenesis. Mol Metab 2021; 55:101400. [PMID: 34813964 PMCID: PMC8683615 DOI: 10.1016/j.molmet.2021.101400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Although Follistatin-like protein 1 (FSTL1), as an "adipokine", is highly expressed in preadipocytes, the detail role of FSTL1 in adipogenesis and obesity remains not fully understood. METHODS In vitro differentiation of both Fstl1-/- murine embryonic fibroblasts (MEFs) and stromal vascular fraction (SVF) were measured to assess the specific role of FSTL1 in adipose differentiation. Fstl1 adipocyte-specific knockout mice were generated to evaluate its role in obesity development. Gene expression analysis and phosphorylation patterns were performed to check out the molecular mechanism of the biological function of FSTL1. RESULTS FSTL1 deficiency inhibited preadipocytes differentiation in vitro and obesity development in vivo. Glycosylation at N142 site was pivotal for the biological effect of FSTL1 during adipogenesis; the conversion between PPARγ and p-PPARγ was the key factor for the function of FSTL1. Molecular mechanism studies showed that FSTL1 functions through the integrin/FAK/ERK signaling pathway. CONCLUSIONS Our results suggest that FSTL1 promotes adipogenesis by inhibiting the conversion of PPARγ to p-PPARγ through the integrin/FAK/ERK signaling pathway. Glycosylated modification at N142 of FSTL1 is the key site to exert its biological effect.
Collapse
Affiliation(s)
- Dongliang Fang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinyi Shi
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaowei Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chun Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lulu Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Baopu Du
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Gao
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
38
|
Castro É, Vieira TS, Oliveira TE, Ortiz-Silva M, Andrade ML, Tomazelli CA, Peixoto AS, Sobrinho CR, Moreno MF, Gilio GR, Moreira RJ, Guimarães RC, Perandini LA, Chimin P, Reckziegel P, Moretti EH, Steiner AA, Laplante M, Festuccia WT. Adipocyte-specific mTORC2 deficiency impairs BAT and iWAT thermogenic capacity without affecting glucose uptake and energy expenditure in cold-acclimated mice. Am J Physiol Endocrinol Metab 2021; 321:E592-E605. [PMID: 34541875 DOI: 10.1152/ajpendo.00587.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deletion of mechanistic target of rapamycin complex 2 (mTORC2) essential component rapamycin insensitive companion of mTOR (Rictor) by a Cre recombinase under control of the broad, nonadipocyte-specific aP2/FABP4 promoter impairs thermoregulation and brown adipose tissue (BAT) glucose uptake on acute cold exposure. We investigated herein whether adipocyte-specific mTORC2 deficiency affects BAT and inguinal white adipose tissue (iWAT) signaling, metabolism, and thermogenesis in cold-acclimated mice. For this, 8-wk-old male mice bearing Rictor deletion and therefore mTORC2 deficiency in adipocytes (adiponectin-Cre) and littermates controls were either kept at thermoneutrality (30 ± 1°C) or cold-acclimated (10 ± 1°C) for 14 days and evaluated for BAT and iWAT signaling, metabolism, and thermogenesis. Cold acclimation inhibited mTORC2 in BAT and iWAT, but its residual activity is still required for the cold-induced increases in BAT adipocyte number, total UCP-1 content and mRNA levels of proliferation markers Ki67 and cyclin 1 D, and de novo lipogenesis enzymes ATP-citrate lyase and acetyl-CoA carboxylase. In iWAT, mTORC2 residual activity is partially required for the cold-induced increases in multilocular adipocytes, mitochondrial mass, and uncoupling protein 1 (UCP-1) content. Conversely, BAT mTORC1 activity and BAT and iWAT glucose uptake were upregulated by cold independently of mTORC2. Noteworthy, the impairment in BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency had no major impact on whole body energy expenditure in cold-acclimated mice due to a compensatory activation of muscle shivering. In conclusion, adipocyte mTORC2 deficiency impairs, through different mechanisms, BAT and iWAT total UCP-1 content and thermogenic capacity in cold-acclimated mice, without affecting glucose uptake and whole body energy expenditure.NEW & NOTEWORTHY BAT and iWAT mTORC2 is inhibited by cold acclimation, but its residual activity is required for cold-induced increases in total UCP-1 content and thermogenic capacity, but not glucose uptake and mTORC1 activity. The impaired BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency are compensated by activation of muscle shivering in cold-acclimated mice.
Collapse
Affiliation(s)
- Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thayna S Vieira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maynara L Andrade
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline A Tomazelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo R Gilio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Raphael C Guimarães
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiz A Perandini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Patricia Chimin
- Department of Physical Education, Physical Education and Sports Center, Londrina State University, Parana, Brazil
| | - Patricia Reckziegel
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Eduardo H Moretti
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Mathieu Laplante
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Quebec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Quebec, Canada
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
39
|
PPARs-Orchestrated Metabolic Homeostasis in the Adipose Tissue. Int J Mol Sci 2021; 22:ijms22168974. [PMID: 34445679 PMCID: PMC8396609 DOI: 10.3390/ijms22168974] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention due to their ability to improve metabolic syndromes, and they have also been proposed as classical drug targets for the treatment of hyperlipidemia and type 2 diabetes (T2D) mellitus. In parallel, adipose tissue is known to play a unique role in the pathogenesis of insulin resistance and metabolic syndromes due to its ability to “safely” store lipids and secrete cytokines that regulate whole-body metabolism. Adipose tissue relies on a complex and subtle network of transcription factors to maintain its normal physiological function, by coordinating various molecular events, among which PPARs play distinctive and indispensable roles in adipocyte differentiation, lipid metabolism, adipokine secretion, and insulin sensitivity. In this review, we discuss the characteristics of PPARs with special emphasis on the roles of the different isotypes in adipocyte biology.
Collapse
|
40
|
Physiological Functions of Threonine in Animals: Beyond Nutrition Metabolism. Nutrients 2021; 13:nu13082592. [PMID: 34444752 PMCID: PMC8399342 DOI: 10.3390/nu13082592] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023] Open
Abstract
Threonine (Thr), an essential amino acid for animals and the limiting amino acid in swine and poultry diets, which plays a vital role in the modulation of nutritional metabolism, macromolecular biosynthesis, and gut homeostasis. Current evidence supports that the supplementation of Thr leads to benefits in terms of energy metabolism. Threonine is not only an important component of gastrointestinal mucin, but also acts as a nutritional modulator that influences the intestinal immune system via complex signaling networks, particularly mitogen-activated protein kinase (MAPK) and the target of the rapamycin (TOR) signal pathway. Threonine is also recognized as an indispensable nutrient for cell growth and proliferation. Hence, optimization of Thr requirement may exert a favorable impact on the factors linked to health and diseases in animals. This review focuses on the latest reports of Thr in metabolic pathways and nutritional regulation, as well as the relationship between Thr and relevant physiological functions.
Collapse
|
41
|
Van Nguyen TT, Vu VV, Pham PV. Transcriptional Factors of Thermogenic Adipocyte Development and Generation of Brown and Beige Adipocytes From Stem Cells. Stem Cell Rev Rep 2021; 16:876-892. [PMID: 32728995 DOI: 10.1007/s12015-020-10013-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brown and beige adipocytes have been widely known for their potential to dissipate excessive energy into heat form, resulting in an alleviation of obesity and other overweight-related conditions. This review highlights the origins, characteristics, and functions of the various kinds of adipocytes, as well as their anatomic distribution inside the human body. This review mainly focuses on various essential transcriptional factors such as PRDM16, FGF21, PPARα, PPARγ and PGC-1α, which exert their effects on the development and activation of thermogenic adipocytes via important pathways such as JAK-STAT, cAMP-PKA and PI3K-AKT signaling pathways. Additionally, this review will underline promising strategies to generate an unexhausted source of thermogenic adipocytes differentiated from human stem cells. These exogenous thermogenic adipocytes offer therapeutic potential for improvement of metabolic disorders via application as single cell or whole tissue transplantation. Graphical abstract Caption is required. Please provide.
Collapse
Affiliation(s)
- Thi-Tuong Van Nguyen
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Vuong Van Vu
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Phuc Van Pham
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam. .,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam. .,Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
42
|
Valenti MT, Mattè A, Federti E, Puder M, Anez-Bustillos L, Deiana M, Cheri S, Minoia A, Brugnara C, Di Paolo ML, Dalle Carbonare L, De Franceschi L. Dietary ω-3 Fatty Acid Supplementation Improves Murine Sickle Cell Bone Disease and Reprograms Adipogenesis. Antioxidants (Basel) 2021; 10:antiox10050799. [PMID: 34070133 PMCID: PMC8158389 DOI: 10.3390/antiox10050799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Sickle cell disease (SCD) is a genetic disorder of hemoglobin, leading to chronic hemolytic anemia and multiple organ damage. Among chronic organ complications, sickle cell bone disease (SBD) has a very high prevalence, resulting in long-term disability, chronic pain and fractures. Here, we evaluated the effects of ω-3 (fish oil-based, FD)-enriched diet vs. ω-6 (soybean oil-based, SD)- supplementation on murine SBD. We exposed SCD mice to recurrent hypoxia/reoxygenation (rec H/R), a consolidated model for SBD. In rec H/R SS mice, FD improves osteoblastogenesis/osteogenic activity by downregulating osteoclast activity via miR205 down-modulation and reduces both systemic and local inflammation. We also evaluated adipogenesis in both AA and SS mice fed with either SD or FD and exposed to rec H/R. FD reduced and reprogramed adipogenesis from white to brown adipocyte tissue (BAT) in bone compartments. This was supported by increased expression of uncoupling protein 1(UCP1), a BAT marker, and up-regulation of miR455, which promotes browning of white adipose tissue. Our findings provide new insights on the mechanism of action of ω-3 fatty acid supplementation on the pathogenesis of SBD and strengthen the rationale for ω-3 fatty acid dietary supplementation in SCD as a complementary therapeutic intervention.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, 37128 Verona, Italy; (M.T.V.); (A.M.); (E.F.); (M.D.); (S.C.); (A.M.); (L.D.F.)
| | - Alessandro Mattè
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, 37128 Verona, Italy; (M.T.V.); (A.M.); (E.F.); (M.D.); (S.C.); (A.M.); (L.D.F.)
| | - Enrica Federti
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, 37128 Verona, Italy; (M.T.V.); (A.M.); (E.F.); (M.D.); (S.C.); (A.M.); (L.D.F.)
| | - Mark Puder
- Department of Surgery and The Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.P.); (L.A.-B.)
| | - Lorenzo Anez-Bustillos
- Department of Surgery and The Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.P.); (L.A.-B.)
| | - Michela Deiana
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, 37128 Verona, Italy; (M.T.V.); (A.M.); (E.F.); (M.D.); (S.C.); (A.M.); (L.D.F.)
| | - Samuele Cheri
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, 37128 Verona, Italy; (M.T.V.); (A.M.); (E.F.); (M.D.); (S.C.); (A.M.); (L.D.F.)
| | - Arianna Minoia
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, 37128 Verona, Italy; (M.T.V.); (A.M.); (E.F.); (M.D.); (S.C.); (A.M.); (L.D.F.)
| | - Carlo Brugnara
- Departments of Pathology and Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Luca Dalle Carbonare
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, 37128 Verona, Italy; (M.T.V.); (A.M.); (E.F.); (M.D.); (S.C.); (A.M.); (L.D.F.)
- Correspondence: ; Tel.: +39-045-812-4401
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, 37128 Verona, Italy; (M.T.V.); (A.M.); (E.F.); (M.D.); (S.C.); (A.M.); (L.D.F.)
| |
Collapse
|
43
|
Li M, Zhu J, Wu Q, Wang Q. The combined adverse effects of cis-bifenthrin and graphene oxide on lipid homeostasis in Xenopus laevis. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124876. [PMID: 33360192 DOI: 10.1016/j.jhazmat.2020.124876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Simultaneous exposure to multiple pollutants has received great concerns considering that the interactions between pollutants can alter the environment fate and bioavailability of pollutants with potentially deleterious effects. Graphene oxide (GO) has been widely used in many areas including environmental remediation, biology and agriculture. However, researchers have largely ignored the combined toxicity of GO with coexisting toxicants. Cis-bifenthrin (cis-BF), a typical synthetic pyrethroid insecticide, was frequently detected in the environment, which raised the possibility of interaction between cis-BF and GO. Our study investigated the toxic effects of cis-BF alone or combined with GO on the lipid homeostasis in Xenopus laevis. Tadpoles at 51 stage were exposed to cis-BF (0, 12, 60 and 300 ng/L) or in their combination with GO (0.1 mg/L) for 21 days. Coexposure to cis-BF and GO deteriorated the lipid homeostasis disruption in tadpoles. The up- or down-regulation of lipogenesis genes expression and enzymes activity were amplified in the coexposure groups. Furthermore, the presence of GO enhanced the deleterious impacts of cis-BF on the hepatic function in tadpoles. This study uniquely shows that GO promotes the lipotoxicity and hepatic function deficit caused by cis-BF exposure in frog.
Collapse
Affiliation(s)
- Meng Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaping Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiong Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
44
|
Jeon HJ, Choi DK, Choi J, Lee S, Lee H, Yu JH, Min SH. D-Mannitol Induces a Brown Fat-like Phenotype via a β3-Adrenergic Receptor-Dependent Mechanism. Cells 2021; 10:cells10040768. [PMID: 33807329 PMCID: PMC8066535 DOI: 10.3390/cells10040768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of brown adipocytes within white adipose tissue is associated with phenotypes that exhibit improved metabolism and proper body weight maintenance. Therefore, a variety of dietary agents that facilitate the browning of white adipocytes have been investigated. In this study, we screened a natural product library comprising 133 compounds with the potential to promote the browning of white adipocytes, and found that D-mannitol induces the browning of 3T3-L1 adipocytes by enhancing the expression of brown fat-specific genes and proteins, and upregulating lipid metabolism markers. D-mannitol also increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase 1 (ACC), suggesting a possible role in lipolysis and fat oxidation. Moreover, an increase in the expression of genes associated with D-mannitol-induced browning was strongly correlated with the activation of the β3-adrenergic receptor as well as AMPK, protein kinase A (PKA), and PPARγ coactivator 1α (PGC1α). D-mannitol effectively reduced the body weight of mice fed a high-fat diet, and increased the expression of β1-oxidation and energy expenditure markers, such as Cidea, carnitine palmityl transferase 1 (CPT1), uncoupling protein 1 (UCP1), PGC1α, and acyl-coenzyme A oxidase (ACOX1) in the inguinal white adipose tissue. Our findings suggest that D-mannitol plays a dual regulatory role by inducing the generation of a brown fat-like phenotype and enhancing lipid metabolism. These results indicate that D-mannitol can function as an anti-obesity supplement.
Collapse
|
45
|
Shen Y, Su Y, Silva FJ, Weller AH, Sostre-Colón J, Titchenell PM, Steger DJ, Seale P, Soccio RE. Shared PPARα/γ Target Genes Regulate Brown Adipocyte Thermogenic Function. Cell Rep 2021; 30:3079-3091.e5. [PMID: 32130908 DOI: 10.1016/j.celrep.2020.02.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/10/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Brown adipose tissue (BAT) generates heat to maintain body temperature and suppress obesity. Agonists for nuclear receptors PPARα and PPARγ both affect brown adipocyte function, yet the interplay between these factors in BAT is uncertain. Here, we report that PPARα shares most genomic binding sites with PPARγ, and these common binding sites are more related to BAT function than PPARγ-selective sites without PPARα. Integrating PPARα and PPARγ genomic occupancy with cold-responsive BAT transcriptomes identifies a subset of 16 genes with potential relevance to BAT function. Among these, we focused on the lysosomal protease cathepsin Z (CTSZ) and showed it is necessary for mitochondrial respiration in both mouse and human brown adipocytes. Thus, CTSZ is a shared PPARα/γ target gene in BAT and a regulator of brown adipocyte thermogenic function.
Collapse
Affiliation(s)
- Yachen Shen
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yvonne Su
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francisco J Silva
- Research and Development BioRestorative Therapies, New York, NY 11747, USA
| | - Angela H Weller
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaimarie Sostre-Colón
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Titchenell
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Steger
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond E Soccio
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Chatree S, Sitticharoon C, Maikaew P, Pongwattanapakin K, Keadkraichaiwat I, Churintaraphan M, Sripong C, Sririwichitchai R, Tapechum S. Cissus Quadrangularis enhances UCP1 mRNA, indicative of white adipocyte browning and decreases central obesity in humans in a randomized trial. Sci Rep 2021; 11:2008. [PMID: 33479386 PMCID: PMC7820492 DOI: 10.1038/s41598-021-81606-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Obesity is associated with the growth and expansion of adipocytes which could be decreased via several mechanisms. Cissus Quadrangularis (CQ) extract has been shown to reduce obesity in humans; however, its effect on human white adipocytes (hWA) has not been elucidated. This study aimed to investigate the effects of CQ on obesity, lipolysis, and browning of hWA. CQ treatment in obese humans significantly decreased waist circumference at week 4 and week 8 when compared with the baseline values (p < 0.05 all) and significantly decreased hip circumference at week 8 when compared with the baseline and week 4 values (p < 0.05 all). Serum leptin levels of the CQ-treated group were significantly higher at week 8 compared to baseline levels (p < 0.05). In hWA, glycerol release was reduced in the CQ-treated group when compared with the vehicle-treated group. In the browning experiment, pioglitazone, the PPAR-γ agonist, increased UCP1 mRNA when compared to vehicle (p < 0.01). Interestingly, 10, 100, and 1000 ng/ml CQ extract treatment on hWA significantly enhanced UCP1 expression in a dose-dependent manner when compared to pioglitazone treatment (p < 0.001 all). In conclusion, CQ decreased waist and hip circumferences in obese humans and enhanced UCP1 mRNA in hWA suggestive of its action via browning of hWA.
Collapse
Affiliation(s)
- Saimai Chatree
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Pailin Maikaew
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Kitchaya Pongwattanapakin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Issarawan Keadkraichaiwat
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Malika Churintaraphan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Chanakarn Sripong
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Rungnapa Sririwichitchai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sompol Tapechum
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| |
Collapse
|
47
|
Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front Endocrinol (Lausanne) 2021; 12:624112. [PMID: 33716977 PMCID: PMC7953066 DOI: 10.3389/fendo.2021.624112] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is one of the most extensively studied ligand-inducible transcription factors. Since its identification in the early 1990s, PPARγ is best known for its critical role in adipocyte differentiation, maintenance, and function. Emerging evidence indicates that PPARγ is also important for the maturation and function of various immune system-related cell types, such as monocytes/macrophages, dendritic cells, and lymphocytes. Furthermore, PPARγ controls cell proliferation in various other tissues and organs, including colon, breast, prostate, and bladder, and dysregulation of PPARγ signaling is linked to tumor development in these organs. Recent studies have shed new light on PPARγ (dys)function in these three biological settings, showing unified and diverse mechanisms of action. Classical transactivation-where PPARγ activates genes upon binding to PPAR response elements as a heterodimer with RXRα-is important in all three settings, as underscored by natural loss-of-function mutations in FPLD3 and loss- and gain-of-function mutations in tumors. Transrepression-where PPARγ alters gene expression independent of DNA binding-is particularly relevant in immune cells. Interestingly, gene translocations resulting in fusion of PPARγ with other gene products, which are unique to specific carcinomas, present a third mode of action, as they potentially alter PPARγ's target gene profile. Improved understanding of the molecular mechanism underlying PPARγ activity in the complex regulatory networks in metabolism, cancer, and inflammation may help to define novel potential therapeutic strategies for prevention and treatment of obesity, diabetes, or cancer.
Collapse
Affiliation(s)
- Miguel Hernandez-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marjoleine F. Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Eric Kalkhoven,
| |
Collapse
|
48
|
Chatree S, Sitticharoon C, Maikaew P, Pongwattanapakin K, Keadkraichaiwat I, Churintaraphan M, Sripong C, Sririwichitchai R, Tapechum S. Epigallocatechin gallate decreases plasma triglyceride, blood pressure, and serum kisspeptin in obese human subjects. Exp Biol Med (Maywood) 2021; 246:163-176. [PMID: 33045853 PMCID: PMC7871112 DOI: 10.1177/1535370220962708] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes.
Collapse
Affiliation(s)
- Saimai Chatree
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pailin Maikaew
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kitchaya Pongwattanapakin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Issarawan Keadkraichaiwat
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malika Churintaraphan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanakarn Sripong
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rungnapa Sririwichitchai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sompol Tapechum
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
49
|
Poursharifi P, Attané C, Mugabo Y, Al-Mass A, Ghosh A, Schmitt C, Zhao S, Guida J, Lussier R, Erb H, Chenier I, Peyot ML, Joly E, Noll C, Carpentier AC, Madiraju SRM, Prentki M. Adipose ABHD6 regulates tolerance to cold and thermogenic programs. JCI Insight 2020; 5:140294. [PMID: 33201859 PMCID: PMC7819748 DOI: 10.1172/jci.insight.140294] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Enhanced energy expenditure in brown (BAT) and white adipose tissues (WAT) can be therapeutic against metabolic diseases. We examined the thermogenic role of adipose α/β-hydrolase domain 6 (ABHD6), which hydrolyzes monoacylglycerol (MAG), by employing adipose-specific ABHD6-KO mice. Control and KO mice showed similar phenotypes at room temperature and thermoneutral conditions. However, KO mice were resistant to hypothermia, which can be accounted for by the simultaneously increased lipolysis and lipogenesis of the thermogenic glycerolipid/free fatty acid (GL/FFA) cycle in visceral fat, despite unaltered uncoupling protein 1 expression. Upon cold stress, nuclear 2-MAG levels increased in visceral WAT of the KO mice. Evidence is provided that 2-MAG causes activation of PPARα in white adipocytes, leading to elevated expression and activity of GL/FFA cycle enzymes. In the ABHD6-ablated BAT, glucose and oxidative metabolism were elevated upon cold induction, without changes in GL/FFA cycle and lipid turnover. Moreover, response to in vivo β3-adrenergic stimulation was comparable between KO and control mice. Our data reveal a MAG/PPARα/GL/FFA cycling metabolic signaling network in visceral adipose tissue, which contributes to cold tolerance, and that adipose ABHD6 is a negative modulator of adaptive thermogenesis. Visceral adipose adipose α/β-hydrolase domain 6 regulates cold adaptation and acts as a brake for heat production via the regulation of thermogenic glycerolipid/free fatty acid cycling.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Camille Attané
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Mugabo
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Anfal Al-Mass
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Clémence Schmitt
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Shangang Zhao
- Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Julian Guida
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Roxane Lussier
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Heidi Erb
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Isabelle Chenier
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Erik Joly
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| |
Collapse
|
50
|
Colson C, Batrow PL, Gautier N, Rochet N, Ailhaud G, Peiretti F, Amri EZ. The Rosmarinus Bioactive Compound Carnosic Acid Is a Novel PPAR Antagonist That Inhibits the Browning of White Adipocytes. Cells 2020; 9:cells9112433. [PMID: 33171828 PMCID: PMC7695189 DOI: 10.3390/cells9112433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity. Activation of these receptors induce browning of white adipocyte. The purpose of this work was to characterize the role of carnosic acid (CA), a compound used in traditional medicine, in the control of brown/brite adipocyte formation and function. We used human multipotent adipose-derived stem (hMADS) cells differentiated into white or brite adipocytes. The expression of key marker genes was determined using RT-qPCR and western blotting. We show here that CA inhibits the browning of white adipocytes and favors decreased gene expression of thermogenic markers. CA treatment does not affect β-adrenergic response. Importantly, the effects of CA are fully reversible. We used transactivation assays to show that CA has a PPARα/γ antagonistic action. Our data pinpoint CA as a drug able to control PPAR activity through an antagonistic effect. These observations shed some light on the development of natural PPAR antagonists and their potential effects on thermogenic response.
Collapse
Affiliation(s)
- Cécilia Colson
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Pierre-Louis Batrow
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Nadine Gautier
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Nathalie Rochet
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Gérard Ailhaud
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Franck Peiretti
- Aix Marseille Université, INSERM, INRAE, C2VN, 13007 Marseille, France;
| | - Ez-Zoubir Amri
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
- Correspondence: ; Tel.: +33-493-37-70-82; Fax: +33-493-81-70-58
| |
Collapse
|