1
|
Vahdat-Lasemi F, Farhoudi L, Hosseinikhah SM, Santos RD, Sahebkar A. Angiopoietin-like protein inhibitors: Promising agents for the treatment of familial hypercholesterolemia and atherogenic dyslipidemia. Atherosclerosis 2025; 405:119235. [PMID: 40344904 DOI: 10.1016/j.atherosclerosis.2025.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND AND AIMS This review examines the physiological functions of Angiopoietin-like proteins (ANGPTLs) in lipid metabolism and the epidemiology of atherosclerotic cardiovascular disease (ASCVD), while discussing their potential as therapies for dyslipidemias. METHODS A review of contemporary literature on ANGPTLs was conducted. RESULTS ANGPTLs comprise eight secreted proteins that share structural similarities with the angiopoietin family and serve as key regulators of various physiological and biochemical functions. Notably, ANGPTL3, ANGPTL4, and ANGPTL8 act as physiological inhibitors of lipoprotein lipase (LPL), playing a crucial role in lipoprotein and triglyceride metabolism in response to the body's nutritional status. A deficiency in these proteins is linked to hypolipidemia, characterized by a decrease in all lipid fractions, and genetic studies indicate a reduced risk of ASCVD in individuals with loss-of-function variants in ANGPTL3 and ANGPTL4. Conversely, elevated levels of ANGPTL3, ANGPTL4, and ANGPTL8 seem to increase the risk of cardiovascular disease. The role of ANGPTLs in regulating lipid metabolism underscores their potential in targeted therapies for managing dyslipidemias and lowering ASCVD risk, particularly in patients with difficult-to-control dyslipidemia phenotypes, such as homozygous Familial Hypercholesterolemia and mixed dyslipidemia. CONCLUSIONS The development of ANGPTL inhibitors could provide an effective strategy for preventing ASCVD.
Collapse
Affiliation(s)
- Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Academic Research Organization, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; Lipid Clinic Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Leander K, Chen YQ, Vikström M, Silveira A, Fisher RM, Konrad RJ, van 't Hooft FM. Circulating ANGPTL3/8 Concentrations Are Associated With an Atherogenic Lipoprotein Profile and Increased CHD Risk in Swedish Population-Based Studies. Arterioscler Thromb Vasc Biol 2025; 45:443-451. [PMID: 39882603 DOI: 10.1161/atvbaha.124.321308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Binding of ANGPTL (angiopoietin-like protein)-3 to ANGPTL8 generates a protein complex (ANGPTL3/8) that strongly inhibits LPL (lipoprotein lipase) activity, as compared with ANGPTL3 alone, suggesting that ANGPTL3/8 concentrations are critical for the regulation of circulation lipoprotein concentrations and subsequent increased coronary heart disease (CHD) risk. To test this hypothesis in humans, we evaluated the associations of circulating free ANGPTL3 and ANGPTL3/8 complex concentrations with lipoprotein concentrations and CHD risk in 2 prospective cohort studies. METHODS Fasting blood samples were obtained in conjunction with the baseline evaluation of 9479 subjects from 2 population-based Swedish cohorts of middle-aged men and women. Standard biochemical blood analyses, including all lipid/lipoprotein measurements, were performed in these samples at baseline. Additional serum samples were stored at -80 °C and used at a later stage for ANGPTL3 and ANGPTL3/8 concentration measurements. Information about incident CHD was obtained for both cohorts by matching to the Swedish National Patient Register and the Cause of Death Register. RESULTS ANGPTL3 concentrations showed modest, positive associations with all lipoprotein concentrations but were not associated with CHD risk. In contrast, ANGPTL3/8 concentrations were associated in both cohorts with an atherogenic lipoprotein profile (characterized by increased triglyceride and LDL [low-density lipoprotein] concentrations and reduced HDL [high-density lipoprotein] concentrations). In the combined cohort, ANGPTL3/8 was associated with increased CHD risk. Hazard ratio per 1 SD increase was 1.10 (95% CI, 1.03-1.17) after adjustment for age, sex, cohort, smoking, and hypertension. CONCLUSIONS Elevated concentrations of ANGPTL3/8, but not ANGPTL3, are associated with an atherogenic lipoprotein profile and increased CHD risk in humans.
Collapse
Affiliation(s)
- Karin Leander
- Institute of Environmental Medicine, Unit of Cardiovascular and Nutritional Epidemiology (K.L., M.V.), Karolinska Institutet, Stockholm, Sweden
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., R.J.K.)
| | - Max Vikström
- Institute of Environmental Medicine, Unit of Cardiovascular and Nutritional Epidemiology (K.L., M.V.), Karolinska Institutet, Stockholm, Sweden
| | - Angela Silveira
- Cardiovascular Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine (A.S., R.M.F., F.M.v.H.), Karolinska Institutet, Stockholm, Sweden
| | - Rachel M Fisher
- Cardiovascular Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine (A.S., R.M.F., F.M.v.H.), Karolinska Institutet, Stockholm, Sweden
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., R.J.K.)
| | - Ferdinand M van 't Hooft
- Cardiovascular Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine (A.S., R.M.F., F.M.v.H.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Fry H, Mazidi M, Kartsonaki C, Clarke R, Walters RG, Chen Z, Millwood IY. The Role of Furin and Its Therapeutic Potential in Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:9237. [PMID: 39273186 PMCID: PMC11394739 DOI: 10.3390/ijms25179237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Furin is an important proteolytic enzyme, converting several proteins from inactive precursors to their active forms. Recently, proteo-genomic analyses in European and East Asian populations suggested a causal association of furin with ischaemic heart disease, and there is growing interest in its role in cardiovascular disease (CVD) aetiology. In this narrative review, we present a critical appraisal of evidence from population studies to assess furin's role in CVD risk and potential as a drug target for CVD. Whilst most observational studies report positive associations between furin expression and CVD risk, some studies report opposing effects, which may reflect the complex biological roles of furin and its substrates. Genetic variation in FURIN is also associated with CVD and its risk factors. We found no evidence of current clinical development of furin as a drug target for CVD, although several phase 1 and 2 clinical trials of furin inhibitors as a type of cancer immunotherapy have been completed. The growing field of proteo-genomics in large-scale population studies may inform the future development of furin and other potential drug targets to improve the treatment and prevention of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iona Y. Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (H.F.); (M.M.); (C.K.); (R.C.); (R.G.W.); (Z.C.)
| |
Collapse
|
4
|
Pennisi G, Maurotti S, Ciociola E, Jamialahmadi O, Bertolazzi G, Mirarchi A, Bergh PO, Scionti F, Mancina RM, Spagnuolo R, Tripodo C, Boren J, Petta S, Romeo S. ANGPTL3 Downregulation Increases Intracellular Lipids by Reducing Energy Utilization. Arterioscler Thromb Vasc Biol 2024; 44:1086-1097. [PMID: 38385290 DOI: 10.1161/atvbaha.123.319789] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND ANGPTL3 (angiopoietin-like protein 3) is a circulating protein with a key role in maintaining lipoprotein homeostasis. A monoclonal antibody against ANGPTL3 is an approved and well-tolerated treatment to reduce lipoproteins in familial hypercholesterolemia homozygotes. However, the reduction of hepatic ANGPTL3 synthesis using an antisense oligonucleotide unexpectedly resulted in a dose-dependent increase in liver lipid content and circulating transaminases, resulting in the termination of the clinical trial. Meanwhile, the use of silencing RNAs remains an area of active investigation. Our study sought to investigate whether intracellular downregulation of ANGPTL3 may lead to a primary increase in neutral lipids within the hepatocyte. METHODS We downregulated ANGPTL3 by silencing RNA in primary human hepatocytes 3-dimensional spheroids, HepG2/LX-2 3-dimensional spheroids, and in HepG2, Hep3B2, and Huh7 cultured in 2 dimensions. RESULTS ANGPTL3 downregulation increased neutral lipids in all models investigated. Interestingly, ANGPTL3 induced lower intracellular deiodinase type 1 protein levels resulting in a reduction in beta-oxidation and causing an increase in triglycerides stored in lipid droplets. CONCLUSIONS In conclusion, intracellular ANGPTL3 downregulation by silencing RNA led to an increase in triglycerides content due to a reduction in energy substrate utilization resembling a primary intracellular hepatocyte hypothyroidism.
Collapse
Affiliation(s)
- Grazia Pennisi
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy (G.P., S.P.)
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy (S.M., F.S.)
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Giorgio Bertolazzi
- Department of Economics, Business, and Statistics, University of Palermo, Italy (G.B.)
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro," University of Palermo, Italy (G.B., C.T.)
| | - Angela Mirarchi
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy (A.M., S.R.)
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy (S.M., F.S.)
| | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Rocco Spagnuolo
- Department of Health Sciences, University "Magna Graecia," Catanzaro, Italy (R.S.)
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro," University of Palermo, Italy (G.B., C.T.)
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
- Wallenberg Laboratory (J.B.), Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy (G.P., S.P.)
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy (A.M., S.R.)
- Cardiology Department (S.R.), Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Luo F, Das A, Khetarpal SA, Fang Z, Zelniker TA, Rosenson RS, Qamar A. ANGPTL3 inhibition, dyslipidemia, and cardiovascular diseases. Trends Cardiovasc Med 2024; 34:215-222. [PMID: 36746257 DOI: 10.1016/j.tcm.2023.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
Optimal management of low-density lipoprotein cholesterol (LDL-C) is a central tenet in the primary and secondary prevention of atherosclerotic cardiovascular disease (ASCVD). However, significant residual cardiovascular risk remains despite achieving guideline-directed LDL-C levels, in part due to mixed hyperlipidemia with elevated fasting and non-fasting triglyceride-rich lipoprotein levels. Advances in human genetics have identified angiopoietin-like 3 (ANGPTL3) as a promising therapeutic target to lower cardiovascular risk. Evidence accrued from genetic epidemiological studies demonstrate that ANGPTL3 loss of function is strongly associated with lowering of circulating LDL-C, triglyceride-rich lipoproteins and concurrent risk reduction in development of coronary artery disease. Pharmacological inhibition of ANGPTL3 with monoclonal antibodies, antisense oligonucleotides and gene editing are in development with early studies showing their safety and efficacy in lowering in both, LDL-C and TGs, circumventing a key limitation of previous therapies. Monoclonal antibodies targeting ANGPTL3 are approved for clinical use in homozygous familial hypercholesteremia in USA and Europe. Although promising, future studies focusing on long-term beneficial effect in reducing cardiovascular events with inhibition of ANGPTL3 are warranted.
Collapse
Affiliation(s)
- Fei Luo
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Avash Das
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sumeet A Khetarpal
- Division of Cardiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Thomas A Zelniker
- Division of Cardiology, Vienna General Hospital and Medical University of Vienna, Austria
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Mount Sinai Icahn School of Medicine, New York, NY, United States
| | - Arman Qamar
- Section of Interventional Cardiology & Vascular Medicine, NorthShore University Health System, University of Chicago Pritzker School of Medicine, 2650 Ridge Avenue, Evanston, IL, United States.
| |
Collapse
|
6
|
Sylvers-Davie KL, Bierstedt KC, Schnieders MJ, Davies BSJ. Endothelial lipase variant T111I does not alter inhibition by angiopoietin-like proteins. Sci Rep 2024; 14:4246. [PMID: 38379026 PMCID: PMC10879187 DOI: 10.1038/s41598-024-54705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
High levels of HDL-C are correlated with a decreased risk of cardiovascular disease. HDL-C levels are modulated in part by the secreted phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL and decreases circulating HDL-C concentrations. A 584C/T polymorphism in LIPG, the gene which encodes EL, was first identified in individuals with increased HDL levels. This polymorphism results in a T111I point mutation the EL protein. The association between this variant, HDL levels, and the risk of coronary artery disease (CAD) in humans has been extensively studied, but the findings have been inconsistent. In this study, we took a biochemical approach, investigating how the T111I variant affected EL activity, structure, and stability. Moreover, we tested whether the T111I variant altered the inhibition of phospholipase activity by angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), two known EL inhibitors. We found that neither the stability nor enzymatic activity of EL was altered by the T111I variant. Moreover, we found no difference between wild-type and T111I EL in their ability to be inhibited by ANGPTL proteins. These data suggest that any effect this variant may have on HDL-C levels or cardiovascular disease are not mediated through alterations in these functions.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, IA, 52242, USA
| | - Kaleb C Bierstedt
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa, IA, 52242, USA
| | - Michael J Schnieders
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa, IA, 52242, USA
| | - Brandon S J Davies
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, IA, 52242, USA.
| |
Collapse
|
7
|
Al‐kuraishy HM, Al‐Maiahy TJ, Al‐Gareeb AI, Alexiou A, Papadakis M, Saad HM, Batiha GE. The possible role furin and furin inhibitors in endometrial adenocarcinoma: A narrative review. Cancer Rep (Hoboken) 2024; 7:e1920. [PMID: 38018319 PMCID: PMC10809206 DOI: 10.1002/cnr2.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Endometrial adenocarcinoma (EAC) is a malignant tumor of the endometrium. EAC is the most common female malignancy following the menopause period. About 40% of patients with EAC are linked with obesity and interrelated with hypertension, diabetes mellitus, and high circulating estrogen levels. Proprotein convertase (PC) furin was involved in the progression of EAC. RECENT FINDINGS Furin is a protease enzyme belonging to the subtilisin PC family called PC subtilisin/kexin type 3 that converts precursor proteins to biologically active forms and products. Aberrant activation of furin promotes abnormal cell proliferation and the development of cancer. Furin promotes angiogenesis, malignant cell proliferation, and tissue invasion by malignant cells through its pro-metastatic and oncogenic activities. Furin activity is correlated with the malignant proliferation of EAC. Higher expression of furin may increase the development of EAC through overexpression of pro-renin receptors and disintegrin and metalloprotease 17 (ADAM17). As well, inflammatory signaling in EAC promotes the expression of furin with further propagation of malignant transformation. CONCLUSION Furin is associated with the development and progression of EAC through the induction of proliferation, invasion, and metastasis of malignant cells of EAC. Furin induces ontogenesis in EAC through activation expression of ADAM17, pro-renin receptor, CD109, and TGF-β. As well, EAC-mediated inflammation promotes the expression of furin with further propagation of neoplastic growth and invasion.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Thabat J. Al‐Maiahy
- Department of Gynecology and ObstetricsCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh University, Chandigarh‐Ludhiana HighwayMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of PathologyFaculty of Veterinary Medicine, Matrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and TherapeuticsFaculty of Veterinary Medicine, Damanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
8
|
Hezarkhani S, Hajighaderi A, Hosseinzadeh S, Behnampour N, Veghari G, Fathabadi F, Hesari Z, Joshaghani HR. The serum levels of angiopoietin-like protein 3 and 4 in type 2 diabetic patients with and without metabolic syndrome compared to the control group. Endocrinol Diabetes Metab 2024; 7:e466. [PMID: 38140923 PMCID: PMC10782050 DOI: 10.1002/edm2.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION ANGPTLs (Angiopoietin-like proteins) 3 and 4 play an important role in the development of type 2 diabetes. These glycoproteins affect the modulation of glucose and lipid metabolism. They inhibit lipoprotein lipase (LPL) activity and provoke lipolysis. This study was aimed to investigate the protein levels of ANGPTL3 and 4 in the serum of type 2 diabetic patients with metabolic syndrome in comparison to the type 2 diabetic patients without metabolic syndrome and the control group. METHODS Three groups of individuals were included in this study; Group I: 47 patients with type 2 diabetes and metabolic syndrome; Group II: 25 patients with type 2 diabetes without metabolic syndrome; Group III: 40 non-diabetic healthy people without metabolic syndrome as a control group. After collection of 5 mL fasting blood samples, serum concentrations of fasting blood sugar (FBS), cholesterol (Chol), triglyceride (TG), HDL-C (High-density lipoprotein-Cholesterol) and LDL-C (Low-density lipoprotein-Cholesterol) were measured by the enzymatic method; blood pressure (BP), height and weight with stadiometers; and ANGPTL3 and 4 by the enzyme-linked immunosorbent assay (ELISA). RESULTS The serum levels of ANGPTL3 was significantly different among our three groups (p = .000). In patients with type 2 diabetes and metabolic syndrome (Group I), ANGPTL3 and 4 levels were lower than the control group. The serum levels of the parameters evaluated in this study (except HDL-C) was lower in the group II in comparison with the group I, and this difference was significant for TG, Chol, BP and BMI between these two groups. Also, our results revealed that there was a negative correlation between FBS, TG, Chol, LDL-C and BMI with ANGPTL3 and 4. While, there was a significant positive correlation between ANGPTL4 and ANGPTL3. CONCLUSION Altogether, our findings suggest that the decreased levels of ANGPTL3 and 4 may be a causative factor for type 2 diabetes.
Collapse
Affiliation(s)
- Sharabeh Hezarkhani
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Aytekin Hajighaderi
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Sara Hosseinzadeh
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Naser Behnampour
- Department of Biostatistics, Faculty of HealthGolestan University of Medical SciencesGorganIran
| | - Gholamreza Veghari
- Ischemic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Farshid Fathabadi
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Zahra Hesari
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| |
Collapse
|
9
|
Zhang P, Wang K, Hu T, Xu M, You X, Chen M, Tang X, Hu H, Jiang Y, Zhao W, Tan S. A novel fully human anti-NT-ANGPTL3 antibody from phage display library exhibits potent ApoB, TG, and LDL-C lowering activities in hyperlipidemia mice. FASEB J 2024; 38:e23399. [PMID: 38174870 DOI: 10.1096/fj.202301564rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Dyslipidemia is characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and TG-rich lipoprotein (TGRLs) in circulation, and is closely associated with the incidence and development of cardiovascular disease. Angiopoietin-like protein 3 (ANGPTL3) deficiency has been identified as a cause of familial combined hypolipidemia in humans, which allows it to be an important therapeutic target for reducing plasma lipids. Here, we report the discovery and characterization of a novel fully human antibody F1519-D95aA against N-terminal ANGPTL3 (NT-ANGPTL3), which potently inhibits NT-ANGPTL3 with a KD as low as 9.21 nM. In hyperlipidemic mice, F1519-D95aA shows higher apolipoprotein B (ApoB) and TG-lowering, and similar LDL-C reducing activity as compared to positive control Evinacumab (56.50% vs 26.01% decrease in serum ApoB levels, 30.84% vs 25.28% decrease in serum TG levels, 23.32% vs 22.52% decrease in serum LDLC levels, relative to vehicle group). Molecular docking and binding energy calculations reveal that the F1519-D95aA-ANGPTL3 complex (10 hydrogen bonds, -65.51 kcal/mol) is more stable than the Evinacumab-ANGPTL3 complex (4 hydrogen bonds, -63.76 kcal/mol). Importantly, F1519-D95aA binds to ANGPTL3 with different residues in ANGPTL3 from Evinacumab, suggesting that F1519-D95aA may be useful for the treatment of patients resistant to Evinacumab. In conclusion, F1519-D95aA is a novel fully human anti-NT-ANGPTL3 antibody with potent plasma ApoB, TG, and LDL-C lowering activities, which can potentially serve as a therapeutic agent for hyperlipidemia and relevant cardiovascular diseases.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Ke Wang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Tuo Hu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Menglong Xu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Xiangyan You
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Manman Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Xuan Tang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Huajing Hu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Yiwei Jiang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
10
|
Butler AE, Ramanjaneya M, Moin ASM, Hunt SC, Atkin SL. Clinical improvement may not reflect metabolic homeostasis normalization in subjects with and without Roux-En-Y bariatric surgery after 12 years: comparison of surgical subjects to a lean cohort. Front Endocrinol (Lausanne) 2023; 14:1228853. [PMID: 37810875 PMCID: PMC10552523 DOI: 10.3389/fendo.2023.1228853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
Background A 12-year study comparing clinical outcomes following Roux-en-Y bariatric surgery showed long-term weight loss with remission/prevention of type-2-diabetes (T2D), hypertension and dyslipidemia. However, it is unknown whether the underlying homeostatic metabolic processes involving hepatokines, adipokines and myokines also normalize. Using this 12-year study, we determined whether metabolic indices improved in post-surgical (BMI:34.4kg/m2) versus non-surgical comparator-subjects-with-obesity (BMI:43.8kg/m2) at 12-year follow-up (both cohorts with baseline diabetes), and if post-surgical subjects normalized their metabolic processes to those of a normal-weight cohort without diabetes. Methods Cross-sectional design. Plasma from a cohort of Roux-en-Y bariatric surgery (n=50) and non-surgery (n=76) comparator-subjects-with-obesity (both cohorts at 12-year follow-up) plus a normal-weight cohort (n=39) was assayed by Luminex immunoassay or ELISA for hepatokines [angiopoietin-like proteins-(ANGPTL3; ANGPTL4; ANGPTL6); fibroblast growth factors-(FGF19; FGF21; FGF23)]; adipokines [adipsin; adiponectin; FGF19] and myonectin. Results After age and gender adjustment, surgery versus comparator-subjects-with-obesity had lower BMI (34.4 ± 1.0 vs 43.8 ± 0.9kg/m2; p<0.0001), HbA1c (6.2 ± 0.3 vs 7.7 ± 0.2%; p<0.0001), insulin resistance (HOMA-IR, 2.0 ± 1.5 vs 10.8 ± 1.4; p<0.0001) fat mass (45.6 ± 2.2 vs 60.0 ± 2.0; p<0.0001), HDL-C (55.4 ± 2.6 vs 42.6 ± 2.3mg/dL; p<0.0001), triglycerides (130 ± 14 vs 187 ± 12mg/dL; p<0.0001) and higher adiponectin (25.9 ± 2.3 vs 15.7 ± 2.0µg/ml; p<0.001); Adipsin, ANGPTL3, ANGPTL4, ANGPTL6, FGF19, FGF21, FGF23 and myonectin did not differ. Surgery versus normal-weight group: higher ANGPTL4 (156 ± 6 vs 119 ± 7ng/mL; p<0.0001), higher FGF23 (96.4 ± 10.1 vs 50.9 ± 11.5pg/mL; p=0.007) and lower myonectin (744 ± 55 vs 969 ± 66ng/mL; p=0.002); adiponectin, adipsin ANGPTL3, ANGPTL6, FGF19, FGF21 did not differ. Non-surgery comparator-subjects-with-obesity versus normal-weight group: higher adipsin (1859 ± 94 vs 1314 ± 133ng/mL; p=0.0001), higher FGF23 (84.6 ± 8.5 vs 50.9 ± 11.5pg/mL; p<0.0001) and higher ANGPTL4 (171 ± 5 vs 119 ± 7ng/mL; p<0.0001); adiponectin ANGPTL3, ANGPTL6, FGF19, FGF21 and myonectin did not differ. Conclusion Bariatric surgery markedly improved anthropometric and metabolic features versus comparator-subjects-with-obesity at 12-year follow-up, indicating benefit of weight loss. However, despite weight loss, these patients still had class-1 obesity, as reflected in the adipokine, hepatokine and myokine markers of body homeostasis that did not completely normalize to indicative values of normal-weight subjects, suggesting either that this is the new normal for these patients or that weight loss to a BMI<25kg/m2 is needed for normalization of these parameters.
Collapse
Affiliation(s)
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Steven C Hunt
- Department of Internal Medicine, University of Utah, Salt Lake, UT, United States
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| |
Collapse
|
11
|
Darabi M, Lhomme M, Ponnaiah M, Pučić-Baković M, Guillas I, Frisdal E, Bittar R, Croyal M, Matheron-Duriez L, Poupel L, Bonnefont-Rousselot D, Frere C, Varret M, Krempf M, Cariou B, Lauc G, Guerin M, Carrie A, Bruckert E, Giral P, Le Goff W, Kontush A. Integrated omics approach for the identification of HDL structure-function relationships in PCSK9-related familial hypercholesterolemia. J Clin Lipidol 2023; 17:643-658. [PMID: 37550151 DOI: 10.1016/j.jacl.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND The role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in dyslipidemia may go beyond its immediate effects on low-density lipoprotein receptor (LDL-R) activity. OBJECTIVE This study aimed to assess PCSK9-derived alterations of high-density lipoprotein (HDL) physiology, which bear a potential to contribute to cardiovascular risk profile. METHODS HDL was isolated from 33 patients with familial autosomal dominant hypercholesterolemia (FH), including those carrying PCSK9 gain-of-function (GOF) genetic variants (FH-PCSK9, n = 11), together with two groups of dyslipidemic patients employed as controls and carrying genetic variants in the LDL-R not treated (ntFH-LDLR, n = 11) and treated (tFH-LDLR, n = 11) with statins, and 11 normolipidemic controls. Biological evaluations paralleled by proteomic, lipidomic and glycomic analyses were applied to characterize functional and compositional properties of HDL. RESULTS Multiple deficiencies in the HDL function were identified in the FH-PCSK9 group relative to dyslipidemic FH-LDLR patients and normolipidemic controls, which involved reduced antioxidative, antiapoptotic, anti-thrombotic and anti-inflammatory activities. By contrast, cellular cholesterol efflux capacity of HDL was unchanged. In addition, multiple alterations of the proteomic, lipidomic and glycomic composition of HDL were found in the FH-PCSK9 group. Remarkably, HDLs from FH-PCSK9 patients were systematically enriched in several lysophospholipids as well as in A2G2S2 (GP13) glycan and apolipoprotein A-IV. Based on network analysis of functional and compositional data, a novel mosaic structure-function model of HDL biology involving FH was developed. CONCLUSION Several metrics of anti-atherogenic HDL functionality are altered in FH-PCSK9 patients paralleled by distinct compositional alterations. These data provide a first-ever overview of the impact of GOF PCSK9 genetic variants on structure-function relationships in HDL.
Collapse
Affiliation(s)
- Maryam Darabi
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France; LPS-BioSciences (Current affiliation of Dr Darabi), Université de Paris-Saclay, Orsay, France
| | - Marie Lhomme
- ICAN Analytics (Dr Lhomme), Lipidomics Core, Foundation for Innovation in Cardiometabolism and Nutrition (IHU-ICAN, ANR-10-IAHU-05), Paris, France
| | - Maharajah Ponnaiah
- ICAN I/O (Dr Ponnaiah), Foundation for Innovation in Cardiometabolism and Nutrition (IHU-ICAN, ANR-10-IAHU-05), Paris, France
| | - Maja Pučić-Baković
- Genos Glycoscience Research Laboratory (Drs Pučić-Baković and Lauc), Borongajska cesta 83H, HR-10 000 Zagreb, Croatia
| | - Isabelle Guillas
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Eric Frisdal
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Randa Bittar
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France; Department of Metabolic Biochemistry (Drs Bittar and Bonnefont-Rousselot), Pitié-Salpêtrière-Charles Foix Hospital, AP-HP, Paris, France
| | - Mikaël Croyal
- Université de Nantes (Drs Cariou et Croyal), CHU Nantes, CNRS, INSERM, l'Institut du Thorax, F-44000 Nantes, France; Université de Nantes (Dr Croyal), CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France; CRNH-Ouest Mass Spectrometry Core Facility (Drs Croyal and Krempf), F-44000 Nantes, France
| | - Lucrèce Matheron-Duriez
- Platform MS3U (Dr Matheron), Institut de Biologie Paris Seine FR 3631, Sorbonne Université, Paris, France
| | - Lucie Poupel
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Dominique Bonnefont-Rousselot
- Department of Metabolic Biochemistry (Drs Bittar and Bonnefont-Rousselot), Pitié-Salpêtrière-Charles Foix Hospital, AP-HP, Paris, France; Université de Paris (Dr Bonnefont-Rousselot), CNRS, INSERM, UTCBS, F-75006 Paris, France
| | - Corinne Frere
- Department of Haematology (Dr Frere), Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Mathilde Varret
- Paris University and Sorbonne Paris Nord University (Dr Varret), National Institute for Health and Medical Research (INSERM, LVTS), F-75018 Paris, France
| | - Michel Krempf
- CRNH-Ouest Mass Spectrometry Core Facility (Drs Croyal and Krempf), F-44000 Nantes, France; Clinique Bretéché (Dr Krempf), Groupe Elsan, Nantes, France
| | - Bertrand Cariou
- Université de Nantes (Drs Cariou et Croyal), CHU Nantes, CNRS, INSERM, l'Institut du Thorax, F-44000 Nantes, France
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory (Drs Pučić-Baković and Lauc), Borongajska cesta 83H, HR-10 000 Zagreb, Croatia
| | - Maryse Guerin
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Alain Carrie
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Eric Bruckert
- Endocrinologie Métabolisme et Prévention Cardiovasculaire (Drs Bruckert and Giral), Institut E3M et IHU Cardiométabolique (ICAN), Hôpital Pitié Salpêtrière, Paris, France
| | - Philippe Giral
- Endocrinologie Métabolisme et Prévention Cardiovasculaire (Drs Bruckert and Giral), Institut E3M et IHU Cardiométabolique (ICAN), Hôpital Pitié Salpêtrière, Paris, France
| | - Wilfried Le Goff
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Anatol Kontush
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France.
| |
Collapse
|
12
|
Sylvers-Davie KL, Bierstedt KC, Schnieders MJ, Davies BSJ. Endothelial Lipase Variant, T111I, Does Not Alter Inhibition by Angiopoietin-like Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553740. [PMID: 37693454 PMCID: PMC10491130 DOI: 10.1101/2023.08.18.553740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
High levels of HDL-C are correlated with a decreased risk of cardiovascular disease. HDL-C levels are modulated in part by the secreted phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL and decreases circulating HDL-C concentrations. A 584C/T polymorphism in LIPG, the gene which encodes EL, was first identified in individuals with increased HDL levels. This polymorphism results in a T111I point mutation the EL protein. The association between this variant, HDL levels, and the risk of coronary artery disease (CAD) in humans has been extensively studied, but the findings have been inconsistent. In this study, we took a biochemical approach, investigating how the T111I variant affected EL activity, structure, and stability. Moreover, we tested whether the T111I variant altered the inhibition of phospholipase activity by angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), two known EL inhibitors. We found that neither the stability nor enzymatic activity of EL was altered by the T111I variant. Moreover, we found no difference between wild-type and T111I EL in their ability to be inhibited by ANGPTL proteins. These data suggest that any effect this variant may have on HDL-C levels or cardiovascular disease are not mediated through alterations in these functions.
Collapse
Affiliation(s)
- Kelli L. Sylvers-Davie
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242
| | - Kaleb C. Bierstedt
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - Michael J. Schnieders
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - Brandon S. J. Davies
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
13
|
Klobučar I, Klobučar L, Lechleitner M, Trbušić M, Pregartner G, Berghold A, Habisch H, Madl T, Frank S, Degoricija V. Associations between Endothelial Lipase and Apolipoprotein B-Containing Lipoproteins Differ in Healthy Volunteers and Metabolic Syndrome Patients. Int J Mol Sci 2023; 24:10681. [PMID: 37445857 PMCID: PMC10341652 DOI: 10.3390/ijms241310681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
The association between serum levels of endothelial lipase (EL) and the serum levels and composition of apolipoprotein B (apoB)-containing lipoproteins in healthy subjects and patients with metabolic syndrome (MS) remained unexplored. Therefore, in the present study, we determined the serum levels and lipid content of apoB-containing lipoproteins using nuclear magnetic resonance (NMR) spectroscopy and examined their association with EL serum levels in healthy volunteers (HVs) and MS patients. EL was significantly negatively correlated with the serum levels of cholesterol in large very low-density lipoprotein (VLDL) particles, as well as with total-cholesterol-, free-cholesterol-, triglyceride-, and phospholipid-contents of VLDL and intermediate-density lipoprotein particles in MS patients but not in HVs. In contrast, EL serum levels were significantly positively correlated with the serum levels of apoB, triglycerides, and phospholipids in large low-density lipoprotein particles in HVs but not in MS patients. EL serum levels as well as the serum levels and lipid content of the majority of apoB-containing lipoprotein subclasses were markedly different in MS patients compared with HVs. We conclude that EL serum levels are associated with the serum levels and lipid content of apoB-containing lipoproteins and that these associations are markedly affected by MS.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
| | - Lucija Klobučar
- Department of Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia;
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Hansjörg Habisch
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
| | - Tobias Madl
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Klobučar I, Stadler JT, Klobučar L, Lechleitner M, Trbušić M, Pregartner G, Berghold A, Habisch H, Madl T, Marsche G, Frank S, Degoricija V. Associations between Endothelial Lipase, High-Density Lipoprotein, and Endothelial Function Differ in Healthy Volunteers and Metabolic Syndrome Patients. Int J Mol Sci 2023; 24:2073. [PMID: 36768410 PMCID: PMC9916974 DOI: 10.3390/ijms24032073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Metabolic syndrome (MS) is characterized by endothelial- and high-density lipoprotein (HDL) dysfunction and increased endothelial lipase (EL) serum levels. We examined the associations between EL serum levels, HDL (serum levels, lipid content, and function), and endothelial function in healthy volunteers (HV) and MS patients. Flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NMD), serum levels of HDL subclasses (measured by nuclear magnetic resonance (NMR) spectroscopy), and EL serum levels differed significantly between HV and MS patients. The serum levels of triglycerides in large HDL particles were significantly positively correlated with FMD and NMD in HV, but not in MS patients. Cholesterol (C) and phospholipid (PL) contents of large HDL particles, calculated as HDL1-C/HDL1-apoA-I and HDL1-PL/HDL1-apoA-I, respectively, were significantly negatively correlated with FMD in HV, but not in MS patients. Cholesterol efflux capacity and arylesterase activity of HDL, as well as EL, were correlated with neither FMD nor NMD. EL was significantly negatively correlated with HDL-PL/HDL-apoA-I in HV, but not in MS patients, and with serum levels of small dense HDL containing apolipoprotein A-II in MS patients, but not in HV. We conclude that MS modulates the association between HDL and endothelial function, as well as between EL and HDL. HDL cholesterol efflux capacity and arylesterase activity, as well as EL serum levels, are not associated with endothelial function in HV or MS patients.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Julia T. Stadler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Lucija Klobučar
- Department of Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Hansjörg Habisch
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Landfors F, Chorell E, Kersten S. Genetic Mimicry Analysis Reveals the Specific Lipases Targeted by the ANGPTL3-ANGPTL8 Complex and ANGPTL4. J Lipid Res 2023; 64:100313. [PMID: 36372100 PMCID: PMC9852701 DOI: 10.1016/j.jlr.2022.100313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/14/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
Angiopoietin-like proteins, ANGPTL3, ANGPTL4, and ANGPTL8, are involved in regulating plasma lipids. In vitro and animal-based studies point to LPL and endothelial lipase (EL, LIPG) as key targets of ANGPTLs. To examine the ANGPTL mechanisms for plasma lipid modulation in humans, we pursued a genetic mimicry analysis of enhancing or suppressing variants in the LPL, LIPG, lipase C hepatic type (LIPC), ANGPTL3, ANGPTL4, and ANGPTL8 genes using data on 248 metabolic parameters derived from over 110,000 nonfasted individuals in the UK Biobank and validated in over 13,000 overnight fasted individuals from 11 other European populations. ANGPTL4 suppression was highly concordant with LPL enhancement but not HL or EL, suggesting ANGPTL4 impacts plasma metabolic parameters exclusively via LPL. The LPL-independent effects of ANGPTL3 suppression on plasma metabolic parameters showed a striking inverse resemblance with EL suppression, suggesting ANGPTL3 not only targets LPL but also targets EL. Investigation of the impact of the ANGPTL3-ANGPTL8 complex on plasma metabolite traits via the ANGPTL8 R59W substitution as an instrumental variable showed a much higher concordance between R59W and EL activity than between R59W and LPL activity, suggesting the R59W substitution more strongly affects EL inhibition than LPL inhibition. Meanwhile, when using a rare and deleterious protein-truncating ANGPTL8 variant as an instrumental variable, the ANGPTL3-ANGPTL8 complex was very LPL specific. In conclusion, our analysis provides strong human genetic evidence that the ANGPTL3-ANGPTL8 complex regulates plasma metabolic parameters, which is achieved by impacting LPL and EL. By contrast, ANGPTL4 influences plasma metabolic parameters exclusively via LPL.
Collapse
Affiliation(s)
- Fredrik Landfors
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden.
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
16
|
Proprotein Convertase Subtilisin/Kexin 6 in Cardiovascular Biology and Disease. Int J Mol Sci 2022; 23:ijms232113429. [DOI: 10.3390/ijms232113429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Proprotein convertase subtilisin/kexin 6 (PCSK6) is a secreted serine protease expressed in most major organs, where it cleaves a wide range of growth factors, signaling molecules, peptide hormones, proteolytic enzymes, and adhesion proteins. Studies in Pcsk6-deficient mice have demonstrated the importance of Pcsk6 in embryonic development, body axis specification, ovarian function, and extracellular matrix remodeling in articular cartilage. In the cardiovascular system, PCSK6 acts as a key modulator in heart formation, lipoprotein metabolism, body fluid homeostasis, cardiac repair, and vascular remodeling. To date, dysregulated PCSK6 expression or function has been implicated in major cardiovascular diseases, including atrial septal defects, hypertension, atherosclerosis, myocardial infarction, and cardiac aging. In this review, we describe biochemical characteristics and posttranslational modifications of PCSK6. Moreover, we discuss the role of PCSK6 and related molecular mechanisms in cardiovascular biology and disease.
Collapse
|
17
|
Khoury E, Croteau L, Lauzière A, Gaudet D. Lessons learned from the evinacumab trials in the treatment of homozygous familial hypercholesterolemia. Future Cardiol 2022; 18:507-518. [PMID: 35469449 DOI: 10.2217/fca-2021-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a life-threatening disease characterized by extremely elevated LDL cholesterol (LDL-C) levels which result in premature atherosclerotic cardiovascular disease. As conventional lipid-lowering therapies, which mainly depend on LDL receptors for LDL particle clearance, remain insufficient for reaching the recommended LDL-C levels in HoFH, agents acting independently of LDL receptors, such as ANGPTL3 inhibitors, constitute a promising target. Evinacumab, a monoclonal antibody directed against ANGPTL3, was approved in the USA in 2021 for treating patients with HoFH. Evinacumab has shown an adequate safety profile with strong LDL-lowering efficacy. This review highlights the development path of evinacumab and provides insight on the lessons learned from trials as well as the hurdles facing accessibility.
Collapse
Affiliation(s)
- Etienne Khoury
- Department of Medicine, Clinical Lipidology & Rare Lipid Disorders Unit, Community Genomic Medicine Center, Université de Montréal & ECOGENE-21 Clinical & Translational Research Center, Chicoutimi, Québec, Canada
| | - Laurent Croteau
- Department of Medicine, Clinical Lipidology & Rare Lipid Disorders Unit, Community Genomic Medicine Center, Université de Montréal & ECOGENE-21 Clinical & Translational Research Center, Chicoutimi, Québec, Canada
| | - Alex Lauzière
- Department of Medicine, Clinical Lipidology & Rare Lipid Disorders Unit, Community Genomic Medicine Center, Université de Montréal & ECOGENE-21 Clinical & Translational Research Center, Chicoutimi, Québec, Canada.,Lipid Clinic, Chicoutimi Hospital
| | - Daniel Gaudet
- Department of Medicine, Clinical Lipidology & Rare Lipid Disorders Unit, Community Genomic Medicine Center, Université de Montréal & ECOGENE-21 Clinical & Translational Research Center, Chicoutimi, Québec, Canada.,Lipid Clinic, Chicoutimi Hospital
| |
Collapse
|
18
|
Bellomo TR, Bone WP, Chen BY, Gawronski KAB, Zhang D, Park J, Levin M, Tsao N, Klarin D, Lynch J, Assimes TL, Gaziano JM, Wilson PW, Cho K, Vujkovic M, O’Donnell CJ, Chang KM, Tsao PS, Rader DJ, Ritchie MD, Damrauer SM, Voight BF. Multi-Trait Genome-Wide Association Study of Atherosclerosis Detects Novel Pleiotropic Loci. Front Genet 2022; 12:787545. [PMID: 35186008 PMCID: PMC8847690 DOI: 10.3389/fgene.2021.787545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Although affecting different arterial territories, the related atherosclerotic vascular diseases coronary artery disease (CAD) and peripheral artery disease (PAD) share similar risk factors and have shared pathobiology. To identify novel pleiotropic loci associated with atherosclerosis, we performed a joint analysis of their shared genetic architecture, along with that of common risk factors. Using summary statistics from genome-wide association studies of nine known atherosclerotic (CAD, PAD) and atherosclerosis risk factors (body mass index, smoking initiation, type 2 diabetes, low density lipoprotein, high density lipoprotein, total cholesterol, and triglycerides), we perform 15 separate multi-trait genetic association scans which resulted in 25 novel pleiotropic loci not yet reported as genome-wide significant for their respective traits. Colocalization with single-tissue eQTLs identified candidate causal genes at 14 of the detected signals. Notably, the signal between PAD and LDL-C at the PCSK6 locus affects PCSK6 splicing in human liver tissue and induced pluripotent derived hepatocyte-like cells. These results show that joint analysis of related atherosclerotic disease traits and their risk factors allowed identification of unified biology that may offer the opportunity for therapeutic manipulation. The signal at PCSK6 represent possible shared causal biology where existing inhibitors may be able to be leveraged for novel therapies.
Collapse
Affiliation(s)
- Tiffany R. Bellomo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - William P. Bone
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Brian Y. Chen
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | | | - David Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph Park
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Levin
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
| | - Noah Tsao
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
| | - Derek Klarin
- VA Boston Healthcare System, Boston, MA, United States
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Division of Vascular Surgery and Endovascular Therapy, University of Florida School of Medicine, Gainesville, FL, United States
- Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Julie Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, United States
- University of Massachusetts College of Nursing and Health Sciences, Boston, MA, United States
| | - Themistocles L. Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - J. Michael Gaziano
- VA Boston Healthcare System, Boston, MA, United States
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, United States
- Department of Medicine, Brigham Women’s Hospital, Boston, MA, United States
| | - Peter W. Wilson
- Atlanta VA Medical Center, Decatur, GA, United States
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, United States
- Department of Medicine, Brigham Women’s Hospital, Boston, MA, United States
| | - Marijana Vujkovic
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher J. O’Donnell
- VA Boston Healthcare System, Boston, MA, United States
- Department of Medicine, Brigham Women’s Hospital, Boston, MA, United States
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip S. Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Daniel J. Rader
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Marylyn D. Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Scott M. Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Benjamin F. Voight
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Zhang R, Zhang K. An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues. Prog Lipid Res 2022; 85:101140. [PMID: 34793860 PMCID: PMC8760165 DOI: 10.1016/j.plipres.2021.101140] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
In mammals, triglyceride (TG), the main form of lipids for storing and providing energy, is stored in white adipose tissue (WAT) after food intake, while during fasting it is routed to oxidative tissues (heart and skeletal muscle) for energy production, a process referred to as TG partitioning. Lipoprotein lipase (LPL), a rate-limiting enzyme in this fundamental physiological process, hydrolyzes circulating TG to generate free fatty acids that are taken up by peripheral tissues. The postprandial activity of LPL declines in oxidative tissues but rises in WAT, directing TG to WAT; the reverse is true during fasting. However, the molecular mechanism in regulating tissue-specific LPL activity during the fed-fast cycle has not been completely understood. Research on angiopoietin-like (ANGPTL) proteins (A3, A4, and A8) has resulted in an ANGPTL3-4-8 model to explain the TG partitioning between WAT and oxidative tissues. Food intake induces A8 expression in the liver and WAT. Liver A8 activates A3 by forming the A3-8 complex, which is then secreted into the circulation. The A3-8 complex acts in an endocrine manner to inhibit LPL in oxidative tissues. WAT A8 forms the A4-8 complex, which acts locally to block A4's LPL-inhibiting activity. Therefore, the postprandial activity of LPL is low in oxidative tissues but high in WAT, directing circulating TG to WAT. Conversely, during fasting, reduced A8 expression in the liver and WAT disables A3 from inhibiting oxidative-tissue LPL and restores WAT A4's LPL-inhibiting activity, respectively. Thus, the fasting LPL activity is high in oxidative tissues but low in WAT, directing TG to the former. According to the model, we hypothesize that A8 antagonism has the potential to simultaneously reduce TG and increase HDL-cholesterol plasma levels. Future research on A3, A4, and A8 can hopefully provide more insights into human health, disease, and therapeutics.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA
| |
Collapse
|
20
|
Liu T, Li H, Conley YP, Primack BA, Wang J, Lo WJ, Li C. A Genome-Wide Association Study of Prediabetes Status Change. Front Endocrinol (Lausanne) 2022; 13:881633. [PMID: 35769078 PMCID: PMC9234217 DOI: 10.3389/fendo.2022.881633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
We conducted the first genome-wide association study of prediabetes status change (to diabetes or normal glycaemia) among 900 White participants of the Atherosclerosis Risk in Communities (ARIC) study. Single nucleotide polymorphism (SNP)-based analysis was performed by logistic regression models, controlling for age, gender, body mass index, and the first 3 genetic principal components. Gene-based analysis was conducted by combining SNP-based p values using effective Chi-square test method. Promising SNPs (p < 1×10-5) and genes (p < 1×10-4) were further evaluated for replication among 514 White participants of the Framingham Heart Study (FHS). To accommodate familial correlations, generalized estimation equation models were applied for SNP-based analyses in the FHS. Analysis results across ARIC and FHS were combined using inverse-variance-weighted meta-analysis method for SNPs and Fisher's method for genes. We robustly identified 5 novel genes that are associated with prediabetes status change using gene-based analyses, including SGCZ (ARIC p = 9.93×10-6, FHS p = 2.00×10-3, Meta p = 3.72×10-7) at 8p22, HPSE2 (ARIC p = 8.26×10-19, FHS p = 5.85×10-3, Meta p < 8.26×10-19) at 10q24.2, ADGRA1 (ARIC p = 1.34×10-5, FHS p = 1.13×10-3, Meta p = 2.88×10-7) at 10q26.3, GLB1L3 (ARIC p = 3.71×10-6, FHS p = 4.51×10-3, Meta p = 3.16×10-7) at 11q25, and PCSK6 (ARIC p = 6.51×10-6, FHS p = 1.10×10-2, Meta p = 1.25×10-6) at 15q26.3. eQTL analysis indicated that these genes were highly expressed in tissues related to diabetes development. However, we were not able to identify any novel locus in single SNP-based analysis. Future large scale genomic studies of prediabetes status change are warranted.
Collapse
Affiliation(s)
- Tingting Liu
- College of Nursing, Florida State University, Tallahassee, FL, United States
| | - Hongjin Li
- College of Nursing, University of Illinois at Chicago, Chicago, IL, United States
| | - Yvette P. Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian A. Primack
- College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Jing Wang
- College of Nursing, Florida State University, Tallahassee, FL, United States
| | - Wen-Juo Lo
- College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Tropical Medicine and Public Health, New Orleans, LA, United States
- *Correspondence: Changwei Li,
| |
Collapse
|
21
|
Parvaz N, Jalali Z. Molecular evolution of PCSK family: Analysis of natural selection rate and gene loss. PLoS One 2021; 16:e0259085. [PMID: 34710160 PMCID: PMC8553125 DOI: 10.1371/journal.pone.0259085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Proprotein convertases subtilisin kexins are serine endoproteases, playing critical roles in the biological functions, including lipid, glucose, and bile acid metabolism, as well as cell proliferation, migration, and metastasis. Experimental studies have demonstrated the physiological functions of PCSKs and their association with diseases; however, studies on the evolutionary history and diversification of these proteins are missing. In the present research, a bioinformatics study was conducted on the molecular evolution of several PCSKs family members and gene loss events across placental mammalian. In order to detect evolutionary constraints and positive selection, the CodeML program of the PAML package was used. The results showed the positive selection to occur in PCSK1, PCSK3, PCSK5, and PCSK7. A decelerated rate of evolution was observed in PCSK7, PCSK3, and MBTPS1 in Carnivores compared to the rest of phylogeny, and an accelerated evolution of PCSK1, PCSK7, and MBTPS1 in Muridae family of rodents was found. Additionally, our results indicated pcsk9 gene loss in 12 species comprising Carnivores and bats (Chiroptera). Future studies are required to evaluate the functional relevance and selective evolutionary advantages associated with these modifications in PCSK proteins during evolution.
Collapse
Affiliation(s)
- Najmeh Parvaz
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Jalali
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- * E-mail:
| |
Collapse
|
22
|
Aghasizadeh M, Nosrati M, Saberi-Karimian M, Safarian H, Assadian P, Akbarpour E, Sahebkar A, Avan A, Ferns GA, Kazemi T, Miri-Moghaddam E, Ghayour-Mobarhan M. Association of ANGPTL3 polymorphisms with high-density lipoprotein cholesterol uptake capacity in patients with cardiovascular disease. J Clin Lab Anal 2021; 35:e23980. [PMID: 34689370 PMCID: PMC8649373 DOI: 10.1002/jcla.23980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction Previous studies have shown the importance of angiopoietin‐like 3 (ANGPTL3) as a modulator of lipid profiles. Cholesterol uptake capacity (CUC) is one means for assessing high‐density lipoprotein (HDL) functionality. This study for the first time has investigated the relationship between genetic ANGPTL3 polymorphism and CUC in patients with cardiovascular disease. Methods Five hundred three subjects comprising 350 healthy subjects and 153 individuals who developed a cardiovascular disease (CVD) event during follow‐up were recruited as part of the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) cohort study. A modified CUC method was used to determine the CUC of serum samples. Applied amplification refractory mutation system PCR was performed for ANGPTL3 variants genotyping including: rs10789117, rs1748195, and rs11207997. Sanger sequencing was applied to confirm the genotypes. Results The results showed that there was a significant relationship between the rs1748195 genotypes and HDL concentration in the CVD group (p = 0.02). Moreover, individuals with a GG genotype of the rs1748195 were associated with a lower risk of CVD (OR = 0.49, 95% CI = 0.24–0.98, p = 0.04) compared with CC genotype in the CUC ≤ 1.7 a.u subgroup. Moreover, the CT genotype of rs11207997 was associated with a lower risk of CVD (OR = 0.74, 95% CI = 0.41–1.3, p = 0.01) compared with CC genotype in CUC > 1.7 a.u subgroup. Conclusion The results showed that the CT genotype of the rs11207997 variant was associated with a lower risk of incident CVD in patients with higher HDL functionality. As well, the rs1748195 gene variant may contribute to a reduced risk of CVD.
Collapse
Affiliation(s)
- Malihe Aghasizadeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Student Research Committee, Department of Molecular Medicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mina Nosrati
- International UNESCO center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Safarian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Assadian
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ensieh Akbarpour
- Department of Epidemiology and Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Medicine Genetics Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, Sussex, UK
| | - Tooba Kazemi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Razi Clinical Research Development Unit (RCRDU, Birjand University of Medical Sciences, Birjand, Iran
| | - Ebrahim Miri-Moghaddam
- Cardiovascular Diseases Research Center & Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab 2021; 321:E493-E508. [PMID: 34338039 PMCID: PMC8560382 DOI: 10.1152/ajpendo.00195.2021] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 01/28/2023]
Abstract
Triglyceride-rich lipoproteins deliver fatty acids to tissues for oxidation and for storage. Release of fatty acids from circulating lipoprotein triglycerides is carried out by lipoprotein lipase (LPL), thus LPL serves as a critical gatekeeper of fatty acid uptake into tissues. LPL activity is regulated by a number of extracellular proteins including three members of the angiopoietin-like family of proteins. In this review, we discuss our current understanding of how, where, and when ANGPTL3, ANGPTL4, and ANGPTL8 regulate lipoprotein lipase activity, with a particular emphasis on how these proteins interact with each other to coordinate triglyceride metabolism and fat partitioning.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Brandon S J Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| |
Collapse
|
24
|
Chen PY, Chao TY, Hsu HJ, Wang CY, Lin CY, Gao WY, Wu MJ, Yen JH. The Lipid-Modulating Effect of Tangeretin on the Inhibition of Angiopoietin-like 3 (ANGPTL3) Gene Expression through Regulation of LXRα Activation in Hepatic Cells. Int J Mol Sci 2021; 22:ijms22189853. [PMID: 34576019 PMCID: PMC8471037 DOI: 10.3390/ijms22189853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
The excessive accumulation of TG-rich lipoproteins (TGRLs) in plasma is associated with dyslipidemia and atherosclerotic cardiovascular diseases (ASCVDs). Tangeretin is a bioactive pentamethoxyflavone mainly found in citrus peels, and it has been reported to protect against hyperlipidemia, diabetes, and obesity. The aim of this study was to investigate the lipid-modulating effects and the underlying mechanisms of tangeretin action in hepatic cells. Transcriptome and bioinformatics analyses with the Gene Ontology (GO) database showed that tangeretin significantly regulated a set of 13 differentially expressed genes (DEGs) associated with the regulation of lipoprotein lipase (LPL) activity. Among these DEGs, angiopoietin-like 3 (ANGPTL3), an essential inhibitor of LPL catalytic activity that regulates TGRL metabolism in plasma, was markedly downregulated by tangeretin. We demonstrated that tangeretin significantly inhibited the mRNA expression of ANGPTL3 in HepG2 and Huh-7 cells. Tangeretin treatment of hepatic cells also reduced the levels of both intracellular and secreted ANGPTL3 proteins. Moreover, we found that inhibition of ANGPTL3 production by tangeretin augmented LPL activity. We further demonstrated that the transcriptional activity of the ANGPTL3 promoter was significantly attenuated by tangeretin, and we identified a DNA element located between the −250 and −121 positions that responded to tangeretin. Furthermore, we found that tangeretin did not alter the levels of the nuclear liver X receptor α (LXRα) protein, an essential transcription factor that binds to the tangeretin-responsive element, but it can counteract LXRα-mediated ANGPTL3 transcription. On the basis of molecular docking analysis, tangeretin was predicted to bind to the ligand-binding domain of LXRα, which would result in suppression of LXRα activation. Our findings support the hypothesis that tangeretin exerts a lipid-lowering effect by modulating the LXRα-ANGPTL3-LPL pathway, and thus, it can be used as a potential phytochemical for the prevention or treatment of dyslipidemia.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Tzu-Ya Chao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Hao-Jen Hsu
- Department of Life Science, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chih-Yang Wang
- Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yen Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Correspondence: or ; Tel.: +88-63-856-5301 (ext. 2683)
| |
Collapse
|
25
|
Ling P, Zheng X, Luo S, Ge J, Xu S, Weng J. Targeting angiopoietin-like 3 in atherosclerosis: From bench to bedside. Diabetes Obes Metab 2021; 23:2020-2034. [PMID: 34047441 DOI: 10.1111/dom.14450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the largest cause of morbidity and mortality worldwide. Lipid-lowering therapies are the current major cornerstone of ASCVD management. Statins, ezetimibe, fibrates and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors effectively reduce the plasma low-density lipoprotein cholesterol (LDL-C) level in most individuals at risk of atherosclerosis. Still, some patients (such as those with homozygous familial hypercholesterolaemia), who do not respond to standard therapies, and other patients who cannot take these agents, remain at a high risk of ASCVD. In recent years there has been tremendous progress in understanding the mechanism and efficacy of lipid-lowering strategies. Apart from the recently approved PCSK9 and ATP citrate lyase inhibitors, angiopoietin-like 3 (ANGPTL3) is another potential target for the treatment of dyslipidaemia and its clinical sequalae of atherosclerosis. ANGPTL3 is a pivotal modulator of plasma triglycerides (TG), LDL-C and high-density lipoprotein cholesterol (HDL-C) levels, achieved by inhibiting the activities of lipoprotein lipase and endothelial lipase. Familial combined hypolipidaemia is derived from the Angptl3 loss-of-function mutations, which leads to low levels of LDL-C, HDL-C and TG, and has a 34% decreased risk of ASCVD compared with non-carriers. To date, monoclonal antibodies (evinacumab) and antisense oligonucleotides against ANGPTL3 have been investigated in clinical trials for dyslipidaemia therapy. Herein, we review the biology and function of ANGPTL3, as well as the latest developments of ANGPTL3-targeted therapies. We also summarize evidence from basic research to clinical trials, with the aim of providing novel insights into the biological functions of ANGPTL3 and related targeted therapies.
Collapse
Affiliation(s)
- Ping Ling
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Junbo Ge
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Cardiology, Zhong Shan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
26
|
Sylvers-Davie KL, Segura-Roman A, Salvi AM, Schache KJ, Davies BSJ. Angiopoietin-like 3 inhibition of endothelial lipase is not modulated by angiopoietin-like 8. J Lipid Res 2021; 62:100112. [PMID: 34461133 PMCID: PMC8456055 DOI: 10.1016/j.jlr.2021.100112] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023] Open
Abstract
High plasma triglyceride (TG) levels and low HDL-C levels are risk factors for atherosclerosis and cardiovascular disease. Both plasma TG and HDL-C levels are regulated in part by the circulating inhibitor, angiopoietin-like 3 (ANGPTL3). ANGPTL3 inhibits the phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL, thus decreasing plasma HDL levels. ANGPTL3 also inhibits LPL, the lipase primarily responsible for the clearance of TGs from the circulation. Previous studies have shown that ANGPTL3 requires complex formation with the related ANGPTL protein, angiopoietin-like 8 (ANGPTL8), to efficiently inhibit LPL, but the role of ANGPTL8 in EL inhibition is not known. In this study, we characterized inhibition and binding of EL by ANGPTL3 and investigated the role of ANGPTL8 in EL inhibition. We found that inhibition of EL by ANGPTL3 was dose dependent and temperature dependent. Interestingly, this inhibition was diminished when EL was bound to endothelial cells or in the presence of heparin. Unlike previous findings with LPL, we found that ANGPTL8 did not significantly alter the binding or the inhibition of EL by ANGPTL3. In addition, we found that a common ANGPTL8 variant, which encodes an R59W mutation, altered the ability of ANGPTL3 to bind and inhibit LPL but not EL. Together, our data indicate that ANGPTL8 is not necessary for EL inhibition. We conclude that ANGPTL8 is specific for the regulation of TG-rich lipoproteins through the LPL pathway and that therapeutically targeting ANGPTL8 for the treatment of hypertriglyceridemia or cardiovascular disease may have different outcomes than targeting ANGPTL3.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, USA
| | - Ashley Segura-Roman
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, USA
| | - Alicia M Salvi
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, USA
| | - Kylie J Schache
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, USA
| | - Brandon S J Davies
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
27
|
Harada M, Yamakawa T, Kashiwagi R, Ohira A, Sugiyama M, Sugiura Y, Kondo Y, Terauchi Y. Association between ANGPTL3, 4, and 8 and lipid and glucose metabolism markers in patients with diabetes. PLoS One 2021; 16:e0255147. [PMID: 34293055 PMCID: PMC8297858 DOI: 10.1371/journal.pone.0255147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Lipid management, especially with respect to triglyceride (TG) metabolism, in patients with diabetes is not sufficient with current therapeutic agents, and new approaches for improvement are needed. Members of the angiopoietin-like protein (ANGPTL) family, specifically ANGPTL3, 4, and 8, have been reported as factors that inhibit lipoprotein lipase (LPL) activity and affect TGs. The present study investigated the association between lipid and glucose metabolism markers and the mechanism by which these proteins affect lipid metabolism. A total of 84 patients hospitalized for diabetes treatment were evaluated. Lipid and glucose metabolism markers in blood samples collected before breakfast, on the day after hospitalization, were analyzed. ANGPTL8 showed a significant positive correlation with TG values. HDL-C values displayed a significant positive correlation with ANGPTL3 but a negative correlation with ANGPTL4 and ANGPTL8. The results did not indicate a significant correlation among ANGPTL3, 4, and 8 levels. Thus, it is possible that the distribution of these proteins differs among patients. When patients were divided into groups according to the levels of ANGPTL3 and ANGPTL8, those with high levels of both ANGPTL3 and ANGPTL8 also had high levels of TG and small dense LDL-C/LDL-C (%). Multiple regression analysis indicated that low LPL, high ApoC2, high ApoC3, high ApoE, and high ANGPTL8 levels were the determinants of fasting hypertriglyceridemia. By contrast, no clear association was observed between any of the ANGPTLs and glucose metabolism markers, but ANGPTL8 levels were positively correlated with the levels of HOMA2-IR and BMI. Patients with high levels of both ANGPTL3 and ANGPTL8 had the worst lipid profiles. Among ANGPTL3, 4, and 8, ANGPTL8 is more important as a factor determining plasma TG levels. We anticipate that the results of this research will facilitate potential treatments targeting ANGPTL8 in patients with diabetes.
Collapse
Affiliation(s)
- Marina Harada
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Tadashi Yamakawa
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
- * E-mail:
| | - Rie Kashiwagi
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Akeo Ohira
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Mai Sugiyama
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Yasuyuki Sugiura
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoshinobu Kondo
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
28
|
Kristensen KK, Leth-Espensen KZ, Kumari A, Grønnemose AL, Lund-Winther AM, Young SG, Ploug M. GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity. Front Cell Dev Biol 2021; 9:702508. [PMID: 34336854 PMCID: PMC8319833 DOI: 10.3389/fcell.2021.702508] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Intravascular processing of triglyceride-rich lipoproteins (TRLs) is crucial for delivery of dietary lipids fueling energy metabolism in heart and skeletal muscle and for storage in white adipose tissue. During the last decade, mechanisms underlying focal lipolytic processing of TRLs along the luminal surface of capillaries have been clarified by fresh insights into the functions of lipoprotein lipase (LPL); LPL's dedicated transporter protein, glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1); and its endogenous inhibitors, angiopoietin-like (ANGPTL) proteins 3, 4, and 8. Key discoveries in LPL biology include solving the crystal structure of LPL, showing LPL is catalytically active as a monomer rather than as a homodimer, and that the borderline stability of LPL's hydrolase domain is crucial for the regulation of LPL activity. Another key discovery was understanding how ANGPTL4 regulates LPL activity. The binding of ANGPTL4 to LPL sequences adjacent to the catalytic cavity triggers cooperative and sequential unfolding of LPL's hydrolase domain resulting in irreversible collapse of the catalytic cavity and loss of LPL activity. Recent studies have highlighted the importance of the ANGPTL3-ANGPTL8 complex for endocrine regulation of LPL activity in oxidative organs (e.g., heart, skeletal muscle, brown adipose tissue), but the molecular mechanisms have not been fully defined. New insights have also been gained into LPL-GPIHBP1 interactions and how GPIHBP1 moves LPL to its site of action in the capillary lumen. GPIHBP1 is an atypical member of the LU (Ly6/uPAR) domain protein superfamily, containing an intrinsically disordered and highly acidic N-terminal extension and a disulfide bond-rich three-fingered LU domain. Both the disordered acidic domain and the folded LU domain are crucial for the stability and transport of LPL, and for modulating its susceptibility to ANGPTL4-mediated unfolding. This review focuses on recent advances in the biology and biochemistry of crucial proteins for intravascular lipolysis.
Collapse
Affiliation(s)
- Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anni Kumari
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne Louise Grønnemose
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lund-Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Stephen G Young
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Angiopoietin-Like Protein 3 (ANGPTL3) Modulates Lipoprotein Metabolism and Dyslipidemia. Int J Mol Sci 2021; 22:ijms22147310. [PMID: 34298929 PMCID: PMC8304944 DOI: 10.3390/ijms22147310] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Dyslipidemia is characterized by increasing plasma levels of low-density lipoprotein-cholesterol (LDL-C), triglycerides (TGs) and TG-rich lipoproteins (TGRLs) and is a major risk factor for the development of atherosclerotic cardiovascular disorders (ASCVDs). It is important to understand the metabolic mechanisms underlying dyslipidemia to develop effective strategies against ASCVDs. Angiopoietin-like 3 (ANGPTL3), a member of the angiopoietin-like protein family exclusively synthesized in the liver, has been demonstrated to be a critical regulator of lipoprotein metabolism to inhibit lipoprotein lipase (LPL) activity. Genetic, biochemical, and clinical studies in animals and humans have shown that loss of function, inactivation, or downregulated expression of ANGPTL3 is associated with an obvious reduction in plasma levels of TGs, LDL-C, and high-density lipoprotein-cholesterol (HDL-C), atherosclerotic lesions, and the risk of cardiovascular events. Therefore, ANGPTL3 is considered an alternative target for lipid-lowering therapy. Emerging studies have focused on ANGPTL3 inhibition via antisense oligonucleotides (ASOs) and monoclonal antibody-based therapies, which have been carried out in mouse or monkey models and in human clinical studies for the management of dyslipidemia and ASCVDs. This review will summarize the current literature on the important role of ANGPTL3 in controlling lipoprotein metabolism and dyslipidemia, with an emphasis on anti-ANGPTL3 therapies as a potential strategy for the treatment of dyslipidemia and ASCVDs.
Collapse
|
30
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Jiang XC, Yu Y. The Role of Phospholipid Transfer Protein in the Development of Atherosclerosis. Curr Atheroscler Rep 2021; 23:9. [PMID: 33496859 DOI: 10.1007/s11883-021-00907-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Phospholipid transfer protein (PLTP), a member of lipid transfer protein family, is an important protein involved in lipid metabolism in the circulation. This article reviews recent PLTP research progresses, involving lipoprotein metabolism and atherogenesis. RECENT FINDINGS PLTP activity influences atherogenic and anti-atherogenic lipoprotein levels. Human serum PLTP activity is a risk factor for human cardiovascular disease and is an independent predictor of all-cause mortality. PLTP deficiency reduces VLDL and LDL levels and attenuates atherosclerosis in mouse models, while PLTP overexpression exerts an opposite effect. Both PLTP deficiency and overexpression result in reduction of HDL which has different size, inflammatory index, and lipid composition. Moreover, although both PLTP deficiency and overexpression reduce cholesterol efflux capacity, but this effect has no impact in macrophage reverse cholesterol transport in mice. Furthermore, PLTP activity is related with metabolic syndrome, thrombosis, and inflammation. PLTP could be target for the treatment of dyslipidemia and atherosclerosis, although some potential off-target effects should be noted.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, USA.
| | - Yang Yu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| |
Collapse
|
32
|
Vatannejad A, Salimi F, Moradi N, Fouani FZ, Zandieh Z, Ansaripour S, Sadeghi A, Fadaei R. Evaluation of angiopoietin-like protein 3 (ANGPTL3) levels in polycystic ovary syndrome. Life Sci 2020; 263:118595. [PMID: 33075372 DOI: 10.1016/j.lfs.2020.118595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
AIM Angiopoietin-like protein 3 (ANGPTL3) is recognized as a regulator of lipid metabolism. However, little is known about its association with insulin resistance in polycystic ovary syndrome (PCOS) setting. The present study aimed to investigate the serum levels of ANGPTL3 and adiponectin in PCOS women compared to healthy controls. MAIN METHOD In this study, a total of 175 premenopausal women (117 PCOS and 58 non-PCOS) were enrolled. Serum concentrations of ANGPTL3, adiponectin, fasting insulin, and other hormonal variables were measured using ELISA technique. KEY FINDINGS Results showed that adiponectin levels were significantly lower in PCOS group than those of non-PCOS group. However, serum levels of ANGPTL3, high-sensitivity C-reactive protein (hs-CRP), and homocysteine (Hcy) were found to be higher in PCOS patients, when compared to non-PCOS ones. Moreover, serum ANGPTL3 positively correlated with BMI and serum triglyceride, while it inversely correlated with serum HDL-C in PCOS patients. SIGNIFICANCE Our results demonstrated that increased levels of ANGPTL3 correlated with insulin resistance and dyslipidemia in PCOS patients, highlighting the need for future studies targeting its role in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fouzieh Salimi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatima Zahraa Fouani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Shahid Akbar Abadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Ansaripour
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
33
|
Li X, Zhang Y, Zhang M, Wang Y. GALNT2 regulates ANGPTL3 cleavage in cells and in vivo of mice. Sci Rep 2020; 10:16168. [PMID: 32999434 PMCID: PMC7527996 DOI: 10.1038/s41598-020-73388-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
Angiopoietin-like protein 3 (ANGPTL3) is an important inhibitor of lipoprotein lipase and endothelial lipase that plays critical roles in lipoprotein metabolism. It specifically expresses in the liver and undergoes proprotein convertase-mediated cleavage during secretion, which generates an N-terminal coiled-coil domain and C-terminal fibrinogen-like domain that has been considered as the activation step for its function. Previous studies have reported that the polypeptide GalNAc-transferase GALNT2 mediates the O-glycosylation of the ANGPTL3 near the cleavage site, which inhibits the proprotein convertase (PC)-mediated cleavage in vitro and in cultured cells. However, loss-of-function mutation for GALNT2 has no effect on ANGPTL3 cleavage in human. Thus whether GALNT2 regulates the cleavage of ANGPTL3 in vivo is unclear. In present study, we systematically characterized the cleavage of Angptl3 in cultured cells and in vivo of mice. We found that endogenous Angptl3 is cleaved in primary hepatocytes and in vivo of mice, and this cleavage can be blocked by Galnt2 overexpression or PC inhibition. Moreover, suppressing galnt2 expression increases the cleavage of Angptl3 in mice dramatically. Thus, our results support the conclusion that Galnt2 is a key endogenous regulator for Angptl3 cleavage both in vitro and in vivo.
Collapse
Affiliation(s)
- Xuedan Li
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yiliang Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Minzhu Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
34
|
Pirillo A, Svecla M, Catapano AL, Holleboom AG, Norata GD. Impact of protein glycosylation on lipoprotein metabolism and atherosclerosis. Cardiovasc Res 2020; 117:1033-1045. [PMID: 32886765 DOI: 10.1093/cvr/cvaa252] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Protein glycosylation is a post-translational modification consisting in the enzymatic attachment of carbohydrate chains to specific residues of the protein sequence. Several types of glycosylation have been described, with N-glycosylation and O-glycosylation being the most common types impacting on crucial biological processes, such as protein synthesis, trafficking, localization, and function. Genetic defects in genes involved in protein glycosylation may result in altered production and activity of several proteins, with a broad range of clinical manifestations, including dyslipidaemia and atherosclerosis. A large number of apolipoproteins, lipoprotein receptors, and other proteins involved in lipoprotein metabolism are glycosylated, and alterations in their glycosylation profile are associated with changes in their expression and/or function. Rare genetic diseases and population genetics have provided additional information linking protein glycosylation to the regulation of lipoprotein metabolism.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy.,IRCCS MultiMedica, via Milanese 300, 20099 Sesto S. Giovanni, Milan, Italy
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Alberico Luigi Catapano
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto S. Giovanni, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, E. Bassini Hospital, via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| |
Collapse
|
35
|
Li J, Li L, Guo D, Li S, Zeng Y, Liu C, Fu R, Huang M, Xie W. Triglyceride metabolism and angiopoietin-like proteins in lipoprotein lipase regulation. Clin Chim Acta 2020; 503:19-34. [PMID: 31923423 DOI: 10.1016/j.cca.2019.12.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
Hypertriglyceridemia is a risk factor for a series of diseases, such as cardiovascular disease (CVD), diabetes and nonalcoholic fatty liver disease (NAFLD). Angiopoietin-like proteins (ANGPTLs) family, especially ANGPTL3, ANGPTL4 and ANGPTL8, which regulate lipoprotein lipase (LPL) activity, play pivotal roles in triglyceride (TG) metabolism and related diseases/complications. There are many transcriptional and post-transcriptional factors that participate in physiological and pathological regulation of ANGPTLs to affect triglyceride metabolism. This review is intended to focus on the similarity and difference in the expression, structural features, regulation profile of the three ANGPTLs and inhibitory models for LPL. Description of the regulatory factors of ANGPTLs and the properties in regulating the lipid metabolism involved in the underlying mechanisms in pathological effects on diseases will provide potential therapeutic approaches for the treatment of dyslipidemia related diseases.
Collapse
Affiliation(s)
- Jing Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Department of Pathophysiology, University of South China, Hengyang 421001, Hunan, China
| | - DongMing Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - SuYun Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - YuXin Zeng
- 2018 Class of Excellent Doctor, University of South China, Hengyang 421001, Hunan, China
| | - ChuHao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Ru Fu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - MengQian Huang
- 2015 Class of Clinical Medicine, Fuxing Hospital, Capital Medical University, Beijing 100038, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
36
|
Impact of Phospholipid Transfer Protein in Lipid Metabolism and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:1-13. [PMID: 32705590 DOI: 10.1007/978-981-15-6082-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PLTP plays an important role in lipoprotein metabolism and cardiovascular disease development in humans; however, the mechanisms are still not completely understood. In mouse models, PLTP deficiency reduces cardiovascular disease, while its overexpression induces it. Therefore, we used mouse models to investigate the involved mechanisms. In this chapter, the recent main progresses in the field of PLTP research are summarized, and our focus is on the relationship between PLTP and lipoprotein metabolism, as well as PLTP and cardiovascular diseases.
Collapse
|
37
|
Abstract
Several new or emerging drugs for dyslipidemia owe their existence, in part, to human genetic evidence, such as observations in families with rare genetic disorders or in Mendelian randomization studies. Much effort has been directed to agents that reduce LDL (low-density lipoprotein) cholesterol, triglyceride, and Lp[a] (lipoprotein[a]), with some sustained programs on agents to raise HDL (high-density lipoprotein) cholesterol. Lomitapide, mipomersen, AAV8.TBG.hLDLR, inclisiran, bempedoic acid, and gemcabene primarily target LDL cholesterol. Alipogene tiparvovec, pradigastat, and volanesorsen primarily target elevated triglycerides, whereas evinacumab and IONIS-ANGPTL3-LRx target both LDL cholesterol and triglyceride. IONIS-APO(a)-LRx targets Lp(a).
Collapse
Affiliation(s)
- Robert A Hegele
- From the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Vascular Medicine Program, University of California San Diego, La Jolla (S.T.)
| |
Collapse
|
38
|
Nagao M, Miyashita K, Mori K, Irino Y, Toh R, Hara T, Hirata KI, Shinohara M, Nakajima K, Ishida T. Serum concentration of full-length- and carboxy-terminal fragments of endothelial lipase predicts future cardiovascular risks in patients with coronary artery disease. J Clin Lipidol 2019; 13:839-846. [PMID: 31473149 DOI: 10.1016/j.jacl.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/18/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Endothelial lipase (EL), a regulator of plasma high-density lipoprotein cholesterol (HDL-C), is secreted as a 68-kDa mature glycoprotein, and then cleaved by proprotein convertases. However, the clinical significance of the circulating EL fragments remains unclear. OBJECTIVE The objective of this study was to analyze the impact of serum EL fragments on HDL-C levels and major adverse cardiovascular events (MACE). METHODS Using novel monoclonal antibodies (RC3A6) against carboxy-terminal EL protein, we have established a new enzyme-linked immunosorbent assay (ELISA) system, which can detect both full-length EL protein (full EL) and carboxy-terminal truncated fragments (total EL) in serum. The previous sandwich ELISA detected only full EL. The full and total EL mass were measured in 556 patients with coronary artery disease. Among them, 272 patients who underwent coronary intervention were monitored for 2 years for MACE. RESULTS There was a significant correlation between serum full and total EL mass (R = 0.45, P < .0001). However, the total EL mass showed a stronger inverse correlation with serum HDL-cholesterol concentration than the full EL mass (R = -0.17 vs -0.02). Kaplan-Meier analysis documented an association of serum total EL mass and MACE (log-rank P = .037). When an optimal cutoff value was set at 96.23 ng/mL, total EL mass was an independent prognostic factor for MACE in the Cox proportional hazard model (HR; 1.75, 95% CI; 1.10-2.79, P = .018). CONCLUSION Serum total EL mass could be a predictor for MACE in patients with coronary artery disease. This novel ELISA will be useful for further clarifying the impact of EL on HDL metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Manabu Nagao
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Kenta Mori
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Tetsuya Hara
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
39
|
Lang W, Frishman WH. Angiopoietin-Like 3 Protein Inhibition: A New Frontier in Lipid-Lowering Treatment. Cardiol Rev 2019; 27:211-217. [DOI: 10.1097/crd.0000000000000258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
de Vries PS, Brown MR, Bentley AR, Sung YJ, Winkler TW, Ntalla I, Schwander K, Kraja AT, Guo X, Franceschini N, Cheng CY, Sim X, Vojinovic D, Huffman JE, Musani SK, Li C, Feitosa MF, Richard MA, Noordam R, Aschard H, Bartz TM, Bielak LF, Deng X, Dorajoo R, Lohman KK, Manning AK, Rankinen T, Smith AV, Tajuddin SM, Evangelou E, Graff M, Alver M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Goel A, Hagemeijer Y, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu FC, Jackson AU, Kasturiratne A, Komulainen P, Kühnel B, Laguzzi F, Lee JH, Luan J, Lyytikäinen LP, Matoba N, Nolte IM, Pietzner M, Riaz M, Said MA, Scott RA, Sofer T, Stančáková A, Takeuchi F, Tayo BO, van der Most PJ, Varga TV, Wang Y, Ware EB, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Amin N, Amini M, Arking DE, Aung T, Ballantyne C, Boerwinkle E, Broeckel U, Campbell A, Canouil M, Charumathi S, Chen YDI, Connell JM, de Faire U, de las Fuentes L, de Mutsert R, de Silva HJ, Ding J, Dominiczak AF, Duan Q, Eaton CB, Eppinga RN, Faul JD, Fisher V, Forrester T, Franco OH, Friedlander Y, Ghanbari M, Giulianini F, et alde Vries PS, Brown MR, Bentley AR, Sung YJ, Winkler TW, Ntalla I, Schwander K, Kraja AT, Guo X, Franceschini N, Cheng CY, Sim X, Vojinovic D, Huffman JE, Musani SK, Li C, Feitosa MF, Richard MA, Noordam R, Aschard H, Bartz TM, Bielak LF, Deng X, Dorajoo R, Lohman KK, Manning AK, Rankinen T, Smith AV, Tajuddin SM, Evangelou E, Graff M, Alver M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Goel A, Hagemeijer Y, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu FC, Jackson AU, Kasturiratne A, Komulainen P, Kühnel B, Laguzzi F, Lee JH, Luan J, Lyytikäinen LP, Matoba N, Nolte IM, Pietzner M, Riaz M, Said MA, Scott RA, Sofer T, Stančáková A, Takeuchi F, Tayo BO, van der Most PJ, Varga TV, Wang Y, Ware EB, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Amin N, Amini M, Arking DE, Aung T, Ballantyne C, Boerwinkle E, Broeckel U, Campbell A, Canouil M, Charumathi S, Chen YDI, Connell JM, de Faire U, de las Fuentes L, de Mutsert R, de Silva HJ, Ding J, Dominiczak AF, Duan Q, Eaton CB, Eppinga RN, Faul JD, Fisher V, Forrester T, Franco OH, Friedlander Y, Ghanbari M, Giulianini F, Grabe HJ, Grove ML, Gu CC, Harris TB, Heikkinen S, Heng CK, Hirata M, Hixson JE, Howard BV, Ikram MA, InterAct Consortium, Jacobs DR, Johnson C, Jonas JB, Kammerer CM, Katsuya T, Khor CC, Kilpeläinen TO, Koh WP, Koistinen HA, Kolcic I, Kooperberg C, Krieger JE, Kritchevsky SB, Kubo M, Kuusisto J, Lakka TA, Langefeld CD, Langenberg C, Launer LJ, Lehne B, Lemaitre RN, Li Y, Liang J, Liu J, Liu K, Loh M, Louie T, Mägi R, Manichaikul AW, McKenzie CA, Meitinger T, Metspalu A, Milaneschi Y, Milani L, Mohlke KL, Mosley TH, Mukamal KJ, Nalls MA, Nauck M, Nelson CP, Sotoodehnia N, O'Connell JR, Palmer ND, Pazoki R, Pedersen NL, Peters A, Peyser PA, Polasek O, Poulter N, Raffel LJ, Raitakari OT, Reiner AP, Rice TK, Rich SS, Robino A, Robinson JG, Rose LM, Rudan I, Schmidt CO, Schreiner PJ, Scott WR, Sever P, Shi Y, Sidney S, Sims M, Smith BH, Smith JA, Snieder H, Starr JM, Strauch K, Tan N, Taylor KD, Teo YY, Tham YC, Uitterlinden AG, van Heemst D, Vuckovic D, Waldenberger M, Wang L, Wang Y, Wang Z, Wei WB, Williams C, Wilson G, Wojczynski MK, Yao J, Yu B, Yu C, Yuan JM, Zhao W, Zonderman AB, Becker DM, Boehnke M, Bowden DW, Chambers JC, Deary IJ, Esko T, Farrall M, Franks PW, Freedman BI, Froguel P, Gasparini P, Gieger C, Horta BL, Kamatani Y, Kato N, Kooner JS, Laakso M, Leander K, Lehtimäki T, Lifelines Cohort, Groningen, The Netherlands (Lifelines Cohort Study), Magnusson PKE, Penninx B, Pereira AC, Rauramaa R, Samani NJ, Scott J, Shu XO, van der Harst P, Wagenknecht LE, Wang YX, Wareham NJ, Watkins H, Weir DR, Wickremasinghe AR, Zheng W, Elliott P, North KE, Bouchard C, Evans MK, Gudnason V, Liu CT, Liu Y, Psaty BM, Ridker PM, van Dam RM, Kardia SLR, Zhu X, Rotimi CN, Mook-Kanamori DO, Fornage M, Kelly TN, Fox ER, Hayward C, van Duijn CM, Tai ES, Wong TY, Liu J, Rotter JI, Gauderman WJ, Province MA, Munroe PB, Rice K, Chasman DI, Cupples LA, Rao DC, Morrison AC. Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions. Am J Epidemiol 2019; 188:1033-1054. [PMID: 30698716 PMCID: PMC6545280 DOI: 10.1093/aje/kwz005] [Show More Authors] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 12/27/2022] Open
Abstract
A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 × 10-6) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 × 10-8 using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.
Collapse
Affiliation(s)
- Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yun J Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Xiuqing Guo
- Genomic Outcomes, Pediatrics, Institute for Translational Genomics and Population Sciences, LA BioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Nora Franceschini
- Epidemiology, University of North Carolina Gilling School of Global Public Health, Chapel Hill, North Carolina
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Centre for Quantitative Medicine, Academic Medicine Research Institute, Ophthalmology & Visual Sciences Academic Clinical Program
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jennifer E Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Solomon K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Changwei Li
- Epidemiology and Biostatistics, University of Georgia at Athens College of Public Health, Athens, Georgia
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Melissa A Richard
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Raymond Noordam
- Internal Medicine, Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, Washington
| | - Lawrence F Bielak
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Xuan Deng
- Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Kurt K Lohman
- Public Health Sciences, Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Alisa K Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Salman M Tajuddin
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Mariaelisa Graff
- Epidemiology, University of North Carolina Gilling School of Global Public Health, Chapel Hill, North Carolina
| | - Maris Alver
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Jasmin Divers
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ilaria Gandin
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Yanick Hagemeijer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fernando P Hartwig
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Fang-Chi Hsu
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | | | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Federica Laguzzi
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joseph H Lee
- Sergievsky Center and Taub Institute, Columbia University Medical Center, New York, New York
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center – Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nana Matoba
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK
| | - Muhammad Riaz
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - M Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Yajuan Wang
- Department of Population and Quantitative Health and Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- Department of Cardiology, Ealing Hospital, Middlesex, United Kingdom
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Saima Afaq
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marzyeh Amini
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program
| | - Christie Ballantyne
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, Texas
- Houston Methodist Debakey Heart and Vascular Center, Houston, Texas
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas School of Public Health, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Sabanayagam Charumathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Centre for Quantitative Medicine, Academic Medicine Research Institute, Ophthalmology & Visual Sciences Academic Clinical Program
| | - Yii-Der Ida Chen
- Genomic Outcomes, Pediatrics, Institute for Translational Genomics and Population Sciences, LA BioMed at Harbor-UCLA Medical Center, Torrance, California
| | - John M Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Ulf de Faire
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, Missouri
| | - Renée de Mutsert
- Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Jingzhong Ding
- Center on Diabetes, Obesity, and Metabolism, Gerontology and Geriatric Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Qing Duan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Charles B Eaton
- Department of Family Medicine and Epidemiology, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ruben N Eppinga
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Virginia Fisher
- Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Terrence Forrester
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Social and Preventive Medicine
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hans J Grabe
- Department Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Sami Heikkinen
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat – National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Makoto Hirata
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - James E Hixson
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas School of Public Health, Houston, Texas
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, Maryland
- Center for Clinical and Translational Sciences and Department of Medicine, Georgetown-Howard Universities, Washington, District of Columbia
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - David R Jacobs
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Craig Johnson
- Collaborative Health Studies Coordinating Center, University of Washington, Seattle, Washington
| | - Jost Bruno Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Capital Medical University, Beijing, China
| | - Candace M Kammerer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Heikki A Koistinen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine and Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, Washington
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute
| | - Steve B Kritchevsky
- Sticht Center for Health Aging and Alzheimer's Prevention, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michiaki Kubo
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Carl D Langefeld
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, Washington
| | - Yize Li
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Jingjing Liang
- Department of Population and Quantitative Health and Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kiang Liu
- Epidemiology, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marie Loh
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Ani W Manichaikul
- Biostatistics Section, Center for Public Health Genomics, University of Virginia, School of Medicine, West Complex, Charlottesville, Virginia
| | - Colin A McKenzie
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | | | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Thomas H Mosley
- Geriatrics, Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kenneth J Mukamal
- General Medicine & Primary Care, Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Mike A Nalls
- Data Tecnica International, Glen Echo, Maryland
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, Washington
| | - Jeff R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Raha Pazoki
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- DZHK
| | - Patricia A Peyser
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Ozren Polasek
- Department of Public Health, Department of Medicine, University of Split, Split, Croatia
- Psychiatric Hospital “Sveti Ivan”, Zagreb, Croatia
- Gen-info Ltd, Zagreb, Croatia
| | - Neil Poulter
- School of Public Health, Imperial College London, London, United Kingdom
| | - Leslie J Raffel
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, California
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Alex P Reiner
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, Washington
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, School of Medicine, West Complex, Charlottesville, Virginia
| | - Antonietta Robino
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Jennifer G Robinson
- Department of Epidemiology and Medicine, University of Iowa, Iowa City, Iowa
| | - Lynda M Rose
- Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Carsten O Schmidt
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - William R Scott
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Yuan Shi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Stephen Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, California
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jennifer A Smith
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Nicholas Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kent D Taylor
- Genomic Outcomes, Pediatrics, Institute for Translational Genomics and Population Sciences, LA BioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diana van Heemst
- Internal Medicine, Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Yujie Wang
- Epidemiology, University of North Carolina Gilling School of Global Public Health, Chapel Hill, North Carolina
| | - Zhe Wang
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Christine Williams
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory Wilson
- Jackson Heart Study, School of Public Health, Jackson State University, Jackson, Mississippi
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Jie Yao
- Genomic Outcomes, Pediatrics, Institute for Translational Genomics and Population Sciences, LA BioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wei Zhao
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Alan B Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Diane M Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Donald W Bowden
- Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- Department of Cardiology, Ealing Hospital, Middlesex, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, London, United Kingdom
- MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom
- NIHR Imperial College Biomedical Research Centre, Imperial College London, London, United Kingdom
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Västerbotten, Sweden
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Barry I Freedman
- Nephrology, Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes
- Department of Genomics of Common Disease, Imperial College London, London, United Kingdom
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research
| | - Bernardo L Horta
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
- NIHR Imperial College Biomedical Research Centre, Imperial College London, London, United Kingdom
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Karin Leander
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center – Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Brenda Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - James Scott
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | | | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom
- NIHR Imperial College Biomedical Research Centre, Imperial College London, London, United Kingdom
- Health Data Research UK
- UK Dementia Research Institute
| | - Kari E North
- Epidemiology, University of North Carolina Gilling School of Global Public Health, Chapel Hill, North Carolina
- Carolina Center of Genome Sciences, University of North Carolina, Chapel Hill, North Carolina
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ching-Ti Liu
- Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Yongmei Liu
- Public Health Sciences, Epidemiology and Prevention, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Epidemiology, Medicine and Health Services, University of Washington, Seattle, Washington
- Kaiser Permanente Washington, Health Research Institute, Seattle, Washington
| | - Paul M Ridker
- Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sharon L R Kardia
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health and Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Dennis O Mook-Kanamori
- Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Public Health and Primary Care, Leiden University Medical Center, Leiden, Leiden
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Tanika N Kelly
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Ervin R Fox
- Cardiology, Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program
| | - Jingmin Liu
- WHI CCC, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jerome I Rotter
- Genomic Outcomes, Pediatrics, Institute for Translational Genomics and Population Sciences, LA BioMed at Harbor-UCLA Medical Center, Torrance, California
| | - W James Gauderman
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, California
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, United Kingdom
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Daniel I Chasman
- Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - L Adrienne Cupples
- Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- NHLBI Framingham Heart Study, Framingham, Massachusetts
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
41
|
Kovrov O, Kristensen KK, Larsson E, Ploug M, Olivecrona G. On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity. J Lipid Res 2019; 60:783-793. [PMID: 30686789 PMCID: PMC6446706 DOI: 10.1194/jlr.m088807] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/05/2018] [Indexed: 01/20/2023] Open
Abstract
Angiopoietin-like (ANGPTL) 8 is a secreted inhibitor of LPL, a key enzyme in plasma triglyceride metabolism. It was previously reported that ANGPTL8 requires another member of the ANGPTL family, ANGPTL3, to act on LPL. ANGPTL3, much like ANGPTL4, is a physiologically relevant regulator of LPL activity, which causes irreversible inactivation of the enzyme. Here, we show that ANGPTL8 can form complexes with either ANGPTL3 or ANGPTL4 when the proteins are refolded together from their denatured states. In contrast to the augmented inhibitory effect of the ANGPTL3/ANGPTL8 complex on LPL activity, the ANGPTL4/ANGPTL8 complex is less active compared with ANGPTL4 alone. In our experiments, all three members of the ANGPTL family use the same mechanism to inactivate LPL, which involves dissociation of active dimeric LPL to monomers. This inactivation can be counteracted by the presence of glycosylphosphatidylinositol-anchored HDL binding protein 1, the endothelial LPL transport protein previously known to protect LPL from spontaneous and ANGPTL4-catalyzed inactivation. Our data demonstrate that ANGPTL8 may function as an important metabolic switch, by forming complexes with ANGPTL3, or with ANGPTL4, in order to direct the flow of energy from triglycerides in blood according to the needs of the body.
Collapse
Affiliation(s)
- Oleg Kovrov
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erika Larsson
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
42
|
Yu Y, Lei X, Jiang H, Li Z, Creemers JWM, Zhang M, Qin S, Jin W, Jiang X. Prodomain of Furin Promotes Phospholipid Transfer Protein Proteasomal Degradation in Hepatocytes. J Am Heart Assoc 2018; 7:e008526. [PMID: 29680823 PMCID: PMC6015287 DOI: 10.1161/jaha.118.008526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Phospholipid transfer protein (PLTP) is one of the major modulators of lipoprotein metabolism and atherosclerosis development; however, little is known about the regulation of PLTP. The effect of hepatic prodomain of furin (profurin) expression on PLTP processing and function is investigated. METHODS AND RESULTS We used adenovirus expressing profurin in mouse liver to evaluate PLTP activity, mass, and plasma lipid levels. We coexpressed PLTP and profurin in human hepatoma cell line cells and studied their interaction. We found profurin expression significantly reduced plasma lipids, plasma PLTP activity, and mass in all tested mouse models, compared with controls. Moreover, the expression of profurin dramatically reduced liver PLTP activity and protein level. We further explored the mechanism using in vivo and ex vivo approaches. We found that profurin can interact with intracellular PLTP and promote its ubiquitination and proteasomal degradation, resulting in less PLTP secretion from the hepatocytes. Furin does not cleave PLTP; instead, it forms a complex with PLTP, likely through its prodomain. CONCLUSIONS Our study reveals that hepatic PLTP protein is targeted for proteasomal degradation by profurin expression, which could be a novel posttranslational mechanism underlying PLTP regulation.
Collapse
Affiliation(s)
- Yang Yu
- Department of Cell BiologyState University of New York Downstate Medical CenterBrooklynNY
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of AtherosclerosisTaishan Medical UniversityTaianChina
| | - Xia Lei
- Department of Cell BiologyState University of New York Downstate Medical CenterBrooklynNY
| | - Hui Jiang
- Department of Cell BiologyState University of New York Downstate Medical CenterBrooklynNY
| | - Zhiqiang Li
- Department of Cell BiologyState University of New York Downstate Medical CenterBrooklynNY
| | - John W. M. Creemers
- Laboratory of Biochemical NeuroendocrinologyDepartment of Human GeneticsHerestraat 49 bus 6023000 LeuvenBelgium
| | - Ming Zhang
- Department of Cell BiologyState University of New York Downstate Medical CenterBrooklynNY
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of AtherosclerosisTaishan Medical UniversityTaianChina
| | - Weijun Jin
- Department of Cell BiologyState University of New York Downstate Medical CenterBrooklynNY
| | - Xian‐Cheng Jiang
- Department of Cell BiologyState University of New York Downstate Medical CenterBrooklynNY
- Molecular and Cellular Cardiology ProgramVeterans Affair New York Harbor Healthcare SystemBrooklynNY
| |
Collapse
|
43
|
Jiang XC. Phospholipid transfer protein: its impact on lipoprotein homeostasis and atherosclerosis. J Lipid Res 2018; 59:764-771. [PMID: 29438986 DOI: 10.1194/jlr.r082503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is one of the major modulators of lipoprotein metabolism and atherosclerosis development in humans; however, we still do not quite understand the mechanisms. In mouse models, PLTP overexpression induces atherosclerosis, while its deficiency reduces it. Thus, mouse models were used to explore the mechanisms. In this review, I summarize the major progress made in the PLTP research field and emphasize its impact on lipoprotein metabolism and atherosclerosis, as well as its regulation.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, Brooklyn, NY
| |
Collapse
|
44
|
Abstract
Triglycerides and cholesterol circulate in the bloodstream as part of various lipoprotein particles. Three members of the angiopoietin-like (ANGPTL) protein family - ANGPTL3, ANGPTL4 and ANGPTL8 - have emerged as important regulators of plasma lipoprotein levels by inhibiting the enzyme lipoprotein lipase. Here, I review the role of ANGPTL3 in lipoprotein metabolism. In contrast to ANGPTL4 and ANGPTL8, ANGPTL3 is exclusively produced in the liver and can therefore be classified as a true hepatokine. ANGPTL3 cooperates with ANGPTL8 to inhibit lipoprotein lipase and is mostly active after feeding, whereas ANGPTL4 is mostly active after fasting. Inactivation of ANGPTL3 in mice reduces plasma triglyceride and free fatty acid levels and suppresses atherosclerosis. In humans, homozygous loss-of-function mutations in ANGPTL3 lead to low plasma levels of low-density lipoproteins, high-density lipoproteins and triglycerides, a condition referred to as familial combined hypolipidaemia. Heterozygous carriers of loss-of-function mutations in ANGPTL3 have a lower risk of coronary artery disease than non-carriers. At present, researchers are investigating antisense oligonucleotide and monoclonal antibody-based inactivation of ANGPTL3 in human clinical trials for the therapeutic management of dyslipidaemia and atherosclerosis. Thus, ANGPTL3 is an important liver-derived regulator of lipoprotein metabolism that holds considerable promise as a target for atherosclerosis.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
45
|
Graham MJ, Lee RG, Brandt TA, Tai LJ, Fu W, Peralta R, Yu R, Hurh E, Paz E, McEvoy BW, Baker BF, Pham NC, Digenio A, Hughes SG, Geary RS, Witztum JL, Crooke RM, Tsimikas S. Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides. N Engl J Med 2017; 377:222-232. [PMID: 28538111 DOI: 10.1056/nejmoa1701329] [Citation(s) in RCA: 471] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Epidemiologic and genomewide association studies have linked loss-of-function variants in ANGPTL3, encoding angiopoietin-like 3, with low levels of plasma lipoproteins. METHODS We evaluated antisense oligonucleotides (ASOs) targeting Angptl3 messenger RNA (mRNA) for effects on plasma lipid levels, triglyceride clearance, liver triglyceride content, insulin sensitivity, and atherosclerosis in mice. Subsequently, 44 human participants (with triglyceride levels of either 90 to 150 mg per deciliter [1.0 to 1.7 mmol per liter] or >150 mg per deciliter, depending on the dose group) were randomly assigned to receive subcutaneous injections of placebo or an antisense oligonucleotide targeting ANGPTL3 mRNA in a single dose (20, 40, or 80 mg) or multiple doses (10, 20, 40, or 60 mg per week for 6 weeks). The main end points were safety, side-effect profile, pharmacokinetic and pharmacodynamic measures, and changes in levels of lipids and lipoproteins. RESULTS The treated mice had dose-dependent reductions in levels of hepatic Angptl3 mRNA, Angptl3 protein, triglycerides, and low-density lipoprotein (LDL) cholesterol, as well as reductions in liver triglyceride content and atherosclerosis progression and increases in insulin sensitivity. After 6 weeks of treatment, persons in the multiple-dose groups had reductions in levels of ANGPTL3 protein (reductions of 46.6 to 84.5% from baseline, P<0.01 for all doses vs. placebo) and in levels of triglycerides (reductions of 33.2 to 63.1%), LDL cholesterol (1.3 to 32.9%), very-low-density lipoprotein cholesterol (27.9 to 60.0%), non-high-density lipoprotein cholesterol (10.0 to 36.6%), apolipoprotein B (3.4 to 25.7%), and apolipoprotein C-III (18.9 to 58.8%). Three participants who received the antisense oligonucleotide and three who received placebo reported dizziness or headache. There were no serious adverse events. CONCLUSIONS Oligonucleotides targeting mouse Angptl3 retarded the progression of atherosclerosis and reduced levels of atherogenic lipoproteins in mice. Use of the same strategy to target human ANGPTL3 reduced levels of atherogenic lipoproteins in humans. (Funded by Ionis Pharmaceuticals; ClinicalTrials.gov number, NCT02709850 .).
Collapse
Affiliation(s)
- Mark J Graham
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Richard G Lee
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Teresa A Brandt
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Li-Jung Tai
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Wuxia Fu
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Raechel Peralta
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Rosie Yu
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Eunju Hurh
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Erika Paz
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Bradley W McEvoy
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Brenda F Baker
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Nguyen C Pham
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Andres Digenio
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Steven G Hughes
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Richard S Geary
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Joseph L Witztum
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Rosanne M Crooke
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| | - Sotirios Tsimikas
- From Ionis Pharmaceuticals, Carlsbad (M.J.G., R.G.L., T.A.B., L.-J.T., W.F., R.P., R.Y., E.P., B.W.M., B.F.B., N.C.P., S.G.H., R.S.G., R.M.C., S.T.), and the University of California, San Diego, La Jolla (J.L.W., S.T.) - both in California; and Akcea Therapeutics, Cambridge, MA (E.H., A.D.)
| |
Collapse
|
46
|
Di Costanzo A, Di Leo E, Noto D, Cefalù AB, Minicocci I, Polito L, D'Erasmo L, Cantisani V, Spina R, Tarugi P, Averna M, Arca M. Clinical and biochemical characteristics of individuals with low cholesterol syndromes: A comparison between familial hypobetalipoproteinemia and familial combined hypolipidemia. J Clin Lipidol 2017; 11:1234-1242. [PMID: 28733173 DOI: 10.1016/j.jacl.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/27/2017] [Accepted: 06/17/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The most frequent monogenic causes of low plasma cholesterol are familial hypobetalipoproteinemia (FHBL1) because of truncating mutations in apolipoprotein B coding gene (APOB) and familial combined hypolipidemia (FHBL2) due to loss-of-function mutations in ANGPTL3 gene. OBJECTIVE A direct comparison of lipid phenotypes of these 2 conditions has never been carried out. In addition, although an increased prevalence of liver steatosis in FHBL1 has been consistently reported, the hepatic consequences of FHBL2 are not well established. METHODS We investigated 350 subjects, 67 heterozygous carriers of APOB mutations, 63 carriers of the p.S17* mutation in ANGPTL3 (57 heterozygotes and 6 homozygotes), and 220 noncarrier normolipemic controls. Prevalence and degree of hepatic steatosis were assessed by ultrasonography. RESULTS A steady decrease of low-density lipoprotein cholesterol levels were observed from heterozygous to homozygous FHBL2 and to FHBL1 individuals, with the lowest levels in heterozygous FHBL1 carrying truncating mutations in exons 1 to 25 of APOB (P for trend <.001). Plasma triglycerides levels were similar in heterozygous FHBL1 and homozygous FHBL2 individuals, but higher in heterozygous FHBL2. The lowest high-density lipoprotein cholesterol levels were detected in homozygous FHBL2 (P for trend <.001). Compared with controls, prevalence and severity of hepatic steatosis were increased in heterozygous FHBL1 (P < .001), but unchanged in FHBL2 individuals. CONCLUSION Truncating APOB mutations showed the more striking low-density lipoprotein cholesterol lowering effect compared with p.S17* mutation in ANGPTL3. Reduced high-density lipoprotein cholesterol levels were the unique lipid characteristic associated with FHBL2. Mutations impairing liver synthesis or secretion of apolipoprotein B are crucial to increase the risk of liver steatosis.
Collapse
Affiliation(s)
- Alessia Di Costanzo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy.
| | - Enza Di Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Davide Noto
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Angelo Baldassare Cefalù
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Ilenia Minicocci
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Luca Polito
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Laura D'Erasmo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Vito Cantisani
- Department of Radiological Sciences, Sapienza University of Rome, Rome, Italy
| | - Rossella Spina
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Patrizia Tarugi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Averna
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Marcello Arca
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
47
|
Paththinige CS, Sirisena ND, Dissanayake V. Genetic determinants of inherited susceptibility to hypercholesterolemia - a comprehensive literature review. Lipids Health Dis 2017; 16:103. [PMID: 28577571 PMCID: PMC5457620 DOI: 10.1186/s12944-017-0488-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Hypercholesterolemia is a strong determinant of mortality and morbidity associated with cardiovascular diseases and a major contributor to the global disease burden. Mutations in four genes (LDLR, APOB, PCSK9 and LDLRAP1) account for the majority of cases with familial hypercholesterolemia. However, a substantial proportion of adults with hypercholesterolemia do not have a mutation in any of these four genes. This indicates the probability of having other genes with a causative or contributory role in the pathogenesis of hypercholesterolemia and suggests a polygenic inheritance of this condition. Here in, we review the recent evidence of association of the genetic variants with hypercholesterolemia and the three lipid traits; total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C), their biological pathways and the associated pathogenetic mechanisms. Nearly 80 genes involved in lipid metabolism (encoding structural components of lipoproteins, lipoprotein receptors and related proteins, enzymes, lipid transporters, lipid transfer proteins, and activators or inhibitors of protein function and gene transcription) with single nucleotide variants (SNVs) that are recognized to be associated with hypercholesterolemia and serum lipid traits in genome-wide association studies and candidate gene studies were identified. In addition, genome-wide association studies in different populations have identified SNVs associated with TC, HDL-C and LDL-C in nearly 120 genes within or in the vicinity of the genes that are not known to be involved in lipid metabolism. Over 90% of the SNVs in both these groups are located outside the coding regions of the genes. These findings indicates that there might be a considerable number of unrecognized processes and mechanisms of lipid homeostasis, which when disrupted, would lead to hypercholesterolemia. Knowledge of these molecular pathways will enable the discovery of novel treatment and preventive methods as well as identify the biochemical and molecular markers for the risk prediction and early detection of this common, yet potentially debilitating condition.
Collapse
Affiliation(s)
- C S Paththinige
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka.
| | - N D Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| | - Vhw Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| |
Collapse
|
48
|
Metabolic Syndrome Modulates Association between Endothelial Lipase and Lipid/Lipoprotein Plasma Levels in Acute Heart Failure Patients. Sci Rep 2017; 7:1165. [PMID: 28446761 PMCID: PMC5430647 DOI: 10.1038/s41598-017-01367-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/29/2017] [Indexed: 01/04/2023] Open
Abstract
We hypothesised that the established association of endothelial lipase (EL) plasma levels with atherogenic lipid profile is altered in acute heart failure (AHF) and additionally affected by overlapping metabolic syndrome (MetS). We examined the association of EL plasma levels and lipid/lipoprotein plasma levels in AHF patients without and with overlapping MetS. The study was performed as a single-centre, observational study on 152 AHF patients, out of which 85 had overlapping MetS. In the no-MetS group, EL plasma levels were significantly positively correlated with plasma levels of atherogenic lipids/lipoproteins, including total cholesterol, low-density lipoprotein (LDL)-cholesterol, total LDL particles and triglycerides, but also with plasma levels of antiatherogenic high-density lipoprotein (HDL)-cholesterol, total HDL particles and small HDL particles. In the MetS group, EL plasma levels were positively correlated with triglyceride and small LDL-particle levels, and significantly negatively correlated with plasma levels of large HDL particles as well as with LDL- and HDL-particle size, respectively. EL- and lipid/lipoprotein- plasma levels were different in the no-MetS patients, compared to MetS patients. The association of EL with atherogenic lipid profile is altered in AHF and additionally modified by MetS, which strongly modulates EL- and lipid/lipoprotein-plasma levels in AHF.
Collapse
|
49
|
|
50
|
Abstract
Angiopoietin-like proteins (ANGPTLs) have emerged as an important regulator of lipid and glucose metabolism as well as insulin sensitivity. ANGPTL3 plays a key role in regulating circulating triglycerides (TG) and cholesterol levels through reversible inhibition of lipoprotein lipase (LPL) and endothelial lipase enzymes activity. Loss of function mutation of ANGPTL3 gene has been identified in many subjects with familial combined hypolipidemia. ANGPTL4 produces irreversible inhibition of LPL activity, while ANGPTL8 enhances the activity of ANGPTL3, which highlight the interplay between the different ANGPTLs in a coordinated manner to regulate lipid metabolism during different nutritional states. This new class of lipid modulators may serve as potential novel therapeutic target for reducing plasma lipoprotein and treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Mohamed Hassan
- Division of Cardiology, Aswan Heart Centre, Aswan, Egypt
| |
Collapse
|