1
|
Huang L, Liu L, Zhu J, Chen N, Chen J, Chan CF, Gao F, Yin Y, Sun J, Zhang R, Zhang K, Qi W, Yue J. Bis-benzylisoquinoline alkaloids inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy. Virol Sin 2024; 39:892-908. [PMID: 39251138 PMCID: PMC11738800 DOI: 10.1016/j.virs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Flaviviruses, such as dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV), represent a substantial public health challenge as there are currently no approved treatments available. Here, we investigated the antiviral effects of bis-benzylisoquinoline alkaloids (BBAs) on flavivirus infections. We evaluated five specific BBAs-berbamine, tetrandrine, iso-tetrandrine, fangchinoline, and cepharanthine-and found that they effectively inhibited infections by ZIKV, DENV, or JEV by blocking virus entry and genome replication stages in the flavivirus life cycle. Furthermore, we synthesized a fluorophore-conjugated BBA and showed that BBAs targeted endolysosomes, causing lysosomal pH alkalization. Mechanistic studies on inhibiting ZIKV infection by BBAs revealed that these compounds blocked TRPML channels, leading to lysosomal dysfunction and reducing the expression of NCAM1, a key receptor for the entry of ZIKV into cells, thereby decreasing cells susceptibility to ZIKV infection. Additionally, BBAs inhibited the fusion of autophagosomes and lysosomes, significantly reducing viral RNA replication. Collectively, our results suggest that BBAs inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy, respectively, underscoring the potential of BBAs as therapeutic agents against flavivirus infections.
Collapse
Affiliation(s)
- Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lele Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Junhai Zhu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | - Jie Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Chuen-Fuk Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Fei Gao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Youqin Yin
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jiufeng Sun
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China; Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Global Health Research Center, Duke Kunshan University, Kunshan, 215316, China; College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
He J, Ding X, Zhao J, Zeng J, Zhou Y, Xiao W, Hua D, Liu M, Guo H, Zhang Y, Qiu M, Li J. A novel pan-epitope based nanovaccine self-assembled with CpG enhances immune responses against flavivirus. J Nanobiotechnology 2024; 22:738. [PMID: 39609873 PMCID: PMC11603839 DOI: 10.1186/s12951-024-03031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Flavivirus is a highly prevalent and outbreak-prone disease, affecting billions of individuals annually and posing substantial public health challenges. Vaccination is critical to reducing the global impact of flavivirus infections, making the development of a safe and effective vaccine a top priority. The self-assembled pan-epitope vaccine presents key advantages for improving immunogenicity and safety without relying on external vectors or adding immunomodulatory elements, both of which are essential for successful vaccine development. RESULTS In this study, the pan-epitope peptide TBT was combined with adjuvant CpG to form the TBT-CpG nanovaccine (TBT-CpG NaVs), which was found to be spherical, uniform in shape, and demonstrated strong serum stability. In vitro studies showed that the TBT-CpG NaVs were efficiently taken up and internalized by bone marrow-derived dendritic cells (BMDCs). Flow cytometry and transcriptomic analysis indicated that the antigens were effectively presented to antigen-presenting cells (APCs) via the MHC II pathway, which facilitated BMDCs maturation and promoted the release of pro-inflammatory cytokines IL-1β, TNF-α, and IL-6. In vivo studies confirmed that TBT-CpG NaVs enhanced antigen-specific IgG levels, significantly increased IFN-γ and IL-4 expression in spleen cells, and offered protective effects against Dengue virus (DENV) and Zika virus (ZIKV) infections. Safety evaluations revealed no hepatotoxicity and no significant organ damage in immunized mice. CONCLUSION The self-assembled candidate nanovaccine TBT-CpG NaVs effectively activates BMDCs and triggers a targeted immune response, providing antiviral effects against DENV and ZIKV. This vaccine demonstrates good immunogenicity and safety, establishing a promising foundation and a new strategy for the development of safe and effective vaccines.
Collapse
Affiliation(s)
- Jiuxiang He
- College of Basic Medicine, Army Medical University, Gaotanyan str. 30, Chongqing, 400038, China
| | - Xiaoyan Ding
- College of Basic Medicine, Army Medical University, Gaotanyan str. 30, Chongqing, 400038, China
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Jing Zhao
- College of Basic Medicine, Army Medical University, Gaotanyan str. 30, Chongqing, 400038, China
| | - Jie Zeng
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxin Zhou
- College of Basic Medicine, Army Medical University, Gaotanyan str. 30, Chongqing, 400038, China
| | - Wen Xiao
- College of Basic Medicine, Army Medical University, Gaotanyan str. 30, Chongqing, 400038, China
| | - Dong Hua
- College of Basic Medicine, Army Medical University, Gaotanyan str. 30, Chongqing, 400038, China
| | - Minchi Liu
- College of Basic Medicine, Army Medical University, Gaotanyan str. 30, Chongqing, 400038, China
| | - Hongxia Guo
- College of Basic Medicine, Army Medical University, Gaotanyan str. 30, Chongqing, 400038, China
| | - Yu Zhang
- College of Basic Medicine, Army Medical University, Gaotanyan str. 30, Chongqing, 400038, China
| | - Minyue Qiu
- College of Basic Medicine, Army Medical University, Gaotanyan str. 30, Chongqing, 400038, China
| | - Jintao Li
- College of Basic Medicine, Army Medical University, Gaotanyan str. 30, Chongqing, 400038, China.
| |
Collapse
|
3
|
Huang C, Jiang T, Pan W, Feng T, Zhou X, Wu Q, Ma F, Dai J. Ubiquitination of NS1 Confers Differential Adaptation of Zika Virus in Mammalian Hosts and Mosquito Vectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408024. [PMID: 39159062 PMCID: PMC11497017 DOI: 10.1002/advs.202408024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Indexed: 08/21/2024]
Abstract
Arboviruses, transmitted by medical arthropods, pose a serious health threat worldwide. During viral infection, Post Translational Modifications (PTMs) are present on both host and viral proteins, regulating multiple processes of the viral lifecycle. In this study, a mammalian E3 ubiquitin ligase WWP2 (WW domain containing E3 ubiquitin ligase 2) is identified, which interacts with the NS1 protein of Zika virus (ZIKV) and mediates K63 and K48 ubiquitination of Lys 265 and Lys 284, respectively. WWP2-mediated NS1 ubiquitination leads to NS1 degradation via the ubiquitin-proteasome pathway, thereby inhibiting ZIKV infection in mammalian hosts. Simultaneously, it is found Su(dx), a protein highly homologous to host WWP2 in mosquitoes, is capable of ubiquitinating NS1 in mosquito cells. Unexpectedly, ubiquitination of NS1 in mosquitoes does not lead to NS1 degradation; instead, it promotes viral infection in mosquitoes. Correspondingly, the NS1 K265R mutant virus is less infectious to mosquitoes than the wild-type (WT) virus. The above results suggest that the ubiquitination of the NS1 protein confers different adaptations of ZIKV to hosts and vectors, and more importantly, this explains why NS1 K265-type strains have become predominantly endemic in nature. This study highlights the potential application in antiviral drug and vaccine development by targeting viral proteins' PTMs.
Collapse
Affiliation(s)
- Chenxiao Huang
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
- Department of Clinical LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu School of Nanjing Medical UniversitySuzhou215000China
| | - Tao Jiang
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Wen Pan
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Tingting Feng
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Xia Zhou
- School of Biology and Basic Medical ScienceSuzhou Medical College of Soochow UniversitySuzhou215000China
| | - Qihan Wu
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsNHC Key Lab of Reproduction RegulationShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200000China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammationand CAMS Key Laboratory of Synthetic Biology Regulatory ElementsSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhou215123China
| | - Jianfeng Dai
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| |
Collapse
|
4
|
Bombaci M, Fassi EMA, Gobbini A, Mileto D, Cassaniti I, Pesce E, Casali E, Mancon A, Sammartino J, Ferrari A, Percivalle E, Grande R, Marchisio E, Gismondo MR, Abrignani S, Baldanti F, Colombo G, Grifantini R. High-throughput peptide array analysis and computational techniques for serological profiling of flavivirus infections: Implications for diagnostics and vaccine development. J Med Virol 2024; 96:e29923. [PMID: 39291820 DOI: 10.1002/jmv.29923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Arthropod-borne viruses, such as dengue virus (DENV), pose significant global health threats, with DENV alone infecting around 400 million people annually and causing outbreaks beyond endemic regions. This study aimed to enhance serological diagnosis and discover new drugs by identifying immunogenic protein regions of DENV. Utilizing a comprehensive approach, the study focused on peptides capable of distinguishing DENV from other flavivirus infections through serological analyses. Over 200 patients with confirmed arbovirus infection were profiled using high-density pan flavivirus peptide arrays comprising 6253 peptides and the computational method matrix of local coupling energy (MLCE). Twenty-four peptides from nonstructural and structural viral proteins were identified as specifically recognized by individuals with DENV infection. Six peptides were confirmed to distinguish DENV from Zika virus (ZIKV), West Nile virus (WNV), Yellow Fever virus (YFV), Usutu virus (USUV), and Chikungunya virus (CHIKV) infections, as well as healthy controls. Moreover, the combination of two immunogenic peptides emerged as a potential serum biomarker for DENV infection. These peptides, mapping to highly accessible regions on protein structures, show promise for diagnostic and prophylactic strategies against flavivirus infections. The described methodology holds broader applicability in the serodiagnosis of infectious diseases.
Collapse
Affiliation(s)
- Mauro Bombaci
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy
| | | | - Andrea Gobbini
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy
| | - Davide Mileto
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy
| | - Irene Cassaniti
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Pesce
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milano, Milano, Italy
| | | | - Alessandro Mancon
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy
| | - Jose' Sammartino
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Ferrari
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Romualdo Grande
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy
| | | | - Maria Rita Gismondo
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milano, Milano, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Renata Grifantini
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy
| |
Collapse
|
5
|
Harrison JJ, Nguyen W, Morgan MS, Tang B, Habarugira G, de Malmanche H, Freney ME, Modhiran N, Watterson D, Cox AL, Yan K, Yuen NKY, Bowman DH, Kirkland PD, Bielefeldt-Ohmann H, Suhrbier A, Hall RA, Rawle DJ, Hobson-Peters J. A chimeric vaccine derived from Australian genotype IV Japanese encephalitis virus protects mice from lethal challenge. NPJ Vaccines 2024; 9:134. [PMID: 39085247 PMCID: PMC11291493 DOI: 10.1038/s41541-024-00903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
In 2022, a genotype IV (GIV) strain of Japanese encephalitis virus (JEV) caused an unprecedented and widespread outbreak of disease in pigs and humans in Australia. As no veterinary vaccines against JEV are approved in Australia and all current approved human and veterinary vaccines are derived from genotype (G) III JEV strains, we used the recently described insect-specific Binjari virus (BinJV) chimeric flavivirus vaccine technology to produce a JEV GIV vaccine candidate. Herein we describe the production of a chimeric virus displaying the structural prM and E proteins of a JEV GIV isolate obtained from a stillborn piglet (JEVNSW/22) in the genomic backbone of BinJV (BinJ/JEVNSW/22-prME). BinJ/JEVNSW/22-prME was shown to be antigenically indistinguishable from the JEVNSW/22 parental virus by KD analysis and a panel of JEV-reactive monoclonal antibodies in ELISA. BinJ/JEVNSW/22-prME replicated efficiently in C6/36 cells, reaching titres of >107 infectious units/mL - an important attribute for vaccine manufacture. As expected, BinJ/JEVNSW/22-prME failed to replicate in a variety of vertebrate cells lines. When used to immunise mice, the vaccine induced a potent virus neutralising response against JEVNSW/22 and to GII and GIII JEV strains. The BinJ/JEVNSW/22-prME vaccine provided complete protection against lethal challenge with JEVNSW/22, whilst also providing partial protection against viraemia and disease for the related Murray Valley encephalitis virus. Our results demonstrate that BinJ/JEVNSW/22-prME is a promising vaccine candidate against JEV.
Collapse
Affiliation(s)
- Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Mahali S Morgan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Gervais Habarugira
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Henry de Malmanche
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Morgan E Freney
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Nicholas K Y Yuen
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Dylan H Bowman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Peter D Kirkland
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia.
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia.
| |
Collapse
|
6
|
Ceconi M, Ariën KK, Delputte P. Diagnosing arthropod-borne flaviviruses: non-structural protein 1 (NS1) as a biomarker. Trends Microbiol 2024; 32:678-696. [PMID: 38135616 DOI: 10.1016/j.tim.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
In recent decades, the presence of flaviviruses of concern for human health in Europe has drastically increased,exacerbated by the effects of climate change - which has allowed the vectors of these viruses to expand into new territories. Co-circulation of West Nile virus (WNV), Usutu virus (USUV), and tick-borne encephalitis virus (TBEV) represents a threat to the European continent, and this is further complicated by the difficulty of obtaining an early and discriminating diagnosis of infection. Moreover, the possibility of introducing non-endemic pathogens, such as Japanese encephalitis virus (JEV), further complicates accurate diagnosis. Current flavivirus diagnosis is based mainly on RT-PCR and detection of virus-specific antibodies. Yet, both techniques suffer from limitations, and the development of new assays that can provide an early, rapid, low-cost, and discriminating diagnosis of viral infection is warranted. In the pursuit of ideal diagnostic assays, flavivirus non-structural protein 1 (NS1) serves as an excellent target for developing diagnostic assays based on both the antigen itself and the antibodies produced against it. This review describes the potential of such NS1-based diagnostic methods, focusing on the application of flaviviruses that co-circulate in Europe.
Collapse
Affiliation(s)
- Martina Ceconi
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium.
| |
Collapse
|
7
|
Okoye EC, Mitra AK, Lomax T, Nunaley C. Dengue Fever Epidemics and the Prospect of Vaccines: A Systematic Review and Meta-Analysis Using Clinical Trials in Children. Diseases 2024; 12:32. [PMID: 38391779 PMCID: PMC10887605 DOI: 10.3390/diseases12020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
About half of the world's population is at risk of dengue infection. Epidemics of dengue fever have caused an increased risk of morbidity and mortality in recent years, which led to the exploration of vaccines as a preventive measure. This systematic review and meta-analysis aimed to evaluate the efficacy, immune response, and safety of dengue vaccines in children by analyzing clinical trials. The review followed standard procedures for data extraction using PRISMA guidelines and searching multiple databases, including PubMed, CINAHL, Medline, Health Source, Science Direct, and Academic Search Premiere. Eligible studies involved children (0-17 years old). Quality assessment was analyzed using the Cochrane Collaboration criteria, while data synthesis was conducted using thematic analysis and meta-analysis. Among the 38 selected studies, dengue vaccines showed varying efficacy against all four serotypes. The CYD-TDV (Dengvaxia®) and Tekade (TAK-003) vaccines showed strong protection against severe dengue, but their long-term efficacy varied. Vaccines triggered satisfactory immune responses, notably in those previously exposed to dengue. Safety profiles were mostly favorable, noting mild adverse events post-vaccination. Meta-analysis supported vaccine efficacy and immune response, but safety concerns warrant further exploration. In conclusion, dengue vaccines showed promising efficacy and immune response, particularly against severe manifestations.
Collapse
Affiliation(s)
- Ebele C Okoye
- Department of Epidemiology and Biostatistics, College of Health Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Amal K Mitra
- Department of Epidemiology and Biostatistics, College of Health Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Terica Lomax
- Department of Epidemiology and Biostatistics, College of Health Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Cedric Nunaley
- Department of Epidemiology and Biostatistics, College of Health Sciences, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
8
|
Norris GT, Ames JM, Ziegler SF, Oberst A. Oligodendrocyte-derived IL-33 functions as a microglial survival factor during neuroinvasive flavivirus infection. PLoS Pathog 2023; 19:e1011350. [PMID: 37983247 PMCID: PMC10695366 DOI: 10.1371/journal.ppat.1011350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/04/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
In order to recover from infection, organisms must balance robust immune responses to pathogens with the tolerance of immune-mediated pathology. This balance is particularly critical within the central nervous system, whose complex architecture, essential function, and limited capacity for self-renewal render it susceptible to both pathogen- and immune-mediated pathology. Here, we identify the alarmin IL-33 and its receptor ST2 as critical for host survival to neuroinvasive flavivirus infection. We identify oligodendrocytes as the critical source of IL-33, and microglia as the key cellular responders. Notably, we find that the IL-33/ST2 axis does not impact viral control or adaptive immune responses; rather, it is required to promote the activation and survival of microglia. In the absence of intact IL-33/ST2 signaling in the brain, neuroinvasive flavivirus infection triggered aberrant recruitment of monocyte-derived peripheral immune cells, increased neuronal stress, and neuronal cell death, effects that compromised organismal survival. These findings identify IL-33 as a critical mediator of CNS tolerance to pathogen-initiated immunity and inflammation.
Collapse
Affiliation(s)
- Geoffrey T. Norris
- Department of Immunology, University of Washington, Seattle Washington, United States of America
| | - Joshua M. Ames
- Department of Immunology, University of Washington, Seattle Washington, United States of America
| | - Steven F. Ziegler
- Department of Immunology, University of Washington, Seattle Washington, United States of America
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle Washington, United States of America
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle Washington, United States of America
| |
Collapse
|
9
|
Ramezannia Z, Shamekh A, Bannazadeh Baghi H. CRISPR-Cas system to discover host-virus interactions in Flaviviridae. Virol J 2023; 20:247. [PMID: 37891676 PMCID: PMC10605781 DOI: 10.1186/s12985-023-02216-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
The Flaviviridae virus family members cause severe human diseases and are responsible for considerable mortality and morbidity worldwide. Therefore, researchers have conducted genetic screens to enhance insight into viral dependency and develop potential anti-viral strategies to treat and prevent these infections. The host factors identified by the clustered regularly interspaced short palindromic repeats (CRISPR) system can be potential targets for drug development. Meanwhile, CRISPR technology can be efficiently used to treat viral diseases as it targets both DNA and RNA. This paper discusses the host factors related to the life cycle of viruses of this family that were recently discovered using the CRISPR system. It also explores the role of immune factors and recent advances in gene editing in treating flavivirus-related diseases. The ever-increasing advancements of this technology may promise new therapeutic approaches with unique capabilities, surpassing the traditional methods of drug production and treatment.
Collapse
Affiliation(s)
- Zahra Ramezannia
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Shamekh
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Zhou W, Jiang L, Liao S, Wu F, Yang G, Hou L, Liu L, Pan X, Jia W, Zhang Y. Vaccines' New Era-RNA Vaccine. Viruses 2023; 15:1760. [PMID: 37632102 PMCID: PMC10458896 DOI: 10.3390/v15081760] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
RNA vaccines, including conventional messenger RNA (mRNA) vaccines, circular RNA (circRNA) vaccines, and self-amplifying RNA (saRNA) vaccines, have ushered in a promising future and revolutionized vaccine development. The success of mRNA vaccines in combating the COVID-19 pandemic caused by the SARS-CoV-2 virus that emerged in 2019 has highlighted the potential of RNA vaccines. These vaccines possess several advantages, such as high efficacy, adaptability, simplicity in antigen design, and the ability to induce both humoral and cellular immunity. They also offer rapid and cost-effective manufacturing, flexibility to target emerging or mutant pathogens and a potential approach for clearing immunotolerant microbes by targeting bacterial or parasitic survival mechanisms. The self-adjuvant effect of mRNA-lipid nanoparticle (LNP) formulations or circular RNA further enhances the potential of RNA vaccines. However, some challenges need to be addressed. These include the technology's immaturity, high research expenses, limited duration of antibody response, mRNA instability, low efficiency of circRNA cyclization, and the production of double-stranded RNA as a side product. These factors hinder the widespread adoption and utilization of RNA vaccines, particularly in developing countries. This review provides a comprehensive overview of mRNA, circRNA, and saRNA vaccines for infectious diseases while also discussing their development, current applications, and challenges.
Collapse
Affiliation(s)
- Wenshuo Zhou
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Linglei Jiang
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Shimiao Liao
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Feifei Wu
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Guohuan Yang
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Li Hou
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Lan Liu
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Xinping Pan
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - William Jia
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
- Shanghai-Virogin Biotech Co., Ltd., Shanghai 201800, China
| | - Yuntao Zhang
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
- Sinopharm Group China National Biotech Group (CNBG) Co., Ltd., Beijing 100124, China
| |
Collapse
|
11
|
Nemirov K, Authié P, Souque P, Moncoq F, Noirat A, Blanc C, Bourgine M, Majlessi L, Charneau P. Preclinical proof of concept of a tetravalent lentiviral T-cell vaccine against dengue viruses. Front Immunol 2023; 14:1208041. [PMID: 37654495 PMCID: PMC10466046 DOI: 10.3389/fimmu.2023.1208041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Dengue virus (DENV) is responsible for approximately 100 million cases of dengue fever annually, including severe forms such as hemorrhagic dengue and dengue shock syndrome. Despite intensive vaccine research and development spanning several decades, a universally accepted and approved vaccine against dengue fever has not yet been developed. The major challenge associated with the development of such a vaccine is that it should induce simultaneous and equal protection against the four DENV serotypes, because past infection with one serotype may greatly increase the severity of secondary infection with a distinct serotype, a phenomenon known as antibody-dependent enhancement (ADE). Using a lentiviral vector platform that is particularly suitable for the induction of cellular immune responses, we designed a tetravalent T-cell vaccine candidate against DENV ("LV-DEN"). This vaccine candidate has a strong CD8+ T-cell immunogenicity against the targeted non-structural DENV proteins, without inducing antibody response against surface antigens. Evaluation of its protective potential in the preclinical flavivirus infection model, i.e., mice knockout for the receptor to the type I IFN, demonstrated its significant protective effect against four distinct DENV serotypes, based on reduced weight loss, viremia, and viral loads in peripheral organs of the challenged mice. These results provide proof of concept for the use of lentiviral vectors for the development of efficient polyvalent T-cell vaccine candidates against all DENV serotypes.
Collapse
Affiliation(s)
- Kirill Nemirov
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Spiteri AG, van Vreden C, Ashhurst TM, Niewold P, King NJC. Clodronate is not protective in lethal viral encephalitis despite substantially reducing inflammatory monocyte infiltration in the CNS. Front Immunol 2023; 14:1203561. [PMID: 37545511 PMCID: PMC10403146 DOI: 10.3389/fimmu.2023.1203561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6Chi inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes. Macrophages can also be targeted more broadly by administration of clodronate-encapsulated liposomes, which induce apoptosis in phagocytes. In this study, clodronate reduced the inflammatory infiltrate by 70% in WNE, however, surprisingly, this had no effect on disease outcome. More detailed analysis demonstrated a compensatory increase in neutrophils and enhanced activation status of microglia in the brain. In addition, we observed increased numbers of Ly6Chi BM monocytes with an increased proliferative capacity and expression of SCA-1 and CD16/32, potentially indicating output of immature cells from the BM. Once in the brain, these cells were more phagocytic and had a reduced expression of antigen-presenting molecules. Lastly, we show that clodronate also reduces non-myeloid cells in the spleen and BM, as well as ablating red blood cells and their proliferation. These factors likely impeded the therapeutic potential of clodronate in WNE. Thus, while clodronate provides an excellent system to deplete macrophages in the body, it has larger and broader effects on the phagocytic and non-phagocytic system, which must be considered in the interpretation of data.
Collapse
Affiliation(s)
- Alanna G. Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Caryn van Vreden
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Thomas M. Ashhurst
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
| | - Paula Niewold
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Nicholas J. C. King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Samrat SK, Bashir Q, Huang Y, Trieshmann CW, Tharappel AM, Zhang R, Chen K, Geoge Zheng Y, Li Z, Li H. Broad-Spectrum Small-Molecule Inhibitors Targeting the SAM-Binding Site of Flavivirus NS5 Methyltransferase. ACS Infect Dis 2023; 9:1319-1333. [PMID: 37348028 PMCID: PMC10436986 DOI: 10.1021/acsinfecdis.2c00571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Flavivirus infections, such as those caused by dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and Zika virus (ZIKV), pose a rising threat to global health. There are no FDA-approved drugs for flaviviruses, although a small number of flaviviruses have vaccines. For flaviviruses or unknown viruses that may appear in the future, it is particularly desirable to identify broad-spectrum inhibitors. The NS5 protein is regarded as one of the most promising flavivirus drug targets because it is conserved across flaviviruses. In this study, we used FL-NAH, a fluorescent analog of the methyl donor S-adenosyl methionine (SAM), to develop a fluorescence polarization (FP)-based high throughput screening (HTS) assay to specifically target methyltransferase (MTase), a vital enzyme for flaviviruses that methylates the N7 and 2'-O positions of the viral 5'-RNA cap. Pilot screening identified two candidate MTase inhibitors, NSC 111552 and 288387. The two compounds inhibited the FL-NAH binding to the DENV3 MTase with low micromolar IC50. Functional assays verified the inhibitory potency of these molecules for the flavivirus MTase activity. Binding studies indicated that these molecules are bound directly to the DENV3 MTase with similar low micromolar affinity. Furthermore, we showed that these compounds greatly reduced ZIKV replication in cell-based experiments at dosages that did not cause cytotoxicity. Finally, docking studies revealed that these molecules bind to the SAM-binding region on the DENV3 MTase, and further mutagenesis studies verified residues important for the binding of these compounds. Overall, these compounds are innovative and attractive candidates for the development of broad-spectrum inhibitors for the treatment of flavivirus infections.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Qamar Bashir
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Yiding Huang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Carl William Trieshmann
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ran Zhang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ke Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Y. Geoge Zheng
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Zhong Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson AZ, 85721, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Fesce E, Marini G, Rosà R, Lelli D, Cerioli MP, Chiari M, Farioli M, Ferrari N. Understanding West Nile virus transmission: Mathematical modelling to quantify the most critical parameters to predict infection dynamics. PLoS Negl Trop Dis 2023; 17:e0010252. [PMID: 37126524 PMCID: PMC10174579 DOI: 10.1371/journal.pntd.0010252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023] Open
Abstract
West Nile disease is a vector-borne disease caused by West Nile virus (WNV), involving mosquitoes as vectors and birds as maintenance hosts. Humans and other mammals can be infected via mosquito bites, developing symptoms ranging from mild fever to severe neurological infection. Due to the worldwide spread of WNV, human infection risk is high in several countries. Nevertheless, there are still several knowledge gaps regarding WNV dynamics. Several aspects of transmission taking place between birds and mosquitoes, such as the length of the infectious period in birds or mosquito biting rates, are still not fully understood, and precise quantitative estimates are still lacking for the European species involved. This lack of knowledge affects the precision of parameter values when modelling the infection, consequently resulting in a potential impairment of the reliability of model simulations and predictions and in a lack of the overall understanding of WNV spread. Further investigations are thus needed to better understand these aspects, but field studies, especially those involving several wild species, such as in the case of WNV, can be challenging. Thus, it becomes crucial to identify which transmission processes most influence the dynamics of WNV. In the present work, we propose a sensitivity analysis to investigate which of the selected epidemiological parameters of WNV have the largest impact on the spread of the infection. Based on a mathematical model simulating WNV spread into the Lombardy region (northern Italy), the basic reproduction number of the infection was estimated and used to quantify infection spread into mosquitoes and birds. Then, we quantified how variations in four epidemiological parameters representing the duration of the infectious period in birds, the mosquito biting rate on birds, and the competence and susceptibility to infection of different bird species might affect WNV transmission. Our study highlights that knowledge gaps in WNV epidemiology affect the precision in several parameters. Although all investigated parameters affected the spread of WNV and the modelling precision, the duration of the infectious period in birds and mosquito biting rate are the most impactful, pointing out the need of focusing future studies on a better estimate of these parameters at first. In addition, our study suggests that a WNV outbreak is very likely to occur in all areas with suitable temperatures, highlighting the wide area where WNV represents a serious risk for public health.
Collapse
Affiliation(s)
- Elisa Fesce
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
| | - Roberto Rosà
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento (TN), Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Monica Pierangela Cerioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Mario Chiari
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Marco Farioli
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Nicola Ferrari
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
- Centro di Ricerca Coordinata Epidemiologia e Sorveglianza Molecolare delle Infezioni, Università degli Studi di Milano, Milano (MI), Italy
| |
Collapse
|
15
|
Norris GT, Ames JM, Ziegler SF, Oberst A. Oligodendrocyte-derived IL-33 functions as a microglial survival factor during neuroinvasive flavivirus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536332. [PMID: 37090518 PMCID: PMC10120631 DOI: 10.1101/2023.04.11.536332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In order to recover from infection, organisms must balance robust immune responses to pathogens with the tolerance of immune-mediated pathology. This balance is particularly critical within the central nervous system, whose complex architecture, essential function, and limited capacity for self-renewal render it susceptible to both pathogen- and immune-mediated pathology. Here, we identify the alarmin IL-33 and its receptor ST2 as critical for host survival to neuroinvasive flavivirus infection. We identify oligodendrocytes as the critical source of IL-33, and microglia as the key cellular responders. Notably, we find that the IL-33/ST2 axis does not impact viral control or adaptive immune responses; rather, it is required to promote the activation and survival of microglia. In the absence of intact IL-33/ST2 signaling in the brain, neuroinvasive flavivirus infection triggered aberrant recruitment of monocyte-derived peripheral immune cells, increased neuronal stress, and neuronal cell death, effects that compromised organismal survival. These findings identify IL-33 as a critical mediator of CNS tolerance to pathogen-initiated immunity and inflammation.
Collapse
Affiliation(s)
- Geoffrey T. Norris
- Department of Immunology, University of Washington, Seattle WA 98109, USA
| | - Joshua M. Ames
- Department of Immunology, University of Washington, Seattle WA 98109, USA
| | - Steven F. Ziegler
- Department of Immunology, University of Washington, Seattle WA 98109, USA
- Immunology Program, Benaroya Research Institute, Seattle WA 98101, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle WA 98109, USA
- Lead Contact
| |
Collapse
|
16
|
Spiteri AG, Wishart CL, Ni D, Viengkhou B, Macia L, Hofer MJ, King NJC. Temporal tracking of microglial and monocyte single-cell transcriptomics in lethal flavivirus infection. Acta Neuropathol Commun 2023; 11:60. [PMID: 37016414 PMCID: PMC10074823 DOI: 10.1186/s40478-023-01547-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 04/06/2023] Open
Abstract
As the resident parenchymal myeloid population in the central nervous system (CNS), microglia are strategically positioned to respond to neurotropic virus invasion and have been implicated in promoting both disease resolution and progression in the acute and post-infectious phase of virus encephalitis. In a mouse model of West Nile virus encephalitis (WNE), infection of the CNS results in recruitment of large numbers of peripheral immune cells into the brain, the majority being nitric oxide (NO)-producing Ly6Chi inflammatory monocyte-derived cells (MCs). In this model, these cells enhance immunopathology and mortality. However, the contribution of microglia to this response is currently undefined. Here we used a combination of experimental tools, including single-cell RNA sequencing (scRNA-seq), microglia and MC depletion reagents, high-dimensional spectral cytometry and computational algorithms to dissect the differential contribution of microglia and MCs to the anti-viral immune response in severe neuroinflammation seen in WNE. Intriguingly, analysis of scRNA-seq data revealed 6 unique microglia and 3 unique MC clusters that were predominantly timepoint-specific, demonstrating substantial transcriptional adaptation with disease progression over the course of WNE. While microglia and MC adopted unique gene expression profiles, gene ontology enrichment analysis, coupled with microglia and MC depletion studies, demonstrated a role for both of these cells in the trafficking of peripheral immune cells into the CNS, T cell responses and viral clearance. Over the course of infection, microglia transitioned from a homeostatic to an anti-viral and then into an immune cell-recruiting phenotype. Conversely, MC adopted antigen-presenting, immune cell-recruiting and NO-producing phenotypes, which all had anti-viral function. Overall, this study defines for the first time the single-cell transcriptomic responses of microglia and MCs over the course of WNE, demonstrating both protective and pathological roles of these cells that could potentially be targeted for differential therapeutic intervention to dampen immune-mediated pathology, while maintaining viral clearance functions.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Claire L Wishart
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Barney Viengkhou
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Laurence Macia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Markus J Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicholas J C King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia.
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
17
|
Nazneen F, Thompson EA, Blackwell C, Bai JS, Huang F, Bai F. An effective live-attenuated Zika vaccine candidate with a modified 5' untranslated region. NPJ Vaccines 2023; 8:50. [PMID: 37005424 PMCID: PMC10066991 DOI: 10.1038/s41541-023-00650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that has caused devastating congenital Zika syndrome (CZS), including microcephaly, congenital malformation, and fetal demise in human newborns in recent epidemics. ZIKV infection can also cause Guillain-Barré syndrome (GBS) and meningoencephalitis in adults. Despite intensive research in recent years, there are no approved vaccines or antiviral therapeutics against CZS and adult Zika diseases. In this report, we developed a novel live-attenuated ZIKV strain (named Z7) by inserting 50 RNA nucleotides (nt) into the 5' untranslated region (UTR) of a pre-epidemic ZIKV Cambodian strain, FSS13025. We used this particular ZIKV strain as it is attenuated in neurovirulence, immune antagonism, and mosquito infectivity compared with the American epidemic isolates. Our data demonstrate that Z7 replicates efficiently and produces high titers without causing apparent cytopathic effects (CPE) in Vero cells or losing the insert sequence, even after ten passages. Significantly, Z7 induces robust humoral and cellular immune responses that completely prevent viremia after a challenge with a high dose of an American epidemic ZIKV strain PRVABC59 infection in type I interferon (IFN) receptor A deficient (Ifnar1-/-) mice. Moreover, adoptive transfer of plasma collected from Z7 immunized mice protects Ifnar1-/- mice from ZIKV (strain PRVABC59) infection. These results suggest that modifying the ZIKV 5' UTR is a novel strategy to develop live-attenuated vaccine candidates for ZIKV and potentially for other flaviviruses.
Collapse
Affiliation(s)
- Farzana Nazneen
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - E Ashley Thompson
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Claire Blackwell
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Jonathan S Bai
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Faqing Huang
- Chemistry and Biochemistry Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Fengwei Bai
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
18
|
Wu B, Qi Z, Qian X. Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development. Viruses 2023; 15:813. [PMID: 37112794 PMCID: PMC10143207 DOI: 10.3390/v15040813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lately, the global incidence of flavivirus infection has been increasing dramatically and presents formidable challenges for public health systems around the world. Most clinically significant flaviviruses are mosquito-borne, such as the four serotypes of dengue virus, Zika virus, West Nile virus, Japanese encephalitis virus and yellow fever virus. Until now, no effective antiflaviviral drugs are available to fight flaviviral infection; thus, a highly immunogenic vaccine would be the most effective weapon to control the diseases. In recent years, flavivirus vaccine research has made major breakthroughs with several vaccine candidates showing encouraging results in preclinical and clinical trials. This review summarizes the current advancement, safety, efficacy, advantages and disadvantages of vaccines against mosquito-borne flaviviruses posing significant threats to human health.
Collapse
Affiliation(s)
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Xijing Qian
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| |
Collapse
|
19
|
Montalvo Zurbia-Flores G, Rollier CS, Reyes-Sandoval A. Re-thinking yellow fever vaccines: fighting old foes with new generation vaccines. Hum Vaccin Immunother 2022; 18:1895644. [PMID: 33974507 PMCID: PMC8920179 DOI: 10.1080/21645515.2021.1895644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/07/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the existence of a highly efficient yellow fever vaccine, yellow fever reemergence throughout Africa and the Americas has put 900 million people in 47 countries at risk of contracting the disease. Although the vaccine has been key to controlling yellow fever epidemics, its live-attenuated nature comes with a range of contraindications that prompts advising against its administration to pregnant and lactating women, immunocompromised individuals, and those with hypersensitivity to chicken egg proteins. Additionally, large outbreaks have highlighted problems with insufficient vaccine supply, whereby manufacturers rely on slow traditional manufacturing processes that prevent them from ramping up production. These limitations have contributed to an inadequate control of yellow fever and have favored the pursuit of novel yellow fever vaccine candidates that aim to circumvent the licensed vaccine's restrictions. Here, we review the live-attenuated vaccine's limitations and explore the epitome of a yellow fever vaccine, whilst scrutinizing next-generation vaccine candidates.
Collapse
Affiliation(s)
- Gerardo Montalvo Zurbia-Flores
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford. The Henry Wellcome Building for Molecular Physiology, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford. The Henry Wellcome Building for Molecular Physiology, Oxford, UK
- Instituto Politécnico Nacional, IPN. Av. Luis Enrique Erro S/n. Unidad Adolfo López Mateos. CP, Mexico City, Mexico
| |
Collapse
|
20
|
Ali IM, Tchuenkam VPK, Colton M, Stittleburg V, Mitchell C, Gaither C, Thwai K, Espinoza DO, Zhu Y, Jamal H, Key A, Juliano JJ, Christopher TB, Piantadosi A, Waggoner JJ, Collins MH. Arboviruses as an unappreciated cause of non-malarial acute febrile illness in the Dschang Health District of western Cameroon. PLoS Negl Trop Dis 2022; 16:e0010790. [PMID: 36223421 PMCID: PMC9591055 DOI: 10.1371/journal.pntd.0010790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/24/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022] Open
Abstract
Acute febrile illness is a common problem managed by clinicians and health systems globally, particularly in the Tropics. In many regions, malaria is a leading and potentially deadly cause of fever; however, myriad alternative etiologies exist. Identifying the cause of fever allows optimal management, but this depends on many factors including thorough knowledge of circulating infections. Arboviruses such as dengue (DENV) cause fever and may be underdiagnosed in sub-Saharan Africa where malaria is a major focus. We examined cases of fever in western Cameroon that tested negative for malaria and found 13.5% (13/96) were due to DENV, with 75% (9/12) of these being DENV serotype 2 infections. Two complete DENV2 genomes were obtained and clustered closely to recent isolates from Senegal and Burkina Faso. The seroprevalence of DENV in this region was 24.8% (96/387). Neutralizing antibodies to DENV2 were detected in all (15/15) seropositive samples tested. Chikungunya (CHIKV) is an arthritogenic alphavirus that is transmitted by Aedes mosquitoes, the same principal vector as DENV. The seroprevalence for CHIKV was 15.7% (67/427); however, CHIKV did not cause a single case of fever in the 96 subjects tested. Of note, being seropositive for one arbovirus was associated with being seropositive for the other (Χ2 = 16.8, p<0.001). Taken together, these data indicate that Aedes-transmitted arboviruses are endemic in western Cameroon and are likely a common but underappreciated cause of febrile illness. This work supports the need for additional study of arboviruses in sub-Saharan Africa and efforts to improve diagnostic capacity, surveillance systems, and arbovirus prevention strategies.
Collapse
Affiliation(s)
- Innocent M. Ali
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West Region of Cameroon, Cameroon
| | - Valery P. K. Tchuenkam
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West Region of Cameroon, Cameroon
| | - Mia Colton
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Victoria Stittleburg
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cedar Mitchell
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Claudia Gaither
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kyaw Thwai
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel O. Espinoza
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Yerun Zhu
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Haaris Jamal
- Emory University, Atlanta, Georgia, United States of America
| | - Autum Key
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jonathan J. Juliano
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Tume B. Christopher
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West Region of Cameroon, Cameroon
| | - Anne Piantadosi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jesse J. Waggoner
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Matthew H. Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
21
|
Flavivirus NS4B protein: Structure, function, and antiviral discovery. Antiviral Res 2022; 207:105423. [PMID: 36179934 DOI: 10.1016/j.antiviral.2022.105423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Infections with mosquito-borne flaviviruses, such as Dengue virus, ZIKV virus, and West Nile virus, pose significant threats to public health. Flaviviruses cause about 400 million infections each year, leading to many forms of diseases, including fatal hemorrhagic, encephalitis, congenital abnormalities, and deaths. Currently, there are no clinically approved antiviral drugs for the treatment of flavivirus infections. The non-structural protein NS4B is an emerging target for drug discovery due to its multiple roles in the flaviviral life cycle. In this review, we summarize the latest knowledge on the structure and function of flavivirus NS4B, as well as the progress on antiviral compounds that target NS4B.
Collapse
|
22
|
Könenkamp L, Ziegler U, Naucke T, Groschup MH, Steffen I. Antibody ratios against NS1 antigens of tick-borne encephalitis and West Nile viruses support differential flavivirus serology in dogs. Transbound Emerg Dis 2022; 69:e2789-e2799. [PMID: 35704505 DOI: 10.1111/tbed.14630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022]
Abstract
Flavivirus diagnostics are complicated by substantial cross-reactivity of antibodies between different flavivirus species. This is of particular importance in regions with multiple endemic flaviviruses in co-circulation. Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis, the most common infection of the central nervous system in endemic regions of Europe and Asia. Since 2018, the related West Nile virus (WNV) has spread to Germany where its geographic distribution overlaps with TBEV endemic regions. Besides humans, various animal species are susceptible to TBEV and WNV infection. To compare antibody responses against these flaviviruses and test for cross-reactivity, we developed a multi-species luciferase immunoprecipitation system antibody detection assay for several different antigens. We performed a serosurvey of 682 dogs from five different European countries to detect antibodies against TBEV and WNV. Twelve specimens were positive for TBEV NS1 only and seven for WNV NS1 only. Two specimens were reactive to both NS1 antigens and another two were equivocal for WNV NS1. Interestingly, 89.5% of positive specimens had TBEV/WNV or WNV/TBEV signal ratios of 10 to >300 between individual NS1 antigens, allowing for a clear distinction between the two viruses. The remaining 10.5% of reactive specimens showed a five- to 10-fold difference between the two viruses and included possible dual exposures to both viruses. In contrast, equivocal samples showed low signal ratios between the NS1 antigens, suggesting unspecific reactivity. Based on these data, we found the NS1 protein to be a suitable antigen to distinguish between TBEV- and WNV-specific antibodies in dogs with sensitivity and specificity similar to virus neutralization tests.
Collapse
Affiliation(s)
- Laura Könenkamp
- Institute for Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | | | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Imke Steffen
- Institute for Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
23
|
Luria-Pérez R, Sánchez-Vargas LA, Muñoz-López P, Mellado-Sánchez G. Mucosal Vaccination: A Promising Alternative Against Flaviviruses. Front Cell Infect Microbiol 2022; 12:887729. [PMID: 35782117 PMCID: PMC9241634 DOI: 10.3389/fcimb.2022.887729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae are a family of positive-sense, single-stranded RNA enveloped viruses, and their members belong to a single genus, Flavivirus. Flaviviruses are found in mosquitoes and ticks; they are etiological agents of: dengue fever, Japanese encephalitis, West Nile virus infection, Zika virus infection, tick-borne encephalitis, and yellow fever, among others. Only a few flavivirus vaccines have been licensed for use in humans: yellow fever, dengue fever, Japanese encephalitis, tick-borne encephalitis, and Kyasanur forest disease. However, improvement is necessary in vaccination strategies and in understanding of the immunological mechanisms involved either in the infection or after vaccination. This is especially important in dengue, due to the immunological complexity of its four serotypes, cross-reactive responses, antibody-dependent enhancement, and immunological interference. In this context, mucosal vaccines represent a promising alternative against flaviviruses. Mucosal vaccination has several advantages, as inducing long-term protective immunity in both mucosal and parenteral tissues. It constitutes a friendly route of antigen administration because it is needle-free and allows for a variety of antigen delivery systems. This has promoted the development of several ways to stimulate immunity through the direct administration of antigens (e.g., inactivated virus, attenuated virus, subunits, and DNA), non-replicating vectors (e.g., nanoparticles, liposomes, bacterial ghosts, and defective-replication viral vectors), and replicating vectors (e.g., Salmonella enterica, Lactococcus lactis, Saccharomyces cerevisiae, and viral vectors). Because of these characteristics, mucosal vaccination has been explored for immunoprophylaxis against pathogens that enter the host through mucosae or parenteral areas. It is suitable against flaviviruses because this type of immunization can stimulate the parenteral responses required after bites from flavivirus-infected insects. This review focuses on the advantages of mucosal vaccine candidates against the most relevant flaviviruses in either humans or animals, providing supporting data on the feasibility of this administration route for future clinical trials.
Collapse
Affiliation(s)
- Rosendo Luria-Pérez
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
| | - Luis A. Sánchez-Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Paola Muñoz-López
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de México, Mexico
| |
Collapse
|
24
|
Yu X, Tong L, Zhang L, Yang Y, Xiao X, Zhu Y, Wang P, Cheng G. Lipases secreted by a gut bacterium inhibit arbovirus transmission in mosquitoes. PLoS Pathog 2022; 18:e1010552. [PMID: 35679229 PMCID: PMC9182268 DOI: 10.1371/journal.ppat.1010552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Arboviruses are etiological agents of various severe human diseases that place a tremendous burden on global public health and the economy; compounding this issue is the fact that effective prophylactics and therapeutics are lacking for most arboviruses. Herein, we identified 2 bacterial lipases secreted by a Chromobacterium bacterium isolated from Aedes aegypti midgut, Chromobacterium antiviral effector-1 (CbAE-1) and CbAE-2, with broad-spectrum virucidal activity against mosquito-borne viruses, such as dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV) and Sindbis virus (SINV). The CbAEs potently blocked viral infection in the extracellular milieu through their lipase activity. Mechanistic studies showed that this lipase activity directly disrupted the viral envelope structure, thus inactivating infectivity. A mutation in the lipase motif of CbAE-1 fully abrogated the virucidal ability. Furthermore, CbAEs also exert lipase-dependent entomopathogenic activity in mosquitoes. The anti-arboviral and entomopathogenic properties of CbAEs render them potential candidates for the development of novel transmission control strategies against vector-borne diseases. Mosquito-borne viruses are the etiological agents of severe human diseases and annually lead to a great number of deaths. These viruses have spread widely and raised major public health concerns throughout the world. Although effective vaccines have been developed for a few mosquito-borne viruses, such as JEV and yellow fever virus (YFV), vaccines or antiviral therapeutics against most mosquito-borne viruses are currently unavailable. In this study, we identified two virucidal and entomopathogenic effectors with lipase activity, CbAE-1 and CbAE-2, from a mosquito midgut derived bacterium Chromobacterium sp. Beijing. Both CbAEs showed potent virucidal activity against a variety of mosquito-borne viruses, including DENV, ZIKV, JEV, YFV, and SINV, as well as other enveloped viruses. Since CbAEs inactivate viruses through their lipase activity by directly disrupting the viral envelope structure, they may provide a novel option for genetically engineering microbiota symbiotic with mosquitoes for arboviral control. Overall, the anti-arboviral and entomopathogenic properties of Csp_BJ and CbAEs render them particularly interesting candidates for the development of novel transmission control strategies against vector-borne diseases.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Liangqin Tong
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Liming Zhang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yun Yang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Xiaoping Xiao
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- * E-mail:
| |
Collapse
|
25
|
Hou B, Chen H, Gao N, An J. Cross-Reactive Immunity among Five Medically Important Mosquito-Borne Flaviviruses Related to Human Diseases. Viruses 2022; 14:1213. [PMID: 35746683 PMCID: PMC9228836 DOI: 10.3390/v14061213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Flaviviruses cause a spectrum of potentially severe diseases. Most flaviviruses are transmitted by mosquitoes or ticks and are widely distributed all over the world. Among them, several mosquito-borne flaviviruses are co-epidemic, and the similarity of their antigenicity creates abundant cross-reactive immune responses which complicate their prevention and control. At present, only effective vaccines against yellow fever and Japanese encephalitis have been used clinically, while the optimal vaccines against other flavivirus diseases are still under development. The antibody-dependent enhancement generated by cross-reactive immune responses against different serotypes of dengue virus makes the development of the dengue fever vaccine a bottleneck. It has been proposed that the cross-reactive immunity elicited by prior infection of mosquito-borne flavivirus could also affect the outcome of the subsequent infection of heterologous flavivirus. In this review, we focused on five medically important flaviviruses, and rearranged and recapitulated their cross-reactive immunity in detail from the perspectives of serological experiments in vitro, animal experiments in vivo, and human cohort studies. We look forward to providing references and new insights for the research of flavivirus vaccines and specific prevention.
Collapse
Affiliation(s)
- Baohua Hou
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.A.)
| | - Hui Chen
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.A.)
- Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Na Gao
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.A.)
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.A.)
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China
| |
Collapse
|
26
|
Sherman TJ, Petty D, Schountz T, Hodges N, Hawkinson AC. Increased Ifng and Il10 Expression Correlate with Disease in Rodent Models Experimentally Infected with Modoc Virus. Viruses 2022; 14:v14051026. [PMID: 35632766 PMCID: PMC9146023 DOI: 10.3390/v14051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Flaviviruses present an ongoing threat to global public health, although the factors that contribute to the disease remain incompletely understood. We examined an acute Modoc virus (MODV) infection of two rodent models. Viral RNA was detected in the kidneys, spleen, liver, brain, urine, and sera of experimentally infected deer mice, a reservoir host of MODV, and Syrian hamsters, a known disease model. As expected, clinical outcomes differed between species, and the levels of viral RNA recovered from various tissues demonstrated signs of differential replication and tissue tropism. Multivariate analysis indicated significance in the profile of expressed genes between species when analyzed across tissues and over time (p = 0.02). Between-subject effects with corrected models revealed a significance specific to the expression of Ifng (p = 0.01). the expression of Ifng was elevated in hamsters as compared to deer mice in brain tissues at all timepoints. As the over-expression of Ifng has been shown to correlate with decreased vascular integrity, the findings presented here offer a potential mechanism for viral dissemination into the CNS. The expression of IL10 also differed significantly between species at certain timepoints in brain tissues; however, it is uncertain how increased expression of this cytokine may influence the outcome of MODV-induced pathology.
Collapse
Affiliation(s)
- Tyler J. Sherman
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
- Correspondence:
| | - Douglas Petty
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
| | - Natasha Hodges
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
| | - Ann C. Hawkinson
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO 80524, USA;
| |
Collapse
|
27
|
Transcriptomics of Acute DENV-Specific CD8+ T Cells Does Not Support Qualitative Differences as Drivers of Disease Severity. Vaccines (Basel) 2022; 10:vaccines10040612. [PMID: 35455361 PMCID: PMC9029181 DOI: 10.3390/vaccines10040612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022] Open
Abstract
While several lines of evidence suggest a protective role of T cells against disease associated with Dengue virus (DENV) infection, their potential contribution to immunopathology in the acute phase of DENV infection remains controversial, and it has been hypothesized that the more severe form of the disease (dengue hemorrhagic fever, DHF) is associated with altered T cell responses. To address this question, we determined the transcriptomic profiles of DENV-specific CD8+ T cells in a cohort of 40 hospitalized dengue patients with either a milder form of the disease (dengue fever, DF) or a more severe disease form (dengue hemorrhagic fever, DHF). We found multiple transcriptomic signatures, one associated with DENV-specific interferon-gamma responding cells and two other gene signatures, one specifically associated with the acute phase and the other with the early convalescent phase. Additionally, we found no differences in quantity and quality of DENV-specific CD8+ T cells based on disease severity. Taken together with previous findings that did not detect altered DENV-specific CD4 T cell responses, the current analysis argues against alteration in DENV-specific T cell responses as being a correlate of immunopathology.
Collapse
|
28
|
Spiteri AG, Ni D, Ling ZL, Macia L, Campbell IL, Hofer MJ, King NJC. PLX5622 Reduces Disease Severity in Lethal CNS Infection by Off-Target Inhibition of Peripheral Inflammatory Monocyte Production. Front Immunol 2022; 13:851556. [PMID: 35401512 PMCID: PMC8990748 DOI: 10.3389/fimmu.2022.851556] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
PLX5622 is a CSF-1R inhibitor and microglia-depleting reagent, widely used to investigate the biology of this central nervous system (CNS)-resident myeloid population, but the indirect or off-target effects of this agent remain largely unexplored. In a murine model of severe neuroinflammation induced by West Nile virus encephalitis (WNE), we showed PLX5622 efficiently depleted both microglia and a sub-population of border-associated macrophages in the CNS. However, PLX5622 also significantly depleted mature Ly6Chi monocytes in the bone marrow (BM), inhibiting their proliferation and lethal recruitment into the infected brain, reducing neuroinflammation and clinical disease scores. Notably, in addition, BM dendritic cell subsets, plasmacytoid DC and classical DC, were depleted differentially in infected and uninfected mice. Confirming its protective effect in WNE, cessation of PLX5622 treatment exacerbated disease scores and was associated with robust repopulation of microglia, rebound BM monopoiesis and markedly increased inflammatory monocyte infiltration into the CNS. Monoclonal anti-CSF-1R antibody blockade late in WNE also impeded BM monocyte proliferation and recruitment to the brain, suggesting that the protective effect of PLX5622 is via the inhibition of CSF-1R, rather than other kinase targets. Importantly, BrdU incorporation in PLX5622-treated mice, suggest remaining microglia proliferate independently of CSF-1 in WNE. Our study uncovers significantly broader effects of PLX5622 on the myeloid lineage beyond microglia depletion, advising caution in the interpretation of PLX5622 data as microglia-specific. However, this work also strikingly demonstrates the unexpected therapeutic potential of this molecule in CNS viral infection, as well as other monocyte-mediated diseases.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Zheng Lung Ling
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Markus J Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas J C King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Jiang H, Zhang Y, Wu Y, Cheng J, Feng S, Wang J, Wang X, Cheng M. Identification of Montelukast as flavivirus NS2B-NS3 protease inhibitor by inverse virtual screening and experimental validation. Biochem Biophys Res Commun 2022; 606:87-93. [PMID: 35339757 DOI: 10.1016/j.bbrc.2022.03.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 11/02/2022]
Abstract
Flavivirus, such as Dengue Virus (DENV) and Zika virus (ZIKV), infects millions of people and cause the death of thousands of people every year. Despite many efforts, there is no approved anti-flaviviral treatment available. In particular, some antiflavivirus compounds were investigated the cellular activities of DENV and ZIKV, but lacking the exploration of specific target enzyme, thereby resulting in the hindrance of structure-based drug design. One example is Montlukast, which was found to inhibit the replicon replication in DENV and ZIKV infected cells, with EC50 values as 1.03 μM (DENV) and 1.14 μM (ZIKV), while the underlying mechanism remains unclear. In our study, the inhibitory mechanisms of Montelukast against the replicon replication of DENV and ZIKV infected cells were studied by using in silico approaches including inverse virtual screening (IVS), molecular dynamics (MD) simulations and binding free energy calculation, and validated through in vitro protease assay, confirming Montelukast could bind to NS2B-NS3 proteases of DENV and ZIKV as a competitive inhibitor (IC50 for DENV: 25.65 μM, for ZIKV: 15.57 μM). Moreover, Montelukast has no potential off-target effect on NS2B-NS3 protease from thrombin and trypsin inhibitory assay. Overall, Montelukast may be used as a potential candidate to block NS2B-NS3 protease as well as lead for structural modification.
Collapse
Affiliation(s)
- Hailun Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaoliang Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuming Wu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jiawei Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shasha Feng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xuejun Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
30
|
Zika M—A Potential Viroporin: Mutational Study and Drug Repurposing. Biomedicines 2022; 10:biomedicines10030641. [PMID: 35327443 PMCID: PMC8944957 DOI: 10.3390/biomedicines10030641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022] Open
Abstract
Genus Flavivirus contains several important human pathogens. Among these, the Zika virus is an emerging etiological agent that merits concern. One of its structural proteins, prM, plays an essential role in viral maturation and assembly, making it an attractive drug and vaccine development target. Herein, we have characterized ZikV-M as a potential viroporin candidate using three different bacteria-based assays. These assays were subsequently employed to screen a library of repurposed drugs from which ten compounds were identified as ZikV-M blockers. Mutational analyses of conserved amino acids in the transmembrane domain of other flaviviruses, including West Nile and Dengue virus, were performed to study their role in ion channel activity. In conclusion, our data show that ZikV-M is a potential ion channel that can be used as a drug target for high throughput screening and drug repurposing.
Collapse
|
31
|
Collins MH, Potter GE, Hitchings MDT, Butler E, Wiles M, Kennedy JK, Pinto SB, Teixeira ABM, Casanovas-Massana A, Rouphael NG, Deye GA, Simmons CP, Moreira LA, Nogueira ML, Cummings DAT, Ko AI, Teixeira MM, Edupuganti S. EVITA Dengue: a cluster-randomized controlled trial to EValuate the efficacy of Wolbachia-InfecTed Aedes aegypti mosquitoes in reducing the incidence of Arboviral infection in Brazil. Trials 2022; 23:185. [PMID: 35236394 PMCID: PMC8889395 DOI: 10.1186/s13063-022-05997-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 01/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Arboviruses transmitted by Aedes aegypti including dengue, Zika, and chikungunya are a major global health problem, with over 2.5 billion at risk for dengue alone. There are no licensed antivirals for these infections, and safe and effective vaccines are not yet widely available. Thus, prevention of arbovirus transmission by vector modification is a novel approach being pursued by multiple researchers. However, the field needs high-quality evidence derived from randomized, controlled trials upon which to base the implementation and maintenance of vector control programs. Here, we report the EVITA Dengue trial design (DMID 17-0111), which assesses the efficacy in decreasing arbovirus transmission of an innovative approach developed by the World Mosquito Program for vector modification of Aedes mosquitoes by Wolbachia pipientis. METHODS DMID 17-0111 is a cluster-randomized trial in Belo Horizonte, Brazil, with clusters defined by primary school catchment areas. Clusters (n = 58) will be randomized 1:1 to intervention (release of Wolbachia-infected Aedes aegypti mosquitoes) vs. control (no release). Standard vector control activities (i.e., insecticides and education campaigns for reduction of mosquito breeding sites) will continue as per current practice in the municipality. Participants (n = 3480, 60 per cluster) are children aged 6-11 years enrolled in the cluster-defining school and living within the cluster boundaries who will undergo annual serologic surveillance for arboviral infection. The primary objective is to compare sero-incidence of arboviral infection between arms. DISCUSSION DMID 17-0111 aims to determine the efficacy of Wolbachia-infected mosquito releases in reducing human infections by arboviruses transmitted by Aedes aegypti and will complement the mounting evidence for this method from large-scale field releases and ongoing trials. The trial also represents a critical step towards robustness and rigor for how vector control methods are assessed, including the simultaneous measurement and correlation of entomologic and epidemiologic outcomes. Data from this trial will inform further the development of novel vector control methods. TRIAL REGISTRATION ClinicalTrials.gov NCT04514107 . Registered on 17 August 2020 Primary sponsor: National Institute of Health, National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Matthew H Collins
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Gail E Potter
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- The Emmes Company, LLC, Rockville, USA
| | - Matt D T Hitchings
- Emerging Pathogens Institute and Department of Biology, University of Florida, Gainesville, FL, USA
| | - Ellie Butler
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Michelle Wiles
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | | | - Sofia B Pinto
- World Mosquito Program, Monash University, Melbourne, 3800, Australia
| | - Adla B M Teixeira
- School of Education, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Nadine G Rouphael
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Gregory A Deye
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Cameron P Simmons
- World Mosquito Program, Monash University, Melbourne, 3800, Australia
| | - Luciano A Moreira
- Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio L Nogueira
- Medical School of São Jose do Rio Preto FAMERP, São Jose do Rio Preto, São Paulo, Brazil
| | - Derek A T Cummings
- Emerging Pathogens Institute and Department of Biology, University of Florida, Gainesville, FL, USA.
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Salvador, Bahia, Brazil.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Srilatha Edupuganti
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
32
|
Celebration and Acknowledgment at a Time of Transition. Clin Ther 2022; 44:155-156. [DOI: 10.1016/j.clinthera.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
|
33
|
Pan Y, Cai W, Cheng A, Wang M, Yin Z, Jia R. Flaviviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Front Immunol 2022; 13:829433. [PMID: 35154151 PMCID: PMC8835115 DOI: 10.3389/fimmu.2022.829433] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The innate immune system is the host’s first line of defense against the invasion of pathogens including flavivirus. The programmed cell death controlled by genes plays an irreplaceable role in resisting pathogen invasion and preventing pathogen infection. However, the inflammatory cell death, which can trigger the overflow of a large number of pro-inflammatory cytokines and cell contents, will initiate a severe inflammatory response. In this review, we summarized the current understanding of the innate immune response, inflammatory cell death pathway and cytokine secretion regulation during Dengue virus, West Nile virus, Zika virus, Japanese encephalitis virus and other flavivirus infections. We also discussed the impact of these flavivirus and viral proteins on these biological processes. This not only provides a scientific basis for elucidating the pathogenesis of flavivirus, but also lays the foundation for the development of effective antiviral therapies.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| |
Collapse
|
34
|
Sharma A, Zhang X, Dejnirattisai W, Dai X, Gong D, Wongwiwat W, Duquerroy S, Rouvinski A, Vaney MC, Guardado-Calvo P, Haouz A, England P, Sun R, Zhou ZH, Mongkolsapaya J, Screaton GR, Rey FA. The epitope arrangement on flavivirus particles contributes to Mab C10's extraordinary neutralization breadth across Zika and dengue viruses. Cell 2021; 184:6052-6066.e18. [PMID: 34852239 PMCID: PMC8724787 DOI: 10.1016/j.cell.2021.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 10/26/2022]
Abstract
The human monoclonal antibody C10 exhibits extraordinary cross-reactivity, potently neutralizing Zika virus (ZIKV) and the four serotypes of dengue virus (DENV1-DENV4). Here we describe a comparative structure-function analysis of C10 bound to the envelope (E) protein dimers of the five viruses it neutralizes. We demonstrate that the C10 Fab has high affinity for ZIKV and DENV1 but not for DENV2, DENV3, and DENV4. We further show that the C10 interaction with the latter viruses requires an E protein conformational landscape that limits binding to only one of the three independent epitopes per virion. This limited affinity is nevertheless counterbalanced by the particle's icosahedral organization, which allows two different dimers to be reached by both Fab arms of a C10 immunoglobulin. The epitopes' geometric distribution thus confers C10 its exceptional neutralization breadth. Our results highlight the importance not only of paratope/epitope complementarity but also the topological distribution for epitope-focused vaccine design.
Collapse
Affiliation(s)
- Arvind Sharma
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Xiaokang Zhang
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France; Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xinghong Dai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wiyada Wongwiwat
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stéphane Duquerroy
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France; Université Paris-Saclay, Faculté des Sciences, F-91405 Orsay, France
| | - Alexander Rouvinski
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Marie-Christine Vaney
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Pablo Guardado-Calvo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université de Paris, CNRS UMR 3528, Center for Technological Resources and Research, 75015 Paris, France
| | - Patrick England
- Institut Pasteur, Université de Paris, CNRS UMR 3528, Center for Technological Resources and Research, 75015 Paris, France
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Felix A Rey
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France.
| |
Collapse
|
35
|
Developing a Stabilizing Formulation of a Live Chimeric Dengue Virus Vaccine Dry Coated on a High-Density Microarray Patch. Vaccines (Basel) 2021; 9:vaccines9111301. [PMID: 34835234 PMCID: PMC8625757 DOI: 10.3390/vaccines9111301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative delivery systems such as the high-density microarray patch (HD-MAP) are being widely explored due to the variety of benefits they offer over traditional vaccine delivery methods. As vaccines are dry coated onto the HD-MAP, there is a need to ensure the stability of the vaccine in a solid state upon dry down. Other challenges faced are the structural stability during storage as a dried vaccine and during reconstitution upon application into the skin. Using a novel live chimeric virus vaccine candidate, BinJ/DENV2-prME, we explored a panel of pharmaceutical excipients to mitigate vaccine loss during the drying and storage process. This screening identified human serum albumin (HSA) as the lead stabilizing excipient. When bDENV2-coated HD-MAPs were stored at 4 °C for a month, we found complete retention of vaccine potency as assessed by the generation of potent virus-neutralizing antibody responses in mice. We also demonstrated that HD-MAP wear time did not influence vaccine deposition into the skin or the corresponding immunological outcomes. The final candidate formulation with HSA maintained ~100% percentage recovery after 6 months of storage at 4 °C.
Collapse
|
36
|
Cimica V, Galarza JM, Rashid S, Stedman TT. Current development of Zika virus vaccines with special emphasis on virus-like particle technology. Expert Rev Vaccines 2021; 20:1483-1498. [PMID: 34148481 DOI: 10.1080/14760584.2021.1945447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Zika virus disease received little attention until its recent explosive emergence around the globe. The devastating consequences of this pandemic include congenital Zika syndrome (CZS) and the neurological autoimmune disorder Guillain-Barré syndrome. These potential outcomes prompted massive efforts to understand the course of Zika infection and to develop therapeutic and prophylactic strategies for treatment and prevention of disease.Area covered: Preclinical and clinical data demonstrate that a safe and efficacious vaccine for protection against Zika virus infection is possible in the near future. Nevertheless, significant knowledge gaps regarding the outcome of a mass vaccination strategy exist and must be addressed. Zika virus circulates in flavivirus-endemic regions, an ideal Zika vaccine should avoid the potential of antibody-dependent enhancement from exposure to dengue virus. Prevention of CZS is the primary goal for immunization, and the vaccine must provide protection against intrauterine transmission for use during pregnancy and in women of childbearing age. Ideally, a vaccine should also prevent sexual transmission of the virus through mucosal protection.Expert opinion: This review describes current vaccine approaches against Zika virus with particular attention to the application of virus-like particle (VLP) technology as a strategy for solving the challenges of Zika virus immunization.
Collapse
Affiliation(s)
- Velasco Cimica
- American Type Culture Collection (ATCC), Manassas, VA, USA
| | | | - Sujatha Rashid
- American Type Culture Collection (ATCC), Manassas, VA, USA
| | | |
Collapse
|
37
|
Spiteri AG, Terry RL, Wishart CL, Ashhurst TM, Campbell IL, Hofer MJ, King NJC. High-parameter cytometry unmasks microglial cell spatio-temporal response kinetics in severe neuroinflammatory disease. J Neuroinflammation 2021; 18:166. [PMID: 34311763 PMCID: PMC8314570 DOI: 10.1186/s12974-021-02214-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Differentiating infiltrating myeloid cells from resident microglia in neuroinflammatory disease is challenging, because bone marrow-derived inflammatory monocytes infiltrating the inflamed brain adopt a 'microglia-like' phenotype. This precludes the accurate identification of either cell type without genetic manipulation, which is important to understand their temporal contribution to disease and inform effective intervention in its pathogenesis. During West Nile virus (WNV) encephalitis, widespread neuronal infection drives substantial CNS infiltration of inflammatory monocytes, causing severe immunopathology and/or death, but the role of microglia in this remains unclear. METHODS Using high-parameter cytometry and dimensionality-reduction, we devised a simple, novel gating strategy to identify microglia and infiltrating myeloid cells during WNV-infection. Validating our strategy, we (1) blocked the entry of infiltrating myeloid populations from peripheral blood using monoclonal blocking antibodies, (2) adoptively transferred BM-derived monocytes and tracked their phenotypic changes after infiltration and (3) labelled peripheral leukocytes that infiltrate into the brain with an intravenous dye. We demonstrated that myeloid immigrants populated only the identified macrophage gates, while PLX5622 depletion reduced all 4 subsets defined by the microglial gates. RESULTS Using this gating approach, we identified four consistent microglia subsets in the homeostatic and WNV-infected brain. These were P2RY12hi CD86-, P2RY12hi CD86+ and P2RY12lo CD86- P2RY12lo CD86+. During infection, 2 further populations were identified as 'inflammatory' and 'microglia-like' macrophages, recruited from the bone marrow. Detailed kinetic analysis showed significant increases in the proportions of both P2RY12lo microglia subsets in all anatomical areas, largely at the expense of the P2RY12hi CD86- subset, with the latter undergoing compensatory proliferation, suggesting replenishment of, and differentiation from this subset in response to infection. Microglia altered their morphology early in infection, with all cells adopting temporal and regional disease-specific phenotypes. Late in disease, microglia produced IL-12, downregulated CX3CR1, F4/80 and TMEM119 and underwent apoptosis. Infiltrating macrophages expressed both TMEM119 and P2RY12 de novo, with the microglia-like subset notably exhibiting the highest proportional myeloid population death. CONCLUSIONS Our approach enables detailed kinetic analysis of resident vs infiltrating myeloid cells in a wide range of neuroinflammatory models without non-physiological manipulation. This will more clearly inform potential therapeutic approaches that specifically modulate these cells.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Rachel L Terry
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Current Address: Children's Cancer Institute, Randwick, New South Wales, Australia
- Current Affiliation: Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Claire L Wishart
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Thomas M Ashhurst
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Cytometry Facility, The University of Sydney and Centenary Institute, Sydney, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Iain L Campbell
- Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Markus J Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Nicholas J C King
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.
- Sydney Cytometry Facility, The University of Sydney and Centenary Institute, Sydney, Australia.
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, Australia.
- Nano Institute, The University of Sydney, Sydney, Australia.
| |
Collapse
|
38
|
Zhao R, Wang M, Cao J, Shen J, Zhou X, Wang D, Cao J. Flavivirus: From Structure to Therapeutics Development. Life (Basel) 2021; 11:life11070615. [PMID: 34202239 PMCID: PMC8303334 DOI: 10.3390/life11070615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
Flaviviruses are still a hidden threat to global human safety, as we are reminded by recent reports of dengue virus infections in Singapore and African-lineage-like Zika virus infections in Brazil. Therapeutic drugs or vaccines for flavivirus infections are in urgent need but are not well developed. The Flaviviridae family comprises a large group of enveloped viruses with a single-strand RNA genome of positive polarity. The genome of flavivirus encodes ten proteins, and each of them plays a different and important role in viral infection. In this review, we briefly summarized the major information of flavivirus and further introduced some strategies for the design and development of vaccines and anti-flavivirus compound drugs based on the structure of the viral proteins. There is no doubt that in the past few years, studies of antiviral drugs have achieved solid progress based on better understanding of the flavivirus biology. However, currently, there are no fully effective antiviral drugs or vaccines for most flaviviruses. We hope that this review may provide useful information for future development of anti-flavivirus drugs and vaccines.
Collapse
Affiliation(s)
- Rong Zhao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Meiyue Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- Correspondence: (D.W.); (J.C.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- Correspondence: (D.W.); (J.C.)
| |
Collapse
|
39
|
Small-molecule endoplasmic reticulum proteostasis regulator acts as a broad-spectrum inhibitor of dengue and Zika virus infections. Proc Natl Acad Sci U S A 2021; 118:2012209118. [PMID: 33441483 PMCID: PMC7826409 DOI: 10.1073/pnas.2012209118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Flaviviruses, including dengue and Zika, are widespread human pathogens; however, no broadly active therapeutics exist to fight infection. Recently, remodeling of endoplasmic reticulum (ER) proteostasis by pharmacologic regulators, such as compound 147, was shown to correct pathologic ER imbalances associated with protein misfolding diseases. Here, we establish an additional activity of compound 147 as an effective host-centered antiviral agent against flaviviruses. Compound 147 reduces infection by attenuating the infectivity of secreted virions without causing toxicity in host cells. Compound 147 is a preferential activator of the ATF6 pathway of the ER unfolded protein response, which requires targeting of cysteine residues primarily on protein disulfide isomerases (PDIs). We find that the antiviral activity of 147 is independent of ATF6 induction but does require modification of reactive thiols on protein targets. Targeting PDIs and additional non-PDI targets using RNAi and other small-molecule inhibitors was unable to recapitulate the antiviral effects, suggesting a unique polypharmacology may mediate the activity. Importantly, 147 can impair infection of multiple strains of dengue and Zika virus, indicating that it is suitable as a broad-spectrum antiviral agent.
Collapse
|
40
|
Choo JJY, Vet LJ, McMillan CLD, Harrison JJ, Scott CAP, Depelsenaire ACI, Fernando GJP, Watterson D, Hall RA, Young PR, Hobson-Peters J, Muller DA. A chimeric dengue virus vaccine candidate delivered by high density microarray patches protects against infection in mice. NPJ Vaccines 2021; 6:66. [PMID: 33963191 PMCID: PMC8105366 DOI: 10.1038/s41541-021-00328-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue viruses (DENV) cause an estimated 390 million infections globally. With no dengue-specific therapeutic treatment currently available, vaccination is the most promising strategy for its control. A wide range of DENV vaccines are in development, with one having already been licensed, albeit with limited distribution. We investigated the immunogenicity and protective efficacy of a chimeric virus vaccine candidate based on the insect-specific flavivirus, Binjari virus (BinJV), displaying the structural prM/E proteins of DENV (BinJ/DENV2-prME). In this study, we immunized AG129 mice with BinJ/DENV2-prME via a needle-free, high-density microarray patch (HD-MAP) delivery system. Immunization with a single, 1 µg dose of BinJ/DENV2-prME delivered via the HD-MAPs resulted in enhanced kinetics of neutralizing antibody induction when compared to needle delivery and complete protection against mortality upon virus challenge in the AG129 DENV mouse model.
Collapse
Affiliation(s)
- Jovin J Y Choo
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Germain J P Fernando
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, QLD, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - David A Muller
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
41
|
Galula JU, Salem GM, Destura RV, Remenyi R, Chao DY. Comparable Accuracies of Nonstructural Protein 1- and Envelope Protein-Based Enzyme-Linked Immunosorbent Assays in Detecting Anti-Dengue Immunoglobulin G Antibodies. Diagnostics (Basel) 2021; 11:diagnostics11050741. [PMID: 33919324 PMCID: PMC8143319 DOI: 10.3390/diagnostics11050741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Dengue virus (DENV) infection remains a global public health concern. Enzyme-linked immunosorbent assays (ELISAs), which detect antibodies targeting the envelope (E) protein of DENV, serve as the front-line serological test for presumptive dengue diagnosis. Very few studies have determined the serostatus by detecting antibodies targeting the nonstructural protein 1 (NS1), which can function as diagnostic biomarkers to distinguish natural immunity from vaccine-induced immunity. Methods: We used community-acquired human serum specimens, with the serostatus confirmed by focus reduction microneutralization test (FRμNT), to evaluate the diagnostic performances of two NS1-based ELISA methods, namely, immunoglobulin G antibody-capture ELISA (NS1 GAC–ELISA) and indirect NS1 IgG ELISA, and compared the results with an E-based virus-like particle (VLP) GAC–ELISA. Results: NS1-based methods had comparable accuracies as VLP GAC–ELISA. Although the sensitivity in detecting anti-NS1 IgM was poor, indirect NS1 IgG ELISA showed similar limits of detection (~1–2 ng/mL) as NS1 GAC–ELISA in detecting anti-NS1 IgG. Combining the results from two or more tests as a composite reference standard can determine the DENV serostatus with a specificity reaching 100%. Conclusion: NS1-based ELISAs have comparable accuracies as VLP GAC–ELISA in determining dengue serostatus, which could effectively assist clinicians during assessments of vaccine eligibility.
Collapse
Affiliation(s)
- Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (J.U.G.); (G.M.S.)
| | - Gielenny M. Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (J.U.G.); (G.M.S.)
| | - Raul V. Destura
- Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Manila 1000, Philippines;
| | - Roland Remenyi
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Pasig 1605, Philippines;
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (J.U.G.); (G.M.S.)
- Correspondence: ; Tel.: +886-4-22840694
| |
Collapse
|
42
|
Foo ACY, Thompson PM, Chen SH, Jadi R, Lupo B, DeRose EF, Arora S, Placentra VC, Premkumar L, Perera L, Pedersen LC, Martin N, Mueller GA. The mosquito protein AEG12 displays both cytolytic and antiviral properties via a common lipid transfer mechanism. Proc Natl Acad Sci U S A 2021; 118:e2019251118. [PMID: 33688047 PMCID: PMC7980415 DOI: 10.1073/pnas.2019251118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mosquito protein AEG12 is up-regulated in response to blood meals and flavivirus infection though its function remained elusive. Here, we determine the three-dimensional structure of AEG12 and describe the binding specificity of acyl-chain ligands within its large central hydrophobic cavity. We show that AEG12 displays hemolytic and cytolytic activity by selectively delivering unsaturated fatty acid cargoes into phosphatidylcholine-rich lipid bilayers. This property of AEG12 also enables it to inhibit replication of enveloped viruses such as Dengue and Zika viruses at low micromolar concentrations. Weaker inhibition was observed against more distantly related coronaviruses and lentivirus, while no inhibition was observed against the nonenveloped virus adeno-associated virus. Together, our results uncover the mechanistic understanding of AEG12 function and provide the necessary implications for its use as a broad-spectrum therapeutic against cellular and viral targets.
Collapse
Affiliation(s)
- Alexander C Y Foo
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Peter M Thompson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Shih-Heng Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Ramesh Jadi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Brianna Lupo
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Simrat Arora
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Victoria C Placentra
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Lalith Perera
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Negin Martin
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709;
| |
Collapse
|
43
|
Perspectives on New Vaccines against Arboviruses Using Insect-Specific Viruses as Platforms. Vaccines (Basel) 2021; 9:vaccines9030263. [PMID: 33809576 PMCID: PMC7999276 DOI: 10.3390/vaccines9030263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are global pathogens circulating endemically with local explosive outbreaks and constant encroachment into new locations. Few vaccines against arboviruses exist; most for humans are in development or clinical trials. Insect-specific viruses (ISVs) offer a unique platform for expression of arbovirus proteins, through the creation of ISV/arbovirus chimeras. Studies have shown promising results of these vaccines with several advantages over their wild-type counterparts. In this review, we discuss the current status of these potential vaccines using ISVs.
Collapse
|
44
|
Dey D, Poudyal S, Rehman A, Hasan SS. Structural and biochemical insights into flavivirus proteins. Virus Res 2021; 296:198343. [PMID: 33607183 DOI: 10.1016/j.virusres.2021.198343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023]
Abstract
Flaviviruses are the fastest spreading arthropod-borne viruses that cause severe symptoms such as hepatitis, hemorrhagic fever, encephalitis, and congenital deformities. Nearly 40 % of the entire human population is at risk of flavivirus epidemics. Yet, effective vaccination is restricted only to a few flaviviruses such as yellow fever and Japanese encephalitis viruses, and most recently for select cases of dengue virus infections. Despite the global spread of dengue virus, and emergence of new threats such as Zika virus and a new genotype of Japanese encephalitis virus, insights into flavivirus targets for potentially broad-spectrum vaccination are limited. In this review article, we highlight biochemical and structural differences in flavivirus proteins critical for virus assembly and host interactions. A comparative sequence analysis of pH-responsive properties of viral structural proteins identifies trends in conservation of complementary acidic-basic character between interacting viral structural proteins. This is highly relevant to the understanding of pH-sensitive differences in virus assembly in organelles such as neutral ER and acidic Golgi. Surface residues in viral interfaces identified by structural approaches are shown to demonstrate partial conservation, further reinforcing virus-specificity in assembly and interactions with host proteins. A comparative analysis of epitope conservation in emerging flaviviruses identifies therapeutic antibody candidates that have potential as broad spectrum anti-virals, thus providing a path towards development of vaccines.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA
| | - Shishir Poudyal
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette IN 47907, USA
| | - Asma Rehman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St. Baltimore MD 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville MD 20850, USA.
| |
Collapse
|
45
|
Wollner CJ, Richner JM. mRNA Vaccines against Flaviviruses. Vaccines (Basel) 2021; 9:148. [PMID: 33673131 PMCID: PMC7918459 DOI: 10.3390/vaccines9020148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous vaccines have now been developed using the mRNA platform. In this approach, mRNA coding for a viral antigen is in vitro synthesized and injected into the host leading to exogenous protein expression and robust immune responses. Vaccines can be rapidly developed utilizing the mRNA platform in the face of emerging pandemics. Additionally, the mRNA coding region can be easily manipulated to test novel hypotheses in order to combat viral infections which have remained refractory to traditional vaccine approaches. Flaviviruses are a diverse family of viruses that cause widespread disease and have pandemic potential. In this review, we discuss the mRNA vaccines which have been developed against diverse flaviviruses.
Collapse
Affiliation(s)
| | - Justin M. Richner
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|
46
|
Castanha PMS, Marques ETA. A Glimmer of Hope: Recent Updates and Future Challenges in Zika Vaccine Development. Viruses 2020; 12:E1371. [PMID: 33266129 PMCID: PMC7761420 DOI: 10.3390/v12121371] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence and rapid spread of Zika virus (ZIKV) on a global scale as well as the establishment of a causal link between Zika infection and congenital syndrome and neurological disorders triggered unprecedented efforts towards the development of a safe and effective Zika vaccine. Multiple vaccine platforms, including purified inactivated virus, nucleic acid vaccines, live-attenuated vaccines, and viral-vectored vaccines, have advanced to human clinical trials. In this review, we discuss the recent advances in the field of Zika vaccine development and the challenges for future clinical efficacy trials. We provide a brief overview on Zika vaccine platforms in the pipeline before summarizing the vaccine candidates in clinical trials, with a focus on recent, promising results from vaccine candidates that completed phase I trials. Despite low levels of transmission during recent years, ZIKV has become endemic in the Americas and the potential of large Zika outbreaks remains real. It is important for vaccine developers to continue developing their Zika vaccines, so that a potential vaccine is ready for deployment and clinical efficacy trials when the next ZIKV outbreak occurs.
Collapse
Affiliation(s)
| | - Ernesto T. A. Marques
- Graduate School of Public Health, Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
47
|
Felicetti T, Manfroni G, Cecchetti V, Cannalire R. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020; 15:2391-2419. [PMID: 32961008 DOI: 10.1002/cmdc.202000464] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
48
|
Hobson-Peters J, Harrison JJ, Watterson D, Hazlewood JE, Vet LJ, Newton ND, Warrilow D, Colmant AMG, Taylor C, Huang B, Piyasena TBH, Chow WK, Setoh YX, Tang B, Nakayama E, Yan K, Amarilla AA, Wheatley S, Moore PR, Finger M, Kurucz N, Modhiran N, Young PR, Khromykh AA, Bielefeldt-Ohmann H, Suhrbier A, Hall RA. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci Transl Med 2020; 11:11/522/eaax7888. [PMID: 31826984 DOI: 10.1126/scitranslmed.aax7888] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Flaviviruses such as dengue, yellow fever, Zika, West Nile, and Japanese encephalitis virus present substantial global health burdens. New vaccines are being sought to address safety and manufacturing issues associated with current live attenuated vaccines. Here, we describe a new insect-specific flavivirus, Binjari virus, which was found to be remarkably tolerant for exchange of its structural protein genes (prME) with those of the aforementioned pathogenic vertebrate-infecting flaviviruses (VIFs). Chimeric BinJ/VIF-prME viruses remained replication defective in vertebrate cells but replicated with high efficiency in mosquito cells. Cryo-electron microscopy and monoclonal antibody binding studies illustrated that the chimeric BinJ/VIF-prME virus particles were structurally and immunologically similar to their parental VIFs. Pilot manufacturing in C6/36 cells suggests that high yields can be reached up to 109.5 cell culture infectious dose/ml or ≈7 mg/liter. BinJ/VIF-prME viruses showed utility in diagnostic (microsphere immunoassays and ELISAs using panels of human and equine sera) and vaccine applications (illustrating protection against Zika virus challenge in murine IFNAR-/- mouse models). BinJ/VIF-prME viruses thus represent a versatile, noninfectious (for vertebrate cells), high-yield technology for generating chimeric flavivirus particles with low biocontainment requirements.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Carmel Taylor
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Queensland, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah Wheatley
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Peter R Moore
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Mitchell Finger
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Nina Kurucz
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
49
|
Current Flavivirus Research Important for Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030477. [PMID: 32867038 PMCID: PMC7563144 DOI: 10.3390/vaccines8030477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 01/07/2023] Open
Abstract
The Flaviviridae family of RNA viruses includes numerous human disease-causing pathogens that largely are increasing in prevalence due to continual climate change, rising population sizes and improved ease of global travel [...].
Collapse
|
50
|
Valim V, Machado KLLL, Miyamoto ST, Pinto AD, Rocha PCM, Serrano EV, Dinis VG, Gouvêa SA, Dias JGF, Campi-Azevedo AC, Teixeira-Carvalho A, Peruhype-Magalhães V, da Costa-Rocha IA, de Lima SMB, Miranda EH, Trindade GF, Maia MDLDS, Gavi MBRDO, da Silva LB, Duque RH, Gianordoli APE, Casagrande TZ, Oliveira KG, Moura BCDM, Nicole-Batista F, Rodrigues LC, Clemente TB, Magalhães ES, Bissoli MDF, Gouvea MDPG, Pinto-Neto LFDS, Costa CZ, Giovelli RA, Brandão LR, Polito ETL, Koehlert IDO, Borjaille BP, Pereira DB, Dias LH, Merlo DL, Genelhu LFF, Pretti FZ, Giacomin MDS, Burian APN, Fantinato FFST, Pileggi GS, da Mota LMH, Martins-Filho OA. Planned Yellow Fever Primary Vaccination Is Safe and Immunogenic in Patients With Autoimmune Diseases: A Prospective Non-interventional Study. Front Immunol 2020; 11:1382. [PMID: 32765496 PMCID: PMC7379374 DOI: 10.3389/fimmu.2020.01382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Yellow Fever (YF) vaccination is suggested to induce a large number of adverse events (AE) and suboptimal responses in patients with autoimmune diseases (AID); however, there have been no studies on 17DD-YF primary vaccination performance in patients with AID. This prospective non-interventional study conducted between March and July, 2017 assessed the safety and immunogenicity of planned 17DD-YF primary vaccination in patients with AID. Adult patients with AID (both sexes) were enrolled, along with healthy controls, at a single hospital (Vitória, Brazil). Included patients were referred for planned vaccination by a rheumatologist; in remission, or with low disease activity; and had low level immunosuppression or the attending physician advised interruption of immunosuppression for safety reasons. The occurrence of AE, neutralizing antibody kinetics, seropositivity rates, and 17DD-YF viremia were evaluated at various time points (day 0 (D0), D3, D4, D5, D6, D14, and D28). Individuals evaluated (n = 278), including patients with rheumatoid arthritis (RA; 79), spondyloarthritis (SpA; 59), systemic sclerosis (8), systemic lupus erythematosus (SLE; 27), primary Sjögren's syndrome (SS; 54), and healthy controls (HC; 51). Only mild AE were reported. The frequency of local and systemic AE in patients with AID and HC did not differ significantly (8 vs. 10% and 21 vs. 32%; p = 1.00 and 0.18, respectively). Patients with AID presented late seroconversion profiles according to kinetic timelines of the plaque reduction neutralization test (PRNT). PRNT-determined virus titers (copies/mL) [181 (95% confidence interval (CI), 144–228) vs. 440 (95% CI, 291–665), p = 0.004] and seropositivity rate (78 vs. 96%, p = 0.01) were lower in patients with AID after 28 days, particularly those with SpA (73%) and SLE (73%), relative to HC. The YF viremia peak (RNAnemia) was 5–6 days after vaccination in all groups. In conclusion, consistent seroconversion rates were observed in patients with AID and our findings support that planned 17DD-YF primary vaccination is safe and immunogenic in patients with AID.
Collapse
Affiliation(s)
- Valéria Valim
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Ketty Lysie Libardi Lira Machado
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Samira Tatiyama Miyamoto
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Arthur Dalmaso Pinto
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Priscila Costa Martins Rocha
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Erica Vieira Serrano
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Valquiria Garcia Dinis
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil.,Escola de Ciências da Saúde da Santa Casa de Misericórdia, Vitória, Brazil
| | - Sônia Alves Gouvêa
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - João Gabriel Fragoso Dias
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | | | | | | | | | - Sheila Maria Barbosa de Lima
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Emily Hime Miranda
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Gisela Freitas Trindade
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | - Lidia Balarini da Silva
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Ruben Horst Duque
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Ana Paula Espíndula Gianordoli
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Thays Zanon Casagrande
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Karine Gadioli Oliveira
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Bruna Costa da Mata Moura
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Fernanda Nicole-Batista
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Luiza Correa Rodrigues
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Thalles Brandão Clemente
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Enan Sales Magalhães
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Maria de Fatima Bissoli
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | - Maria da Penha Gomes Gouvea
- Divisão de Reumatologia do Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | | | | | | | | | | | | | | | | | - Laiza Hombre Dias
- Sociedade de Reumatologia do Espírito Santo (SORES), Vitória, Brazil
| | | | | | - Flavia Zon Pretti
- Sociedade de Reumatologia do Espírito Santo (SORES), Vitória, Brazil
| | | | - Ana Paula Neves Burian
- Centro de Referências para Imunobiológicos Especiais (CRIE) da Secretaria de Saúde do Estado do Espírito Santo, Vitória, Brazil
| | | | | | - Lícia Maria Henrique da Mota
- Divisão de Reumatologia do Hospital Universitário de Brasília, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | | |
Collapse
|