1
|
Ye X, Li M, Meng Y, Duan S, Zhang S, Zhong K. D-tetramethrin induces cardiac looping failure in zebrafish during embryonic development. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110193. [PMID: 40086682 DOI: 10.1016/j.cbpc.2025.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Cardiac looping is a crucial process during embryonic development. Abnormalities or failures in cardiac looping can lead to congenital heart defects, thereby affecting normal physiological function. Environmental pollutant exposure is one of the major causes of cardiac looping failure. D-tetramethrin is a hygienic insecticide widely used in households and public places, that can enter the human body through contact, insect transmission, and the food chain, thereby impacting human health. In this study, zebrafish embryos were exposed to different concentrations of D-tetramethrin to analyze its effects on heart development, and oxidative stress levels within the embryos. Additionally, qPCR was employed to analyze the transcription and the expression levels of genes related to heart development and function. The results showed that (1) D-tetramethrin exposure significantly reduced heart rate and increased the distance between the sinus venosus and the bulbus arteriosus (SV-BA), which suggested that D-tetramethrin induced cardiac looping failure and led to abnormal heart function. (2) D-tetramethrin exposure elevated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in zebrafish embryos while decreasing the enzyme activities of key antioxidant stress enzymes, such as catalase (CAT) and superoxide dismutase (SOD). (3) D-tetramethrin exposure resulted in a significant downregulation of the transcription of cardiac looping-related genes (Myh6, Nkx2.5, Tbx2b, Tbx5a, Tnnt2c and Hand2) and heart function-related genes (Gata4, Vmhc and Nppa). Our findings indicate that D-tetramethrin causes the accumulation of ROS, which in turn alters the transcription levels of genes related to cardiac looping, ultimately resulting in cardiac looping failure.
Collapse
Affiliation(s)
- Xinhao Ye
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Mijia Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - YunLong Meng
- School of Medicine, Tongji University, Shanghai 200000, China
| | - Shiyi Duan
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Sijie Zhang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Keyuan Zhong
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Campitelli LMM, Lopes KP, de Lima IL, Ferreira FB, Isidoro ND, Ferreira GM, Ponce MCF, Ferreira MCDO, Mendes LS, Marcelino PHR, Neves MM, Klein SG, Fonseca BB, Polveiro RC, da Silva MV. Methodological and Ethical Considerations in the Use of Chordate Embryos in Biomedical Research. Int J Mol Sci 2025; 26:2624. [PMID: 40141265 PMCID: PMC11941781 DOI: 10.3390/ijms26062624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Animal embryos are vital tools in scientific research, providing insights into biological processes and disease mechanisms. This paper explores their historical and contemporary significance, highlighting the shift towards the refinement of in vitro systems as alternatives to animal experimentation. We have conducted a data review of the relevant literature on the use of embryos in research and synthesized the data to highlight the importance of this model for scientific progress and the ethical considerations and regulations surrounding embryo research, emphasizing the importance of minimizing animal suffering while promoting scientific progress through the principles of replacement, reduction, and refinement. Embryos from a wide range of species, including mammals, fish, birds, amphibians, and reptiles, play a crucial experimental role in enabling us to understand factors such as substance toxicity, embryonic development, metabolic pathways, physiological processes, etc., that contribute to the advancement of the biological sciences. To apply this model effectively, it is essential to match the research objectives with the most appropriate methodology, ensuring that the chosen approach is appropriate for the scope of the study.
Collapse
Affiliation(s)
- Laura Maria Mendes Campitelli
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Karina Pereira Lopes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Isabela Lemos de Lima
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Flávia Batista Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Nayara Delfim Isidoro
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38410-337, MG, Brazil
| | - Giovana Magalhães Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Maria Clara Fioravanti Ponce
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Ludmilla Silva Mendes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Pedro Henrique Ribeiro Marcelino
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Sandra Gabriela Klein
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Richard Costa Polveiro
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Murilo Vieira da Silva
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
- Rodent Animal Facilities Complex, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| |
Collapse
|
3
|
Maia ME, Martins RX, Carvalho M, Félix LM, Marques-Santos LF, Farias D. Effects of atrazine, diuron and glyphosate mixtures on zebrafish embryos: acute toxicity and oxidative stress responses. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:304-316. [PMID: 39612104 DOI: 10.1007/s10646-024-02839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Synthetic pesticides are known for their toxic effects on non-target aquatic organisms. However, little is known about their effects when present in mixtures, which are closer to realistic exposure scenarios. Therefore, this study evaluates the toxicity of pesticides such as diuron, atrazine and glyphosate, individually and in combination, in zebrafish embryos, investigating their mechanisms of oxidative stress. The results revealed acute toxicity for diuron and atrazine, with LC50 values of 9.6 mg/L and 53.57 mg/L for 96-h-old zebrafish, respectively. On the other hand, no effect was observed for glyphosate alone at the maximum concentration tested (100 mg/L). The mixture of diuron and atrazine showed a synergistic effect, resulting in a decrease in the LC50 of each pesticide. Mixtures of diuron + glyphosate and atrazine + glyphosate were considered additive and antagonistic, respectively. All biomarkers analyzed (AChE, LDH, GST, CAT and GPx) showed significant changes. Furthermore, an increase in ROS production was observed in larvae exposed to individual and in the mixture composed of atrazine and diuron. These findings indicate that atrazine and diuron exhibit increased toxicity when combined, with their mechanisms of action-both in isolation and in mixtures-being at least partially linked to oxidative stress.
Collapse
Affiliation(s)
- Maria Eduarda Maia
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Matheus Carvalho
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- InovAgro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | | | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil.
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
4
|
Zhou Y, Huo Y, Ma Y, Wen N, Gu Q, He M. Dual action of non-metal doped C 2N and Ti 3C 2T 2 heterojunction enhances the catalytic activity of electrochemical simultaneous oxidation of hydrogen peroxide and peroxymonosulfate:A theoretical study. ENVIRONMENTAL RESEARCH 2025; 267:120698. [PMID: 39725136 DOI: 10.1016/j.envres.2024.120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Electrochemical advanced oxidation processes (EAOPs) are energy-efficient methods for generating activated radicals like HO• and SO4•-, which enable the degradation of difficult-to-mineralize chlorinated organic compounds. This study explored the catalytic activity and reaction mechanism of EAOPs under a dual strategy involving non-metal doped C2N (X@C2N (X = O, F, Si)) and a heterostructured build (X@C2N/Ti3C2T2) using first principles calculation. The non-metal doping and the heterojunction construction can make H2O2 and PMS spontaneously adsorb (Eads < 0), with negative Gibbs free energy for their oxidation to HO• and SO4•-, significantly enhancing catalytic activity. The catalytic activity of the X@C2N catalysts was in the order of O@, F@, and Si@C2N. The loading of Ti3C2T2 improved the stability and activity of the material, while Ti3C2F2 and Ti3C2O2 proved superior as heterojunction carriers compared to Ti3C2(OH)2. Notably, O@C2N/Ti3C2F2 is proved to be an appropriate catalyst for simultaneous hydrogen peroxide (ΔGmax = -0.90 eV) and peroxymonosulfate (ΔGmax = -0.99 eV) oxidation reactions, achieving non-selective generation of oxidants in electrochemistry. 2,4-D can be effectively degraded by surface-generated HO• and SO4•-, with the reactivity of SO4•- towards 2,4-D greater than that of HO•. This research highlights the potential of combining heteroatom doping with heterojunction catalyst formation to enhance EAOPs for environmental remediation.
Collapse
Affiliation(s)
- Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Nuan Wen
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qingyuan Gu
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China; School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
5
|
Anton BJ, Oguchi Y, White AM, Karasov WH, Dehnert GK. The impacts of 2,4-D herbicide DMA® 4 IVM on reproductive health and gene expression along the hypothalamic-pituitary-gonad-liver [HPGL] axis in the fathead minnow (Pimephales promelas). CHEMOSPHERE 2025; 371:143994. [PMID: 39733954 DOI: 10.1016/j.chemosphere.2024.143994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
Aquatic herbicides are commonly used to control a variety of non-native plants. One common active ingredient used in commercial herbicide formulations globally is 2,4-dichlorophenoxyacetic acid (2,4-D). Though 2,4-D is used in aquatic ecosystems, no studies have investigated cellular, biochemical, and transcriptional effects or mechanisms of 2,4-D exposure on fathead minnows (Pimephales promelas) throughout juvenile development. Herein, we aim to evaluate the impacts of chronic ecologically relevant 2,4-D exposure on reproductive systems of fathead minnow. Juvenile fathead minnows were exposed to ecologically relevant concentrations of 2,4-D in DMA4 herbicide under laboratory conditions in a flow through system. Male plasma testosterone concentrations, testicular and ovarian histology, and differential gene expression along the HPGL axis in three tissue types (brain, liver, and gonad) were assessed after a chronic 120 day exposure period. We observed significantly decreased plasma testosterone concentration in male fish exposed to environmentally relevant concentrations (0.50, 2.00, and 4.00 mg/L) of 2,4-D. We observed a significant increase in ovarian severity grading and oocyte atresia in female fish exposed to 4.00 mg/L. Of differential expression analysis in fish exposed to 2.00 mg/L 2,4-D in DMA4, we identified significantly decreased expression of the steroid hormone receptors ESR1, ESR2b, and AR in males. Expression of male steroidogenic genes 3βHSD and 11βHSD2 along with expression of genes regulating steroid metabolism, SULT1st2 and CBR1l were increased. Altogether, these data suggest that 2,4-D could act as an endocrine disrupting chemical that alters expression of primary genes regulating hormone receptors, steroidogenesis, and steroid metabolism along the hypothalamic-pituitary-gonad-liver (HPGL) axis. The use of 2,4-D herbicides for weed control in aquatic ecosystems could present risks to the reproductive health of non-target aquatic species.
Collapse
Affiliation(s)
- Brian J Anton
- Department of Forest and Wildlife Ecology University of Wisconsin - Madison, Madison, WI, USA; Department of Pathobiological Sciences University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Yushi Oguchi
- Department of Forest and Wildlife Ecology University of Wisconsin - Madison, Madison, WI, USA.
| | - Amber M White
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| | - William H Karasov
- Department of Forest and Wildlife Ecology University of Wisconsin - Madison, Madison, WI, USA.
| | - Gavin K Dehnert
- Aquatic Science Center, Wisconsin Sea Grant, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Liu X, Peng Y, Chen R, Zhou Y, Xia M, Wu X, Yu M. Nomilin Reversed Cardiotoxicity Caused by Co-exposure to Zearalenone and Deoxynivalenol via the Keap1/Nrf2 Signaling Pathway in Zebrafish. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:901-908. [PMID: 39269625 DOI: 10.1007/s11130-024-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
The contamination of food and feed by mycotoxins, particularly zearalenone (ZEA) and deoxynivalenol (DON), is a global issue. Prenatal exposure to ZEA and DON can result in congenital cardiac malformations in fetuses. Addressing the prevention and mitigation of embryonic cardiotoxicity caused by these toxins is crucial. Citrus limonoid nomilin (NOM) is an extract known for its pathological properties in various diseases. This study investigated the potential mechanism of NOM in mitigating cardiotoxicity caused by ZEA and DON co-exposure in a zebrafish model. The findings indicated that NOM pretreatment alleviated cardiac developmental toxicity induced by ZEA and DON and normalized the expression of key genes involved in heart development, including gata4, vmhc, nkx2.5, and sox9b. Co-exposure to NOM, ZEA, and DON enhanced SOD and catalase activity, increased glutathione levels, and reduced ROS and malondialdehyde production. Furthermore, NOM reduced cardiac oxidative damage by activating the Keap1/Nrf2 signaling pathway. In summary, this study offers new insights for preventive interventions against congenital heart disease caused by mycotoxin exposure.
Collapse
Affiliation(s)
- Xing Liu
- School of Public Health, Yangzhou University, Yangzhou, 225009, China.
| | - Yuting Peng
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Ruobing Chen
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Yueyue Zhou
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Mingzhu Xia
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Xinyi Wu
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Meng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Bianchi M, Paravani EV, Acosta MG, Odetti LM, Simoniello MF, Poletta GL. Pesticide-induced alterations in zebrafish (Danio rerio) behavior, histology, DNA damage and mRNA expression: An integrated approach. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109895. [PMID: 38479676 DOI: 10.1016/j.cbpc.2024.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
To assess the impact of glyphosate and 2,4-D herbicides, as well as the insecticide imidacloprid, both individually and in combination, the gills of adult zebrafish were used due to their intimate interaction with chemicals diluted in water. Bioassays were performed exposing the animals to the different pesticides and their mixture for 96 h. The behavior of the fish was analyzed, a histological examination of the gills was carried out, and the genotoxic effects were also analyzed by means of the comet assay (CA) and the change in the expression profiles of genes involved in the pathways of the oxidative stress and cellular apoptosis. The length traveled and the average speed of the control fish, compared to those exposed to the pesticides and mainly those exposed to the mixture, were significantly greater. All the groups exposed individually exhibited a decrease in thigmotaxis time, indicating a reduction in the behavior of protecting themselves from predators. Histological analysis revealed significant differences in the structures of the gill tissues. The quantification of the histological lesions showed mild lesions in the fish exposed to imidacloprid, moderate to severe lesions for glyphosate, and severe lesions in the case of 2,4-D and the mixture of pesticides. The CA revealed the sensitivity of gill cells to DNA damage following exposure to glyphosate, 2,4-D, imidacloprid and the mixture. Finally, both genes involved in the oxidative stress pathway and those related to the cell apoptosis pathway were overexpressed, while the ogg1 gene, involved in DNA repair, was downregulated.
Collapse
Affiliation(s)
- M Bianchi
- Laboratorio de Química Ambiental, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina.
| | - E V Paravani
- Laboratorio de Química Ambiental, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - M G Acosta
- Laboratorio de Química Ambiental, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - L M Odetti
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
| | - G L Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|
8
|
Liu C, Yang F, Wang J, Zhu R, Zhu J, Huang M. Myclobutanil induces cardiotoxicity in developing zebrafish larvae by initiating oxidative stress and apoptosis: The protective role of curcumin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116484. [PMID: 38820875 DOI: 10.1016/j.ecoenv.2024.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
Myclobutanil (MYC) is a common triazole fungicide widely applied in agriculture. MYC extensively exists in the natural environment and can be detected in organisms. However, little is known about MYC-induced embryonic developmental damage. This study aimed to unravel the cardiotoxicity of MYC and the underlying mechanisms, as well as the cardioprotective effect of curcumin (CUR, an antioxidant polyphenol) using the zebrafish model. Here, zebrafish embryos were exposed to MYC at concentrations of 0, 0.5, 1 and 2 mg/L from 4 to 96 h post fertilization (hpf) and cardiac development was assessed. As results, MYC reduced the survival and hatching rate, body length and heart rate, but increased the malformation rate and spontaneous movement. MYC caused abnormal cardiac morphology and function in myl7:egfp transgenic zebrafish, and downregulated cardiac developmental genes. MYC promoted oxidative stress through excessive reactive oxygen species (ROS) accumulation and suppressed the activities of antioxidant enzymes, triggering cardiomyocytic apoptosis via upregulated expression of apoptosis-related genes. These adverse toxicities could be significantly ameliorated by the antioxidant properties of CUR, indicating that CUR rescued MYC-induced cardiotoxicity by inhibiting oxidative stress and apoptosis. Overall, our study revealed the potential mechanisms of oxidative stress and apoptosis in MYC-induced cardiotoxicity in zebrafish and identified the cardioprotection of CUR in this pathological process.
Collapse
Affiliation(s)
- Chunlan Liu
- School of Public Health Management, Jiangsu Health Vocational College, Nanjing 211800, PR China
| | - Fan Yang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong 226011, PR China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, PR China
| | - Renfei Zhu
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu 226006, PR China.
| | - Jiansheng Zhu
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Mingtao Huang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, PR China.
| |
Collapse
|
9
|
Huang D, Su Y, Li M, Xie C, Hu W, Wang S, Zheng N, Chen J, Lin Y, Cai W, Xiao J, Chen B, Hu N, Zhou F. (-)-Epicatechin gallate ameliorates cyprodinil-induced cardiac developmental defects through inhibiting aryl hydrocarbon receptor in zebrafish. Birth Defects Res 2024; 116:e2350. [PMID: 38761027 DOI: 10.1002/bdr2.2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Cyprodinil is a widely used fungicide with broad-spectrum activity, but it has been associated with cardiac abnormalities. (-)-Epicatechin gallate (ECG), a natural polyphenolic compound, has been shown to possess protective properties in cardiac development. METHODS In this study, we investigated whether ECG could mitigate cyprodinil-induced heart defects using zebrafish embryos as a model. Zebrafish embryos were exposed to cyprodinil with or without ECG. RESULTS Our results demonstrated that ECG significantly improved the survival rate, embryo movement, and hatching delay induced by cyprodinil. Furthermore, ECG effectively ameliorated cyprodinil-induced cardiac developmental toxicity, including pericardial anomaly and impairment of cardiac function. Mechanistically, ECG attenuated the cyprodinil-induced alterations in mRNA expression related to cardiac development, such as amhc, vmhc, tbx5, and gata4, as well as calcium ion channels, such as ncx1h, atp2a2a, and cdh2. Additionally, ECG was found to inhibit the activity of the aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. CONCLUSIONS In conclusion, our findings provide evidence for the protective effects of ECG against cyprodinil-induced cardiac developmental toxicity, mediated through the inhibition of AhR activity. These findings contribute to a better understanding of the regulatory mechanisms and safe utilization of pesticide, such as cyprodinil.
Collapse
Affiliation(s)
- Dongqin Huang
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Yuchao Su
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Mingmei Li
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Chengwei Xie
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Weibin Hu
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Shuxiang Wang
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Nanmei Zheng
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Jianhui Chen
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Yueyun Lin
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Weize Cai
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Jianjia Xiao
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Baojia Chen
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Nanping Hu
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Fushan Zhou
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| |
Collapse
|
10
|
Guo Z, Wang M, Pan Y, Lu H, Pan S. Ecological assessment of stream water polluted by phosphorus chemical plant: Physiological, biochemical, and molecular effects on zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2024; 247:118173. [PMID: 38224935 DOI: 10.1016/j.envres.2024.118173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The rapid development of the phosphorus chemical industry has caused serious pollution problems in the regional eco-environment. However, understanding of their ecotoxic effects remains limited. This study aimed to investigate the developmental toxicity of a stream polluted by a phosphorus chemical plant (PCP) on zebrafish embryos. For this, zebrafish embryos were exposed to stream water (0, 25, 50, and 100% v/v) for 96 h, and developmental toxicity, oxidative stress, apoptosis, and DNA damage were assessed. Stream water-treated embryos exhibited decreased hatching rates, heart rates, and body lengths, as well as increased mortality and malformation rates. The general morphology score system indicated that the swim bladder and pigmentation were the main abnormal morphological endpoints. Stream water promoted antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPx)), lipid peroxidation, and DNA damage. It also triggered apoptosis in the embryos' heads, hearts, and spines by activating apoptotic enzymes (Caspase-3 and Caspase-9). Additionally, stream water influenced growth, oxidative stress, and apoptosis-related 19 gene expression. Notably, tyr, sod (Mn), and caspase9 were the most sensitive indicators of growth, oxidative stress, and apoptosis, respectively. The current trial concluded that PCP-polluted stream water exhibited significant developmental toxicity to zebrafish embryos, which was regulated by the oxidative stress-mediated activation of endogenous apoptotic signaling pathways.
Collapse
Affiliation(s)
- Ziyu Guo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Min Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongliang Lu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Sha Pan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| |
Collapse
|
11
|
Siqueira L, Varela ACC, Soares SM, Fortuna M, Freddo N, Nardi J, Barletto ÍP, Dos Santos ACM, Ariotti MS, Rutikoski GW, Andrade CM, Bertuol MZ, Zanella N, Barcellos LJG. Mixture of pesticides based on dimethylamine and imidacloprid affects locomotion of adult zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28827-28834. [PMID: 38587780 DOI: 10.1007/s11356-024-33212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Numerous chemical compounds are found in aquatic environments; among them are pesticides. Pesticides are widely used worldwide, and this use has progressively increased in recent decades, resulting in the accumulation of potentially toxic compounds in surface waters. Dimethylamine-based herbicides (DBH) and imidacloprid-based insecticides (IBI) have low soil absorption and high water solubility, facilitating the arrival of these compounds in aquatic environments. In this study, our objective was to analyze whether two pesticides, DBH and IBI at environmentally relevant concentrations of 320 μg/L for each compound, and their mixtures impact the behavioral and endocrine parameters of adult zebrafish, verifying the effect of pesticides on exploratory behavior and social and analyzing hormonal parameters related to stress. Acute exposure to the mixture of pesticides reduced fish locomotion. Pesticides alone and in combination did not affect cortisol levels in exposed animals. Pesticides, when tested together, can cause different effects on non-target organisms, and the evaluation of mixtures of these compounds is extremely important.
Collapse
Affiliation(s)
- Lisiane Siqueira
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Amanda Carolina Cole Varela
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, , Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, , Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, , Brazil
| | - Natália Freddo
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Jéssica Nardi
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Ísis Piasson Barletto
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | | | - Maíra Souza Ariotti
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | | | - Cecilia Mazutti Andrade
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Milena Zanoello Bertuol
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Noeli Zanella
- Curso de Ciências Biológicas, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação Em Ciências Ambientais, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, , Brazil.
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
Bertoni Í, Sales BCP, Viriato C, Peixoto PVL, Pereira LC. Embryotoxicity Induced by Triclopyr in Zebrafish ( Danio rerio) Early Life Stage. TOXICS 2024; 12:255. [PMID: 38668478 PMCID: PMC11054795 DOI: 10.3390/toxics12040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/29/2024]
Abstract
Triclopyr, an auxin-like herbicide that is widely employed for managing weeds in food crops and pastures, has been identified in various environmental settings, particularly aquatic ecosystems. Limited understanding of the environmental fate of this herbicide, its potential repercussions for both the environment and human health, and its insufficient monitoring in diverse environmental compartments has caused it to be recognized as an emerging contaminant of concern. In this study, we have investigated how triclopyr affects zebrafish, considering a new alternative methodology. We focused on the endpoints of developmental toxicity, neurotoxicity, and behavior of zebrafish embryos and larvae. We determined that triclopyr has a 96 h median lethal concentration of 87.46 mg/L (341.01 µM). When we exposed zebrafish embryos to sublethal triclopyr concentrations (0.5, 1, 5, 10, and 50 μM) for up to 144 h, we found that 50 µM triclopyr delayed zebrafish egg hatchability. Yolk sac malabsorption was significant at 0.5, 1, 5, and 10 µM triclopyr. In zebrafish larvae, uninflated swim bladder was significant only at 50 µM triclopyr. Furthermore, zebrafish larvae had altered swimming activity after exposure to 10 µM triclopyr for 144 h. In summary, these comprehensive results indicate that even low triclopyr concentrations can elicit adverse effects during early zebrafish development.
Collapse
Affiliation(s)
- Ítalo Bertoni
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, Brazil; (B.C.P.S.); (P.V.L.P.)
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu 18618-687, Brazil; (C.V.); (L.C.P.)
| | - Bianca Camargo Penteado Sales
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, Brazil; (B.C.P.S.); (P.V.L.P.)
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu 18618-687, Brazil; (C.V.); (L.C.P.)
| | - Cristina Viriato
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu 18618-687, Brazil; (C.V.); (L.C.P.)
- Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, Brazil
| | - Paloma Vitória Lima Peixoto
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, Brazil; (B.C.P.S.); (P.V.L.P.)
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu 18618-687, Brazil; (C.V.); (L.C.P.)
| | - Lílian Cristina Pereira
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu 18618-687, Brazil; (C.V.); (L.C.P.)
- School of Agriculture, São Paulo State University (Unesp), Botucatu 18610-034, Brazil
| |
Collapse
|
13
|
Hsiao BY, Horng JL, Yu CH, Lin WT, Wang YH, Lin LY. Assessing cardiovascular toxicity in zebrafish embryos exposed to copper nanoparticles. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109838. [PMID: 38220071 DOI: 10.1016/j.cbpc.2024.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The toxicity of copper nanoparticles (CuNPs) to aquatic animals, particularly their effects on the cardiovascular system, has not been thoroughly investigated. In the present study, zebrafish embryos were used as a model to address this issue. After exposure to different concentrations (0.01, 0.1, 1, and 3 mg/L) of CuNPs for 96 h (4 to 100 h post-fertilization), cardiac parameters of the heart rate (HR), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and cardiac output (CO), and vascular parameters of the aortic blood flow velocity (ABFV) and aortic diameter (AD) were examined by a video-microscopic method. Morphologically, CuNPs induced concentration-dependent pericardial edema. Although CuNPs did not alter the HR, they significantly reduced the EDV, SV, and CO at ≥0.1 mg/L, the ESV and EF at 3 mg/L, the ABFV at ≥0.1 mg/L, and the AD at ≥1 mg/L. Transcript levels of several cardiac genes, nppa, nppb, vmhc, and gata4, were also examined. CuNPs significantly suppressed nppa and nppb at ≥0.1 mg/L, gata4 at ≥0.01 mg/L, and vmhc at 1 mg/L. This study demonstrated that CuNPs can induce cardiovascular toxicity at environmentally relevant concentrations during fish embryonic development and highlight the potential ecotoxicity of CuNPs to aquatic animals.
Collapse
Affiliation(s)
- Bu-Yuan Hsiao
- Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hua Yu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wen-Ting Lin
- Affiliated Senior High School of National Taiwan Normal University, Taipei 10658, Taiwan
| | - Yu-Han Wang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
14
|
Santos GD, Rutkoski CF, Folador A, Skovronski VJ, Müller C, Pompermaier A, Hartmann PA, Hartmann M. 2,4-D-based herbicide underdoses cause mortality, malformations, and nuclear abnormalities in Physalaemus cuvieri tadpoles. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109840. [PMID: 38218566 DOI: 10.1016/j.cbpc.2024.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Amphibians are considered bioindicators of the environment due to their high sensitivity and involvement in terrestrial and aquatic ecosystems. In the last two decades, 2,4-D has been one of the most widely used herbicides in Brazil and around the world, as its use has been authorized for genetically modified crops and therefore has been detected in surface and groundwater. Against this background, the aim of this work was to investigate the effects of environmentally relevant concentrations of 2,4-D-based herbicides on survival, malformations, swimming activity, presence of micronuclei and erythrocyte nuclear abnormalities in Physalaemus cuvieri tadpoles. The amphibians were exposed to six concentrations of 2,4-D-based herbicides: 0.0, 4.0, 30.0, 52.5, 75.0, and 100 μg L-1, for 168 h. At concentrations higher than 52.5 μg L-1, significantly increased mortality was observed from 24 h after exposure. At the highest concentration (100 μg L-1), the occurrence of mouth and intestinal malformations was also observed. The occurrence of erythrocyte nuclear abnormalities at concentrations of 30.0, 52.5, 75.0 and 100 μg L-1 and the presence of micronuclei at concentrations of 52.5, 75.0, and 100 μg L-1 were also recorded. These effects of 2,4-D in P. cuvieri indicate that the ecological risk observed at concentrations above 10.35 μg L-1 2,4-D may represent a threat to the health and survival of this species, i.e., exposure to 2,4-D at concentrations already detected in surface waters in the species' range is toxic to P. cuvieri.
Collapse
Affiliation(s)
- Gilcinéia Dos Santos
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Camila Fátima Rutkoski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Alexandre Folador
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Vrandrieli Jucieli Skovronski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Caroline Müller
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Aline Pompermaier
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Paulo Afonso Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Marilia Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil.
| |
Collapse
|
15
|
Gong G, Kam H, Bai Y, Cheang WS, Wu S, Cheng X, Giesy JP, Lee SMY. 6-benzylaminopurine causes endothelial dysfunctions to human umbilical vein endothelial cells and exacerbates atorvastatin-induced cerebral hemorrhage in zebrafish. ENVIRONMENTAL TOXICOLOGY 2024; 39:1258-1268. [PMID: 37929299 DOI: 10.1002/tox.24012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/26/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
6-benzylaminopurine (6-BA), a multifunctional plant growth regulator, which is frequently used worldwide to improve qualities of various crops, is an important ingredient in production of "toxic bean sprouts." Although there is no direct evidence of adverse effects, its hazardous effects, as well as joint toxicity with other chemicals, have received particular attention and aroused furious debate between proponents and environmental regulators. By use of human umbilical vein endothelial cells (HUVECs), adverse effects of 6-BA to human-derived cells were first demonstrated in this study. A total of 25-50 mg 6-BA/L inhibited proliferation, migration, and formation of tubular-like structures by 50% in vitro. Results of Western blot analyses revealed that exposure to 6-BA differentially modulated the MAPK signal transduction pathway in HUVECs. Specifically, 6-BA decreased phosphorylation of MEK and ERK, but increased phosphorylation of JNK and P38. In addition, 6-BA exacerbated atorvastatin-induced cerebral hemorrhage via increasing hemorrhagic occurrence by 60% and areas by 4 times in zebrafish larvae. In summary, 6-BA elicited toxicity to the endothelial system of HUVECs and zebrafish. This was due, at least in part, to discoordination of MAPK signaling pathway, which should pose potential risks to the cerebral vascular system.
Collapse
Affiliation(s)
- Guiyi Gong
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yubin Bai
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shuilong Wu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Xiaoning Cheng
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - John P Giesy
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Toxicology Centre, University of Saskatchewan, Saskatchewan, Canada
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Environmental Sciences, Baylor University, Waco, Texas, United States
| |
Collapse
|
16
|
Cabrera Gonzalez AD, Flores León JR, Ramirez Mendoza CG, Rodríguez Félix DE, Castillo Ortega MM, Santacruz Ortega H, Rodríguez Félix F, Madera Santana TJ, Quiroz
Castillo JM. Preparation and Characterization of Poly(lactic acid) Membranes and Films Coated with Polyaniline for Potential Use in Environmental Remediation. ACS OMEGA 2024; 9:4439-4446. [PMID: 38313549 PMCID: PMC10831965 DOI: 10.1021/acsomega.3c06659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
This research outlines the fabrication of polymeric membranes and films of poly(lactic acid) (PLA), prepared via electrospinning and extrusion, respectively. These materials were subsequently coated with polyaniline (PANi) by using the in situ chemical polymerization technique. Scanning electron microscopy micrographs revealed that the best coatings were achieved when 3 and 30 min of contact time with the monomeric solution were used for the membrane and film, respectively. Additionally, Fourier transform infrared spectra, thermogravimetric studies, and contact angle measurements demonstrated proper interaction between PLA and PANi. The findings of these studies suggest that PLA membranes and films can serve as suitable substrates for the deposition of PANi, and the composite materials hold potential for use in environmental remediation applications.
Collapse
Affiliation(s)
- Ana Daymi Cabrera Gonzalez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - José Ramón Flores León
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | | | - Dora Evelia Rodríguez Félix
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - María Mónica Castillo Ortega
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Hisila Santacruz Ortega
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Francisco Rodríguez Félix
- Departamento
de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Tomás Jesús Madera Santana
- Laboratorio
de Envases, CTAOV, Centro de Investigación
en Alimentos y Desarrollo A.C., Hermosillo C.P. 83304, Sonora, Mexico
| | - Jesús Manuel Quiroz
Castillo
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| |
Collapse
|
17
|
de Arruda Leite B, Meireles G, Abe FR, Gravato C, Dorta DJ, de Oliveira DP. Do zebrafish become blind or is it too much red dye in water? Distinguishing the embryo-larval development and physiology effects of DR 60, 73, and 78. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168062. [PMID: 37884151 DOI: 10.1016/j.scitotenv.2023.168062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Some dyes currently used by the textile, pharmaceutical, food, cosmetic, and photographic industries have been shown to be toxic and/or mutagenic to aquatic life. Most of these dyes resist degradation processes available for treating wastewater, and these processes might generate even more toxic by-products. Despite the large number of available dyes and the large quantity of dyes released into the environment, studies on their toxicity are still scarce. We evaluated and compared the effects in the animal model Danio rerio (zebrafish) of environmentally relevant concentrations of Disperse Red 60 (DR 60), 73 (DR 73), and 78 (DR 78) using the fish embryo acute toxicity (FET) test, morphometric analysis, immunofluorescence imaging, and behavioral parameters. DR 60 caused ocular modifications, while the DR 73 caused non-inflation of the swim bladder (NISB), pericardial edema (PE), scoliosis (S) and abnormal yolk sac (AYS) from at 0.125 mg/L. In behavioral tests, all the dyes induced changes in velocity and time spent swimming of exposed larvae. However, these alterations in behavior seem to be caused by different factors dependent on the dye and its concentration. Nevertheless, behavior seems to add valuable information concerning the hazards analysis of dyes, since it reveals to be the most sensitive group of parameters tested in the current study. In conclusion, of the behavioral and developmental alterations caused by these dyes should be interpreted as an alert for greater attention when registering new dyes and releasing them into the environment. In the particular case of DR 60 the possibility that directly affects the eye of larvae is of great environmental concern, but also from the human health perspective.
Collapse
Affiliation(s)
- Bianca de Arruda Leite
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil
| | - Gabriela Meireles
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil; Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Flávia Renata Abe
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil
| | - Carlos Gravato
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Daniel Junqueira Dorta
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo CEP 14040901, Brazil
| | - Danielle P de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil.
| |
Collapse
|
18
|
Martins RX, Carvalho M, Maia ME, Flor B, Souza T, Rocha TL, Félix LM, Farias D. 2,4-D Herbicide-Induced Hepatotoxicity: Unveiling Disrupted Liver Functions and Associated Biomarkers. TOXICS 2024; 12:35. [PMID: 38250991 PMCID: PMC10818579 DOI: 10.3390/toxics12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide worldwide and is frequently found in water samples. This knowledge has prompted studies on its effects on non-target organisms, revealing significant alterations to liver structure and function. In this review, we evaluated the literature on the hepatotoxicity of 2,4-D, focusing on morphological damages, toxicity biomarkers and affected liver functions. Searches were conducted on PubMed, Web of Science and Scopus and 83 articles were selected after curation. Among these studies, 72% used in vivo models and 30% used in vitro models. Additionally, 48% used the active ingredient, and 35% used commercial formulations in exposure experiments. The most affected biomarkers were related to a decrease in antioxidant capacity through alterations in the activities of catalase, superoxide dismutase and the levels of malondialdehyde. Changes in energy metabolism, lipids, liver function, and xenobiotic metabolism were also identified. Furthermore, studies about the effects of 2,4-D in mixtures with other pesticides were found, as well as hepatoprotection trials. The reviewed data indicate the essential role of reduction in antioxidant capacity and oxidative stress in 2,4-D-induced hepatotoxicity. However, the mechanism of action of the herbicide is still not fully understood and further research in this area is necessary.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Maria Eduarda Maia
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Bruno Flor
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74055-110, Brazil;
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| |
Collapse
|
19
|
Shubhangi, Nandi I, Rai SK, Chandra P. MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta 2024; 266:125124. [PMID: 37657374 DOI: 10.1016/j.talanta.2023.125124] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Metal Organic Frameworks (MOFs), a class of crystalline microporous materials have been into research limelight lately due to their commendable physio-chemical properties and easy fabrication methods. They have enormous surface area which can be a working ground for innumerable molecule adhesions and site for potential sensor matrices. Their biocompatibility makes them valuable for in vitro detection systems but a compromised conductivity requires a lot of surface engineering of these molecules for their usage in electrochemical biosensors. However, they are not just restricted to a single type of transduction system rather can also be modified to achieve feat as optical (colorimetry, luminescence) and electro-luminescent biosensors. This review emphasizes on recent advancements in the area of MOF-based biosensors with focus on various MOF synthesis methods and their general properties along with selective attention to electrochemical, optical and opto-electrochemical hybrid biosensors. It also summarizes MOF-based biosensors for monitoring free radicals, metal ions, small molecules, macromolecules and cells in a wide range of real matrices. Extensive tables have been included for understanding recent trends in the field of MOF-composite probe fabrication. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India; Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Indrani Nandi
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - S K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
20
|
Mínguez-Alarcón L, Gaskins AJ, Meeker JD, Braun JM, Chavarro JE. Endocrine-disrupting chemicals and male reproductive health. Fertil Steril 2023; 120:1138-1149. [PMID: 37827483 PMCID: PMC10841502 DOI: 10.1016/j.fertnstert.2023.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Modifiable factors, such as environmental exposures, can impact human fertility. The objective of this review is to summarize the potential effects of exposure to important endocrine-disrupting chemicals on male reproductive health. Most experimental and animal data demonstrate strong evidence for the negative effects of exposure to phenols, phthalates, pesticides, and perfluoroalkyl and polyfluoroalkyl substances on male reproductive health. Although evidence of negative associations in humans was overall strong for phthalates and pesticides, limited and inconclusive relationships were found for the other examined chemical biomarkers. Reasons for the discrepancies in results include but are not limited to, differences in study populations, exposure concentrations, number of samples collected, sample sizes, study design, and residual confounding. Additional studies are needed, particularly for newer phenols and perfluoroalkyl and polyfluoroalkyl substances, given the scarce literature on the topic and increasing exposures over time.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Jorge E Chavarro
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
21
|
Wang X, Hao W. Reproductive and developmental toxicity of plant growth regulators in humans and animals. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105640. [PMID: 37945238 DOI: 10.1016/j.pestbp.2023.105640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
Plant growth regulators (PGRs) are currently one of the widely used pesticides, as being considered to have relatively low toxicity compared with other pesticides. However, widespread use may lead to overexposure from multiple sources. Exposure to PGRs is associated with different toxicity that affects many organs in our body, such as the toxicity to testis, ovaries, liver, kidneys and brain. In addition, some PGRs are considered potential endocrine disrupting chemicals. Evidence exists for development and reproductive toxicity associated with prenatal and postnatal exposure in both animals and humans. PGRs can affect the synthesis and secretion of sex hormones, destroy the structure and function of the reproductive system, and harm the growth and development of offspring, which may be related to germ cell cycle disorders, apoptosis and oxidative stress. This review summaries the reproductive and developmental toxicity data available about PGRs in mammals. In the future, conducting comprehensive epidemiological studies will be crucial for assessing the reproductive and developmental toxicity resulting from a mixture of various PGRs, with a particular emphasis on understanding the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| |
Collapse
|
22
|
Gasque-Belz L, Colville C, Kurukulasuriya S, Siciliano SD, Hogan N, Weber L, Campbell P, Peters R, Hanson M, Hecker M. Characterization of molecular and apical effects of legacy-contaminated groundwater on early life stages of fathead minnows. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106734. [PMID: 37913685 DOI: 10.1016/j.aquatox.2023.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Mechanistic toxicology approaches represent a promising alternative to traditional live animal testing; however, the often-noted uncertainties concerning the linkages between effects observed at molecular and apical levels curtails the adoption of such approaches. The objective of this study was to apply a novel transcriptomics tool, EcoToxChips, to characterize the effects of complex mixtures of contaminants in fish and to compare molecular response patterns to higher-level biological responses including swimming behavior, deformities, and mortality. Fathead minnow (FHM) embryos were exposed for seven days to increasing concentrations of groundwater collected from moderate (MIAZ) and high (HIAZ) industrial activity zones of a legacy contaminated site. There was a concentration-dependent disruption of photo-dependent swimming responses associated with avoidance behavior patterns and spinal deformities (HIAZ and MIAZ), and an induction of pericardial edema and mortality (HIAZ-10%). Parallel EcoToxChip analyses showed a shift from a majority of upregulated genes at lower concentrations to a majority of downregulated genes at higher concentrations for both treatment conditions. Many of the significantly differentially regulated genes were involved in biological pathways including induction of oxidative stress, activating of several metabolic processes and growth, cell death, and inhibition of signal transduction signaling processes. Several contaminants present in the groundwater mixtures could have contributed to an exceedance of antioxidant system capacities that possibly led to the deformities, altered swimming behaviours, and mortality observed in FHMs. Therefore, molecular response patterns could be linked to apical outcomes observed in this study. Overall, the results observed in this study demonstrate that transcriptomics approaches such as the EcoToxChip system could be supportive of risk assessment of complex contaminated sites.
Collapse
Affiliation(s)
- Laura Gasque-Belz
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Rachel Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - Mark Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
23
|
Wang X, Chen F, Lu J, Wu M, Cheng J, Xu W, Li Z, Zhang Y. Developmental and cardiovascular toxicities of acetochlor and its chiral isomers in zebrafish embryos through oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165296. [PMID: 37406693 DOI: 10.1016/j.scitotenv.2023.165296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Acetochlor (ACT) is a widely used pesticide, yet the environmental and health safety of its chiral isomers remains inadequately evaluated. In this study, we evaluated the toxicity of ACT and its chiral isomers in a zebrafish model. Our findings demonstrate that ACT and its chiral isomers disrupt early zebrafish embryo development, inducing oxidative stress, abnormal lipid metabolism, and apoptosis. Additionally, ACT and its chiral isomers lead to cardiovascular damage, including reduced heart rate, decreased red blood cell (RBC) flow rate, and vascular damage. We further observed that (+)-S-ACT has a significant impact on the transcription of genes involved in cardiac and vascular development, including tbx5, hand2, nkx2.5, gata4, vegfa, dll4, cdh5, and vegfc. Our study highlights the potential risk posed by different conformations of chiral isomeric pesticides and raises concerns regarding their impact on human health. Overall, our results suggest that the chiral isomers of ACT induce developmental defects and cardiovascular toxicity in zebrafish, with (+)-S-ACT being considerably more toxic to zebrafish than (-)-R-ACT.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
24
|
Felisbino K, Kirsten N, da Silva Milhorini S, Marçal IS, Bernert K, Schiessl R, Nominato-Oliveira L, Guiloski IC. Teratogenic effects of the dicamba herbicide in Zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122187. [PMID: 37442326 DOI: 10.1016/j.envpol.2023.122187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Dicamba has been used worldwide for 60 years, but few studies have been conducted on its environmental safety and health effects. Therefore, this study aims to evaluate the acute toxicity, teratogenic effects, oxidative stress, and neurotoxicity of Dicamba in zebrafish embryos. Embryos were exposed to concentrations of 4.5, 18, 72, and 288 mg/L of Dicamba for 96 h. Among the teratogenic effects, yolk sac edema predominated, besides malabsorption of nutrients (grayish yolk sac). The presence of edema may indicate problems with circulation and water efflux from the embryos, which may be related to kidney and cardiovascular problems. Other effects such as hemorrhage, spinal and eye malformations, and dwarfism were also observed. The hatching rate was reduced in the highest concentration, and in the other concentrations, a decrease was noticeable indicating a delay in development. Neurotoxic effects were also observed. Oxidative stress analysis showed a significant decrease in SOD at all concentrations and an increase in GPx, GSH, and LPO at 288 mg/L of Dicamba. It was observed that the herbicide is capable of causing teratogenic effects, developmental delay, and oxidative stress. These results show that exposure to Dicamba, in a commercial formulation, can bring risks during embryonic development. In addition, it highlights the need for further studies on the effects of the herbicide and a reassessment of toxicity categorization.
Collapse
Affiliation(s)
- Karoline Felisbino
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil.
| | - Nathalia Kirsten
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Shayane da Silva Milhorini
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Isabela Saragioto Marçal
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Karina Bernert
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Rafaela Schiessl
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Leticia Nominato-Oliveira
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Izonete Cristina Guiloski
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| |
Collapse
|
25
|
Zhu Y, Song F, Gu J, Wu L, Wu W, Ji G. Paroxetine induced larva zebrafish cardiotoxicity through inflammation response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115096. [PMID: 37269614 DOI: 10.1016/j.ecoenv.2023.115096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Paroxetine (PRX) is a common antidepressant drug which widely existence in natural environment. Numerous studies in the past few decades have focused on the beneficial effects of PRX on depression, however, the toxic properties and the potential mechanisms remain unclear. In this study, zebrafish embryos were exposed to 1.0, 5.0, 10 and 20 mg/L of PRX from 4 to 120-hour-post-fertilization (hpf), and it showed that PRX exposure caused adverse effects in zebrafish embryos, including decreased body length, blood flow velocity, cardiac frequency, cardiac output and increased burst activity and atria area. Meanwhile, the Tg (myl7: EGFP) and Tg (lyz: DsRed) transgenic zebrafish were used to detect the cardiotoxicity and inflammation response of PRX. Moreover, the heart development associated genes (vmhc, amhc, hand2, nkx2.5, ta, tbx6, tbx16 and tbx20) and inflammatory genes (IL-10, IL-1β, IL-8 and TNF-α) were up-regulated after PRX challenge. In addition, Aspirin was used to alleviate the PRX-induced heart development disorder. In conclusion, our study verified the PRX induced inflammatory related cardiotoxicity in larva zebrafish. Meanwhile, the current study shown the toxic effects of PRX in aquatic organism, and provide for the environmental safety of PRX.
Collapse
Affiliation(s)
- Yuanhui Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Feifei Song
- Department of Neurology, Zhongshan hospital, Fudan University, 20032 Shanghai, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Linlin Wu
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Wenzhu Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
26
|
Monné Rodríguez JM, Frisk AL, Kreutzer R, Lemarchand T, Lezmi S, Saravanan C, Stierstorfer B, Thuilliez C, Vezzali E, Wieczorek G, Yun SW, Schaudien D. European Society of Toxicologic Pathology (Pathology 2.0 Molecular Pathology Special Interest Group): Review of In Situ Hybridization Techniques for Drug Research and Development. Toxicol Pathol 2023; 51:92-111. [PMID: 37449403 PMCID: PMC10467011 DOI: 10.1177/01926233231178282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In situ hybridization (ISH) is used for the localization of specific nucleic acid sequences in cells or tissues by complementary binding of a nucleotide probe to a specific target nucleic acid sequence. In the last years, the specificity and sensitivity of ISH assays were improved by innovative techniques like synthetic nucleic acids and tandem oligonucleotide probes combined with signal amplification methods like branched DNA, hybridization chain reaction and tyramide signal amplification. These improvements increased the application spectrum for ISH on formalin-fixed paraffin-embedded tissues. ISH is a powerful tool to investigate DNA, mRNA transcripts, regulatory noncoding RNA, and therapeutic oligonucleotides. ISH can be used to obtain spatial information of a cell type, subcellular localization, or expression levels of targets. Since immunohistochemistry and ISH share similar workflows, their combination can address simultaneous transcriptomics and proteomics questions. The goal of this review paper is to revisit the current state of the scientific approaches in ISH and its application in drug research and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
27
|
Girotto L, Freitas IBF, Yoshii MPC, Goulart BV, Montagner CC, Schiesari LC, Espíndola ELG, Freitas JS. Using mesocosms to evaluate the impacts of pasture intensification and pasture-sugarcane conversion on tadpoles in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21010-21024. [PMID: 36264462 DOI: 10.1007/s11356-022-23691-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the effects of environmental contamination caused by pasture intensification and pasture-sugarcane conversion on oxidative stress, biotransformation, esterase enzymes, and development of Scinax fuscovarious and Physalaemus nattereri. Tadpoles were exposed in mesocosms allocated in three treatments: (1) untreated extensive pasture (EP); (2) intensive-pasture conversion (IP) (2,4-D herbicide + fertilizers); and (3) pasture-sugarcane conversion (SC) (fipronil + 2,4-D + fertilizers). After 7 days of exposure, IP reduced catalase (CAT) and increased malondialdehyde (MDA) levels in P. nattereri, while this treatment decreased glucose-6-phosphate dehydrogenase (G6PDH) and CAT activities in S. fuscovarious. SC decreased CAT, G6PDH, and glutathione S-transferase (GST) activities in P. nattereri. In S. fuscovarius, SC reduced G6PDH, acetylcholinesterase (AChE), and carboxylesterase (CbE) activities. MDA was raised in both tadpole species exposed to SC, evidencing oxidative stress. Integrated biomarker responses showed higher scores in both species exposed to SC. Our results warn that management practices currently applied to sugarcane cultivation in Brazil can negatively impact the functional responses of amphibians at natural systems.
Collapse
Affiliation(s)
- Lais Girotto
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Isabele Baima Ferreira Freitas
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, , São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, , São Paulo, Brazil
| | - Luis César Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP, 03828-000, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Juliane Silberschmidt Freitas
- Department of Agricultural and Natural Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, S/N - Universitário, Ituiutaba, MG, 38302-192, Brazil.
| |
Collapse
|
28
|
Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. TOXICS 2023; 11:84. [PMID: 36668810 PMCID: PMC9866970 DOI: 10.3390/toxics11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Haoze Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
29
|
Vinayagam R, Ganga S, Murugesan G, Rangasamy G, Bhole R, Goveas LC, Varadavenkatesan T, Dave N, Samanth A, Radhika Devi V, Selvaraj R. 2,4-Dichlorophenoxyacetic acid (2,4-D) adsorptive removal by algal magnetic activated carbon nanocomposite. CHEMOSPHERE 2023; 310:136883. [PMID: 36257398 DOI: 10.1016/j.chemosphere.2022.136883] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In the present study, ferric oxide nanoparticles impregnated with activated carbon from Ulva prolifera biomass (UPAC-Fe2O3) were prepared and employed to remove 2,4-Dichlorophenoxyacetic acid (2,4-D) by adsorption. The UPAC-Fe2O3 nanocomposite was characterized for its structural and functional properties by a variety of techniques. The nanocomposite had a jagged, irregular surface with pores due to uneven scattering of Fe2O3 nanoparticles, whereas elemental analysis portrayed the incidence of carbon, oxygen, and iron. XRD analysis established the crystalline and amorphous planes corresponding to the iron oxide and carbon phase respectively. FT-IR analyzed the functional groups that confirmed the integration of Fe2O3 nanoparticles onto nanocomposite surfaces. VSM and XPS studies uncovered the superparamagnetic nature and presence of carbon and Fe2O3, respectively, in the UPAC-Fe2O3 nanocomposite. While the surface area was 292.51 m2/g, the size and volume of the pores were at 2.61 nm and 0.1906 cm3/g, respectively, indicating the mesoporous nature and suitability of the nanocomposites that could be used as adsorbents. Adsorptive removal of 2,4-D by nanocomposite for variations in process parameters like pH, dosage, agitation speed, adsorption time, and 2,4-D concentration was studied. The adsorption of 2,4-D by UPAC-Fe2O3 nanocomposite was monolayer chemisorption owing to Langmuir isotherm behavior along with a pseudo-second-order kinetic model. The maximum adsorption capacity and second order rate constant values were 60.61 mg/g and 0.0405 g/mg min respectively. Thermodynamic analysis revealed the spontaneous and feasible endothermic adsorption process. These findings confirm the suitability of the synthesized UPAC-Fe2O3 nanocomposite to be used as an adsorbent for toxic herbicide waste streams.
Collapse
Affiliation(s)
- Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saivedh Ganga
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Ruchi Bhole
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Louella Concepta Goveas
- Nitte (Deemed to Be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka, 574110, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niyam Dave
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adithya Samanth
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - V Radhika Devi
- Department of Science and Humanities, MLR Institute of Technology, Hyderabad, Telangana, 500043, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
30
|
Yi J, Han X, Zhu Q, Wu L, Wang Y, Xue J, Lai X, Zhou H. A novel metal-organic framework of Co-hemin for portable and visual colorimetric detection of 2,4-dichlorophenoxyacetic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:63-69. [PMID: 36477090 DOI: 10.1039/d2ay01694j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
On-site quantitative analysis of 2,4-dichlorophenoxyacetic acid (2,4-D) is of significant importance for addressing increasing concerns about public health and environmental quality. Here, a novel metal-organic framework (MOF) of Co-hemin is synthesized and first used for on-site colorimetric monitoring of 2,4-D. 2,4-D as an inhibitor of alkaline phosphatase could specifically suppress the production of ascorbic acid, which restrained in situ etching of Co-hemin and further triggered the colorimetric response. In the colorimetric assay, Co-hemin displayed good oxidase-like activity without addition of H2O2, which could avoid the shortcomings of H2O2 such as toxicity and instability. The Co-hemin biosensor exhibited a relatively low detection limit of 33 ng mL-1 for 2,4-D by the UV method. Moreover, a smartphone based RGB analysis system for the sensitive detection of 2,4-D was developed, and exhibited a good linear relationship between the RGB model parameter and the concentration of 2,4-D. The operability and accuracy of the Co-hemin biosensor were confirmed by the quantitative determination of 2,4-D in real samples, such as serum and tap water. Also, the Co-hemin based colorimetric biosensor showed good selectivity and specificity. Moreover, the developed assays displayed good application in constructing complex logic gates. This work not only provided a portable and visual platform for on-site monitoring of 2,4-D, but also expanded application prospects in the field of complex biological analysis.
Collapse
Affiliation(s)
- Jintao Yi
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xianqin Han
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Qi Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Lingli Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Youtan Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Jun Xue
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xiaoqi Lai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Hui Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, P. R. China
| |
Collapse
|
31
|
Zheng S, Zhang Q, Wu R, Shi X, Peng J, Tan W, Huang W, Wu K, Liu C. Behavioral changes and transcriptomic effects at embryonic and post-embryonic stages reveal the toxic effects of 2,2',4,4'-tetrabromodiphenyl ether on neurodevelopment in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114310. [PMID: 36423367 DOI: 10.1016/j.ecoenv.2022.114310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Polybrominated biphenyl ethers (PBDEs) are new persistent pollutants that are widely exist in the environment and have many toxic effects. However, their toxicity mechanisms on neurodevelopment are still unclear. In this study, zebrafish embryos were exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) (control, 10, 50 and 100 μg/L) at 2 h postfertilization (hpf) - 7 dpf. Locomotion analysis indicated that BDE-47 increased spontaneous coiling activity in zebrafish embryos under high-intensity light stimuli and decreased locomotor in zebrafish larvae. RNA-Seq analysis revealed that most of the up-regulated pathways were related to the metabolism of cells and tissues, while the down-regulated pathways were related to neurodevelopment. Consistent with the locomotion and KEGG results, BDE-47 affected the expression of genes for central nervous system (gfap, mbpa, bdnf & pomcb), early neurogenesis (neurog1 & elavl3), and axonal development (tuba1a, tuba1b, tuba1c, syn2a, gap43 & shha). Furthermore, BDE-47 interfered with gene expression of the Wnt signaling pathway, especially during embryonic stages, suggesting that the mechanisms of BDE-47 toxicity to zebrafish at various stages of neurodevelopment may be different. In summary, early neurodevelopment effects and metabolic disturbances may have contributed to the abnormal neurobehavioral changes induced by BDE-47 in zebrafish embryos/larvae, suggesting the neurodevelopmental toxicity of BDE-47.
Collapse
Affiliation(s)
- Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Tan
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
32
|
Köktürk M. In vivo toxicity assessment of Remazol Gelb-GR (RG-GR) textile dye in zebrafish embryos/larvae (Danio rerio): Teratogenic effects, biochemical changes, immunohistochemical changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158473. [PMID: 36063928 DOI: 10.1016/j.scitotenv.2022.158473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Dyes, which are very important for various industries, have very adverse effects on the aquatic environment and aquatic life. However, there are limited studies on the toxic properties of dyes on living things. This research elucidated the sublethal toxicity of acute exposure of the textile dye remazol gelb-GR (RG-GR) using zebrafish embryos and larvae for 96 h. The 96 h-LC50 for RG-GR in zebrafish embryos/larvae was determined to be 151.92 mg/L. Sublethal 96 hpf exposure was performed in RG-GR concentrations (0.5; 1.0; 10.0; 100.0 mg/L) to determine the development of toxicity in zebrafish embryos/larvae. RG-GR dye affected morphological development, and decreased heart rate, hatching, blood flow, and survival rates in zebrafish embryos/larvae. The immunopositivity of 8-hydroxy 2 deoxyguanosine (8-OHdG) in larvae exposed to RG-GR at high concentrations was found to be intense. Depending on the RG-GR dose increase, some biochemical parameters such as glutathione peroxidase (GSH) level, acetylcholinesterase (AChE) activity, catalase (CAT) activities, superoxide dismutase (SOD), and nuclear factor erythroid 2 (Nrf-2) levels were detected to be decreased in larvae, while malondialdehyde (MDA) content, nuclear factor kappa (NF-kB), tumor necrosis factor-α (TNF-α), DNA damage (8-OHdG level), interleukin-6 (IL-6) and apoptosis (Caspase-3) levels were found to be increased. The experimental results revealed that RG-GR dye has high acute toxicity on zebrafish embryo/larvae.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Igdir University, TR-76000 Igdir, Turkey.
| |
Collapse
|
33
|
Gaaied S, Oliveira M, Barreto A, Zakhama A, Banni M. 2,4-Dichlorophenoxyacetic acid (2,4-D) affects DNA integrity and retina structure in zebrafish larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85402-85412. [PMID: 35794326 DOI: 10.1007/s11356-022-21793-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Monitoring the potential risk of herbicides in non-target organisms is a crucial issue for environmental safety. 2,4-D is an herbicide of high environmental relevance that has been shown to exert toxic effects to soil and aquatic biota. In the present study, we investigated the possible genotoxic and retinal development effects of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide in early life stages zebrafish (Danio rerio). Genotoxicity was evaluated by measuring DNA damage using the comet assay and also by the mRNA expression of genes implicated in apoptosis and/or DNA repair. Retinal development toxicity was evaluated with histological approach. The results obtained revealed that 2,4-D alters DNA integrity of zebrafish larvae. Moreover, transcriptomic data showed a significant induction of p-53 and casp-3 genes and a significant decrease of lig-4 in larvae exposed to the highest tested concentration of 2,4-D (0.8 mg/L). This suggested that p-53 gene regulates the process of DNA repair and apoptosis with increased levels of 2,4-D. The histopathological analysis revealed that early exposure to 2,4-D damaged the structure of larvae retina. Overall, this study is the first to report the DNA damage, casp-3, lig-4 and p-53 regulation, as well as the ocular developmental toxicity in zebrafish larvae at environmentally relevant concentrations of 2,4-D herbicide.
Collapse
Affiliation(s)
- Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology "LR02AGR21", ISA, Chott-Mariem, 4042, Sousse, Tunisia.
| | - Miguel Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Angela Barreto
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Abdelfattah Zakhama
- Department of Pathology, Fattouma Bourguiba University Hospital, 5000, Monastir, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology "LR02AGR21", ISA, Chott-Mariem, 4042, Sousse, Tunisia
| |
Collapse
|
34
|
Pompermaier A, Tamagno WA, Alves C, Barcellos LJG. Persistent and transgenerational effects of pesticide residues in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109461. [PMID: 36087705 DOI: 10.1016/j.cbpc.2022.109461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
Highly toxic chemical compounds are present in rivers and lakes, endangering the survival of non-target species. To evaluate the effects of environmental contamination on non-target species, we used the zebrafish as an animal model. Environmental concentrations of the widely used pesticides, glyphosate (GBH) at 4.8 μg·L-1 and 2,4-dichlorophenoxyacetic acid (DBH) at 3.4 μg·L-1, were used. The animals were exposed during the entire period of organogenesis and evaluated in our previous study regarding initial developmental parameters. In the present study, we evaluate these fish when achieve the adult phase, using the novel tank test (NTT) and the aversivity test. In the second step, the animals were allowed to reproduce, and the initial parameters of development, behavioral parameters in the open field test (OFT) and in the aversivity test (AST), and biochemical biomarkers as acetylcholinesterase (AChE), catalase (CAT), and superoxide dismutase (SOD) in the F1 generation were studied. Fish exposed to GBH showed hypermobility, and their anti-predatory reaction was impaired during adulthood, indicating a persistent effect. We also showed that fish had impaired behavioral and survival changes in the F1 generation as well as effects on AChE activity and antioxidant enzymes, characterizing a transgenerational effect. The fish did not show persistent effects in adulthood due to DBH exposure; however, they were unable to reproduce. Our findings demonstrate the serious impact of pesticides on fish, where the effects of contamination can affect future generations and compromise the species' survival.
Collapse
Affiliation(s)
- Aline Pompermaier
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil
| | - Wagner Antonio Tamagno
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Carla Alves
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
35
|
Cardiotoxicity of Zebrafish Induced by 6-Benzylaminopurine Exposure and Its Mechanism. Int J Mol Sci 2022; 23:ijms23158438. [PMID: 35955574 PMCID: PMC9369308 DOI: 10.3390/ijms23158438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
6-BA is a common plant growth regulator, but its safety has not been conclusive. The heart is one of the most important organs of living organisms, and the cardiogenesis process of zebrafish is similar to that of humans. Therefore, based on wild-type and transgenic zebrafish, we explored the development of zebrafish heart under 6-BA exposure and its mechanism. We found that 6-BA affected larval cardiogenesis, inducing defective expression of key genes for cardiac development (myl7, vmhc, and myh6) and AVC differentiation (bmp4, tbx2b, and notch1b), ultimately leading to weakened cardiac function (heart rate, diastolic speed, systolic speed). Acridine orange staining showed that the degree of apoptosis in zebrafish hearts was significantly increased under 6-BA, and the expression of cell-cycle-related genes was also changed. In addition, HPA axis assays revealed abnormally expressed mRNA levels of genes and significantly increased cortisol contents, which was also consistent with the observed anxiety behavior in zebrafish at 3 dpf. Transcriptional abnormalities of pro- and anti-inflammatory factors in immune signaling pathways were also detected in qPCR experiments. Collectively, we found that 6-BA induced cardiotoxicity in zebrafish, which may be related to altered HPA axis activity and the onset of inflammatory responses under 6-BA treatment.
Collapse
|
36
|
Pompermaier A, Varela ACC, Mozzato MT, Soares SM, Fortuna M, Alves C, Tamagno WA, Barcellos LJG. Impaired initial development and behavior in zebrafish exposed to environmentally relevant concentrations of widely used pesticides. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109328. [PMID: 35292329 DOI: 10.1016/j.cbpc.2022.109328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022]
Abstract
Pesticides reach water bodies through different routes, either owing to incorrect packaging disposal, direct application to control macrophytes, leaching from fields, or natural degradation processes. In the aquatic environment, adverse effects in non-target species that come in contact with these substances are poorly understood. Currently, the most used pesticides are glyphosate (GBH) and 2,4-dichlorophenoxyacetic acid-based herbicides (DBH), as its presence in water bodies is already known, we used environmental concentrations and our exposure time comprised the entire period of organogenesis (3-120 h post-fertilization). We evaluated the response of embryos in their early development with the parameters of mortality, hatching, spontaneous movement, and heart rate; and it's through behavior the open field test and aversive stimulus, as well as biochemical analyzes of acetylcholinesterase activity (AChE), catalase (CTL) and superoxide dismutase (SOD) as a possible mechanism of action. Exposure to GBH decreased survival, caused hypermobility and anxiolytic behavior, negatively affected the anti-predatory behavior of the larvae, and increases acetylcholinesterase activity, whereas exposure to DBH caused only slight hypermobility in the larvae and increases acetylcholinesterase activity. These changes may compromise the perpetuation of the species, the search for partners/food, and facilitate the action of predators, which can result in serious ecological consequences.
Collapse
Affiliation(s)
- Aline Pompermaier
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil
| | - Amanda Carolina Cole Varela
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Carla Alves
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil
| | - Wagner Antonio Tamagno
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Laboratório de Bioquímica e Biologia Molecular do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - Campus Sertão, Sertão, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil; Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
37
|
Zhang Y, Gao J, Nie Z, Zhu H, Du J, Cao L, Shao N, Sun Y, Su S, Xu G, Xu P. Microcystin-LR induces apoptosis in Juvenile Eriocheir sinensis via the mitochondrial pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113528. [PMID: 35500400 DOI: 10.1016/j.ecoenv.2022.113528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Microcystin-LR (MC-LR), the toxic substance of cyanobacteria secondary metabolism, widely exists in water environments and poses great risks to living organisms. Some toxicological assessments of MC-LR have performed at physiological and biochemical levels. However, plenty of blanks about the potential mechanism in aquatic crustacean remains. In this study, we firstly assessed the exposure toxicity of MC-LR to juvenile E. sinensis and clarified that the 96 h LD50 of MC-LR was 73.23 μg/kg. Then, hepatopancreas transcriptome profiles of MC-LR stressed crabs were constructed at 6 h post-injection and 37 differential expressed genes (DEGs) were identified. These DEGs were enriched in cytoskeleton, peroxisome and apoptosis pathways. To further reveal the toxicity of MC-LR, oxidative stress parameters (SOD, CAT, GSH-px and MDA), apoptosis genes (caspase 3, bcl-2 and bax) and apoptotic cells were detected. Significant accumulated MDA and rise-fall enzyme activities verified the oxidative stress caused by MC-LR. It is noteworthy that quantitative real-time PCR and TUNEL assay indicated that MC-LR stress-induced apoptosis via the mitochondrial pathway. Interestingly, activator protein-1 may play a crucial role in mediating the hepatotoxicity of MC-LR by regulating apoptosis and oxidative stress. Taken together, our study investigated the toxic effects and the potential molecular mechanisms of MC-LR on juvenile E. sinensis. It provided useful data for exploring the toxicity of MC-LR to aquatic crustaceans at molecular levels.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Nailin Shao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
38
|
Silberschmidt Freitas J, da Silva Pinto TJ, Cardoso Yoshii MP, Conceição Menezes da Silva L, de Palma Lopes LF, Pretti Ogura A, Girotto L, Montagner CC, de Oliveira Gonçalves Alho L, Castelhano Gebara R, Schiesari L, Gaeta Espíndola EL. Realistic exposure to fipronil, 2,4-D, vinasse and their mixtures impair larval amphibian physiology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118894. [PMID: 35085654 DOI: 10.1016/j.envpol.2022.118894] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Expansion of sugarcane crops may have contributed to the increased contamination of native habitats in Brazil. Several species of amphibians inhabit ponds formed in flooded farmlands, where pesticide concentrations are usually high. This study evaluated the ecotoxicological effects of the sugarcane pesticides fipronil and 2,4-D, as well as the fertilizer vinasse (isolated and mixed), on physiological responses of Leptodactylus fuscus and Lithobates catesbeianus tadpoles. In situ assays were conducted in mesocosms with concentrations based on the doses recommended by the manufacturer. Vinasse (1.3% dilution) caused 100% tadpoles' mortality immediately after its application. Fipronil and/or 2,4-D altered antioxidant and biotransformation responses, induced neurotoxicity and changed lipid contents in tadpoles. A multivariate approach indicated that the mixture of pesticides induced most of the sublethal effects in both tadpole species, in addition to the isolated fipronil in L. fuscus. Fipronil alone increased glucose-6-phosphate dehydrogenase (G6PDH) activity, decreased acetylcholinesterase (AChE) and total lipid contents, and altered some individual lipid classes (e.g., free fatty acids and acetone-mobile polar lipids) in L. fuscus. The interaction between fipronil and 2,4-D in this species were more evident for lipid contents, although enzymatic alterations in G6PDH, AChE and glutathione-S-transferase (GST) were also observed. In L. catesbeianus, the mixture of pesticides reduced triglycerides and total lipids, as well as increased GST and decreased AChE activities. The detoxifying enzyme carboxylesterase was reduced by 2,4-D (alone or in mixture) in both species. Isolated pesticides also modulated specific lipid classes, suggesting their disruptive action on energy metabolism of tadpoles. Our study showed that fipronil, 2,4-D, and vinasse, individually or mixed, can be harmful to amphibians during their larval phase, causing mortality or impairing their functional responses.
Collapse
Affiliation(s)
- Juliane Silberschmidt Freitas
- NEEA/UEMG, Department of Agrarian and Natural Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, s/n - Universitário, 38302-192, Ituiutaba, MG, Brazil.
| | - Thandy Junio da Silva Pinto
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Maria Paula Cardoso Yoshii
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís Conceição Menezes da Silva
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís Fernanda de Palma Lopes
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Allan Pretti Ogura
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís Girotto
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Luís Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP, 03828-000, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| |
Collapse
|
39
|
Pinto TJDS, Rocha GS, Moreira RA, da Silva LCM, Yoshii MPC, Goulart BV, Montagner CC, Daam MA, Espindola ELG. Chronic environmentally relevant levels of pesticides disrupt energy reserves, feeding rates, and life-cycle responses in the amphipod Hyalella meinerti. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106117. [PMID: 35176695 DOI: 10.1016/j.aquatox.2022.106117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
When pesticides reach the aquatic environment, they can distribute in water and sediment, increasing the risks to benthic organisms, such as amphipods that play a key role in the aquatic food webs. Thus, the present study assessed the consequences of exposure to the insecticide fipronil and herbicide 2,4-D (alone and in mixture) on biochemical markers, feeding rates and the partial life-cycle of Hyalella meinerti. Three concentrations of fipronil (0.1, 0.3, and 0.7 µg L-1) and 2,4-D (19, 124, and 654 µg L-1), and six mixture combinations were assessed. The first experiment was carried out with males and females separately assessing the feeding rates, total carbohydrate content, and lipid profile. The second (partial life-cycle) lasted 49 days, and the survival, growth, and reproductive endpoints were assessed. Both pesticides and their mixture caused decreases in feeding rates, mainly in females. Females also suffered a change in the total carbohydrate content. In addition, there were changes in the percentage of triacylglycerol and phospholipids in males and females. Furthermore, alterations occurred in the percentual of triacylglycerol and phospholipids to both sexes. In the second experiment, fipronil and the mixtures caused decreases in the survival of H. meinerti over time. Exposure to 2,4-D, fipronil, and their mixture impaired the 28-day growth leading to biomass loss ranging from 17-23%, 54-60%, and 22-49%, respectively. The insecticide and mixture caused increases in time to sexual maturation of up to 10 and 6 days, respectively, and reduced the number of formed couples. Furthermore, fipronil decreased reproduction up to 36 times and no juveniles were produced in some mixture combinations. In addition, the pesticides on isolation decreased the juvenile size. Finally, exposure to both pesticides, alone or in a mixture, decreased the intrinsic rate of population growth. The results were observed in concentrations already quantified in water bodies, with risks for ecosystems functioning due to the importance of amphipods in aquatic ecosystems.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil.
| | - Giseli Swerts Rocha
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, Caparica 2829-516, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| |
Collapse
|
40
|
Cai J, Niu B, Xie Q, Lu N, Huang S, Zhao G, Zhao J. Accurate Removal of Toxic Organic Pollutants from Complex Water Matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2917-2935. [PMID: 35148082 DOI: 10.1021/acs.est.1c07824] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Characteristic emerging pollutants at low concentration have raised much attention for causing a bottleneck in water remediation, especially in complex water matrices where high concentration of interferents coexist. In the future, tailored treatment methods are therefore of increasing significance for accurate removal of target pollutants in different water matrices. This critical review focuses on the overall strategies for accurately removing highly toxic emerging pollutants in the presence of typical interferents. The main difficulties hindering the improvement of selectivity in complex matrices are analyzed, implying that it is difficult to adopt a universal approach for multiple targets and water substrates. Selective methods based on assorted principles are proposed aiming to improve the anti-interference ability. Thus, typical approaches and fundamentals to achieve selectivity are subsequently summarized including their mechanism, superiority and inferior position, application scope, improvement method and the bottlenecks. The results show that different methods may be applicable to certain conditions and target pollutants. To better understand the mechanism of each selective method and further select the appropriate method, advanced methods for qualitative and quantitative characterization of selectivity are presented. The processes of adsorption, interaction, electron transfer, and bond breaking are discussed. Some comparable selective quantitative methods are helpful for promoting the development of related fields. The research framework of selectivity removal and its fundamentals are established. Presently, although continuous advances and remarkable achievements have been attained in the selective removal of characteristic organic pollutants, there are still various substantial challenges and opportunities. It is hopeful to inspire the researches on the new generation of water and wastewater treatment technology, which can selectively and preferentially treat characteristic pollutants, and establish a reliable research framework to lead the direction of environmental science.
Collapse
Affiliation(s)
- Junzhuo Cai
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Baoling Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Qihao Xie
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Ning Lu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Shuyu Huang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
41
|
Gong G, Kam H, Chen H, Chen Y, Cheang WS, Giesy JP, Zhou Q, Lee SMY. Role of endocrine disruption in toxicity of 6-benzylaminopurine (6-BA) to early-life stages of Zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113287. [PMID: 35149407 DOI: 10.1016/j.ecoenv.2022.113287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
6-benzylaminopurine (6-BA), classified as a "plant hormone", is an important ingredient in production of "toxic bean sprouts". Although there is no direct evidence of adverse effects, its hazardous effects have received some attention and aroused furious debate between proponents and environmental regulators. In this study, potential adverse effects of 6-BA were investigated by exposing zebrafish in vivo to 0.2 - 25 mg 6-BA/L. Results indicated that, when exposure was limited to early-life stage (4-36 hpf), 20 mg 6-BA/L caused early hatching, abnormal spontaneous movement, and precocious hyperactivity in zebrafish embryos/larvae. While under a continuous exposure regime, 6-BA at 0.2 mg/L was able to cause hyperactive locomotion and transcription of genes related to neurogenesis (gnrh3 and nestin) and endocrine systems (cyp19a and fshb) in 5 dpf larvae. Quantification by use of LC/MS indicated bioaccumulation of 6-BA in zebrafish increased when exposed to 0.2 or 20 mg 6-BA/L. These results suggested that 6-BA could accumulate in aquatic organisms and disrupt neuro-endocrine systems. Accordingly, exposure to 0.2 mg 6-BA/L increased production of estradiol (E2) and consequently E2/T ratio in zebrafish larvae, which directly indicated 6-BA is estrogenic. In silico simulations demonstrated potential for binding of 6-BA to estrogen receptor alpha (ERa) and cytochrome P450 aromatase (CYP19A). Therefore, induction of estrogenic effects, via potential interactions with hormone receptors or disturbance of downstream transcription signaling, was possible mechanism underlying the toxicity of 6-BA. Taken together, these findings demonstrate endocrine disrupting properties of 6-BA, which suggest concerns about risks posed to endocrine systems.
Collapse
Affiliation(s)
- Guiyi Gong
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yan Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon Saskatchewan S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon Saskatchewan S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76706, United States
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
42
|
Kiziltan T, Baran A, Kankaynar M, Şenol O, Sulukan E, Yildirim S, Ceyhun SB. Effects of the food colorant carmoisine on zebrafish embryos at a wide range of concentrations. Arch Toxicol 2022; 96:1089-1099. [PMID: 35146542 PMCID: PMC8831007 DOI: 10.1007/s00204-022-03240-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 12/04/2022]
Abstract
Since the middle of the twentieth century, the use of dyes has become more common in every food group as well as in the pharmaceutical, textile and cosmetic industries. Azo dyes, including carmoisine, are the most important of the dye classes with the widest color range. In this study, the effects of carmoisine exposure on the embryonic development of zebrafish at a wide dose scale, including recommended and overexposure doses (from 4 to 2000 ppm), were investigated in detail. For this purpose, many morphological and physiological parameters were examined in zebrafish exposed to carmoisine at determined doses for 96 h, and the mechanisms of action of the changes in these parameters were tried to be clarified with the metabolite levels determined. The no observed effect concentration (NOEC) and median lethal concentration (LC50) were recorded at 5 ppm and 1230.53 ppm dose at 96 hpf, respectively. As a result, it was determined that the applied carmoisine caused serious malformations, reduction in height and eye diameter, increase in the number of free oxygen radicals, in apoptotic cells and in lipid accumulation, decrease in locomotor activity depending on the dose and at the highest dose, decrease in blood flow rate. In the metabolome analysis performed to elucidate the metabolism underlying all these changes, 45 annotated metabolites were detected.
Collapse
Affiliation(s)
- Tuba Kiziltan
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
- Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
- Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey
| | - Serkan Yildirim
- Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey.
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
43
|
Finkler M, Rodrigues GZP, Kayser JM, Ziulkoski AL, Gehlen G. Cytotoxic and genotoxic effects induced by associated commercial glyphosate and 2,4-D formulations using the Allium cepa bioassay. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:133-141. [PMID: 35112655 DOI: 10.1080/03601234.2022.2034432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Studies assessing the toxicity of glyphosate and 2,4-dichlorophenoxyacetic acid mixture are scarce. The aim of this study was to evaluate the cytotoxicity and genotoxicity of the mixture of these herbicides using Allium cepa. Roots were exposed to glyphosate (1.56 and 11.66 mg mL-1), 2,4-D (0.28 and 17.5 mg mL-1) and mixture for 24 h, based on the average concentration applied in the field and the acute reference dose (ARfD) established in Brazil. Both isolated and associated herbicides induced a significative decrease in mitotic index (MI) (P < 0.0001) in all tested concentrations. Regarding the genotoxicity results, 2,4-D and the mixture showed, at concentrations applied in the field, a significative increase of chromosomal anomalies (CA) index compared to control (P < 0.0001) and glyphosate (P = 0.024 and P = 0.0002, respectively). All tested groups from the ARfD showed a significative difference compared to the control group (P < 0.0001), as well as glyphosate and 2,4-D isolated compared to the mixture (P = 0.0005 and P < 0.0001, respectively). The most observed CA were apoptotic bodies, giant cells, and nuclear erosions. We emphasize the need for further studies assessing the toxicity of these herbicides' mixture due to the distinct effects caused in different organisms.
Collapse
Affiliation(s)
- Mariana Finkler
- Laboratório de Histologia Comparada, Universidade Feevale, Novo Hamburgo, Brazil
| | | | | | | | - Günther Gehlen
- Laboratório de Histologia Comparada, Universidade Feevale, Novo Hamburgo, Brazil
| |
Collapse
|
44
|
Viana NP, da Silva LCM, Portruneli N, Soares MP, Cardoso IL, Bonansea RI, Goulart BV, Montagner CC, Espíndola ELG, Wunderlin DA, Fernandes MN. Bioconcentration and toxicological impacts of fipronil and 2,4-D commercial formulations (single and in mixture) in the tropical fish, Danio rerio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11685-11698. [PMID: 34546525 DOI: 10.1007/s11356-021-16352-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The insecticide fipronil and the herbicide 2,4-D are the most applied pesticides in sugarcane crops leading to aquatic contamination. The whole-body bioconcentration of fipronil and 2,4-D, single and in mixture, was evaluated in Danio rerio after 96-h exposure. The activities of catalase (CAT) and glutathione S-transferase(GST) in whole body and in the gills and the acetylcholinesterase (AChE) in muscle were determined. The gill histopathology and the morphology of the pavement (PVC) and the mitochondria-rich(MRC) cells at gill surface were analyzed. Bioconcentration occurred after exposure to fipronil (2.69 L kg-1) and 2,4-D (1.73 L kg-1) single and in mixture of fipronil (3.10 L kg-1) and 2,4-D (1.27 L kg-1). Whole-body CAT activity was unchanged, and its activity decreased in the gills after exposure to fipronil and increased after exposure to 2,4-D and mixture. GST and AChE increased after single exposure to each pesticide and mixture of both. Fish exposed to mixture increased the MRC fractional area (MRCFA) which suggested possible ionic regulation disturbance and reduced the microridge of the PVC surface. Synergistic interactions occurred in the CAT activity and MRCFA after exposure to mixture of pesticides. The results indicate that the recommended application dose of fipronil and 2,4-D, single or in mixture, for sugarcane crops affects this fish species altering its homeostasis.
Collapse
Affiliation(s)
- Natália Prudêncio Viana
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Laís Conceição Menezes da Silva
- Programa de Pós-graduação em Ciências da Engenharia Ambiental, Escola de Engenharia de São Carlos (NEEA/CRHEA/SHS), Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Natália Portruneli
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Michelly Pereira Soares
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- Programa Interinstitucional de Pós-graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Israel Luz Cardoso
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- Programa Interinstitucional de Pós-graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Rocío Inés Bonansea
- Faculdade de Ciências Químicas, Universidade Nacional de Córdoba, Córdoba, Argentina
| | - Bianca Veloso Goulart
- Instituto de Química, Universidade de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Cassiana Carolina Montagner
- Instituto de Química, Universidade de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- Programa de Pós-graduação em Ciências da Engenharia Ambiental, Escola de Engenharia de São Carlos (NEEA/CRHEA/SHS), Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | | | - Marisa Narciso Fernandes
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil.
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
45
|
Bernardi F, Lirola JR, Cestari MM, Bombardelli RA. Effects on reproductive, biochemical and genotoxic parameters of herbicides 2,4-D and glyphosate in silver catfish (Rhamdia quelen). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103787. [PMID: 34896630 DOI: 10.1016/j.etap.2021.103787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The objective of this work was to evaluate the effects of the herbicides 2,4-D, glyphosate and the mixture of both on oxidative stress, genotoxicity and the rates of fertilization, hatching and larval normality in silver catfish. Exposure to glyphosate and the mixture of herbicides significantly decreased the fertilization of oocytes and the hatching of eggs. The different concentrations of 2,4-D and glyphosate, in addition to the mixture of both, did not affect the rates of larval normality, the activity of CAT, GST, LPO, and PCO. SOD activity was not evident in any of the treatments. Exposure to 2,4-D and the mixture of herbicides caused damage to the genetic material of larvae silver catfish. Our results show that although high concentrations of the herbicides were used, changes caused by them were detected in only some of the tested biomarkers.
Collapse
Affiliation(s)
- Fernanda Bernardi
- Universidade Estadual do Oeste do Paraná - Campus de Marechal Cândido Rondon, Rua Pernambuco, 1777, Caixa Postal: 91, CEP: 85960-000, Marechal Cândido Rondon, Paraná, Brazil.
| | - Juliana Roratto Lirola
- Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos, 100, Centro Politécnico - Jardim das Américas, Caixa Postal: 19031, CEP: 81531-980, Curitiba, Paraná, Brazil.
| | - Marta Margarete Cestari
- Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos, 100, Centro Politécnico - Jardim das Américas, Caixa Postal: 19031, CEP: 81531-980, Curitiba, Paraná, Brazil.
| | - Robie Allan Bombardelli
- Universidade Estadual do Oeste do Paraná - Campus de Toledo, Rua da Faculdade, 645, Jardim Santa Maria, CEP: 85903-000, Toledo, Paraná, Brazil.
| |
Collapse
|
46
|
Park H, Yun BH, Lim W, Song G. Dinitramine induces cardiotoxicity and morphological alterations on zebrafish embryo development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105982. [PMID: 34598048 DOI: 10.1016/j.aquatox.2021.105982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Dinitramine (DN), an herbicide in the dinitroaniline family, is used in agricultural areas to prevent unwanted plant growth. Dinitroaniline herbicides inhibit cell division by preventing microtubulin synthesis. They are strongly absorbed by the soil and can contaminate groundwater; however, the mode of action of these herbicides in non-target organisms remains unclear. In this study, we examined the developmental toxicity of DN in zebrafish embryos exposed to 1.6, 3.2, and 6.4 mg/L DN, compared to embryos exposed to DMSO (control) for 96 h. Visual assessments using transgenic zebrafish (fli1:eGFP) indicated abnormal cardiac development with enlarged ventricles and atria, decreased heartbeats, and impaired cardiac function. Along with cardiac development, vessel formation and angiogenesis were suppressed through activation of the inflammatory response. In addition, exposure to 6.4 mg/L DN for 96 h induced cell death, with upregulation of genes related to apoptosis. Our results showed that DN induced morphological changes and triggered an inflammatory response and apoptotic cell death that can impair embryonic growth and survival, providing an important mechanism of DN in aquatic organisms.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Bo Hyun Yun
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
47
|
Portruneli N, Bonansea RI, Valdés ME, da Silva LCM, Viana NP, Goulart BV, Souza IDC, Espíndola ELG, Montagner CC, Wunderlin DA, Fernandes MN. Whole-body bioconcentration and biochemical and morphological responses of gills of the neotropical fish Prochilodus lineatus exposed to 2,4-dichlorophenoxyacetic acid or fipronil individually or in a mixture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105987. [PMID: 34644674 DOI: 10.1016/j.aquatox.2021.105987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and the insecticide fipronil have been used widely in agriculture and detected in aquatic ecosystems, where they threaten wildlife. This study evaluated the whole-body bioconcentration and the biochemical and morphological changes in the gills of the neotropical fish Prochilodus lineatus exposed for 96 h to 2,4-D or fipronil as single compounds or as a mixture (2,4-D + fipronil). Fish exposed to either compound alone bioconcentrated 2,4-D (77 ± 23 ng g - 1 fish dry mass) and fipronil (789 ± 178 ng g - 1 fish dry mass). Fish exposed to 2,4-D + fipronil bioconcentrated fipronil (683 ± 73 ng g - 1 fish dry mass) but not 2,4-D. In the gills, catalase (CAT) and glutathione-S-transferase (GST) activities and the lipid peroxidation (LPO) level increased after exposure to 2,4-D. GST activity increased after exposure to fipronil. Conversely, no changes occurred in CAT and GST activities and LPO upon exposure to 2,4-D + fipronil. Histopathological changes such as hyperplasia, cellular hypertrophy, epithelial lifting, and vascular congestion were frequent in the gills of fish exposed to 2,4-D or fipronil individually or 2,4-D + fipronil. The mitochondria-rich cell (MRC) density increased on gill surface in fish exposed to fipronil or 2,4-D + fipronil. Only exposure to 2,4-D alone induced oxidative stress in the gills. Most morphological changes showed defense responses against the pesticides; however, hypertrophy and the change in MRC indicated compensatory responses to maintain the gill osmoregulatory function. The 2,4-D + fipronil mixture showed antagonistic interaction, except for the MRC fractional area at gill surface, which showed synergistic interaction. This is the first report showing antagonistic interaction of 2,4-D and fipronil in the gills after exposing fish to the mixture of both pesticides. The biochemical and morphological changes in gills endanger the gill functions, a phenomenon that implies an energy cost for fish.
Collapse
Affiliation(s)
- Natália Portruneli
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil
| | - Rocío Inés Bonansea
- ICYTAC: Instituto de Ciencia e Tecnologia de Alimentos Córdoba, CONICET e Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - UNC, Córdoba, Argentina
| | - Maria Eugenia Valdés
- ICYTAC: Instituto de Ciencia e Tecnologia de Alimentos Córdoba, CONICET e Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - UNC, Córdoba, Argentina
| | | | - Natália Prudêncio Viana
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil
| | - Bianca V Goulart
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brasil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil
| | | | - Cassiana Carolina Montagner
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brasil
| | - Daniel Alberto Wunderlin
- ICYTAC: Instituto de Ciencia e Tecnologia de Alimentos Córdoba, CONICET e Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - UNC, Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil.
| |
Collapse
|
48
|
Fakhlaei R, Selamat J, Razis AFA, Sukor R, Ahmad S, Amani Babadi A, Khatib A. In Vivo Toxicity Evaluation of Sugar Adulterated Heterotrigona itama Honey Using Zebrafish Model. Molecules 2021; 26:molecules26206222. [PMID: 34684803 PMCID: PMC8538600 DOI: 10.3390/molecules26206222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
Honey is prone to be adulterated through mixing with sugars, cheap and low-quality honey, and other adulterants. Consumption of adulterated honey may cause several health issues such as weight gain, diabetes, and liver and kidney dysfunction. Therefore, studying the impact of consumption of adulterated honey on consumers is critical since there is a lack of study in this field. Hence, the aims of this paper were: (1) to determine the lethal concentration (LC50) of adulterated honey using zebrafish embryo, (2) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish, (3) to determine the effects of adulterated honey on histological changes of zebrafish, and (4) to screen the metabolites profile of adulterated honey by using zebrafish blood serum. The LC50 of Heterotrigona itama honey (acacia honey) and its sugar adulterants (light corn sugar, cane sugar, inverted sugar, and palm sugar in the proportion of 1-3% (w/w) from the total volume) was determined by the toxicological assessment of honey samples on zebrafish embryos (different exposure concentrations in 24, 48, 72, and 96 h postfertilization (hpf)). Pure H. itama honey represents the LC50 of 34.40 ± 1.84 (mg/mL) at 96 hpf, while the inverted sugar represents the lowest LC50 (5.03 ± 0.92 mg/mL) among sugar adulterants. The highest concentration (3%) of sugar adulterants were used to study the toxicology of adulterated honey using adult zebrafish in terms of acute, prolong-acute, and sub-acute tests. The results of the LD50 from the sub-acute toxicity test of pure H. itama honey was 2.33 ± 0.24 (mg/mL). The histological studies of internal organs showed a lesion in the liver, kidney, and spleen of adulterated treated-honey groups compared to the control group. Furthermore, the LC-MS/MS results revealed three endogenous metabolites in both the pure and adulterated honey treated groups, as follows: (1) S-Cysteinosuccinic acid, (2) 2,3-Diphosphoglyceric acid, and (3) Cysteinyl-Tyrosine. The results of this study demonstrated that adulterated honey caused mortality, which contributes to higher toxicity, and also suggested that the zebrafish toxicity test could be a standard method for assessing the potential toxicity of other hazardous food additives. The information gained from this research will permit an evaluation of the potential risk associated with the consumption of adulterated compared to pure honey.
Collapse
Affiliation(s)
- Rafieh Fakhlaei
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (R.F.); (R.S.)
| | - Jinap Selamat
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (R.F.); (R.S.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: ; Tel.: +60-38-9769-1099
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rashidah Sukor
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (R.F.); (R.S.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Arman Amani Babadi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 55469-14177, Iran;
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| |
Collapse
|
49
|
Martins RX, Vieira L, Souza JACR, Silva MGF, Muniz MS, Souza T, Queiroga FR, Machado MRF, da Silva PM, Farias D. Exposure to 2,4-D herbicide induces hepatotoxicity in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109110. [PMID: 34144256 DOI: 10.1016/j.cbpc.2021.109110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) herbicide is the main ingredient in over 1500 commercially available products such as Weedestroy® AM40 and DMA® 4 IVM. Although the liver has been identified as one of the organs that are affected by this herbicide, reports on its hepatotoxic effects available in the literature are restricted to rats. Thus, there is a gap in information on other organisms that may be vulnerable to 2,4-D exposure, such as fish. Therefore, the present work aimed to assess the hepatotoxic potential of 2,4-D in fish using zebrafish (Danio rerio) larvae as a model system. For this purpose, its acute toxicity to zebrafish embryos was assessed, as well as its sublethal effects (< LC50) on the activity of enzymes related to oxidative (GST, CAT and GPX) and metabolic (LDH) stress and liver parameters (AST, ALT and ALP) after 48 h of exposure. Morphological analyses of the liver were also assessed in zebrafish larvae. As a result, 2,4-D reduced larvae survival (LC50 15.010 mg/L in 96 h of exposure), induced malformations, altered the activity of LDH, GST and CAT enzymes and significantly increased the activity of all biomarkers for liver damage. Although no changes in the color or size of larval liver were observed, histopathological analysis revealed that treatment with 2,4-D caused severe changes in liver tissue, such as vacuolization of the cytosol, eccentric cell nucleus, loss of tissue architecture and cellular boundaries. Thus, the results showed that 2,4-D altered the enzymatic profile related to oxidative stress, and induces liver damage.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Leonardo Vieira
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Juliana Alves Costa Ribeiro Souza
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Marília Guia Flor Silva
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Marta Silva Muniz
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Fernando Ramos Queiroga
- Laboratory of Immunology and Pathology of Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | | | - Patricia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
50
|
Duan M, Zhang J, Liu J, Qian L, Chen X, Zhao F, Zhao W, Zhong Z, Yang Y, Wang C. Toxic effects of broflanilide exposure on development of zebrafish (Danio rerio) embryos and its potential cardiotoxicity mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117481. [PMID: 34126520 DOI: 10.1016/j.envpol.2021.117481] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Diamide insecticides are a threat to aquatic organisms but the toxicity of broflanilide remains largely undefined. In this study, to clarify the risk of broflanilide to aquatic organisms and explore its possible mechanism, lethal and sub-lethal exposure of zebrafish embryos were performed. The acute toxicity LC50 (50% lethal concentration) (96 h) of broflanilide to zebrafish embryos and larvae were 3.72 mg/L and 1.28 mg/L, respectively. It also caused toxic symptoms including reduced heart rate, pericardial edema, yolk sac edema and shortened larval body length at ≥ 0.2 mg/L. Understanding the cellular and molecular changes underlying developmental toxicity in early stages of zebrafish may be very important to further improvement of this study. Here, we found cell apoptosis in embryonic heart, significant up-regulation in expression of genes associated with apoptosis and increased activity of caspase-9. In particular, we detected the levels of genes and TBX5 (T-box protein 5) related to cardiac development, which were significantly increased in this study and may be contribution to the cardiotoxicity of embryos. In general, our results identified the aquatic toxicity of broflanilide to the early stage of zebrafish and provide insights into the underlying mechanism in developmental toxicity especially cardiotoxicity of embryos.
Collapse
Affiliation(s)
- Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Jia Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|