1
|
Weng W, He Z, Ma Z, Huang J, Han Y, Feng Q, Qi W, Peng Y, Wang J, Gu J, Wang W, Lin Y, Jiang G, Jiang J, Feng J. Tufm lactylation regulates neuronal apoptosis by modulating mitophagy in traumatic brain injury. Cell Death Differ 2025; 32:530-545. [PMID: 39496783 PMCID: PMC11894137 DOI: 10.1038/s41418-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Lactates accumulation following traumatic brain injury (TBI) is detrimental. However, whether lactylation is triggered and involved in the deterioration of TBI remains unknown. Here, we first report that Tufm lactylation pathway induces neuronal apoptosis in TBI. Lactylation is found significantly increased in brain tissues from patients with TBI and mice with controlled cortical impact (CCI), and in neuronal injury cell models. Tufm, a key factor in mitophagy, is screened and identified to be mostly lactylated. Tufm is detected to be lactylated at K286 and the lactylation inhibits the interaction of Tufm and Tomm40 on mitochondria. The mitochondrial distribution of Tufm is then inhibited. Consequently, Tufm-mediated mitophagy is suppressed while mitochondria-induced neuronal apoptosis is increased. In contrast, the knockin of a lactylation-deficient TufmK286R mutant in mice rescues the mitochondrial distribution of Tufm and Tufm-mediated mitophagy, and improves functional outcome after CCI. Likewise, mild hypothermia, as a critical therapeutic method in neuroprotection, helps in downregulating Tufm lactylation, increasing Tufm-mediated mitophagy, mitigating neuronal apoptosis, and eventually ameliorating the outcome of TBI. A novel molecular mechanism in neuronal apoptosis, TBI-initiated Tufm lactylation suppressing mitophagy, is thus revealed.
Collapse
Affiliation(s)
- Weiji Weng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui He
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Zixuan Ma
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jialin Huang
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Han
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Qiyuan Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenlan Qi
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yidong Peng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiangchang Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiacheng Gu
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenye Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yong Lin
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiyao Jiang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Junfeng Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Head Trauma, Shanghai, China.
| |
Collapse
|
2
|
Zhang Y, Yang Z, Zhang Z, Wang G, Li XD, Hong N. Citrus tristeza virus p20 suppresses antiviral RNA silencing by co-opting autophagy-related protein 8 to mediate the autophagic degradation of SGS3. PLoS Pathog 2025; 21:e1012960. [PMID: 39993018 PMCID: PMC11882097 DOI: 10.1371/journal.ppat.1012960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/05/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Viruses exploit autophagy to degrade host immune components for their successful infection. However, how viral factors sequester the autophagic substrates into autophagosomes remains largely unknown. In this study, we showed that p20 protein, a viral suppressor of RNA silencing (VSR) encoded by citrus tristeza virus (CTV), mediated autophagic degradation of SUPPRESSOR OF GENE SILENCING 3 (SGS3), a plant-specific RNA-binding protein that is pivotal in antiviral RNA silencing. CTV infection activated autophagy, and the overexpression of p20 was sufficient to induce autophagy. Silencing of autophagy-related genes NbATG5 and NbATG7 attenuated CTV infection in Nicotiana benthamiana plants. In contrast, knockdown of the autophagy negative-regulated genes NbGAPCs led to virus accumulation, indicating the proviral role of autophagy in CTV infection. Further investigation found that p20 interacted with autophagy-related protein ATG8 through two ATG8-interacting motifs (AIMs) and sequestered SGS3 into autophagosomes by forming the ATG8-p20-SGS3 ternary complex. The mutations of the two AIMs in p20 (p20mAIM1 and p20mAIM5) abolished the interaction of p20 with ATG8, resulting in the deficiency of autophagy induction, SGS3 degradation, and VSR activity. Consistently, N. benthamiana plants infected with mutated CTVmAIM1 and CTVmAIM5 showed milder symptoms and decreased viral accumulation. Taken together, this study uncovers the molecular mechanism underlying how a VSR mediates the interplay between RNA silencing and autophagy to enhance the infection of a closterovirus.
Collapse
Affiliation(s)
- Yongle Zhang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Huazhong Agricultural University, Wuhan, China
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhe Zhang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Huazhong Agricultural University, Wuhan, China
| | - Xiang-Dong Li
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, China
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Lu S, Chen S, Zhang Y, Mou X, Li M, Zhu S, Chen X, Strandin TM, Jiang Y, Xiang Z, Liu Y, Xiong H, Guo D, Chen L, Li Y, Hou W, Luo F. Hantaan virus glycoprotein Gc induces NEDD4-dependent PTEN ubiquitination and degradation to escape the restriction of autophagosomes and facilitate viral propagation. FASEB J 2025; 39:e70295. [PMID: 39792131 PMCID: PMC11721564 DOI: 10.1096/fj.202401916r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Hantaan virus (HTNV) infection causes severe hemorrhagic fever with renal syndrome (HFRS) in humans and the infectious process can be regulated by autophagy. The phosphatase and tensin homolog (PTEN) protein has antiviral effects and plays a critical role in the autophagy pathway. However, the relationship between PTEN and HTNV infection is not clear and whether PTEN-regulated autophagy involves in HTNV replication is unknown. Here, we identified that HTNV infection inhibits PTEN expression in vitro and in vivo. The HTNV glycoprotein Gc promotes PTEN ubiquitination and degradation through 26S-proteasome pathway via the E3 ubiquitin ligase NEDD4. In addition, knockdown of PTEN prevents autophagy and increases HTNV production, while overexpression of PTEN induces autophagosome formation which can wrap HTNV particles, thus leading to restrain the production of progeny viruses. Altogether, our findings reveal the role of PTEN in HTNV infection by autophagy, highlighting the potential importance of PTEN and autophagy in the treatment of HFRS diseases.
Collapse
Affiliation(s)
- Shuang Lu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- College of Life SciencesSouth‐Central Minzu UniversityWuhanHubeiChina
| | - Shuliang Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Yuqing Zhang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Xiaoli Mou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Mingyang Li
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Shaowei Zhu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Xingyuan Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Tomas M. Strandin
- Department of Virology, MedicumUniversity of HelsinkiHelsinkiFinland
| | - Yale Jiang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
| | - Zhoufu Xiang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Hairong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Deyin Guo
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouGuangdongChina
| | - Liangjun Chen
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yirong Li
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
- School of Public HealthWuhan UniversityWuhanHubeiChina
- Hubei Provincial Key Laboratory of Allergy and ImmunologyWuhanHubeiChina
| | - Fan Luo
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Hubei Provincial Key Laboratory of Allergy and ImmunologyWuhanHubeiChina
- Pingyuan LaboratoryXinxiangHenanChina
| |
Collapse
|
4
|
Zhang WK, Yan JM, Chu M, Li B, Gu XL, Jiang ZZ, Li ZM, Liu PP, Yu TM, Zhou CM, Yu XJ. Bunyavirus SFTSV nucleoprotein exploits TUFM-mediated mitophagy to impair antiviral innate immunity. Autophagy 2025; 21:102-119. [PMID: 39189526 DOI: 10.1080/15548627.2024.2393067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome is an emerging viral hemorrhagic fever caused by a tick-borne bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), with a high case fatality. We previously found that SFTSV nucleoprotein (NP) induces macroautophagy/autophagy to facilitate virus replication. However, the role of NP in antagonizing host innate immunity remains unclear. Mitophagy, a selected form of autophagy, eliminates damaged mitochondria to maintain mitochondrial homeostasis. Here, we demonstrate that SFTSV NP triggers mitophagy to degrade MAVS (mitochondrial antiviral signaling protein), thereby blocking MAVS-mediated antiviral signaling to escape the host immune response. Mechanistically, SFTSV NP translocates to mitochondria by interacting with TUFM (Tu translation elongation factor, mitochondrial), and mediates mitochondrial sequestration into phagophores through interacting with LC3, thus inducing mitophagy. Notably, the N-terminal LC3-interacting region (LIR) motif of NP is essential for mitophagy induction. Collectively, our results demonstrated that SFTSV NP serves as a novel virulence factor, inducing TUFM-mediated mitophagy to degrade MAVS and evade the host immune response.Abbreviation: 3-MA: 3-methyladenine; ACTB: actin beta; co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; DMSO: dimethyl sulfoxide; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GFP: green fluorescent protein; HTNV: Hantan virus; IAV: influenza A virus; IFN: interferon; LAMP1: lysosomal associated membraneprotein 1; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule associatedprotein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MOI: multiplicity of infection; MT-CO2/COXII: mitochondrially encoded cytochrome C oxidase II; NP: nucleoprotein; NSs: nonstructural proteins; poly(I:C): polyinosinic:polycytidylic acid; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SFTSV: severe fever withthrombocytopenia syndrome virus; TCID50: 50% tissue culture infectiousdose; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20:translocase of outer mitochondrial membrane 20; TUFM: Tu translation elongationfactor, mitochondrial.
Collapse
Affiliation(s)
- Wen-Kang Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Jia-Min Yan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Min Chu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Bang Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Xiao-Lan Gu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ze-Zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ze-Min Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Pan-Pan Liu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Tian-Mei Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Chuan-Min Zhou
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
He Y, Shen M, Wang X, Yin A, Liu B, Zhu J, Zhang Z. Suppression of Interferon Response and Antiviral Strategies of Bunyaviruses. Trop Med Infect Dis 2024; 9:205. [PMID: 39330894 PMCID: PMC11435552 DOI: 10.3390/tropicalmed9090205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
The order Bunyavirales belongs to the class of Ellioviricetes and is classified into fourteen families. Some species of the order Bunyavirales pose potential threats to human health. The continuously increasing research reveals that various viruses within this order achieve immune evasion in the host through suppressing interferon (IFN) response. As the types and nodes of the interferon response pathway are continually updated or enriched, the IFN suppression mechanisms and target points of different virus species within this order are also constantly enriched and exhibit variations. For instance, Puumala virus (PUUV) and Tula virus (TULV) can inhibit IFN response through their functional NSs inhibiting downstream factor IRF3 activity. Nevertheless, the IFN suppression mechanisms of Dabie bandavirus (DBV) and Guertu virus (GTV) are mostly mediated by viral inclusion bodies (IBs) or filamentous structures (FSs). Currently, there are no effective drugs against several viruses belonging to this order that pose significant threats to society and human health. While the discovery, development, and application of antiviral drugs constitute a lengthy process, our focus on key targets in the IFN response suppression process of the virus leads to potential antiviral strategies, which provide references for both basic research and practical applications.
Collapse
Affiliation(s)
- Yingying He
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Min Shen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaohe Wang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Anqi Yin
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Bingyan Liu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| | - Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| |
Collapse
|
6
|
Oh S, Mandell MA. Regulation of Mitochondria-Derived Immune Activation by 'Antiviral' TRIM Proteins. Viruses 2024; 16:1161. [PMID: 39066323 PMCID: PMC11281404 DOI: 10.3390/v16071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria are key orchestrators of antiviral responses that serve as platforms for the assembly and activation of innate immune-signaling complexes. In response to viral infection, mitochondria can be triggered to release immune-stimulatory molecules that can boost interferon production. These same molecules can be released by damaged mitochondria to induce pathogenic, antiviral-like immune responses in the absence of infection. This review explores how members of the tripartite motif-containing (TRIM) protein family, which are recognized for their roles in antiviral defense, regulate mitochondria-based innate immune activation. In antiviral defense, TRIMs are essential components of immune signal transduction pathways and function as directly acting viral restriction factors. TRIMs carry out conceptually similar activities when controlling immune activation related to mitochondria. First, they modulate immune-signaling pathways that can be activated by mitochondrial molecules. Second, they co-ordinate the direct removal of mitochondria and associated immune-activating factors through mitophagy. These insights broaden the scope of TRIM actions in innate immunity and may implicate TRIMs in diseases associated with mitochondria-derived inflammation.
Collapse
Affiliation(s)
- Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Nan D, Rao C, Tang Z, Yang W, Wu P, Chen J, Xia Y, Yan J, Liu W, Zhang Z, Hu Z, Chen H, Liao Y, Mao X, Liu X, Zou Q, Li Q. Burkholderia pseudomallei BipD modulates host mitophagy to evade killing. Nat Commun 2024; 15:4740. [PMID: 38834545 PMCID: PMC11150414 DOI: 10.1038/s41467-024-48824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Mitophagy is critical for mitochondrial quality control and function to clear damaged mitochondria. Here, we found that Burkholderia pseudomallei maneuvered host mitophagy for its intracellular survival through the type III secretion system needle tip protein BipD. We identified BipD, interacting with BTB-containing proteins KLHL9 and KLHL13 by binding to the Back and Kelch domains, recruited NEDD8 family RING E3 ligase CUL3 in response to B. pseudomallei infection. Although evidently not involved in regulation of infectious diseases, KLHL9/KLHL13/CUL3 E3 ligase complex was essential for BipD-dependent ubiquitination of mitochondria in mouse macrophages. Mechanistically, we discovered the inner mitochondrial membrane IMMT via host ubiquitome profiling as a substrate of KLHL9/KLHL13/CUL3 complex. Notably, K63-linked ubiquitination of IMMT K211 was required for initiating host mitophagy, thereby reducing mitochondrial ROS production. Here, we show a unique mechanism used by bacterial pathogens that hijacks host mitophagy for their survival.
Collapse
Affiliation(s)
- Dongqi Nan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenbo Yang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pan Wu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiangao Chen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yupei Xia
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenzheng Liu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziyuan Zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqiang Hu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hai Chen
- Sanya People's Hospital, Sanya, China
| | - Yaling Liao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
8
|
Liu N, Pang B, Kang L, Li D, Jiang X, Zhou CM. TUFM in health and disease: exploring its multifaceted roles. Front Immunol 2024; 15:1424385. [PMID: 38868764 PMCID: PMC11167084 DOI: 10.3389/fimmu.2024.1424385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
The nuclear-encoded mitochondrial protein Tu translation elongation factor, mitochondrial (TUFM) is well-known for its role in mitochondrial protein translation. Originally discovered in yeast, TUFM demonstrates significant evolutionary conservation from prokaryotes to eukaryotes. Dysregulation of TUFM has been associated with mitochondrial disorders. Although early hypothesis suggests that TUFM is localized within mitochondria, recent studies identify its presence in the cytoplasm, with this subcellular distribution being linked to distinct functions of TUFM. Significantly, in addition to its established function in mitochondrial protein quality control, recent research indicates a broader involvement of TUFM in the regulation of programmed cell death processes (e.g., autophagy, apoptosis, necroptosis, and pyroptosis) and its diverse roles in viral infection, cancer, and other disease conditions. This review seeks to offer a current summary of TUFM's biological functions and its complex regulatory mechanisms in human health and disease. Insight into these intricate pathways controlled by TUFM may lead to the potential development of targeted therapies for a range of human diseases.
Collapse
Affiliation(s)
- Ning Liu
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Pang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Longfei Kang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongyun Li
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xia Jiang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan-min Zhou
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Li M. Innate immune response against vector-borne bunyavirus infection and viral countermeasures. Front Cell Infect Microbiol 2024; 14:1365221. [PMID: 38711929 PMCID: PMC11070517 DOI: 10.3389/fcimb.2024.1365221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
10
|
Lai X, Wu A, Yu B, Yan H, Luo J, Zheng P, Yu J, Chen D. Retinoic acid alleviates rotavirus-induced intestinal damage by regulating redox homeostasis and autophagic flux in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:409-421. [PMID: 38371474 PMCID: PMC10874719 DOI: 10.1016/j.aninu.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
Rotaviruses (RV) are a major cause of severe gastroenteritis, particularly in neonatal piglets. Despite the availability of effective vaccines, the development of antiviral therapies for RV remains an ongoing challenge. Retinoic acid (RA), a metabolite of vitamin A, has been shown to have anti-oxidative and antiviral properties. However, the mechanism by which RA exerts its intestinal-protective and antiviral effects on RV infection is not fully understood. The study investigates the effects of RA supplementation in Duroc × Landrace × Yorkshire (DLY) piglets challenged with RV. Thirty-six DLY piglets were assigned into six treatments, including a control group, RA treatment group with two concentration gradients (5 and 15 mg/d), RV treatment group, and RV treatment group with the addition of different concentration gradients of RA (5 and 15 mg/d). Our study revealed that RV infection led to extensive intestinal architecture damage, which was mitigated by RA treatment at lower concentrations by increasing the villus height and villus height/crypt depth ratio (P < 0.05), enhancing intestinal stem cell signaling and promoting intestinal barrier functions. In addition, 15 mg/d RA supplementation significantly increased NRF2 and HO-1 protein expression (P < 0.05) and GSH content (P < 0.05), indicating that RA supplementation can enhance anti-oxidative signaling and redox homeostasis after RV challenge. Additionally, the research demonstrated that RA exerts a dual impact on the regulation of autophagy, both stimulating the initiation of autophagy and hindering the flow of autophagic flux. Through the modulation of autophagic flux, RA influence the progression of RV infection. These findings provide new insights into the regulation of redox hemostasis and autophagy by RA and its potential therapeutic application in RV infection.
Collapse
Affiliation(s)
- Xin Lai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Ma L, Han T, Zhan YA. Mechanism and role of mitophagy in the development of severe infection. Cell Death Discov 2024; 10:88. [PMID: 38374038 PMCID: PMC10876966 DOI: 10.1038/s41420-024-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria produce adenosine triphosphate and potentially contribute to proinflammatory responses and cell death. Mitophagy, as a conservative phenomenon, scavenges waste mitochondria and their components in the cell. Recent studies suggest that severe infections develop alongside mitochondrial dysfunction and mitophagy abnormalities. Restoring mitophagy protects against excessive inflammation and multiple organ failure in sepsis. Here, we review the normal mitophagy process, its interaction with invading microorganisms and the immune system, and summarize the mechanism of mitophagy dysfunction during severe infection. We highlight critical role of normal mitophagy in preventing severe infection.
Collapse
Affiliation(s)
- Lixiu Ma
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-An Zhan
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
12
|
Ma H, Yang Y, Nie T, Yan R, Si Y, Wei J, Li M, Liu H, Ye W, Zhang H, Cheng L, Zhang L, Lv X, Luo L, Xu Z, Zhang X, Lei Y, Zhang F. Disparate macrophage responses are linked to infection outcome of Hantan virus in humans or rodents. Nat Commun 2024; 15:438. [PMID: 38200007 PMCID: PMC10781751 DOI: 10.1038/s41467-024-44687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Hantaan virus (HTNV) is asymptomatically carried by rodents, yet causes lethal hemorrhagic fever with renal syndrome in humans, the underlying mechanisms of which remain to be elucidated. Here, we show that differential macrophage responses may determine disparate infection outcomes. In mice, late-phase inactivation of inflammatory macrophage prevents cytokine storm syndrome that usually occurs in HTNV-infected patients. This is attained by elaborate crosstalk between Notch and NF-κB pathways. Mechanistically, Notch receptors activated by HTNV enhance NF-κB signaling by recruiting IKKβ and p65, promoting inflammatory macrophage polarization in both species. However, in mice rather than humans, Notch-mediated inflammation is timely restrained by a series of murine-specific long noncoding RNAs transcribed by the Notch pathway in a negative feedback manner. Among them, the lnc-ip65 detaches p65 from the Notch receptor and inhibits p65 phosphorylation, rewiring macrophages from the pro-inflammation to the pro-resolution phenotype. Genetic ablation of lnc-ip65 leads to destructive HTNV infection in mice. Thus, our findings reveal an immune-braking function of murine noncoding RNAs, offering a special therapeutic strategy for HTNV infection.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
- Department of Anaesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yongheng Yang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710038, China
| | - Rong Yan
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yue Si
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Jing Wei
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, Shaanxi, 710054, China
| | - Mengyun Li
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - He Liu
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Wei Ye
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Hui Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Linfeng Cheng
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Liang Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Xin Lv
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Limin Luo
- Department of Infectious Disease, Air Force Hospital of Southern Theatre Command, Guangzhou, Guangdong, 510602, China
| | - Zhikai Xu
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Xijing Zhang
- Department of Anaesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Yingfeng Lei
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Fanglin Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
13
|
Oh SJ, Yu JW, Ahn JH, Choi ST, Park H, Yun J, Shin OS. Varicella zoster virus glycoprotein E facilitates PINK1/Parkin-mediated mitophagy to evade STING and MAVS-mediated antiviral innate immunity. Cell Death Dis 2024; 15:16. [PMID: 38184594 PMCID: PMC10771418 DOI: 10.1038/s41419-023-06400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Viruses have evolved to control mitochondrial quality and content to facilitate viral replication. Mitophagy is a selective autophagy, in which the damaged or unnecessary mitochondria are removed, and thus considered an essential mechanism for mitochondrial quality control. Although mitophagy manipulation by several RNA viruses has recently been reported, the effect of mitophagy regulation by varicella zoster virus (VZV) remains to be fully determined. In this study, we showed that dynamin-related protein-1 (DRP1)-mediated mitochondrial fission and subsequent PINK1/Parkin-dependent mitophagy were triggered during VZV infection, facilitating VZV replication. In addition, VZV glycoprotein E (gE) promoted PINK1/Parkin-mediated mitophagy by interacting with LC3 and upregulating mitochondrial reactive oxygen species. Importantly, VZV gE inhibited MAVS oligomerization and STING translocation to disrupt MAVS- and STING-mediated interferon (IFN) responses, and PINK1/Parkin-mediated mitophagy was required for VZV gE-mediated inhibition of IFN production. Similarly, carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-mediated mitophagy induction led to increased VZV replication but attenuated IFN production in a three-dimensional human skin organ culture model. Our results provide new insights into the immune evasion mechanism of VZV gE via PINK1/Parkin-dependent mitophagy.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seok Tae Choi
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hosun Park
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jeanho Yun
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Liang Y, Zhan J, Shi H, Ye W, Zhang K, Li J, Wang W, Wang P, Zhang Y, Lian J, Zheng X. The Role of Long Noncoding RNA Negative Regulator of Interferon Response in the Regulation of Hantaan Virus Infection. Viral Immunol 2024; 37:44-56. [PMID: 38324005 DOI: 10.1089/vim.2023.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Hantaan virus (HTNV) is prevalent in Eurasia. It causes hemorrhagic fever with renal syndrome (HFRS). Long noncoding RNAs (lncRNAs) play key roles in regulating innate immunity. Among these, lncRNA negative regulator of interferon response (NRIR) was reported as an inhibitor of several interferon (IFN)-stimulated genes. Our results showed that: NRIR expression was upregulated by HTNV infection in a type I IFN-dependent manner. The expression of NRIR in CD14+ monocytes from HFRS patients in acute phase was significantly higher than that in convalescent phase and healthy controls. HTNV infection in some HTNV-compatible cells was promoted by NRIR. NRIR negatively regulated innate immunity, especially IFITM3 expression. Localized in the nucleus, NRIR bound with HNRNPC, and knockdown of HNRNPC significantly weakened the effect of NRIR in promoting HTNV infection and restored IFITM3 expression. These results indicated that NRIR regulates the innate immune response against HTNV infection possibly through its interaction with HNRNPC and its influence on IFITM3.
Collapse
Affiliation(s)
- Yan Liang
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiayi Zhan
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hongyan Shi
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Medical College of Yan'an University, Yan'an, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Kaixuan Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Medical College of Yan'an University, Yan'an, China
| | - Jiayu Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Pingzhong Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xuyang Zheng
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
15
|
Zhao Y, Che L, Pan M, Huang Y, Fang S, Wang M, Sui L, Wang ZD, Du F, Hou Z, Liu Q. Hantaan virus inhibits type I interferon response by targeting RLR signaling pathways through TRIM25. Virology 2024; 589:109942. [PMID: 38048647 DOI: 10.1016/j.virol.2023.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Hantaan virus (HTNV) is responsible for hemorrhagic fever with renal syndrome (HFRS), primarily due to its ability to inhibit host innate immune responses, such as type I interferon (IFN-I). In this study, we conducted a transcriptome analysis to identify host factors regulated by HTNV nucleocapsid protein (NP) and glycoprotein. Our findings demonstrate that NP and Gc proteins inhibit host IFN-I production by manipulating the retinoic acid-induced gene I (RIG-I)-like receptor (RLR) pathways. Further analysis reveals that HTNV NP and Gc proteins target upstream molecules of MAVS, such as RIG-I and MDA-5, with Gc exhibiting stronger inhibition of IFN-I responses than NP. Mechanistically, NP and Gc proteins interact with tripartite motif protein 25 (TRIM25) to competitively inhibit its interaction with RIG-I/MDA5, suppressing RLR signaling pathways. Our study unveils a cross-talk between HTNV NP/Gc proteins and host immune response, providing valuable insights into the pathogenic mechanism of HTNV.
Collapse
Affiliation(s)
- Yinghua Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China; Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Lihe Che
- Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Mingming Pan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Yuan Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Shu Fang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Mengmeng Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Liyan Sui
- Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Ze-Dong Wang
- Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Fang Du
- Department of Neurology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China.
| | - Quan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China; Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China; School of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, China.
| |
Collapse
|
16
|
Cheng J, Wang Y, Yin L, Liang W, Zhang J, Ma C, Zhang Y, Liu B, Wang J, Zhao W, Li M, Wei L. The nonstructural protein 1 of respiratory syncytial virus hijacks host mitophagy as a novel mitophagy receptor to evade the type I IFN response in HEp-2 cells. mBio 2023; 14:e0148023. [PMID: 37909764 PMCID: PMC10746179 DOI: 10.1128/mbio.01480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE It is a worthy concern for us to understand virus-host interactions which affect progression and prognosis of disease. We demonstrated that the non-structural protein 1 of respiratory syncytial virus (RSV NS1) may act as a novel mitophagy receptor to induce mitophagy by binding LC3B and mitochondrial protein TUFM, and finally dampen interferon (IFN) responses induced by RIG1 and RSV infection. TUFM is beneficial for RSV replication in vivo and vitro. It is new and interesting that RSV NS1 may function as a mitophagy receptor to interact with LC3B. The LIR motif of NS1 protein is essential for its interaction with LC3B. We further confirm that RSV NS1 inhibited IFNβ response and promoted RSV replication in autophagy-dependent mechanisms in vivo and vitro. Our study contributes to understanding virus-host interaction, enriching our insights into RSV pathogenic mechanism and exploiting new antiviral treatments targeting TUFM.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yutong Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lizheng Yin
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Wenzhang Liang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yu Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Bo Liu
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Jiachao Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Weiting Zhao
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
17
|
Hu B, Zhong G, Ding S, Xu K, Peng X, Dong W, Zhou J. African swine fever virus protein p17 promotes mitophagy by facilitating the interaction of SQSTM1 with TOMM70. Virulence 2023; 14:2232707. [PMID: 37442088 PMCID: PMC10348029 DOI: 10.1080/21505594.2023.2232707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/05/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Viruses have developed different strategies to hijack mitophagy to facilitate their replication. However, whether and how African swine fever virus (ASFV) regulates mitophagy are largely unknown. Here, we found that the ASFV-encoded p17 induced mitophagy. Coimmunoprecipitation/mass spectrometry assays identified translocase of outer mitochondrial membrane 70 (TOMM70) as the protein that interacted with p17. The binding of TOMM70 to p17 promoted the binding of the mitophagy receptor SQSTM1 to TOMM70, led to engulfment of mitochondria by autophagosomes, and consequently decreased the number of mitochondria. Consistently, the levels of TOMM70 and TOMM20 decreased substantially after p17 expression or ASFV infection. Furthermore, p17-mediated mitophagy resulted in the degradation of mitochondrial antiviral signalling proteins and inhibited the production of IFN-α, IL-6 and TNFα. Overall, our findings suggest that ASFV p17 regulates innate immunity by inducing mitophagy via the interaction of SQSTM1 with TOMM70.
Collapse
Affiliation(s)
- Boli Hu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, PR, China
| | - Guifang Zhong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, PR, China
| | - Shuxiang Ding
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, PR, China
| | - Kang Xu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, PR, China
| | - Xiran Peng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, PR, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, PR, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, PR, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University First Affiliated Hospital, Hangzhou, PR, China
| |
Collapse
|
18
|
Si Y, Zhang H, Zhou Z, Zhu X, Yang Y, Liu H, Zhang L, Cheng L, Wang K, Ye W, Lv X, Zhang X, Hou W, Zhao G, Lei Y, Zhang F, Ma H. RIPK3 promotes hantaviral replication by restricting JAK-STAT signaling without triggering necroptosis. Virol Sin 2023; 38:741-754. [PMID: 37633447 PMCID: PMC10590702 DOI: 10.1016/j.virs.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Hantaan virus (HTNV) is a rodent-borne virus that causes hemorrhagic fever with renal syndrome (HFRS), resulting in a high mortality rate of 15%. Interferons (IFNs) play a critical role in the anti-hantaviral immune response, and IFN pretreatment efficiently restricts HTNV infection by triggering the expression of a series of IFN-stimulated genes (ISGs) through the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT) pathway. However, the tremendous amount of IFNs produced during late infection could not restrain HTNV replication, and the mechanism remains unclear. Here, we demonstrated that receptor-interacting protein kinase 3 (RIPK3), a crucial molecule that mediates necroptosis, was activated by HTNV and contributed to hantavirus evasion of IFN responses by inhibiting STAT1 phosphorylation. RNA-seq analysis revealed the upregulation of multiple cell death-related genes after HTNV infection, with RIPK3 identified as a key modulator of viral replication. RIPK3 ablation significantly enhanced ISGs expression and restrained HTNV replication, without affecting the expression of pattern recognition receptors (PRRs) or the production of type I IFNs. Conversely, exogenously expressed RIPK3 compromised the host's antiviral response and facilitated HTNV replication. RIPK3-/- mice also maintained a robust ability to clear HTNV with enhanced innate immune responses. Mechanistically, we found that RIPK3 could bind STAT1 and inhibit STAT1 phosphorylation dependent on the protein kinase domain (PKD) of RIPK3 but not its kinase activity. Overall, these observations demonstrated a noncanonical function of RIPK3 during viral infection and have elucidated a novel host innate immunity evasion strategy utilized by HTNV.
Collapse
Affiliation(s)
- Yue Si
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Haijun Zhang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China; Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 710032, China
| | - Ziqing Zhou
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xudong Zhu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yongheng Yang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Kerong Wang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xin Lv
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xijing Zhang
- Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Wugang Hou
- Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China; The College of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China; Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
19
|
Du L, Wu Y, Jia Q, Li J, Li Y, Ma H, Fan Z, Guo X, Li L, Peng Y, Li J, Fang Z, Zhang X. Autophagy Suppresses Ferroptosis by Degrading TFR1 to Alleviate Cognitive Dysfunction in Mice with SAE. Cell Mol Neurobiol 2023; 43:3605-3622. [PMID: 37341832 PMCID: PMC11410008 DOI: 10.1007/s10571-023-01370-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis that is characterized by long-term cognitive impairment, which imposes a heavy burden on families and society. However, its pathological mechanism has not been elucidated. Ferroptosis is a novel form of programmed cell death that is involved in multiple neurodegenerative diseases. In the current study, we found that ferroptosis also participated in the pathological process of cognitive dysfunction in SAE, while Liproxstatin-1 (Lip-1) effectively inhibited ferroptosis and alleviated cognitive impairment. Additionally, since an increasing number of studies have suggested the crosstalk between autophagy and ferroptosis, we further proved the essential role of autophagy in this process and demonstrated the key molecular mechanism of the autophagy-ferroptosis interaction. Currently, we showed that autophagy in the hippocampus was downregulated within 3 days of lipopolysaccharide injection into the lateral ventricle. Moreover, enhancing autophagy ameliorated cognitive dysfunction. Importantly, we found that autophagy suppressed ferroptosis by downregulating transferrin receptor 1 (TFR1) in the hippocampus, thereby alleviating cognitive impairment in mice with SAE. In conclusion, our findings indicated that hippocampal neuronal ferroptosis is associated with cognitive impairment. In addition, enhancing autophagy can inhibit ferroptosis via degradation of TFR1 to ameliorate cognitive impairment in SAE, which shed new light on the prevention and therapy for SAE.
Collapse
Affiliation(s)
- Lixia Du
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - You Wu
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qi Jia
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jin Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yi Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hongwei Ma
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhongmin Fan
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaofeng Guo
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ling Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yuliang Peng
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
| | - Xijing Zhang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
20
|
Yang H, Wang Y, Fan H, Liu F, Feng H, Li X, Chu M, Pan E, Teng D, Chen H, Dong J. Pseudomonas aeruginosa-induced mitochondrial dysfunction inhibits proinflammatory cytokine secretion and enhances cytotoxicity in mouse macrophages in a reactive oxygen species (ROS)-dependent way. J Zhejiang Univ Sci B 2023; 24:1027-1036. [PMID: 37961804 PMCID: PMC10646396 DOI: 10.1631/jzus.b2300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/20/2023] [Indexed: 08/02/2023]
Abstract
随着铜绿假单胞菌(铜绿)的耐药性逐年增强,铜绿感染已经成为公共医疗卫生的重点关注问题。线粒体自噬及其介导的线粒体功能障碍在多种细菌感染中已被报道,但线粒体功能障碍在宿主调控铜绿感染中的作用尚不明确。因此,本研究建立铜绿刺激小鼠巨噬细胞感染模型和小鼠急性铜绿感染模型,探讨铜绿是否通过诱导线粒体自噬改变线粒体功能,进而影响宿主免疫炎症反应和细胞毒性,并通过监测生存率和肺组织病理学变化进一步确定线粒体自噬在小鼠铜绿体内感染模型中的作用。结果表明,铜绿引起小鼠腹腔巨噬细胞线粒体功能障碍,并通过线粒体自噬途径清除铜绿刺激引起的活性氧(ROS)累积,从而抑制铜绿引起的促炎性细胞因子分泌并增强细胞毒性。体内实验进一步确认线粒体自噬在铜绿体内感染中的作用。
Collapse
Affiliation(s)
- Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, the Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, the Second People's Hospital of Lianyungang City, Lianyungang 222000, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingyi Chu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Daoyang Teng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huizhen Chen
- Institute of Neuroscience, the First People's Hospital of Lianyungang, Lianyungang 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
21
|
Wang K, Zhang J, Yang Y, Si Y, Zhou Z, Zhu X, Wu S, Liu H, Zhang H, Zhang L, Cheng L, Ye W, Lv X, Lei Y, Zhang X, Cheng S, Shen L, Zhang F, Ma H. STING strengthens host anti-hantaviral immunity through an interferon-independent pathway. Virol Sin 2023; 38:568-584. [PMID: 37355006 PMCID: PMC10436061 DOI: 10.1016/j.virs.2023.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Hantaan virus (HTNV), the prototype virus of hantavirus, could escape innate immunity by restraining type I interferon (IFN) responses. It is largely unknown whether there existed other efficient anti-hantaviral tactics in host cells. Here, we demonstrate that the stimulator of interferon genes (STING) strengthens the host IFN-independent anti-hantaviral immunity. HTNV infection activates RIG-I through IRE1-XBP 1-mediated ER stress, which further facilitates the subcellular translocation and activation of STING. During this process, STING triggers cellular autophagy by interacting with Rab7A, thus restricting viral replication. To note, the anti-hantaviral effects of STING are independent of canonical IFN signaling. Additionally, neither application of the pharmacological antagonist nor the agonist targeting STING could improve the outcomes of nude mice post HTNV challenge in vivo. However, the administration of plasmids exogenously expressing the mutant C-terminal tail (ΔCTT) STING, which would not trigger the type I IFN responses, protected the nude mice from lethal HTNV infection. In summary, our research revealed a novel antiviral pathway through the RIG-I-STING-autophagy pathway, which offered novel therapeutic strategies against hantavirus infection.
Collapse
Affiliation(s)
- Kerong Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jian Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yongheng Yang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yue Si
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ziqing Zhou
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xudong Zhu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; College of Medicine, Yan'an University, Yan'an 716000, China
| | - Sushan Wu
- College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hui Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Lv
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xijing Zhang
- Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shilin Cheng
- College of Life Sciences, Northwest University, Xi'an 710069, China; Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lixin Shen
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
22
|
Zhu X, Guan Z, Fang Y, Zhang Y, Guan Z, Li S, Peng K. Rift Valley Fever Virus Nucleoprotein Triggers Autophagy to Dampen Antiviral Innate Immune Responses. J Virol 2023; 97:e0181422. [PMID: 36939341 PMCID: PMC10134837 DOI: 10.1128/jvi.01814-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and potentially fatal hemorrhagic fever in humans. Autophagy is a self-degradative process that can restrict viral replication at multiple infection steps. In this study, we evaluated the effects of RVFV-triggered autophagy on viral replication and immune responses. Our results showed that RVFV infection triggered autophagosome formation and induced complete autophagy. Impairing autophagy flux by depleting autophagy-related gene 5 (ATG5), ATG7, or sequestosome 1 (SQSTM1) or treatment with autophagy inhibitors markedly reduced viral RNA synthesis and progeny virus production. Mechanistically, our findings demonstrated that the RVFV nucleoprotein (NP) C-terminal domain interacts with the autophagy receptor SQSTM1 and promotes the SQSTM1-microtubule-associated protein 1 light chain 3 B (LC3B) interaction and autophagy. Deletion of the NP C-terminal domain impaired the interaction between NP and SQSTM1 and its ability to trigger autophagy. Notably, RVFV-triggered autophagy promoted viral infection in macrophages but not in other tested cell types, including Huh7 hepatocytes and human umbilical vein endothelial cells, suggesting cell type specificity of this mechanism. It was further revealed that RVFV NP-triggered autophagy dampens antiviral innate immune responses in infected macrophages to promote viral replication. These results provide novel insights into the mechanisms of RVFV-triggered autophagy and indicate the potential of targeting the autophagy pathway to develop antivirals against RVFV. IMPORTANCE We showed that RVFV infection induced the complete autophagy process. Depletion of the core autophagy genes ATG5, ATG7, or SQSTM1 or pharmacologic inhibition of autophagy in macrophages strongly suppressed RVFV replication. We further revealed that the RVFV NP C-terminal domain interacted with SQSTM1 and enhanced the SQSTM1/LC3B interaction to promote autophagy. RVFV NP-triggered autophagy strongly inhibited virus-induced expression of interferon-stimulated genes in infected macrophages but not in other tested cell types. Our study provides novel insights into the mechanisms of RVFV-triggered autophagy and highlights the potential of targeting autophagy flux to develop antivirals against this virus.
Collapse
Affiliation(s)
- Xiangtao Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zihan Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujie Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhenqiong Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shufen Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| |
Collapse
|
23
|
Fang L, Yu S, Tian X, Fu W, Su L, Chen Z, Yan C, He J, Hong J, Lian W, Liu G, Zhang Y, Zhou J, Hu L. Severe fever with thrombocytopenia syndrome virus replicates in platelets and enhances platelet activation. J Thromb Haemost 2023; 21:1336-1351. [PMID: 36792011 DOI: 10.1016/j.jtha.2023.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) infection causes an emerging hemorrhagic fever in East Asia with a high mortality rate. Thrombocytopenia is a consistent feature of SFTS illness, but the mechanism remains elusive. OBJECTIVES We aimed to better understand the role of platelets in the pathophysiology of SFTSV infection, including the development of thrombocytopenia. METHODS Using platelets from healthy volunteers and patients with SFTS, we evaluated the functional changes in platelets against SFTSV infection. We investigated the direct effect of glycoprotein VI on platelet-SFTSV interaction by quantitative real-time PCR, molecular docking, surface plasmon resonance spectrometry, flow cytometry, western blot, and platelet functional studies in vitro. Interactions of SFTSV and platelet-SFTSV complexes with macrophages were also determined by scanning electron microscope, quantitative real-time PCR, and flow cytometry. RESULTS This study is the first to demonstrate that platelets are capable of harboring and producing SFTSV particles. Structural and functional studies found that SFTSVs bind platelet glycoprotein VI to potentiate platelet activation, including platelet aggregation, adenosine triphosphate release, spreading, clot retraction, coagulation, phosphatidylserine exposure, thrombus formation, and adherence. In vitro mechanistic studies highlighted that the interaction of platelets with human THP-1 cells promoted SFTSV clearance and suppressed cytokine production in macrophages. However, unwanted SFTSV replication in macrophages reciprocally aggravated SFTSV persistence in the circulation, which may contribute to thrombocytopenia and other complications during SFTSV infection. CONCLUSION These findings together highlighted the pathophysiological role of platelets in initial intrinsic defense against SFTSV infections, as well as intertwined processes with host immunity, which can also lead to thrombocytopenia and poor prognosis.
Collapse
Affiliation(s)
- Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Sicong Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxu Tian
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wanrong Fu
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingxuan Su
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China
| | - Zhi Chen
- National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Hangzhou, China
| | - Chunlan Yan
- Department of Biophysics, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ji He
- Blood Center of Zhejiang Province, Hangzhou, China
| | - Jin Hong
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenwen Lian
- National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Hangzhou, China
| | - Gangqiong Liu
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanjun Zhang
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China.
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Liang Hu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
24
|
Zhang T, Yang K, Chen Y, Jiang Y, Zhou Z, Liu J, Du Y, Wang L, Han X, Wu X, Wang X. Impaired autophagy flux by lncRNA NEAT1 is critical for inflammation factors production in human periodontal ligament stem cells with nicotine treatment. J Periodontal Res 2023; 58:70-82. [PMID: 36346119 DOI: 10.1111/jre.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis is the top reason for tooth loss, and smoking significantly increases severe periodontitis risk. Defective autophagy has been reported to play a vital role in periodontitis. This study aimed to elucidate the relationship between autophagy and inflammation factors production in nicotine-treated periodontal ligament stem cells (PDLSCs) and the underlying mechanism. METHODS In this study, transmission electron microscopy, immunofluorescence, and the mCherry-GFP-LC3 plasmid were used to study autophagy flux. The gene levels of inflammation factors and long noncoding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) were detected by quantitative real-time PCR (qRT-PCR). Western blot was performed to assess the protein levels of autophagic markers and α7 nicotinic acetylcholine receptor (α7nAChR). RESULTS We found that nicotine impaired autophagosome-lysosome fusion and lysosome functions to block autophagy flux, contributing to inflammatory factors production in nicotine-treated PDLSCs. Moreover, nicotine upregulated NEAT1 by activating α7nAChR. NEAT1 decreased autophagy flux by downregulating syntaxin 17 (STX17). CONCLUSION Our data indicate that NEAT1-decreased autophagy flux is pivotal for inflammation factors production in nicotine-treated PDLSCs.
Collapse
Affiliation(s)
- Taotao Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Kuan Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yujiang Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yuran Jiang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa, China
| | - Jiajia Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yang Du
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Lulu Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xinxin Han
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaojing Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Smeele PH, Vaccari T. Snapshots from within the cell: Novel trafficking and non trafficking functions of Snap29 during tissue morphogenesis. Semin Cell Dev Biol 2023; 133:42-52. [PMID: 35256275 DOI: 10.1016/j.semcdb.2022.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023]
Abstract
Membrane trafficking is a core cellular process that supports diversification of cell shapes and behaviors relevant to morphogenesis during development and in adult organisms. However, how precisely trafficking components regulate specific differentiation programs is incompletely understood. Snap29 is a multifaceted Soluble N-ethylmaleimide-sensitive factor Attachment protein Receptor, involved in a wide range of trafficking and non-trafficking processes in most cells. A body of knowledge, accrued over more than two decades since its discovery, reveals that Snap29 is essential for establishing and maintaining the operation of a number of cellular events that support cell polarity and signaling. In this review, we first summarize established functions of Snap29 and then we focus on novel ones in the context of autophagy, Golgi trafficking and vesicle fusion at the plasma membrane, as well as on non-trafficking activities of Snap29. We further describe emerging evidence regarding the compartmentalisation and regulation of Snap29. Finally, we explore how the loss of distinct functions of human Snap29 may lead to the clinical manifestations of congenital disorders such as CEDNIK syndrome and how altered SNAP29 activity may contribute to the pathogenesis of cancer, viral infection and neurodegenerative diseases.
Collapse
Affiliation(s)
- Paulien H Smeele
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - Thomas Vaccari
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
26
|
Menke L, Sperber HS, Aji AK, Chiantia S, Schwarzer R, Sieben C. Advances in fluorescence microscopy for orthohantavirus research. Microscopy (Oxf) 2023:6987530. [PMID: 36639937 DOI: 10.1093/jmicro/dfac075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Orthohantaviruses are important zoonotic pathogens responsible for a considerable disease burden globally. Partly due to our incomplete understanding of orthohantavirus replication, there is currently no effective antiviral treatment available. Recently, novel microscopy techniques and cutting-edge, automated image analysis algorithms have emerged, enabling to study cellular, subcellular and even molecular processes in unprecedented detail and depth. To date, fluorescence light microscopy allows us to visualize viral and cellular components and macromolecular complexes in live cells which in turn enables the study of specific steps of the viral replication cycle such as particle entry or protein trafficking at high temporal and spatial resolution. In this review, we highlight how fluorescence microscopy has provided new insights and improved our understanding of orthohantavirus biology. We discuss technical challenges such as studying live infected cells, give alternatives with recombinant protein expression and highlight future opportunities for example the application of super-resolution microscopy techniques, which has shown great potential in studies of different cellular processes and viral pathogens.
Collapse
Affiliation(s)
- Laura Menke
- Nanoscale Infection Biology Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hannah S Sperber
- Institute for Translational HIV Research, University Hospital Essen, Essen, Germany
| | - Amit Koikkarah Aji
- University of Potsdam, Institute of Biochemistry and Biology, Department of Physical Biochemistry, Potsdam, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Department of Physical Biochemistry, Potsdam, Germany
| | - Roland Schwarzer
- Institute for Translational HIV Research, University Hospital Essen, Essen, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
27
|
Tang K, Hou Y, Cheng L, Zhang Y, Li J, Qin Q, Zheng X, Jia X, Zhang C, Zhuang R, Zhang Y, Jin B, Chen L, Ma Y. Increased blood CD226 - inflammatory monocytes with low antigen presenting potential correlate positively with severity of hemorrhagic fever with renal syndrome. Ann Med 2023; 55:2247000. [PMID: 37585670 PMCID: PMC10435008 DOI: 10.1080/07853890.2023.2247000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Hantaan virus (HTNV) infection can cause severe hemorrhagic fever with renal syndrome (HFRS). Inflammatory monocytes (iMOs) are involved in early antiviral responses. Previous studies have found that blood iMOs numbers increase in the acute phase of HFRS. Here, we further identified the phenotypic characteristics of iMOs in HFRS and explored whether phenotypic changes in iMOs were associated with HFRS severity. MATERIALS AND METHODS Blood samples from 85 HFRS patients were used for phenotypic analysis of iMOs by flow cytometry. Plasma HTNV load was determined using RT-PCR. THP-1 cells overexpressing CD226 were used to investigate the effects of CD226 on HLA-DR/DP/DQ and CD80 expression. A mouse model was used to test macrophage phenotype following HTNV infection. RESULTS The proportion of CD226- iMOs in the acute phase of HFRS was 66.83 (35.05-81.72) %, which was significantly higher than that in the convalescent phase (5.32 (1.36-13.52) %) and normal controls (7.39 (1.15-18.11) %) (p < 0.0001). In the acute phase, the proportion of CD226- iMOs increased more in patients with more severe HFRS and correlated positively with HTNV load and negatively with platelet count. Notably, CD226- iMOs expressed lower levels of HLA-DR/DP/DQ and CD80 than CD226+ iMOs, and overexpression CD226 could enhance the expression of HLA-DR/DP/DQ and CD80. In a mouse model, HTNV also induced the expansion of CD226- macrophages, with decreased expression of I-A/I-E and CD80. CONCLUSIONS CD226- iMOs increased during HTNV infection and the decrease in CD226 hampered the expression of HLA-DR/DP/DQ and CD80, which may promote the immune escape of HTNV and exacerbate clinical symptoms.
Collapse
Affiliation(s)
- Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Yongli Hou
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Linfeng Cheng
- Department of Microbiology, The Fourth Military Medical University, Xi’an, P. R. China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Juan Li
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Qi Qin
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Xuyang Zheng
- Center for Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, P. R. China
| | - Xiaozhou Jia
- Eighth Hospital of Xi’an, Xi’an, Shaanxi, P. R. China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| |
Collapse
|
28
|
Fu C, Cao N, Liu W, Zhang Z, Yang Z, Zhu W, Fan S. Crosstalk between mitophagy and innate immunity in viral infection. Front Microbiol 2022; 13:1064045. [PMID: 36590405 PMCID: PMC9800879 DOI: 10.3389/fmicb.2022.1064045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are important organelles involved in cell metabolism and programmed cell death in eukaryotic cells and are closely related to the innate immunity of host cells against viruses. Mitophagy is a process in which phagosomes selectively phagocytize damaged or dysfunctional mitochondria to form autophagosomes and is degraded by lysosomes, which control mitochondrial mass and maintain mitochondrial dynamics and cellular homeostasis. Innate immunity is an important part of the immune system and plays a vital role in eliminating viruses. Viral infection causes many physiological and pathological alterations in host cells, including mitophagy and innate immune pathways. Accumulating evidence suggests that some virus promote self-replication through regulating mitophagy-mediated innate immunity. Clarifying the regulatory relationships among mitochondria, mitophagy, innate immunity, and viral infection will shed new insight for pathogenic mechanisms and antiviral strategies. This review systemically summarizes the activation pathways of mitophagy and the relationship between mitochondria and innate immune signaling pathways, and then discusses the mechanisms of viruses on mitophagy and innate immunity and how viruses promote self-replication by regulating mitophagy-mediated innate immunity.
Collapse
Affiliation(s)
- Cheng Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zilin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zihui Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,*Correspondence: Wenhui Zhu,
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,Shuangqi Fan,
| |
Collapse
|
29
|
Gallo G, Kotlik P, Roingeard P, Monot M, Chevreux G, Ulrich RG, Tordo N, Ermonval M. Diverse susceptibilities and responses of human and rodent cells to orthohantavirus infection reveal different levels of cellular restriction. PLoS Negl Trop Dis 2022; 16:e0010844. [PMID: 36223391 PMCID: PMC9591050 DOI: 10.1371/journal.pntd.0010844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/24/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Orthohantaviruses are rodent-borne emerging viruses that may cause severe diseases in humans but no apparent pathology in their small mammal reservoirs. However, the mechanisms leading to tolerance or pathogenicity in humans and persistence in rodent reservoirs are poorly understood, as is the manner in which they spread within and between organisms. Here, we used a range of cellular and molecular approaches to investigate the interactions of three different orthohantaviruses-Puumala virus (PUUV), responsible for a mild to moderate form of hemorrhagic fever with renal syndrome in humans, Tula virus (TULV) with low pathogenicity, and non-pathogenic Prospect Hill virus (PHV)-with human and rodent host cell lines. Besides the fact that cell susceptibility to virus infection was shown to depend on the cell type and virus strain, the three orthohantaviruses were able to infect Vero E6 and HuH7 human cells, but only the former secreted infectious particles. In cells derived from PUUV reservoir, the bank vole (Myodes glareolus), PUUV achieved a complete viral cycle, while TULV did not enter the cells and PHV infected them but did not produce infectious particles, reflecting differences in host specificity. A search for mature virions by electron microscopy (EM) revealed that TULV assembly occurred in part at the plasma membrane, whereas PHV particles were trapped in autophagic vacuoles in cells of the heterologous rodent host. We described differential interactions of orthohantaviruses with cellular factors, as supported by the cellular distribution of viral nucleocapsid protein with cell compartments, and proteomics identification of cellular partners. Our results also showed that interferon (IFN) dependent gene expression was regulated in a cell and virus species dependent manner. Overall, our study highlighted the complexity of the host-virus relationship and demonstrated that orthohantaviruses are restricted at different levels of the viral cycle. In addition, the study opens new avenues to further investigate how these viruses differ in their interactions with cells to evade innate immunity and how it depends on tissue type and host species.
Collapse
Affiliation(s)
- Giulia Gallo
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, Paris, France
- * E-mail: (ME); (GG)
| | - Petr Kotlik
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Philippe Roingeard
- INSERM U1259 et plateforme IBISA de Microscopie Electronique, Université et CHRU de Tours, Tours, France
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Biomics Platform, C2RT, Paris, France
| | | | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Partner site Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), Greifswald-Insel Riems, Germany
| | - Noël Tordo
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- Institut Pasteur de Guinée, Conakry, Guinée
| | - Myriam Ermonval
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- * E-mail: (ME); (GG)
| |
Collapse
|
30
|
Hu H, Guo L, Overholser J, Wang X. Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities. Cells 2022; 11:cells11193174. [PMID: 36231136 PMCID: PMC9562648 DOI: 10.3390/cells11193174] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022] Open
Abstract
The multifunctional protein, voltage-dependent anion channel 1 (VDAC1), is located on the mitochondrial outer membrane. It is a pivotal protein that maintains mitochondrial function to power cellular bioactivities via energy generation. VDAC1 is involved in regulating energy production, mitochondrial oxidase stress, Ca2+ transportation, substance metabolism, apoptosis, mitochondrial autophagy (mitophagy), and many other functions. VDAC1 malfunction is associated with mitochondrial disorders that affect inflammatory responses, resulting in an up-regulation of the body’s defensive response to stress stimulation. Overresponses to inflammation may cause chronic diseases. Mitochondrial DNA (mtDNA) acts as a danger signal that can further trigger native immune system activities after its secretion. VDAC1 mediates the release of mtDNA into the cytoplasm to enhance cytokine levels by activating immune responses. VDAC1 regulates mitochondrial Ca2+ transportation, lipid metabolism and mitophagy, which are involved in inflammation-related disease pathogenesis. Many scientists have suggested approaches to deal with inflammation overresponse issues via specific targeting therapies. Due to the broad functionality of VDAC1, it may become a useful target for therapy in inflammation-related diseases. The mechanisms of VDAC1 and its role in inflammation require further exploration. We comprehensively and systematically summarized the role of VDAC1 in the inflammatory response, and hope that our research will lead to novel therapeutic strategies that target VDAC1 in order to treat inflammation-related disorders.
Collapse
Affiliation(s)
- Hang Hu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Linlin Guo
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (L.G.); (X.W.)
| | - Jay Overholser
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Correspondence: (L.G.); (X.W.)
| |
Collapse
|
31
|
Tang L, Song Y, Xu J, Chu Y. The role of selective autophagy in pathogen infection. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Małkowska P, Niedźwiedzka-Rystwej P. Factors affecting RIG-I-Like receptors activation - New research direction for viral hemorrhagic fevers. Front Immunol 2022; 13:1010635. [PMID: 36248895 PMCID: PMC9557057 DOI: 10.3389/fimmu.2022.1010635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Viral hemorrhagic fever (VHF) is a term referring to a group of life-threatening infections caused by several virus families (Arenaviridae, Bunyaviridae, Filoviridae and Flaviviridae). Depending on the virus, the infection can be mild and can be also characterized by an acute course with fever accompanied by hypervolemia and coagulopathy, resulting in bleeding and shock. It has been suggested that the course of the disease is strongly influenced by the activation of signaling pathways leading to RIG-I-like receptor-dependent interferon production. RIG-I-like receptors (RLRs) are one of two major receptor families that detect viral nucleic acid. RLR receptor activation is influenced by a number of factors that may have a key role in the differences that occur during the antiviral immune response in VHF. In the present study, we collected data on RLR receptors in viral hemorrhagic fevers and described factors that may influence the activation of the antiviral response. RLR receptors seem to be a good target for VHF research, which may contribute to better therapeutic and diagnostic strategies. However, due to the difficulty of conducting such studies in humans, we suggest using Lagovirus europaeus as an animal model for VHF.
Collapse
Affiliation(s)
- Paulina Małkowska
- Doctoral School, University of Szczecin, Szczecin, Poland
- Institute of Biology, University of Szczecin, Szczecin, Poland
- *Correspondence: Paulina Małkowska,
| | | |
Collapse
|
33
|
Zhu M, Zhang Y, Pan J, Tong X, Zhang X, Hu X, Gong C. Grass Carp Reovirus triggers autophagy enhancing virus replication via the Akt/mTOR pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 128:148-156. [PMID: 35921937 DOI: 10.1016/j.fsi.2022.07.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Autophagy impacts the replication cycle of many viruses. Grass Carp Reovirus (GCRV) is an agent that seriously affects the development of the grass carp aquaculture industry. The role of autophagy in GCRV infection is not clearly understood. In this study, we identified that GCRV infection triggered autophagy in CIK cells, which was demonstrated by transmission electron microscopy, the conversion of LC3B I to LC3B II and the level of autophagy substrate p62. Furthermore, we found that GCRV infection activated Akt-mTOR signaling pathway, and the conversion of LC3B I to LC3B II was increased by inhibiting mTOR with rapamycin (Rap) but decreased by activating Akt with insulin. We then assessed the effects of autophagy on GCRV replication. We found that inducing autophagy with Rap promoted GCRV proliferation but inhibiting autophagy with 3 MA or CQ inhibited GCRV replication in CIK cells. Moreover, it was found that enhancing Akt-mTOR activity by insulin, GCRV VP7 protein and viral titers of GCRV were decreased. Collectively, these results indicated that GCRV infection induced autophagy involved in GCRV replication via the Akt-mTOR signal pathway. Thus, new insights into GCRV pathogenesis and antiviral treatment strategies are provided.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xinyu Tong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
34
|
Tamiya K, Kobayashi S, Yoshii K, Kariwa H. Analysis of the relationship between replication of the Hokkaido genotype of Puumala orthohantavirus and autophagy. Virus Res 2022; 318:198830. [DOI: 10.1016/j.virusres.2022.198830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
|
35
|
Liu HY, Liu YY, Zhang YL, Ning Y, Zhang FL, Li DQ. Poly(ADP-ribosyl)ation of acetyltransferase NAT10 by PARP1 is required for its nucleoplasmic translocation and function in response to DNA damage. Cell Commun Signal 2022; 20:127. [PMID: 35986334 PMCID: PMC9389688 DOI: 10.1186/s12964-022-00932-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
Background N-acetyltransferase 10 (NAT10), an abundant nucleolar protein with both lysine and RNA cytidine acetyltransferase activities, has been implicated in Hutchinson-Gilford progeria syndrome and human cancer. We and others recently demonstrated that NAT10 is translocated from the nucleolus to the nucleoplasm after DNA damage, but the underlying mechanism remains unexplored. Methods The NAT10 and PARP1 knockout (KO) cell lines were generated using CRISPR-Cas9 technology. Knockdown of PARP1 was performed using specific small interfering RNAs targeting PARP1. Cells were irradiated with γ-rays using a 137Cs Gammacell-40 irradiator and subjected to clonogenic survival assays. Co-localization and interaction between NAT10 and MORC2 were examined by immunofluorescent staining and immunoprecipitation assays, respectively. PARylation of NAT10 and translocation of NAT10 were determined by in vitro PARylation assays and immunofluorescent staining, respectively. Results Here, we provide the first evidence that NAT10 underwent covalent PARylation modification following DNA damage, and poly (ADP-ribose) polymerase 1 (PARP1) catalyzed PARylation of NAT10 on three conserved lysine (K) residues (K1016, K1017, and K1020) within its C-terminal nucleolar localization signal motif (residues 983–1025). Notably, mutation of those three PARylation residues on NAT10, pharmacological inhibition of PARP1 activity, or depletion of PARP1 impaired NAT10 nucleoplasmic translocation after DNA damage. Knockdown or inhibition of PARP1 or expression of a PARylation-deficient mutant NAT10 (K3A) attenuated the co-localization and interaction of NAT10 with MORC family CW-type zinc finger 2 (MORC2), a newly identified chromatin-remodeling enzyme involved in DNA damage response, resulting in a decrease in DNA damage-induced MORC2 acetylation at lysine 767. Consequently, expression of a PARylation-defective mutant NAT10 resulted in enhanced cellular sensitivity to DNA damage agents. Conclusion Collectively, these findings indicate that PARP1-mediated PARylation of NAT10 is key for controlling its nucleoplasmic translocation and function in response to DNA damage. Moreover, our findings provide novel mechanistic insights into the sophisticated paradigm of the posttranslational modification-driven cellular response to DNA damage. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00932-1.
Collapse
|
36
|
Li Z, Wang F, Ying Q, Kong D, Zhang X, Dong Y, Liu Y, Zhai D, Chen Z, Jia M, Xue X, Li M, Wu X. In vitro Anti-Hantavirus Activity of Protein Kinase Inhibitor 8G1 Targeting AKT/mTOR/eIF4E Signaling Pathway. Front Microbiol 2022; 13:880258. [PMID: 35847100 PMCID: PMC9279581 DOI: 10.3389/fmicb.2022.880258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hantaan virus (HTNV) is the main cause of hemorrhagic fever with renal syndrome (HFRS) around the world, which results in profound morbidity and mortality. However, there are currently no FDA-approved therapeutics or vaccines against HFRS. To find new anti-HTNV drugs, the inhibitory activity of 901 small molecule kinase inhibitors against HTNV is analyzed. Among these compounds, compound 8G1 inhibits HTNV with a relatively high inhibition rate and lower toxicity. The viral titer and nucleocapsid protein of HTNV are reduced after compound 8G1 treatment in a dose-dependent manner at concentrations ranging from 1 to 20 μM. In addition, the administration of compound 8G1 at the early stage of HTNV infection can inhibit the replication of HTNV. The molecular docking result reveals that compound 8G1 forms interactions with the key amino acid residues of serine/threonine-protein kinase B (Akt), which is responsible for the observed affinity. Then, the mammalian target of rapamycin (mTOR) and eukaryotic translation initiation factor 4E (eIF4E) signaling pathways are inhibited. Our results may help to design novel targets for therapeutic intervention against HTNV infection and to understand the anti-HTNV mechanism of protein kinase inhibitors.
Collapse
Affiliation(s)
- Zhoupeng Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Qikang Ying
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Dehui Kong
- School of Nursing, Army Medical University, Third Military Medical University, Chongqing, China
| | - Xiaoxiao Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yuhang Dong
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yongsheng Liu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Dongsheng Zhai
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Zhou Chen
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Min Jia
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiaoyan Xue
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
- Precision Pharmacy and Drug Development Center, The Fourth Military Medical University, Xi'an, China
- Mingkai Li
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
- *Correspondence: Xingan Wu
| |
Collapse
|
37
|
Guo Y, Tsai HI, Zhang L, Zhu H. Mitochondrial DNA on Tumor-Associated Macrophages Polarization and Immunity. Cancers (Basel) 2022; 14:1452. [PMID: 35326602 PMCID: PMC8946090 DOI: 10.3390/cancers14061452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
As the richest immune cells in most tumor microenvironments (TMEs), tumor-associated macrophages (TAMs) play an important role in tumor development and treatment sensitivity. The phenotypes and functions of TAMs vary according to their sources and tumor progression. Different TAM phenotypes display distinct behaviors in terms of tumor immunity and are regulated by intracellular and exogenous molecules. Additionally, dysfunctional and oxidatively stressed mitochondrial-derived mitochondrial DNA (mtDNA) plays an important role in remodeling the phenotypes and functions of TAMs. This article reviews the interactions between mtDNA and TAMs in the TME and further discusses the influence of their performance on tumor genesis and development.
Collapse
Affiliation(s)
- Yaxin Guo
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hsiang-i Tsai
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Lirong Zhang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| |
Collapse
|
38
|
Zhang Q, Cao S, Qiu F, Kang N. Incomplete autophagy: Trouble is a friend. Med Res Rev 2022; 42:1545-1587. [PMID: 35275411 DOI: 10.1002/med.21884] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
Incomplete autophagy is an impaired self-eating process of intracellular macromolecules and organelles in which accumulated autophagosomes do not fuse with lysosomes for degradation, resulting in the blockage of autophagic flux. In this review, we summarized the literature over the past decade describing incomplete autophagy, and found that different from the double-edged sword effect of general autophagy on promoting cell survival or death, incomplete autophagy plays a crucial role in disrupting cellular homeostasis, and promotes only cell death. What matters is that incomplete autophagy is closely relevant to the pathogenesis and progression of various human diseases, which, meanwhile, intimately linking to the pharmacologic and toxicologic effects of several compounds. Here, we comprehensively reviewed the latest progress of incomplete autophagy on molecular mechanisms and signaling pathways. Moreover, implications of incomplete autophagy for pharmacotherapy are also discussed, which has great relevance for our understanding of the distinctive role of incomplete autophagy in cellular physiology and disease. Consequently, targeting incomplete autophagy may contribute to the development of novel generation therapeutic agents for diverse human diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Department of Medicinal Chemistry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
39
|
Bębnowska D, Niedźwiedzka-Rystwej P. The Interplay between Autophagy and Virus Pathogenesis-The Significance of Autophagy in Viral Hepatitis and Viral Hemorrhagic Fevers. Cells 2022; 11:871. [PMID: 35269494 PMCID: PMC8909602 DOI: 10.3390/cells11050871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a process focused on maintaining the homeostasis of organisms; nevertheless, the role of this process has also been widely documented in viral infections. Thus, xenophagy is a selective form of autophagy targeting viruses. However, the relation between autophagy and viruses is ambiguous-this process may be used as a strategy to fight with a virus, but is also in favor of the virus's replication. In this paper, we have gathered data on autophagy in viral hepatitis and viral hemorrhagic fevers and the relations impacting its viral pathogenesis. Thus, autophagy is a potential therapeutic target, but research is needed to fully understand the mechanisms by which the virus interacts with the autophagic machinery. These studies must be performed in specific research models other than the natural host for many reasons. In this paper, we also indicate Lagovirus europaeus virus as a potentially good research model for acute liver failure and viral hemorrhagic disease.
Collapse
Affiliation(s)
- Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | | |
Collapse
|
40
|
Glon D, Vilmen G, Perdiz D, Hernandez E, Beauclair G, Quignon F, Berlioz-Torrent C, Maréchal V, Poüs C, Lussignol M, Esclatine A. Essential role of hyperacetylated microtubules in innate immunity escape orchestrated by the EBV-encoded BHRF1 protein. PLoS Pathog 2022; 18:e1010371. [PMID: 35275978 PMCID: PMC8942261 DOI: 10.1371/journal.ppat.1010371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Innate immunity constitutes the first line of defense against viruses, in which mitochondria play an important role in the induction of the interferon (IFN) response. BHRF1, a multifunctional viral protein expressed during Epstein-Barr virus reactivation, modulates mitochondrial dynamics and disrupts the IFN signaling pathway. Mitochondria are mobile organelles that move through the cytoplasm thanks to the cytoskeleton and in particular the microtubule (MT) network. MTs undergo various post-translational modifications, among them tubulin acetylation. In this study, we demonstrated that BHRF1 induces MT hyperacetylation to escape innate immunity. Indeed, the expression of BHRF1 induces the clustering of shortened mitochondria next to the nucleus. This "mito-aggresome" is organized around the centrosome and its formation is MT-dependent. We also observed that the α-tubulin acetyltransferase ATAT1 interacts with BHRF1. Using ATAT1 knockdown or a non-acetylatable α-tubulin mutant, we demonstrated that this hyperacetylation is necessary for the mito-aggresome formation. Similar results were observed during EBV reactivation. We investigated the mechanism leading to the clustering of mitochondria, and we identified dyneins as motors that are required for mitochondrial clustering. Finally, we demonstrated that BHRF1 needs MT hyperacetylation to block the induction of the IFN response. Moreover, the loss of MT hyperacetylation blocks the localization of autophagosomes close to the mito-aggresome, impeding BHRF1 to initiate mitophagy, which is essential to inhibiting the signaling pathway. Therefore, our results reveal the role of the MT network, and its acetylation level, in the induction of a pro-viral mitophagy.
Collapse
Affiliation(s)
- Damien Glon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Géraldine Vilmen
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- CRSA, Centre de Recherche Saint-Antoine, UMR-S 938, INSERM, Sorbonne Université, Paris, France
| | - Daniel Perdiz
- INSERM UMR-S 1193, Université Paris-Saclay, Châtenay-Malabry, France
| | - Eva Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Guillaume Beauclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Frédérique Quignon
- Sorbonne Université, CNRS UMR 144, Institut Curie Centre de Recherche, Paris, France
| | | | - Vincent Maréchal
- CRSA, Centre de Recherche Saint-Antoine, UMR-S 938, INSERM, Sorbonne Université, Paris, France
| | - Christian Poüs
- INSERM UMR-S 1193, Université Paris-Saclay, Châtenay-Malabry, France
- Biochimie-Hormonologie, APHP, Hôpitaux Universitaires Paris-Saclay, Site Antoine Béclère, Clamart, France
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
41
|
Choi CY, Vo MT, Nicholas J, Choi YB. Autophagy-competent mitochondrial translation elongation factor TUFM inhibits caspase-8-mediated apoptosis. Cell Death Differ 2022; 29:451-464. [PMID: 34511600 PMCID: PMC8817016 DOI: 10.1038/s41418-021-00868-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria support multiple cell functions, but an accumulation of dysfunctional or excessive mitochondria is detrimental to cells. We previously demonstrated that a defect in the autophagic removal of mitochondria, termed mitophagy, leads to the acceleration of apoptosis induced by herpesvirus productive infection. However, the exact molecular mechanisms underlying activation of mitophagy and regulation of apoptosis remain poorly understood despite the identification of various mitophagy-associated proteins. Here, we report that the mitochondrial translation elongation factor Tu, a mitophagy-associated protein encoded by the TUFM gene, locates in part on the outer membrane of mitochondria (OMM) where it acts as an inhibitor of altered mitochondria-induced apoptosis through its autophagic function. Inducible depletion of TUFM potentiated caspase-8-mediated apoptosis in virus-infected cells with accumulation of altered mitochondria. In addition, TUFM depletion promoted caspase-8 activation induced by treatment with TNF-related apoptosis-inducing ligand in cancer cells, potentially via dysregulation of mitochondrial dynamics and mitophagy. Importantly, we revealed the existence of and structural requirements for autophagy-competent TUFM on the OMM; the GxxxG motif within the N-terminal mitochondrial targeting sequences of TUFM was required for self-dimerization and mitophagy. Furthermore, we found that autophagy-competent TUFM was subject to ubiquitin-proteasome-mediated degradation but stabilized upon mitophagy or autophagy activation. Moreover, overexpression of autophagy-competent TUFM could inhibit caspase-8 activation. These studies extend our knowledge of mitophagy regulation of apoptosis and could provide a novel strategic basis for targeted therapy of cancer and viral diseases.
Collapse
Affiliation(s)
- Chang-Yong Choi
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Mai Tram Vo
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - John Nicholas
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Young Bong Choi
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| |
Collapse
|
42
|
Yan JM, Zhang WK, Yan LN, Jiao YJ, Zhou CM, Yu XJ. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy 2021; 18:1599-1612. [PMID: 34747299 PMCID: PMC9298452 DOI: 10.1080/15548627.2021.1994296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging negatively stranded enveloped RNA bunyavirus that causes SFTS with a high case fatality rate of up to 30%. Macroautophagy/autophagy is an evolutionarily conserved process involved in the maintenance of host homeostasis, which exhibits anti-viral or pro-viral responses in reaction to different viral challenges. However, the interaction between the bunyavirus SFTSV and the autophagic process is still largely unclear. By establishing various autophagy-deficient cell lines, we found that SFTSV triggered RB1CC1/FIP200-BECN1-ATG5-dependent classical autophagy flux. SFTSV nucleoprotein induced BECN1-dependent autophagy by disrupting the BECN1-BCL2 association. Importantly, SFTSV utilized autophagy for the viral life cycle, which not only assembled in autophagosomes derived from the ERGIC and Golgi complex, but also utilized autophagic vesicles for exocytosis. Taken together, our results suggest a novel virus-autophagy interaction model in which bunyavirus SFTSV induces classical autophagy flux for viral assembly and egress processes, suggesting that autophagy inhibition may be a novel therapy for treating or releasing SFTS.
Collapse
Affiliation(s)
- Jia-Min Yan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Wen-Kang Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Li-Na Yan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Yong-Jun Jiao
- Nhc Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China, Nanjing, China
| | - Chuan-Min Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Zhang Y, Ma R, Wang Y, Sun W, Yang Z, Han M, Han T, Wu XA, Liu R. Viruses Run: The Evasion Mechanisms of the Antiviral Innate Immunity by Hantavirus. Front Microbiol 2021; 12:759198. [PMID: 34659193 PMCID: PMC8516094 DOI: 10.3389/fmicb.2021.759198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Hantavirus can cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome (HPS) in America, with high mortality and unknown mechanisms. Innate immunity is the host's first-line defense to bridge the acquired immunity against viral infections. However, hantavirus has evolved various strategies in both molecular and cellular aspects to evade the host's natural immune surveillance. The Interferon-I (IFN-I) signaling pathway, a central link of host defense, induces various antiviral proteins to control the infection. This paper summarizes the molecular mechanisms of hantavirus evasion mechanisms of the IFN signaling pathway and cellular processes such as regulated cell death and cell stress. Besides, hantavirus could also evade immune surveillance evasion through cellular mechanisms, such as upregulating immune checkpoint molecules interfering with viral infections. Understanding hantavirus's antiviral immune evasion mechanisms will deepen our understanding of its pathogenesis and help us develop more effective methods to control and eliminate hantavirus.
Collapse
Affiliation(s)
- Yusi Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Ruixue Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Yutong Wang
- School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Wenjie Sun
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Ziwei Yang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Mingwei Han
- School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Tixin Han
- School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Xing-an Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| |
Collapse
|
44
|
Wang H, Zheng Y, Huang J, Li J. Mitophagy in Antiviral Immunity. Front Cell Dev Biol 2021; 9:723108. [PMID: 34540840 PMCID: PMC8446632 DOI: 10.3389/fcell.2021.723108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are important organelles whose primary function is energy production; in addition, they serve as signaling platforms for apoptosis and antiviral immunity. The central role of mitochondria in oxidative phosphorylation and apoptosis requires their quality to be tightly regulated. Mitophagy is the main cellular process responsible for mitochondrial quality control. It selectively sends damaged or excess mitochondria to the lysosomes for degradation and plays a critical role in maintaining cellular homeostasis. However, increasing evidence shows that viruses utilize mitophagy to promote their survival. Viruses use various strategies to manipulate mitophagy to eliminate critical, mitochondria-localized immune molecules in order to escape host immune attacks. In this article, we will review the scientific advances in mitophagy in viral infections and summarize how the host immune system responds to viral infection and how viruses manipulate host mitophagy to evade the host immune system.
Collapse
Affiliation(s)
- Hongna Wang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China.,GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| |
Collapse
|
45
|
Kell AM. Innate Immunity to Orthohantaviruses: Could Divergent Immune Interactions Explain Host-specific Disease Outcomes? J Mol Biol 2021; 434:167230. [PMID: 34487792 PMCID: PMC8894506 DOI: 10.1016/j.jmb.2021.167230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The genus Orthohantavirus (family Hantaviridae, order Bunyavirales) consists of numerous genetic and pathologically distinct viral species found within rodent and mammalian insectivore populations world-wide. Although reservoir hosts experience persistent asymptomatic infection, numerous rodent-borne orthohantaviruses cause severe disease when transmitted to humans, with case-fatality rates up to 40%. The first isolation of an orthohantavirus occurred in 1976 and, since then, the field has made significant progress in understanding the immune correlates of disease, viral interactions with the human innate immune response, and the immune kinetics of reservoir hosts. Much still remains elusive regarding the molecular mechanisms of orthohantavirus recognition by the innate immune response and viral antagonism within the reservoir host, however. This review provides a summary of the last 45 years of research into orthohantavirus interaction with the host innate immune response. This summary includes discussion of current knowledge involving human, non-reservoir rodent, and reservoir innate immune responses to viruses which cause hemorrhagic fever with renal syndrome and hantavirus cardio-pulmonary syndrome. Review of the literature concludes with a brief proposition for the development of novel tools needed to drive forward investigations into the molecular mechanisms of innate immune activation and consequences for disease outcomes in the various hosts for orthohantaviruses.
Collapse
Affiliation(s)
- Alison M Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud, Albuquerque, NM 87131, United States.
| |
Collapse
|
46
|
Teo QW, van Leur SW, Sanyal S. Escaping the Lion's Den: redirecting autophagy for unconventional release and spread of viruses. FEBS J 2021; 288:3913-3927. [PMID: 33044763 DOI: 10.1111/febs.15590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/30/2022]
Abstract
Autophagy is an evolutionarily conserved process, designed to maintain cellular homeostasis during a range of internal and external stimuli. Conventionally, autophagy is known for coordinated degradation and recycling of intracellular components and removal of cytosolic pathogens. More recently, several lines of evidence have indicated an unconventional, nondegradative role of autophagy for secretion of cargo that lacks a signal peptide. This process referred to as secretory autophagy has also been implicated in the infection cycle of several virus species. This review focuses on the current evidence available on the nondegradative features of autophagy, emphasizing its potential role and unresolved questions in the release and spread of (-) and (+) RNA viruses.
Collapse
Affiliation(s)
- Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong
| | - Sophie Wilhelmina van Leur
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong.,Sir William Dunn School of Pathology, University of Oxford, UK
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong.,Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
47
|
Liu R, Ma R, Liu Z, Hu H, Shu J, Hu P, Kang J, Zhang Y, Han M, Zhang X, Zheng Y, Ying Q, Hou S, Wang W, Wang F, Cheng N, Zhuang Y, Lian J, Jin X, Wu X. HTNV infection of CD8 + T cells is associated with disease progression in HFRS patients. Commun Biol 2021; 4:652. [PMID: 34079056 PMCID: PMC8173013 DOI: 10.1038/s42003-021-02182-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/05/2021] [Indexed: 12/28/2022] Open
Abstract
Hantaan viruses (HTNVs) are zoonotic pathogens transmitted mainly by rodents and capable of infecting humans. Increasing knowledge of the human response to HTNV infection can guide the development of new preventative vaccines and therapeutic strategies. Here, we show that HTNV can infect CD8+ T cells in vivo in patients diagnosed with hemorrhagic fever with renal syndrome (HFRS). Electron microscopy-mediated tracking of the life cycle and ultrastructure of HTNV-infected CD8+ T cells in vitro showed an association between notable increases in cytoplasmic multivesicular bodies and virus production. Notably, based on a clinical cohort of 280 patients, we found that circulating HTNV-infected CD8+ T cell numbers in blood were proportional to disease severity. These results demonstrate that viral infected CD8+ T cells may be used as an adjunct marker for monitoring HFRS disease progression and that modulating T cell functions may be explored for new treatment strategies.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ruixue Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ziyu Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Haifeng Hu
- Department of Infective Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiayi Shu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peizhen Hu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Junjun Kang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yusi Zhang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mingwei Han
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaoxiao Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yiting Zheng
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qikang Ying
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shiyuan Hou
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenqiu Wang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ning Cheng
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, 94115, USA
| | - Yan Zhuang
- Department of Infective Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianqi Lian
- Department of Infective Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xia Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
48
|
Zhou CM, Yu XJ. Unraveling the Underlying Interaction Mechanism Between Dabie bandavirus and Innate Immune Response. Front Immunol 2021; 12:676861. [PMID: 34122440 PMCID: PMC8190332 DOI: 10.3389/fimmu.2021.676861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
The genus Bandavirus consists of seven tick-borne bunyaviruses, among which four are known to infect humans. Dabie bandavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), poses serious threats to public health worldwide. SFTSV is a tick-borne virus mainly reported in China, South Korea, and Japan with a mortality rate of up to 30%. To date, most immunology-related studies focused on the antagonistic role of SFTSV non-structural protein (NSs) in sequestering RIG-I-like-receptors (RLRs)-mediated type I interferon (IFN) induction and type I IFN mediated signaling pathway. It is still elusive whether the interaction of SFTSV and other conserved innate immune responses exists. As of now, no specific vaccines or therapeutics are approved for SFTSV prevention or treatments respectively, in part due to a lack of comprehensive understanding of the molecular interactions occurring between SFTSV and hosts. Hence, it is necessary to fully understand the host-virus interactions including antiviral responses and viral evasion mechanisms. In this review, we highlight the recent progress in understanding the pathogenesis of SFTS and speculate underlying novel mechanisms in response to SFTSV infection.
Collapse
Affiliation(s)
- Chuan-min Zhou
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue-jie Yu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Herpesvirus Regulation of Selective Autophagy. Viruses 2021; 13:v13050820. [PMID: 34062931 PMCID: PMC8147283 DOI: 10.3390/v13050820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Selective autophagy has emerged as a key mechanism of quality and quantity control responsible for the autophagic degradation of specific subcellular organelles and materials. In addition, a specific type of selective autophagy (xenophagy) is also activated as a line of defense against invading intracellular pathogens, such as viruses. However, viruses have evolved strategies to counteract the host’s antiviral defense and even to activate some proviral types of selective autophagy, such as mitophagy, for their successful infection and replication. This review discusses the current knowledge on the regulation of selective autophagy by human herpesviruses.
Collapse
|
50
|
Viret C, Duclaux-Loras R, Nancey S, Rozières A, Faure M. Selective Autophagy Receptors in Antiviral Defense. Trends Microbiol 2021; 29:798-810. [PMID: 33678557 DOI: 10.1016/j.tim.2021.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Autophagy ensures the degradation of cytosolic substrates by the lysosomal pathway. Cargoes destined to be eliminated are confined within double-membrane vesicles called autophagosomes, prior to fusion with endolysosomal vacuoles. Autophagy receptors selectively interact with cargoes and route them to elongating autophagic membranes, a process referred to as selective autophagy. Besides contributing to cell homeostasis, selective autophagy constitutes an important cell-autonomous defense mechanism against viruses. We review observations related to selective autophagy receptor engagement during host cell responses to virus infection. We examine the distinct roles of autophagy receptors in antiviral autophagy, consider the strategies viruses have evolved to escape or oppose such restrictions, and delineate the contributions of selective autophagy to the tailoring of antiviral innate responses. Finally, we mention some open and emerging questions in the field.
Collapse
Affiliation(s)
- Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; Department of Pediatric Hepatology, Gastroenterology and Nutrition, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; Department of Gastroenterology, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France.
| |
Collapse
|