1
|
Sutar J, Jayal P, Mullick R, Chaudhary S, Kamble P, Bhowmick S, Kaginkar S, Padwal V, Devadiga P, Neman N, Kitchin D, Kaldine H, Mkhize NN, Ndlovu B, Gounder K, Mukherjee S, Shrivas S, Sharma N, Prasad C, Tewatia S, Parihar N, Kumar N, Kasarpalkar N, Singh B, Mohapatra S, Aquil M, Kumar CV, Dinesha TR, Srikrishnan AK, Shastri J, Agrawal S, Gaikwad S, Mondal S, Bandyopadhyay B, Guha SK, Kale D, Biswas D, Patil D, Paranjape RS, Mukhopadhyay S, Hema, Das R, Kondapi A, Bhor V, Deshpande S, Sok D, Ndung'u T, Moore PL, Murugavel KG, Patel V, Bhattacharya J. Distinct region-specific neutralization profiles of contemporary HIV-1 clade C against best-in-class broadly neutralizing antibodies. J Virol 2025:e0000825. [PMID: 40377318 DOI: 10.1128/jvi.00008-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/11/2025] [Indexed: 05/18/2025] Open
Abstract
While broadly neutralizing antibodies (bnAbs) have been clinically shown to prevent HIV-1 acquisition, their relative effectiveness against regionally relevant HIV-1 forms is not clear. In the present study, we examined the extent of neutralization susceptibility of contemporary HIV-1 Indian clade C at a population level along with a head-to-head comparison with that from South Africa against a panel of clinically relevant best-in-class bnAbs. Env-pseudotyped viruses encoding HIV-1 India clade C env were found to be best neutralized by the V3 glycan-directed bnAbs (10-1074 and BG18) and select CD4 binding site (CD4bs)-directed bnAbs (VRC07, N6, and 1-18); however, they demonstrated significant resistance to V1/V2 apex-directed bnAbs. Interestingly, the magnitude of the neutralization sensitivity differed between contemporary India and South Africa clade C. Neutralization resistance to key bnAbs was observed to be associated with differences in residues on Env that form bnAb contact sites, gp120 loop lengths, and potential N-linked glycans. Notably, the second generation CD4bs bnAbs (VRC07, N6, 1-18) showed neutralization of VRC01- and 3BNC117-resistant viruses but with two- to sevenfold reduced potency compared to the VRC01-sensitive counterparts, likely due to the enrichment of resistance-associated residues observed in loop D. Predictive analysis indicated that the combination of BG18, N6, and PGDM1400 can provide over 95% neutralization coverage of contemporary India clade C at 1 µg/mL (IC80), an observation distinct from that observed with Africa clade C. Our study clearly highlights that both the complementarity of bnAb classes and the regionally relevant HIV-1 forms are important in achieving clinical effectiveness.IMPORTANCEWhile the development of vaccines to prevent HIV infection remains a global priority, their potential effectiveness is limited by the extraordinarily diversified circulating forms of HIV-1. The prospect of best-in-class broadly neutralizing antibodies (bnAbs) as a potential prevention option has been demonstrated in several studies, including the phase 2b Antibody-Mediated Prevention trials; however, to be broadly applicable, bnAbs will need to overcome the substantial variability of HIV env circulating globally, beyond the regions where efficacy trials are conducted. The present study highlights that the region-specific contemporary HIV-1 clade C viruses not only vary in their degree of susceptibility to the best-in-class clinically relevant bnAbs, but also are evolving at a population level to become increasingly resistant to the best-in-class bnAbs. Overall, the outcome of this study highlights the need for periodic assessment of sequence and neutralization profiles of the circulating regionally relevant HIV-1 forms toward prioritizing the bnAb combination suitable for effective intervention.
Collapse
Affiliation(s)
- Jyoti Sutar
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- IAVI, Gurugram, Haryana, India
- IAVI, New York, New York, USA
| | - Priyanka Jayal
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ranajoy Mullick
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- IAVI, Gurugram, Haryana, India
- IAVI, New York, New York, USA
| | - Sangeeta Chaudhary
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Prajakta Kamble
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shilpa Bhowmick
- ICMR- National Institute of Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Snehal Kaginkar
- ICMR- National Institute of Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Varsha Padwal
- ICMR- National Institute of Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Pratik Devadiga
- ICMR- National Institute of Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Namrata Neman
- ICMR- National Institute of Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Dale Kitchin
- Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Haajira Kaldine
- Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nonhlanhla N Mkhize
- Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Bongiwe Ndlovu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
| | - Kamini Gounder
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
| | - Sohini Mukherjee
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- IAVI, Gurugram, Haryana, India
- IAVI, New York, New York, USA
| | - Shweta Shrivas
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Neha Sharma
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chaman Prasad
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sonia Tewatia
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Nainika Parihar
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Naresh Kumar
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Nandini Kasarpalkar
- ICMR- National Institute of Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Balwant Singh
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shobha Mohapatra
- Y R Gaitonde Center for AIDS Research & Education, Chennai, Tamil Nadu, India
| | - Mohammad Aquil
- Y R Gaitonde Center for AIDS Research & Education, Chennai, Tamil Nadu, India
| | - C Vishal Kumar
- Y R Gaitonde Center for AIDS Research & Education, Chennai, Tamil Nadu, India
| | | | | | - Jayanthi Shastri
- Topiwala National Medical College and Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai, Maharashtra, India
| | - Sachee Agrawal
- Topiwala National Medical College and Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai, Maharashtra, India
| | - Sushma Gaikwad
- Topiwala National Medical College and Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai, Maharashtra, India
| | | | | | | | - Dipesh Kale
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Debasis Biswas
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Dhanashree Patil
- Dr Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Ramesh S Paranjape
- Dr Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Satyajit Mukhopadhyay
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Hema
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ritika Das
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Anand Kondapi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Vikrant Bhor
- ICMR- National Institute of Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Suprit Deshpande
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Devin Sok
- IAVI-Neutralizing Antibody Center, The Scripps Research, La Jolla, California, USA
- Global Health Investment Corporation, New York, New York, USA
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Penny L Moore
- Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | | | - Vainav Patel
- ICMR- National Institute of Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Jayanta Bhattacharya
- Antibody Translational Research Program, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Molecular and Translational Virology Unit, Center for Virus Research, Vaccines & Therapeutics, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- CEPI Central Laboratory Network (CLN), Bioassay Laboratory, BRIC-Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
2
|
McConnell SA, Casadevall A. New insights into antibody structure with implications for specificity, variable region restriction and isotype choice. Nat Rev Immunol 2025:10.1038/s41577-025-01150-9. [PMID: 40113994 DOI: 10.1038/s41577-025-01150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
The mystery surrounding the mechanisms by which antibody diversity is generated was largely settled in the 1970s by the discoveries of variable gene rearrangements and somatic hypermutation. This led to the paradigm that immunoglobulins are composed of two independent domains - variable and constant - that confer specificity and effector functions, respectively. However, since these early discoveries, there have been a series of observations of communication between the variable and constant domains that affects the overall antibody structure, which suggests that immunoglobulins have a more complex, interconnected functionality than previously thought. Another unresolved issue has been the genesis of 'restricted' antibody responses, characterized by the use of only a few variable region gene segments, despite the enormous potential combinatorial diversity. In this Perspective, we place recent findings related to immunoglobulin structure and function in the context of these immunologically important, historically unsolved problems to propose a new model for how antibody specificity is achieved without autoreactivity.
Collapse
Affiliation(s)
- Scott A McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Mason RD, Zhang B, Morano NC, Shen CH, McKee K, Heimann A, Du R, Nazzari AF, Hodges S, Kanai T, Lin BC, Louder MK, Doria-Rose NA, Zhou T, Shapiro L, Roederer M, Kwong PD, Gorman J. Structural development of the HIV-1 apex-directed PGT145-PGDM1400 antibody lineage. Cell Rep 2025; 44:115223. [PMID: 39826122 PMCID: PMC11883830 DOI: 10.1016/j.celrep.2024.115223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/23/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting the apex of the HIV-1-envelope (Env) trimer comprise the most potent category of HIV-1 bNAbs and have emerged as promising therapeutics. Here, we investigate the development of the HIV-1 apex-directed PGT145-PGDM1400 antibody lineage and report cryo-EM structures at 3.4 Å resolution of PGDM1400 and of an improved PGT145 variant (PGT145-R100aS), each bound to the BG505 Env trimer. Cross-species-based engineering improves PGT145 IC80 breadth to near that of PGDM1400. Despite similar breadth and potency, the two antibodies differ in their residue-level interactions with important apex features, including N160 glycans and apex cavity, with residue 100i of PGT145 (sulfated tyrosine) penetrating ∼7 Å farther than residue 100i of PGDM1400 (aspartic acid). While apex-directed bNAbs from other donors use maturation pathways that often converge on analogous residue-level recognition, our results demonstrate that divergent residue-level recognition can occur within the same lineage, thereby enabling improved coverage of escape variants.
Collapse
Affiliation(s)
- Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas C Morano
- Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley Heimann
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renguang Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shelby Hodges
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tapan Kanai
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
4
|
Xu J, Zhou T, McKee K, Zhang B, Liu C, Nazzari AF, Pegu A, Shen CH, Becker JE, Bender MF, Chan P, Changela A, Chaudhary R, Chen X, Einav T, Kwon YD, Lin BC, Louder MK, Merriam JS, Morano NC, O'Dell S, Olia AS, Rawi R, Roark RS, Stephens T, Teng IT, Tourtellott-Fogt E, Wang S, Yang ES, Shapiro L, Tsybovsky Y, Doria-Rose NA, Casellas R, Kwong PD. Ultrapotent Broadly Neutralizing Human-llama Bispecific Antibodies against HIV-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309268. [PMID: 38704686 PMCID: PMC11234422 DOI: 10.1002/advs.202309268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Indexed: 05/07/2024]
Abstract
Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.
Collapse
Affiliation(s)
- Jianliang Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jordan E Becker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tal Einav
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas C Morano
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan S Roark
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily Tourtellott-Fogt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rafael Casellas
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| |
Collapse
|
5
|
Mahomed S. Broadly neutralizing antibodies for HIV prevention: a comprehensive review and future perspectives. Clin Microbiol Rev 2024; 37:e0015222. [PMID: 38687039 PMCID: PMC11324036 DOI: 10.1128/cmr.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
SUMMARYThe human immunodeficiency virus (HIV) epidemic remains a formidable global health concern, with 39 million people living with the virus and 1.3 million new infections reported in 2022. Despite anti-retroviral therapy's effectiveness in pre-exposure prophylaxis, its global adoption is limited. Broadly neutralizing antibodies (bNAbs) offer an alternative strategy for HIV prevention through passive immunization. Historically, passive immunization has been efficacious in the treatment of various diseases ranging from oncology to infectious diseases. Early clinical trials suggest bNAbs are safe, tolerable, and capable of reducing HIV RNA levels. Although challenges such as bNAb resistance have been noted in phase I trials, ongoing research aims to assess the additive or synergistic benefits of combining multiple bNAbs. Researchers are exploring bispecific and trispecific antibodies, and fragment crystallizable region modifications to augment antibody efficacy and half-life. Moreover, the potential of other antibody isotypes like IgG3 and IgA is under investigation. While promising, the application of bNAbs faces economic and logistical barriers. High manufacturing costs, particularly in resource-limited settings, and logistical challenges like cold-chain requirements pose obstacles. Preliminary studies suggest cost-effectiveness, although this is contingent on various factors like efficacy and distribution. Technological advancements and strategic partnerships may mitigate some challenges, but issues like molecular aggregation remain. The World Health Organization has provided preferred product characteristics for bNAbs, focusing on optimizing their efficacy, safety, and accessibility. The integration of bNAbs in HIV prophylaxis necessitates a multi-faceted approach, considering economic, logistical, and scientific variables. This review comprehensively covers the historical context, current advancements, and future avenues of bNAbs in HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS
Programme of Research in South Africa (CAPRISA), Doris Duke Medical
Research Institute, Nelson R Mandela School of Medicine, University of
KwaZulu-Natal, Durban,
South Africa
| |
Collapse
|
6
|
Roark RS, Habib R, Gorman J, Li H, Connell AJ, Bonsignori M, Guo Y, Hogarty MP, Olia AS, Sowers K, Zhang B, Bibollet-Ruche F, Callaghan S, Carey JW, Cerutti G, Harris DR, He W, Lewis E, Liu T, Mason RD, Park Y, Rando JM, Singh A, Wolff J, Lei QP, Louder MK, Doria-Rose NA, Andrabi R, Saunders KO, Seaman MS, Haynes BF, Kulp DW, Mascola JR, Roederer M, Sheng Z, Hahn BH, Shaw GM, Kwong PD, Shapiro L. HIV-1 neutralizing antibodies in SHIV-infected macaques recapitulate structurally divergent modes of human V2 apex recognition with a single D gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598384. [PMID: 38903070 PMCID: PMC11188099 DOI: 10.1101/2024.06.11.598384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Broadly neutralizing antibodies targeting the V2 apex of the HIV-1 envelope trimer are among the most common specificities elicited in HIV-1-infected humans and simian-human immunodeficiency virus (SHIV)-infected macaques. To gain insight into the prevalent induction of these antibodies, we isolated and characterized 11 V2 apex-directed neutralizing antibody lineages from SHIV-infected rhesus macaques. Remarkably, all SHIV-induced V2 apex lineages were derived from reading frame two of the rhesus DH3-15*01 gene. Cryo-EM structures of envelope trimers in complex with antibodies from nine rhesus lineages revealed modes of recognition that mimicked three canonical human V2 apex-recognition modes. Notably, amino acids encoded by DH3-15*01 played divergent structural roles, inserting into a hole at the trimer apex, H-bonding to an exposed strand, or forming part of a loop scaffold. Overall, we identify a DH3-15*01-signature for rhesus V2 apex broadly neutralizing antibodies and show that highly selected genetic elements can play multiple roles in antigen recognition. Highlights Isolated 11 V2 apex-targeted HIV-neutralizing lineages from 10 SHIV-infected Indian-origin rhesus macaquesCryo-EM structures of Fab-Env complexes for nine rhesus lineages reveal modes of recognition that mimic three modes of human V2 apex antibody recognitionAll SHIV-elicited V2 apex lineages, including two others previously published, derive from the same DH3-15*01 gene utilizing reading frame twoThe DH3-15*01 gene in reading frame two provides a necessary, but not sufficient, signature for V2 apex-directed broadly neutralizing antibodiesStructural roles played by DH3-15*01-encoded amino acids differed substantially in different lineages, even for those with the same recognition modePropose that the anionic, aromatic, and extended character of DH3-15*01 in reading frame two provides a selective advantage for V2 apex recognition compared to B cells derived from other D genes in the naïve rhesus repertoireDemonstrate that highly selected genetic elements can play multiple roles in antigen recognition, providing a structural means to enhance recognition diversity.
Collapse
|
7
|
Moyo-Gwete T, Ayres F, Mzindle NB, Makhado Z, Manamela NP, Richardson SI, Kitchin D, van Graan S, van Heerden J, Parbhoo N, Chege GK, Moore PL. Evaluating the antibody response elicited by diverse HIV envelope immunogens in the African green monkey (Vervet) model. Sci Rep 2024; 14:13311. [PMID: 38858452 PMCID: PMC11164991 DOI: 10.1038/s41598-024-63703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
African Green (Vervet) monkeys have been extensively studied to understand the pathogenesis of infectious diseases. Using vervet monkeys as pre-clinical models may be an attractive option for low-resourced areas as they are found abundantly and their maintenance is more cost-effective than bigger primates such as rhesus macaques. We assessed the feasibility of using vervet monkeys as animal models to examine the immunogenicity of HIV envelope trimer immunogens in pre-clinical testing. Three groups of vervet monkeys were subcutaneously immunized with either the BG505 SOSIP.664 trimer, a novel subtype C SOSIP.664 trimer, CAP255, or a combination of BG505, CAP255 and CAP256.SU SOSIP.664 trimers. All groups of vervet monkeys developed robust binding antibodies by the second immunization with the peak antibody response occurring after the third immunization. Similar to binding, antibody dependent cellular phagocytosis was also observed in all the monkeys. While all animals developed potent, heterologous Tier 1 neutralizing antibody responses, autologous neutralization was limited with only half of the animals in each group developing responses to their vaccine-matched pseudovirus. These data suggest that the vervet monkey model may yield distinct antibody responses compared to other models. Further study is required to further determine the utility of this model in HIV immunization studies.
Collapse
Affiliation(s)
- Thandeka Moyo-Gwete
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.
| | - Frances Ayres
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Nonkululeko B Mzindle
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Zanele Makhado
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Nelia P Manamela
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Simone I Richardson
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Dale Kitchin
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Strauss van Graan
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Joritha van Heerden
- Primate Unit and Delft Animal Centre, Centre and Platform Office, South African Medical Research Council, Cape Town, South Africa
| | - Nishal Parbhoo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Gerald K Chege
- Primate Unit and Delft Animal Centre, Centre and Platform Office, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute or Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
8
|
Bai H, Lewitus E, Li Y, Thomas PV, Zemil M, Merbah M, Peterson CE, Thuraisamy T, Rees PA, Hajduczki A, Dussupt V, Slike B, Mendez-Rivera L, Schmid A, Kavusak E, Rao M, Smith G, Frey J, Sims A, Wieczorek L, Polonis V, Krebs SJ, Ake JA, Vasan S, Bolton DL, Joyce MG, Townsley S, Rolland M. Contemporary HIV-1 consensus Env with AI-assisted redesigned hypervariable loops promote antibody binding. Nat Commun 2024; 15:3924. [PMID: 38724518 PMCID: PMC11082178 DOI: 10.1038/s41467-024-48139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
An effective HIV-1 vaccine must elicit broadly neutralizing antibodies (bnAbs) against highly diverse Envelope glycoproteins (Env). Since Env with the longest hypervariable (HV) loops is more resistant to the cognate bnAbs than Env with shorter HV loops, we redesigned hypervariable loops for updated Env consensus sequences of subtypes B and C and CRF01_AE. Using modeling with AlphaFold2, we reduced the length of V1, V2, and V5 HV loops while maintaining the integrity of the Env structure and glycan shield, and modified the V4 HV loop. Spacers are designed to limit strain-specific targeting. All updated Env are infectious as pseudoviruses. Preliminary structural characterization suggests that the modified HV loops have a limited impact on Env's conformation. Binding assays show improved binding to modified subtype B and CRF01_AE Env but not to subtype C Env. Neutralization assays show increases in sensitivity to bnAbs, although not always consistently across clades. Strikingly, the HV loop modification renders the resistant CRF01_AE Env sensitive to 10-1074 despite the absence of a glycan at N332.
Collapse
Affiliation(s)
- Hongjun Bai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Paul V Thomas
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Mélanie Merbah
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Caroline E Peterson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Thujitha Thuraisamy
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Phyllis A Rees
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Agnes Hajduczki
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Bonnie Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Annika Schmid
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Erin Kavusak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Mekhala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Gabriel Smith
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Jessica Frey
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Alicea Sims
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Victoria Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Julie A Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Diane L Bolton
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - M Gordon Joyce
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Samantha Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA.
| |
Collapse
|
9
|
Yuan M, Wilson IA. The D Gene in CDR H3 Determines a Public Class of Human Antibodies to SARS-CoV-2. Vaccines (Basel) 2024; 12:467. [PMID: 38793718 PMCID: PMC11126049 DOI: 10.3390/vaccines12050467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Public antibody responses have been found against many infectious agents. Structural convergence of public antibodies is usually determined by immunoglobulin V genes. Recently, a human antibody public class against SARS-CoV-2 was reported, where the D gene (IGHD3-22) encodes a common YYDxxG motif in heavy-chain complementarity-determining region 3 (CDR H3), which determines specificity for the receptor-binding domain (RBD). In this review, we discuss the isolation, structural characterization, and genetic analyses of this class of antibodies, which have been isolated from various cohorts of COVID-19 convalescents and vaccinees. All eleven YYDxxG antibodies with available structures target the SARS-CoV-2 RBD in a similar binding mode, where the CDR H3 dominates the interaction with antigen. The antibodies target a conserved site on the RBD that does not overlap with the receptor-binding site, but their particular angle of approach results in direct steric hindrance to receptor binding, which enables both neutralization potency and breadth. We also review the properties of CDR H3-dominant antibodies that target other human viruses. Overall, unlike most public antibodies, which are identified by their V gene usage, this newly discovered public class of YYDxxG antibodies is dominated by a D-gene-encoded motif and uncovers further opportunities for germline-targeting vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Yin Y, Guo Y, Jiang Y, Quinlan B, Peng H, Crynen G, He W, Zhang L, Ou T, Bailey CC, Farzan M. In vivo affinity maturation of mouse B cells reprogrammed to express human antibodies. Nat Biomed Eng 2024; 8:361-379. [PMID: 38486104 DOI: 10.1038/s41551-024-01179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/02/2024] [Indexed: 03/21/2024]
Abstract
Mice adoptively transferred with mouse B cells edited via CRISPR to express human antibody variable chains could help evaluate candidate vaccines and develop better antibody therapies. However, current editing strategies disrupt the heavy-chain locus, resulting in inefficient somatic hypermutation without functional affinity maturation. Here we show that these key B-cell functions can be preserved by directly and simultaneously replacing recombined mouse heavy and kappa chains with those of human antibodies, using a single Cas12a-mediated cut at each locus and 5' homology arms complementary to distal V segments. Cells edited in this way to express the human immunodeficiency virus type 1 (HIV-1) broadly neutralizing antibody 10-1074 or VRC26.25-y robustly hypermutated and generated potent neutralizing plasma in vaccinated mice. The 10-1074 variants isolated from the mice neutralized a global panel of HIV-1 isolates more efficiently than wild-type 10-1074 while maintaining its low polyreactivity and long half-life. We also used the approach to improve the potency of anti-SARS-CoV-2 antibodies against recent Omicron strains. In vivo affinity maturation of B cells edited at their native loci may facilitate the development of broad, potent and bioavailable antibodies.
Collapse
Affiliation(s)
- Yiming Yin
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Yan Guo
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Yuxuan Jiang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing, People's Republic of China
| | - Brian Quinlan
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Gogce Crynen
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Wenhui He
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lizhou Zhang
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianling Ou
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Farzan
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
11
|
Gorman J, Cheung CSF, Duan Z, Ou L, Wang M, Chen X, Cheng C, Biju A, Sun Y, Wang P, Yang Y, Zhang B, Boyington JC, Bylund T, Charaf S, Chen SJ, Du H, Henry AR, Liu T, Sarfo EK, Schramm CA, Shen CH, Stephens T, Teng IT, Todd JP, Tsybovsky Y, Verardi R, Wang D, Wang S, Wang Z, Zheng CY, Zhou T, Douek DC, Mascola JR, Ho DD, Ho M, Kwong PD. Cleavage-intermediate Lassa virus trimer elicits neutralizing responses, identifies neutralizing nanobodies, and reveals an apex-situated site-of-vulnerability. Nat Commun 2024; 15:285. [PMID: 38177144 PMCID: PMC10767048 DOI: 10.1038/s41467-023-44534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Zhijian Duan
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Biju
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaping Sun
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yongping Yang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sam Charaf
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Steven J Chen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haijuan Du
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Danyi Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cheng-Yan Zheng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Mitchell Ho
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Stamatatos L. 'Immunization during ART and ATI for HIV-1 vaccine discovery/development'. Curr Opin HIV AIDS 2023; 18:309-314. [PMID: 37712859 PMCID: PMC10552831 DOI: 10.1097/coh.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Explore whether immunization with germline-targeting Env immunogens during ART, followed by ATI, leads to the identification of viral envelope glycoproteins (Envs) that promote and guide the full maturation of broadly neutralizing antibody responses. RECENT FINDINGS The HIV-1 envelope glycoprotein (Env) does not efficiently engage the germline precursors of broadly neutralizing antibodies (bnAbs). However, Env-derived proteins specifically designed to precisely do that, have been recently developed. These 'germline-targeting' Env immunogens activate naïve B cells that express the germline precursors of bnAbs but by themselves cannot guide their maturation towards their broadly neutralizing forms. This requires sequential immunizations with heterologous sets of Envs. These 'booster' Envs are currently unknown. SUMMARY Combining germline-targeting Env immunization approaches during ART with ATI could lead to the identification of natural Envs that are responsible for the maturation of broadly neutralizing antibody responses during infection. Such Envs could then serve as booster immunogens to guide the maturation of glBCRs that have become activated by germline-targeting immunogens in uninfected subjects.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center and University of Washington, Department of Global Health, Seattle, WA, USA
| |
Collapse
|
13
|
Yin Y, Guo Y, Jiang Y, Quinlan B, Peng H, Crynen G, He W, Zhang L, Ou T, Bailey CC, Farzan M. In vivo affinity maturation of murine B cells reprogrammed to express human antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563154. [PMID: 37961481 PMCID: PMC10634681 DOI: 10.1101/2023.10.20.563154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
CRISPR-edited murine B cells engineered to express human antibody variable chains proliferate, class switch, and secrete these antibodies in vaccinated mice. However, current strategies disrupt the heavy-chain locus, resulting in inefficient somatic hypermutation without functional affinity maturation. Here we show that recombined murine heavy- and kappa-variable genes can be directly and simultaneously overwritten, using Cas12a-mediated cuts at their 3'-most J segments and 5' homology arms complementary to distal V segments. Cells edited in this way to express the HIV-1 broadly neutralizing antibodies 10-1074 or VRC26.25-y robustly hypermutated and generated potent neutralizing plasma in vaccinated recipient mice. 10-1074 variants isolated from these mice bound and neutralized HIV-1 envelope glycoprotein more efficiently than wild-type 10-1074 while maintaining or improving its already low polyreactivity and long in vivo half-life. We further validated this approach by generating substantially broader and more potent variants of the anti-SARS-CoV-2 antibodies ZCB11 and S309. Thus, B cells edited at their native loci affinity mature, facilitating development of broad, potent, and bioavailable antibodies and expanding the potential applications of engineered B cells.
Collapse
Affiliation(s)
- Yiming Yin
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Yan Guo
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida; Jupiter, FL 33458
| | - Yuxuan Jiang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University; Beijing 100084, PR China
| | - Brian Quinlan
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida; Jupiter, FL 33458
| | - Haiyong Peng
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida; Jupiter, FL 33458
| | - Gogce Crynen
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida; Jupiter, FL 33458
| | - Wenhui He
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Lizhou Zhang
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Tianling Ou
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Charles C. Bailey
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Michael Farzan
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
14
|
He W, Ou T, Skamangas N, Bailey CC, Bronkema N, Guo Y, Yin Y, Kobzarenko V, Zhang X, Pan A, Liu X, Xu J, Zhang L, Allwardt AE, Mitra D, Quinlan B, Sanders RW, Choe H, Farzan M. Heavy-chain CDR3-engineered B cells facilitate in vivo evaluation of HIV-1 vaccine candidates. Immunity 2023; 56:2408-2424.e6. [PMID: 37531955 PMCID: PMC11092302 DOI: 10.1016/j.immuni.2023.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.
Collapse
Affiliation(s)
- Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Tianling Ou
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Naomi Bronkema
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Yan Guo
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Kobzarenko
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Xia Zhang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Andi Pan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Xin Liu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ava E Allwardt
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Debasis Mitra
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Brian Quinlan
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Hodge EA, Chatterjee A, Chen C, Naika GS, Laohajaratsang M, Mangala Prasad V, Lee KK. An HIV-1 broadly neutralizing antibody overcomes structural and dynamic variation through highly focused epitope targeting. NPJ VIRUSES 2023; 1:2. [PMID: 38665238 PMCID: PMC11041648 DOI: 10.1038/s44298-023-00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 04/28/2024]
Abstract
The existence of broadly cross-reactive antibodies that can neutralize diverse HIV-1 isolates (bnAbs) has been appreciated for more than a decade. Many high-resolution structures of bnAbs, typically with one or two well-characterized HIV-1 Env glycoprotein trimers, have been reported. However, an understanding of how such antibodies grapple with variability in their antigenic targets across diverse viral isolates has remained elusive. To achieve such an understanding requires first characterizing the extent of structural and antigenic variation embodied in Env, and then identifying how a bnAb overcomes that variation at a structural level. Here, using hydrogen/deuterium-exchange mass spectrometry (HDX-MS) and quantitative measurements of antibody binding kinetics, we show that variation in structural ordering in the V1/V2 apex of Env across a globally representative panel of HIV-1 isolates has a marked effect on antibody association rates and affinities. We also report cryo-EM reconstructions of the apex-targeting PGT145 bnAb bound to two divergent Env that exhibit different degrees of structural dynamics throughout the trimer structures. Parallel HDX-MS experiments demonstrate that PGT145 bnAb has an exquisitely focused footprint at the trimer apex where binding did not yield allosteric changes throughout the rest of the structure. These results demonstrate that structural dynamics are a cryptic determinant of antigenicity, and mature antibodies that have achieved breadth and potency in some cases are able to achieve their broad cross-reactivity by "threading the needle" and binding in a highly focused fashion, thus evading and overcoming the variable properties found in Env from divergent isolates.
Collapse
Affiliation(s)
- Edgar A. Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Ananya Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012 India
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195 USA
| | - Gajendra S. Naika
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Mint Laohajaratsang
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012 India
- Center for Infectious Diseases Research, Indian Institute of Science, Bangalore, Karnataka 560012 India
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
16
|
Grant-McAuley W, Morgenlander W, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Blankson J, Wilson E, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Ruczinski I, Kammers K, Laeyendecker O, Larman HB, Eshleman SH. Comprehensive profiling of pre-infection antibodies identifies HIV targets associated with viremic control and viral load. Front Immunol 2023; 14:1178520. [PMID: 37744365 PMCID: PMC10512082 DOI: 10.3389/fimmu.2023.1178520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Background High HIV viral load (VL) is associated with increased transmission risk and faster disease progression. HIV controllers achieve viral suppression without antiretroviral (ARV) treatment. We evaluated viremic control in a community-randomized trial with >48,000 participants. Methods A massively multiplexed antibody profiling system, VirScan, was used to quantify pre- and post-infection antibody reactivity to HIV peptides in 664 samples from 429 participants (13 controllers, 135 viremic non-controllers, 64 other non-controllers, 217 uninfected persons). Controllers had VLs <2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit and one year later. Viremic non-controllers had VLs 2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit. Other non-controllers had either ARV drugs detected at the first HIV-positive visit (n=47) or VLs <2,000 copies/mL with no ARV drugs detected at only one HIV-positive visit (n=17). Results We identified pre-infection HIV antibody reactivities that correlated with post-infection VL. Pre-infection reactivity to an epitope in the HR2 domain of gp41 was associated with controller status and lower VL. Pre-infection reactivity to an epitope in the C2 domain of gp120 was associated with non-controller status and higher VL. Different patterns of antibody reactivity were observed over time for these two epitopes. Conclusion These studies suggest that pre-infection HIV antibodies are associated with controller status and modulation of HIV VL. These findings may inform research on antibody-based interventions for HIV treatment.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ethan Wilson
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | | | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, United States
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Holt GT, Gorman J, Wang S, Lowegard AU, Zhang B, Liu T, Lin BC, Louder MK, Frenkel MS, McKee K, O'Dell S, Rawi R, Shen CH, Doria-Rose NA, Kwong PD, Donald BR. Improved HIV-1 neutralization breadth and potency of V2-apex antibodies by in silico design. Cell Rep 2023; 42:112711. [PMID: 37436900 PMCID: PMC10528384 DOI: 10.1016/j.celrep.2023.112711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 μg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.
Collapse
Affiliation(s)
- Graham T Holt
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Siyu Wang
- Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Anna U Lowegard
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC, USA; Department of Biochemistry, Duke University, Durham, NC, USA; Department of Mathematics, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
18
|
Mkhize NN, Yssel AEJ, Kaldine H, van Dorsten RT, Woodward Davis AS, Beaume N, Matten D, Lambson B, Modise T, Kgagudi P, York T, Westfall DH, Giorgi EE, Korber B, Anthony C, Mapengo RE, Bekker V, Domin E, Eaton A, Deng W, DeCamp A, Huang Y, Gilbert PB, Gwashu-Nyangiwe A, Thebus R, Ndabambi N, Mielke D, Mgodi N, Karuna S, Edupuganti S, Seaman MS, Corey L, Cohen MS, Hural J, McElrath MJ, Mullins JI, Montefiori D, Moore PL, Williamson C, Morris L. Neutralization profiles of HIV-1 viruses from the VRC01 Antibody Mediated Prevention (AMP) trials. PLoS Pathog 2023; 19:e1011469. [PMID: 37384759 PMCID: PMC10337935 DOI: 10.1371/journal.ppat.1011469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/12/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
The VRC01 Antibody Mediated Prevention (AMP) efficacy trials conducted between 2016 and 2020 showed for the first time that passively administered broadly neutralizing antibodies (bnAbs) could prevent HIV-1 acquisition against bnAb-sensitive viruses. HIV-1 viruses isolated from AMP participants who acquired infection during the study in the sub-Saharan African (HVTN 703/HPTN 081) and the Americas/European (HVTN 704/HPTN 085) trials represent a panel of currently circulating strains of HIV-1 and offer a unique opportunity to investigate the sensitivity of the virus to broadly neutralizing antibodies (bnAbs) being considered for clinical development. Pseudoviruses were constructed using envelope sequences from 218 individuals. The majority of viruses identified were clade B and C; with clades A, D, F and G and recombinants AC and BF detected at lower frequencies. We tested eight bnAbs in clinical development (VRC01, VRC07-523LS, 3BNC117, CAP256.25, PGDM1400, PGT121, 10-1074 and 10E8v4) for neutralization against all AMP placebo viruses (n = 76). Compared to older clade C viruses (1998-2010), the HVTN703/HPTN081 clade C viruses showed increased resistance to VRC07-523LS and CAP256.25. At a concentration of 1μg/ml (IC80), predictive modeling identified the triple combination of V3/V2-glycan/CD4bs-targeting bnAbs (10-1074/PGDM1400/VRC07-523LS) as the best against clade C viruses and a combination of MPER/V3/CD4bs-targeting bnAbs (10E8v4/10-1074/VRC07-523LS) as the best against clade B viruses, due to low coverage of V2-glycan directed bnAbs against clade B viruses. Overall, the AMP placebo viruses represent a valuable resource for defining the sensitivity of contemporaneous circulating viral strains to bnAbs and highlight the need to update reference panels regularly. Our data also suggests that combining bnAbs in passive immunization trials would improve coverage of global viruses.
Collapse
Affiliation(s)
- Nonhlanhla N. Mkhize
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna E. J. Yssel
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Haajira Kaldine
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rebecca T. van Dorsten
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda S. Woodward Davis
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Nicolas Beaume
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - David Matten
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Bronwen Lambson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tandile Modise
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prudence Kgagudi
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Talita York
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dylan H. Westfall
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Elena E. Giorgi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Colin Anthony
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rutendo E. Mapengo
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Valerie Bekker
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Elizabeth Domin
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Amanda Eaton
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Allan DeCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Asanda Gwashu-Nyangiwe
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ruwayhida Thebus
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nonkululeko Ndabambi
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dieter Mielke
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Nyaradzo Mgodi
- University of Zimbabwe College of Health Sciences Clinical Trials Research Centre, Harare, Zimbabwe
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, Georgia, United States of America
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Myron S. Cohen
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North-Carolina, United States of America
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - David Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Penny L. Moore
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Carolyn Williamson
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
19
|
Swanson O, Martin Beem JS, Rhodes B, Wang A, Barr M, Chen H, Parks R, Saunders KO, Haynes BF, Wiehe K, Azoitei ML. Identification of CDRH3 loops in the B cell receptor repertoire that can be engaged by candidate immunogens. PLoS Pathog 2023; 19:e1011401. [PMID: 37196027 PMCID: PMC10228794 DOI: 10.1371/journal.ppat.1011401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/30/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
A major goal for the development of vaccines against rapidly mutating viruses, such as influenza or HIV, is to elicit antibodies with broad neutralization capacity. However, B cell precursors capable of maturing into broadly neutralizing antibodies (bnAbs) can be rare in the immune repertoire. Due to the stochastic nature of B cell receptor (BCR) rearrangement, a limited number of third heavy chain complementary determining region (CDRH3) sequences are identical between different individuals. Thus, in order to successfully engage broadly neutralizing antibody precursors that rely on their CDRH3 loop for antigen recognition, immunogens must be able to tolerate sequence diversity in the B cell receptor repertoire across an entire vaccinated population. Here, we present a combined experimental and computational approach to identify BCRs in the human repertoire with CDRH3 loops predicted to be engaged by a target immunogen. For a given antibody/antigen pair, deep mutational scanning was first used to measure the effect of CDRH3 loop substitution on binding. BCR sequences, isolated experimentally or generated in silico, were subsequently evaluated to identify CDRH3 loops expected to be bound by the candidate immunogen. We applied this method to characterize two HIV-1 germline-targeting immunogens and found differences in the frequencies with which they are expected to engage target B cells, thus illustrating how this approach can be used to evaluate candidate immunogens towards B cell precursors engagement and to inform immunogen optimization strategies for more effective vaccine design.
Collapse
Affiliation(s)
- Olivia Swanson
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Joshua S. Martin Beem
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Brianna Rhodes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Avivah Wang
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Haiyan Chen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Mihai L. Azoitei
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
20
|
Bibollet-Ruche F, Russell RM, Ding W, Liu W, Li Y, Wagh K, Wrapp D, Habib R, Skelly AN, Roark RS, Sherrill-Mix S, Wang S, Rando J, Lindemuth E, Cruickshank K, Park Y, Baum R, Carey JW, Connell AJ, Li H, Giorgi EE, Song GS, Ding S, Finzi A, Newman A, Hernandez GE, Machiele E, Cain DW, Mansouri K, Lewis MG, Montefiori DC, Wiehe KJ, Alam SM, Teng IT, Kwong PD, Andrabi R, Verkoczy L, Burton DR, Korber BT, Saunders KO, Haynes BF, Edwards RJ, Shaw GM, Hahn BH. A Germline-Targeting Chimpanzee SIV Envelope Glycoprotein Elicits a New Class of V2-Apex Directed Cross-Neutralizing Antibodies. mBio 2023; 14:e0337022. [PMID: 36629414 PMCID: PMC9973348 DOI: 10.1128/mbio.03370-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 and its SIV precursors share a broadly neutralizing antibody (bNAb) epitope in variable loop 2 (V2) at the envelope glycoprotein (Env) trimer apex. Here, we tested the immunogenicity of germ line-targeting versions of a chimpanzee SIV (SIVcpz) Env in human V2-apex bNAb heavy-chain precursor-expressing knock-in mice and as chimeric simian-chimpanzee immunodeficiency viruses (SCIVs) in rhesus macaques (RMs). Trimer immunization of knock-in mice induced V2-directed NAbs, indicating activation of V2-apex bNAb precursor-expressing mouse B cells. SCIV infection of RMs elicited high-titer viremia, potent autologous tier 2 neutralizing antibodies, and rapid sequence escape in the canonical V2-apex epitope. Six of seven animals also developed low-titer heterologous plasma breadth that mapped to the V2-apex. Antibody cloning from two of these animals identified multiple expanded lineages with long heavy chain third complementarity determining regions that cross-neutralized as many as 7 of 19 primary HIV-1 strains, but with low potency. Negative stain electron microscopy (NSEM) of members of the two most cross-reactive lineages confirmed V2 targeting but identified an angle of approach distinct from prototypical V2-apex bNAbs, with antibody binding either requiring or inducing an occluded-open trimer. Probing with conformation-sensitive, nonneutralizing antibodies revealed that SCIV-expressed, but not wild-type SIVcpz Envs, as well as a subset of primary HIV-1 Envs, preferentially adopted a more open trimeric state. These results reveal the existence of a cryptic V2 epitope that is exposed in occluded-open SIVcpz and HIV-1 Env trimers and elicits cross-neutralizing responses of limited breadth and potency. IMPORTANCE An effective HIV-1 vaccination strategy will need to stimulate rare precursor B cells of multiple bNAb lineages and affinity mature them along desired pathways. Here, we searched for V2-apex germ line-targeting Envs among a large set of diverse primate lentiviruses and identified minimally modified versions of one chimpanzee SIV Env that bound several human V2-apex bNAb precursors and stimulated one of these in a V2-apex bNAb precursor-expressing knock-in mouse. We also generated chimeric simian-chimpanzee immunodeficiency viruses and showed that they elicit low-titer V2-directed heterologous plasma breadth in six of seven infected rhesus macaques. Characterization of this antibody response identified a new class of weakly cross-reactive neutralizing antibodies that target the V2-apex, but only in occluded-open Env trimers. The existence of this cryptic epitope, which in some Env backgrounds is immunodominant, needs to be considered in immunogen design.
Collapse
Affiliation(s)
- Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronnie M. Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wenge Ding
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Daniel Wrapp
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rumi Habib
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashwin N. Skelly
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan S. Roark
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuyi Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juliette Rando
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Lindemuth
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kendra Cruickshank
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Younghoon Park
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Baum
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John W. Carey
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elena E. Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ge S. Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Emily Machiele
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kevin J. Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Laurent Verkoczy
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of MGH, Harvard and MIT, Cambridge, Massachusetts, USA
| | - Bette T. Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - George M. Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Marcink TC, Zipursky G, Cheng W, Stearns K, Stenglein S, Golub K, Cohen F, Bovier F, Pfalmer D, Greninger AL, Porotto M, des Georges A, Moscona A. Subnanometer structure of an enveloped virus fusion complex on viral surface reveals new entry mechanisms. SCIENCE ADVANCES 2023; 9:eade2727. [PMID: 36763666 PMCID: PMC9917000 DOI: 10.1126/sciadv.ade2727] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Paramyxoviruses-including important pathogens like parainfluenza, measles, and Nipah viruses-use a receptor binding protein [hemagglutinin-neuraminidase (HN) for parainfluenza] and a fusion protein (F), acting in a complex, to enter cells. We use cryo-electron tomography to visualize the fusion complex of human parainfluenza virus 3 (HN/F) on the surface of authentic clinical viruses at a subnanometer resolution sufficient to answer mechanistic questions. An HN loop inserts in a pocket on F, showing how the fusion complex remains in a ready but quiescent state until activation. The globular HN heads are rotated with respect to each other: one downward to contact F, and the other upward to grapple cellular receptors, demonstrating how HN/F performs distinct steps before F activation. This depiction of viral fusion illuminates potentially druggable targets for paramyxoviruses and sheds light on fusion processes that underpin wide-ranging biological processes but have not been visualized in situ or at the present resolution.
Collapse
Affiliation(s)
- Tara C. Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Gillian Zipursky
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Wenjing Cheng
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shari Stenglein
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kate Golub
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Frances Cohen
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Francesca Bovier
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Daniel Pfalmer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli,” 81100 Caserta, Italy
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, USA
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA
- PhD Programs in Chemistry and Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
22
|
Zhang B, Gorman J, Kwon YD, Pegu A, Chao CW, Liu T, Asokan M, Bender MF, Bylund T, Damron L, Gollapudi D, Lei P, Li Y, Liu C, Louder MK, McKee K, Olia AS, Rawi R, Schön A, Wang S, Yang ES, Yang Y, Carlton K, Doria-Rose NA, Shapiro L, Seaman MS, Mascola JR, Kwong PD. Bispecific antibody CAP256.J3LS targets V2-apex and CD4-binding sites with high breadth and potency. MAbs 2023; 15:2165390. [PMID: 36729903 PMCID: PMC9897750 DOI: 10.1080/19420862.2023.2165390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antibody CAP256-VRC26.25 targets the second hypervariable region (V2) at the apex of the HIV envelope (Env) trimer with extraordinary neutralization potency, although less than optimal breadth. To improve breadth, we linked the light chain of CAP256V2LS, an optimized version of CAP256-VRC26.25 currently under clinical evaluation, to the llama nanobody J3, which has broad CD4-binding site-directed neutralization. The J3-linked bispecific antibody exhibited improved breadth and potency over both J3 and CAP256V2LS, indicative of synergistic neutralization. The cryo-EM structure of the bispecific antibody in complex with a prefusion-closed Env trimer revealed simultaneous binding of J3 and CAP256V2LS. We further optimized the pharmacokinetics of the bispecific antibody by reducing the net positive charge of J3. The optimized bispecific antibody, which we named CAP256.J3LS, had a half-life similar to CAP256V2LS in human FcRn knock-in mice and exhibited suitable auto-reactivity, manufacturability, and biophysical risk. CAP256.J3LS neutralized over 97% of a multiclade 208-strain panel (geometric mean concentration for 80% inhibition (IC80) 0.079 μg/ml) and 100% of a 100-virus clade C panel (geometric mean IC80 of 0.05 μg/ml), suggesting its anti-HIV utility especially in regions where clade C dominates.
Collapse
Affiliation(s)
- Baoshan Zhang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Young D. Kwon
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Amarendra Pegu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Cara W. Chao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Tracy Liu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | | | - Michael F. Bender
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Tatsiana Bylund
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Leland Damron
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Deepika Gollapudi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Paula Lei
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Yile Li
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Mark K. Louder
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Adam S. Olia
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Shuishu Wang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Yongping Yang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Carlton
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Shapiro
- Department of Biochemistry, Columbia University, New York, NY, USA
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John R. Mascola
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA,Department of Biochemistry, Columbia University, New York, NY, USA,CONTACT Peter D. Kwong Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD20892, USA
| |
Collapse
|
23
|
Johnson MM, Jones CE, Clark DN. The Effect of Treatment-Associated Mutations on HIV Replication and Transmission Cycles. Viruses 2022; 15:107. [PMID: 36680147 PMCID: PMC9861436 DOI: 10.3390/v15010107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
HIV/AIDS mortality has been decreasing over the last decade. While promising, this decrease correlated directly with increased use of antiretroviral drugs. As a natural consequence of its high mutation rate, treatments provide selection pressure that promotes the natural selection of escape mutants. Individuals may acquire drug-naive strains, or those that have already mutated due to treatment. Even within a host, mutation affects HIV tropism, where initial infection begins with R5-tropic virus, but the clinical transition to AIDS correlates with mutations that lead to an X4-tropic switch. Furthermore, the high mutation rate of HIV has spelled failure for all attempts at an effective vaccine. Pre-exposure drugs are currently the most effective drug-based preventatives, but their effectiveness is also threatened by viral mutation. From attachment and entry to assembly and release, the steps in the replication cycle are also discussed to describe the drug mechanisms and mutations that arise due to those drugs. Revealing the patterns of HIV-1 mutations, their effects, and the coordinated attempt to understand and control them will lead to effective use of current preventative measures and treatment options, as well as the development of new ones.
Collapse
Affiliation(s)
- Madison M. Johnson
- Department of Microbiology, Weber State University, Ogden, UT 84408, USA
| | | | | |
Collapse
|
24
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (Env), a heterotrimer of gp120-gp41 subunits, mediates fusion of the viral and host cell membranes after interactions with the host receptor CD4 and a coreceptor. CD4 binding induces rearrangements in Env trimer, resulting in a CD4-induced (CD4i) open Env conformation. Structural studies of antibodies isolated from infected donors have defined antibody-Env interactions, with one class of antibodies specifically recognizing the CD4i open Env conformation. In this study, we characterized a group of monoclonal antibodies isolated from HIV-1 infected donors (V2i MAbs) that displayed characteristics of CD4i antibodies. Binding experiments demonstrated that the V2i MAbs preferentially recognize CD4-bound open Env trimers. Structural characterizations of V2i MAb-Env-CD4 trimer complexes using single-particle cryo-electron microscopy showed recognition by V2i MAbs using different angles of approach to the gp120 V1V2 domain and the β2/β3 strands on a CD4i open conformation Env with no direct interactions of the MAbs with CD4. We also characterized CG10, a CD4i antibody that was raised in mice immunized with a gp120-CD4 complex, bound to an Env trimer plus CD4. CG10 exhibited characteristics similar to those of the V2i antibodies, i.e., recognition of the open Env conformation, but showed direct contacts to both CD4 and gp120. Structural comparisons of these and previously characterized CD4i antibody interactions with Env provide a suggested mechanism for how these antibodies are elicited during HIV-1 infection. IMPORTANCE The RV144 HIV-1 clinical vaccination trial showed modest protection against viral infection. Antibody responses to the V1V2 region of HIV-1 Env gp120 were correlated inversely with the risk of infection, and data from three other clinical vaccine trials suggested a similar signal. In addition, antibodies targeting V1V2 have been correlated with protections from simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) infections in nonhuman primates. We structurally characterized V2i antibodies directed against V1V2 isolated from HIV-1 infected humans in complex with open Env trimers bound to the host receptor CD4. We also characterized a CD4i antibody that interacts with CD4 as well as the gp120 subunit of an open Env trimer. Our study suggests how V2i and CD4i antibodies were elicited during HIV-1 infection.
Collapse
|
25
|
Computational epitope mapping of class I fusion proteins using low complexity supervised learning methods. PLoS Comput Biol 2022; 18:e1010230. [DOI: 10.1371/journal.pcbi.1010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/19/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Antibody epitope mapping of viral proteins plays a vital role in understanding immune system mechanisms of protection. In the case of class I viral fusion proteins, recent advances in cryo-electron microscopy and protein stabilization techniques have highlighted the importance of cryptic or ‘alternative’ conformations that expose epitopes targeted by potent neutralizing antibodies. Thorough epitope mapping of such metastable conformations is difficult but is critical for understanding sites of vulnerability in class I fusion proteins that occur as transient conformational states during viral attachment and fusion. We introduce a novel method Accelerated class I fusion protein Epitope Mapping (AxIEM) that accounts for fusion protein flexibility to improve out-of-sample prediction of discontinuous antibody epitopes. Harnessing data from previous experimental epitope mapping efforts of several class I fusion proteins, we demonstrate that accuracy of epitope prediction depends on residue environment and allows for the prediction of conformation-dependent antibody target residues. We also show that AxIEM can identify common epitopes and provide structural insights for the development and rational design of vaccines.
Collapse
|
26
|
Zhang B, Gollapudi D, Gorman J, O’Dell S, Damron LF, McKee K, Asokan M, Yang ES, Pegu A, Lin BC, Chao CW, Chen X, Gama L, Ivleva VB, Law WH, Liu C, Louder MK, Schmidt SD, Shen CH, Shi W, Stein JA, Seaman MS, McDermott AB, Carlton K, Mascola JR, Kwong PD, Lei QP, Doria-Rose NA. Engineering of HIV-1 neutralizing antibody CAP256V2LS for manufacturability and improved half life. Sci Rep 2022; 12:17876. [PMID: 36284200 PMCID: PMC9596707 DOI: 10.1038/s41598-022-22435-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/14/2022] [Indexed: 01/20/2023] Open
Abstract
The broadly neutralizing antibody (bNAb) CAP256-VRC26.25 has exceptional potency against HIV-1 and has been considered for clinical use. During the characterization and production of this bNAb, we observed several unusual features. First, the antibody appeared to adhere to pipette tips, requiring tips to be changed during serial dilution to accurately measure potency. Second, during production scale-up, proteolytic cleavage was discovered to target an extended heavy chain loop, which was attributed to a protease in spent medium from 2-week culture. To enable large scale production, we altered the site of cleavage via a single amino acid change, K100mA. The resultant antibody retained potency and breadth while avoiding protease cleavage. We also added the half-life extending mutation LS, which improved the in vivo persistence in animal models, but did not impact neutralization activity; we observed the same preservation of neutralization for bNAbs VRC01, N6, and PGDM1400 with LS on a 208-virus panel. The final engineered antibody, CAP256V2LS, retained the extraordinary neutralization potency of the parental antibody, had a favorable pharmacokinetic profile in animal models, and was negative in in vitro assessment of autoreactivity. CAP256V2LS has the requisite potency, developability and suitability for scale-up, allowing its advancement as a clinical candidate.
Collapse
Affiliation(s)
- Baoshan Zhang
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Deepika Gollapudi
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Jason Gorman
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Sijy O’Dell
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Leland F. Damron
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Krisha McKee
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Mangaiarkarasi Asokan
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Eun Sung Yang
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Amarendra Pegu
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Bob C. Lin
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Cara W. Chao
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Xuejun Chen
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Lucio Gama
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Vera B. Ivleva
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - William H. Law
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Cuiping Liu
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Mark K. Louder
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Stephen D. Schmidt
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Chen-Hsiang Shen
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Wei Shi
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Judith A. Stein
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Michael S. Seaman
- grid.239395.70000 0000 9011 8547Beth Israel Deaconess Medical Center, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Adrian B. McDermott
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Kevin Carlton
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - John R. Mascola
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Peter D. Kwong
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Q. Paula Lei
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Nicole A. Doria-Rose
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| |
Collapse
|
27
|
Finkelstein MT, Parker Miller E, Erdman MC, Fera D. Analysis of two cooperating antibodies unveils immune pressure imposed on HIV Env to elicit a V3-glycan supersite broadly neutralizing antibody lineage. Front Immunol 2022; 13:962939. [PMID: 36225920 PMCID: PMC9548623 DOI: 10.3389/fimmu.2022.962939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Elicitation of broadly neutralizing antibodies (bnAbs) is a goal of vaccine design as a strategy for targeting highly divergent strains of HIV-1. Current HIV-1 vaccine design efforts seek to elicit bnAbs by first eliciting their precursors through prime-boost regimens. This requires an understanding of the co-evolution between viruses and antibodies. Towards this goal, we have analyzed two cooperating antibodies, DH475 and DH272, which exerted pressure on the HIV population in an infected donor, called CH848, to evolve in such a way that it became sensitive to the V3-glycan supersite DH270 bnAb lineage. We obtained a 2.90Å crystal structure of DH475 in complex with the Man9 glycan and a negative stain EM model of DH272 in complex with the HIV-1 spike trimer, Env. Coupled with additional modeling studies and biochemical data, our studies reveal that DH475 contacts a V3- and V4-glycan dependent epitope accessible on an open or shed Env and that DH272 makes critical contacts with the V1V2 and V3 loops on HIV-1 Env. Using these data, we suggest a prime-boost regimen that may facilitate the initiation of DH270-like bnAb precursors.
Collapse
Affiliation(s)
| | | | | | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, United States
| |
Collapse
|
28
|
Gollapudi D, Rosales‐Zavala E, Ivleva VB, Yang Y, Li Y, O'Connell S, Doria‐Rose NA, Patel A, Blackstock D, Gowetski DB, Carlton K, Gall JGD, Lei QP. Analytical Characterization of Broadly Neutralizing Antibody CAP256LS Heavy Chain Clipping During Manufacturing Development. Biotechnol Prog 2022; 38:e3296. [DOI: 10.1002/btpr.3296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Deepika Gollapudi
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Erwin Rosales‐Zavala
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Vera B. Ivleva
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Yanhong Yang
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Yile Li
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Sarah O'Connell
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Nicole A. Doria‐Rose
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Aakash Patel
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Daniel Blackstock
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Daniel B. Gowetski
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Kevin Carlton
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Jason G. D. Gall
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| | - Q. Paula Lei
- Vaccine Production Program, VRC, NIAID, NIH, 9 Watkins mill road Gaithersburg MD USA
| |
Collapse
|
29
|
Miller NL, Raman R, Clark T, Sasisekharan R. Complexity of Viral Epitope Surfaces as Evasive Targets for Vaccines and Therapeutic Antibodies. Front Immunol 2022; 13:904609. [PMID: 35784339 PMCID: PMC9247215 DOI: 10.3389/fimmu.2022.904609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
The dynamic interplay between virus and host plays out across many interacting surfaces as virus and host evolve continually in response to one another. In particular, epitope-paratope interactions (EPIs) between viral antigen and host antibodies drive much of this evolutionary race. In this review, we describe a series of recent studies examining aspects of epitope complexity that go beyond two interacting protein surfaces as EPIs are typically understood. To structure our discussion, we present a framework for understanding epitope complexity as a spectrum along a series of axes, focusing primarily on 1) epitope biochemical complexity (e.g., epitopes involving N-glycans) and 2) antigen conformational/dynamic complexity (e.g., epitopes with differential properties depending on antigen state or fold-axis). We highlight additional epitope complexity factors including epitope tertiary/quaternary structure, which contribute to epistatic relationships between epitope residues within- or adjacent-to a given epitope, as well as epitope overlap resulting from polyclonal antibody responses, which is relevant when assessing antigenic pressure against a given epitope. Finally, we discuss how these different forms of epitope complexity can limit EPI analyses and therapeutic antibody development, as well as recent efforts to overcome these limitations.
Collapse
Affiliation(s)
- Nathaniel L. Miller
- Harvard Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
30
|
Tyrosine O-sulfation proteoforms affect HIV-1 monoclonal antibody potency. Sci Rep 2022; 12:8433. [PMID: 35589938 PMCID: PMC9120178 DOI: 10.1038/s41598-022-12423-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
CAP256V2LS, a broadly neutralizing monoclonal antibody (bNAb), is being pursued as a promising drug for HIV-1 prevention. The total level of tyrosine-O-sulfation, a post-translational modification, was known to play a key role for antibody biological activity. More importantly, here wedescribe for the first time the significance of the tyrosine-O-sulfation proteoforms. We developed a hydrophobic interaction chromatography (HIC) method to separate and quantify different sulfation proteoforms, which led to the direct functionality assessment of tyrosine-sulfated species. The fully sulfated (4-SO3) proteoform demonstrated the highest in vitro relative antigen binding potency and neutralization efficiency against a panel of HIV-1 viruses. Interestingly, highly variable levels of 4-SO3 were produced by different clonal CHO cell lines, which helped the bNAb process development towards production of a highly potent CAP256V2LS clinical product with high 4-SO3 proteoform. This study presents powerful insight for any biotherapeutic protein development where sulfation may play an important role in product efficacy.
Collapse
|
31
|
Heydarchi B, Fong DS, Gao H, Salazar-Quiroz NA, Edwards JM, Gonelli CA, Grimley S, Aktepe TE, Mackenzie C, Wales WJ, van Gils MJ, Cupo A, Rouiller I, Gooley PR, Moore JP, Sanders RW, Montefiori D, Sethi A, Purcell DFJ. Broad and ultra-potent cross-clade neutralization of HIV-1 by a vaccine-induced CD4 binding site bovine antibody. Cell Rep Med 2022; 3:100635. [PMID: 35584627 PMCID: PMC9133467 DOI: 10.1016/j.xcrm.2022.100635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/27/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) vaccination of cows has elicited broadly neutralizing antibodies (bNAbs). In this study, monoclonal antibodies (mAbs) are isolated from a clade A (KNH1144 and BG505) vaccinated cow using a heterologous clade B antigen (AD8). CD4 binding site (CD4bs) bNAb (MEL-1872) is more potent than a majority of CD4bs bNAbs isolated so far. MEL-1872 mAb with CDRH3 of 57 amino acids shows more potency (geometric mean half-maximal inhibitory concentration [IC50]: 0.009 μg/mL; breadth: 66%) than VRC01 against clade B viruses (29-fold) and than CHO1-31 against tested clade A viruses (21-fold). It also shows more breadth and potency than NC-Cow1, the only other reported anti-HIV-1 bovine bNAb, which has 60% breadth with geometric mean IC50 of 0.090 μg/mL in this study. Using successive different stable-structured SOSIP trimers in bovines can elicit bNAbs focusing on epitopes ubiquitous across subtypes. Furthermore, the cross-clade selection strategy also results in ultra-potent bNAbs. Sequential vaccine with different SOSIP trimers could elicit bNAbs Cross-clade B-cell-sorting probe could select ultra-potent bNAbs Bovine CD4bs monoclonal antibody neutralizes HIV-1 isolates potently
Collapse
Affiliation(s)
- Behnaz Heydarchi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Danielle S Fong
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Natalia A Salazar-Quiroz
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jack M Edwards
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christopher A Gonelli
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Samantha Grimley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Turgut E Aktepe
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - William J Wales
- Dairy Production Sciences, Victorian Department of Jobs, Precincts and Resources, Ellinbank, VIC, Australia; Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, the Netherlands
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia; Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Parkville, VIC, Australia
| | - Paul R Gooley
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Ashish Sethi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
32
|
Complementary Roles of Antibody Heavy and Light Chain Somatic Hypermutation in Conferring Breadth and Potency to the HIV-1-Specific CAP256-VRC26 bNAb Lineage. J Virol 2022; 96:e0027022. [PMID: 35510865 DOI: 10.1128/jvi.00270-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some HIV-infected people develop broadly neutralizing antibodies (bNAbs) that block many diverse, unrelated strains of HIV from infecting target cells and, through passive immunization, protect animals and humans from infection. Therefore, understanding the development of bNAbs and their neutralization can inform the design of an HIV vaccine. Here, we extend our previous studies of the ontogeny of the CAP256-VRC26 V2-targeting bNAb lineage by defining the mutations that confer neutralization to the unmutated common ancestor (CAP256.UCA). Analysis of the sequence of the CAP256.UCA showed that many improbable mutations were located in the third complementarity-determining region of the heavy chain (CDRH3) and the heavy chain framework 3 (FR3). Transferring the CDRH3 from bNAb CAP256.25 (63% breadth and 0.003 μg/mL potency) into the CAP256.UCA introduced breadth and the ability to neutralize emerging viral variants. In addition, we showed that the framework and light chain contributed to potency and that the second CDR of the light chain forms part of the paratope of CAP256.25. Notably, a minimally mutated CAP256 antibody, with 41% of the mutations compared to bNAb CAP256.25, was broader (64% breadth) and more potent (0.39 μg/mL geometric potency) than many unrelated bNAbs. Together, we have identified key regions and mutations that confer breadth and potency in a V2-specific bNAb lineage. These data indicate that immunogens that target affinity maturation to key sites in CAP256-VRC26-like precursors, including the CDRHs and light chain, could rapidly elicit breadth through vaccination. IMPORTANCE A major focus in the search for an HIV vaccine is elucidating the ontogeny of broadly neutralizing antibodies (bNAbs), which prevent HIV infection in vitro and in vivo. The unmutated common ancestors (UCAs) of bNAbs are generally strain specific and acquire breadth through extensive, and sometimes redundant, somatic hypermutation during affinity maturation. We investigated which mutations in the CAP256-VRC26 bNAb lineage conferred neutralization capacity to the UCA. We found that mutations in the antibody heavy and light chains had complementary roles in neutralization breadth and potency, respectively. The heavy chain, particularly the third complementarity-determining region, was responsible for conferring breadth. In addition, previously uninvestigated mutations in the framework also contributed to breadth. Together, approximately half of the mutations in CAP256.25 were necessary for broader and more potent neutralization than many unrelated neutralizing antibodies. Vaccine approaches that promote affinity maturation at key sites could therefore more rapidly produce antibodies with neutralization breadth.
Collapse
|
33
|
Quantification of Prefusion Conformation for HIV Vaccine Using Size-Exclusion Chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1201-1202:123296. [DOI: 10.1016/j.jchromb.2022.123296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
|
34
|
Gao N, Gai Y, Meng L, Wang C, Wang W, Li X, Gu T, Louder MK, Doria‐Rose NA, Wiehe K, Nazzari AF, Olia AS, Gorman J, Rawi R, Wu W, Smith C, Khant H, de Val N, Yu B, Luo J, Niu H, Tsybovsky Y, Liao H, Kepler TB, Kwong PD, Mascola JR, Qin C, Zhou T, Yu X, Gao F. Development of Neutralization Breadth against Diverse HIV-1 by Increasing Ab-Ag Interface on V2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200063. [PMID: 35319830 PMCID: PMC9130890 DOI: 10.1002/advs.202200063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Understanding maturation pathways of broadly neutralizing antibodies (bnAbs) against HIV-1 can be highly informative for HIV-1 vaccine development. A lineage of J038 bnAbs is now obtained from a long-term SHIV-infected macaque. J038 neutralizes 54% of global circulating HIV-1 strains. Its binding induces a unique "up" conformation for one of the V2 loops in the trimeric envelope glycoprotein and is heavily dependent on glycan, which provides nearly half of the binding surface. Their unmutated common ancestor neutralizes the autologous virus. Continuous maturation enhances neutralization potency and breadth of J038 lineage antibodies via expanding antibody-Env contact areas surrounding the core region contacted by germline-encoded residues. Developmental details and recognition features of J038 lineage antibodies revealed here provide a new pathway for elicitation and maturation of V2-targeting bnAbs.
Collapse
Affiliation(s)
- Nan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life SciencesJilin UniversityChangchunJilin Province130012China
| | - Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life SciencesJilin UniversityChangchunJilin Province130012China
| | - Lina Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life SciencesJilin UniversityChangchunJilin Province130012China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life SciencesJilin UniversityChangchunJilin Province130012China
| | - Wei Wang
- Institute of Laboratory Animal ScienceChinese Academy of Medical SciencesBeijing100021China
- Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| | - Xiaojun Li
- Department of MedicineDuke University School of MedicineDurhamNC27710USA
| | - Tiejun Gu
- National Engineering Laboratory for AIDS Vaccine, School of Life SciencesJilin UniversityChangchunJilin Province130012China
| | - Mark K. Louder
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Nicole A. Doria‐Rose
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Kevin Wiehe
- Duke University Human Vaccine InstituteDuke University School of MedicineDurhamNC27710USA
| | - Alexandra F. Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Wenmin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer ResearchLeidos Biomedical Research Inc.FrederickMD21701USA
| | - Clayton Smith
- Cancer Research Technology Program, Frederick National Laboratory for Cancer ResearchLeidos Biomedical Research Inc.FrederickMD21701USA
| | - Htet Khant
- Cancer Research Technology Program, Frederick National Laboratory for Cancer ResearchLeidos Biomedical Research Inc.FrederickMD21701USA
| | - Natalia de Val
- Cancer Research Technology Program, Frederick National Laboratory for Cancer ResearchLeidos Biomedical Research Inc.FrederickMD21701USA
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life SciencesJilin UniversityChangchunJilin Province130012China
| | - Junhong Luo
- Institute of Molecular and Medical Virology, School of MedicineJinan UniversityGuangzhouGuangdong Province510632China
| | - Haitao Niu
- Institute of Molecular and Medical Virology, School of MedicineJinan UniversityGuangzhouGuangdong Province510632China
| | - Yaroslav Tsybovsky
- Cancer Research Technology Program, Frederick National Laboratory for Cancer ResearchLeidos Biomedical Research Inc.FrederickMD21701USA
| | - Huaxin Liao
- Institute of Molecular and Medical Virology, School of MedicineJinan UniversityGuangzhouGuangdong Province510632China
| | | | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Chuan Qin
- Institute of Laboratory Animal ScienceChinese Academy of Medical SciencesBeijing100021China
- Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life SciencesJilin UniversityChangchunJilin Province130012China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life SciencesJilin UniversityChangchunJilin Province130012China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life SciencesJilin UniversityChangchunJilin Province130012China
- Department of MedicineDuke University School of MedicineDurhamNC27710USA
- Institute of Molecular and Medical Virology, School of MedicineJinan UniversityGuangzhouGuangdong Province510632China
| |
Collapse
|
35
|
Yu X, Saphire EO. Development and Structural Analysis of Antibody Therapeutics for Filoviruses. Pathogens 2022; 11:pathogens11030374. [PMID: 35335698 PMCID: PMC8949092 DOI: 10.3390/pathogens11030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The filoviruses, including ebolaviruses and marburgviruses, are among the world’s deadliest pathogens. As the only surface-exposed protein on mature virions, their glycoprotein GP is the focus of current therapeutic monoclonal antibody discovery efforts. With recent technological developments, potent antibodies have been identified from immunized animals and human survivors of virus infections and have been characterized functionally and structurally. Structural insight into how the most successful antibodies target GP further guides vaccine development. Here we review the recent developments in the identification and characterization of neutralizing antibodies and cocktail immunotherapies.
Collapse
Affiliation(s)
- Xiaoying Yu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-752-6791
| |
Collapse
|
36
|
Milligan JC, Davis CW, Yu X, Ilinykh PA, Huang K, Halfmann PJ, Cross RW, Borisevich V, Agans KN, Geisbert JB, Chennareddy C, Goff AJ, Piper AE, Hui S, Shaffer KCL, Buck T, Heinrich ML, Branco LM, Crozier I, Holbrook MR, Kuhn JH, Kawaoka Y, Glass PJ, Bukreyev A, Geisbert TW, Worwa G, Ahmed R, Saphire EO. Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell 2022; 185:995-1007.e18. [PMID: 35303429 PMCID: PMC10204903 DOI: 10.1016/j.cell.2022.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
Several ebolaviruses cause outbreaks of severe disease. Vaccines and monoclonal antibody cocktails are available to treat Ebola virus (EBOV) infections, but not Sudan virus (SUDV) or other ebolaviruses. Current cocktails contain antibodies that cross-react with the secreted soluble glycoprotein (sGP) that absorbs virus-neutralizing antibodies. By sorting memory B cells from EBOV infection survivors, we isolated two broadly reactive anti-GP monoclonal antibodies, 1C3 and 1C11, that potently neutralize, protect rodents from disease, and lack sGP cross-reactivity. Both antibodies recognize quaternary epitopes in trimeric ebolavirus GP. 1C11 bridges adjacent protomers via the fusion loop. 1C3 has a tripartite epitope in the center of the trimer apex. One 1C3 antigen-binding fragment anchors simultaneously to the three receptor-binding sites in the GP trimer, and separate 1C3 paratope regions interact differently with identical residues on the three protomers. A cocktail of both antibodies completely protected nonhuman primates from EBOV and SUDV infections, indicating their potential clinical value.
Collapse
Affiliation(s)
- Jacob C Milligan
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Carl W Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Xiaoying Yu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA
| | - Peter J Halfmann
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Robert W Cross
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krystle N Agans
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chakravarthy Chennareddy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Arthur J Goff
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Ashley E Piper
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Sean Hui
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kelly C L Shaffer
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Tierra Buck
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Yoshihiro Kawaoka
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA; Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Pamela J Glass
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA.
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA.
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
37
|
Lee M, Changela A, Gorman J, Rawi R, Bylund T, Chao CW, Lin BC, Louder MK, Olia AS, Zhang B, Doria-Rose NA, Zolla-Pazner S, Shapiro L, Chuang GY, Kwong PD. Extended antibody-framework-to-antigen distance observed exclusively with broad HIV-1-neutralizing antibodies recognizing glycan-dense surfaces. Nat Commun 2021; 12:6470. [PMID: 34753907 PMCID: PMC8578620 DOI: 10.1038/s41467-021-26579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
Antibody-Framework-to-Antigen Distance (AFAD) - the distance between the body of an antibody and a protein antigen - is an important parameter governing antibody recognition. Here, we quantify AFAD for ~2,000 non-redundant antibody-protein-antigen complexes in the Protein Data Bank. AFADs showed a gaussian distribution with mean of 16.3 Å and standard deviation (σ) of 2.4 Å. Notably, antibody-antigen complexes with extended AFADs (>3σ) were exclusively human immunodeficiency virus-type 1 (HIV-1)-neutralizing antibodies. High correlation (R2 = 0.8110) was observed between AFADs and glycan coverage, as assessed by molecular dynamics simulations of the HIV-1-envelope trimer. Especially long AFADs were observed for antibodies targeting the glycosylated trimer apex, and we tested the impact of introducing an apex-glycan hole (N160K); the cryo-EM structure of the glycan hole-targeting HIV-1-neutralizing antibody 2909 in complex with an N160K-envelope trimer revealed a substantially shorter AFAD. Overall, extended AFADs exclusively recognized densely glycosylated surfaces, with the introduction of a glycan hole enabling closer recognition.
Collapse
Affiliation(s)
- Myungjin Lee
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anita Changela
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason Gorman
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reda Rawi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cara W Chao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bob C Lin
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan Zolla-Pazner
- Department of Medicine and Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lawrence Shapiro
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
38
|
Griffith SA, McCoy LE. To bnAb or Not to bnAb: Defining Broadly Neutralising Antibodies Against HIV-1. Front Immunol 2021; 12:708227. [PMID: 34737737 PMCID: PMC8560739 DOI: 10.3389/fimmu.2021.708227] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Since their discovery, antibodies capable of broad neutralisation have been at the forefront of HIV-1 research and are of particular interest due to in vivo passive transfer studies demonstrating their potential to provide protection. Currently an exact definition of what is required for a monoclonal antibody to be classed as a broadly neutralising antibody (bnAb) has not yet been established. This has led to hundreds of antibodies with varying neutralisation breadth being studied and has given insight into antibody maturation pathways and epitopes targeted. However, even with this knowledge, immunisation studies and vaccination trials to date have had limited success in eliciting antibodies with neutralisation breadth. For this reason there is a growing need to identify factors specifically associated with bnAb development, yet to do this a set of criteria is necessary to distinguish bnAbs from non-bnAbs. This review aims to define what it means to be a HIV-1 bnAb by comparing neutralisation breadth, genetic features and epitopes of bnAbs, and in the process highlights the challenges of comparing the array of antibodies that have been isolated over the years.
Collapse
Affiliation(s)
- Sarah A Griffith
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Laura E McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
39
|
Parker Miller E, Finkelstein MT, Erdman MC, Seth PC, Fera D. A Structural Update of Neutralizing Epitopes on the HIV Envelope, a Moving Target. Viruses 2021; 13:v13091774. [PMID: 34578355 PMCID: PMC8472920 DOI: 10.3390/v13091774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Antibodies that can neutralize diverse HIV-1 strains develop in ~10–20% of HIV-1 infected individuals, and their elicitation is a goal of vaccine design. Such antibodies can also serve as therapeutics for those who have already been infected with the virus. Structural characterizations of broadly reactive antibodies in complex with the HIV-1 spike indicate that there are a limited number of sites of vulnerability on the spike. Analysis of their structures can help reveal commonalities that would be useful in vaccine design and provide insights on combinations of antibodies that can be used to minimize the incidence of viral resistance mutations. In this review, we give an update on recent structures determined of the spike in complex with broadly neutralizing antibodies in the context of all epitopes on the HIV-1 spike identified to date.
Collapse
|
40
|
Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies. Curr Opin HIV AIDS 2021; 15:267-274. [PMID: 32675574 DOI: 10.1097/coh.0000000000000639] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The surface of the HIV-1 Env glycoprotein, the target of neutralizing antibodies, is extensively covered by N-linked glycans that create a glycan shield. Broadly neutralizing antibodies (bNAbs), the primary targets of HIV-1 vaccine design, have to negotiate this glycan shield. Here, we review the barriers and opportunities that the HIV-1 glycan shield presents for vaccine induction of bNAbs. RECENT FINDINGS Glycan shields can impact the nature of the antibody response and influence the development of neutralization breadth in HIV-1 infections. The architecture of the glycan shield arising from glycan interactions and dynamics have been modeled, and its fine structure, that is, the site-wise glycan heterogeneity, has been determined for some isolates. Although the extent of glycan shielding is conserved, the precise number, location and processing of glycans, however, is strain-dependent. New insights continue to reveal how such differences can impact bNAb activity and development. Novel approaches have exploited the glycan shield for designing immunogens that bind the germline precursors of bNAbs, a critical roadblock for vaccine-induction of bNAbs. SUMMARY The HIV-1 glycan shield can significantly impact the induction and maturation of bNAbs, and a better understanding of how to manipulate it will improve immunogen design.
Collapse
|
41
|
Yin Y, Quinlan BD, Ou T, Guo Y, He W, Farzan M. In vitro affinity maturation of broader and more-potent variants of the HIV-1-neutralizing antibody CAP256-VRC26.25. Proc Natl Acad Sci U S A 2021; 118:e2106203118. [PMID: 34261793 PMCID: PMC8307357 DOI: 10.1073/pnas.2106203118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Three variable 2 (V2) loops of HIV-1 envelope glycoprotein (Env) trimer converge at the Env apex to form the epitope of an important classes of HIV-1 broadly neutralizing antibodies (bNAbs). These V2-glycan/apex antibodies are exceptionally potent but less broad (∼60 to 75%) than many other bNAbs. Their CDRH3 regions are typically long, acidic, and tyrosine sulfated. Tyrosine sulfation complicates efforts to improve these antibodies through techniques such as phage or yeast display. To improve the breadth of CAP256-VRC26.25 (VRC26.25), a very potent apex antibody, we adapted and extended a B cell display approach. Specifically, we used CRISPR/Cas12a to introduce VRC26.25 heavy- and light-chain genes into their respective loci in a B cell line, ensuring that each cell expresses a single VRC26.25 variant. We then diversified these loci through activation-induced cytidine deaminase-mediated hypermutation and homology-directed repair using randomized CDRH3 sequences as templates. Iterative sorting with soluble Env trimers and further randomization selected VRC26.25 variants with successively improving affinities. Three mutations in the CDRH3 region largely accounted for this improved affinity, and VRC26.25 modified with these mutations exhibited greater breadth and potency than the original antibody. Our data describe a broader and more-potent form of VRC26.25 as well as an approach useful for improving the breadth and potency of antibodies with functionally important posttranslational modifications.
Collapse
Affiliation(s)
- Yiming Yin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| | - Brian D Quinlan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| | - Tianling Ou
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| | - Yan Guo
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| | - Wenhui He
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| |
Collapse
|
42
|
Seydoux E, Wan YH, Feng J, Wall A, Aljedani S, Homad LJ, MacCamy AJ, Weidle C, Gray MD, Brumage L, Taylor JJ, Pancera M, Stamatatos L, McGuire AT. Development of a VRC01-class germline targeting immunogen derived from anti-idiotypic antibodies. Cell Rep 2021; 35:109084. [PMID: 33951425 PMCID: PMC8127986 DOI: 10.1016/j.celrep.2021.109084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/08/2021] [Accepted: 04/13/2021] [Indexed: 10/27/2022] Open
Abstract
An effective HIV-1 vaccine will likely need to elicit broadly neutralizing antibodies (bNAbs). Broad and potent VRC01-class bNAbs have been isolated from multiple infected individuals, suggesting that they could be reproducibly elicited by vaccination. Several HIV-1 envelope-derived germline-targeting immunogens have been designed to engage naive VRC01-class precursor B cells. However, they also present off-target epitopes that could hinder development of VRC01-class bNAbs. We characterize a panel of anti-idiotypic monoclonal antibodies (ai-mAbs) raised against inferred-germline (iGL) VRC01-class antibodies. By leveraging binding, structural, and B cell sorting data, we engineered a bispecific molecule derived from two ai-mAbs; one specific for VRC01-class heavy chains and one specific for VRC01-class light chains. The bispecific molecule preferentially activates iGL-VRC01 B cells in vitro and induces specific antibody responses in a murine adoptive transfer model with a diverse polyclonal B cell repertoire. This molecule represents an alternative non-envelope-derived germline-targeting immunogen that can selectively activate VRC01-class precursors in vivo.
Collapse
Affiliation(s)
- Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Abigail Wall
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Safia Aljedani
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Connor Weidle
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Matthew D Gray
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Lauren Brumage
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Justin J Taylor
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA; University of Washington, Department of Immunology, Seattle, WA 98109, USA
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA.
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Roark RS, Li H, Williams WB, Chug H, Mason RD, Gorman J, Wang S, Lee FH, Rando J, Bonsignori M, Hwang KK, Saunders KO, Wiehe K, Moody MA, Hraber PT, Wagh K, Giorgi EE, Russell RM, Bibollet-Ruche F, Liu W, Connell J, Smith AG, DeVoto J, Murphy AI, Smith J, Ding W, Zhao C, Chohan N, Okumura M, Rosario C, Ding Y, Lindemuth E, Bauer AM, Bar KJ, Ambrozak D, Chao CW, Chuang GY, Geng H, Lin BC, Louder MK, Nguyen R, Zhang B, Lewis MG, Raymond DD, Doria-Rose NA, Schramm CA, Douek DC, Roederer M, Kepler TB, Kelsoe G, Mascola JR, Kwong PD, Korber BT, Harrison SC, Haynes BF, Hahn BH, Shaw GM. Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science 2021; 371:eabd2638. [PMID: 33214287 PMCID: PMC8040783 DOI: 10.1126/science.abd2638] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.
Collapse
Affiliation(s)
- Ryan S Roark
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hema Chug
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fang-Hua Lee
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliette Rando
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter T Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ronnie M Russell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Connell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew G Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia DeVoto
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander I Murphy
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenge Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyan Zhao
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neha Chohan
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maho Okumura
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Rosario
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Lindemuth
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anya M Bauer
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharine J Bar
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Donald D Raymond
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bette T Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Boonyaratanakornkit J, Singh S, Weidle C, Rodarte J, Bakthavatsalam R, Perkins J, Stewart-Jones GB, Kwong PD, McGuire AT, Pancera M, Taylor JJ. Protective antibodies against human parainfluenza virus type 3 infection. MAbs 2021; 13:1912884. [PMID: 33876699 PMCID: PMC8078717 DOI: 10.1080/19420862.2021.1912884] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Human parainfluenza virus type III (HPIV3) is a common respiratory pathogen that afflicts children and can be fatal in vulnerable populations, including the immunocompromised. There are currently no effective vaccines or therapeutics available, resulting in tens of thousands of hospitalizations per year. In an effort to discover a protective antibody against HPIV3, we screened the B cell repertoires from peripheral blood, tonsils, and spleen from healthy children and adults. These analyses yielded five monoclonal antibodies that potently neutralized HPIV3 in vitro. These HPIV3-neutralizing antibodies targeted two non-overlapping epitopes of the HPIV3 F protein, with most targeting the apex. Prophylactic administration of one of these antibodies, PI3-E12, resulted in potent protection against HPIV3 infection in cotton rats. Additionally, PI3-E12 could also be used therapeutically to suppress HPIV3 in immunocompromised animals. These results demonstrate the potential clinical utility of PI3-E12 for the prevention or treatment of HPIV3 in both immunocompetent and immunocompromised individuals.
Collapse
Affiliation(s)
- Jim Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Suruchi Singh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Connor Weidle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Justas Rodarte
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Jonathan Perkins
- Department of Otolaryngology, University of Washington, Seattle, Washington, USA
| | - Guillaume B.E. Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Washington, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Washington, USA
| | - Andrew T. McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Washington, USA
| | - Justin J. Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
45
|
Abstract
HIV is a virus that remains a major health concern and results in an infection that has no cure even after over 30 years since its discovery. As such, HIV vaccine discovery continues to be an area of intensive research. In this review, we summarize the most recent HIV vaccine efficacy trials, clinical trials initiated within the last 3 years, and discuss prominent improvements that have been made in prophylactic HIV vaccine designs.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
46
|
Mahomed S, Garrett N, Karim QA, Zuma NY, Capparelli E, Baxter C, Gengiah T, Archary D, Samsunder N, Doria-Rose N, Moore P, Williamson C, Barouch DH, Fast PE, Pozzetto B, Hankins C, Carlton K, Ledgerwood J, Morris L, Mascola J, Abdool Karim S. Assessing the safety and pharmacokinetics of the anti-HIV monoclonal antibody CAP256V2LS alone and in combination with VRC07-523LS and PGT121 in South African women: study protocol for the first-in-human CAPRISA 012B phase I clinical trial. BMJ Open 2020; 10:e042247. [PMID: 33243815 PMCID: PMC7692975 DOI: 10.1136/bmjopen-2020-042247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION New HIV prevention strategies are urgently required. The discovery of broadly neutralising antibodies (bNAbs) has provided the opportunity to evaluate passive immunisation as a potential prevention strategy and facilitate vaccine development. Since 2014, several bNAbs have been isolated from a clade C-infected South African donor, CAPRISA 256. One particular bNAb, CAP256-VRC26.25, was found to be extremely potent, with good coverage against clade C viruses, the dominant HIV clade in sub-Saharan Africa. Challenge studies in non-human primates demonstrated that this antibody was fully protective even at extremely low doses. This bNAb was subsequently structurally engineered and the clinical variant is now referred to as CAP256V2LS. METHODS AND ANALYSIS CAPRISA 012B is the second of three trials in the CAPRISA 012 bNAb trial programme. It is a first-in-human, phase I study to assess the safety and pharmacokinetics of CAP256V2LS. The study is divided into four groups. Group 1 is a dose escalation of CAP256V2LS administered intravenously to HIV-negative and HIV-positive women. Group 2 is a dose escalation of CAP256V2LS administered subcutaneously (SC), with and without the dispersing agent recombinant human hyaluronidase (rHuPH20) as single or repeat doses in HIV-negative women. Groups 3 and 4 are randomised placebo controlled to assess two (CAP256V2LS+VRC07-523LS; CAP256V2LS+PGT121) and three (CAP256V2LS+VRC07-523LS+PGT121) bNAb combinations administered SC to HIV-negative women. Safety will be assessed by the frequency of reactogenicity and adverse events related to the study product. Pharmacokinetic disposition of CAP256V2LS alone and in combination with VRC07-523LS and PGT121 will be assessed via dose subgroups and route of administration. ETHICS AND DISSEMINATION The University of KwaZulu-Natal Biomedical Research Ethics Committee (BREC) and the South African Health Products Regulatory Authority (SAHPRA) have granted regulatory approval (trial reference numbers: BREC00000857/2019 and SAHPRA 20200123). Trial results will be disseminated through conference presentations, peer-reviewed publications and the clinical trial registry. TRIAL REGISTRATION NUMBER PACTR202003767867253; Pre-results.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Quarraisha A Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columba University, New York, New York, USA
| | - Nonhlanhla Y Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | | | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Tanuja Gengiah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Natasha Samsunder
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Penny Moore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Carolyn Williamson
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, South Africa
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Patricia E Fast
- International Aids Vaccine Initiative, New York, New York, USA
| | - Bruno Pozzetto
- GIMAP (EA3064), University of Saint-Etienne/University of Lyon, Saint-Etienne, France
| | - Catherine Hankins
- Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Kevin Carlton
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Julie Ledgerwood
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lynn Morris
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - John Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columba University, New York, New York, USA
| |
Collapse
|
47
|
A Rare Mutation in an Infant-Derived HIV-1 Envelope Glycoprotein Alters Interprotomer Stability and Susceptibility to Broadly Neutralizing Antibodies Targeting the Trimer Apex. J Virol 2020; 94:JVI.00814-20. [PMID: 32669335 DOI: 10.1128/jvi.00814-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/07/2020] [Indexed: 02/03/2023] Open
Abstract
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is the sole target of broadly neutralizing antibodies (bnAbs). Several mechanisms, such as the acquisition of mutations, variability of the loop length, and alterations in the glycan pattern, are employed by the virus to shield neutralizing epitopes on Env to sustain survival and infectivity within the host. The identification of mutations that lead to viral evasion of the host immune response is essential for the optimization and engineering of Env-based trimeric immunogens. Here, we report a rare leucine-to-phenylalanine escape mutation (L184F) at the base of hypervariable loop 2 (population frequency of 0.0045%) in a 9-month-old perinatally HIV-1-infected infant broad neutralizer. The L184F mutation altered the trimer conformation by modulating intramolecular interactions stabilizing the trimer apex and led to viral escape from autologous plasma bnAbs and known N160 glycan-targeted bnAbs. The L184F amino acid change led to the acquisition of a relatively open trimeric conformation, often associated with tier 1 HIV-1 isolates and increased susceptibility to neutralization by polyclonal plasma antibodies of weak neutralizers. While there was no impact of the L184F mutation on free virus transmission, a reduction in cell-to-cell transmission was observed. In conclusion, we report a naturally selected viral mutation, L184F, that influenced a change in the conformation of the Env trimer apex as a mechanism of escape from contemporaneous plasma V2 apex-targeted nAbs. Further studies should be undertaken to define viral mutations acquired during natural infection, to escape selection pressure exerted by bnAbs, to inform vaccine design and bnAb-based therapeutic strategies.IMPORTANCE The design of HIV-1 envelope-based immunogens capable of eliciting broadly neutralizing antibodies (bnAbs) is currently under active research. Some of the most potent bnAbs target the quaternary epitope at the V2 apex of the HIV-1 Env trimer. By studying naturally circulating viruses from a perinatally HIV-1-infected infant with plasma neutralizing antibodies targeted to the V2 apex, we identified a rare leucine-to-phenylalanine substitution, in two out of six functional viral clones, that destabilized the trimer apex. This single-amino-acid alteration impaired the interprotomeric interactions that stabilize the trimer apex, resulting in an open trimer conformation and escape from broadly neutralizing autologous plasma antibodies and known V2 apex-directed bnAbs, thereby favoring viral evasion of the early bnAb response of the infected host. Defining the mechanisms by which naturally occurring viral mutations influence the sensitivity of HIV-1 to bnAbs will provide information for the development of vaccines and bnAbs as anti-HIV-1 reagents.
Collapse
|
48
|
Chuang GY, Lai YT, Boyington JC, Cheng C, Geng H, Narpala S, Rawi R, Schmidt SD, Tsybovsky Y, Verardi R, Xu K, Yang Y, Zhang B, Chambers M, Changela A, Corrigan AR, Kong R, Olia AS, Ou L, Sarfo EK, Wang S, Wu W, Doria-Rose NA, McDermott AB, Mascola JR, Kwong PD. Development of a 3Mut-Apex-Stabilized Envelope Trimer That Expands HIV-1 Neutralization Breadth When Used To Boost Fusion Peptide-Directed Vaccine-Elicited Responses. J Virol 2020; 94:e00074-20. [PMID: 32295908 PMCID: PMC7307166 DOI: 10.1128/jvi.00074-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 01/21/2023] Open
Abstract
HIV-1 envelope (Env) trimers, stabilized in a prefusion-closed conformation, can elicit humoral responses capable of neutralizing HIV-1 strains closely matched in sequence to the immunizing strain. One strategy to increase elicited neutralization breadth involves vaccine priming of immune responses against a target site of vulnerability, followed by vaccine boosting of these responses with prefusion-closed Env trimers. This strategy has succeeded at the fusion peptide (FP) site of vulnerability in eliciting cross-clade neutralizing responses in standard vaccine-test animals. However, the breadth and potency of the elicited responses have been less than optimal. Here, we identify three mutations (3mut), Met302, Leu320, and Pro329, that stabilize the apex of the Env trimer in a prefusion-closed conformation and show antigenically, structurally, and immunogenically that combining 3mut with other approaches (e.g., repair and stabilize and glycine-helix breaking) yields well-behaved clade C-Env trimers capable of boosting the breadth of FP-directed responses. Crystal structures of these trimers confirmed prefusion-closed apexes stabilized by hydrophobic patches contributed by Met302 and Leu320, with Pro329 assuming canonically restricted dihedral angles. We substituted the N-terminal eight residues of FP (FP8, residues 512 to 519) of these trimers with the second most prevalent FP8 sequence (FP8v2, AVGLGAVF) and observed a 3mut-stabilized consensus clade C-Env trimer with FP8v2 to boost the breadth elicited in guinea pigs of FP-directed responses induced by immunogens containing the most prevalent FP8 sequence (FP8v1, AVGIGAVF). Overall, 3mut can stabilize the Env trimer apex, and the resultant apex-stabilized Env trimers can be used to expand the neutralization breadth elicited against the FP site of vulnerability.IMPORTANCE A major hurdle to the development of an effective HIV-1 vaccine is the elicitation of serum responses capable of neutralizing circulating strains of HIV, which are extraordinarily diverse in sequence and often highly neutralization resistant. Recently, we showed how sera with 20 to 30% neutralization breadth could, nevertheless, be elicited in standard vaccine test animals by priming with the most prevalent N-terminal 8 residues of the HIV-1 fusion peptide (FP8), followed by boosting with a stabilized BG505-envelope (Env) trimer. Here, we show that subsequent boosting with a 3mut-apex-stabilized consensus C-Env trimer, modified to have the second most prevalent FP8 sequence, elicits higher neutralization breadth than that induced by continued boosting with the stabilized BG505-Env trimer. With increased neutralizing breadth elicited by boosting with a heterologous trimer containing the second most prevalent FP8 sequence, the fusion peptide-directed immune-focusing approach moves a step closer toward realizing an effective HIV-1 vaccine regimen.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Winston Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Moyo T, Kitchin D, Moore PL. Targeting the N332-supersite of the HIV-1 envelope for vaccine design. Expert Opin Ther Targets 2020; 24:499-509. [PMID: 32340497 DOI: 10.1080/14728222.2020.1752183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Broadly neutralizing antibodies (bNAbs) that are able to target diverse global viruses are widely believed to be crucial for an HIV-1 vaccine. Several conserved targets recognized by these antibodies have been identified on the HIV-1 envelope glycoprotein. One such target that shows particular promise for vaccination is the N332-supersite.Areas covered: This review describes the potential of the N332-supersite epitope as an immunogen design platform. We discuss the structure of the epitope and the bNAbs that target it, emphasizing their diverse modes of binding. Furthermore, the successes and limitations of recent N332-supersite immunization studies are discussed.Expert opinion: During HIV-1 infection, some of the broadest and most potent bNAbs target the N332-supersite. Furthermore, some of these antibodies require less affinity maturation than the high levels typical of many bNAbs, making these potentially more achievable vaccine targets. In addition, bNAbs bind this epitope with multiple angles of approach and glycan dependencies, perhaps increasing the probability of eliciting such responses by vaccination. Animal studies have shown that N332-supersite bNAb precursors can be activated by novel immunogens. While follow-up studies must establish whether boosting strategies can drive the maturation of bNAbs from these precursors, the development of targeted N332-supersite immunogens expands our arsenal of potential HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Thandeka Moyo
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dale Kitchin
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|