1
|
Blutt SE, Miller AD, Conner ME. Dendritic cell expression of MyD88 is required for rotavirus-induced B cell activation. J Virol 2025; 99:e0065325. [PMID: 40304491 PMCID: PMC12090804 DOI: 10.1128/jvi.00653-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Intestinal IgA, produced by local intestinal B cells, is thought to play a major role in protection against intestinal infections. Rotavirus, a well-characterized intestinal virus, induces a rapid viral-specific intestinal IgA response that occurs in the absence of T cells. Previous work has indicated that dendritic cells facilitate the early IgA response to rotavirus. To determine whether the early Peyer's patch B cell activation associated with rotavirus infection in mice requires dendritic cells, we depleted dendritic cells and assessed B cell activation. Depletion of CD11c+ cells in vivo prior to infection resulted in a complete abrogation of Peyer's patch B cell activation. With the use of in vitro cell-based assays, CD11c+, but not T or CD11b+ cells, was shown to be essential for rotavirus-induced activation of B cells. Investigation of several pathways of B cell activation revealed that dendritic cell expression of MyD88 and signaling through the type I interferon receptor were critical for the ability of the virus to induce B cell activation. These findings indicate that CD11c+ dendritic cells can modulate B cell responses to viruses through toll-like receptor and type I interferon signaling pathways.IMPORTANCEDendritic cells are key mediators of immune responses in the intestine. They can capture and process rotavirus antigens and present these antigens to B cells, which produce critical IgA antibody that is essential for clearance of rotavirus infection and protection from reinfection. In the work presented here, we demonstrate that dendritic cell expression of MyD88, a key component of pattern recognition pathways, and not classical IgA pathway molecules such as BAFF and APRIL, is critical for the ability of the dendritic cell to induce the activation of B cells. Our findings emphasize the important role that dendritic cells play in initiating and regulating immune responses including T cell-independent B cell activation. A consideration of the role of dendritic cells in B cell activation and antibody production is an important feature in the development of therapeutic and preventive modalities to combat intestinal viral infections.
Collapse
Affiliation(s)
- Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Amber D. Miller
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Margaret E. Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
- Huffington Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Wu Y, Jia N, Sun J, Liao W, Xu J, Chen W, Zhao C. The roles of algal polysaccharides in modulating tumor immune microenvironment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156610. [PMID: 40085993 DOI: 10.1016/j.phymed.2025.156610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/26/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Polysaccharides from algae provide a range of biology and health benefits. Lately, there has been a significant interest in how algal polysaccharides affect the immune microenvironment around tumors. PURPOSE To elucidate the subtle interactions between algal polysaccharides and the tumor immune microenvironment to further understand the medicinal potential of algal polysaccharides. STUDY DESIGN To give a summary of the sources, bioactivities and characteristics of the tumor immune microenvironment of algal polysaccharides, and to analyze alteration of the immunological milieu surrounding tumors by algal polysaccharides and their potential as immunomodulators of chemotherapeutic agents. METHODS Search popular academic search engines using selected keywords for articles ending before September 2024 using selected keywords Google Scholar, PubMed, ScienceDirect, Scopus, Web of Science, Springer, and official websites. RESULTS Algal polysaccharides can fight tumors by changing how immune cells work and affecting inflammation in different ways. Moreover, algal polysaccharides have shown promise in mitigating the adverse effects associated with conventional cancer treatments, such as chemotherapy. Algal polysaccharides, through their immunomodulatory effects, can alleviate some of these side effects, leading to an enhanced overall treatment outcome. CONCLUSION As research continues to uncover the underlying mechanisms of their antitumor effects, algal polysaccharides are poised to become a vital component in the development of novel cancer treatments, providing new hope for patients and advancing the field of oncology.
Collapse
Affiliation(s)
- Yinfeng Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jingyu Sun
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Wei Liao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jingxiang Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
3
|
D'Amico C, Fusciello M, Hamdan F, D'Alessio F, Bottega P, Saklauskaite M, Russo S, Cerioni J, Elbadri K, Kemell M, Hirvonen J, Cerullo V, Santos HA. Transdermal delivery of PeptiCRAd cancer vaccine using microneedle patches. Bioact Mater 2025; 45:115-127. [PMID: 39639878 PMCID: PMC11617629 DOI: 10.1016/j.bioactmat.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Microneedles (MNs) are a prospective system in cancer immunotherapy to overcome barriers regarding proper antigen delivery and presentation. This study aims at identifying the potential of MNs for the delivery of Peptide-coated Conditionally Replicating Adenoviruses (PeptiCRAd), whereby peptides enhance the immunogenic properties of adenoviruses presenting tumor associated antigens. The combination of PeptiCRAd with MNs containing polyvinylpyrrolidone and sucrose was tested for the preservation of structure, induction of immune response, and tumor eradication. The findings indicated that MN-delivered PeptiCRAd was effective in peptide presentation in vivo, leading to complete tumor rejection when mice were pre-vaccinated. A rise in the cDC1 population in the lymph nodes of the MN treated mice led to an increase in the effector memory T cells in the body. Thus, the results of this study demonstrate that the combination of MN technology with PeptiCRAd may provide a safer, more tolerable, and efficient approach to cancer immunotherapy, potentially translatable to other therapeutic applications.
Collapse
Affiliation(s)
- Carmine D'Amico
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Manlio Fusciello
- Department of Pharmaceutical Biosciences, University of Helsinki, Faculty of Pharmacy ImmunoViroTherapy Lab, Drug Research Program, Viikinkaari 5, E00790, Helsinki, Finland
| | - Firas Hamdan
- Department of Pharmaceutical Biosciences, University of Helsinki, Faculty of Pharmacy ImmunoViroTherapy Lab, Drug Research Program, Viikinkaari 5, E00790, Helsinki, Finland
| | - Federica D'Alessio
- Department of Pharmaceutical Biosciences, University of Helsinki, Faculty of Pharmacy ImmunoViroTherapy Lab, Drug Research Program, Viikinkaari 5, E00790, Helsinki, Finland
| | - Paolo Bottega
- Department of Pharmaceutical Biosciences, University of Helsinki, Faculty of Pharmacy ImmunoViroTherapy Lab, Drug Research Program, Viikinkaari 5, E00790, Helsinki, Finland
| | - Milda Saklauskaite
- Department of Pharmaceutical Biosciences, University of Helsinki, Faculty of Pharmacy ImmunoViroTherapy Lab, Drug Research Program, Viikinkaari 5, E00790, Helsinki, Finland
| | - Salvatore Russo
- Department of Pharmaceutical Biosciences, University of Helsinki, Faculty of Pharmacy ImmunoViroTherapy Lab, Drug Research Program, Viikinkaari 5, E00790, Helsinki, Finland
| | - Justin Cerioni
- Department of Pharmaceutical Biosciences, University of Helsinki, Faculty of Pharmacy ImmunoViroTherapy Lab, Drug Research Program, Viikinkaari 5, E00790, Helsinki, Finland
| | - Khalil Elbadri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Vincenzo Cerullo
- Department of Pharmaceutical Biosciences, University of Helsinki, Faculty of Pharmacy ImmunoViroTherapy Lab, Drug Research Program, Viikinkaari 5, E00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsin-ki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, 80131, Naples, Italy
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
4
|
Brisse ME, Hickman HD. Viral Infection and Dissemination Through the Lymphatic System. Microorganisms 2025; 13:443. [PMID: 40005808 PMCID: PMC11858409 DOI: 10.3390/microorganisms13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Many viruses induce viremia (virus in the blood) and disseminate throughout the body via the bloodstream from the initial infection site. However, viruses must often pass through the lymphatic system to reach the blood. The lymphatic system comprises a network of vessels distinct from blood vessels, along with interconnected lymph nodes (LNs). The complex network has become increasingly appreciated as a crucial host factor that contributes to both the spread and control of viral infections. Viruses can enter the lymphatics as free virions or along with migratory cells. Once virions arrive in the LN, sinus-resident macrophages remove infectious virus from the lymph. Depending on the virus, macrophages can eliminate infection or propagate the virus. A virus released from an LN is eventually deposited into the blood. This unique pathway highlights LNs as targets for viral infection control and for modulation of antiviral response development. Here, we review the lymphatic system and viruses that disseminate through this network. We discuss infection of the LN, the generation of adaptive antiviral immunity, and current knowledge of protection within the infected node. We conclude by sharing insights from ongoing efforts to optimize lymphatic targeting by vaccines and pharmaceuticals. Understanding the lymphatic system's role during viral infection enhances our knowledge of antiviral immunity and virus-host interactions and reveals potential targets for next-generation therapies.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| |
Collapse
|
5
|
Zhou Y, Hubscher CH. Biomarker expression level changes within rectal gut-associated lymphoid tissues in spinal cord-injured rats. Immunohorizons 2025; 9:vlaf002. [PMID: 40048710 PMCID: PMC11884801 DOI: 10.1093/immhor/vlaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
Neurogenic bowel dysfunction (NBD) is common after spinal cord injury (SCI). Gut-associated lymphoid tissue (GALT), an organized structure within the mucosal immune system, is important for the maintenance of gut homeostasis and body health and serves as the first line barrier/defense against diet antigens, commensal microbiota, pathogens, and toxins in mucosal areas. The current study examined gene expression levels along six segments of anorectal tissue using real-time polymerase chain reaction (RT-PCR) in uninjured rats (28-day sham surgical controls) and at both 28- and 42-days post-T9 contusion injury. Consistent with our previous report of functional regional differences in the ano-rectum, we demonstrate the existence of GALTs located primarily within the segment at 3-4.5 cm from the rectal dentate line (termed rectal GALTs-rGALTs) in shams with upregulated gene expression levels of multiple biomarkers, including B cell and T cell-related genes, major histocompatibility complex (MHC) class II molecules, and germinal center (GC)-related genes, which was further confirmed by histologic examination. In the same rectal tissue segment following T9 SCI, inflammation-related genes were upregulated at 28 days post-injury (DPI) indicating that microbial infection and inflammation of rGALTs modified structure and function of rGALTs, while at 42 DPI rGALTs exhibited resolution of inflammation and impaired structure/function for extrafollicular B cell responses. Taken together, our data suggest that rGALTs exists in rat rectum for homeostasis of gut microbiota/barrier. SCI induces microbial infection and inflammation in rectal tissues containing rGALTs, which could contribute to development of SCI-related gut microbiome dysbiosis, NBD, and systemic diseases.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, Louisville, KY, United States
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, Louisville, KY, United States
| |
Collapse
|
6
|
Yin D, Zhong Y, Ling S, Lu S, Wang X, Jiang Z, Wang J, Dai Y, Tian X, Huang Q, Wang X, Chen J, Li Z, Li Y, Xu Z, Jiang H, Wu Y, Shi Y, Wang Q, Xu J, Hong W, Xue H, Yang H, Zhang Y, Da L, Han ZG, Tao SC, Dong R, Ying T, Hong J, Cai Y. Dendritic-cell-targeting virus-like particles as potent mRNA vaccine carriers. Nat Biomed Eng 2025; 9:185-200. [PMID: 38714892 DOI: 10.1038/s41551-024-01208-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/31/2024] [Indexed: 02/21/2025]
Abstract
Messenger RNA vaccines lack specificity for dendritic cells (DCs)-the most effective cells at antigen presentation. Here we report the design and performance of a DC-targeting virus-like particle pseudotyped with an engineered Sindbis-virus glycoprotein that recognizes a surface protein on DCs, and packaging mRNA encoding for the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or for the glycoproteins B and D of herpes simplex virus 1. Injection of the DC-targeting SARS-CoV-2 mRNA vaccine in the footpad of mice led to substantially higher and durable antigen-specific immunoglobulin-G titres and cellular immune responses than untargeted virus-like particles and lipid-nanoparticle formulations. The vaccines also protected the mice from infection with SARS-CoV-2 or with herpes simplex virus 1. Virus-like particles with preferential uptake by DCs may facilitate the development of potent prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Di Yin
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiye Zhong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sikai Ling
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- BDGENE Therapeutics, Shanghai, China
| | - Sicong Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Zhuofan Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Dai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Tian
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qijing Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingbo Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Junsong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziying Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hewei Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Wu
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Quanjun Wang
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Medical Countermeasures and Toxicology, Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Jianjiang Xu
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heng Xue
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lintai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruijiao Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Zhu Y, Shrestha A. Metabolic syndrome and its effect on immune cells in apical periodontitis- a narrative review. Clin Oral Investig 2025; 29:67. [PMID: 39825203 DOI: 10.1007/s00784-025-06161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
OBJECTIVES Apical periodontitis (AP) is an inflammatory immune response in periapical tissues caused by microbial infections. Failure of root canal treatment or delayed healing is often due to intracanal or extra-radicular bacteria. However, beyond microbial factors, the patient's systemic health can significantly influence the progression and healing of AP. Metabolic syndrome is a risk factor and it is characterized by a cluster of interconnected metabolic risk factors, including abdominal obesity, hyperlipidemia, hypertension, and hyperglycemia. MATERIALS AND METHODS A comprehensive literature review was conducted on apical periodontitis and metabolic syndrome, and their impact on the roles of different immune cell populations. RESULTS Both AP and metabolic syndrome are inflammatory diseases that involve complex and interwoven immune responses. The affected immune cells are categorized into the innate (neutrophils, macrophages, and dendritic cells) and adaptive immune systems (T cells and B cells). CONCLUSIONS Metabolic diseases and AP are closely correlated, possibly intertwined in a two-way relationship driven by a shared dysregulated immune response. CLINICAL RELEVANCE Understanding the pathophysiology and immune mechanisms underlying the two-way relationship between metabolic syndrome and AP can help improve treatment outcomes and enhance the overall well-being of patients with endodontic disease complicated by metabolic syndrome.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Dentistry, Mt. Sinai Hospital, Toronto 412-600 University Avenue, Toronto, ON, M5G 1X5, Canada.
| |
Collapse
|
8
|
Schulte MC, Boll AC, Barcellona AT, Lopez EA, Schrum AG, Ulery BD. Peptide Antigen Modifications Influence the On-Target and Off-Target Antibody Response for an Influenza Subunit Vaccine. Vaccines (Basel) 2025; 13:51. [PMID: 39852830 PMCID: PMC11768957 DOI: 10.3390/vaccines13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Peptide amphiphile micelles (PAMs) are an exciting nanotechnology currently being studied for a variety of biomedical applications, especially for drug delivery. Specifically, PAMs can enhance in vivo trafficking, cell-targeting, and cell interactions/internalization. However, modifying peptides, as is commonly performed to induce micellization, can influence their bioactivity. In our previous work, murine antibody responses to PAMs containing the influenza antigen M22-16 were slightly incongruous with prior PAM vaccine studies using other antigens. In this current work, the effect of native protein linkages and non-native micellizing moieties on M2 immunogenicity was studied. METHODS PAMs were synthesized using an elongated M2 antigen (i.e., Palm2K-M21-24-(KE)4). The PAMs were characterized, then their immunogenicity was evaluated with bone marrow-derived dendritic cells and in mice. RESULTS Although the modification scheme yielded immunogenic PAMs, these PAMs induced a substantial amount of off-target antibody production compared to unmodified peptidyl micelles (PMs, M21-24 peptide). CONCLUSIONS While the impact PAM-induced off-target antibodies had on vaccine efficacy remains to be elucidated, on-target antibodies from both PAM- and PM-vaccinated mice were excitingly able to recognize the M2 antigen within the context of the full M2 protein. This provides preliminary evidence that the PAM-induced on-target antibodies will at minimum be able to recognize the influenza virus upon exposure.
Collapse
Affiliation(s)
- Megan C. Schulte
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (M.C.S.); (A.T.B.); (A.G.S.)
| | - Adam C. Boll
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (M.C.S.); (A.T.B.); (A.G.S.)
| | - Agustin T. Barcellona
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (M.C.S.); (A.T.B.); (A.G.S.)
| | - Elida A. Lopez
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA;
| | - Adam G. Schrum
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (M.C.S.); (A.T.B.); (A.G.S.)
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA;
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Bret D. Ulery
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (M.C.S.); (A.T.B.); (A.G.S.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
- Materials Science & Engineering Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Zhou H, Han X, Huang C, Wu H, Hu Y, Chen C, Tao J. Exercise-induced adaptive response of different immune organs during ageing. Ageing Res Rev 2024; 102:102573. [PMID: 39486525 DOI: 10.1016/j.arr.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The immune system plays a crucial role in the ageing process. As individuals age, significant alterations in the immune system experiences occur, marked by a decline in immune cell count, compromised immune function, and decreased immune regulation across various immune organs. These changes collectively weaken the capacity to combat diseases and infections, highlighting the vulnerability that accompanies ageing. Exercise is a potent intervention that profoundly influences holistic well-being and disease mitigation, with a notable emphasis on immune modulation. In general, regular moderate exercise holds significant potential to enhance immune defense mechanisms and metabolic well-being by augmenting the circulation and activation of immune cells. However, some exercise modalities would trigger detrimental effects on the immune system. It can be seen that the regulatory responses of various immune organs to diverse exercise patterns are different. This review aims to examine the immunological responses elicited by exercise across various immune organs, including the lymph nodes, spleen, bone marrow, and thymus, to underscore the nuanced interplay between exercise patterns and the immune organ. This underscores the importance of customizing exercise interventions to optimize immune function across the lifespan.
Collapse
Affiliation(s)
- Huanghao Zhou
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Chunxiu Huang
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Huijuan Wu
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yue Hu
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Cong Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jing Tao
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
11
|
Holm M, Stepanauskaitė L, Bäckström A, Birgersson M, Socciarelli F, Archer A, Stadler C, Williams C. Spatial profiling of the mouse colonic immune landscape associated with colitis and sex. Commun Biol 2024; 7:1595. [PMID: 39613949 DOI: 10.1038/s42003-024-07276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Inflammatory intestinal conditions are a major disease burden. Numerous factors shape the distribution of immune cells in the colon, but a spatial characterization of the homeostatic and inflamed colonic immune microenvironment is lacking. Here, we use the COMET platform for multiplex immunofluorescence to profile the infiltration of nine immune cell populations in mice of both sexes (N = 16) with full spatial context, including in regions of squamous metaplasia. Unsupervised clustering, neighborhood analysis, and manual quantification along the proximal-distal axis characterized the colonic immune landscape, quantified cell-cell interactions, and revealed sex differences. The distal colon was the most affected region during colitis, which was pronounced in males, who exhibited a sex-dependent increase of B cells and reduction of M2-like macrophages. Regions of squamous metaplasia exhibited strong infiltration of numerous immune cell populations, especially in males. Females exhibited more helper T cells and neutrophils at homeostasis and increased M2-like macrophage infiltration in the mid-colon upon colitis. Sex differences were corroborated by plasma cytokine profiles. Our results provide a foundation for future studies of inflammatory intestinal conditions.
Collapse
Affiliation(s)
- Matilda Holm
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Lina Stepanauskaitė
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Anna Bäckström
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Madeleine Birgersson
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amena Archer
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Charlotte Stadler
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
12
|
Agrez M, Chandler C, Thurecht KJ, Fletcher NL, Liu F, Subramaniam G, Howard CB, Parker S, Turner D, Rzepecka J, Knox G, Nika A, Hall AM, Gooding H, Gallagher L. A novel immunomodulating peptide with potential to complement oligodeoxynucleotide-mediated adjuvanticity in vaccination strategies. Sci Rep 2024; 14:26737. [PMID: 39501043 PMCID: PMC11538426 DOI: 10.1038/s41598-024-78150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The identification of adjuvants to improve vaccination efficacy is a major unmet need. One approach is to augment the functionality of dendritic cells (DCs) by using Toll-like receptor-9 (TLR9) agonists such as cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) as adjuvants. Another approach is adjuvant selection based on production of bioactive interleukin-12 (IL-12). We report a D-peptide isomer, designated D-15800, that induces monocyte differentiation to the DC phenotype in vitro and more effectively stimulates IL-12p70 production upon T cell receptor (TCR) activation than the L-isomer. In the absence of TCR activation and either IL-12p70 or interleukin-2 production, only D-15800 activates CD4+ T and natural killer cells. In the presence of CpG ODN, D-15800 synergistically enhances production of interferon-alpha (IFN-α). Taken together with its biostability in human serum and depot retention upon injection, co-delivery of D-15800 with TLR9 agonists could serve to improve vaccine efficacy.
Collapse
Affiliation(s)
- Michael Agrez
- InterK Peptide Therapeutics Limited, Lane Cove West, NSW, Australia.
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia.
| | | | - Kristofer J Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Feifei Liu
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Gayathri Subramaniam
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Stephen Parker
- InterK Peptide Therapeutics Limited, Lane Cove West, NSW, Australia
| | | | | | - Gavin Knox
- Concept Life Sciences, Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
13
|
You H, Shin U, Kwon DH, Hwang J, Lee GY, Han SN. The effects of in vitro vitamin D treatment on glycolytic reprogramming of bone marrow-derived dendritic cells from Ldlr knock-out mouse. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167436. [PMID: 39067537 DOI: 10.1016/j.bbadis.2024.167436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Dendritic cells (DCs) undergo glycolytic reprogramming, a metabolic conversion process essential for their activation. Vitamin D has been reported to affect the function of DCs, but studies in metabolic diseases are insufficient. This study investigates the effects of in vitro 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment on glycolytic reprogramming of bone marrow-derived dendritic cells (BMDCs) from control, obese, and atherosclerosis mice. Six-week-old male C57BL/6J mice were fed a control diet (CON) or a Western diet (WD), and B6.129S7-Ldlrtm1Her/J mice were fed a Western diet (LDLR-/-) for 16 weeks. BMDCs were cultured in a medium containing 1,25(OH)2D3 (10 nM) for 7 days and stimulated with lipopolysaccharide (LPS, 50 ng/mL) for 24 h. In mature BMDCs, 1,25(OH)2D3 treatment decreased basal and compensatory glycolytic proton efflux rates (glycoPER), the expression of surface markers related to immune function of DCs (MHC class II, CD80, and CD86), and IL-12p70 production. In addition, mTORC1 activation and nitric oxide (NO) production were suppressed by 1,25(OH)2D3 treatment in mature BMDCs. The effect of 1,25(OH)2D3 treatment on IL-12p70 production and mTORC1 activity in the LDLR-/- group was greater than in the CON group. These findings suggest that vitamin D can affect the metabolic environment of BMDCs by regulating glycolytic reprogramming as well as by inducing tolerogenic phenotypes of DCs.
Collapse
Affiliation(s)
- Hyeyoung You
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Ungue Shin
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Deok Hoon Kwon
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Jungwon Hwang
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea; Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Zheng Y, Li Z, Li S, Zhao P, Wang X, Lu S, Shi Y, Chang H. Separable nanocomposite hydrogel microneedles for intradermal and sustained delivery of antigens to enhance adaptive immune responses. Acta Biomater 2024; 185:203-214. [PMID: 39053817 DOI: 10.1016/j.actbio.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Vaccines play a critical role in combating infectious diseases and cancers, yet improving their efficacy remains challenging. Here, we introduce a separable nanocomposite hydrogel microneedle (NHMN) patch designed for intradermal and sustained delivery of ovalbumin (OVA), a model antigen, to enhance adaptive immune responses. The NHMN patch consists of an array of OVA-loaded microneedles made from photo-cross-linked methacrylated hyaluronic acid and laponite (LAP), supported by a hyaluronic acid backing. The incorporation of LAP not only enhances the mechanical strength of the pure hydrogel microneedles but also significantly prolongs OVA release. Furthermore, in vitro cell experiments demonstrate that NHMNs effectively activate dendritic cells without compromising cell viability. Upon skin penetration, NHMNs detach from the backing as the hyaluronic acid rapidly dissolves upon contact with the skin interstitial fluid, thereby acting as antigen reservoirs to release antigens to abundant skin dendritic cells. NHMNs containing 0.5% w/v LAP achieved a 15-day OVA release in vivo. Immunization studies demonstrate that the intradermal and sustained release of OVA via NHMNs elicited stronger and longer-lasting adaptive immune responses compared to conventional bolus injection. Given its easy to use, painless and minimally invasive features, the NHMN patch shows promise in improving vaccination accessibility and efficacy against a range of diseases. STATEMENT OF SIGNIFICANCE: The study introduces a separable nanocomposite hydrogel microneedle (NHMN) patch. This patch consists of an array of ovalbumin (OVA, a model antigen)-loaded microneedles made from photo-cross-linked methacrylated hyaluronic acid and laponite, with a hyaluronic acid backing, designed for intradermal and sustained delivery of antigens. This patch addresses several key challenges in traditional vaccination methods, including poor antigen uptake and presentation, and rapid systematic clearance. The incorporation of laponite enhances mechanical strength of microneedles, promotes dendritic cell activation, and significantly slows down antigen release. NHMN-based vaccination elicits stronger and longer-lasting adaptive immune responses compared to conventional bolus injection. This NHMN patch holds great potential for improving the efficacy, accessibility, and patient comfort of vaccinations against a range of diseases.
Collapse
Affiliation(s)
- Yanting Zheng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zhiming Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China
| | - Shaohua Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Puxuan Zhao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xin Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shaojie Lu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yanan Shi
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
15
|
García-Silva S, Peinado H. Mechanisms of lymph node metastasis: An extracellular vesicle perspective. Eur J Cell Biol 2024; 103:151447. [PMID: 39116620 DOI: 10.1016/j.ejcb.2024.151447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In several solid tumors such as breast cancer, prostate cancer, colorectal cancer or melanoma, tumor draining lymph nodes are the earliest tissues where colonization by tumor cells is detected. Lymph nodes act as sentinels of metastatic dissemination, the deadliest phase of tumor progression. Besides hematogenous dissemination, lymphatic spread of tumor cells has been demonstrated, adding more complexity to the mechanisms involved in metastasis. A network of blood and lymphatic vessels surrounds tumors providing routes for tumor soluble factors to mediate regional and long-distance effects. Additionally, extracellular vesicles (EVs), particularly small EVs/exosomes, have been shown to circulate through the blood and lymph, favoring the formation of pre-metastatic niches in the tumor-draining lymph nodes (TDLNs) and distant organs. In this review, we present an overview of the relevance of lymph node metastasis, the structural and immune changes occurring in TDLNs during tumor progression, and how extracellular vesicles contribute to modulating some of these alterations while promoting the formation of lymph node pre-metastatic niches.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
16
|
Li Y, Zhao X, Tang J, Yi M, Zai X, Zhang J, Cheng G, Yang Y, Xu J. Endogenous capsid-forming protein ARC for self-assembling nanoparticle vaccines. J Nanobiotechnology 2024; 22:513. [PMID: 39192264 PMCID: PMC11348728 DOI: 10.1186/s12951-024-02767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The application of nanoscale scaffolds has become a promising strategy in vaccine design, with protein-based nanoparticles offering desirable avenues for the biocompatible and efficient delivery of antigens. Here, we presented a novel endogenous capsid-forming protein, activated-regulated cytoskeleton-associated protein (ARC), which could be engineered through the plug-and-play strategy (SpyCatcher3/SpyTag3) for multivalent display of antigens. Combined with the self-assembly capacity and flexible modularity of ARC, ARC-based vaccines elicited robust immune responses against Mpox or SARS-CoV-2, comparable to those induced by ferritin-based vaccines. Additionally, ARC-based nanoparticles functioned as immunostimulants, efficiently stimulating dendritic cells and facilitating germinal center responses. Even without adjuvants, ARC-based vaccines generated protective immune responses in a lethal challenge model. Hence, this study showed the feasibility of ARC as a novel protein-based nanocarrier for multivalent surface display of pathogenic antigens and demonstrated the potential of exploiting recombinant mammalian retrovirus-like protein as a delivery vehicle for bioactive molecules.
Collapse
Affiliation(s)
- Yu Li
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaofan Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jiaqi Tang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Mengran Yi
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yilong Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
17
|
Menay F, Cocozza F, Gravisaco MJ, Elisei A, Re JI, Ferella A, Waldner C, Mongini C. Extracellular vesicles derived from antigen-presenting cells pulsed with foot and mouth virus vaccine-antigens act as carriers of viral proteins and stimulate B cell response. Front Immunol 2024; 15:1440667. [PMID: 39176090 PMCID: PMC11338771 DOI: 10.3389/fimmu.2024.1440667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Foot and mouth disease (FMD) is a highly contagious infection caused by FMD-virus (FMDV) that affects livestock worldwide with significant economic impact. The main strategy for the control is vaccination with FMDV chemically inactivated with binary ethylenimine (FMDVi). In FMDV infection and vaccination, B cell response plays a major role by providing neutralizing/protective antibodies in animal models and natural hosts. Extracellular vesicles (EVs) and small EVs (sEVs) such as exosomes are important in cellular communication. EVs secreted by antigen-presenting cells (APC) like dendritic cells (DCs) participate in the activation of B and T cells through the presentation of native antigen membrane-associated to B cells or by transferring MHC-peptide complexes to T cells and even complete antigens from DCs. In this study, we demonstrate for the first time that APC activated with the FMDVi O1 Campos vaccine-antigens secrete EVs expressing viral proteins/peptides that could stimulate FMDV-specific immune response. The secretion of EVs-FMDVi is a time-dependent process and can only be isolated within the first 24 h post-activation. These vesicles express classical EVs markers (CD9, CD81, and CD63), along with immunoregulatory molecules (MHC-II and CD86). With an average size of 155 nm, they belong to the category of EVs. Studies conducted in vitro have demonstrated that EVs-FMDVi express antigens that can stimulate a specific B cell response against FMDV, including both marginal zone B cells (MZB) and follicular B cells (FoB). These vesicles can also indirectly or directly affect T cells, indicating that they express both B and T epitopes. Additionally, lymphocyte expansion induced by EVs-FMDVi is greater in splenocytes that have previously encountered viral antigens in vivo. The present study sheds light on the role of EVs derived from APC in regulating the adaptive immunity against FMDV. This novel insight contributes to our current understanding of the immune mechanisms triggered by APC during the antiviral immune response. Furthermore, these findings may have practical implications for the development of new vaccine platforms, providing a rational basis for the design of more effective vaccines against FMDV and other viral diseases.
Collapse
Affiliation(s)
- Florencia Menay
- Laboratorio de Microvesículas, Exosomas y miRNA, Instituto de Virología y Innovaciones Tecnológicas (IVIT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Federico Cocozza
- Institut National de la Santé et de la Recherche Médicale (INSERM-U932), Institut Curie, París, France
| | - Maria J. Gravisaco
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Analia Elisei
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Departamento de Patología, Servicio Nacional de Salud y Calidad Agroalimentaria (SENASA), Martinez, Buenos Aires, Argentina
| | - Javier Ignacio Re
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Alejandra Ferella
- Laboratorio de Microvesículas, Exosomas y miRNA, Instituto de Virología y Innovaciones Tecnológicas (IVIT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Claudia Waldner
- Laboratorio de Inmunología Celular y Molecular, Centro de Estudios Farmacologicos y Botanicos (CEFYBO) CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudia Mongini
- Laboratorio de Microvesículas, Exosomas y miRNA, Instituto de Virología y Innovaciones Tecnológicas (IVIT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
18
|
Knutson KL. Regulation of Tumor Dendritic Cells by Programmed Cell Death 1 Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1397-1405. [PMID: 38621195 PMCID: PMC11027937 DOI: 10.4049/jimmunol.2300674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/18/2024] [Indexed: 04/17/2024]
Abstract
The advent of immune checkpoint blockade therapy has revolutionized cancer treatments and is partly responsible for the significant decline in cancer-related mortality observed during the last decade. Immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1), have demonstrated remarkable clinical successes in a subset of cancer patients. However, a considerable proportion of patients remain refractory to immune checkpoint blockade, prompting the exploration of mechanisms of treatment resistance. Whereas much emphasis has been placed on the role of PD-L1 and PD-1 in regulating the activity of tumor-infiltrating T cells, recent studies have now shown that this immunoregulatory axis also directly regulates myeloid cell activity in the tumor microenvironment including tumor-infiltrating dendritic cells. In this review, I discuss the most recent advances in the understanding of how PD-1, PD-L1, and programmed cell death ligand 2 regulate the function of tumor-infiltrating dendritic cells, emphasizing the need for further mechanistic studies that could facilitate the development of novel combination immunotherapies for improved cancer patient benefit.
Collapse
|
19
|
Hou Y, Chen M, Bian Y, Hu Y, Chuan J, Zhong L, Zhu Y, Tong R. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines 2024; 9:77. [PMID: 38600250 PMCID: PMC11006855 DOI: 10.1038/s41541-024-00874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Immunosenescence increases the risk and severity of diseases in elderly individuals and leads to impaired vaccine-induced immunity. With aging of the global population and the emerging risk of epidemics, developing adjuvants and vaccines for elderly individuals to improve their immune protection is pivotal for healthy aging worldwide. Deepening our understanding of the role of immunosenescence in vaccine efficacy could accelerate research focused on optimizing vaccine delivery for elderly individuals. In this review, we analyzed the characteristics of immunosenescence at the cellular and molecular levels. Strategies to improve vaccination potency in elderly individuals are summarized, including increasing the antigen dose, preparing multivalent antigen vaccines, adding appropriate adjuvants, inhibiting chronic inflammation, and inhibiting immunosenescence. We hope that this review can provide a review of new findings with regards to the impacts of immunosenescence on vaccine-mediated protection and inspire the development of individualized vaccines for elderly individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Hu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Junlan Chuan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
20
|
Sanges S, Tian W, Dubucquoi S, Chang JL, Collet A, Launay D, Nicolls MR. B-cells in pulmonary arterial hypertension: friend, foe or bystander? Eur Respir J 2024; 63:2301949. [PMID: 38485150 PMCID: PMC11043614 DOI: 10.1183/13993003.01949-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/01/2024] [Indexed: 04/22/2024]
Abstract
There is an unmet need for new therapeutic strategies that target alternative pathways to improve the prognosis of patients with pulmonary arterial hypertension (PAH). As immunity has been involved in the development and progression of vascular lesions in PAH, we review the potential contribution of B-cells in its pathogenesis and evaluate the relevance of B-cell-targeted therapies. Circulating B-cell homeostasis is altered in PAH patients, with total B-cell lymphopenia, abnormal subset distribution (expansion of naïve and antibody-secreting cells, reduction of memory B-cells) and chronic activation. B-cells are recruited to the lungs through local chemokine secretion, and activated by several mechanisms: 1) interaction with lung vascular autoantigens through cognate B-cell receptors; 2) costimulatory signals provided by T follicular helper cells (interleukin (IL)-21), type 2 T helper cells and mast cells (IL-4, IL-6 and IL-13); and 3) increased survival signals provided by B-cell activating factor pathways. This activity results in the formation of germinal centres within perivascular tertiary lymphoid organs and in the local production of pathogenic autoantibodies that target the pulmonary vasculature and vascular stabilisation factors (including angiotensin-II/endothelin-1 receptors and bone morphogenetic protein receptors). B-cells also mediate their effects through enhanced production of pro-inflammatory cytokines, reduced anti-inflammatory properties by regulatory B-cells, immunoglobulin (Ig)G-induced complement activation, and IgE-induced mast cell activation. Precision-medicine approaches targeting B-cell immunity are a promising direction for select PAH conditions, as suggested by the efficacy of anti-CD20 therapy in experimental models and a trial of rituximab in systemic sclerosis-associated PAH.
Collapse
Affiliation(s)
- Sébastien Sanges
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Wen Tian
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Sylvain Dubucquoi
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Jason L Chang
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Aurore Collet
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - David Launay
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| | - Mark R Nicolls
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| |
Collapse
|
21
|
Verma A, De Pascalis R, Mocca CP, Li X, Burns DL. Visualization of immune pathways that enhance the neutralizing antibody response to vaccines after primary immunization. mBio 2024; 15:e0003724. [PMID: 38334423 PMCID: PMC10936199 DOI: 10.1128/mbio.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
We examined the relationship between the association of a vaccine antigen with immune cells in secondary lymphoid organs shortly after immunization and the resulting neutralizing antibody response induced by that antigen using three antigenic forms of anthrax protective antigen (PA) that induce qualitatively different antibody responses. The three PA forms used were wild-type PA, which binds to anthrax toxin receptors and elicits a robust antibody response that includes both neutralizing and non-neutralizing antibodies; a receptor-binding-deficient (RBD) mutant form of PA, which does not bind cellular receptors and elicits only barely detectable antibody responses; and an engineered chimeric form of PA, which binds cholera toxin receptors and elicits a robust total antibody response but a poor neutralizing antibody response. We found that both wild-type PA and the PA chimera associated with immune cells in secondary lymphoid organs after immunization, but the RBD mutant PA exhibited minimal association, revealing a relationship between antigen binding to toxin receptors on immune cells after immunization and subsequent antibody responses. A portion of wild-type PA that bound to immune cells was cell surface-associated and maintained its native conformation. Much lower amounts of conformationally intact PA chimera were associated with immune cells after immunization, correlating with the lower neutralizing antibody response elicited by the PA chimera. Thus, binding of an antigen to receptors on immune cells in secondary lymphoid organs after immunization and maintenance of conformational integrity of the cell-associated antigen help dictate the magnitude of the resulting neutralizing antibody response, but not necessarily the total antibody response.IMPORTANCEMany vaccines protect by the induction of antibodies that neutralize the action of the pathogen. Here, we followed the fate of three antigenic forms of a vaccine antigen in secondary lymphoid organs after immunization to investigate events leading to a robust neutralizing antibody response. We found that the magnitude of the neutralizing antibody response, but not the total antibody response, correlates with the levels of conformationally intact antigen associated with immune cells in secondary lymphoid organs after primary immunization. We believe that these results provide important insights into the genesis of neutralizing antibody responses induced by vaccine antigens and may have implications for vaccine design.
Collapse
Affiliation(s)
- Anita Verma
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Roberto De Pascalis
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Christopher P. Mocca
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xiaohong Li
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Drusilla L. Burns
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
22
|
Song Z, Su M, Li X, Xie J, Han F, Yao J. A novel endoplasmic reticulum stress-related lncRNA signature for prognosis prediction and immune response evaluation in Stomach adenocarcinoma. BMC Gastroenterol 2023; 23:432. [PMID: 38066437 PMCID: PMC10709857 DOI: 10.1186/s12876-023-03001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a significant contributor to cancer-related mortality worldwide. Although previous research has identified endoplasmic reticulum stress (ERS) as a regulator of various tumor-promoting properties of cancer cells, the impact of ERS-related long non-coding RNAs (lncRNAs) on STAD prognosis has not yet been investigated. Therefore, our study aims to develop and validate an ERS-related lncRNA signature that can accurately predict the prognosis of STAD patients. METHODS We collected RNA expression profiles and clinical data of STAD patients from The Cancer Genome Atlas (TCGA) and identified ERS-related genes from the Molecular Signature Database (MSigDB). Co-expression analysis enabled us to identify ERS-related lncRNAs, and we applied univariate Cox, least absolute shrinkage, and selection operator (LASSO), and multivariate Cox regression analyses to construct a predictive signature comprising of 9 ERS-related lncRNAs. We assessed the prognostic accuracy of our signature using Kaplan-Meier survival analysis, and validated our predictive signature in an independent gene expression omnibus (GEO) cohort. We also performed tumor mutational burden (TMB) and tumor immune microenvironment (TIME) analyses. Enrichment analysis was used to investigate the functions and biological processes of the signature, and we identified two distinct STAD patient subgroups through consensus clustering. Finally, we performed drug sensitivity analysis and immunologic efficacy analysis to explore further insights. RESULTS The 9 ERS related-lncRNAs signature demonstrated satisfactory predictive performance as an independent prognostic marker and was significantly associated with STAD clinicopathological characteristics. Furthermore, patients in the high-risk group displayed a worse STAD prognosis than those in the low-risk group. Notably, gene set enrichment analysis (GSEA) revealed significant enrichment of extracellular matrix pathways in the high-risk group, indicating their involvement in STAD progression. Additionally, the high-risk group exhibited significantly lower TMB expression levels than the low-risk group. Consensus clustering revealed two distinct STAD patient subgroups, with Cluster 1 exhibiting higher immune cell infiltration and more active immune functions. Drug sensitivity analysis suggested that the low-risk group was more responsive to oxaliplatin, epirubicinl, and other drugs. CONCLUSION Our study highlights the crucial regulatory roles of ERS-related lncRNAs in STAD, with significant clinical implications. The 9-lncRNA signature we have constructed represents a reliable prognostic indicator that has the potential to inform more personalized treatment decisions for STAD patients. These findings shed new light on the pathogenesis of STAD and its underlying molecular mechanisms, offering opportunities for novel therapeutic strategies to be developed for STAD patients.
Collapse
Affiliation(s)
- Zhaoxiang Song
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengge Su
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyu Li
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlin Xie
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Han
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianning Yao
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
23
|
Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol 2023; 14:1294929. [PMID: 38090568 PMCID: PMC10711611 DOI: 10.3389/fimmu.2023.1294929] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.
Collapse
|
24
|
Yang Y, Kong WP, Liu C, Ruckwardt TJ, Tsybovsky Y, Wang L, Wang S, Biner DW, Chen M, Liu T, Merriam J, Olia AS, Ou L, Qiu Q, Shi W, Stephens T, Yang ES, Zhang B, Zhang Y, Zhou Q, Rawi R, Koup RA, Mascola JR, Kwong PD. Enhancing Anti-SARS-CoV-2 Neutralizing Immunity by Genetic Delivery of Enveloped Virus-like Particles Displaying SARS-CoV-2 Spikes. Vaccines (Basel) 2023; 11:1438. [PMID: 37766115 PMCID: PMC10537688 DOI: 10.3390/vaccines11091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
New vaccine delivery technologies, such as mRNA, have played a critical role in the rapid and efficient control of SARS-CoV-2, helping to end the COVID-19 pandemic. Enveloped virus-like particles (eVLPs) are often more immunogenic than protein subunit immunogens and could be an effective vaccine platform. Here, we investigated whether the genetic delivery of eVLPs could achieve strong immune responses in mice as previously reported with the immunization of in vitro purified eVLPs. We utilized Newcastle disease virus-like particles (NDVLPs) to display SARS-CoV-2 prefusion-stabilized spikes from the WA-1 or Beta variant (S-2P or S-2Pᵦ, respectively) and evaluated neutralizing murine immune responses achieved by a single-gene-transcript DNA construct for the WA-1 or Beta variant (which we named S-2P-NDVLP-1T and S-2Pᵦ-NDVLP-1T, respectively), by multiple-gene-transcript DNA constructs for the Beta variant (S-2Pᵦ-NDVLP-3T), and by a protein subunit-DNA construct for the WA-1 or Beta variant (S-2P-TM or S-2Pᵦ-TM, respectively). The genetic delivery of S-2P-NDVLP-1T or S-2Pᵦ-NDVLP-1T yielded modest neutralizing responses after a single immunization and high neutralizing responses after a second immunization, comparable to previously reported results in mice immunized with in vitro purified S-2P-NDVLPs. Notably, genetic delivery of S-2Pᵦ-NDVLP-3T yielded significantly higher neutralizing responses in mice after a second immunization than S-2Pᵦ-NDVLP-1T or S-2Pᵦ-TM. Genetic delivery also elicited high spike-specific T-cell responses. Collectively, these results indicate that genetic delivery can provide an effective means to immunize eVLPs and that a multiple-gene transcript eVLP platform may be especially efficacious and inform the design of improved vaccines.
Collapse
Affiliation(s)
- Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Daniel W. Biner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Jonah Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Qi Qiu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| |
Collapse
|
25
|
Matz H, Dooley H. 450 million years in the making: mapping the evolutionary foundations of germinal centers. Front Immunol 2023; 14:1245704. [PMID: 37638014 PMCID: PMC10450919 DOI: 10.3389/fimmu.2023.1245704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Germinal centers (GCs) are distinct microanatomical structures that form in the secondary lymphoid organs of endothermic vertebrates (i.e., mammals and some birds). Within GCs, B cells undergo a Darwinian selection process to identify clones which can respond to pathogen insult as well as affinity mature the B cell repertoire. The GC response ultimately generates memory B cells and bone marrow plasma cells which facilitate humoral immunological memory, the basis for successful vaccination programs. GCs have not been observed in the secondary lymphoid organs of ectothermic jawed vertebrates (i.e., fishes, reptiles, and amphibians). However, abundant research over the past decades has indicated these organisms can produce antigen specific B cell responses and some degree of affinity maturation. This review examines data demonstrating that the fundamentals of B cell selection may be more conserved across vertebrate phylogeny than previously anticipated. Further, research in both conventional mammalian model systems and comparative models raises the question of what evolutionary benefit GCs provide endotherms if they are seemingly unnecessary for generating the basic functional components of jawed vertebrate humoral adaptive immune responses.
Collapse
|
26
|
Hou Y, Chen M, Bian Y, Zheng X, Tong R, Sun X. Advanced subunit vaccine delivery technologies: From vaccine cascade obstacles to design strategies. Acta Pharm Sin B 2023; 13:3321-3338. [PMID: 37655334 PMCID: PMC10465871 DOI: 10.1016/j.apsb.2023.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023] Open
Abstract
Designing and manufacturing safe and effective vaccines is a crucial challenge for human health worldwide. Research on adjuvant-based subunit vaccines is increasingly being explored to meet clinical needs. Nevertheless, the adaptive immune responses of subunit vaccines are still unfavorable, which may partially be attributed to the immune cascade obstacles and unsatisfactory vaccine design. An extended understanding of the crosstalk between vaccine delivery strategies and immunological mechanisms could provide scientific insight to optimize antigen delivery and improve vaccination efficacy. In this review, we summarized the advanced subunit vaccine delivery technologies from the perspective of vaccine cascade obstacles after administration. The engineered subunit vaccines with lymph node and specific cell targeting ability, antigen cross-presentation, T cell activation properties, and tailorable antigen release patterns may achieve effective immune protection with high precision, efficiency, and stability. We hope this review can provide rational design principles and inspire the exploitation of future subunit vaccines.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xi Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Patoine D, Bouchard K, Blais-Lecours P, Courtemanche O, Huppé CA, Marsolais D, Bissonnette EY, Lauzon-Joset JF. CD200Fc limits dendritic cell and B-cell activation during chronic allergen exposures. J Leukoc Biol 2023; 114:84-91. [PMID: 37032534 DOI: 10.1093/jleuko/qiad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 04/11/2023] Open
Abstract
Allergic asthma is a chronic inflammatory disease characterized by Th2, conventional dendritic cell, and B-cell activation. In addition to excessive inflammation, asthma pathogenesis includes dysregulation of anti-inflammatory pathways, such as the CD200/CD200R pathway. Thus, we investigated whether a CD200R agonist, CD200Fc, could disrupt the inflammatory cascade in chronic allergic asthma pathogenesis using a mice model of experimental asthma. Mice were exposed to house dust mites for 5 wk, and CD200Fc treatment was initiated after chronic inflammation was established (starting on week 4). We demonstrate that chronic house dust mite exposure altered CD200 and CD200R expression on lung immune cell populations, including upregulation of CD200 on alveolar macrophages and reduced expression of CD200 on conventional dendritic cells. CD200Fc treatment does not change bronchoalveolar cellular infiltration, but it attenuates B-cell activation and skews the circulating immunoglobulin profile toward IgG2a. This is accompanied by reduced activation of conventional dendritic cells, including lower expression of CD40, especially on conventional dendritic cell subset 2 CD200R+. Furthermore, we confirm that CD200Fc can directly modulate conventional dendritic cell activation in vitro using bone marrow-derived dendritic cells. Thus, the CD200/CD200R pathway is dysregulated during chronic asthma pathogenesis, and the CD200R agonist modulates B-cell and dendritic cell activation but, in our chronic model, is not sufficient to alter inflammation measured in bronchoalveolar lavage.
Collapse
Affiliation(s)
- Dany Patoine
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Karine Bouchard
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Pascale Blais-Lecours
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Olivier Courtemanche
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Carole-Ann Huppé
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - David Marsolais
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, 325 Rue de l'Université, Québec, QC, G1V 0A6, Canada
| | - Elyse Y Bissonnette
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, 325 Rue de l'Université, Québec, QC, G1V 0A6, Canada
| | - Jean-Francois Lauzon-Joset
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, 325 Rue de l'Université, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
28
|
Qiu S, Zhao Z, Wu M, Xue Q, Yang Y, Ouyang S, Li W, Zhong L, Wang W, Yang R, Wu P, Li JP. Use of intercellular proximity labeling to quantify and decipher cell-cell interactions directed by diversified molecular pairs. SCIENCE ADVANCES 2022; 8:eadd2337. [PMID: 36542702 PMCID: PMC9770995 DOI: 10.1126/sciadv.add2337] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
FucoID is an intercellular proximity labeling technique for studying cell-cell interactions (CCIs) via fucosyltransferase (FT)-meditated fucosyl-biotinylation, which has been applied to probe antigen-specific dendritic cell (DC)-T cell interactions. In this system, bait cells of interest with cell surface-anchored FT are used to capture the interacting prey cells by transferring a biotin-modified substrate to prey cells. Here, we leveraged FucoID to study CCIs directed by different molecular pairs, e.g., programmed cell death protein-1(PD-1)/programmed cell death protein-ligand-1 (PD-L1), and identify unknown or little studied CCIs, e.g., the interaction of DCs and B cells. To expand the application of FucoID to complex systems, we also synthesized site-specific antibody-based FT conjugate, which substantially improves the ability of FucoID to probe molecular signatures of specific CCI when cells of interest (bait cells) cannot be purified, e.g., in clinical samples. Collectively, these studies demonstrate the general applicability of FucoID to study unknown CCIs in complex systems at a molecular resolution.
Collapse
Affiliation(s)
- Shuang Qiu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengyao Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yang Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Shian Ouyang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wannan Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lingyu Zhong
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wenjian Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rong Yang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jie P. Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Liu P, Kang C, Zhang J, Liu Y, Liu J, Hu T, Zeng X, Qiu S. The role of dendritic cells in allergic diseases. Int Immunopharmacol 2022; 113:109449. [DOI: 10.1016/j.intimp.2022.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
|
30
|
Katopodi T, Petanidis S, Charalampidis C, Chatziprodromidou I, Eskitzis P, Tsavlis D, Zarogoulidis P, Kosmidis C, Matthaios D, Porpodis K. Tumor-Infiltrating Dendritic Cells: Decisive Roles in Cancer Immunosurveillance, Immunoediting, and Tumor T Cell Tolerance. Cells 2022; 11:cells11203183. [PMID: 36291050 PMCID: PMC9600942 DOI: 10.3390/cells11203183] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
The tumor microenvironment plays a key role in progression of tumorigenesis, tumor progression, and metastasis. Accumulating data reveal that dendritic cells (DCs) appear to play a key role in the development and progression of metastatic neoplasia by driving immune system dysfunction and establishing immunosuppression, which is vital for tumor evasion of host immune response. Consequently, in this review, we will discuss the function of tumor-infiltrating DCs in immune cell signaling pathways that lead to treatment resistance, tumor recurrence, and immunosuppression. We will also review DC metabolism, differentiation, and plasticity, which are essential for metastasis and the development of lung tumors. Furthermore, we will take into account the interaction between myeloid cells and DCs in tumor-related immunosuppression. We will specifically look into the molecular immune-related mechanisms in the tumor microenvironment that result in reduced drug sensitivity and tumor relapse, as well as methods for combating drug resistance and focusing on immunosuppressive tumor networks. DCs play a crucial role in modulating the immune response. Especially, as cancer progresses, DCs may switch from playing an immunostimulatory to an inhibitory role. This article’s main emphasis is on tumor-infiltrating DCs. We address how they affect tumor growth and expansion, and we highlight innovative approaches for therapeutic modulation of these immunosuppressive DCs which is necessary for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Theodora Katopodi
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Savvas Petanidis
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310-999-205; Fax: +30-2310-999-208
| | | | | | - Panagiotis Eskitzis
- Department of Obstetrics, University of Western Macedonia, 50100 Kozani, Greece
| | - Drosos Tsavlis
- Laboratory of Experimental Physiology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece
| | - Christoforos Kosmidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece
| | | | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G.Papanikolaou” General Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
31
|
Xue W, Dong B, Wang Y, Xie Y, Li P, Gong Z, Niu Z. A novel prognostic index of stomach adenocarcinoma based on immunogenomic landscape analysis and immunotherapy options. Exp Mol Pathol 2022; 128:104832. [PMID: 36122795 DOI: 10.1016/j.yexmp.2022.104832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Stomach adenocarcinoma (STAD) is one of the most common malignant tumors worldwide. In this study, we attempted to construct a valid immune-associated gene prognostic index risk model that can predict the survival of patients with STAD and the efficacy of immune checkpoint inhibitors (ICIs) treatment. Transcriptome, clinical, and gene mutational data were obtained from the TCGA database. Immune-related genes were downloaded from the ImmPort and InnateDB databases. A total of 493 immune-related genes were identified to be enriched in functions associated with immune response, as well as in immune and tumor-related pathways. Further, 36 candidate genes related to the overall survival (OS) of STAD were obtained by weighted gene co-expression network analysis (WGCNA). Next, based on a Cox regression analysis, we constructed an immune-associated gene prognostic index (IAGPI) risk model based on eight genes, which was verified using the GEO STAD cohort. The patients were divided into two subsets according to their risk score. Patients in the low-risk group had better OS than those in the high-risk group. In the low-risk group, there were more CD8, activated memory CD4, and follicular helper T cells, and M1 macrophages, whereas monocytes, M2 macrophages, eosinophils, and neutrophils were more abundant in the high-risk group. The patients in the low-risk group were more sensitive to ICIs therapy. The IAGPI risk model can precisely predict the prognosis, reflect the tumor immune microenvironment, and predict the efficacy of ICIs therapy in patients with STAD.
Collapse
Affiliation(s)
- Weijie Xue
- Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Yixiu Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Pu Li
- Department of Medical Ultrasound, Jinniu Maternity And Child Health Hospital of Chengdu, Sichuan, China
| | - Zhiqi Gong
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Zhaojian Niu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China.
| |
Collapse
|
32
|
Ling Y, Zhong J, Weng Z, Lin G, Liu C, Pan C, Yang H, Wei X, Xie X, Wei X, Zhang H, Wang G, Fu J, Wen J. The prognostic value and molecular properties of tertiary lymphoid structures in oesophageal squamous cell carcinoma. Clin Transl Med 2022; 12:e1074. [PMID: 36245289 PMCID: PMC9574489 DOI: 10.1002/ctm2.1074] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) play key roles in tumour adaptive immunity. However, the prognostic value and molecular properties of TLSs in oesophageal squamous cell carcinoma (ESCC) patients have not been studied. METHODS The prognostic values of the presence and maturation status of tumour-associated TLSs were determined in 394 and 256 ESCC patients from Sun Yat-sen University Cancer Center (Centre A) and the Cancer Hospital of Shantou University Medical College (Centre B), respectively. A deep-learning (DL) TLS classifier was established with haematoxylin and eosin (H&E)-stained slides using an inception-resnet-v2 neural network. Digital spatial profiling was performed to determine the cellular and molecular properties of TLSs in ESCC tissues. RESULTS TLSs were observed in 73.1% of ESCCs from Centre A via pathological examination of H&E-stained primary tumour slides, among which 42.9% were TLS-mature and 30.2% were TLS-immature tumours. The established DL TLS classifier yielded favourable sensitivities and specificities for patient TLS identification and maturation evaluation, with which 55.1%, 39.5% and 5.5% of ESCCs from Centre B were identified as TLS-mature, TLS-immature and TLS-negative tumours. Multivariate analyses proved that the presence of mature TLSs was an independent prognostic factor in both the Centre A and Centre B cohorts (p < .05). Increased proportions of proliferative B, plasma and CD4+ T helper (Th) cells and increased B memory and Th17 signatures were observed in mature TLSs compared to immature ones. Intratumoural CD8+ T infiltration was increased in TLS-mature ESCC tissues compared to mature TLS-absent tissues. The combination of mature TLS presence and high CD8+ T infiltration was associated with the best survival in ESCC patients. CONCLUSIONS Mature TLSs improve the prognosis of ESCC patients who underwent complete resection. The use of the DL TLS classifier would facilitate precise and efficient evaluation of TLS maturation status and offer a novel probability of ESCC treatment individualization.
Collapse
Affiliation(s)
- Yihong Ling
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian Zhong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Thoracic OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- Guangdong Esophageal Cancer InstituteGuangzhouChina
| | - Zelin Weng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Guangrong Lin
- Yinhe Hangtian Internet Technology Company LimitedBeijingChina
| | - Caixia Liu
- Department of Preventive MedicineShantou University Medical CollegeShantouChina
| | - Chuqing Pan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hong Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Thoracic OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- Guangdong Esophageal Cancer InstituteGuangzhouChina
| | - Xiaolong Wei
- Department of PathologyCancer Hospital of Shantou University Medical CollegeShantouChina
| | - Xiuying Xie
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Guangdong Esophageal Cancer InstituteGuangzhouChina
| | - Xiaoli Wei
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Huizhong Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Geng Wang
- Department of Thoracic Surgery Cancer Hospital of Shantou University Medical College Shantou China
| | - Jianhua Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Thoracic OncologySun Yat‐sen University Cancer Center,GuangzhouChina
- Guangdong Esophageal Cancer Institute, GuangzhouChina
| | - Jing Wen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Guangdong Esophageal Cancer Institute, Guangzhou China
| |
Collapse
|
33
|
Jonny J, Putranto TA, Irfon R, Sitepu EC. Developing dendritic cell for SARS-CoV-2 vaccine: Breakthrough in the pandemic. Front Immunol 2022; 13:989685. [PMID: 36148241 PMCID: PMC9485669 DOI: 10.3389/fimmu.2022.989685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Finding a vaccine that can last a long time and effective against viruses with high mutation rates such as SARS-CoV-2 is still a challenge today. The various vaccines that have been available have decreased in effectiveness and require booster administration. As the professional antigen presenting cell, Dendritic Cells can also activate the immune system, especially T cells. This ability makes dendritic cells have been developed as vaccines for some types of diseases. In SARS-CoV-2 infection, T cells play a vital role in eliminating the virus, and their presence can be detected in the long term. Hence, this condition shows that the formation of T cell immunity is essential to prevent and control the course of the disease. The construction of vaccines oriented to induce strong T cells response can be formed by utilizing dendritic cells. In this article, we discuss and illustrate the role of dendritic cells and T cells in the pathogenesis of SARS-CoV-2 infection and summarizing the crucial role of dendritic cells in the formation of T cell immunity. We arrange the basis concept of developing dendritic cells for SARS-CoV-2 vaccines. A dendritic cell-based vaccine for SARS-CoV-2 has the potential to be an effective vaccine that solves existing problems.
Collapse
|
34
|
This S, Paidassi H. New perspectives on the regulation of germinal center reaction via αvβ8- mediated activation of TGFβ. Front Immunol 2022; 13:942468. [PMID: 36072589 PMCID: PMC9441935 DOI: 10.3389/fimmu.2022.942468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a long-known modulator of immune responses but has seemingly contradictory effects on B cells. Among cytokines, TGFβ has the particularity of being produced and secreted in a latent form and must be activated before it can bind to its receptor and induce signaling. While the concept of controlled delivery of TGFβ signaling via αvβ8 integrin-mediated activation has gained some interest in the field of mucosal immunity, the role of this molecular mechanism in regulating T-dependent B cell responses is just emerging. We review here the role of TGFβ and its activation, in particular by αvβ8 integrin, in the regulation of mucosal IgA responses and its demonstrated and putative involvement in regulating germinal center (GC) B cell responses. We examine both the direct effect of TGFβ on GC B cells and its ability to modulate the functions of helper cells, namely follicular T cells (Tfh and Tfr) and follicular dendritic cells. Synthetizing recently published works, we reconcile apparently conflicting data and propose an innovative and unified view on the regulation of the GC reaction by TGFβ, highlighting the role of its activation by αvβ8 integrin.
Collapse
Affiliation(s)
- Sébastien This
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de microbiologie, immunologie et infectiologie, Université de Montréal, Montréal, QC, Canada
| | - Helena Paidassi
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
35
|
Shi Y, Lu Y, You J. Antigen transfer and its effect on vaccine-induced immune amplification and tolerance. Am J Cancer Res 2022; 12:5888-5913. [PMID: 35966588 PMCID: PMC9373810 DOI: 10.7150/thno.75904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 12/13/2022] Open
Abstract
Antigen transfer refers to the process of intercellular information exchange, where antigenic components including nucleic acids, antigen proteins/peptides and peptide-major histocompatibility complexes (p-MHCs) are transmitted from donor cells to recipient cells at the thymus, secondary lymphoid organs (SLOs), intestine, allergic sites, allografts, pathological lesions and vaccine injection sites via trogocytosis, gap junctions, tunnel nanotubes (TNTs), or extracellular vesicles (EVs). In the context of vaccine inoculation, antigen transfer is manipulated by the vaccine type and administration route, which consequently influences, even alters the immunological outcome, i.e., immune amplification and tolerance. Mainly focused on dendritic cells (DCs)-based antigen receptors, this review systematically introduces the biological process, molecular basis and clinical manifestation of antigen transfer.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
36
|
Mawhinney M, Kulle A, Thanabalasuriar A. From infection to repair: Understanding the workings of our innate immune cells. WIREs Mech Dis 2022; 14:e1567. [PMID: 35674186 DOI: 10.1002/wsbm.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/06/2022]
Abstract
In a world filled with microbes, some posing a threat to our body, our immune system is key to living a healthy life. The innate immune system is made of various cell types that act to guard our bodies. Unlike the adaptive immune system that has a specific response, our innate immune system encompasses cells that elicit unspecific immune responses, triggered whenever the right signals are detected. Our understanding of immunity started with the concept of our immune system only responding to "nonself" like the pathogens that invade our body. However, over the past few decades, we have learned that the immune system is more than an on/off switch that recognizes nonself. The innate immune system regularly patrols our bodies for pathogens and tissue damage. Our innate immune system not only seeks to resolve infection but also repair tissue injury, through phagocytosing debris and initiating the release of growth factors. Recently, we are starting to see that it is not just recognizing danger, our innate immune system plays a crucial role in repair. Innate immune cells phenotypically change during repair. In the context of severe injury or trauma, our innate immune system is modified quite drastically to help repair, resulting in reduced infection control. Moreover, these changes in immune cell function can be modified by sex as a biological variable. From past to present, in this overview, we provide a summary of the innate immune cells and pathways in infection and tissue repair. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Martin Mawhinney
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Amelia Kulle
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ajitha Thanabalasuriar
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Bravo-Blas A, Pirillo C, Shergold A, Andrusaite A, Roberts EW. Think global but act local: Tuning the dendritic cell response in cancer. Int J Biochem Cell Biol 2022; 147:106227. [PMID: 35605877 DOI: 10.1016/j.biocel.2022.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Despite their low abundance in tumours conventional dendritic cells play an outsized role in initiating and perpetuating anti-tumour immunity; however progressively growing tumours suppress dendritic cell function in a range of ways preventing effective anti-tumour T cell responses. While the success of immune checkpoint blockade has focused attention on T-cell directed therapies, activating tumour dendritic cells has been shown to be critical for the efficacy of several immunotherapies and other conventional therapies owing to their ability to activate and restimulate anti-tumour T-cells. As such, the importance of understanding the mechanisms by which dendritic cell function is impaired are being investigated further. Yet, while much attention has been paid to the tumour microenvironment less has been given to the macroenvironment including effects in the bone marrow and the lymph node. It is now clear that dendritic cell function can be impaired in a variety of ways at different anatomical sites and understanding these mechanisms will be critical for developing effective strategies to tune the dendritic cell response in cancer.
Collapse
Affiliation(s)
- Alberto Bravo-Blas
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Chiara Pirillo
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Amy Shergold
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Anna Andrusaite
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Edward W Roberts
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
38
|
Raqib R, Akhtar E, Sultana T, Ahmed S, Chowdhury MAH, Shahriar MH, Kader SB, Eunus M, Haq MA, Sarwar G, Islam T, Alam DS, Parvez F, Begum BA, Ahsan H, Yunus M. Association of household air pollution with cellular and humoral immune responses among women in rural Bangladesh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118892. [PMID: 35077836 PMCID: PMC9850293 DOI: 10.1016/j.envpol.2022.118892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 05/29/2023]
Abstract
Household air pollution (HAP) arising from combustion of biomass fuel (BMF) is a leading cause of morbidity and mortality in low-income countries. Air pollution may stimulate pro-inflammatory responses by activating diverse immune cells and cyto/chemokine expression, thereby contributing to diseases. We aimed to study cellular immune responses among women chronically exposed to HAP through use of BMF for domestic cooking. Among 200 healthy, non-smoking women in rural Bangladesh, we assessed exposure to HAP by measuring particulate matter 2.5 (PM2.5), black carbon (BC) and carbon monoxide (CO), through use of personal monitors RTI MicroPEM™ and Lascar CO logger respectively, for 48 h. Blood samples were collected following HAP exposure assessment and were analyzed for immunoprofiling by flow cytometry, plasma IgE by immunoassay analyzer and cyto/chemokine response from monocyte-derived-macrophages (MDM) and -dendritic cells (MDDC) by multiplex immunoassay. In multivariate linear regression model, a doubling of PM2.5 was associated with small increments in immature/early B cells (CD19+CD38+) and plasmablasts (CD19+CD38+CD27+). In contrast, a doubling of CO was associated with 1.20% reduction in CD19+ B lymphocytes (95% confidence interval (CI) = -2.36, -0.01). A doubling of PM2.5 and BC each was associated with 3.12% (95%CI = -5.85, -0.38) and 4.07% (95%CI = -7.96, -0.17) decrements in memory B cells (CD19+CD27+), respectively. Exposure to CO was associated with increased plasma IgE levels (beta(β) = 240.4, 95%CI = 3.06, 477.8). PM2.5 and CO exposure was associated with increased MDM production of CXCL10 (β = 12287, 95%CI = 1038, 23536) and CCL5 (β = 835.7, 95%CI = 95.5, 1576), respectively. Conversely, BC exposure was associated with reduction in MDDC-produced CCL5 (β = -3583, 95%CI = -6358, -807.8) and TNF-α (β = -15521, 95%CI = -28968, -2074). Our findings suggest that chronic HAP exposure through BMF use adversely affects proportions of B lymphocytes, particularly memory B cells, plasma IgE levels and functions of antigen presenting cells in rural women.
Collapse
Affiliation(s)
| | - Evana Akhtar
- Infectious Diseases Division, icddr,b, Bangladesh
| | | | - Shyfuddin Ahmed
- Health Systems and Population Studies Division, icddr,b, Dhaka, 1212, Bangladesh
| | | | | | - Shirmin Bintay Kader
- Health Systems and Population Studies Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Mahbbul Eunus
- U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Golam Sarwar
- U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Faruque Parvez
- Mailman School of Public Health, Columbia University, New York, USA
| | | | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, USA
| | | |
Collapse
|
39
|
Inhibition of the antigen-presenting ability of dendritic cells by non-structural protein 2 of influenza A virus. Vet Microbiol 2022; 267:109392. [DOI: 10.1016/j.vetmic.2022.109392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/18/2022]
|
40
|
Liu D, Duan L, Cyster JG. Chemo- and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen. Immunol Rev 2022; 306:25-42. [PMID: 35147233 PMCID: PMC8852366 DOI: 10.1111/imr.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022]
Abstract
Spleen dendritic cells (DC) are critical for initiation of adaptive immune responses against blood-borne invaders. Key to DC function is their positioning at sites of pathogen entry, and their abilities to selectively capture foreign antigens and promptly engage T cells. Focusing on conventional DC2 (cDC2), we discuss the contribution of chemoattractant receptors (EBI2 or GPR183, S1PR1, and CCR7) and integrins to cDC2 positioning and function. We give particular attention to a newly identified role in cDC2 for adhesion G-protein coupled receptor E5 (Adgre5 or CD97) and its ligand CD55, detailing how this mechanosensing system contributes to splenic cDC2 positioning and homeostasis. Additional roles of CD97 in the immune system are reviewed. The ability of cDC2 to be activated by circulating missing self-CD47 cells and to integrate multiple red blood cell (RBC)-derived inputs is discussed. Finally, we describe the process of activated cDC2 migration to engage and prime helper T cells. Throughout the review, we consider the insights into cDC function in the spleen that have emerged from imaging studies.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Lihui Duan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
41
|
Schriek P, Ching AC, Moily NS, Moffat J, Beattie L, Steiner TM, Hosking LM, Thurman JM, Holers VM, Ishido S, Lahoud MH, Caminschi I, Heath WR, Mintern JD, Villadangos JA. Marginal zone B cells acquire dendritic cell functions by trogocytosis. Science 2022; 375:eabf7470. [PMID: 35143312 DOI: 10.1126/science.abf7470] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II-C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II-C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells.
Collapse
Affiliation(s)
- Patrick Schriek
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alan C Ching
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nagaraj S Moily
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jessica Moffat
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thiago M Steiner
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Laine M Hosking
- Department of Allergy and Immunology, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Joshua M Thurman
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - William R Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
42
|
Roquilly A, Mintern JD, Villadangos JA. Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annu Rev Immunol 2022; 40:525-557. [PMID: 35130030 DOI: 10.1146/annurev-immunol-101320-031931] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection. We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, INSERM, UMR 1064, CHU Nantes, University of Nantes, Nantes, France
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
43
|
Lin Y, Liu Q, Chen Z, Zheng F, Huang H, Yu C, Yang J. The immunomodulatory effect of koumine on B cells under dependent and independent responses by T cells. Eur J Pharmacol 2022; 914:174690. [PMID: 34890543 DOI: 10.1016/j.ejphar.2021.174690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
Dysregulated activation of polyclonal B cells and production of pathogenic antibodies are involved in the development of rheumatoid arthritis (RA). Therefore, targeted B cell therapy is effective against RA. Gelsemium elegans (Gardn. & Champ.) Benth., a toxic plant widely distributed in Southeast Asia, has been used for treating rheumatoid pain, neuropathic pain, spasticity, skin ulcers, and cancers for many years in traditional Chinese medicine. Koumine, an alkaloid monomer from Gelsemium elegans Benth., exerts therapeutic effects against RA. However, whether koumine affects B cells remains unknown. In this study, the effect of koumine on B cells under T cell-independent (TI) and T cell-dependent (TD) immune responses is investigated in vitro and in vivo. Mouse primary B cells were obtained by immunomagnetic bead sorting, and immunomodulatory effects of koumine on the activation, proliferation, and differentiation of B cells were determined in TI and TD models induced by lipopolysaccharide (LPS) and anti-CD40 antibodies in vitro, respectively. The humoral immune responses of TI and TD were established using NP-AECM-FICOLL and NP-CGG in C57BL/6J mice, respectively. We found that koumine inhibited B cell differentiation in the TI model and inhibited B cell activation and proliferation in the TD model in vitro. Koumine also inhibited antibody secretion in TI immune response, TD initial immune response, and in TD secondary immune response. Our results reveal that koumine has a direct and indirect immune regulatory effect on B cells, showing that it can directly inhibit the differentiation and secretion of autoantibodies after abnormal activation of B cells, and indirectly inhibit the activation and proliferation of TD B cells to reduce the secretion of antibodies. It may be an important mechanism for its anti-RA effect in mice, providing a rationale and laboratory data support for the application of koumine in anti-human RA therapy.
Collapse
Affiliation(s)
- Yarong Lin
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Qian Liu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zehong Chen
- Laboratory of Medical Function, Basic Medical Experimental Teaching Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Fengting Zheng
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Huihui Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
44
|
Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal control of vaccine responses. NATURE REVIEWS. MATERIALS 2022; 7:174-195. [PMID: 34603749 PMCID: PMC8477997 DOI: 10.1038/s41578-021-00372-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 05/02/2023]
Abstract
Vaccines are the key technology to combat existing and emerging infectious diseases. However, increasing the potency, quality and durability of the vaccine response remains a challenge. As our knowledge of the immune system deepens, it becomes clear that vaccine components must be in the right place at the right time to orchestrate a potent and durable response. Material platforms, such as nanoparticles, hydrogels and microneedles, can be engineered to spatially and temporally control the interactions of vaccine components with immune cells. Materials-based vaccination strategies can augment the immune response by improving innate immune cell activation, creating local inflammatory niches, targeting lymph node delivery and controlling the time frame of vaccine delivery, with the goal of inducing enhanced memory immunity to protect against future infections. In this Review, we highlight the biological mechanisms underlying strong humoral and cell-mediated immune responses and explore materials design strategies to manipulate and control these mechanisms.
Collapse
Affiliation(s)
- Gillie A. Roth
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Vittoria C. T. M. Picece
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Wei Luo
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Paediatrics — Endocrinology, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
45
|
Jin Y, Deng J, Luo B, Zhong Y, Yu S. Construction and validation of an immune-related genes prognostic index (IRGPI) model in colon cancer. Front Endocrinol (Lausanne) 2022; 13:963382. [PMID: 36440228 PMCID: PMC9682206 DOI: 10.3389/fendo.2022.963382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Though immunotherapy has become one of the standard therapies for colon cancer, the overall effective rate of immunotherapy is very low. Constructing an immune-related genes prognostic index (IRGPI) model may help to predict the response to immunotherapy and clinical outcomes. METHODS Differentially expressed immune-related genes (DEIRGs) between normal tissues and colon cancer tissues were identified and used to construct the co-expression network. Genes in the module with the most significant differences were further analyzed. Independent prognostic immune-related genes (IRGs) were identified by univariate and multivariate cox regression analysis. Independent prognostic IRGs were used to construct the IRGPI model using the multivariate cox proportional hazards regression model, and the IRGPI model was validated by independent dataset. ROC curves were plotted and AUCs were calculated to estimate the predictive power of the IRGPI model to prognosis. Gene set enrichment analysis (GSEA) was performed to screen the enriched KEGG pathways in the high-risk and low-risk phenotype. Correlations between IRGPI and clinical characteristic, immune checkpoint expression, TMB, immune cell infiltration, immune function, immune dysfunction, immune exclusion, immune subtype were analyzed. RESULTS Totally 680 DEIRGs were identified. Three independent IRGs,NR5A2, PPARGC1A and LGALS4, were independently related to survival. NR5A2, PPARGC1A and LGALS4 were used to establish the IRGPI model. Survival analysis showed that patients with high-risk showed worse survival than patients in the low-risk group. The AUC of the IRGPI model for 1-year, 3-year and 5-year were 0.584, 0.608 and 0.697, respectively. Univariate analysis and multivariate cox regression analysis indicated that IRGPI were independent prognostic factors for survival. Stratified survival analysis showed that patients with IRGPI low-risk and low TMB had the best survival, which suggested that combination of TMB and IRGPI can better predict clinical outcome. Immune cell infiltration, immune function, immune checkpoint expression and immune exclusion were different between IRGPI high-risk and low-risk patients. CONCLUSION An immune-related genes prognostic index (IRGPI) was constructed and validated in the current study and the IRGPI maybe a potential biomarker for evaluating response to immunotherapy and clinical outcome for colon cancer patients.
Collapse
Affiliation(s)
- Yabin Jin
- Institute of Clinical Research, The First People’s Hospital of Foshan, Foshan, China
| | - Jianzhong Deng
- Department of Anorectal Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Bing Luo
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Foshan, Foshan, China
| | - Yubo Zhong
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Foshan, Foshan, China
| | - Si Yu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Foshan, Foshan, China
- Division of Gastrointestinal Surgery, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Si Yu,
| |
Collapse
|
46
|
Kumar US, Afjei R, Ferrara K, Massoud TF, Paulmurugan R. Gold-Nanostar-Chitosan-Mediated Delivery of SARS-CoV-2 DNA Vaccine for Respiratory Mucosal Immunization: Development and Proof-of-Principle. ACS NANO 2021; 15:17582-17601. [PMID: 34705425 PMCID: PMC8565460 DOI: 10.1021/acsnano.1c05002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 05/16/2023]
Abstract
The COVID-19 pandemic is caused by the coronavirus SARS-CoV-2 (SC2). A variety of anti-SC2 vaccines have been approved for human applications, including those using messenger RNA (mRNA), adenoviruses expressing SC2 spike (S) protein, and inactivated virus. The protective periods of immunization afforded by these intramuscularly administered vaccines are currently unknown. An alternative self-administrable vaccine capable of mounting long-lasting immunity via sterilizing neutralizing antibodies would be hugely advantageous in tackling emerging mutant SC2 variants. This could also diminish the possibility of vaccinated individuals acting as passive carriers of COVID-19. Here, we investigate the potential of an intranasal (IN)-delivered DNA vaccine encoding the S protein of SC2 in BALB/c and C57BL/6J immunocompetent mouse models. The immune response to IN delivery of this SC2-spike DNA vaccine transported on a modified gold-chitosan nanocarrier shows a strong and consistent surge in antibodies (IgG, IgA, and IgM) and effective neutralization of pseudoviruses expressing S proteins of different SC2 variants (Wuhan, beta, and D614G). Immunophenotyping and histological analyses reveal chronological events involved in the recognition of SC2 S antigen by resident dendritic cells and alveolar macrophages, which prime the draining lymph nodes and spleen for peak SC2-specific cellular and humoral immune responses. The attainable high levels of anti-SC2 IgA in lung mucosa and tissue-resident memory T cells can efficiently inhibit SC2 and its variants at the site of entry and also provide long-lasting immunity.
Collapse
Affiliation(s)
- Uday S. Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rayhaneh Afjei
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katherine Ferrara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tarik F. Massoud
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
47
|
Amirifar P, Yazdani R, Azizi G, Ranjouri MR, Durandy A, Plebani A, Lougaris V, Hammarstrom L, Aghamohammadi A, Abolhassani H. Known and potential molecules associated with altered B cell development leading to predominantly antibody deficiencies. Pediatr Allergy Immunol 2021; 32:1601-1615. [PMID: 34181780 DOI: 10.1111/pai.13589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/12/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Predominantly antibody deficiencies (PADs) encompass a heterogeneous group of disorders characterized by low immunoglobulin serum levels in the presence or absence of peripheral B cells. Clinical presentation of affected patients may include recurrent respiratory and gastrointestinal infections, invasive infections, autoimmune manifestations, allergic reactions, lymphoproliferation, and increased susceptibility to malignant transformation. In the last decades, several genetic alterations affecting B-cell development/maturation have been identified as causative of several forms of PADs, adding important information on the genetic background of PADs, which in turn should lead to a better understanding of these disorders and precise clinical management of affected patients. This review aimed to present a comprehensive overview of the known and potentially involved molecules in the etiology of PADs to elucidate the pathogenesis of these disorders and eventually offer a better prognosis for affected patients.
Collapse
Affiliation(s)
- Parisa Amirifar
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anne Durandy
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Alessandro Plebani
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Lennart Hammarstrom
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
48
|
Rentzsch M, Wawrzinek R, Zelle-Rieser C, Strandt H, Bellmann L, Fuchsberger FF, Schulze J, Busmann J, Rademacher J, Sigl S, Del Frari B, Stoitzner P, Rademacher C. Specific Protein Antigen Delivery to Human Langerhans Cells in Intact Skin. Front Immunol 2021; 12:732298. [PMID: 34745102 PMCID: PMC8566742 DOI: 10.3389/fimmu.2021.732298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Immune modulating therapies and vaccines are in high demand, not least to the recent global spread of SARS-CoV2. To achieve efficient activation of the immune system, professional antigen presenting cells have proven to be key coordinators of such responses. Especially targeted approaches, actively directing antigens to specialized dendritic cells, promise to be more effective and accompanied by reduced payload due to less off-target effects. Although antibody and glycan-based targeting of receptors on dendritic cells have been employed, these are often expensive and time-consuming to manufacture or lack sufficient specificity. Thus, we applied a small-molecule ligand that specifically binds Langerin, a hallmark receptor on Langerhans cells, conjugated to a model protein antigen. Via microneedle injection, this construct was intradermally administered into intact human skin explants, selectively loading Langerhans cells in the epidermis. The ligand-mediated cellular uptake outpaces protein degradation resulting in intact antigen delivery. Due to the pivotal role of Langerhans cells in induction of immune responses, this approach of antigen-targeting of tissue-resident immune cells offers a novel way to deliver highly effective vaccines with minimally invasive administration.
Collapse
Affiliation(s)
- Mareike Rentzsch
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Robert Wawrzinek
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Claudia Zelle-Rieser
- Langerhans Cell Research Lab, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helen Strandt
- Langerhans Cell Research Lab, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lydia Bellmann
- Langerhans Cell Research Lab, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix F. Fuchsberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jessica Schulze
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jil Busmann
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | - Juliane Rademacher
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Del Frari
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Langerhans Cell Research Lab, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
49
|
Poirot J, Medvedovic J, Trichot C, Soumelis V. Compartmentalized multicellular crosstalk in lymph nodes coordinates the generation of potent cellular and humoral immune responses. Eur J Immunol 2021; 51:3146-3160. [PMID: 34606627 PMCID: PMC9298410 DOI: 10.1002/eji.202048977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Distributed throughout the body, lymph nodes (LNs) constitute an important crossroad where resident and migratory immune cells interact to initiate antigen‐specific immune responses supported by a dynamic 3‐dimensional network of stromal cells, that is, endothelial cells and fibroblastic reticular cells (FRCs). LNs are organized into four major subanatomically separated compartments: the subcapsular sinus (SSC), the paracortex, the cortex, and the medulla. Each compartment is underpinned by particular FRC subsets that physically support LN architecture and delineate functional immune niches by appropriately providing environmental cues, nutrients, and survival factors to the immune cell subsets they interact with. In this review, we discuss how FRCs drive the structural and functional organization of each compartment to give rise to prosperous interactions and coordinate immune cell activities. We also discuss how reciprocal communication makes FRCs and immune cells perfect compatible partners for the generation of potent cellular and humoral immune responses.
Collapse
Affiliation(s)
- Justine Poirot
- Université de Paris, INSERM U976, Paris, France.,Université Paris-Saclay, Saint Aubin, France
| | | | | | - Vassili Soumelis
- Université de Paris, INSERM U976, Paris, France.,AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie-Histocompatibilité, Paris, France
| |
Collapse
|
50
|
Zhu S, Gokhale S, Jung J, Spirollari E, Tsai J, Arceo J, Wu BW, Victor E, Xie P. Multifaceted Immunomodulatory Effects of the BTK Inhibitors Ibrutinib and Acalabrutinib on Different Immune Cell Subsets - Beyond B Lymphocytes. Front Cell Dev Biol 2021; 9:727531. [PMID: 34485307 PMCID: PMC8414982 DOI: 10.3389/fcell.2021.727531] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
The clinical success of the two BTK inhibitors, ibrutinib and acalabrutinib, represents a major breakthrough in the treatment of chronic lymphocytic leukemia (CLL) and has also revolutionized the treatment options for other B cell malignancies. Increasing evidence indicates that in addition to their direct effects on B lymphocytes, both BTK inhibitors also directly impact the homeostasis, phenotype and function of many other cell subsets of the immune system, which contribute to their high efficacy as well as adverse effects observed in CLL patients. In this review, we attempt to provide an overview on the overlapping and differential effects of ibrutinib and acalabrutinib on specific receptor signaling pathways in different immune cell subsets other than B cells, including T cells, NK cells, monocytes, macrophages, granulocytes, myeloid-derived suppressor cells, dendritic cells, osteoclasts, mast cells and platelets. The shared and distinct effects of ibrutinib versus acalabrutinib are mediated through BTK-dependent and BTK-independent mechanisms, respectively. Such immunomodulatory effects of the two drugs have fueled myriad explorations of their repurposing opportunities for the treatment of a wide variety of other human diseases involving immune dysregulation.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Eris Spirollari
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Jemmie Tsai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Johann Arceo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Ben Wang Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Eton Victor
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|