1
|
Accili D, Deng Z, Liu Q. Insulin resistance in type 2 diabetes mellitus. Nat Rev Endocrinol 2025:10.1038/s41574-025-01114-y. [PMID: 40247011 DOI: 10.1038/s41574-025-01114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
Insulin resistance is an integral pathophysiological feature of type 2 diabetes mellitus. Here, we review established and emerging cellular mechanisms of insulin resistance, their complex integrative features and their relevance to disease progression. While recognizing the heterogeneity of the elusive fundamental disruptions that cause insulin resistance, we endorse the view that effector mechanisms impinge on insulin receptor signalling and its relationship with plasma levels of insulin. We focus on hyperinsulinaemia and its consequences: acutely impaired but persistent insulin action, with reduced ability to lower glucose levels but preserved lipid synthesis and lipoprotein secretion. We emphasize the role of insulin sensitization as a therapeutic goal in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Domenico Accili
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.
| | - Zhaobing Deng
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Qingli Liu
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| |
Collapse
|
2
|
He B, Copps KD, Stöhr O, Liu B, Hu S, Joshi S, Haigis MC, White MF, Zhu H, Tao R. Spatial regulation of glucose and lipid metabolism by hepatic insulin signaling. Cell Metab 2025:S1550-4131(25)00207-4. [PMID: 40245868 DOI: 10.1016/j.cmet.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/18/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025]
Abstract
Hepatic insulin sensitivity is critical for systemic glucose and lipid homeostasis. The liver is spatially organized into zones in which hepatocytes express distinct metabolic enzymes; however, the functional significance of this zonation to metabolic dysregulation caused by insulin resistance is undetermined. Here, we used CreER mice to selectively disrupt insulin signaling in periportal (PP) and pericentral (PC) hepatocytes. PP-insulin resistance has been suggested to drive combined hyperglycemia and excess lipogenesis in individuals with type 2 diabetes. However, PP-insulin resistance in mice impaired lipogenesis and suppressed high-fat diet (HFD)-induced hepatosteatosis, despite elevated gluconeogenesis and insulin. In contrast, PC-insulin resistance reduced HFD-induced PC steatosis while preserving normal glucose homeostasis, in part by shifting glycolytic metabolism from the liver to the muscle. These results demonstrate distinct roles of insulin in PP versus PC hepatocytes and suggest that PC-insulin resistance might be therapeutically useful to combat hepatosteatosis without compromising glucose homeostasis.
Collapse
Affiliation(s)
- Baiyu He
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kyle D Copps
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Oliver Stöhr
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Beikl Liu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Songhua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Hao Zhu
- Divisions of Hematology-Oncology, Children's Research Institute, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Bertinat R, Holyoak T, Gatica R, Jara N, González-Chavarría I, Westermeier F. The neglected PCK1/glucagon (inter)action in nutrient homeostasis beyond gluconeogenesis: Disease pathogenesis and treatment. Mol Metab 2025; 94:102112. [PMID: 39954782 PMCID: PMC11909762 DOI: 10.1016/j.molmet.2025.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Glucagon plays a central role in hepatic adaptation during fasting, with the upregulation of hepatic phosphoenolpyruvate carboxykinase 1 (PCK1) traditionally associated with increased gluconeogenesis. However, recent experimental models and clinical studies have challenged this view, suggesting a more complex interplay between PCK1 and glucagon, which extends beyond gluconeogenesis and has broader implications for metabolic regulation in health and disease. SCOPE OF REVIEW This review provides a comprehensive overview of the current evidence on the multifaceted roles of PCK1 in glucagon-dependent hepatic adaptation during fasting, which is crucial for maintaining systemic homeostasis not only of glucose, but also of lipids and amino acids. We explore the relationship between PCK1 deficiency and glucagon resistance in metabolic disorders, including inherited PCK1 deficiency and metabolic dysfunction-associated steatotic liver disease (MASLD), and compare findings from experimental animal models with whole-body or tissue-specific ablation of PCK1 or the glucagon receptor. We propose new research platforms to advance the therapeutic potential of targeting PCK1 in metabolic diseases. MAJOR CONCLUSIONS We propose that hepatic PCK1 deficiency might be an acquired metabolic disorder linking alterations in lipid metabolism with impaired glucagon signaling. Our findings highlight interesting links between glycerol, PCK1 deficiency, elevated plasma alanine levels and glucagon resistance. We conclude that the roles of PCK1 and glucagon in metabolic regulation are more complex than previously assumed. In this (un)expected scenario, hepatic PCK1 deficiency and glucagon resistance appear to exert limited control over glycemia, but have broader metabolic effects related to lipid and amino acid dysregulation. Given the shift in glucagon research from receptor inhibition to activation, we propose that a similar paradigm shift is needed in the study of hepatic PCK1. Understanding PCK1 expression and activity in the glucagon-dependent hepatic adaptation to fasting might provide new perspectives and therapeutic opportunities for metabolic diseases.
Collapse
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada, CMA-BIO BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile.
| | - Todd Holyoak
- Department of Biology, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Rodrigo Gatica
- Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Nery Jara
- Departamento de Farmacología, Universidad de Concepción, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH JOANNEUM University of Applied Sciences, Graz, Austria; Centro de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
4
|
Vily-Petit J, Gautier-Stein A, Mithieux G. [Intestinal gluconeogenesis : When the intestine produces glucose to prevent obesity and hepatic steatosis]. Med Sci (Paris) 2025; 41:246-252. [PMID: 40117549 DOI: 10.1051/medsci/2025023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Intestinal gluconeogenesis refers to the ability of the gut to produce glucose outside of meals. By initiating a gut-brain neural axis, its activation by dietary fiber or protein improves the regulation of energy balance. Recently, the creation of a genetic activation model of intestinal gluconeogenesis has demonstrated its anti-obesity, anti-diabetes and anti-hepatic steatosis effects. Interestingly, it increases thermogenesis in brown adipose tissue, thereby promoting energy expenditure and contributing to the fight against obesity. Therefore, targeting intestinal gluconeogenesis could be an innovative strategy to address metabolic diseases such as hepatic steatosis and diabetes, paving the way to new therapeutic approaches.
Collapse
Affiliation(s)
- Justine Vily-Petit
- Inserm U1213 Nutrition, Diabète et Cerveau, université Claude Bernard Lyon 1, Villeurbanne, France
| | - Amandine Gautier-Stein
- Inserm U1213 Nutrition, Diabète et Cerveau, université Claude Bernard Lyon 1, Villeurbanne, France
| | - Gilles Mithieux
- Inserm U1213 Nutrition, Diabète et Cerveau, université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
5
|
Zhang X, Du P, Wang Z, Zhu Y, Si X, Chen W, Huang Y. Distinct dynamic regulation of pectoralis muscle metabolomics by insulin and the promotion of glucose-lipid metabolism with extended duration. Poult Sci 2025; 104:104619. [PMID: 39642750 PMCID: PMC11665691 DOI: 10.1016/j.psj.2024.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024] Open
Abstract
Birds' glycolipid metabolism has garnered considerable attention due to their fasting blood glucose levels being nearly twice those of mammals. While skeletal muscle is the primary insulin-sensitive tissue in mammals, the effects of insulin on chicken skeletal muscle remain unclear. In this study, the insulin-responsive metabolites were identified in broiler's pectoralis muscle (after 16 h of fasting) using widely targeted metabolomics. Glycolipid concentrations were measured using kits, and the expression of key genes involved in glucose metabolism was assessed via quantitative real-time PCR (qRT-PCR). The insulin tolerance test, performed by injecting 5 IU/kg body weight of insulin, demonstrated a rapid drop in blood glucose levels from 0 to 15 min, with a consistent reduction observed at 120 min (P < 0.01). Insulin did not alter glucose and glycogen content in chicken pectoralis; however, low-density lipoprotein (LDL, P < 0.05) levels were upregulated in the early phase (15 min). With an extended insulin duration (120 min), pectoralis glucose content increased (P < 0.05), accompanied by a reduction in TG levels (P < 0.05). Metabolomic analysis revealed that insulin promotes the downregulation of 63 out of 71 metabolites at 15 min and the upregulation of 101 out of 134 metabolites at 120 min, mainly associated with lysine degradation and thyroid hormone signaling pathways, respectively. 7 metabolites were dynamically modulated in the same manner over time (2 up-up and 5 down-down). Early insulin inhibited glycolysis, evidenced by the reduction in phosphoenolpyruvate levels and hexokinase 2 (HK2) expression; however, insulin promoted glucose uptake through the activation of glucose transporter 4 (GLUT4) and enhanced glycolysis, accompanied by elevated fatty acid metabolism at the later phase. In conclusion, insulin dynamically regulates the metabolomics of the pectoralis muscle over time. Initially, chicken muscle tissues downregulate metabolic activities to accommodate the new signaling state, followed by significant upregulation to meet heightened metabolic demands. Extended insulin monitoring promotes glucose uptake and glycolysis, alongside enhanced fatty acid metabolism. This research provides insights into the potential mechanisms of insulin action in chicken muscles.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Pengfei Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Ziyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yao Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| |
Collapse
|
6
|
Imierska M, Zabielski P, Roszczyc-Owsiejczuk K, Pogodzińska K, Błachnio-Zabielska A. Impact of reduced hepatic ceramide levels in high-fat diet mice on glucose metabolism. J Nutr Biochem 2025; 135:109785. [PMID: 39427846 DOI: 10.1016/j.jnutbio.2024.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Dysregulation of insulin action in hepatocytes, common in obesity, significantly contributes to insulin resistance, type 2 diabetes, and metabolic syndrome. Previous research highlights ceramides' role in these conditions. This study explores the impact of ceramides by silencing the serine palmitoyltransferase (Sptlc2) gene, crucial for the initial ceramide biosynthesis, using hydrodynamic gene delivery. Male C57BL/6 mice were randomly divided into three groups: one on a low-fat diet (LFD) receiving scrambled shRNA plasmids, another on a high-fat diet (HFD) with scrambled shRNA plasmids, and a third on HFD with a plasmid targeting Sptlc2. Analyses included RT-PCR for gene expression, western blot for protein levels, and UHPLC/MS/MS for lipid profiling. Glucose metabolism was evaluated via oral glucose tolerance tests, homeostatic model assessment of insulin resistance, and glucose-6-phosphate analysis. Results showed that HFD induces insulin resistance by inhibiting insulin signaling and increasing active lipid levels in hepatocytes. Sptlc2 silencing reduced ceramide accumulation, improving insulin signaling and glucose metabolism. Notably, ceramide synthesis inhibition did not significantly affect other lipid levels, highlighting ceramide's critical role in hepatic insulin resistance.
Collapse
Affiliation(s)
- Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
7
|
Lee HY, Min KJ. Dietary Restriction and Lipid Metabolism: Unveiling Pathways to Extended Healthspan. Nutrients 2024; 16:4424. [PMID: 39771045 PMCID: PMC11678862 DOI: 10.3390/nu16244424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Dietary restriction (DR) has been reported to be a significant intervention that influences lipid metabolism and potentially modulates the aging process in a wide range of organisms. Lipid metabolism plays a pivotal role in the regulation of aging and longevity. In this review, we summarize studies on the significant role of lipid metabolism in aging in relation to DR. As a potent intervention to slow down aging, DR has demonstrated promising effects on lipid metabolism, influencing the aging processes across various species. The current review focuses on the relationships among DR-related molecular signaling proteins such as the sirtuins, signaling pathways such as the target of rapamycin and the insulin/insulin-like growth factor (IGF)-1, lipid metabolism, and aging. Furthermore, the review presents research results on diet-associated changes in cell membrane lipids and alterations in lipid metabolism caused by commensal bacteria, highlighting the importance of lipid metabolism in aging. Overall, the review explores the interplay between diet, lipid metabolism, and aging, while presenting untapped areas for further understanding of the aging process.
Collapse
Affiliation(s)
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea;
| |
Collapse
|
8
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
9
|
Chim SM, Howell K, Dronzek J, Wu W, Van Hout C, Ferreira MAR, Ye B, Li A, Brydges S, Arunachalam V, Marcketta A, Locke AE, Bovijn J, Verweij N, De T, Lotta L, Mitnaul L, LeBlanc M, Center RG, Carey DJ, Melander O, Shuldiner A, Karalis K, Economides AN, Nistala H. Genetic inactivation of zinc transporter SLC39A5 improves liver function and hyperglycemia in obesogenic settings. eLife 2024; 12:RP90419. [PMID: 39671241 DOI: 10.7554/elife.90419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter SLC30A8 reduce T2D risk. Despite this accumulated evidence, a mechanistic understanding of how zinc influences systemic glucose homeostasis and consequently T2D risk remains unclear. To further explore the relationship between zinc and metabolic traits, we searched the exome database of the Regeneron Genetics Center-Geisinger Health System DiscovEHR cohort for genes that regulate zinc levels and associate with changes in metabolic traits. We then explored our main finding using in vitro and in vivo models. We identified rare loss-of-function (LOF) variants (MAF <1%) in Solute Carrier Family 39, Member 5 (SLC39A5) associated with increased circulating zinc (p=4.9 × 10-4). Trans-ancestry meta-analysis across four studies exhibited a nominal association of SLC39A5 LOF variants with decreased T2D risk. To explore the mechanisms underlying these associations, we generated mice lacking Slc39a5. Slc39a5-/- mice display improved liver function and reduced hyperglycemia when challenged with congenital or diet-induced obesity. These improvements result from elevated hepatic zinc levels and concomitant activation of hepatic AMPK and AKT signaling, in part due to zinc-mediated inhibition of hepatic protein phosphatase activity. Furthermore, under conditions of diet-induced non-alcoholic steatohepatitis (NASH), Slc39a5-/- mice display significantly attenuated fibrosis and inflammation. Taken together, these results suggest SLC39A5 as a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD) due to metabolic derangements including T2D.
Collapse
Affiliation(s)
| | | | - John Dronzek
- Regeneron Genetics Center, New York, United States
| | - Weizhen Wu
- Regeneron Genetics Center, New York, United States
| | | | | | - Bin Ye
- Regeneron Genetics Center, New York, United States
| | - Alexander Li
- Regeneron Genetics Center, New York, United States
| | | | | | | | - Adam E Locke
- Regeneron Genetics Center, New York, United States
| | - Jonas Bovijn
- Regeneron Genetics Center, New York, United States
| | - Niek Verweij
- Regeneron Genetics Center, New York, United States
| | - Tanima De
- Regeneron Genetics Center, New York, United States
| | - Luca Lotta
- Regeneron Genetics Center, New York, United States
| | | | | | | | | | | | | | | | - Aris N Economides
- Regeneron Genetics Center, New York, United States
- Regeneron Pharmaceuticals, New York, United States
| | | |
Collapse
|
10
|
Li Y, Chen S, Liu Y, Liu P, Li S, Liu N. PI3KR1 and AKT1 in largemouth bass (Micropterus salmoides): molecular cloning, characterization, and its involvement in the alleviation of hepatic glycogen deposition caused by insulin inclusion in vitro. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2373-2388. [PMID: 39150597 DOI: 10.1007/s10695-024-01379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024]
Abstract
In this study, the full-length cDNA sequences of the phosphatidylinositol-3-kinase p85 alpha (PI3KR1) and serine/threonine kinase 1 (AKT1) genes in largemouth bass (Micropterus salmoides) were obtained using the rapid amplification of cDNA ends (RACE) method. Sequence analysis revealed that the cloned sequences of PI3KR1 and AKT1 are 4170 bp and 3672 bp in length, with open reading frames (ORFs) of 1389 bp and 1422 bp encoding 462 and 473 amino acids, respectively. Sequence alignment and evolutionary tree analysis indicated their close relationship to other teleosts, especially those with similar feeding habits. Tissue distribution demonstrated widespread distribution of both genes in various tissues, with the highest abundance in the liver. Further results found that the upregulation of the expression of p-PI3KR1, p-AKT1, p-FoxO1, and GLUT2 proteins by insulin, while suppressing the expression of the total FoxO1 protein, effectively triggers a significant activation of the PI3KR1-AKT1 insulin signaling pathway. Meanwhile, the mRNA levels of the key glycolytic genes, including glucokinase (gk), pyruvate kinase (pk), and phosphofructokinase liver type (pfkl), have been enhanced evidently. In contrast, the expression of gluconeogenic genes such as phosphoenolpyruvate carboxykinase (pepck), glucose-6-phosphatase catalytic subunit (g6pc), and fructose-1,6-bisphosphatase-1 (fbp1) has been notably down-regulated. In addition, insulin treatment promoted the phosphorylation of glycogen phosphorylase (PYGL) and the dephosphorylation of glycogen synthase (GS), and the glycogen content in the insulin-treated group was remarkably reduced compared to the control group. Overall, our study indicates that the activation of PI3KR1-AKT1 insulin signaling pathway represses the hepatic glycogen deposition via the regulation of glycolysis and gluconeogenesis, which provides some new insights into nutritional strategy to effectively regulate the glucose metabolism in carnivorous fish.
Collapse
Affiliation(s)
- Yuru Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Shiwen Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs On Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, China
| | - Yijun Liu
- Research Centre of the Ministry of Agriculture and Rural Affairs On Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, China
| | - Pingping Liu
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs On Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, China.
| | - Ning Liu
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China.
| |
Collapse
|
11
|
Goedeke L, Strober JW, Suh R, Paolella LM, Li X, Rogers JC, Petersen MC, Nasiri AR, Casals G, Kahn M, Cline GW, Samuel VT, Shulman GI, Vatner DF. High-fat-diet-induced hepatic insulin resistance per se attenuates murine de novo lipogenesis. iScience 2024; 27:111175. [PMID: 39524330 PMCID: PMC11550620 DOI: 10.1016/j.isci.2024.111175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/04/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatic insulin resistance (IR) is often said to be "pathway-selective" with preserved insulin stimulation of de novo lipogenesis (DNL) despite attenuated insulin signaling toward glucose metabolism. However, DNL has not been assessed in models of liver-specific IR. We studied mice with differential tissue-specific lipid-induced IR achieved by different durations of high-fat diet (HFD) feeding. Mice with isolated hepatic IR demonstrated markedly reduced DNL, with a rebound seen in mice with whole-body IR. Insr T1150A mice (protected against diacylglycerol-PKCε-induced hepatic IR) maintained normal DNL with HFD feeding. During hyperinsulinemic clamps, hepatic IR reduced DNL, but hyperglycemia augmented DNL in both resistant and sensitive animals. Regulation through SREBP1c did not consistently correlate with changes in DNL. These results demonstrate that hepatic IR is not pathway-selective, highlighting the primacy of lipogenic substrate in stimulation of DNL. Future therapeutics to reduce lipogenesis should target substrate drivers of DNL rather than targeting plasma insulin levels.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York NY 10029, USA
- Diabetes Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York NY 10029, USA
| | - Jordan W. Strober
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Rebecca Suh
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Lauren M. Paolella
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Xiruo Li
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven CT 06520, USA
| | - Jillian C. Rogers
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Max C. Petersen
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven CT 06520, USA
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis MO 63110, USA
| | - Ali R. Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Gregori Casals
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Gary W. Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Varman T. Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
- Department of Medicine, Veterans Affairs Medical Center, West Haven CT 06516, USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven CT 06520, USA
| | - Daniel F. Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
- Department of Medicine, Veterans Affairs Medical Center, West Haven CT 06516, USA
- Program in Translational Biomedicine, Yale School of Medicine, New Haven CT 06520, USA
| |
Collapse
|
12
|
Bush JR, Iwuamadi I, Han J, Schibli DJ, Goodlett DR, Deehan EC. Resistant Potato Starch Supplementation Reduces Serum Free Fatty Acid Levels and Influences Bile Acid Metabolism. Metabolites 2024; 14:536. [PMID: 39452917 PMCID: PMC11510092 DOI: 10.3390/metabo14100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Resistant starches, such as high-amylose maize starch and resistant potato starch (RPS), have prebiotic effects that are linked to improved metabolism at >15 g/day, but the effects at lower doses have not been reported. Methods: We performed an exploratory post hoc analysis of free fatty acids (FFAs), bile acids (BAs), and ketone bodies in serum previously collected from a randomized, double-blind, placebo-controlled clinical trial evaluating the effects of one- and four-week consumption of 3.5 g/day RPS versus a placebo using two-way ANOVA adjusted by pFDR. Associations between week 4 changes in FFAs, BAs, and ketone bodies were assessed by Pearson's correlations. Results: RPS consumption reduced total FFAs relative to the placebo, including multiple unsaturated FFAs and octanedioic acid, with reductions in taurine- and glycine-conjugated secondary BAs also detected (q < 0.05). No changes in ketone bodies were observed (q > 0.05). Changes in 7-ketodeoxycholic acid (r = -0.595) and glycolithocholic acid (r = -0.471) were inversely correlated with treatment-induced reductions in FFAs for RPS but not the placebo, suggesting the effects were from the prebiotic. Shifts in β-hydroxybutyrate were further correlated with FFA changes in both treatments (q < 0.05). Conclusions: These findings demonstrate that low doses of RPS positively influence fatty acid metabolism in humans, reducing circulating levels of FFA and conjugated BAs.
Collapse
Affiliation(s)
- Jason R. Bush
- MSP Starch Products Inc., Carberry, MB R0K 0H0, Canada
| | - Izuchukwu Iwuamadi
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA; (I.I.); (E.C.D.)
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Jun Han
- UVic-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada; (J.H.); (D.J.S.); (D.R.G.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | - David J. Schibli
- UVic-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada; (J.H.); (D.J.S.); (D.R.G.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | - David R. Goodlett
- UVic-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada; (J.H.); (D.J.S.); (D.R.G.)
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | - Edward C. Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA; (I.I.); (E.C.D.)
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
13
|
Sancar G, Birkenfeld AL. The role of adipose tissue dysfunction in hepatic insulin resistance and T2D. J Endocrinol 2024; 262:e240115. [PMID: 38967989 PMCID: PMC11378142 DOI: 10.1530/joe-24-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
The root cause of type 2 diabetes (T2D) is insulin resistance (IR), defined by the failure of cells to respond to circulating insulin to maintain lipid and glucose homeostasis. While the causes of whole-body insulin resistance are multifactorial, a major contributing factor is dysregulation of liver and adipose tissue function. Adipose dysfunction, particularly adipose tissue-IR (adipo-IR), plays a crucial role in the development of hepatic insulin resistance and the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) in the context of T2D. In this review, we will focus on molecular mechanisms of hepatic insulin resistance and its association with adipose tissue function. A deeper understanding of the pathophysiological mechanisms of the transition from a healthy state to insulin resistance, impaired glucose tolerance, and T2D may enable us to prevent and intervene in the progression to T2D.
Collapse
Affiliation(s)
- Gencer Sancar
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Wang L, Chi EZ, Zhao XH. Valorization of cell wall polysaccharides extracted from Liubao brick tea residues: chemical, structural, and hypoglycemic properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6933-6946. [PMID: 38597456 DOI: 10.1002/jsfa.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Tea dregs, typically generated during the production of instant tea or tea beverages, have conventionally been regarded as waste material and routinely discarded. Nevertheless, contemporary research endeavors are concentrating on discovering efficient methods for utilizing the potential of this discarded resource. RESULTS In this study, we employed a sequential extraction method using chemical chelating agents to extract and isolate four distinct cell wall polysaccharides, designated as CWTPS-1 through CWTPS-4, from the tea dregs of Liubao brick tea. A comprehensive investigation into their physicochemical, structural, and hypoglycemic properties was conducted. The analysis of chemical composition and physicochemical characteristics revealed that all four CWTPSs were characterized as acidic polysaccharides, albeit with varying chemical compositions and physicochemical attributes. Specifically, the xyloglucan fractions, CWTPS-3 and CWTPS-4, were found to be rich in glucose and xylose, displaying a more uniform molecular weight distribution, greater structural stability, and a more irregular surface compared to the others. Moreover, they exhibited a higher diversity of monosaccharide residues. Importantly, our research unveiled that all four CWTPSs exhibited the capacity to modulate key glucose-regulated and antioxidant enzyme activities within HepG2 cells via the IRS-1-PI3K/AKT signaling pathway, thereby ameliorating cellular insulin resistance. Furthermore, our correlation analysis highlighted significant associations between monosaccharide composition and neutral sugar content with the observed hypoglycemic activity of CWTPSs. CONCLUSION This study highlights the potential of utilizing tea dregs as a valuable resource, making a significant contribution to the advancement of the tea industry. Furthermore, CWTPS-4 exhibits promising prospects for further development as a functional food ingredient or additive. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Wang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - En-Zhong Chi
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
15
|
Roszczyc-Owsiejczuk K, Zabielski P, Imierska M, Pogodzińska K, Sadowska P, Błachnio-Zabielska A. Downregulation of CerS4 Instead of CerS2 in Liver Effectively Alleviates Hepatic Insulin Resistance in HFD Male Mice. Endocrinology 2024; 165:bqae118. [PMID: 39233348 DOI: 10.1210/endocr/bqae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE Consumption of a high-fat diet (HFD) induces insulin resistance (IRes), significantly affecting the maintenance of normal glucose homeostasis. Nevertheless, despite decades of extensive research, the mechanisms and pathogenesis of IRes remain incomplete. Recent studies have primarily explored lipid intermediates such as diacylglycerol (DAG), given a limited knowledge about the role of ceramide (Cer), which is a potential mediator of the IRes in the liver. METHODS In order to investigate the role of Cer produced by CerS2 and CerS4 for the purpose of inducing the hepatic IRes, we utilized a unique in vivo model employing shRNA-mediated hydrodynamic gene delivery in the liver of HFD-fed C57BL/6J mice. RESULTS Downregulation of CerS4 instead of CerS2 reduced specific liver Cers, notably C18:0-Cer and C24:0-Cer, as well as acylcarnitine levels. It concurrently promoted glycogen accumulation, leading to enhanced insulin sensitivity and glucose homeostasis. CONCLUSION Those findings demonstrate that CerS4 downregulating lowers fasting blood glucose levels and mitigates the HFD-induced hepatic IRes. It suggests that inhibiting the CerS4-mediated C18:0-Cer synthesis holds a promise to effectively address insulin resistance in obesity.
Collapse
Affiliation(s)
- Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Patrycja Sadowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
16
|
Li Y, He Q, Chen S, Dli H, Zhao J, Sun X, Yang P, Mao Q, Xia H. BI-7273, a BRD9 inhibitor, reduces lipid accumulation by downregulating the AKT/mTOR/SREBP1 signaling pathway. Biochem Pharmacol 2024; 226:116412. [PMID: 38971334 DOI: 10.1016/j.bcp.2024.116412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Increases in de novo lipogenesis that disturbed lipid homeostasis and caused lipid accumulation are a major cause of NAFLD and obesity. SREBP1 is a crucial regulatory factor controlling the expression of rate-limiting enzymes of lipid synthesis. A reduction in SREBP1expression can reduce lipid accumulation. Thus, we utilized an SREBP1-luciferase-KI HEK293 cell line constructed by our lab to screen 200 kinds of epigenetic drugs for their ability to downregulate SREBP1expression. BI-7273, an inhibitor of bromodomain-containing protein 9 (BRD9), was screened and found to decrease SREBP1 expression. What is more, BI-7273 has been confirmed that it could reduce lipid accumulation in HepG2 cells by BODIPY staining, and significantly decrease the protein expression of SREBP1 and FASN. To explore the potential mechanism BI-7273 reducing lipid accumulation, RNA sequencing (RNA-seq) was performed and demonstrated that BI-7273 reduced lipid accumulation by downregulating the AKT/mTOR/SREBP1 pathway in vitro. Finally, these results were verified in NAFLD and obesity mouse model induced by high fat diet (HFD). The results indicated that BI-7273 could decrease mouse body weight and improve insulin sensitivity, but also exhibited a strong negative correlation with serum lipid levels, and also demonstrated that BI-7273 reduced lipid accumulation via AKT/mTOR/SREBP1 pathway in vivo. In conclusion, our results revealed that BI-7273 decreases lipid accumulation by downregulating the AKT/mTOR/SREBP1 pathway in vivo and in vitro. This is the first report demonstrating the protective effect of this BRD9 inhibitor against NAFLD and obesity. BRD9 may be a novel target for the discovery of effective drugs to treat lipid metabolism disorders.
Collapse
Affiliation(s)
- Yu Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Qiongyan He
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Shuyu Chen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Huma Dli
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Xiaohong Sun
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China
| | - Qinwen Mao
- Department of Pathology, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, Shaanxi, PR China.
| |
Collapse
|
17
|
Taheri R, Mokhtari Y, Yousefi AM, Bashash D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biol Int 2024; 48:1049-1068. [PMID: 38812089 DOI: 10.1002/cbin.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/03/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.
Collapse
Affiliation(s)
- Rana Taheri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Mokhtari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Kim JW, Jeong JS, Kim JH, Chung EH, Kim CY, Lee DR, Choi BK, Lim JH, Ko JW, Kim TW. Anti-hyperglycemic effects of Cissus quadrangularis extract via regulation of gluconeogenesis in type 2 diabetic db/db mice. Front Pharmacol 2024; 15:1415670. [PMID: 39050759 PMCID: PMC11266303 DOI: 10.3389/fphar.2024.1415670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Cissus quadrangularis is a vining plant widely used as a traditional herbal remedy for various ailments. In this study, the therapeutic effects of C. quadrangularis extract (CQR-300) on type 2 diabetes mellitus (T2DM) were investigated in a leptin receptor-mutated db/db mouse model. Methods: CQR-300 was orally administered to db/db mice (n = 6/group) at different doses (50, 100, and 200 mg/kg) for 8 weeks. Blood glucose levels and oral glucose tolerance were assessed using the AccuCheck glucometer. Enzyme-linked immunosorbent assay was performed to evaluate insulin and hemoglobin A1c (HbA1c) levels in the blood of db/db mice. Liver and pancreatic tissues from db/db mice were examined by hematoxylin and eosin (H&E) and immunohistochemical staining. The protein levels of gluconeogenesis-, lipogenesis-, and oxidative stress-related factors were evaluated using western blotting. Results and discussion: CQR-300 treatment effectively reduced body weight, blood glucose, and insulin levels. HbA1c levels were increased by leptin receptor mutation. Additionally, in the oral glucose tolerance tests, the CQR-300 treated group had a faster blood glucose recovery rate than the db/db group. H&E and Oil red-O staining of the liver showed decreased lipid accumulation in the CQR-300 treated group than the db/db group. Western blot analysis confirmed that CQR-300 effectively inhibited gluconeogenesis, lipogenesis, and oxidative stress-related factors. Our findings suggest that CQR-300 has the potential to be used as a T2DM supplement.
Collapse
Affiliation(s)
- Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Hye Chung
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Chang-Yeop Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Dong-Ryung Lee
- Research Institute, NUON Co., Ltd., Seongnam, Republic of Korea
| | - Bong-Keun Choi
- Research Institute, NUON Co., Ltd., Seongnam, Republic of Korea
| | | | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
20
|
Fan S, Raychaudhuri S, Ogedengbe O, Mochama V, Obanda DN. Impacts of the vegetable Urtica dioica on the intestinal T and B cell phenotype and macronutrient absorption in C57BL/6J mice with diet-induced obesity. J Nutr Biochem 2024; 129:109634. [PMID: 38561081 DOI: 10.1016/j.jnutbio.2024.109634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
In two previous studies, we showed that supplementing a high-fat (HF) diet with 9% w/w U. dioica protects against fat accumulation, insulin resistance, and dysbiosis. This follow-up study in C57BL6/J mice aimed at testing: (i) the efficacy of the vegetable at lower doses: 9%, 4%, and 2%, (ii) the impact on intestinal T and B cell phenotype and secretions, (iii) impact on fat and glucose absorption during excess nutrient provision. At all doses, the vegetable attenuated HF diet induced fat accumulation in the mesenteric, perirenal, retroperitoneal fat pads, and liver but not the epididymal fat pad. The 2% dose protected against insulin resistance, prevented HF diet-induced decreases in intestinal T cells, and IgA+ B cells and activated T regulatory cells (Tregs) when included both in the LF and HF diets. Increased Tregs correlated with reduced inflammation; prevented increases in IL6, IFNγ, and TNFα in intestine but not expression of TNFα in epididymal fat pad. Testing of nutrient absorption was performed in enteroids. Enteroids derived from mice fed the HF diet supplemented with U. dioica had reduced absorption of free fatty acids and glucose compared to enteroids from mice fed the HF diet only. In enteroids, the ethanolic extract of U. dioica attenuated fat absorption and downregulated the expression of the receptor CD36 which facilitates uptake of fatty acids. In conclusion, including U. dioica in a HF diet, attenuates fat accumulation, insulin resistance, and inflammation. This is achieved by preventing dysregulation of immune homeostasis and in the presence of excess fat, reducing fat and glucose absorption.
Collapse
Affiliation(s)
- Si Fan
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, USA
| | - Samnhita Raychaudhuri
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, USA
| | - Opeyemi Ogedengbe
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, USA
| | - Victor Mochama
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, USA
| | - Diana N Obanda
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, USA.
| |
Collapse
|
21
|
Lee LE, Doke T, Mukhi D, Susztak K. The key role of altered tubule cell lipid metabolism in kidney disease development. Kidney Int 2024; 106:24-34. [PMID: 38614389 PMCID: PMC11193624 DOI: 10.1016/j.kint.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/15/2024]
Abstract
Kidney epithelial cells have very high energy requirements, which are largely met by fatty acid oxidation. Complex changes in lipid metabolism are observed in patients with kidney disease. Defects in fatty acid oxidation and increased lipid uptake, especially in the context of hyperlipidemia and proteinuria, contribute to this excess lipid build-up and exacerbate kidney disease development. Recent studies have also highlighted the role of increased de novo lipogenesis in kidney fibrosis. The defect in fatty acid oxidation causes energy starvation. Increased lipid uptake, synthesis, and lower fatty acid oxidation can cause toxic lipid build-up, reactive oxygen species generation, and mitochondrial damage. A better understanding of these metabolic processes may open new treatment avenues for kidney diseases by targeting lipid metabolism.
Collapse
Affiliation(s)
- Lauren E Lee
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
22
|
Chandrasekaran P, Weiskirchen R. The signaling pathways in obesity-related complications. J Cell Commun Signal 2024; 18:e12039. [PMID: 38946722 PMCID: PMC11208128 DOI: 10.1002/ccs3.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Obesity, a rapidly expanding epidemic worldwide, is known to exacerbate many medical conditions, making it a significant factor in multiple diseases and their associated complications. This threatening epidemic is linked to various harmful conditions such as type 2 diabetes mellitus, hypertension, metabolic dysfunction-associated steatotic liver disease, polycystic ovary syndrome, cardiovascular diseases (CVDs), dyslipidemia, and cancer. The rise in urbanization and sedentary lifestyles creates an environment that fosters obesity, leading to both psychosocial and medical complications. To identify individuals at risk and ensure timely treatment, it is crucial to have a better understanding of the pathophysiology of obesity and its comorbidities. This comprehensive review highlights the relationship between obesity and obesity-associated complications, including type 2 diabetes, hypertension, (CVDs), dyslipidemia, polycystic ovary syndrome, metabolic dysfunction-associated steatotic liver disease, gastrointestinal complications, and obstructive sleep apnea. It also explores the potential mechanisms underlying these associations. A thorough analysis of the interplay between obesity and its associated complications is vital in developing effective therapeutic strategies to combat the exponential increase in global obesity rates and mitigate the deadly consequences of this polygenic condition.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular PathobiochemistryExperimental Gene Therapy and Clinical Chemistry (IFMPEGKC)RWTH University Hospital AachenAachenGermany
| |
Collapse
|
23
|
Mo Z, Zhan M, Yang X, Xie P, Xiao J, Cao Y, Xiao H, Song M. Fermented dietary fiber from soy sauce residue exerts antidiabetic effects through regulating the PI3K/AKT signaling pathway and gut microbiota-SCFAs-GPRs axis in type 2 diabetic mellitus mice. Int J Biol Macromol 2024; 270:132251. [PMID: 38729488 DOI: 10.1016/j.ijbiomac.2024.132251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The gut plays a crucial role in the development and progression of metabolic disorders, particularly in relation to type 2 diabetes mellitus (T2DM). While a high intake of dietary fiber is inversely associated with the risk of T2DM, the specific effects of various dietary fibers on T2DM are not fully understood. This study investigated the anti-diabetic properties of fermented dietary fiber (FDF) derived from soy sauce residue in T2DM mice, demonstrating its ability to lower blood glucose levels and ameliorate insulin resistance. Our findings revealed that FDF could enhance hepatic glucose metabolism via the IRS-1/PI3K/AKT/mTOR pathway. Additionally, the anti-diabetic effect of FDF was correlated with alterations in gut microbiota composition in T2DM mice, promoting a healthier gut environment. Specifically, FDF increased the abundance of beneficial flora such as Dubosiella, Butyricimonas, Lachnospiraceae_NK4A136_group, Lactobacillus and Osillibacter, while reducing harmful bacteria including Bilophila, Parabacteroides and Enterorhabdus. Further analysis of microbial metabolites, including short-chain fatty acids (SCFAs) and bile acids (BAs), provided evidence of FDF's regulatory effects on cecal contents in T2DM mice. Importantly, FDF treatment significantly restored the G-protein-coupled receptors (GPRs) expression in the colon of T2DM mice. In conclusion, our study suggests that the anti-diabetic effects of FDF are associated with the regulation of both the liver-gut axis and the gut microbiota-SCFAs-GPRs axis.
Collapse
Affiliation(s)
- Zheqi Mo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minmin Zhan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Peichun Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Mittendorfer B, Johnson JD, Solinas G, Jansson PA. Insulin Hypersecretion as Promoter of Body Fat Gain and Hyperglycemia. Diabetes 2024; 73:837-843. [PMID: 38768368 PMCID: PMC11109786 DOI: 10.2337/dbi23-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Bettina Mittendorfer
- Departments of Medicine and Nutrition & Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Giovanni Solinas
- Department of Molecular and Clinical Medicine, School of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Per-Anders Jansson
- Department of Molecular and Clinical Medicine, School of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Bo T, Gao L, Yao Z, Shao S, Wang X, Proud CG, Zhao J. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metab 2024; 36:947-968. [PMID: 38718757 DOI: 10.1016/j.cmet.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 06/26/2024]
Abstract
Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.
Collapse
Affiliation(s)
- Tao Bo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Zhenyu Yao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Shanshan Shao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.
| |
Collapse
|
26
|
Kim TH. Ginsenosides for the treatment of insulin resistance and diabetes: Therapeutic perspectives and mechanistic insights. J Ginseng Res 2024; 48:276-285. [PMID: 38707641 PMCID: PMC11068994 DOI: 10.1016/j.jgr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a systemic disorder of energy metabolism characterized by a sustained elevation of blood glucose in conjunction with impaired insulin action in multiple peripheral tissues (i.e., insulin resistance). Although extensive research has been conducted to identify therapeutic targets for the treatment of DM, its global prevalence and associated mortailty rates are still increasing, possibly because of challenges related to long-term adherence, limited efficacy, and undesirable side effects of currently available medications, implying an urgent need to develop effective and safe pharmacotherapies for DM. Phytochemicals have recently drawn attention as novel pharmacotherapies for DM based on their clinical relevance, therapeutic efficacy, and safety. Ginsenosides, pharmacologically active ingredients primarily found in ginseng, have long been used as adjuvants to traditional medications in Asian countries and have been reported to exert promising therapeutic efficacy in various metabolic diseases, including hyperglycemia and diabetes. This review summarizes the current pharmacological effects of ginsenosides and their mechanistic insights for the treatment of insulin resistance and DM, providing comprehensive perspectives for the development of novel strategies to treat DM and related metabolic complications.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Scoditti E, Sabatini S, Carli F, Gastaldelli A. Hepatic glucose metabolism in the steatotic liver. Nat Rev Gastroenterol Hepatol 2024; 21:319-334. [PMID: 38308003 DOI: 10.1038/s41575-023-00888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
The liver is central in regulating glucose homeostasis, being the major contributor to endogenous glucose production and the greatest reserve of glucose as glycogen. It is both a target and regulator of the action of glucoregulatory hormones. Hepatic metabolic functions are altered in and contribute to the highly prevalent steatotic liver disease (SLD), including metabolic dysfunction-associated SLD (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In this Review, we describe the dysregulation of hepatic glucose metabolism in MASLD and MASH and associated metabolic comorbidities, and how advances in techniques and models for the assessment of hepatic glucose fluxes in vivo have led to the identification of the mechanisms related to the alterations in glucose metabolism in MASLD and comorbidities. These fluxes can ultimately increase hepatic glucose production concomitantly with fat accumulation and alterations in the secretion and action of glucoregulatory hormones. No pharmacological treatment has yet been approved for MASLD or MASH, but some antihyperglycaemic drugs approved for treating type 2 diabetes have shown positive effects on hepatic glucose metabolism and hepatosteatosis. A deep understanding of how MASLD affects glucose metabolic fluxes and glucoregulatory hormones might assist in the early identification of at-risk individuals and the use or development of targeted therapies.
Collapse
Affiliation(s)
- Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Silvia Sabatini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
28
|
Lotfy M, Khattab A, Shata M, Alhasbani A, Khalaf A, Alsaeedi S, Thaker M, Said H, Tumi H, Alzahmi H, Alblooshi O, Hamdan M, Hussein A, Kundu B, Adeghate EA. Melatonin increases AKT and SOD gene and protein expressions in diabetic rats. Heliyon 2024; 10:e28639. [PMID: 38586324 PMCID: PMC10998142 DOI: 10.1016/j.heliyon.2024.e28639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease marked by hyperglycemia due to insulin deficiency or insulin resistance leading to many chronic complications. It is thus important to manage diabetes effectively in order to prevent and or delay these complications. Melatonin is produced by the pineal gland and regulates the wake-sleep circadian rhythm. Existing evidence suggests that melatonin may be effective in the management of DM. However, the evidence on the mechanism of the beneficial effect melatonin as a treatment for DM is limited. In this study, we investigated the effect of melatonin treatment on blood glucose, insulin (INS), AKT and superoxide dismutase (SOD) gene levels in diabetic rats. Non-diabetic and diabetic rats were treated orally for 4 weeks with either 25 mg or 50 mg/kg body weight of melatonin. At the end of the study, pancreatic and liver tissues morphology, glucose homeostasis, serum insulin and SOD levels, hepatic gene and protein expression of SOD as protecting antioxidant enzyme and AKT as central element involved in PI3K/AKT insulin signaling pathway were estimated. Melatonin treated diabetic rats showed reduced hyperglycemia, and increased serum insulin and SOD levels. In addition, melatonin induced an increased gene and protein expression of SOD and AKT. In conclusion, melatonin may play a role in treating diabetic rats via stimulation of insulin secretion, insulin signaling and reduction in oxidative stress.
Collapse
Affiliation(s)
- Mohamed Lotfy
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aalaa Khattab
- Faculty of Dentistry, The British University in Egypt, El Sherouk City, Cairo, Egypt
| | - Mohammed Shata
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Alhasbani
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdallah Khalaf
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Alsaeedi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mahdi Thaker
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hazza Said
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Harun Tumi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hassan Alzahmi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Omar Alblooshi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamad Hamdan
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amjad Hussein
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Biduth Kundu
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ernest A. Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
29
|
Huang S, Yu C, Hu M, Wen Q, Wen X, Li S, Li K, Ma H. Electroacupuncture ameliorates hepatic defects in a rat model of polycystic ovary syndrome induced by letrozole and a high-fat diet. Acupunct Med 2024; 42:87-99. [PMID: 38044823 DOI: 10.1177/09645284231207863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
BACKGROUND This study was designed to evaluate the effects of low-frequency electroacupuncture (EA) on glucose and lipid disturbances in a rat model of polycystic ovary syndrome (PCOS) characterized by insulin resistance (IR) and hepatic steatosis. METHODS The PCOS rat model was induced by continuous administration of letrozole (LET) combined with a high-fat diet (HFD). Female Sprague-Dawley rats were divided into the following four groups: control, control + EA, LET + HFD and LET + HFD + EA. EA was administered five or six times a week with a maximum of 20 treatment sessions. Body weight, estrous cyclicity, hormonal status, glucose and insulin tolerance, lipid profiles, liver inflammation factors, liver morphology and changes in the phosphatidylinositol 3-kinase (PI3-K)/Akt (protein kinase B) pathway were evaluated. RESULTS The rat model presented anovulatory cycles, increased body weight, elevated testosterone, abnormal glucose and lipid metabolism, IR, liver inflammation, hepatic steatosis and dysregulation of the insulin-mediated PI3-K/Akt signaling axis. EA reduced fasting blood glucose, fasting insulin, area under the curve for glucose, homeostasis model assessment of IR indices, triglycerides and free fatty acids, and alleviated hepatic steatosis. Furthermore, low-frequency EA downregulated mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6, upregulated mRNA expression of peroxisome proliferator-activated receptor (PPAR)-α, increased protein expression of phosphorylated (p)-Akt (Ser473), p-glycogen synthase kinase (GSK) 3β (Ser9) and glucose transporter 4 (GLUT4), increased the ratio of p-GSK3β to GSK3β and downregulated protein expression of GSK3β. CONCLUSION An obese PCOS rat model with IR and hepatic steatosis was successfully established by the combination of LET and HFD. EA improved dysfunctional glucose and lipid metabolism in this PCOS-IR rat model, and the molecular mechanism appeared to involve regulation of the expression of key molecules of the PI3-K/Akt insulin signaling pathway in the liver.
Collapse
Affiliation(s)
- Shiya Huang
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuyi Yu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qidan Wen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Wen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuna Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kunyin Li
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Plata-Gómez AB, de Prado-Rivas L, Sanz A, Deleyto-Seldas N, García F, de la Calle Arregui C, Silva C, Caleiras E, Graña-Castro O, Piñeiro-Yáñez E, Krebs J, Leiva-Vega L, Muñoz J, Jain A, Sabio G, Efeyan A. Hepatic nutrient and hormone signaling to mTORC1 instructs the postnatal metabolic zonation of the liver. Nat Commun 2024; 15:1878. [PMID: 38499523 PMCID: PMC10948770 DOI: 10.1038/s41467-024-46032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024] Open
Abstract
The metabolic functions of the liver are spatially organized in a phenomenon called zonation, linked to the differential exposure of portal and central hepatocytes to nutrient-rich blood. The mTORC1 signaling pathway controls cellular metabolism in response to nutrients and insulin fluctuations. Here we show that simultaneous genetic activation of nutrient and hormone signaling to mTORC1 in hepatocytes results in impaired establishment of postnatal metabolic and zonal identity of hepatocytes. Mutant hepatocytes fail to upregulate postnatally the expression of Frizzled receptors 1 and 8, and show reduced Wnt/β-catenin activation. This defect, alongside diminished paracrine Wnt2 ligand expression by endothelial cells, underlies impaired postnatal maturation. Impaired zonation is recapitulated in a model of constant supply of nutrients by parenteral nutrition to piglets. Our work shows the role of hepatocyte sensing of fluctuations in nutrients and hormones for triggering a latent metabolic zonation program.
Collapse
Affiliation(s)
- Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Lucía de Prado-Rivas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Alba Sanz
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Fernando García
- Proteomics Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Celia de la Calle Arregui
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Camila Silva
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| | - Eduardo Caleiras
- Histopathology Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Joseph Krebs
- Department of Pediatrics, Saint Louis University, Saint Louis, MO, USA
| | - Luis Leiva-Vega
- Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit. Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cell Signalling and Clinical Proteomics Group, Biocruces Bizkaia Health Research Institute & Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Ajay Jain
- Department of Pediatrics, Saint Louis University, Saint Louis, MO, USA
| | - Guadalupe Sabio
- Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
31
|
Subramanian V, Bagger JI, Harihar V, Holst JJ, Knop FK, Villsbøll T. An extended minimal model of OGTT: estimation of α- and β-cell dysfunction, insulin resistance, and the incretin effect. Am J Physiol Endocrinol Metab 2024; 326:E182-E205. [PMID: 38088864 PMCID: PMC11193523 DOI: 10.1152/ajpendo.00278.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Loss of insulin sensitivity, α- and β-cell dysfunction, and impairment in incretin effect have all been implicated in the pathophysiology of type 2 diabetes (T2D). Parsimonious mathematical models are useful in quantifying parameters related to the pathophysiology of T2D. Here, we extend the minimum model developed to describe the glucose-insulin-glucagon dynamics in the isoglycemic intravenous glucose infusion (IIGI) experiment to the oral glucose tolerance test (OGTT). The extended model describes glucose and hormone dynamics in OGTT including the contribution of the incretin hormones, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1 (GLP-1), to insulin secretion. A new function describing glucose arrival from the gut is introduced. The model is fitted to OGTT data from eight individuals with T2D and eight weight-matched controls (CS) without diabetes to obtain parameters related to insulin sensitivity, β- and α-cell function. The parameters, i.e., measures of insulin sensitivity, a1, suppression of glucagon secretion, k1, magnitude of glucagon secretion, γ2, and incretin-dependent insulin secretion, γ3, were found to be different between CS and T2D with P values < 0.002, <0.017, <0.009, <0.004, respectively. A new rubric for estimating the incretin effect directly from modeling the OGTT is presented. The average incretin effect correlated well with the experimentally determined incretin effect with a Spearman rank test correlation coefficient of 0.67 (P < 0.012). The average incretin effect was found to be different between CS and T2D (P < 0.032). The developed model is shown to be effective in quantifying the factors relevant to T2D pathophysiology.NEW & NOTEWORTHY A new extended model of oral glucose tolerance test (OGTT) has been developed that includes glucagon dynamics and incretin contribution to insulin secretion. The model allows the estimation of parameters related to α- and β-cell dysfunction, insulin sensitivity, and incretin action. A new function describing the influx of glucose from the gut has been introduced. A new rubric for estimating the incretin effect directly from the OGTT experiment has been developed. The effect of glucose dose was also investigated.
Collapse
Affiliation(s)
- Vijaya Subramanian
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jonatan I Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Vinayak Harihar
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States
- Biophysics Graduate Group, University of California, Berkeley, California, United States
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Villsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Xu W, Lai S, Zhao J, Wei S, Fang X, Liu Y, Rong X, Guo J. The blockade of the TGF-β pathway alleviates abnormal glucose and lipid metabolism of lipodystrophy not obesity. Pharmacol Res Perspect 2024; 12:e1160. [PMID: 38174807 PMCID: PMC10765454 DOI: 10.1002/prp2.1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
TGF-β is thought to be involved in the physiological functions of early organ development and pathological changes in substantial organ fibrosis, while studies around adipose tissue function and systemic disorders of glucolipid metabolism are still scarce. In this investigation, two animal models, aP2-SREBP-1c mice and ob/ob mice, were used. TGF-β pathway showed up-regulated in the inguinal white adipose tissue (iWAT) of the two models. SB431542, a TGF-β inhibitor, successfully increased inguinal white adipocyte size by more than 1.5 times and decreased the weight of Peripheral organs including liver, Spleen and Kidney to 73.05%/62.18%/73.23% of pre-administration weights. The iWAT showed elevated expression of GLUTs and lipases, followed by a recovery of circulation GLU, TG, NEFA, and GLYCEROL to the wild-type levels in aP2-SREBP-1c mice. In contrast, TGF-β inhibition did not have similar effects on that of ob/ob mice. In vitro, TGF-β blocker treated mature adipocytes had considerably higher levels of glycerol and triglycerides than the control group, whereas GLUTs and lipases expression levels were unchanged. These findings show that inhibiting the abnormally upregulated TGF-β pathway will only restore iWAT expansion and ameliorate the global metabolic malfunction of glucose and lipids in lipodystrophy, not obesity.
Collapse
Affiliation(s)
- Wen‐Dong Xu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shui‐Zheng Lai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jia Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shi‐Jie Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xue‐Ying Fang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Yi‐Yi Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xiang‐Lu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
33
|
Uehara K, Lee WD, Stefkovich M, Biswas D, Santoleri D, Garcia Whitlock A, Quinn W, Coopersmith T, Creasy KT, Rader DJ, Sakamoto K, Rabinowitz JD, Titchenell PM. mTORC1 controls murine postprandial hepatic glycogen synthesis via Ppp1r3b. J Clin Invest 2024; 134:e173782. [PMID: 38290087 PMCID: PMC10977990 DOI: 10.1172/jci173782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
In response to a meal, insulin drives hepatic glycogen synthesis to help regulate systemic glucose homeostasis. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-established insulin target and contributes to the postprandial control of liver lipid metabolism, autophagy, and protein synthesis. However, its role in hepatic glucose metabolism is less understood. Here, we used metabolomics, isotope tracing, and mouse genetics to define a role for liver mTORC1 signaling in the control of postprandial glycolytic intermediates and glycogen deposition. We show that mTORC1 is required for glycogen synthase activity and glycogenesis. Mechanistically, hepatic mTORC1 activity promotes the feeding-dependent induction of Ppp1r3b, a gene encoding a phosphatase important for glycogen synthase activity whose polymorphisms are linked to human diabetes. Reexpression of Ppp1r3b in livers lacking mTORC1 signaling enhances glycogen synthase activity and restores postprandial glycogen content. mTORC1-dependent transcriptional control of Ppp1r3b is facilitated by FOXO1, a well characterized transcriptional regulator involved in the hepatic response to nutrient intake. Collectively, we identify a role for mTORC1 signaling in the transcriptional regulation of Ppp1r3b and the subsequent induction of postprandial hepatic glycogen synthesis.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism
- Biochemistry and Molecular Biophysics Graduate Group, and
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics
- Department of Chemistry, and
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, New Jersey, USA
| | | | - Dipsikha Biswas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dominic Santoleri
- Institute for Diabetes, Obesity, and Metabolism
- Biochemistry and Molecular Biophysics Graduate Group, and
| | | | | | | | - Kate Townsend Creasy
- Institute for Diabetes, Obesity, and Metabolism
- Department of Medicine, Division of Translational Medicine and Human Genetics, and
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J. Rader
- Institute for Diabetes, Obesity, and Metabolism
- Department of Medicine, Division of Translational Medicine and Human Genetics, and
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics
- Department of Chemistry, and
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity, and Metabolism
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Rida R, Kreydiyyeh S. Effect of FTY720P on lipid accumulation in HEPG2 cells. Sci Rep 2023; 13:19716. [PMID: 37953311 PMCID: PMC10641067 DOI: 10.1038/s41598-023-46011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by an increase in hepatic lipid accumulation due to impaired lipid metabolism. Although a correlation was found between NAFLD and sphingosine-1-phosphate (S1P), the role of the sphingolipid remains controversial. The aim of this study was to investigate any involvement of S1P in steatosis using its analog FTY720P and HepG2 cells. Lipid accumulation was induced by incubating the cells in a mixture of oleic and palmitic acid, and was quantified using Oil Red O. The involvement of signaling mediators was studied using pharmacological inhibitors and western blot analysis. FTY720P increased lipid accumulation, but this increase wasn't maintained in the presence of inhibitors of S1PR3, Gq, SREBP, mTOR, PI3K, and PPARγ indicating their involvement in the process. The results revealed that FTY720P binds to S1PR3 which activates sequentially Gq, PI3K, and mTOR leading to an increase in SREBP expression and PPARγ activation. It was concluded that in presence of a high level of fatty acids, lipid accumulation is increased in hepatocytes by the exogenously added FTY720P.
Collapse
Affiliation(s)
- Reem Rida
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
35
|
Agarwal H, Wang Y, Ozcan L. Rap1 Activation Protects Against Fatty Liver and Non-Alcoholic Steatohepatitis Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563728. [PMID: 37961406 PMCID: PMC10634782 DOI: 10.1101/2023.10.24.563728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We previously demonstrated that hepatic activation of a small G protein of the Ras family, Rap1a, is suppressed in obesity, which results in increased hepatic glucose production and glucose intolerance in obese mice. Here, we show that Rap1a inhibition in obese mice liver also results in fatty liver formation, which is characteristic of the diabetic liver. Specifically, we report that Rap1a activity is decreased in the livers of patients with non-alcoholic steatohepatitis (NASH) and mouse models of non-alcoholic fatty liver disease (NAFLD) and NASH. Restoring hepatic Rap1a activity by overexpressing a constitutively active mutant form of Rap1a lowered the mature, processed form of lipogenic transcription factor, Srebp1, without an effect on the unprocessed Srebp1 and suppressed hepatic TG accumulation, whereas liver Rap1a deficiency increased Srebp1 processing and exacerbated steatosis. Mechanistically, we show that mTORC1, which promotes Srebp1 cleavage, is hyperactivated upon Rap1a deficiency despite disturbed insulin signaling. In proof-of-principle studies, we found that treatment of obese mice with a small molecule activator of Rap1a (8-pCPT) or inhibiting Rap1a's endogenous inhibitor, Rap1Gap, recapitulated our hepatic gain-of-function model and resulted in improved hepatic steatosis and lowered lipogenic genes. Thus, hepatic Rap1a serves as a signaling molecule that suppresses both hepatic gluconeogenesis and steatosis, and inhibition of its activity in the liver contributes to the pathogenesis of glucose intolerance and NAFLD/NASH development.
Collapse
|
36
|
Kasai S, Kokubu D, Mizukami H, Itoh K. Mitochondrial Reactive Oxygen Species, Insulin Resistance, and Nrf2-Mediated Oxidative Stress Response-Toward an Actionable Strategy for Anti-Aging. Biomolecules 2023; 13:1544. [PMID: 37892226 PMCID: PMC10605809 DOI: 10.3390/biom13101544] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Reactive oxygen species (ROS) are produced mainly by mitochondrial respiration and function as signaling molecules in the physiological range. However, ROS production is also associated with the pathogenesis of various diseases, including insulin resistance (IR) and type 2 diabetes (T2D). This review focuses on the etiology of IR and early events, especially mitochondrial ROS (mtROS) production in insulin-sensitive tissues. Importantly, IR and/or defective adipogenesis in the white adipose tissues (WAT) is thought to increase free fatty acid and ectopic lipid deposition to develop into systemic IR. Fatty acid and ceramide accumulation mediate coenzyme Q reduction and mtROS production in IR in the skeletal muscle, while coenzyme Q synthesis downregulation is also involved in mtROS production in the WAT. Obesity-related IR is associated with the downregulation of mitochondrial catabolism of branched-chain amino acids (BCAAs) in the WAT, and the accumulation of BCAA and its metabolites as biomarkers in the blood could reliably indicate future T2D. Transcription factor NF-E2-related factor 2 (Nrf2), which regulates antioxidant enzyme expression in response to oxidative stress, is downregulated in insulin-resistant tissues. However, Nrf2 inducers, such as sulforaphane, could restore Nrf2 and target gene expression and attenuate IR in multiple tissues, including the WAT.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Daichi Kokubu
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
- Diet & Well-being Research Institute, KAGOME CO., LTD., 17 Nishitomiyama, Nasushiobara 329-2762, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| |
Collapse
|
37
|
Yao Z, Gong Y, Chen W, Shao S, Song Y, Guo H, Li Q, Liu S, Wang X, Zhang Z, Wang Q, Xu Y, Wu Y, Wan Q, Zhao X, Xuan Q, Wang D, Lin X, Xu J, Liu J, Proud CG, Wang X, Yang R, Fu L, Niu S, Kong J, Gao L, Bo T, Zhao J. Upregulation of WDR6 drives hepatic de novo lipogenesis in insulin resistance in mice. Nat Metab 2023; 5:1706-1725. [PMID: 37735236 PMCID: PMC10590755 DOI: 10.1038/s42255-023-00896-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Under normal conditions, insulin promotes hepatic de novo lipogenesis (DNL). However, during insulin resistance (IR), when insulin signalling is blunted and accompanied by hyperinsulinaemia, the promotion of hepatic DNL continues unabated and hepatic steatosis increases. Here, we show that WD40 repeat-containing protein 6 (WDR6) promotes hepatic DNL during IR. Mechanistically, WDR6 interacts with the beta-type catalytic subunit of serine/threonine-protein phosphatase 1 (PPP1CB) to facilitate PPP1CB dephosphorylation at Thr316, which subsequently enhances fatty acid synthases transcription through DNA-dependent protein kinase and upstream stimulatory factor 1. Using molecular dynamics simulation analysis, we find a small natural compound, XLIX, that inhibits the interaction of WDR6 with PPP1CB, thus reducing DNL in IR states. Together, these results reveal WDR6 as a promising target for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Zhenyu Yao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Ying Gong
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Wenbin Chen
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shanshan Shao
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Honglin Guo
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qihang Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunyun Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yingjie Wu
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Genome Engineered Animal Models, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wan
- Center of Cell Metabolism and Disease, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuhui Xuan
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Dawei Wang
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Rui Yang
- Institute of Genome Engineered Animal Models, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lili Fu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Shaona Niu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Junjie Kong
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Gao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
| | - Tao Bo
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China.
| |
Collapse
|
38
|
Kitamoto T, Accili D. Unraveling the mysteries of hepatic insulin signaling: deconvoluting the nuclear targets of insulin. Endocr J 2023; 70:851-866. [PMID: 37245960 DOI: 10.1507/endocrj.ej23-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Over 100 years have passed since insulin was first administered to a diabetic patient. Since then great strides have been made in diabetes research. It has determined where insulin is secreted from, which organs it acts on, how it is transferred into the cell and is delivered to the nucleus, how it orchestrates the expression pattern of the genes, and how it works with each organ to maintain systemic metabolism. Any breakdown in this system leads to diabetes. Thanks to the numerous researchers who have dedicated their lives to cure diabetes, we now know that there are three major organs where insulin acts to maintain glucose/lipid metabolism: the liver, muscles, and fat. The failure of insulin action on these organs, such as insulin resistance, result in hyperglycemia and/or dyslipidemia. The primary trigger of this condition and its association among these tissues still remain to be uncovered. Among the major organs, the liver finely tunes the glucose/lipid metabolism to maintain metabolic flexibility, and plays a crucial role in glucose/lipid abnormality due to insulin resistance. Insulin resistance disrupts this tuning, and selective insulin resistance arises. The glucose metabolism loses its sensitivity to insulin, while the lipid metabolism maintains it. The clarification of its mechanism is warranted to reverse the metabolic abnormalities due to insulin resistance. This review will provide a brief historical review for the progress of the pathophysiology of diabetes since the discovery of insulin, followed by a review of the current research clarifying our understanding of selective insulin resistance.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| |
Collapse
|
39
|
Hassan MA, Elmageed GMA, El-Qazaz IG, El-Sayed DS, El-Samad LM, Abdou HM. The Synergistic Influence of Polyflavonoids from Citrus aurantifolia on Diabetes Treatment and Their Modulation of the PI3K/AKT/FOXO1 Signaling Pathways: Molecular Docking Analyses and In Vivo Investigations. Pharmaceutics 2023; 15:2306. [PMID: 37765275 PMCID: PMC10535482 DOI: 10.3390/pharmaceutics15092306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This study was aimed at probing the modulatory influence of polyflavonoids extracted from Citrus aurantifolia, lemon peel extract (LPE-polyflavonoids), on attenuating diabetes mellitus (DM) and its complications. HPLC investigations of the LPE exhibited the incidence of five flavonoids, including diosmin, biochanin A, hesperidin, quercetin, and hesperetin. The in silico impact on ligand-phosphatidylinositol 3-kinase (PI3K) interaction was investigated in terms of polyflavonoid class to explore the non-covalent intakes and binding affinity to the known protein active site. The drug likeness properties and pharmacokinetic parameters of the LPE-polyflavonoids were investigated to assess their bioavailability in relation to Myricetin as a control. Remarkably, the molecular docking studies demonstrated a prominent affinity score of all these agents together with PI3K, implying the potency of the extract to orchestrate PI3K, which is the predominant signal for lessening the level of blood glucose. To verify these findings, in vivo studies were conducted, utilizing diabetic male albino rats treated with LPE-polyflavonoids and other groups treated with hesperidin and diosmin as single flavonoids. Our findings demonstrated that the LPE-polyflavonoids significantly ameliorated the levels of glucose, insulin, glycogen, liver function, carbohydrate metabolizing enzymes, G6Pd, and AGEs compared to the diabetic rats and those exposed to hesperidin and diosmin. Furthermore, the LPE-polyflavonoids regulated the TBARS, GSH, CAT, TNF-α, IL-1β, IL-6, and AFP levels in the pancreatic and hepatic tissues, suggesting their antioxidant and anti-inflammatory properties. In addition, the pancreatic and hepatic GLUT4 and GLUT2 were noticeably increased in addition to the pancreatic p-AKT in the rats administered with the LPE-polyflavonoids compared to the other diabetic rats. Remarkably, the administration of LPE-polyflavonoids upregulated the expression of the pancreatic and hepatic PI3K, AMPK, and FOXO1 genes, emphasizing the efficiency of the LPE in orchestrating all the signaling pathways necessitated to reduce the diabetes mellitus. Notably, the histopathological examinations of the pancreatic and hepatic tissues corroborated the biochemical results. Altogether, our findings accentuated the potential therapeutic role of LPE-polyflavonoids in controlling diabetes mellitus.
Collapse
Affiliation(s)
- Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
| | - Ghada M. Abd Elmageed
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| | - Ibtehal G. El-Qazaz
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| | - Doaa S. El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
| | - Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| | - Heba M. Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| |
Collapse
|
40
|
Elangeeb ME, Elfaki I, Elkhalifa MA, Adam KM, Alameen AO, Elfadl AK, Albalawi IA, Almasoudi KS, Almotairi R, Alsaedi BSO, Alhelali MH, Mir MM, Amle D, Mir R. In Silico Investigation of AKT2 Gene and Protein Abnormalities Reveals Potential Association with Insulin Resistance and Type 2 Diabetes. Curr Issues Mol Biol 2023; 45:7449-7475. [PMID: 37754255 PMCID: PMC10528407 DOI: 10.3390/cimb45090471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Type 2 diabetes (T2D) develops from insulin resistance (IR) and the dysfunction of pancreatic beta cells. The AKT2 protein is very important for the protein signaling pathway, and the non-synonymous SNP (nsSNPs) in AKT2 gene may be associated with T2D. nsSNPs can result in alterations in protein stability, enzymatic activity, or binding specificity. The objective of this study was to investigate the effect of nsSNPs on the AKT2 protein structure and function that may result in the induction of IR and T2D. The study identified 20 variants that were considered to be the most deleterious based on a range of analytical tools included (SIFT, PolyPhen2, Mut-pred, SNAP2, PANTHER, PhD-SNP, SNP&Go, MUpro, Cosurf, and I-Mut). Two mutations, p.A179T and p.L183Q, were selected for further investigation based on their location within the protein as determined by PyMol. The results indicated that mutations, p.A179T and p.L183Q alter the protein stability and functional characteristics, which could potentially affect its function. In order to conduct a more in-depth analysis of these effects, a molecular dynamics simulation was performed for wildtype AKT2 and the two mutants (p.A179T and p.L183Q). The simulation evaluated various parameters, including temperature, pressure, density, RMSD, RMSF, SASA, and Region, over a period of 100 ps. According to the simulation results, the wildtype AKT2 protein demonstrated higher stability in comparison to the mutant variants. The mutations p.A179T and p.L183Q were found to cause a reduction in both protein stability and functionality. These findings underscore the significance of the effects of nsSNPs (mutations p.A179T and p.L183Q) on the structure and function of AKT2 that may lead to IR and T2D. Nevertheless, they require further verifications in future protein functional, protein-protein interaction, and large-scale case-control studies. When verified, these results will help in the identification and stratification of individuals who are at risk of IR and T2D for the purpose of prevention and treatment.
Collapse
Affiliation(s)
- M. E. Elangeeb
- Department of Basic Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - M. A. Elkhalifa
- Department of Anatomy, Faculty of Medicine and Health Sciences, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Khalid M. Adam
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia;
| | - A. O. Alameen
- Department of Biomedical Science, Faculty of Veterinary Medicine, King Faisal University, Alahssa 31982, Saudi Arabia;
| | - Ahmed Kamaleldin Elfadl
- Veterinary Research Section, Ministry of Municipality, Doha P.O. Box 35081, Qatar;
- Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum 11115, Sudan
| | | | - Kholoud S. Almasoudi
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (K.S.A.); (R.A.)
| | - Reema Almotairi
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (K.S.A.); (R.A.)
| | - Basim S. O. Alsaedi
- Department of Statistics, University of Tabuk, Tabuk 47512, Saudi Arabia; (B.S.O.A.); (M.H.A.)
| | - Marwan H. Alhelali
- Department of Statistics, University of Tabuk, Tabuk 47512, Saudi Arabia; (B.S.O.A.); (M.H.A.)
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Dnyanesh Amle
- Department of Biochemistry, All India Institute of Medical Sciences, Nagpur 441108, India;
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (K.S.A.); (R.A.)
| |
Collapse
|
41
|
Lechner K, Heel S, Uhr M, Dose T, Holsboer F, Lucae S, Schaaf L, Fulda S, Kloiber S, Hennings JM. Weight-gain independent effect of mirtazapine on fasting plasma lipids in healthy men. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1999-2008. [PMID: 36890393 PMCID: PMC10409833 DOI: 10.1007/s00210-023-02448-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Treatment with mirtazapine, a widely prescribed antidepressant, has been linked to weight gain and dyslipidemia. Whether dyslipidemia occurs secondary to increased appetite due to antidepressant treatment, or due to direct pharmacological effects of mirtazapine is unknown. The aim of this analysis is to complement our previously published results of the effect of mirtazapine on metabolism and energy substrate partitioning from a proof-of-concept, open-label clinical study (ClinicalTrials.gov NCT00878540) in 12 healthy males (20-25 years). We report the effect of a seven-day administration of mirtazapine 30 mg per day on weight and lipid metabolism in healthy men under highly standardized conditions with respect to diet, physical activity and day-night-rhythm and under continuous clinical observation. After a 7-day administration of mirtazapine 30 mg, we observed a statistically significant increase in triglyceride levels (mean change + 4.4 mg/dl; 95% CI [- 11.4; 2.6]; p = 0.044) as well as TG/HDL-C ratio (mean change + 0.2; 95% CI [- 0.4; 0.1]; p = 0.019) and a decrease in HDL-cholesterol (mean change - 4.3 mg/dl; 95% CI [2.1; 6.5]; p = 0.004), LDL-cholesterol (mean change - 8.7 mg/dl; 95% CI [3.8; 13.5]; p = 0.008), total cholesterol (mean change - 12.3 mg/dl; 95% CI [5.4; 19.1]; p = 0.005), and non-HDL-C (mean change - 8.0 mg/dl; 95% CI [1.9; 14.0]; p = 0.023). Notably, weight (mean change - 0.6 kg; 95% CI [0.4; 0.8]; p = 0.002) and BMI (mean change - 0.2; 95% CI [0.1; 0.2]; p = 0.002) significantly decreased. No change in waist circumference (mean change - 0.4 cm; 95% CI [- 2.1; 2.9]; p = 0.838) or waist-to-hip-ratio (mean change 0.0; 95% CI [- 0.0; 0.0]; p = 0.814) was observed. This is the first study showing unfavorable changes in lipid metabolism under mirtazapine in healthy individuals despite highly standardized conditions including dietary restriction, and despite the observation of a decrease of weight. Our findings support the hypothesis that mirtazapine has direct pharmacological effects on lipid metabolism. ClinicalTrials.gov: NCT00878540.
Collapse
Affiliation(s)
- Katharina Lechner
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sarah Heel
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Manfred Uhr
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Tatjana Dose
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | - Ludwig Schaaf
- Clinic for Neuroendocrinology and Andrology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Stephany Fulda
- Max Planck Institute of Psychiatry, Munich, Germany
- Neurocenter of Southern Switzerland, EOC, Lugano, Switzerland
| | - Stefan Kloiber
- Max Planck Institute of Psychiatry, Munich, Germany
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Institute of Medical Science, Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Johannes M Hennings
- Max Planck Institute of Psychiatry, Munich, Germany.
- Department of Dialectical Behavioral Therapy, Kbo-Isar-Amper-Klinikum München-Ost, Vockestraße 72 85540, Haar/Munich, Germany.
| |
Collapse
|
42
|
Cook JR, Hawkins MA, Pajvani UB. Liver insulinization as a driver of triglyceride dysmetabolism. Nat Metab 2023; 5:1101-1110. [PMID: 37460842 DOI: 10.1038/s42255-023-00843-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasingly prevalent fellow traveller with the insulin resistance that underlies type 2 diabetes mellitus. However, the mechanistic connection between MAFLD and impaired insulin action remains unclear. In this Perspective, we review data from humans to elucidate insulin's aetiological role in MAFLD. We focus particularly on the relative preservation of insulin's stimulation of triglyceride (TG) biosynthesis despite its waning ability to curb hepatic glucose production (HGP). To explain this apparent 'selective insulin resistance', we propose that hepatocellular processes that lead to TG accumulation require less insulin signal transduction, or 'insulinization,' than do those that regulate HGP. As such, mounting hyperinsulinaemia that barely compensates for aberrant HGP in insulin-resistant states more than suffices to maintain hepatic TG biosynthesis. Thus, even modestly elevated or context-inappropriate insulin levels, when sustained day and night within a heavily pro-lipogenic metabolic milieu, may translate into substantial cumulative TG biosynthesis in the insulin-resistant state.
Collapse
Affiliation(s)
- Joshua R Cook
- Naomi Berrie Diabetes Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Columbia University College of Physicians & Surgeons, New York City, NY, USA.
| | - Meredith A Hawkins
- Diabetes Research and Training Center, Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA
| | - Utpal B Pajvani
- Naomi Berrie Diabetes Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Columbia University College of Physicians & Surgeons, New York City, NY, USA
| |
Collapse
|
43
|
Gao J, Zhang M, Zu X, Gu X, Hao E, Hou X, Bai G. Glucuronic acid metabolites of phenolic acids target AKT-PH domain to improve glucose metabolism. CHINESE HERBAL MEDICINES 2023; 15:398-406. [PMID: 37538860 PMCID: PMC10394347 DOI: 10.1016/j.chmed.2022.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Accepted: 11/03/2022] [Indexed: 08/05/2023] Open
Abstract
Objective Phenolic acids widely exist in the human diet and exert beneficial effects such as improving glucose metabolism. It is not clear whether phenolic acids or their metabolites play a major role in vivo. In this study, caffeic acid (CA) and ferulic acid (FA), the two most ingested phenolic acids, and their glucuronic acid metabolites, caffeic-4'-O-glucuronide (CA4G) and ferulic-4'-O-glucuronide (FA4G), were investigated. Methods Three insulin resistance models in vitro were established by using TNF-α, insulin and palmitic acid (PA) in HepG2 cells, respectively. We compared the effects of FA, FA4G, CA and CA4G on glucose metabolism in these models by measuring the glucose consumption levels. The potential targets and related pathways were predicted by network pharmacology. Fluorescence quenching measurement was used to analyze the binding between the compounds and the predicted target. To investigate the binding mode, molecular docking was performed. Then, we performed membrane recruitment assays of the AKT pleckstrin homology (PH) domain with the help of the PH-GFP plasmid. AKT enzymatic activity was determined to compare the effects between the metabolites with their parent compounds. Finally, the downstream signaling pathway of AKT was investigated by Western blot analysis. Results The results showed that CA4G and FA4G were more potent than their parent compounds in increasing glucose consumption. AKT was predicted to be the key target of CA4G and FA4G by network pharmacology analysis. The fluorescence quenching test confirmed the more potent binding to AKT of the two metabolites compared to their parent compounds. The molecular docking results indicated that the carbonyl group in the glucuronic acid structure of CA4G and FA4G might bind to the PH domain of AKT at the key Arg-25 site. CA4G and FA4G inhibited the translocation of the AKT PH domain to the membrane, while increasing the activity of AKT. Western blot analysis demonstrated that the metabolites could increase the phosphorylation of AKT and downstream glycogen synthase kinase 3β in the AKT signaling pathway to increase glucose consumption. Conclusion In conclusion, our results suggested that the metabolites of phenolic acids, which contain glucuronic acid, are the key active substances and that they activate AKT by targeting the PH domain, thus improving glucose metabolism.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Manqian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xingwang Zu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xue Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
44
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Niranjan S, Phillips BE, Giannoukakis N. Uncoupling hepatic insulin resistance - hepatic inflammation to improve insulin sensitivity and to prevent impaired metabolism-associated fatty liver disease in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1193373. [PMID: 37396181 PMCID: PMC10313404 DOI: 10.3389/fendo.2023.1193373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease clinically-characterized as acute and chronic hyperglycemia. It is emerging as one of the common conditions associated with incident liver disease in the US. The mechanism by which diabetes drives liver disease has become an intense topic of discussion and a highly sought-after therapeutic target. Insulin resistance (IR) appears early in the progression of type 2 diabetes (T2D), particularly in obese individuals. One of the co-morbid conditions of obesity-associated diabetes that is on the rise globally is referred to as non-alcoholic fatty liver disease (NAFLD). IR is one of a number of known and suspected mechanism that underlie the progression of NAFLD which concurrently exhibits hepatic inflammation, particularly enriched in cells of the innate arm of the immune system. In this review we focus on the known mechanisms that are suspected to play a role in the cause-effect relationship between hepatic IR and hepatic inflammation and its role in the progression of T2D-associated NAFLD. Uncoupling hepatic IR/hepatic inflammation may break an intra-hepatic vicious cycle, facilitating the attenuation or prevention of NAFLD with a concurrent restoration of physiologic glycemic control. As part of this review, we therefore also assess the potential of a number of existing and emerging therapeutic interventions that can target both conditions simultaneously as treatment options to break this cycle.
Collapse
Affiliation(s)
- Sitara Niranjan
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Brett E. Phillips
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Affiliation(s)
- Anna Santoro
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston
| | - Barbara B Kahn
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston
| |
Collapse
|
47
|
Bhat N, Mani A. Dysregulation of Lipid and Glucose Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients 2023; 15:2323. [PMID: 37242206 PMCID: PMC10222271 DOI: 10.3390/nu15102323] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a highly prevalent condition affecting approximately a quarter of the global population. It is associated with increased morbidity, mortality, economic burden, and healthcare costs. The disease is characterized by the accumulation of lipids in the liver, known as steatosis, which can progress to more severe stages such as steatohepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). This review focuses on the mechanisms that contribute to the development of diet-induced steatosis in an insulin-resistant liver. Specifically, it discusses the existing literature on carbon flux through glycolysis, ketogenesis, TCA (Tricarboxylic Acid Cycle), and fatty acid synthesis pathways in NAFLD, as well as the altered canonical insulin signaling and genetic predispositions that lead to the accumulation of diet-induced hepatic fat. Finally, the review discusses the current therapeutic efforts that aim to ameliorate various pathologies associated with NAFLD.
Collapse
Affiliation(s)
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
48
|
Lü H, Meng X, Ding X, Jian T, Zuo Y, Liu Y, Ren B, Li W, Chen J. Gallotannin Isolated from Pericarp of Water Caltrop Ameliorates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7046-7057. [PMID: 37113100 DOI: 10.1021/acs.jafc.3c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide prevalent chronic liver disease characterized by hepatic steatosis. Water caltrop, the fruit of Trapa natan, is widely cultivated as an edible vegetable in Asian countries. In China, water caltrop pericarp has long been used as a functional food to treat metabolic syndrome, yet the bioactive substances and their pharmacological mechanisms remain unclear. In this study, a natural gallotannin, 1,2,3,6-tetra-O-galloyl-β-D-glucopyranoside (GA), was isolated from water caltrop pericarp and evaluated for its therapeutic effect on NAFLD. Treatment of GA (15 and 30 mg/kg/day) suppressed the body weight gain (p < 0.001) and ameliorated lipid deposition (p < 0.001) in high-fat diet (HFD)-induced NAFLD mice. GA was able to alleviate HFD-induced insulin resistance (p < 0.001), oxidative stress (p < 0.001), and inflammation (p < 0.001), thereby restoring the liver function in HFD-induced NAFLD mice. Mechanistically, GA diminished the aberrant signaling pathways including AMPK/SREBP/ACC, IRs-1/Akt, IKK/IκB/NF-κB in HFD-induced NAFLD mice and modified gut microbiota dysbiosis in these mice as well. The current findings suggest that GA is a promising novel agent for NAFLD therapy.
Collapse
Affiliation(s)
- Han Lü
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Yuanyuan Zuo
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Yan Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Bingru Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
49
|
Akl MG, Li L, Baccetto R, Phanse S, Zhang Q, Trites MJ, McDonald S, Aoki H, Babu M, Widenmaier SB. Complementary gene regulation by NRF1 and NRF2 protects against hepatic cholesterol overload. Cell Rep 2023; 42:112399. [PMID: 37060561 DOI: 10.1016/j.celrep.2023.112399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/04/2022] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
Hepatic cholesterol overload promotes steatohepatitis. Insufficient understanding of liver stress defense impedes therapy development. Here, we elucidate the role of stress defense transcription factors, nuclear factor erythroid 2 related factor-1 (NRF1) and -2 (NRF2), in counteracting cholesterol-linked liver stress. Using a diet that increases liver cholesterol storage, expression profiles and phenotypes of liver from mice with hepatocyte deficiency of NRF1, NRF2, or both are compared with controls, and chromatin immunoprecipitation sequencing is undertaken to identify target genes. Results show NRF1 and NRF2 co-regulate genes that eliminate cholesterol and mitigate inflammation and oxidative damage. Combined deficiency, but not deficiency of either alone, results in severe steatohepatitis, hepatic cholesterol overload and crystallization, altered bile acid metabolism, and decreased biliary cholesterol. Moreover, therapeutic effects of NRF2-activating drug bardoxolone require NRF1 and are supplemented by NRF1 overexpression. Thus, we discover complementary gene programming by NRF1 and NRF2 that counteract cholesterol-associated fatty liver disease progression.
Collapse
Affiliation(s)
- May G Akl
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada; Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Lei Li
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Raquel Baccetto
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sadhna Phanse
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Qingzhou Zhang
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Michael J Trites
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sherin McDonald
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hiroyuki Aoki
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Scott B Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
50
|
Likitnukul S, Thammacharoen S, Sriwatananukulkit O, Duangtha C, Hemstapat R, Sunrat C, Mangmool S, Pinthong D. Short-Term Growth Hormone Administration Mediates Hepatic Fatty Acid Uptake and De Novo Lipogenesis Gene Expression in Obese Rats. Biomedicines 2023; 11:biomedicines11041050. [PMID: 37189668 DOI: 10.3390/biomedicines11041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Obesity has been linked to metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). Obesity causes a decrease in growth hormone (GH) levels and an increase in insulin levels. Long-term GH treatment increased lipolytic activity as opposed to decreasing insulin sensitivity. Nonetheless, it is possible that short-term GH administration had no impact on insulin sensitivity. In this study, the effect of short-term GH administration on liver lipid metabolism and the effector molecules of GH and insulin receptors were investigated in diet-induced obesity (DIO) rats. Recombinant human GH (1 mg/kg) was then administered for 3 days. Livers were collected to determine the hepatic mRNA expression and protein levels involved in lipid metabolism. The expression of GH and insulin receptor effector proteins was investigated. In DIO rats, short-term GH administration significantly reduced hepatic fatty acid synthase (FASN) and cluster of differentiation 36 (CD36) mRNA expression while increasing carnitine palmitoyltransferase 1A (CPT1A) mRNA expression. Short-term GH administration reduced hepatic FAS protein levels and downregulated gene transcription of hepatic fatty acid uptake and lipogenesis, while increasing fatty acid oxidation in DIO rats. DIO rats had lower hepatic JAK2 protein levels but higher IRS-1 levels than control rats due to hyperinsulinemia. Our findings suggest that short-term GH supplementation improves liver lipid metabolism and may slow the progression of NAFLD, where GH acts as the transcriptional regulator of related genes.
Collapse
|